WO2021153901A1 - Loop-based distribution network reconfiguration method - Google Patents

Loop-based distribution network reconfiguration method Download PDF

Info

Publication number
WO2021153901A1
WO2021153901A1 PCT/KR2020/018214 KR2020018214W WO2021153901A1 WO 2021153901 A1 WO2021153901 A1 WO 2021153901A1 KR 2020018214 W KR2020018214 W KR 2020018214W WO 2021153901 A1 WO2021153901 A1 WO 2021153901A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
distribution system
distribution
reconfiguration
bss
Prior art date
Application number
PCT/KR2020/018214
Other languages
French (fr)
Korean (ko)
Inventor
최준호
김현우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2021153901A1 publication Critical patent/WO2021153901A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a method for reconfiguring a distribution system, and more particularly, to a method for reconfiguring a distribution system based on a loop.
  • Distribution network reconfiguration is an operation technique of a distribution system that relocates the load borne by each feeder by appropriately controlling the closing/opening state of switchgear existing on the line.
  • a distribution system may include numerous power facilities and lines in order to stably supply high-quality power and to minimize breakdowns and construction sections. Therefore, the structure of the distribution system may have a complex radial, loop, and mesh structure, and the operator of the system operates some switchgear existing in the loop and mesh structure for the convenience of protecting the protection devices and controlling the voltage at the end of the line. It is opened and operated after converting the system to a radial structure.
  • the operating efficiency of the distribution system may deteriorate or an isolated section may occur depending on the positions of the switchgear in an open state. Therefore, it is necessary to appropriately control the switchgear in the open state and to minimize the power loss occurring in the line by changing the system configuration, to alleviate the voltage reinforcement by the load, or to improve the uneven distribution of the load between the feeders.
  • the system analysis for the switchgear combination should be preceded, and a system configuration that satisfies the radial structure but has good operating efficiency should be searched for.
  • the power distribution system can be connected with various types of consumers such as residential, general, industrial, educational, agricultural, etc., and these various consumers have different load patterns and different fluctuation characteristics by time, day of week, month, and season.
  • distributed generation (DG) based on renewable energy, which is connected to the grid in large quantities in modern times, is affected by natural phenomena such as solar radiation, cloudiness, wind volume, and temperature, and the output changes rapidly. Therefore, in addition to these load fluctuation characteristics, there is a need for a method for optimizing and analyzing the system in response to the topology change due to construction and failure occurring in the system and the system connection and separation due to the microgrid capable of independent operation.
  • An object of the present invention is to perform reconfiguration of the distribution system, but to minimize the loss of the line in consideration of the operating efficiency of the system.
  • an object of the present invention is to derive a global optimal solution in consideration of the current state of the system, but to reduce the time required for solving the system reconstruction.
  • a loop-based distribution system reconfiguration method defines a loop using a simplified system by omitting a part of the distribution system, abbreviated system simplification step, and the system simplification step, and defining The loop search step of searching the switchgear included in the loop, and the switchgear combination in which isolation occurs in the system is defined using the switchgear found by the loop search step, and a detailed switchgear combination that satisfies the radial structure of the distribution system It characterized in that it comprises a system reconfiguration step of calculating a line loss using the distribution system analysis step to analyze and the detailed switchgear combination, and deriving a global optimal solution based on the calculated line loss.
  • system simplification step is characterized by determining a situation in which an isolated section can be created, and simplifying the system in response to the determined situation, but abbreviated lines with the SBN as the center.
  • the distribution system analysis step is characterized in that when a plurality of power sources exist in the distribution system, a virtual branch (VB) that cannot be opened between each power source is formed.
  • VB virtual branch
  • system reconfiguration step is characterized in that the center of the BSS is identified and the number of detailed switchgear that can be selected in one BSS is limited.
  • system reconfiguration step is characterized in that the search for a BSS that maintains the always-in state, and limiting the searched BSS.
  • the present invention may further provide a loop-based distribution system reconfiguration program stored in a medium for performing the loop-based distribution system reconfiguration method in combination with a computer.
  • the present invention may further provide a server system in which the loop-based distribution system reconfiguration program is stored and capable of transmitting the loop-based distribution system reconfiguration program through a communication network.
  • the present invention stores the loop-based distribution system reconfiguration program and reconfigures the distribution system by the loop-based distribution system reconfiguration program (SDMS: Smart Distribution Management System), a distribution operating system (DMS) : Distribution Management System) and distribution automation system (DAS: Distribution Automation System) can be provided.
  • SDMS Smart Distribution Management System
  • DMS Distribution Operating System
  • DAS Distribution Automation System
  • the present invention defines a switchgear combination in which isolation occurs in the system and analyzes the detailed switchgear combination that satisfies the radial structure of the distribution system, thereby minimizing line loss.
  • the present invention determines a situation in which an isolated section can be generated, and simplifies the system in response to the determined situation, but reduces the time consumed in solving the system reconfiguration by reducing the lines around the SBN.
  • 1 is a view for explaining a loop structure of a power distribution system.
  • FIG. 2 is a view for explaining the radial structure of the distribution system.
  • 3 is a diagram for explaining an example of an incorrect system configuration.
  • FIG. 4 is a view for explaining the relationship between the radial structure and the loop structure.
