WO2021088789A1 - 电子设备、通信方法和存储介质 - Google Patents

电子设备、通信方法和存储介质 Download PDF

Info

Publication number
WO2021088789A1
WO2021088789A1 PCT/CN2020/126097 CN2020126097W WO2021088789A1 WO 2021088789 A1 WO2021088789 A1 WO 2021088789A1 CN 2020126097 W CN2020126097 W CN 2020126097W WO 2021088789 A1 WO2021088789 A1 WO 2021088789A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
signals
harq
signal
user data
Prior art date
Application number
PCT/CN2020/126097
Other languages
English (en)
French (fr)
Inventor
崔焘
曹建飞
Original Assignee
索尼公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔焘 filed Critical 索尼公司
Priority to JP2022526309A priority Critical patent/JP2023500355A/ja
Priority to CA3156744A priority patent/CA3156744A1/en
Priority to US17/773,035 priority patent/US20240171325A1/en
Priority to EP20885943.9A priority patent/EP4057544A4/en
Priority to MX2022004994A priority patent/MX2022004994A/es
Priority to CN202080076519.1A priority patent/CN114762277A/zh
Priority to KR1020227015149A priority patent/KR20220097403A/ko
Priority to AU2020379699A priority patent/AU2020379699A1/en
Publication of WO2021088789A1 publication Critical patent/WO2021088789A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • H04L1/1678Details of the supervisory signal the supervisory signal being transmitted together with control information where the control information is for timing, e.g. time stamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • the present disclosure relates to an electronic device, a communication method, and a storage medium. More specifically, the present disclosure relates to an electronic device, a communication method, and a storage medium for feedback processing of uplink repeated transmission using time slot aggregation.
  • 5G New Radio considers three important application scenarios: Enhanced Mobile Broadband (eMBB), Mass Machine Communication (mMTC), and Ultra Reliable Low Latency Communication (URLLC). These application scenarios have corresponding requirements for the reliability and delay of data transmission.
  • eMBB Enhanced Mobile Broadband
  • mMTC Mass Machine Communication
  • URLLC Ultra Reliable Low Latency Communication
  • HARQ hybrid automatic repeat request
  • MAC medium access control
  • HARQ is a technology that combines forward error correction (FEC) and automatic repeat request (ARQ) methods.
  • FEC adds redundant information to the data to be transmitted so that the receiving end can correct some errors, thereby reducing retransmission. The number of times depends on the error detection result of the received data, and the receiving end feeds back HARQ acknowledgment (HARQ-ACK) to the sending end.
  • HARQ-ACK HARQ acknowledgment
  • the receiver can request the sender to resend the data through the ARQ mechanism.
  • 3GPP RAN 1#98 defines the minimum duration D for the user equipment to wait to receive downlink feedback information (DFI), that is, from the end symbol of the transmission to the beginning of the downlink feedback information (DFI) carrying HARQ-ACK The duration of the start symbol.
  • DFI downlink feedback information
  • DFI downlink feedback information
  • the user equipment only needs to confirm the validity of the HARQ-ACK received for this uplink transmission after the duration D has passed since the end of the uplink transmission.
  • a suitable minimum duration D needs to be defined, and operations performed by both the base station and the user equipment in the HARQ feedback processing need to be improved.
  • the present disclosure provides various aspects of feedback processing suitable for uplink repeated transmission using time slot aggregation.
  • an electronic device for a user equipment side including a processing circuit configured to send a plurality of signals to a control device in a consecutive time slot, each signal including Repeated user data; and receiving one or more HARQ feedback from the control device at a time after a pre-configured duration elapses from the end of the transmission of the first signal of the plurality of signals, the one or more HARQ feedback Indicates whether the decoding of the user data by the control device is successful.
  • an electronic device for controlling the device side including a processing circuit configured to sequentially receive a plurality of signals from a user equipment on consecutive time slots, each The signal contains repeated user data; the user data is decoded using at least one of the plurality of signals; and at a time after a pre-configured duration has elapsed from the end of the reception of the first signal of the plurality of signals, Send one or more HARQ feedbacks indicating whether decoding is successful to the user equipment.
  • a communication method including: sequentially sending a plurality of signals to a control device on consecutive time slots, each signal containing repeated user data; At a time after the transmission of the first signal is completed and the pre-configured duration elapses, one or more HARQ feedbacks are received from the control device, and the one or more HARQ feedbacks indicate whether the control device decodes the user data successfully.
  • a communication method including: using at least one of the plurality of signals to decode the user data; At the moment after the pre-configured duration has elapsed after the reception ends, one or more HARQ feedback indicating whether the decoding is successful is sent to the user equipment.
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement any of the communication methods described above.
  • appropriate HARQ feedback processing can be applied in the scenario of uplink repeated transmission using time slot aggregation.
  • Figure 1 is a simplified diagram illustrating the architecture of the NR communication system
  • Figures 2A and 2B respectively illustrate the NR radio protocol architecture of the user plane and the control plane
  • Figure 3 illustrates the frame structure used in 5G NR
  • Figure 4 illustrates an example of uplink repeated transmission using time slot aggregation
  • Figure 5 illustrates the relationship between the reception start time of HARQ feedback and the validity
  • FIG. 6A illustrates a block diagram of an electronic device on the user equipment side according to the present disclosure
  • FIG. 6B illustrates a communication method on the user equipment side according to the present disclosure
  • FIG. 7A illustrates a block diagram of an electronic device on the control device side according to the present disclosure
  • FIG. 7B illustrates the communication method on the control device side according to the present disclosure
  • FIG. 8 illustrates a first example of a schematic configuration of a base station according to the present disclosure
  • FIG. 9 illustrates a second example of the schematic configuration of the base station according to the present disclosure.
  • FIG. 10 illustrates a schematic configuration example of a smart phone according to the present disclosure
  • FIG. 11 illustrates a schematic configuration example of a car navigation device according to the present disclosure.
  • FIG. 1 is a simplified diagram showing the architecture of a 5G NR communication system.
  • the radio access network (NG-RAN) nodes of the NR communication system include gNB and ng-eNB, where gNB is a newly defined node in the 5G NR communication standard, which passes through the NG interface Connect to the 5G core network (5GC), and provide NR user plane and control plane protocols that terminate with terminal equipment (also referred to as "user equipment”, hereinafter referred to as "UE”);
  • ng-eNB is used to communicate with 4G LTE communication system compatible and defined node, which can be an upgraded Node B (eNB) of the LTE radio access network, connects the device to the 5G core network via the NG interface, and provides an evolved universal terrestrial radio interface terminated with the UE Enter (E-UTRA) user plane and control plane protocol.
  • eNB evolved universal terrestrial radio interface terminated with the UE Enter (E-UTRA) user plane and control plane protocol.
  • E-UTRA evolved universal terrestrial radio interface terminate
  • the term "base station” used in the present disclosure is not limited to the above two kinds of nodes, but is an example of a control device in a wireless communication system, having the full breadth of its usual meaning.
  • the “base station” may also be, for example, an eNB, a remote radio head, and a wireless interface in an LTE communication system. Entry points, relay nodes, drone control towers, control nodes in automated factories, or communication devices or their components that perform similar control functions. The following chapters will describe in detail the application examples of the base station.
  • the term "UE" used in the present disclosure has the full breadth of its usual meaning, including various terminal devices or in-vehicle devices that communicate with a base station.
  • the UE may be a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, a drone, a sensor and an actuator in an automated factory, or a component thereof.
  • a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, a drone, a sensor and an actuator in an automated factory, or a component thereof.
  • Figure 2A shows the radio protocol stack for the user plane of the UE and the base station
  • Figure 2B shows the radio protocol stack for the control plane of the UE and the base station.
  • Layer 1 (L1) of the radio protocol stack is the lowest layer, also known as the physical layer.
  • the L1 layer implements various physical layer signal processing to provide transparent signal transmission functions.
  • Layer 2 (L2) of the radio protocol stack is above the physical layer and is responsible for managing the wireless link between the UE and the base station.
  • the L2 layer includes a medium access control (MAC) sublayer, a radio link control (RLC) sublayer, a packet data convergence protocol (PDCP) sublayer, and a service data adaptation protocol (SDAP) sublayer.
  • the L2 layer includes a MAC sublayer, an RLC sublayer, and a PDCP sublayer.
  • the physical layer provides transmission channels for the MAC sublayer, for example, in the uplink direction, including physical uplink shared channel (PUSCH), physical uplink control channel (PUCCH), physical random access channel (PRACH), In the downlink direction, it includes physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), physical broadcast channel (PBCH);
  • the MAC sublayer provides logical channels for the RLC sublayer, such as uplink shared channel (UL-SCH), random Access channel (RACH), downlink shared channel (DL-SCH), broadcast channel (BCH), paging channel (PCH), etc.
  • RLC sublayer provides RLC channel for PDCP sublayer
  • PDCP sublayer provides radio for SDAP sublayer Bearer.
  • the MAC sublayer is responsible for allocating various radio resources (for example, time-frequency resource blocks) in a cell among various UEs.
  • the radio resource control (RRC) sublayer in layer 3 (L3) is also included in the UE and the base station.
  • the RRC sublayer is responsible for obtaining radio resources (ie, radio bearers) and for configuring the lower layers using RRC signaling.
  • the non-access stratum (NAS) control protocol in the UE performs functions such as authentication, mobility management, and security control.
  • the uplink data transmission from the UE to the base station is completed through PUSCH.
  • 5G NR generally supports two uplink transmission schemes: codebook-based transmission and non-codebook-based transmission.
  • codebook-based transmission the base station provides the UE with a transmission precoding matrix indication (TPMI) in the downlink control information (DCI), and the UE can use the indication to select a PUSCH transmission precoder from the codebook.
  • TPMI transmission precoding matrix indication
  • DCI downlink control information
  • the UE determines its PUSCH transmission precoder based on the wideband SRS resource indicator (SRI) field in the DCI.
  • SRI wideband SRS resource indicator
  • Upstream physical layer processing generally includes:
  • CRC Cyclic Redundancy Check
  • the transmission block is segmented into several code blocks, and check bits are calculated based on each code block, and the calculated check bits are added to the corresponding code block;
  • each code block is separately coded by Low Density Parity Check (LDPC);
  • LDPC Low Density Parity Check
  • LDPC code rate matching is defined for each coded block, and includes bit selection and bit interleaving
  • -Scrambling for example, the UE's C-RNTI, new RNTI, TC-RNTI, CS-RNTI or SP-CSI-RNTI can be used for scrambling;
  • -Modulation including ⁇ /2 binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16QAM), 64QAM and 256QAM;
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM 16 quadrature amplitude modulation
  • 64QAM 64QAM and 256QAM;
  • the bit stream as user data is coded and modulated into OFDM symbols, and sent to the serving base station by the antenna array using the allocated time-frequency resources.
  • the base station receiving the signal decodes the user data through the inverse processing of the above-mentioned signal processing.
  • Fig. 3 shows a diagram of a frame structure in a 5G communication system.
  • the frame in NR also has a length of 10ms and includes 10 subframes of equal size, each of which is 1ms.
  • the frame structure in NR has a flexible structure that depends on the subcarrier spacing.
  • Each subframe has configurable Time slots, such as 1, 2, 4, 8, 16.
  • Each time slot also has configurable For the normal cyclic prefix, each slot contains 14 consecutive OFDM symbols, and for the extended cyclic prefix, each slot includes 12 consecutive OFDM symbols.
  • each time slot includes several resource blocks, and each resource block includes, for example, 12 consecutive subcarriers in the frequency domain.
  • a resource grid can be used to represent resource elements (RE) in a time slot, as shown in FIG. 3.
  • the resource blocks available for uplink transmission can be divided into a data section and a control section.
  • the resource elements in the control section can be allocated to the UE for transmission of control information.
  • the data section may include all resource elements that are not included in the control section.
  • the UE may also be allocated resource elements in the data section for transmitting data to the base station.
  • the UE that has data to send may send a scheduling request (SR) and/or a buffer status report (BSR) to the base station to request time-frequency resources for sending user data.
  • SR scheduling request
  • BSR buffer status report
  • the base station can use DCI containing resource allocation information to dynamically schedule the PUSCH.
  • the base station can pre-configure available time-frequency resources for the UE through RRC layer signaling, so that the UE can directly use the pre-configured time-frequency resources for PUSCH transmission without requesting the base station to send each time Uplink authorization.
  • the scheduling of time domain resources is based on a single time slot or mini time slot.
  • time slot aggregation that is, multiple consecutive time slots (aggregated time slots) are scheduled for the UE at one time for downlink or uplink data transmission.
  • Slot aggregation can generally be used for repeated transmission of data.
  • the UE can repeat the same transmission on a corresponding number of consecutive time slots during PUSCH transmission. Data to ensure the reliability of data transmission when the channel condition is poor, for example.
  • RAN1#98 defines the minimum duration D configured by RRC layer signaling, which is from the end symbol of PUSCH transmission to the start symbol of downlink feedback information (DFI) carrying HARQ-ACK for the PUSCH transmission.
  • DFI downlink feedback information
  • the reason for configuring the minimum duration D is that processing such as receiving and decoding at the base station requires a certain amount of time, and feedback cannot be provided to the UE immediately.
  • the UE can make its communication module idle for a period corresponding to the minimum duration D to reduce energy consumption after completing PUSCH transmission, or can use its communication module for other transmissions within the period corresponding to the minimum duration D Or for receiving tasks, there is no need to monitor the channel all the time and wait for HARQ-ACK to be received.
  • the defined minimum duration D is only for non-repetitive PUSCH transmission, and such minimum duration D has not been defined for repeated PUSCH transmission. This means that the UE needs to monitor the channel all the time after completing the PUSCH transmission, which is not conducive to the energy saving and working efficiency of the communication module. If, like non-repetitive PUSCH transmission, the period from the end symbol of the repeated PUSCH transmission to the start symbol of the DFI carrying HARQ-ACK is defined as the minimum duration D, this means that even if the base station uses the first time slot The transmitted signal decodes the user data, and the HARQ-ACK can be sent to the UE after the transmission on all time slots is completed and the configured minimum duration D is added, which will undoubtedly increase the delay.
  • the decoding process at the base station is agnostic to the UE, that is, the UE does not know whether the HARQ-ACK provided by the base station is for all aggregated time slots or for some aggregated time slots. For example, suppose that the base station cannot decode user data based on the signal transmitted in the first time slot, and sends a NACK indicating that the decoding was unsuccessful to the UE. However, the UE receiving the NACK cannot determine its validity because the UE does not know this NACK means that the user data cannot be successfully decoded by the signals transmitted on all aggregated time slots and the data needs to be retransmitted, or it means that the user data is temporarily unsuccessfully decoded and needs to wait for possible subsequent ACKs or NACKs.