  • 5 is a view for explaining the conversion of the loop structure to the radial structure.
  • 6 is a view for explaining before system simplification is performed.
  • FIG. 7 is a view for explaining a condition for generating an isolated section.
  • FIG. 8 is a diagram for explaining a condition for generating an isolated section.
  • 9 is a diagram for explaining system simplification.
  • 11 is a view for explaining the intersecting line S14 in the system.
  • FIG. 12 is a diagram for explaining a limit of a loop search using a line connection relationship.
  • 13 is a diagram for explaining system simplification.
  • FIG. 14 is a diagram for explaining a loop search process.
  • 15 is a diagram for explaining an initial radial system.
  • 16 is a diagram for explaining an affiliated BSS search for each loop.
  • 17 is a diagram for explaining a system drawn with data.
  • FIG. 18 is a diagram for explaining the loop present in FIG. 16 .
  • 20 is a flowchart of a loop search algorithm.
  • 21 is a view for explaining the opening of a line included in one loop.
  • 22 is a view for explaining the opening of a line included in two loops.
  • 23 is a view for explaining a process of reflecting the switch in the open state.
  • 24 is a diagram for explaining a system in which two or more power sources exist.
  • 25 is a flowchart of a current state reflection algorithm.
  • 26 is a diagram for explaining an isolation condition of a node.
  • 27 is a diagram for explaining the IEEE 33 BUS DISTRIBUTION NETWORK.
  • 29 is a view for explaining selections 1 and 2 of Table 13;
  • 30 is a view for explaining selection 3 of Table 13 and a detailed switchgear.
  • 31 is a diagram for explaining a single line diagram of a distribution system.
  • 32 is a flow chart for simulating all possible combinations.
  • 33 is a diagram for explaining a BSS for calculating a loss.
  • 34 is a diagram for explaining various convergence characteristic curves of a genetic algorithm.
  • 35 is a flow chart of a genetic algorithm.
  • 36 is a diagram for explaining IEEE 118 BUS DISTRIBUTION NETWORK zone division.
  • 37 is a diagram for explaining a BSS participating in system reconfiguration.
  • 38 is a diagram for explaining IEEE 118 BUS DISTRIBUTION NETWORK load classification.
  • 39 is a diagram for explaining a Monday load pattern in summer.
  • the loop structure of the distribution system can be formed as shown in FIG. 1 .
  • the loop structure of the distribution system may be defined as shown in Table 1.
  • Loop in feeder Loop formed inside one feeder Loop between substations The transformer/substation is the same but Loop formed between different feeders Loop between feeders Loops formed in different transformers/substations
  • the protection coordination between the protection devices is complicated because the flow of the current is bidirectional.
  • unequal distribution of the load may occur as shown in (a) of FIG. 3, thereby deteriorating operating efficiency, and an isolated section in which power is not supplied may appear as shown in (b) of FIG. 3 . Therefore, while converting the loop structure to the radial structure, a combination of switchgear that sufficiently satisfies the operating efficiency should be searched. This will be described in detail in the loop-based distribution system analysis method to be described later.
  • the radial structure of the power distribution system may have the following characteristics.
  • Every node in a system with a radial structure can have a unique line to the power source.
  • one loop can be formed.
  • All load nodes in the distribution system can have a unique line to the power node.
  • each time a line is added between existing nodes without adding a node one loop may be added. Through Equation 1, it is possible to determine the number of loops existing in the distribution system of the loop structure.
  • the loop structure can be converted into a radial structure by reversely utilizing a condition for forming a loop in the radial structure. If one line is opened in each loop, a radial structure as shown in Fig. 5 (a) can be obtained, and an isolated section as shown in Fig. 5 (b) may occur depending on the opened line.
  • a switchgear included in the loop existing in the system can be identified and the conditions under which the isolation occurs can be specified, it is easy to find a switchgear combination that is converted from the loop structure to the radial structure. Based on this relationship, the following facts can be specified.
  • the loop structure can be converted to a radial structure.
  • a switch combination in which an isolated section occurs in the system cannot be selected.
  • a part of the system may be omitted and abbreviated prior to analyzing the structure of the distribution system.
  • the number of switch combinations to be considered can be minimized by removing unnecessary components for structural analysis of the distribution system.
  • simplifying the system it is possible to simply search for the rope existing in the system and the switches belonging to it. Accordingly, it is possible to improve the performance of the future distribution system reconfiguration.
  • Nodes existing in the distribution system can be classified as shown in Table 2 according to the number of connected lines.
  • Table 2 By utilizing the structural relationship between the node and the line, it is possible to grasp the condition in which isolation occurs inevitably, and to remove components unnecessary for analyzing the system structure.
  • a line having such a node may be represented as shown in FIG. 6 .
  • a set of lines may be defined as shown in Table 3 according to the type of node existing at the end of the line centered on the SBN, and the defined set of lines may be expressed as shown in FIG. 9 .
  • the system can be expressed with a minimum of SBN and BSS, and unnecessary isolation can be minimized in the structural analysis of the system.
  • FIG. 10 is a flowchart of a systematic simplification algorithm. Referring to FIG. 10 , the systematic simplification flow described above may become more clear.
  • the present invention utilizes the property that 'one loop can be added every time a line is added' and 'a loop can disappear one by one whenever a switch constituting the loop is opened' described above. You can browse the included switchgear.