  • the present disclosure provides a definition of the minimum duration suitable for a time slot aggregation scenario, and proposes HARQ feedback processing that makes the interpretation of downlink feedback information unambiguous.
  • the base station semi-statically configures PUSCH resource allocation for the UE in a manner of configuring authorization.
  • the base station may configure the ConfiguredGrantConfig parameter in the BWP information element for the UE.
  • ConfiguredGrantConfig can provide information about the resource allocation pre-configured to the UE, such as the time domain allocation parameter timeDomainAllocation (which indicates the combination of PUSCH mapping type, start symbol and length) and the frequency domain allocation parameter frequencyDomainAllocation; it can also provide information about the modulation Information about order, target code rate and transport block size, such as parameters mcsAndTBS and so on.
  • the parameter repK can also be configured to a value greater than 1 (for example, 2, 4, 8, etc.) to schedule repeated transmissions on multiple consecutive time slots, and the value of repK represents the number of repetitions.
  • repK-RV can also be provided in ConfiguredGrantConfig, which indicates the redundancy version (RV) sequence to be used.
  • repK is set to 4, that is, the UE can repeatedly transmit the same user data 4 times on the allocated consecutive time slots.
  • the user data repeatedly transmitted on the PUSCH corresponds to one transport block (TB). That is to say, the UE can repeatedly send TB containing the same user data 4 times, such as TB#0, TB#1, TB#2, and TB#3 as shown in FIG. 4.
  • the transmission blocks TB#0, TB#1, TB#2, and TB#3 to be repeatedly transmitted each time include the same user data and respective redundant versions.
  • the time-frequency resources available to the UE for PUSCH transmission appear periodically, and the UE can send these transmission blocks at the most recent available transmission opportunity.
  • the first transport block TB#0 undergoes cyclic redundancy check (CRC) addition, code block segmentation and code block CRC addition, channel coding, physical layer HARQ processing, rate matching, and After scrambling, modulation, layer mapping, transform precoding and precoding, and mapping to allocated resources and antenna ports, they will be sent in the first time slot scheduled through configuration authorization.
  • CRC cyclic redundancy check
  • 5G NR supports asynchronous incremental redundancy HARQ to ensure the reliability of downlink and uplink data transmission.
  • HARQ uses stop-and-wait protocol to send data. Specifically, after the sender transmits a TB, it stops and waits for the confirmation message. The receiving end will use 1-bit information to confirm the TB in the affirmative (ACK) or negative (NACK). However, after each transmission, the sender stops and waits for confirmation, which will result in lower throughput. Therefore, the sender can use multiple parallel HARQ processes: when one HARQ process is waiting for confirmation information, the sender can use another HARQ process to continue sending data. These HARQ processes together form a HARQ entity, which combines a stop-and-wait protocol while allowing continuous data transmission.
  • Each HARQ process only processes one TB in one transmission time interval (TTI).
  • TTI transmission time interval
  • each HARQ process needs an independent HARQ buffer in order to softly combine the received data.
  • the transport blocks TB#0, TB#1, TB#2, and TB#3 to be sent are processed by the same HARQ process and therefore have the same HARQ process number (ie, HARQ process ID) .
  • the HARQ process sends the first transport block TB#0 through the PUSCH in the first time slot, and sends the second transport block TB#1 through the PUSCH in the second time slot, and so on.
  • the base station as the receiving end sequentially receives signals carrying TB#0, TB#1, TB#2, and TB#3, and stores the signal in the HARQ buffer after signal processing such as demodulation and descrambling.
  • the base station can use the received signal to perform decoding processing.
  • the decoding performed by the base station can start immediately after receiving the signal carrying TB#0.
  • the result of decoding depends on the quality of the signal. For example, when the channel condition is good, the base station can successfully decode the user data carried in the signal, and when the interference is severe, the base station may not be able to successfully decode the user data carried in the signal. If the decoding of the signal using TB#0 fails, the base station can combine the signal of TB#0 stored in the HARQ buffer with the signal of TB#1 subsequently received, and use the combined signal for joint decoding, which can improve the success of the decoding rate.
  • the base station can combine the signal of TB#0, the signal of TB#1, and the signal of TB#2 stored in the HARQ buffer. Signal, and use these three for joint decoding, and so on.
  • the base station may feed back to the UE an ACK indicating successful decoding or a NACK indicating unsuccessful decoding.
  • the base station can send a HARQ feedback after the decoding of the signal received in each time slot is completed, or it can send a HARQ feedback after the final decoding result is available.
  • the base station may send an ACK or NACK to the UE after decoding the signal of TB#0.
  • the minimum duration D before receiving HARQ feedback is defined as the completion of transmission/reception of the transport block on the first time slot (ie, the transmission of the last symbol of the transport block) /Reception completion) to the beginning of the reception/transmission of the DFI carrying the relevant HARQ feedback (ie, the beginning of the reception/transmission of the start symbol of the DFI). That is to say, for example, in the example shown in FIG.
  • the UE may expect to receive HARQ feedback at the earliest after the pre-configured minimum duration D has elapsed from the end of the symbol transmission of the first transport block TB#0, instead of at The HARQ feedback is received after the pre-configured minimum duration D has elapsed from the end time of the end symbol transmission of the last transport block TB#3.
  • the base station can send HARQ feedback at the earliest after the pre-configured minimum duration D has elapsed from the end time of receiving the end symbol of the first transport block TB#0, instead of receiving it from the end symbol of the last transport block TB#3
  • the HARQ feedback is sent after the pre-configured minimum duration D elapses at the end time. It is assumed here that the transmission at the UE and the reception at the base station or the reception at the UE and the transmission at the base station are synchronized, because the electromagnetic wave propagation time between the UE and the base station is short enough to be negligible.
  • the minimum duration D before sending/receiving HARQ feedback is defined with reference to the first transmission among repeated transmissions, rather than with reference to the entire repeated transmission.
  • the unit of the defined minimum duration D can be the number of slots, the number of symbols, or the absolute time (for example, ms), because given the subcarrier spacing (SCS), these metrics are mutually convertible.
  • the slot duration "T slot " mentioned below can have the same measurement method as the minimum duration D, such as the number of slots, the number of symbols, or the absolute time.
  • T slot can represent 1 slot; when the minimum duration D represents the number of symbols, T slot can represent the number of symbols in 1 slot (for example, 12 or 14 symbols). ); And when the minimum duration D represents absolute time, T slot can represent the duration of 1 time slot, and so on.
  • the UE can only perform receiving behaviors after the scheduled repeated transmission behavior is completed. Therefore, it is preferable that the minimum duration D is configured to be no shorter than the duration of subsequent repeated transmissions, for example, as shown in FIG. In the example of 4, the minimum duration D is not shorter than the length of 3 time slots, so that the communication module of the UE can receive after the transmission of TB#1, TB#2, and TB#3 is completed.
  • the UE can receive the HARQ feedback without omission, and at the same time, it does not need to monitor the channel all the time.
  • the UE may determine the effectiveness of the feedback according to the time when the HARQ feedback (especially NACK) is received.
  • the base station may transmit downlink feedback information (DFI#0) including HARQ feedback associated with the signal decoding of TB#0 at a time after t end +D.
  • This feedback may be an ACK indicating successful decoding, and the UE will know that the base station has obtained the transmitted data, thereby determining that the ACK is valid, and terminating the HARQ process associated with repeated transmission.
  • This feedback may also be a NACK indicating that the decoding was unsuccessful.
  • the UE determines whether the time of receiving the NACK is before the t end +D+(repK-1)T slot . If it is, it determines that the NACK is invalid, because the NACK received at this time Not the final decoding result.
  • the base station can use the subsequently received signal of TB#1 and the signal of TB#0 to perform joint decoding.
  • the base station may send DFI#1 including HARQ feedback associated with the joint decoding to the UE at a time after t end +D+T slot. This feedback may be an ACK indicating successful decoding.
  • the UE will know that the base station has successfully decoded and terminate the HARQ process associated with repeated transmission.
  • This feedback may also be a NACK indicating that the decoding was unsuccessful.
  • the UE determines whether the time of receiving the NACK is before the t end +D+(repK-1)T slot . If it is, it determines that the NACK is invalid, because the NACK received at this time Not the final decoding result.
  • the base station can use the subsequently received signal of TB#2 and the signals of TB#0 and TB#1 to perform joint decoding.
  • the base station may send DFI#2 containing the HARQ feedback associated with the joint decoding to the UE at the time after the t end +D+2*T slot. .
  • This feedback may be an ACK indicating successful decoding.
  • the UE will know that the base station has successfully decoded and terminate the HARQ process associated with repeated transmission.
  • This feedback may also be a NACK indicating that the decoding was unsuccessful.
  • the UE determines whether the time of receiving the NACK is before the t end +D+(repK-1)T slot . If it is, it determines that the NACK is invalid, because the NACK received at this time Not the final decoding result.
  • the base station can use the subsequently received signal of TB#3 and the signals of TB#0, TB#1, TB#2 to perform joint decoding .
  • the base station may send the HARQ feedback associated with the joint decoding to the UE at the time after the t end +D+3*T slot DFI#3. This feedback may be an ACK indicating successful decoding.
  • the UE will know that the base station has successfully decoded and terminate the HARQ process associated with repeated transmission.
  • This feedback may also be a NACK indicating that the decoding was unsuccessful.
  • the UE judges that the time when the NACK is received is after t end +D+(repK-1)T slot , the UE will know that the decoding based on all repeated transmissions has failed, and the NACK will be valid. .
  • the UE may retransmit TB#0 to TB#3 on the next group of aggregated time slots configured with authorization.
  • the base station can be restricted so that the NACK is sent only once after the t end +D+(repK-1)T slot , so as to avoid sending too many invalid NACKs.
  • the ACK is not subject to this restriction, and can be sent at any time after t end +D.
  • HARQ feedback effective embodiment of the present disclosure the design of the time threshold value t end + D + (repK- 1) T slot, whereby the UE can determine the time threshold value by comparing the received time of the HARQ feedback according to Sex.
  • the base station can also endow the HARQ feedback effectiveness by controlling the transmission time.
  • Fig. 5 shows the relationship between the reception start time of HARQ feedback and the validity.
  • the aggregated time slot scheduled for repeated transmission should be within the channel occupation time (COT) of the UE.
  • COT channel occupation time
  • the inventor of the present disclosure considers that there may be a case where a part of the scheduled aggregated time slot is outside the COT of the UE. This means that the UE cannot complete the configured repK repeated transmissions within a single COT.
  • the UE can give up the number of repeated transmissions that are not in the current COT, that is, the number of repeated transmissions actually completed by the UE repK acutal is less than the configured number of repeated transmissions.
  • the above-defined time point threshold value t end +D+(repK-1)T slot should be changed to t end +D+(repK acutal -1)T slot .
  • the communication system may be required to support repeated transmission across COTs, that is, the number of unfinished repeated transmissions in the current COT can be completed in the next COT.
  • the above-defined time threshold value t end + D + (repK- 1) T slot should be changed to t end + D + (repK acutal -1) T slot + T cot, wherein T cot is continuous between the two COT time. Since T cot is generally longer, this will cause the delay of HARQ feedback to increase significantly.
  • the UE can modify the repK and notify the gNB of the modified repK through uplink control information (UCI).
  • UCI uplink control information
  • the above-defined time threshold value t end + D + (repK- 1) T slot number of repetitions of transmission repK is modified. This solution may lead to increased signaling burden.
  • FIG. 6A is a block diagram illustrating the electronic device 100 according to the present disclosure.
  • the electronic device 100 may be a UE or a component of the UE.
  • the electronic device 100 includes a processing circuit 101.
  • the processing circuit 101 includes at least a sending unit 102 and a receiving unit 103.
  • the processing circuit 101 may be configured to execute the communication method shown in FIG. 6B.
  • the processing circuit 101 may refer to various implementations of a digital circuit system, an analog circuit system, or a mixed signal (combination of analog signal and digital signal) circuit system that performs functions in the UE.
  • the sending unit 102 of the processing circuit 101 is configured to sequentially send a plurality of signals to a control device such as a gNB on consecutive time slots, that is, perform step S101 in FIG. 6B.
  • the multiple signals sent contain repeated user data.
  • each signal can also include different redundant versions of user data.
  • the transmission of these multiple signals may correspond to the same HARQ process.
  • the receiving unit 103 is configured to receive one or more HARQ feedback from the control device at a time after a pre-configured duration has elapsed from the transmission end time of the first signal of the plurality of signals, that is, perform the step in FIG. 6B Step S202.
  • the one or more HARQ feedbacks indicate whether the decoding of the user data by the control device is successful.
  • the one or more HARQ feedbacks have the same HARQ process number.
  • the pre-configured duration is equal to or longer than the period from the end of the transmission of the first signal to the end of the transmission of the last signal.
  • the processing circuit 101 may also be configured to determine the validity of the HARQ feedback based on the receiving start time of the HARQ feedback.
  • the NACK received before (D+(repK-1)*T slot ) has passed from the end of the transmission of the first signal is determined to be invalid, where D is the pre-configured duration, and repk is the received
  • T slot is the length of each slot.
  • the electronic device 100 may also include a communication unit 105.
  • the communication unit 105 may be configured to communicate with the base station under the control of the processing circuit 101.
  • the communication unit 105 may be implemented as a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 105 is drawn with a dashed line because it can also be located outside the electronic device 100.
  • the electronic device 100 may also include a memory 106.
  • the memory 106 can store various data and instructions, such as programs and data used for the operation of the electronic device 100, various data generated by the processing circuit 101, various control signaling or service data sent or received by the communication unit 105, and the like.
  • the memory 106 is drawn with a dashed line because it can also be located in the processing circuit 101 or located outside the electronic device 100.
  • FIG. 7A is a block diagram illustrating an electronic device 200 according to the present disclosure.
  • the electronic device 200 may be a base station device or located in a base station device.
  • the electronic device 200 includes a processing circuit 201.
  • the processing circuit 201 at least includes a receiving unit 202, a decoding unit 203, and a sending unit 204.
  • the processing circuit 201 may be configured to execute the communication method shown in FIG. 7B.
  • the processing circuit 201 may refer to various implementations of a digital circuit system, an analog circuit system, or a mixed signal (combination of analog signal and digital signal) circuit system that performs functions in the base station equipment.
  • the receiving unit 202 may be configured to sequentially receive multiple signals from the user equipment on consecutive time slots, that is, perform step S201 in FIG. 7B. Each signal contains repeated user data. In addition to user data, each signal can also include different redundant versions of user data. The transmission of these multiple signals may correspond to the same HARQ process.
  • the receiving unit 202 may store the multiple signals in the HARQ buffer associated with the HARQ process.
  • the decoding unit 203 may be configured to use at least one of the multiple signals to decode user data, that is, to perform step S202 in FIG. 7B.
  • the decoding unit 203 may perform decoding by soft combining the data stored in the HARQ buffer.
  • the sending unit 204 may be configured to send to the user equipment an indication of whether to decode at a time after a pre-configured duration has elapsed from the receiving end time of the first signal among the plurality of signals.
  • One or more successful HARQ feedbacks may be configured to not send NACK before (D+(repK-1)*T slot) has passed since the reception end time of the first signal. If the decoding unit 203 successfully decodes the user data, the sending unit 204 can send the ACK at any time after the pre-configured duration has elapsed since the end of the first signal reception.
  • the electronic device 200 may further include a communication unit 205.
  • the communication unit 205 may be configured to communicate with the UE under the control of the processing circuit 201.
  • the communication unit 205 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 205 is drawn with a dashed line because it can also be located outside the electronic device 200.
  • the electronic device 200 may also include a memory 206.
  • the memory 206 may store various data and instructions, programs and data for the operation of the electronic device 200, various data generated by the processing circuit 201, data to be transmitted by the communication unit 205, and the like.
  • the memory 206 is drawn with a dashed line because it can also be located in the processing circuit 201 or located outside the electronic device 200.
  • each of the above-mentioned units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuits 101 and 201 described in the above embodiments may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, Individual processors, programmable hardware devices such as field programmable arrays (FPGAs), and/or systems that include multiple processors.
  • the memories 106 and 206 may be volatile memories and/or non-volatile memories.
  • the memories 106 and 206 may include, but are not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • each of the above-mentioned units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • An electronic device used on the user equipment side comprising: a processing circuit configured to: sequentially send a plurality of signals to the control device in consecutive time slots, each signal containing repeated user data; and At a time after the transmission of the first signal of the plurality of signals ends after a pre-configured duration has elapsed, one or more hybrid automatic repeat request (HARQ) feedback is received from the control device, and the one or more HARQ feedback indications Whether the control device decodes the user data successfully.
  • HARQ hybrid automatic repeat request
  • the processing circuit is further configured to: if the signal is received at a time before (D+(repK-1)*T slot) has passed since the end of the transmission of the first signal If the HARQ feedback indicating unsuccessful decoding is determined, the HARQ feedback is determined to be invalid, where D is the pre-configured duration, repK is the number of the multiple signals sent, and T slot is the length of each time slot.
  • processing circuit is further configured to: if the signal is received at a time after (D+(repK-1)*T slot ) has passed since the end of the transmission of the first signal If the HARQ feedback indicating unsuccessful decoding is determined, the HARQ feedback is determined to be valid, and the multiple signals are retransmitted.
  • each signal of the plurality of signals includes a respective redundant version in addition to the user data.
  • An electronic device for controlling the device side comprising: a processing circuit configured to: sequentially receive a plurality of signals from the user equipment on consecutive time slots, each signal contains repeated user data; At least one of the plurality of signals decodes user data; and at a time after a pre-configured duration elapses from the end of the reception of the first signal of the plurality of signals, sending to the user equipment a message indicating whether the decoding is successful One or more Hybrid Automatic Repeat Request (HARQ) feedback.
  • HARQ Hybrid Automatic Repeat Request
  • processing circuit is further configured to: in response to using at least one of the plurality of signals to decode the user data, send to the user equipment at the time HARQ feedback indicating successful decoding.
  • each signal of the plurality of signals includes a respective redundant version in addition to the user data.
  • a communication method comprising: sequentially sending a plurality of signals to a control device in consecutive time slots, each signal containing repeated user data; and sending the first signal from the plurality of signals At the time after the pre-configured duration has elapsed, one or more hybrid automatic repeat request (HARQ) feedbacks are received from the control device, and the one or more HARQ feedbacks indicate whether the control device decodes the user data successfully.
  • HARQ hybrid automatic repeat request
  • a communication method comprising: using at least one of the plurality of signals to decode the user data; and after receiving the first signal from the plurality of signals, a pre-configured duration At a moment after the time, one or more hybrid automatic repeat request (HARQ) feedback indicating whether the decoding is successful is sent to the user equipment.
  • HARQ hybrid automatic repeat request
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the communication method described in 16) or 17).
  • the electronic device 200 may be implemented as various base stations or installed in a base station, and the electronic device 100 may be implemented as various user equipment or installed in various user equipment.
  • the communication method according to the embodiments of the present disclosure may be implemented by various base stations or user equipment; the methods and operations according to the embodiments of the present disclosure may be embodied as computer-executable instructions, stored in a non-transitory computer-readable storage medium, and It can be executed by various base stations or user equipment to realize one or more of the above-mentioned functions.
  • the technology according to the embodiments of the present disclosure can be made into various computer program products, and used in various base stations or user equipment to implement one or more of the above-mentioned functions.
  • the base station mentioned in the present disclosure can be implemented as any type of base station, preferably, such as macro gNB and ng-eNB defined in the 5G NR standard of 3GPP.
  • the gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB, and base transceiver station (BTS).
  • the base station may also include: a main body configured to control wireless communication, and one or more remote wireless headends (RRH), wireless relay stations, drone towers, control nodes in automated factories, etc., arranged in different places from the main body.
  • RRH remote wireless headends
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication, drones, sensors and actuators in automated factories, and so on.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the first application example of the base station is the first application example of the base station
  • FIG. 8 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station can be implemented as gNB 1400.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) here may correspond to the above-mentioned electronic device 200.
  • the antenna 1410 includes a plurality of antenna elements.
  • the antenna 1410 may be arranged in an antenna array matrix, for example, and used for the base station device 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1420.
  • the controller 1421 may include the processing circuit 201 described above, execute the communication method described in FIG. 7B, or control various components of the electronic device 200.
  • the controller 1421 generates a data packet based on data in the signal processed by the wireless communication interface 1425, and transmits the generated packet via the network interface 1423.
  • the controller 1421 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1421 may have a logical function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to a core network 1424 (for example, a 5G core network).
  • the controller 1421 may communicate with the core network node or another gNB via the network interface 1423.
  • the gNB 1400 and the core network node or other gNB can be connected to each other through logical interfaces (such as NG interface and Xn interface).
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1423 is a wireless communication interface, the network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme (such as 5G NR), and provides a wireless connection to a terminal located in a cell of the gNB 1400 via the antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and an RF circuit 1427.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signals of various layers (such as physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer) deal with.
  • the BB processor 1426 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1426.
  • the module may be a card or a blade inserted into the slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410.
  • FIG. 8 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 can connect multiple antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 8 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • one or more units included in the processing circuit 201 described with reference to FIG. 7A may be implemented in the wireless communication interface 1425.
  • the gNB 1400 includes a part (for example, the BB processor 1426) or the whole of the wireless communication interface 1425, and/or a module including the controller 1421, and one or more components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the gNB 1400, and the wireless communication interface 1425 (for example, the BB processor 1426) and/or the controller 1421 may execute this program.
  • the wireless communication interface 1425 for example, the BB processor 1426
  • the controller 1421 may execute this program.
  • gNB 1400, base station equipment 1420, or modules may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 9 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or base station device 1550) herein may correspond to the above-mentioned electronic device 200.
  • the antenna 1540 includes a plurality of antenna elements.
  • the antenna 1540 may be arranged in an antenna array matrix, for example, and used for the base station device 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station equipment 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG. 8.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as 5G NR), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may generally include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 8 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 9 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module used to connect the base station device 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include, for example, an RF circuit 1564.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1540.
  • FIG. 9 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 can connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • one or more units included in the processing circuit 201 described with reference to FIG. 7A may be implemented in the wireless communication interface 1525.
  • the gNB 1500 includes a part (for example, the BB processor 1526) or the whole of the wireless communication interface 1525, and/or a module including the controller 1521, and one or more components may be implemented in the module.
  • the module can store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and can execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the gNB 1500, and the wireless communication interface 1525 (for example, the BB processor 1526) and/or the controller 1521 may execute this program.
  • the wireless communication interface 1525 for example, the BB processor 1526
  • the controller 1521 may execute this program.
  • gNB 1500, base station equipment 1520, or modules may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the first application example of user equipment is the first application example of user equipment
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a smart phone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 may be implemented as the electronic device 100 described in this disclosure.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • the processor 1601 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1600.
  • the processor 1601 may include or serve as the processing circuit 101 described with reference to FIG. 6A.
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 to implement the communication method described with reference to FIG. 6B.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1600.
  • USB universal serial bus
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1607 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts the sound input to the smart phone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from the user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smart phone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614.
  • the BB processor 1613 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1616.
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614.
  • FIG. 10 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (for example, circuits for different wireless communication schemes).
  • the antenna 1616 includes a plurality of antenna elements.
  • the antenna 1616 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • the smart phone 1600 may include one or more antenna panels (not shown).
  • the smart phone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smart phone 1600.
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera device 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other. connection.
  • the battery 1618 supplies power to each block of the smart phone 1600 shown in FIG. 10 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600 in the sleep mode, for example.
  • one or more components included in the processing circuit may be implemented in the wireless communication interface 1612, such as the transmitting unit 102 or the receiving unit 103 of the processing circuit 101 described with reference to FIG. 6A.
  • at least a part of these components may be implemented in the processor 1601 or the auxiliary controller 1619.
  • the smart phone 1600 includes a part (for example, the BB processor 1613) or the whole of the wireless communication interface 1612, and/or a module including the processor 1601 and/or the auxiliary controller 1619, and one or more components may be Implemented in this module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the smart phone 1600, and the wireless communication interface 1612 (for example, the BB processor 1613), the processor 1601, and/or the auxiliary The controller 1619 can execute this program.
  • a device including one or more components a smart phone 1600 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 may be implemented as the electronic device 100 described with reference to FIG. 6A.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, a wireless A communication interface 1733, one or more antenna switches 1736, one or more antennas 1737, and a battery 1738.
  • the car navigation device 1720 may be implemented as the UE described in this disclosure.
  • the processor 1721 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 1720 and other functions.
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 uses GPS signals received from GPS satellites to measure the position of the car navigation device 1720 (such as latitude, longitude, and altitude).
  • the sensor 1725 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium (such as CD and DVD), which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from the user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as 4G LTE or 5G NR), and performs wireless communication.
  • the wireless communication interface 1733 may generally include, for example, a BB processor 1734 and an RF circuit 1735.
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737.
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 11 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • the antenna 1737 includes a plurality of antenna elements.
  • the antenna 1737 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 supplies power to each block of the car navigation device 1720 shown in FIG. 11 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 1738 accumulates electric power supplied from the vehicle.
  • one or more components included in the processing circuit may be implemented in the wireless communication interface 1733, such as the transmitting unit 102 or the receiving unit 103 of the processing circuit 101 described with reference to FIG. 6A. .
  • the car navigation device 1720 includes a part (for example, the BB processor 1734) or the whole of the wireless communication interface 1733, and/or a module including the processor 1721, and one or more components may be implemented in the module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (for example, the BB processor 1734) and/or the processor 1721 may Execute the procedure.
  • a device including one or more components a car navigation device 1720 or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks of a car navigation device 1720, an in-vehicle network 1741, and a vehicle module 1742.
  • vehicle module 1742 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、通信方法和存储介质。提供了一种用于用户设备侧的电子设备,包括处理电路,该处理电路被配置为:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个HARQ反馈,该一个或多个HARQ反馈指示控制设备针对所述用户数据的解码是否成功。