  • FIG. 13 (a) is a diagram illustrating a system before simplification
  • FIG. 13 (b) is a diagram illustrating a system after simplification.
  • FIG. 13(b) if one arbitrary line is deleted as shown in FIG. 14, one loop is removed and a line included in the corresponding loop can be defined. That is, loop 1 can be defined while S1 is deleted, and loop 2 can be defined while S2 is deleted.
  • an end node may appear as an arbitrary line is deleted, and the line S3 connected thereto is removed to leave only the loop component.
  • deleting S6, loop 3 can be defined, and S4 and S5 connected to the end node can be removed.
  • the system of FIG. 13(b) can be defined as initial loop data as shown in Table 4.
  • data of all the lines included in one loop can be searched by inputting the lines included in each loop of Table 4 one by one and removing the lines connected to the end node and the connected node.
  • the line of FIG. 13(b) may be defined as the loop data of Table 5. As shown in FIG.
  • loop BSS in loop One S1, S3, S5 2 S2, S3, S4, S5 3 S6, S4, S5
  • the section corresponding to 'Loop in feeder' of FIG. 1 is treated as 'BSS #2' from the viewpoint of determining the loop structure, and thus may be omitted.
  • the optimal switchgear for this loop structure can be searched after extracting only the relevant part.
  • loop number BSS in loop (a) (b) One S1, S2, S4 S1, S2, S4 2 S4, S5, S6 S1, S3, S5 3 S2, S3, S6 S2, S3, S6
  • loop 1 exists inside loop 2. If loop 1 included in loop 2 is removed, loop 2 can be an optimal loop with a minimum number of switchgear.
  • a loop pair in which two or more BSSs are shared may be searched, and the number of shared BSSs may be compared with the number of non-shared BSSs. When the number of shared BSSs is greater than the number of non-shared BSSs, the two loops may have a containment relationship, and finally the loops may be optimized through data substitution.
  • loop 2 and loop 1 and loop 2 and loop 3 all have an inclusive relationship.
  • loop 1 is included in loop 2
  • loop 3 is also included in loop 2 from the data point of view. That is, it should be noted that different optimal loop data may be obtained from the same data as shown in FIGS. 19 and 9 .
  • loop number BSS in loop (a) (b) One S1, S3, S5 S1, S3, S5 2 S1, S2, S4 S2, S3, S6 3 S6, S4, S5 S6, S4, S5
  • FIG. 20 is a flowchart of a loop search algorithm. Referring to FIG. 20 , the flow of the loop search described above may become more clear.
  • the present invention can actively utilize the loop concept, which is the basic framework of the distribution system, for solving the distribution system reconfiguration. It is possible to reflect the situation in which the line is temporarily uncontrollable due to the occurrence of a failure in the distribution system and the establishment of a construction plan, and the situation in which multiple power sources exist in one system and must be divided into multiple radial structures in the loop data. Through this, it is possible to respond more flexibly to the physical fluctuations of the system. In addition, since the condition under which an isolated section occurs can be specified using the loop-based data obtained by the loop search described above, the logic of searching the switchgear that converts the loop structure to the radial structure without tracking the connection relationship of the line can be designed.
  • a distribution system When a distribution system, a substation, a transformer, and a large number of distributed power sources capable of independent operation are connected to one distribution system, a plurality of radial structures connected to independent power sources should be formed as a result of the distribution system reconfiguration.
  • a virtual branch (VB) that cannot be opened may be formed between the respective power sources, and thus a connection relationship between the power sources may be formed.
  • VB virtual branch
  • the added loop can be reflected in the loop data, and at the same time, it can be applied to the loop-based analysis without any specific restrictions while securing the independence of the power source.
  • the current state may be reflected so that the previously processed data is not changed because the SBN existing in the system is increased due to the virtual line.
  • FIG. 25 is a flowchart of a current state reflection algorithm. Referring to FIG. 25 , the flow of the method for reflecting the current state of the power distribution system described above may become more clear.
  • an isolation period may occur according to the selected combination.
  • the condition in which the isolation occurs can be defined in advance using the processed loop data and line data described above.
  • Isolation may mean that all lines connected to one node are switched to an open state. However, in the loop-based analysis method, only one line is selected. Therefore, as shown in FIG. 26 , the number of loops including one node must be greater than or equal to the number of BSSs connected to the node to have a possibility that the node is isolated. When a node with the possibility of isolation is identified, a switchgear combination in which a single node is isolated can be defined through the connection relationship of the line. In addition, when a plurality of nodes are treated as one lump as shown in FIGS. 26 (c) to (e), a condition in which multiple nodes are isolated may be generated if the above-described relationship is satisfied.
  • a BSS combination in which a single node is isolated and a condition in which multiple nodes are isolated may be defined as shown in Table 11 and FIG. 28 .
  • one line In order for the loop structure to be converted into a radial structure, one line must be opened in each loop. In this case, if the same line is selected in different loops, an isolated section may occur for the same reason as in FIG. 7 . Also, when a combination of lines in which isolation occurs is selected, an isolated section may occur for the same reason as in FIG. 26 . That is, if the two cases in which the isolated section occurs do not correspond, the corresponding combination may satisfy the radial structure.