Description

电子设备、通信方法和存储介质 技术领域
本公开涉及电子设备、通信方法和存储介质,更具体地,本公开涉及用于利用时隙聚合的上行重复传输的反馈处理的电子设备、通信方法和存储介质。
背景技术
受益于无线通信技术的发展,许多移动应用业务日益普及。取决于业务的不同类型,对于无线通信的要求各有侧重。作为下一代通信技术,5G新无线电(NR)考虑了三大重要应用场景::增强型移动宽带(eMBB)、海量机器类通信(mMTC)、超可靠低延时通信(URLLC)。这些应用场景对于数据传输的可靠性和时延等具有相应的要求。
类似于4G长期演进(LTE),5G NR通信系统中引入介质访问控制(MAC)层的混合自动重传请求(HARQ)机制,以保证数据传输的可靠性。HARQ是一种结合前向纠错(FEC)与自动重传请求(ARQ)方法的技术,其中FEC通过向待传输的数据添加冗余信息来使得接收端能够纠正一部分错误,从而减少重传的次数,而取决于对接收数据的检错结果,接收端向发送端反馈HARQ确认(HARQ-ACK)。对于FEC无法纠正的错误,接收端可以通过ARQ机制请求发送端重新发送数据。
对于上行数据传输,3GPP RAN 1#98定义了用户设备等待接收下行反馈信息(DFI)的最小持续时间D,即,从所传输的结尾符号到携带HARQ-ACK的下行反馈信息(DFI)的起始符号的持续时间。对于以单个时隙或迷你时隙为基本时域资源调度单位的情况,用户设备仅需要确认在上行传输结束起经过持续时间D之后接收的关于此次上行传输的HARQ-ACK的有效性。
然而,还存在利用时隙聚合(slot aggregation)进行重复传输的特定情况,即,在连贯的多个时隙(聚合时隙)上传输重复的用户数据。目前尚未定义适用于这种场景的最小持续时间D。此外,由于基站侧的具体解码过程对于用户设备来说是不可知 的,用户设备不知道所接收的关于解码结果的反馈是针对所有聚合时隙还是针对部分聚合时隙,无法判断此反馈的有效性,进而无法确定后续的行为。
因此,对于利用时隙聚合的上行重复传输,需要定义合适的最小持续时间D,并需要改善基站和用户设备这两者在HARQ反馈处理中执行的操作。
发明内容
针对上面提到的问题及其它问题,本公开提供了适用于利用时隙聚合的上行重复传输的反馈处理的各个方面。
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用于用户设备侧的电子设备,包括处理电路,该处理电路被配置为:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个HARQ反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。
根据本公开的另一个方面,提供了一种用于控制设备侧的电子设备,包括处理电路,该处理电路被配置为:在连贯的时隙上依次接收来自用户设备的多个信号,每个信号包含重复的用户数据;利用所述多个信号中的至少一个进行用户数据的解码;以及在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个HARQ反馈。
根据本公开的另一个方面,提供了一种通信方法,包括:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个HARQ反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的 解码是否成功。
根据本公开的另一个方面,提供了一种通信方法,包括:利用所述多个信号中的至少一个进行所述用户数据的解码;以及在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个HARQ反馈。
根据本公开的另一个方面,提供了一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如上所述的任一个通信方法。
根据本申请的一个或多个实施例,可以在利用时隙聚合的上行重复传输的场景下应用适当的HARQ反馈处理。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1是例示了NR通信系统的体系架构的简化示图;
图2A和2B分别例示了用户平面和控制平面的NR无线电协议架构;
图3例示了5G NR中使用的帧结构;
图4例示了利用时隙聚合的上行重复传输的示例;
图5例示了HARQ反馈的接收开始时刻与有效性之间的关系;
图6A例示了根据本公开的用户设备侧的电子设备的框图;
图6B例示了根据本公开的用户设备侧的通信方法;
图7A例示了根据本公开的控制设备侧的电子设备的框图;
图7B例示了根据本公开的控制设备侧的通信方法;
图8例示了根据本公开的基站的示意性配置的第一示例;
图9例示了根据本公开的基站的示意性配置的第二示例;
图10例示了根据本公开的智能电话的示意性配置示例;
图11例示了根据本公开的汽车导航设备的示意性配置示例。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有特征。然而应注意,在实现本公开的实施例时可以根据具体需求做出很多特定于实现方式的设置,以便例如符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实现方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在有些附图中仅仅示出了与至少根据本公开的技术内容密切相关的处理步骤和/或设备结构,而在另一些附图中,为了便于本公开的更好理解,额外示出了现有的处理步骤和/或设备结构。
将参照附图来详细描述根据本公开的示例性实施例和应用实例。以下示例性实施例的描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
出于方便解释的目的,下面将在5G NR的背景下描述本公开的各个方面。但是应注意,这不是对本公开的应用范围的限制,本公开的一个或多个方面还可以被应用于诸如4G LTE/LTE-A的现有无线通信系统或者未来发展的各种无线通信系统。下面的描述中提及的架构、实体、功能、过程等可以在NR或其它的通信标准中找到对应。
【系统概述】
图1是示出了5G NR通信系统的体系架构的简化示图。如图1中所示,在网络侧,NR通信系统的无线接入网(NG-RAN)节点包括gNB和ng-eNB,其中gNB 是在5G NR通信标准中新定义的节点,其经由NG接口连接到5G核心网(5GC),并且提供与终端设备(也可称为“用户设备”,下文中简称为“UE”)终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,经由NG接口连接设备到5G核心网,并且提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。在NG-RAN节点(例如,gNB、ng-eNB)之间具有Xn接口,以便于节点之间的相互通信。下文中将gNB和ng-eNB统称为“基站”。
但是应注意,本公开中所使用的术语“基站”不仅限于上面这两种节点,而是无线通信系统中的控制设备的示例,具有其通常含义的全部广度。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开的技术方案被应用的场景,“基站”例如还可以是LTE通信系统中的eNB、远程无线电头端、无线接入点、中继节点、无人机控制塔台、自动化工厂中的控制节点或者执行类似控制功能的通信装置或其元件。后面的章节将详细描述基站的应用示例。
另外,本公开中所使用的术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备或车载设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、无人机、自动化工厂中的传感器和执行器等之类的终端设备或其元件。后面的章节将详细描述UE的应用示例。
接下来结合图2A和2B来描述用于图1中的基站和UE的NR无线电协议架构。图2A示出了用于UE和基站的用户平面的无线电协议栈,图2B示出了用于UE和基站的控制平面的无线电协议栈。
无线电协议栈的层1(L1)是最低层,也被称为物理层。L1层实现各种物理层信号处理以提供信号的透明传输功能。
无线电协议栈的层2(L2)在物理层之上并且负责管理UE与基站之间的无线链路。在用户平面中,L2层包括介质接入控制(MAC)子层、无线电链路控制(RLC)子层、分组数据汇聚协议(PDCP)子层、以及业务数据适配协议(SDAP)子层。另外,在控制平面中,L2层包括MAC子层、RLC子层、PDCP子层。
这些子层的关系在于:物理层为MAC子层提供传输信道,例如,在上行方向 上,包括物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)、物理随机接入信道(PRACH),在下行方向上,包括物理下行共享信道(PDSCH)、物理下行控制信道(PDCCH)、物理广播信道(PBCH);MAC子层为RLC子层提供逻辑信道,诸如上行共享信道(UL-SCH)、随机接入信道(RACH)、下行共享信道(DL-SCH)、广播信道(BCH)、寻呼信道(PCH)等;RLC子层为PDCP子层提供RLC信道,PDCP子层为SDAP子层提供无线电承载。特别地,MAC子层负责在各个UE间分配一个蜂窝小区中的各种无线电资源(例如,时频资源块)。
在控制平面中,UE和基站中还包括层3(L3)中的无线电资源控制(RRC)子层。RRC子层负责获得无线电资源(即,无线电承载)以及负责使用RRC信令来配置各下层。另外,UE中的非接入层(NAS)控制协议执行例如认证、移动性管理、安全控制等功能。
下面简单介绍上行数据传输的过程。从UE到基站的上行数据传输通过PUSCH完成。5G NR一般支持两种上行传输方案:基于码本的传输和基于非码本的传输。对于基于码本的传输,基站在下行控制信息(DCI)中为UE提供发送预编码矩阵指示(TPMI),UE可以使用该指示从码本中选择PUSCH发送预编码器。对于基于非码本的传输,UE基于DCI中的宽带SRS资源指示符(SRI)字段来确定其PUSCH发送预编码器。
来自MAC层的用户数据将作为“传输块(TB)”,需要经过一系列上行物理层处理,以便映射到物理层的传输信道。上行物理层处理一般包括:
-传输块的循环冗余校验(CRC)添加,来自UL-SCH的整个传输块被用于计算CRC校验比特,所计算的校验比特被添加到传输块;
-码块分段及码块CRC添加,传输块被分段为若干个码块,并且基于每个码块计算校验比特,所计算的校验比特被添加到相应码块;
-信道编码,每个码块分别经过低密度奇偶校验(LDPC)编码;
-物理层HARQ处理;
-速率匹配,LDPC码的速率匹配是针对每个编码的块定义的,并且包括比特选择和比特交织;
-加扰,例如可以利用UE的C-RNTI、新RNTI、TC-RNTI、CS-RNTI或SP-CSI-RNTI等加扰;
-调制,包括π/2二进制相移键控(BPSK)、正交相移键控(QPSK)、16正交幅度调制(16QAM)、64QAM和256QAM;
-层映射、变换预编码及预编码;
-到所分配的资源和天线端口的映射。
借助于物理层的各种信号处理功能,作为用户数据的比特流被编码和调制为OFDM符号,并由天线阵列利用所分配的时频资源发送到服务基站。接收到信号的基站通过上述信号处理的逆处理,解码出用户数据。
在5G NR中,下行和上行传输都被组织成帧。图3示出了5G通信系统中的帧结构的示图。作为与LTE/LTE-A兼容的固定构架,NR中的帧同样具有10ms的长度,并且包括10个相等大小的子帧,每个子帧为1ms。不同于LTE/LTE-A,NR中的帧结构具有取决于副载波间隔的灵活构架。每个子帧具有可配置的
Figure PCTCN2020126097-appb-000001
个时隙,例如1、2、4、8、16。每个时隙也具有可配置的
Figure PCTCN2020126097-appb-000002
个OFDM符号,对于正常的循环前缀,每个时隙包含14个连贯的OFDM符号,而对于延长的循环前缀,每个时隙包括12个连贯的OFDM符号。在频域维度上,每个时隙包括若干个资源块,每个资源块包含频域中的例如12个连贯副载波。由此,可使用资源网格来表示时隙中的资源元素(RE),如图3中所示。上行传输可用的资源块可被划分成数据区段和控制区段。控制区段中的资源元素可被分配给UE用于传输控制信息。数据区段可包括所有未被包括在控制区段中的资源元素。UE也可被分配数据区段中的资源元素以用于向基站传输数据。
有数据要发送的UE可以向基站发送调度请求(SR)和/或缓存状态报告(BSR)来请求用于发送用户数据的时频资源。在动态授权的资源调度方式中,基站可以利用包含资源分配信息的DCI来动态地调度PUSCH。在配置授权的资源调度方式中,基站可以通过RRC层信令为UE预先配置可用的时频资源,由此UE可以直接利用所预配置的时频资源来进行PUSCH传输,无需每次请求基站发送上行授权。
在大多数情况下,时域资源的调度以单个时隙或迷你时隙为单位。然而,存在利用时隙聚合的调度方式,即,一次性为UE调度连贯的多个时隙(聚合时隙)以用于下行或上行数据传输。时隙聚合一般可用于数据的重复传输。例如,对于上面所述的配置授权的情况,通过RRC层信令ConguredGrantConfig中的参数repK配置为例如1、2、4、8,UE可以在PUSCH传输时在相应数量的连贯时隙上重复传输相同的数据,以保证例如信道状况不良时的数据传输的可靠性。
然而,目前业界尚未规范适用于上述重复传输的反馈处理。
一方面,RAN1#98定义了由RRC层信令配置的最小持续时间D,其为PUSCH传输的末尾符号到携带针对该PUSCH传输的HARQ-ACK的下行反馈信息(DFI)的起始符号。配置最小持续时间D的原因在于基站处的接收和解码等处理需要一定的时间,不能立刻向UE提供反馈。通过配置这个参数,UE在完成PUSCH传输后可以使其通信模块空闲长达与最小持续时间D对应的时段以降低能耗,或者可以在与最小持续时间D对应的时段内利用其通信模块进行其它发送或接收任务,无需一直监听信道等待接收HARQ-ACK。然而,已经定义的最小持续时间D仅仅是针对非重复的PUSCH传输,而针对重复的PUSCH传输尚未定义这样的最小持续时间D。这意味着UE需要在完成PUSCH传输后一直监听信道,这无益于通信模块的能量节省和工作效率。如果像非重复的PUSCH传输那样,将重复的PUSCH传输的末尾符号到携带HARQ-ACK的DFI的起始符号的时段定义为最小持续时间D,则这意味着即使基站利用第一个时隙上传输的信号就解码出用户数据,也需要等到所有时隙上的传输完成并加上所配置的最小持续时间D之后才能向UE发送HARQ-ACK,这无疑会增大时延。
另一方面,基站处的解码过程对于UE来说是不可知的,也就是说,UE不知道基站提供的HARQ-ACK是针对所有聚合时隙还是针对部分聚合时隙。例如,假设基站基于第一个时隙上传输的信号无法解码出用户数据,向UE发送了包含指示解码不成功的NACK,然而接收到该NACK的UE无法判断其有效性,因为UE不知道这个NACK是意味着利用所有聚合时隙上传输的信号都不能成功解码出用户数据从而需要重传数据,还是意味着暂时未成功解码出用户数据从而需要等待可能的后续ACK或NACK。
考虑到上述因素,本公开提供了适用于时隙聚合场景的最小持续时间的定义,并提出了使得下行反馈信息的解读无歧义的HARQ反馈处理。
下面参照图4的示例性场景来描述本公开的实施例。
如图4中所示,基站以配置授权的方式半静态地为UE配置PUSCH资源分配。例如,基站可以为UE配置BWP信息元素中的ConfiguredGrantConfig参数。ConfiguredGrantConfig中可以例如给出关于预先配置给UE的资源分配信息,诸如时域分配参数timeDomainAllocation(其指示PUSCH映射类型、起始符号和长度的组合)和频域分配参数frequencyDomainAllocation;还可以给出关于调制阶数、目标码率和传输块尺寸的信息,诸如参数mcsAndTBS等等。
此外,ConfiguredGrantConfig中还可以通过将参数repK配置为大于1的值(例如2、4、8等)来调度连贯的多个时隙上的重复传输,repK的值表示重复的次数。当启用重复传输时,ConfiguredGrantConfig中还可以提供repK-RV,该字段指示要使用的冗余版本(RV)序列。
在图4所示的非限制性示例中,假设repK被设为4,即UE可以在所分配的连贯时隙上重复传输4次相同的用户数据。
这里,PUSCH重复传输的用户数据对应于一个传输块(TB)。也就是说,UE可以重复发送4次包含相同用户数据的TB,如图4中所示的TB#0、TB#1、TB#2、TB#3。取决于预先配置的参数repK-RV,可以按照与repK-RV对应的冗余版本序列来向各个TB应用冗余版本。例如,对于repK=4次重复中的第n个传输时机(即,第n个时隙上的传输),要向TB应用的冗余版本对应于所配置的冗余版本序列中的第(mod(n-1,4)+1)个值。由此,每次重复要传输的传输块TB#0、TB#1、TB#2、TB#3分别包括相同的用户数据和各自的冗余版本。
在配置授权的场景下,UE可用于PUSCH传输的时频资源周期性地出现,UE可以在最近可用的传输时机发送这些传输块。例如,第一个传输块TB#0在经过如上所述的传输块的循环冗余校验(CRC)添加、码块分段及码块CRC添加、信道编码、物理层HARQ处理、速率匹配、加扰、调制、层映射、变换预编码及预编码以及到所分配的资源和天线端口的映射之后,将在通过配置授权调度的第一个时隙发送。
5G NR支持异步增量冗余HARQ,以保证下行和上行数据传输的可靠性。HARQ使用停等协议(stop-and-wait protocol)来发送数据。具体而言,发送端传输一个TB后,就停下来等待确认信息。接收端会使用1比特的信息对该TB进行肯定(ACK)或否定(NACK)的确认。但是每次传输后发送端就停下来等待确认,会导致吞吐量较低。因此,发送端可以使用多个并行的HARQ进程:当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,这个HARQ实体结合了停等协议,同时允许数据的连续传输。
每个HARQ进程在一个传输时间间隔(TTI)只处理一个TB。在接收端,每个HARQ进程都需要有独立的HARQ缓冲区,以便对接收到的数据进行软合并。在图4所示的示例中,待发送的传输块TB#0、TB#1、TB#2、TB#3由同一个HARQ进程处理,因此具有相同的HARQ进程编号(即,HARQ进程ID)。该HARQ进程在第一个时隙上通过PUSCH发送第一个传输块TB#0,在第二个时隙上通过PUSCH发送第二个传输块TB#1,依次类推。
作为接收端的基站依次接收携带TB#0、TB#1、TB#2、TB#3的信号,并在诸如解调、解扰等信号处理之后,将该信号存储在HARQ缓冲区中。基站可以利用所接收的信号执行解码处理。
基站执行的解码可以在接收到携带TB#0的信号后立即开始。解码的结果依赖于信号的质量。例如,在信道状况良好的时候,基站能够成功地解码出信号中携带的用户数据,而在干扰较严重的时候,基站可能不能成功地解码出信号中携带的用户数据。如果利用TB#0的信号的解码失败,基站可以合并HARQ缓冲区中存储的TB#0的信号和后续接收的TB#1的信号,并利用合并的信号进行联合解码,这样可以提高解码的成功率。然而,如果利用TB#0的信号和TB#1的信号仍然不能解码出用户数据,基站可以合并HARQ缓冲区中存储的TB#0的信号、TB#1的信号和后续接收的TB#2的信号,并利用这三者进行联合解码,依次类推。
基站可以向UE反馈表示解码成功的ACK或表示解码不成功的NACK。取决于基站处的具体反馈设置,基站可以在每个时隙上接收的信号的解码完成之后就发送一个HARQ反馈,也可以在最终的解码结果出来之后才发送一个HARQ反馈。
然而,由于基站处的解码过程和反馈机制对于UE来说是不可知的,因此需要考虑的最早情况是,基站可能在对TB#0的信号进行解码后就向UE发送ACK或NACK。
根据本公开的实施例,对于时隙聚合的情况,定义接收HARQ反馈前的最小持续时间D为从第一个时隙上的传输块的发送/接收完成(即,传输块的末尾符号的发送/接收完成)到携带相关HARQ反馈的DFI的接收/发送开始(即,DFI的起始符号的接收/发送开始)的时段。也就是说,例如在图4所示的示例中,UE可以期望最早在从第一个传输块TB#0的末尾符号发送结束时刻经过预先配置的最小持续时间D之后接收HARQ反馈,而不是在从最后一个传输块TB#3的末尾符号发送结束时刻经过预先配置的最小持续时间D之后接收HARQ反馈。相应地,基站可以最早在从第一个传输块TB#0的末尾符号接收结束时刻经过预先配置的最小持续时间D之后发送HARQ反馈,而不是在从最后一个传输块TB#3的末尾符号接收结束时刻经过预先配置的最小持续时间D之后发送HARQ反馈。这里假设UE处的发送和基站处的接收或者UE处的接收和基站处的发送是同步的,因为UE与基站之间的电磁波传播时间足够短可以忽略。
因此,根据本公开的实施例,在时隙聚合的场景下,发送/接收HARQ反馈前的最小持续时间D是参照重复传输当中的第一次传输定义的,而不是参照整个重复传输定义的。应理解,所定义的最小持续时间D的单位可以是时隙数、符号数或者绝对时间(例如ms),因为给定副载波间隔(SCS),这些度量是可相互换算的。同样地,下面提到的时隙持续时间“T slot”可以具有与最小持续时间D相同的计量方式,诸如时隙数、符号数或者绝对时间。例如,当最小持续时间D表示时隙数时,T slot可以表示1个时隙;当最小持续时间D表示符号数时,T slot可以1个时隙内的符号数(例如12或14个符号);而当最小持续时间D表示绝对时间时,T slot可以表示1个时隙的时长,等等。
对于时分双工(TDD)通信,UE在被调度的重复发送行为完成之后才能进行接收行为,因此优选地,最小持续时间D被配置为不短于后续的重复传输的持续时间,例如,在图4的示例中,最小持续时间D不短于3个时隙的长度,以便于UE的通信模块在TB#1、TB#2、TB#3的传输完成后能够进行接收。
通过如上所述定义最小持续时间D,即使基站针对每个传输块都发出HARQ反馈,UE也可以无疏漏地接收到HARQ反馈,同时无需一直监听信道。
进一步地,根据本公开的实施例,UE可以根据接收到HARQ反馈(尤其是NACK)的时刻来确定反馈的有效性。
下面针对具体的解码情形来讨论基站与UE实施的HARQ反馈,其中为了便于理解,假设TB#0的信号发送结束或接收结束时刻为t end
1)对于TB#0的信号的解码,基站可以在t end+D之后的时刻发送包含与TB#0的信号解码相关联的HARQ反馈的下行反馈信息(DFI#0)。这个反馈可能是指示解码成功的ACK,UE将知道基站已获得所发送的数据,从而确定该ACK有效,并且终止与重复传输相关联的HARQ进程。
这个反馈也可能是指示解码不成功的NACK,UE判断接收到NACK的时刻是否在t end+D+(repK-1)T slot之前,如果是,则确定该NACK无效,因为此时接收到的NACK不是最终的解码结果。
2)如果对于TB#0的信号的解码失败,基站可以利用后续接收的TB#1的信号与TB#0的信号进行联合解码。对于TB#0和TB#1的信号的联合解码,基站可以在t end+D+T slot之后的时刻向UE发送包含与此联合解码相关联的HARQ反馈的DFI#1。这个反馈可能是指示解码成功的ACK,UE将知道基站已解码成功,并且终止与重复传输相关联的HARQ进程。
这个反馈也可能是指示解码不成功的NACK,UE判断接收到NACK的时刻是否在t end+D+(repK-1)T slot之前,如果是,则确定该NACK无效,因为此时接收到的NACK不是最终的解码结果。
3)如果对于TB#0和TB#1的信号的联合解码失败,基站可以利用后续接收的TB#2的信号与TB#0、TB#1的信号进行联合解码。对于TB#0、TB#1、TB#2的信号的联合解码,基站可以在t end+D+2*T slot之后的时刻向UE发送包含与此联合解码相关联的HARQ反馈的DFI#2。这个反馈可能是指示解码成功的ACK,UE将知道基站已解码成功,并且终止与重复传输相关联的HARQ进程。
这个反馈也可能是指示解码不成功的NACK,UE判断接收到NACK的时刻是否在t end+D+(repK-1)T slot之前,如果是,则确定该NACK无效,因为此时接收到的NACK不是最终的解码结果。
4)如果对于TB#0、TB#1、TB#2的信号的联合解码失败,基站可以利用后续接收的TB#3的信号与TB#0、TB#1、TB#2的信号进行联合解码。对于TB#0、TB#1、TB#2、TB#3的信号的联合解码,基站可以在t end+D+3*T slot之后的时刻向UE发送包含与此联合解码相关联的HARQ反馈的DFI#3。这个反馈可能是指示解码成功的ACK,UE将知道基站已解码成功,并且终止与重复传输相关联的HARQ进程。
这个反馈也可能是指示解码不成功的NACK,UE判断接收到NACK的时刻在t end+D+(repK-1)T slot之后,UE将知道基于所有重复传输的信号的解码失败,确定该NACK有效。UE可以在配置授权的下一组聚合时隙上重新传输TB#0~TB#3。
根据本公开的实施例,优选地,可以对基站进行限制,使得NACK仅在t end+D+(repK-1)T slot之后发送一次,从而避免发送过多的无效NACK。当然,ACK可以不受此限制,可以在t end+D之后的任何时刻发送。
如上所述,根据本公开的实施例,设计了时间点阈值t end+D+(repK-1)T slot,由此UE可以通过比较接收HARQ反馈的时刻与该时间点阈值来判断HARQ反馈的有效性。相应地,基站也可以通过控制发送时刻来赋予HARQ反馈的有效性。图5示出了HARQ反馈的接收开始时刻与有效性之间的关系。
优选地,为重复传输调度的聚合时隙应该在UE的信道占用时间(COT)内。然而,本公开的发明人考虑到,可能存在所调度的聚合时隙的一部分在UE的COT外的情况。这意味着UE不能在单个COT内完成所配置的repK次重复传输。
作为一种解决方案,UE可以放弃不在当前COT内的重复传输次数,即,UE实际完成的重复传输次数repK acutal小于配置的重复传输次数。此时,上面定义的时间点阈值t end+D+(repK-1)T slot应该改为t end+D+(repK acutal-1)T slot
作为另一种解决方案,可以要求通信系统支持跨COT的重复传输,即,当前COT内未完成的重复传输次数可以在接下来的COT内完成。此时,上面定义的时间点阈值t end+D+(repK-1)T slot应该改为t end+D+(repK acutal-1)T slot+T cot,其中T cot是两个COT之间的持续时间。由于T cot一般较长,这会导致HARQ反馈的时延显著增大。
作为又一种解决方案,UE可以修改repK,并通过上行控制信息(UCI)通知gNB修改后的repK。此时,上面定义的时间点阈值t end+D+(repK-1)T slot中的repK 是修改后的重复传输次数。这种解决方案可能导致信令负担增大。
接下来描述可以应用本公开的实施例的电子设备和通信方法。
图6A是例示了根据本公开的电子设备100的框图。电子设备100可以是UE或者UE的部件。
如图6A中所示,电子设备100包括处理电路101。处理电路101至少包括发送单元102和接收单元103。处理电路101可被配置为执行图6B中所示的通信方法。处理电路101可以指在UE中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。
处理电路101的发送单元102被配置为在连贯的时隙上向诸如gNB之类的控制设备依次发送多个信号,即执行图6B中的步骤S101。所发送的多个信号包含重复的用户数据。每个信号除了用户数据以外,还可以包括用户数据的不同的冗余版本。这多个信号的传输可以对应于相同的HARQ进程。
接收单元103被配置为在从所述多个信号中的第一个信号的发送结束时刻经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个HARQ反馈,即执行图6B中的步骤S202。这一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。这一个或多个HARQ反馈具有相同的HARQ进程编号。所述预先配置的持续时间等于或长于从第一个信号的发送结束到最后一个信号的发送结束的时段。
处理电路101还可以被配置为基于HARQ反馈的接收开始时刻来判断HARQ反馈的有效性。特别地,在从第一个信号的发送结束时刻经过(D+(repK-1)*T slot)之前接收的NACK被确定无效,其中D是所述预先配置的持续时间,repk是接收的所述多个信号的数量,T slot是每个时隙的长度。
电子设备100还可以包括通信单元105。通信单元105可以被配置为在处理电路101的控制下与基站进行通信。在一个示例中,通信单元105可以被实现为收发机,包括天线阵列和/或射频链路等通信部件。通信单元105用虚线绘出,因为它还可以位于电子设备100外。