  • Table 12 is loop data corresponding to the system in FIG. 27 .
  • BSS combinations such as selections 1 to 3 in Table 13 can be selected in each loop.
  • selection 1 may have an isolated structure as shown in FIG. 29 (a) because the same line is selected in different loops
  • selection 2 is similar to FIG. 29 (b) because a combination in which SBNs 8 and 9 are isolated is selected. They can have the same isolated structure. Since option 3 does not correspond to the two cases described above, the radial structure shown in FIG. 30 (a) may be satisfied. In addition, since each BSS has a detailed switchgear set as shown in FIG. 30(b), the radial structure can be satisfied no matter which switchgear combination is selected among them.
  • loop Path Choice 1 choice 2 choice 3 detail opener Select One S4, S6, S9, S12, S5 S4 S9 S12 S15, S16, S17, S36, S32, S31, S30, S29 S36 2 S6, S8, S11, S7 S11 S7 S7 S33 S33 3 S8, S9, S10 S8 S8 S8 S9, S10, S11 S9 4 S1, S3, S4, S7 S4 S4 S4 S6, S7 S7 5 S1, S2, S5 S2 S2 S2 S22, S23, S24, S37 S37
  • Table 15 shows the results of determining the radial structure using the data derived through the data processing method described above for the IEEE 33/69/118 BUS DISTRIBUTION, which is a representative benchmark model of the distribution system.
  • the present invention can utilize a genetic algorithm that is one of artificial intelligence techniques and a case in which all possible combinations are considered to perform distribution system reconfiguration for the purpose of minimizing line loss.
  • a 'distflow branch equation' technique specialized for calculating the current in the distribution system may be used. Thereafter, it is possible to improve the performance of the grid reconfiguration through the constraint that utilizes the characteristics of the distribution system while performing the global optimal distribution system reconfiguration using the possible combination of all switchgear and the genetic algorithm.
  • Calculation of current flow in the power system is performed at each point through line data and node data. It is a systematic analysis method that calculates and estimates the current flowing in the track.
  • the analysis techniques of the 'Newton-Raphson' and 'Gauss-Seidel' series, which are often used for tidal current calculation, are specialized in the transmission system among the power systems. .
  • analysis techniques for the transmission system generate unnecessary computational processes. Therefore, the tidal current calculation technique that improves the operation time and is optimized for the distribution system has been proposed as follows.
  • the 'Distflow branch equation' proposed by Baran can be mainly used as a tidal current analysis technique for the distribution system. This is the line impedance of the system and load When the value of is known, the voltage of all nodes is 1[pu], and through Equation 5.1 'Backward update', to calculate After that, using Equation 5.2 'Forward update', , and finally, when the measured power value at the end of the line is the same as the calculated value, the calculation is terminated. If they do not match, the error may be improved by repeatedly performing Equations 2 and 3 with appropriate compensation.
  • Equation 4 is the active and reactive power flowing in line i, is the impedance component of line i.
  • power distribution at a branching point k in the 'Forward Update' process may be distributed based on the power added in the 'Backward Update' process. If the line loss value and voltage drop are ignored in Equations 2 and 3, 'Simplified Distflow', which is a simpler tidal current calculation expression, can be obtained as Equations 4 and 5.
  • Table 16 compares the execution times of 'Newton-Raphson method' and 'Simplified Dist-flow' in the IEEE 33/69/118 BUS DISTRIBUTION SYSTEM under 17 CPU 3.60 GHz, RAM 16GB, and Matlab environment.
  • the simplest and surest way to find the global optimal solution is to perform systematic analysis for all possible combinations by controlling the closing/opening of switches belonging to all BSS combinations determined as radial structures through structural analysis of the system. Thereafter, the switch combination in which the line loss is the least can be treated as the global optimal solution of the corresponding system.
  • Equations 6 and 7 it is possible to calculate a line loss value according to the direction of current when a specific switchgear is opened in the corresponding BSS. And, it is possible to treat the switchgear that minimizes the loss occurring in the entire line of the BSS as a center line.
  • FIG. 33 it can be divided into a left section and a right section according to the opening position of the switchgear, and the line loss according to each section is shown in Table 19.
  • S3 having the minimum total loss may be treated as the center line of FIG. 33
  • the switchgear utilized in the corresponding BSS may be defined as S1, S3, and S6.
  • genes constituting the genome can be defined as BSSs randomly selected in each loop as shown in 'Selection 1, 2, 3' in Table 13. After that, each BSS can also randomly select a detailed switchgear to form a detailed switchgear combination subordinate to the BSS.
  • Table 22 when the first generation is formed as much as the input population, the radial structure can be determined based on the loop data. In this case, traits that do not satisfy the radial structure may be given a lower weight in the future by giving a high level of penalty to the fitness part.
  • the diversity of genetic traits can be secured by setting a high level of mutation probability and performing crossover using the 'Uniform crossover method'.
  • Two parental traits can cross over according to their cross probability. At this time, the crossing proceeds with respect to the BSS, and the detailed switchgear may be performed in the same manner as the BSS. If crossover is not performed, the parental trait can be passed on to the offspring.
  • the next generation can be constructed by applying the mutation probability to each gene.
  • the BSS selected in each loop can be changed randomly, and the detailed switchgear can also be randomly reselected accordingly.