电子设备100还可以包括存储器106。存储器106可以存储各种数据和指令,例如用于电子设备100操作的程序和数据、由处理电路101产生的各种数据、由通信单元105发送或接收的各种控制信令或业务数据等。存储器106用虚线绘出,因为它还 可以位于处理电路101内或者位于电子设备100外。
图7A是例示了根据本公开的电子设备200的框图。电子设备200可以是基站设备,或者位于基站设备中。
如图7A中所示,电子设备200包括处理电路201。处理电路201至少包括接收单元202、解码单元203和发送单元204。处理电路201可被配置为执行图7B中所示的通信方法。处理电路201可以指在基站设备中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。
接收单元202可以被配置为在连贯的时隙上依次接收来自用户设备的多个信号,即执行图7B中的步骤S201。每个信号包含重复的用户数据。每个信号除了用户数据以外,还可以包括用户数据的不同的冗余版本。这多个信号的传输可以对应于相同的HARQ进程。接收单元202可以将这多个信号存储在与HARQ进程相关联的HARQ缓冲区中。
解码单元203可以被配置为利用所述多个信号中的至少一个进行用户数据的解码,即执行图7B中的步骤S202。解码单元203可以通过对存储在HARQ缓冲区中的数据进行软合并来执行解码。
响应于解码单元203的解码结果,发送单元204可以被配置为在从所述多个信号中的第一个信号的接收结束时刻经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个HARQ反馈。特别地,发送单元204可以被配置为在从第一个信号的接收结束时刻经过(D+(repK-1)*T slot)之前不发送NACK。而如果解码单元203成功解码出用户数据,发送单元204可以在从第一个信号的接收结束时刻经过预先配置的持续时间之后的任何时刻发送ACK。
电子设备200还可以包括通信单元205。通信单元205可以被配置为在处理电路201的控制下与UE进行通信。在一个示例中,通信单元205可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元205用虚线绘出,因为它还可以位于电子设备200外。
电子设备200还可以包括存储器206。存储器206可以存储各种数据和指令、用于电子设备200操作的程序和数据、由处理电路201产生的各种数据、将由通信单元205发送的数据等。存储器206用虚线绘出,因为它还可以位于处理电路201内或者位 于电子设备200外。
上面已经详细描述了本公开的实施例的各个方面,但是应注意,上面为了描述了所示出的天线阵列的结构、布置、类型、数量等,端口,参考信号,通信设备,通信方法等等,都不是为了将本公开的方面限制到这些具体的示例。
应当理解,上述各实施例中描述的电子设备100和200的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
应当理解,上面各实施例中描述的处理电路101和201可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。存储器106和206可以是易失性存储器和/或非易失性存储器。例如,存储器106和206可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
应当理解,上述各实施例中描述的电子设备100和200的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1)、一种用于用户设备侧的电子设备,包括:处理电路,被配置为:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个混合自动重传请求(HARQ)反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。
2)、如1)所述的电子设备,其中,所述处理电路进一步被配置为:如果在从第一个信号的发送结束经过(D+(repK-1)*T slot)之前的时刻接收到指示解码不成功的HARQ反馈,则确定该HARQ反馈无效,其中D是所述预先配置的持续时间,repK是发送的所述多个信号的数量,T slot是每个时隙的长度。
3)、如1)所述的电子设备,其中,所述处理电路进一步被配置为:如果在从第一个信号的发送结束经过(D+(repK-1)*T slot)之后的时刻接收到指示解码不成功的HARQ反馈,则确定该HARQ反馈有效,并重新发送所述多个信号。
4)、如1)所述的电子设备,其中,所述处理电路进一步被配置为:如果在所述时刻接收到指示解码成功的HARQ反馈,则确定该HARQ反馈有效。
5)、如1)所述的电子设备,其中,所述处理电路被配置为在单个信道占用时间(COT)内发送所述多个信号。
6)、如1)所述的电子设备,其中,所述多个信号中的每个信号除了所述用户数据以外,还包括各自的冗余版本。
7)、如2)所述的电子设备,其中,所述预先配置的持续时间等于或长于(repK-1)*T slot
8)、如1)所述的电子设备,其中,所述一个或多个HARQ反馈具有相同的HARQ进程编号。
9)、一种用于控制设备侧的电子设备,包括:处理电路,被配置为:在连贯的时隙上依次接收来自用户设备的多个信号,每个信号包含重复的用户数据;利用所述多个信号中的至少一个进行用户数据的解码;以及在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个混合自动重传请求(HARQ)反馈。
10)、如9)所述的电子设备,其中,所述处理电路进一步被配置为:响应于利用所述多个信号中的至少一个解码出所述用户数据,在所述时刻向用户设备发送指示解码成功的HARQ反馈。
11)、如9)所述的电子设备,其中,所述处理电路进一步被配置为:在从第一个信号的接收结束经过(D+(repK-1)*T slot)之前不发送指示解码不成功的 HARQ反馈,其中D是所述预先配置的持续时间,repk是接收的所述多个信号的数量,T slot是每个时隙的长度。
12)、如9)所述的电子设备,其中,所述处理电路进一步被配置为:通过合并所述多个信号中的当前接收的信号和先前接收的信号来进行用户数据的解码。
13)、如10)所述的电子设备,其中,所述多个信号是用户设备在单个信道占用时间(COT)内发送的。
14)、如9)所述的电子设备,其中,所述多个信号中的每个信号除了所述用户数据以外,还包括各自的冗余版本。
15)、如9)所述的电子设备,其中,所述预先配置的持续时间等于或长于(repK-1)*T slot
16)、一种通信方法,包括:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个混合自动重传请求(HARQ)反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。
17)、一种通信方法,包括:利用所述多个信号中的至少一个进行所述用户数据的解码;以及在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个混合自动重传请求(HARQ)反馈。
18)、一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如16)或17)所述的通信方法。
【本公开的应用实例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备200可以被实现为各种基站或者安装在基站中,电子设备100可以被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的 实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
基站的第一应用示例
图8是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图8中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备200。
天线1410包括多个天线元件。天线1410例如可以被布置成天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种 功能。例如,控制器1421可以包括上面所述的处理电路201,执行图7B中描述的通信方法,或者控制电子设备200的各个部件。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图8示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图8所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图8所示,无线通信接口1425 可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图8示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图8中示出的gNB 1400中,参照图7A描述的处理电路201中包括的一个或多个单元(例如接收单元202、发送单元204)可被实现在无线通信接口1425中。可替代地,这些组件中的至少一部分可被实现在控制器1421中。例如,gNB 1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
基站的第二应用示例
图9是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图9中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备200。
天线1540包括多个天线元件。天线1540例如可以被布置成天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图8描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图8描述的BB处理器1426相同。如图9所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图9示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图9示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图9所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图9示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图9中示出的gNB 1500中,参照图7A描述的处理电路201中包括的一个或多个单元(例如接收单元202、发送单元204)可被实现在无线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可 以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图10是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。在一个示例中,智能电话1600可以被实现为本公开中描述的电子设备100。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照图6A描述的处理电路101。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序,以实现参照图6B所述的通信方法。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图10所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图10示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件。天线1616例如可以被布置成天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图10所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图10中示出的智能电话1600中,处理电路中包括的一个或多个组件可被实现在无线通信接口1612中,诸如参照图6A描述的处理电路101的发送单元102或 接收单元103。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图11是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720可以被实现为参照图6A描述的电子设备100。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一个示例中,汽车导航设备1720可以被实现为本公开中描述的UE。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置 1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图11所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图11示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件。天线1737例如可以被布置成天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图11所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图11中示出的汽车导航装置1720中,处理电路中包括的一个或多个组件可被实现在无线通信接口1733中,诸如参照图6A描述的处理电路101的发送单元102或接收单元103。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例如,BB处理器 1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (18)