  • the genetic algorithm has various convergence characteristics as shown in FIG. 34 according to the genetic trait formed in the first generation even when the same parameters are input.
  • IEEE 118 BUS DISTRIBUTION NETWORK' has more than 12,000 local optimal solutions.
  • the present invention can perform migration between islands by forming a plurality of islands independently performing parallel operations. As a result, by sharing the dielectric being formed on each island, the possibility of deriving a global optimal solution can be improved. And, it is possible to operate the Elite island by extracting only the optimal genetic traits from each island.
  • Tables 27 to 29 show the optimal lineage reconstruction using the genetic algorithm for various parameters in the CPU 3.60GHz, RAM 16GB, and Matlab environment.
  • the elite ratio to the total population was fixed at 1%, the crossover probability was 85%, and the migration probability was fixed to 1% of the total population.
  • a penalty corresponding to 120% of the power loss value in the state in which the entire switchgear is turned on may be given.
  • each fixed probability may be experimentally varied.
  • the IEEE 33/69 BUS DISTRIBUTION NETWORK of Tables 27 and 28 is the average of 1000 repetitions for all cases, and the IEEE 118 BUS DISTRIBUTION NETWORK of Table 29 is the average of 100 repetitions.
  • the optimal solution calculation time in the simulation can be obtained because the information of the global optimal solution for a static system is known, and through this, the performance of the genetic algorithm can be verified. Since the genetic algorithm is an algorithm based on randomness, it cannot guarantee a global optimal solution unless a long execution time is taken into account. However, even if the global optimal solution is not searched, the obtained solution has an excellent result value, so that each parameter can be appropriately selected according to the situation.
  • 35 is a flowchart of a genetic algorithm. Referring to FIG. 35 , it may be clearer for the loop-based systemic reconstruction flow through the genetic algorithm.
  • the system configuration that satisfies the optimal operating efficiency may vary depending on the current electrical state of the system.
  • the BSS connected to the start point of the feeder or a large load can be fixed in the always-on state without participating in system reconfiguration. That is, when the load change rate from the worst condition to the best condition is applied in one system, if the BSS in which the input state is always maintained can be specified, the BSS can be treated as an unnecessary component in the optimal system configuration search process. .
  • the initial system of 'IEEE 118 BUS DISTRIBUTION NETWORK' was divided into four zones as shown in FIG. 36 .
  • the BSS that maintains the constant input state was searched by assigning the load change rate as shown in Table 30 to each zone as the scenario in Table 31.
  • the load variation rates corresponding to types A to D can be randomly assigned to each node, and fixed values are assigned to types E and F to simulate extreme situations. Cases 1 to 5 used only types E and F, and cases 6 to 13 were repeated 5 times to search for a global optimal solution.
  • BSS finally participating in the lineage reconstruction can be abbreviated to FIG. 37 and Table 32.
  • the search probability and speed of the global optimal system configuration of 'IEEE 118 BUS DISTRIBUTION NETWORK' could be improved from 90% and 35.2 seconds to 99.6% and 11.02 seconds.
  • the method of restricting the BSS not participating in such phylogenetic reconstruction is not limited to the genetic algorithm, but can be a method to improve the performance of the phylogenetic reconstruction itself.
  • Table 34 shows the results of performing global optimal system reconfiguration targeting IEEE 33/69/118 BUS DISTRIBUTION NETWORK.
  • the system of 'IEEE 118 BUS DISTRIBUTION NETWORK' can be divided into six zones as shown in FIG. 38 . And, among the loads of the six contract types of Korea Electric Power Corporation, 'general type', 'residential type', 'industrial type', and 'education type' can be used to allocate loads.
  • loads in the range shown in Table 35 can be randomly assigned according to the gross domestic product and power consumption by contract type.
  • a real-time distribution system reconstruction solution can be performed after establishing a system environment similar to the actual one. there is.
  • the results shown in Table 37 may be derived.
  • the line loss of 6.784MWh compared to the initial system can be improved by changing the system configuration 6 times.
  • Equation 8 By changing Equation 8 to Equation 10, 24 load patterns in one switchgear combination can be used to obtain one optimal system composition for 24 hours.
  • the line loss of 6.684MWh can be improved compared to the initial system.
  • the power loss value at time t for the i-th system configuration is the power loss value at time t for the i-th system configuration.
  • the difference in loss between performing optimal system reconfiguration for each time period and operating as one system configuration is 0.1 MWh. That is, unless a physical change occurs in a general system, the performance of system reconfiguration for each time period may appear very insignificant.
  • the performance of the optimal system reconfiguration may be very small even if different load patterns are applied for each time period.
  • the performance of the optimal system reconfiguration for the purpose of minimizing the line loss of the system may be visibly revealed.
  • the current distribution system reconfiguration may seem unnecessary, but if various distributed power sources and a microgrid capable of irregular independent operation are connected to the grid in the future, the meaning of the global optimal grid reconfiguration may increase.
  • loop-based distribution system reconfiguration method is substantially performed by a computer system in which a loop-based distribution system reconfiguration program is installed.
  • the present invention may be provided in the form of a computer in which the loop-based distribution system reconfiguration program is stored, a smart distribution operating system, a distribution operating system, or a distribution automation system.
  • loop-based distribution system reconfiguration program is stored in a server system, and the computer system may download and install the loop-based distribution system reconfiguration program from the server system, and then perform distribution system reconfiguration.
  • the loop-based distribution system reconfiguration program may be separately stored and provided in a recording medium, and the recording medium is specially designed and configured for the present invention or is known and used by a person skilled in the art of computer software. It may be possible, for example, hard disks, magnetic media such as floppy disks and magnetic tapes, optical recording media such as CD and DVD, magneto-optical recording media capable of both magnetic and optical recording, ROM, RAM, flash It may be a hardware device specially configured to store and execute program instructions, alone or in combination, such as a memory.
  • loop-based distribution system reconfiguration program may be a program composed of program instructions, local data files, local data structures, etc. alone or in combination. It may be a program written in high-level language code that can be executed by a computer.

Abstract

The present invention relates to a distribution network reconfiguration method, and more specifically, to a method for reconfiguring a distribution network on the basis of a loop. The purpose of the present invention is to reconfigure a distribution network while minimizing losses in lines in consideration of the operation efficiency of the network. The present invention is characterized by comprising: a network simplification step for omitting a portion of a distribution network and contracting the network; a loop searching step for defining a loop by using the network simplified in the network simplification step, and searching for a switch included in the defined loop; a distribution network analysis step for defining a switch combination that can be isolated in the network by using the switch found in the loop searching step, and analyzing detailed switch combinations that satisfy the radial structure of the network; and a network reconfiguration step for using the detailed switch combinations to calculate the line losses, and deriving a global optimal solution on the basis of the calculated line losses.

Description

루프 기반의 배전 계통 재구성 방법Loop-based distribution system reconfiguration method
본 발명은 배전 계통 재구성 방법에 관한 것으로 보다 상세하게는, 루프를 기반으로 배전 계통을 재구성하는 방법에 관한 것이다.The present invention relates to a method for reconfiguring a distribution system, and more particularly, to a method for reconfiguring a distribution system based on a loop.
배전 계통 재구성(Distribution Network Reconfiguration, DNR)은 선로에 존재하는 개폐기들의 투입/개방 상태를 적절히 제어하여 각 피더가 부담하는 부하를 재배치하는 배전 계통의 운영 기법이다. 일반적으로 배전 계통은 양질의 전력을 안정적으로 공급하고 고장 및 공사 구간을 최소화하기 위해 수많은 전력 설비와 선로를 포함할 수 있다. 따라서, 배전 계통의 구조는 방사상, 루프, 매쉬 구조가 복합적으로 나타날 수 있으며, 계통의 운영자는 보호 기기들의 보호 협조와 선로 말단의 전압 제어에 대한 편의성을 위해 루프, 매쉬 구조에 존재하는 일부 개폐기를 개방하여 계통을 방사상 구조로 전환한 후 운영한다.Distribution network reconfiguration (DNR) is an operation technique of a distribution system that relocates the load borne by each feeder by appropriately controlling the closing/opening state of switchgear existing on the line. In general, a distribution system may include numerous power facilities and lines in order to stably supply high-quality power and to minimize breakdowns and construction sections. Therefore, the structure of the distribution system may have a complex radial, loop, and mesh structure, and the operator of the system operates some switchgear existing in the loop and mesh structure for the convenience of protecting the protection devices and controlling the voltage at the end of the line. It is opened and operated after converting the system to a radial structure.
그러나, 배전 계통의 운영 효율은 개방 상태인 개폐기들의 위치에 따라 악화되거나 고립 구간이 발생할 수 있다. 따라서, 개방 상태인 개폐기들을 적절히 제어하여 계통의 구성을 변경을 통해 선로에서 발생하는 전력 손실을 최소화하거나 부하에 의한 전압 강화를 완화하거나, 피더 간 부하의 불균등한 분배를 개선하여야 한다. 이를 위해, 개폐기 조합에 대한 계통 해석이 선행되어야 하며, 방사상 구조를 만족하되, 운영 효율이 좋은 계통 구성을 탐색해야 한다.However, the operating efficiency of the distribution system may deteriorate or an isolated section may occur depending on the positions of the switchgear in an open state. Therefore, it is necessary to appropriately control the switchgear in the open state and to minimize the power loss occurring in the line by changing the system configuration, to alleviate the voltage reinforcement by the load, or to improve the uneven distribution of the load between the feeders. To this end, the system analysis for the switchgear combination should be preceded, and a system configuration that satisfies the radial structure but has good operating efficiency should be searched for.