  1. 一种用于用户设备侧的电子设备,包括:
    处理电路,被配置为:
    在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及
    在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个混合自动重传请求(HARQ)反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。
  2. 如权利要求1所述的电子设备,其中,所述处理电路进一步被配置为:
    如果在从第一个信号的发送结束经过(D+(repK-1)*T slot)之前的时刻接收到指示解码不成功的HARQ反馈,则确定该HARQ反馈无效,其中D是所述预先配置的持续时间,repK是发送的所述多个信号的数量,T slot是每个时隙的长度。
  3. 如权利要求1所述的电子设备,其中,所述处理电路进一步被配置为:
    如果在从第一个信号的发送结束经过(D+(repK-1)*T slot)之后的时刻接收到指示解码不成功的HARQ反馈,则确定该HARQ反馈有效,并重新发送所述多个信号。
  4. 如权利要求1所述的电子设备,其中,所述处理电路进一步被配置为:
    如果在所述时刻接收到指示解码成功的HARQ反馈,则确定该HARQ反馈有效。
  5. 如权利要求1所述的电子设备,其中,所述处理电路被配置为在单个信道占用时间(COT)内发送所述多个信号。
  6. 如权利要求1所述的电子设备,其中,所述多个信号中的每个信号除了所述用户数据以外,还包括各自的冗余版本。
  7. 如权利要求2所述的电子设备,其中,所述预先配置的持续时间等于或长于(repK-1)*T slot
  8. 如权利要求1所述的电子设备,其中,所述一个或多个HARQ反馈具有相同的HARQ进程编号。
  9. 一种用于控制设备侧的电子设备,包括:
    处理电路,被配置为:
    在连贯的时隙上依次接收来自用户设备的多个信号,每个信号包含重复的用户数据;
    利用所述多个信号中的至少一个进行用户数据的解码;以及
    在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个混合自动重传请求(HARQ)反馈。
  10. 如权利要求9所述的电子设备,其中,所述处理电路进一步被配置为:
    响应于利用所述多个信号中的至少一个解码出所述用户数据,在所述时刻向用户设备发送指示解码成功的HARQ反馈。
  11. 如权利要求9所述的电子设备,其中,所述处理电路进一步被配置为:在从第一个信号的接收结束经过(D+(repK-1)*Tslot)之前不发送指示解码不成功的HARQ反馈,其中D是所述预先配置的持续时间,repk是接收的所述多个信号的数量,Tslot是每个时隙的长度。
  12. 如权利要求9所述的电子设备,其中,所述处理电路进一步被配置为:通过合并所述多个信号中的当前接收的信号和先前接收的信号来进行用户数据的解码。
  13. 如权利要求10所述的电子设备,其中,所述多个信号是用户设备在单个信道占用时间(COT)内发送的。
  14. 如权利要求9所述的电子设备,其中,所述多个信号中的每个信号除了所述用户数据以外,还包括各自的冗余版本。
  15. 如权利要求9所述的电子设备,其中,所述预先配置的持续时间等于或长于(repK-1)*Tslot。
  16. 一种通信方法,包括:在连贯的时隙上向控制设备依次发送多个信号,每个信号包含重复的用户数据;以及在从所述多个信号中的第一个信号的发送结束经过预先配置的持续时间之后的时刻,从控制设备接收一个或多个混合自动重传请求(HARQ)反馈,该一个或多个HARQ反馈指示控制设备针对用户数据的解码是否成功。
  17. 一种通信方法,包括:利用所述多个信号中的至少一个进行所述用户数据的解码;以及在从所述多个信号中的第一个信号的接收结束经过预先配置的持续时间之后的时刻,向用户设备发送指示解码是否成功的一个或多个混合自动重传请求(HARQ)反馈。
  18. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求16或17所述的通信方法。
PCT/CN2020/126097 2019-11-08 2020-11-03 电子设备、通信方法和存储介质 WO2021088789A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2022526309A JP2023500355A (ja) 2019-11-08 2020-11-03 電子機器、通信方法及び記憶媒体
CA3156744A CA3156744A1 (en) 2019-11-08 2020-11-03 Electronic device, communication method and storage medium
US17/773,035 US20240171325A1 (en) 2019-11-08 2020-11-03 Electronic device, communication method and storage medium
EP20885943.9A EP4057544A4 (en) 2019-11-08 2020-11-03 ELECTRONIC DEVICE, COMMUNICATION METHOD AND STORAGE MEDIUM
MX2022004994A MX2022004994A (es) 2019-11-08 2020-11-03 Dispositivo electronico, metodo de comunicacion y medio de almacenamiento.
CN202080076519.1A CN114762277A (zh) 2019-11-08 2020-11-03 电子设备、通信方法和存储介质
KR1020227015149A KR20220097403A (ko) 2019-11-08 2020-11-03 전자 디바이스, 통신 방법 및 저장 매체
AU2020379699A AU2020379699A1 (en) 2019-11-08 2020-11-03 Electronic device, communication method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089379.7 2019-11-08
CN201911089379.7A CN112787773A (zh) 2019-11-08 2019-11-08 电子设备、通信方法和存储介质