배전 계통은 주택용, 일반용, 산업용, 교육용, 농업용 등과 같은 다양한 종류의 수용가와 연계될 수 있으며, 이러한 다양한 수용가는 각기 다른 부하 패턴과 시간 별, 요일 별, 월 별, 계절 별로 다른 변동 특성을 갖는다. 또한, 현대에 이르러 계통에 다량으로 연계되고 있는 신재생 에너지 기반의 분산 전원(Distributed Generation, DG)은 일사량, 운량, 풍량, 온도 등 자연 현상에 영향을 받아 출력이 급변한다. 따라서, 이러한 부하의 변동 특성과 더불어, 계통에서 발생하는 공사와 고장으로 인한 토폴로지 변동과 독립 운전이 가능한 마이크로그리드로 인한 계통 연계 및 분리에 대응하여 계통을 최적화 해석하기 위한 방안이 필요하다.The power distribution system can be connected with various types of consumers such as residential, general, industrial, educational, agricultural, etc., and these various consumers have different load patterns and different fluctuation characteristics by time, day of week, month, and season. In addition, distributed generation (DG) based on renewable energy, which is connected to the grid in large quantities in modern times, is affected by natural phenomena such as solar radiation, cloudiness, wind volume, and temperature, and the output changes rapidly. Therefore, in addition to these load fluctuation characteristics, there is a need for a method for optimizing and analyzing the system in response to the topology change due to construction and failure occurring in the system and the system connection and separation due to the microgrid capable of independent operation.
최적화 해석에 있어서 전역 최적해를 찾아내는 가장 좋은 방안은 가능한 모든 경우를 모의하는 것이다. 그러나, 계통 재구성 과정에서 고려해야 하는 경우의 수는
Figure PCTKR2020018214-appb-I000001
이기 때문에 계통 재구성의 풀이에 많은 시간이 요구된다. 따라서, 계통의 전역 최적해를 도출하되, 계통 재구성의 풀이에 소모되는 시간을 줄이기 위한 방안이 필요하다.
The best way to find the global optimal solution in optimization analysis is to simulate all possible cases. However, the number of cases to be considered in the systemic reconstruction process is
Figure PCTKR2020018214-appb-I000001
Therefore, a lot of time is required to solve the systematic reconstruction. Therefore, there is a need for a method for deriving the global optimal solution of the system and reducing the time required for solving the system reconstruction.
또한, 계통 재구성이 수행되는 시점의 제어 불가능한 개폐기, 분산 전원의 출력량 및 독립 운전 여부에 따라 최적의 계통 구성이 변경되기 때문에, 현재 계통 상태에 따른 최적의 계통 구성 탐색을 위한 방안이 필요하다. In addition, since the optimal system configuration changes depending on the uncontrollable switchgear at the time when the system reconfiguration is performed, the output amount of distributed power and independent operation, a method for searching for the optimal system configuration according to the current system state is required.
본 발명은 배전계통의 재구성을 수행하되, 계통의 운영효율을 고려하여 선로의 손실을 최소화하는 것을 목적으로 한다.An object of the present invention is to perform reconfiguration of the distribution system, but to minimize the loss of the line in consideration of the operating efficiency of the system.
또한, 본 발명은 현재 계통의 상태를 고려하여 전역 최적해를 도출하되, 계통 재구성의 풀이에 소모되는 시간을 줄이는 것을 목적으로 한다.In addition, an object of the present invention is to derive a global optimal solution in consideration of the current state of the system, but to reduce the time required for solving the system reconstruction.
본 발명의 바람직한 일 실시예에 따른 루프 기반의 배전 계통 재구성 방법은 배전 계통의 일부를 생략하고, 축약하는 계통 단순화 단계, 상기 계통 단순화 단계에 의해, 단순화된 계통을 이용하여 루프를 정의하고, 정의된 루프에 포함된 개폐기를 탐색하는 루프 탐색 단계, 상기 루프 탐색 단계에 의해, 탐색된 개폐기를 이용하여 계통에서 고립이 발생하는 개폐기 조합을 정의하고, 배전 계통의 방사상 구조를 만족하는 세부 개폐기 조합을 해석하는 배전 계통 해석 단계 및 상기 세부 개폐기 조합을 이용하여 선로 손실을 계산하고, 계산된 선로 손실을 기준으로 전역 최적해를 도출하는 계통 재구성 단계를 포함하는 것을 특징으로 한다.A loop-based distribution system reconfiguration method according to a preferred embodiment of the present invention defines a loop using a simplified system by omitting a part of the distribution system, abbreviated system simplification step, and the system simplification step, and defining The loop search step of searching the switchgear included in the loop, and the switchgear combination in which isolation occurs in the system is defined using the switchgear found by the loop search step, and a detailed switchgear combination that satisfies the radial structure of the distribution system It characterized in that it comprises a system reconfiguration step of calculating a line loss using the distribution system analysis step to analyze and the detailed switchgear combination, and deriving a global optimal solution based on the calculated line loss.
또한, 상기 계통 단순화 단계는 고립 구간이 생성될 수 있는 상황을 판단하고, 판단된 상황에 대응하여 계통을 단순화 하되, SBN을 중심으로 선로들을 축약하는 것을 특징으로 한다.In addition, the system simplification step is characterized by determining a situation in which an isolated section can be created, and simplifying the system in response to the determined situation, but abbreviated lines with the SBN as the center.
또한, 상기 배전 계통 해석 단계는 배전 계통에 다수개의 전원이 존재하는 경우, 각 전원들 사이에 개방될 수 없는 가상의 선로(Virtual branch, VB)를 형성하는 것을 특징으로 한다.In addition, the distribution system analysis step is characterized in that when a plurality of power sources exist in the distribution system, a virtual branch (VB) that cannot be opened between each power source is formed.
또한, 상기 계통 재구성 단계는 BSS의 중심을 파악하여 하나의 BSS 내에 선택될 수 있는 세부 개폐기 수를 제한하는 것을 특징으로 한다.In addition, the system reconfiguration step is characterized in that the center of the BSS is identified and the number of detailed switchgear that can be selected in one BSS is limited.