Publications (1)

Publication Number Publication Date
WO2021088789A1 true WO2021088789A1 (zh) 2021-05-14

Family

ID=75748540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126097 WO2021088789A1 (zh) 2019-11-08 2020-11-03 电子设备、通信方法和存储介质

Country Status (9)

Country Link
US (1) US20240171325A1 (zh)
EP (1) EP4057544A4 (zh)
JP (1) JP2023500355A (zh)
KR (1) KR20220097403A (zh)
CN (2) CN112787773A (zh)
AU (1) AU2020379699A1 (zh)
CA (1) CA3156744A1 (zh)
MX (1) MX2022004994A (zh)
WO (1) WO2021088789A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565839A (zh) * 2018-09-19 2019-04-02 Oppo广东移动通信有限公司 一种信息传输方法及装置、终端
US20190306878A1 (en) * 2018-03-27 2019-10-03 Qualcomm Incorporated Acknowledgement feedback in unlicensed new radio

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306665A1 (en) * 2009-10-02 2011-04-06 Panasonic Corporation Relay backhaul uplink HARQ protocol
CN115347998B (zh) * 2016-12-16 2024-08-06 苹果公司 基带电路、ue和基站
US11071139B2 (en) * 2018-07-13 2021-07-20 Apple Inc. Techniques in configured grant uplink transmission in new radio (NR) systems operating in unlicensed spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190306878A1 (en) * 2018-03-27 2019-10-03 Qualcomm Incorporated Acknowledgement feedback in unlicensed new radio
CN109565839A (zh) * 2018-09-19 2019-04-02 Oppo广东移动通信有限公司 一种信息传输方法及装置、终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Transmission with Configured Grant in NR Unlicensed Band", 3GPP TSG RAN WG1 MEETING #98BIS R1-1910048, 20 October 2019 (2019-10-20), XP051788855 *
SAMSUNG: "Enhancements on configured grant for NR-U", 3GPP TSG RAN WG1 #98BIS R1-1910462, 20 October 2019 (2019-10-20), XP051789268 *
See also references of EP4057544A4 *
SONY: "Enhancements to Configured Grants in NR-U", 3GPP TSG RAN WG1 MEETING #99 R1-1912342, 22 November 2019 (2019-11-22), XP051823359 *

Also Published As

Publication number Publication date
KR20220097403A (ko) 2022-07-07
MX2022004994A (es) 2022-05-16
JP2023500355A (ja) 2023-01-05
CN112787773A (zh) 2021-05-11
US20240171325A1 (en) 2024-05-23
CA3156744A1 (en) 2021-05-14
AU2020379699A1 (en) 2022-06-23
EP4057544A1 (en) 2022-09-14
EP4057544A4 (en) 2022-12-28
CN114762277A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
US10448387B2 (en) Mobile station device, radio communication method and integrated circuit
WO2021031880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
RU2737389C2 (ru) Системы и способы для работы с интервалом времени передачи при дуплексной передаче с частотным разделением каналов
CN110447283B (zh) 无线通信网络中的网络节点和方法
US20210167899A1 (en) Hybrid automatic repeat request (harq) techniques for non-terrestrial networks
WO2021197270A1 (zh) 信息传输方法、装置及系统
US11405146B2 (en) User equipment, electronic device, wireless communication method, and storage medium
US20240106577A1 (en) Electronic apparatus, wireless communication method, and computer readable storage medium
WO2022007770A1 (zh) 电子设备、通信方法和存储介质
US20230139754A1 (en) Coding method and apparatus
CN114556832A (zh) 基于服务的上行链路重传
CN110730513B (zh) 一种通信方法及装置
EP3944538B1 (en) Triggered hybrid automatic repeat request acknowledgement reporting for downlink semi-persistent scheduling data transmission
WO2021088789A1 (zh) 电子设备、通信方法和存储介质
WO2024152753A1 (zh) 一种通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156744

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 17773035

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022526309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885943

Country of ref document: EP

Effective date: 20220608

ENP Entry into the national phase

Ref document number: 2020379699

Country of ref document: AU

Date of ref document: 20201103

Kind code of ref document: A