또한, 상기 계통 재구성 단계는 상시 투입 상태를 유지하는 BSS를 탐색하고, 탐색된 BSS를 제한하는 것을 특징으로 한다.In addition, the system reconfiguration step is characterized in that the search for a BSS that maintains the always-in state, and limiting the searched BSS.
또한, 본 발명은 컴퓨터와 결합하여 상기 루프 기반의 배전 계통 재구성 방법을 수행하기 위한 매체에 저장된 루프 기반의 배전 계통 재구성 프로그램을 더 제공할 수 있다.In addition, the present invention may further provide a loop-based distribution system reconfiguration program stored in a medium for performing the loop-based distribution system reconfiguration method in combination with a computer.
또한, 본 발명은 상기 루프 기반의 배전 계통 재구성 프로그램이 저장되고 통신망을 통해 상기 루프 기반의 배전 계통 재구성 프로그램을 전송할 수 있는 서버 시스템을 더 제공할 수 있다.In addition, the present invention may further provide a server system in which the loop-based distribution system reconfiguration program is stored and capable of transmitting the loop-based distribution system reconfiguration program through a communication network.
또한, 본 발명은 상기 루프 기반의 배전 계통 재구성 프로그램을 저장하고, 상기 루프 기반의 배전 계통 재구성 프로그램에 의해 배전 계통을 재구성하는 스마트 배전 운영 시스템(SDMS:Smart Distribution Management System), 배전 운영 시스템(DMS: Distribution Management System), 배전 자동화 시스템(DAS:Distribution Automation System)을 더 제공할 수 있다.In addition, the present invention stores the loop-based distribution system reconfiguration program and reconfigures the distribution system by the loop-based distribution system reconfiguration program (SDMS: Smart Distribution Management System), a distribution operating system (DMS) : Distribution Management System) and distribution automation system (DAS: Distribution Automation System) can be provided.
본 발명은 계통에서 고립이 발생하는 개폐기 조합을 정의하고, 배전 계통의 방사상 구조를 만족하는 세부 개폐기 조합을 해석함으로써, 선로의 손실을 최소화할 수 있다.The present invention defines a switchgear combination in which isolation occurs in the system and analyzes the detailed switchgear combination that satisfies the radial structure of the distribution system, thereby minimizing line loss.
또한, 본 발명은 고립 구간이 생성될 수 있는 상황을 판단하고, 판단된 상황에 대응하여 계통을 단순화 하되, SBN을 중심으로 선로들을 축약함으로써, 계통 재구성의 풀이에 소모되는 시간을 줄일 수 있다.In addition, the present invention determines a situation in which an isolated section can be generated, and simplifies the system in response to the determined situation, but reduces the time consumed in solving the system reconfiguration by reducing the lines around the SBN.
도 1은 배전 계통의 루프 구조를 설명하기 위한 도면이다.1 is a view for explaining a loop structure of a power distribution system.
도 2는 배전 계통의 방사상 구조를 설명하기 위한 도면이다.2 is a view for explaining the radial structure of the distribution system.
도 3은 잘못된 계통 구성 사례를 설명하기 위한 도면이다.3 is a diagram for explaining an example of an incorrect system configuration.
도 4는 방사상 구조와 루프 구조의 관계를 설명하기 위한 도면이다.4 is a view for explaining the relationship between the radial structure and the loop structure.
도 5는 루프 구조의 방사상 구조로의 전환을 설명하기 위한 도면이다.5 is a view for explaining the conversion of the loop structure to the radial structure.
도 6은 계통 단순화 수행 전을 설명하기 위한 도면이다.6 is a view for explaining before system simplification is performed.
도 7은 고립 구간 발생 조건을 설명하기 위한 도면이다.7 is a view for explaining a condition for generating an isolated section.
도 8은 고립 구간 발생 조건을 설명하기 위한 도면이다.8 is a diagram for explaining a condition for generating an isolated section.
도 9는 계통 단순화를 설명하기 위한 도면이다.9 is a diagram for explaining system simplification.
도 10은 계통 단순화 알고리즘 흐름도이다.10 is a flowchart of a systematic simplification algorithm.
도 11은 계통 내 교차 선로(S14)를 설명하기 위한 도면이다.11 is a view for explaining the intersecting line S14 in the system.
도 12는 선로 연결 관계를 활용한 루프 탐색의 한계를 설명하기 위한 도면이다.12 is a diagram for explaining a limit of a loop search using a line connection relationship.
도 13은 계통 단순화를 설명하기 위한 도면이다.13 is a diagram for explaining system simplification.
도 14는 루프 탐색 과정을 설명하기 위한 도면이다.14 is a diagram for explaining a loop search process.
도 15는 초기 방사상 계통을 설명하기 위한 도면이다.15 is a diagram for explaining an initial radial system.
도 16은 루프 별 소속된 BSS 탐색을 설명하기 위한 도면이다.16 is a diagram for explaining an affiliated BSS search for each loop.
도 17은 데이터로 그려진 계통을 설명하기 위한 도면이다.17 is a diagram for explaining a system drawn with data.
도 18은 도 16에 존재하는 루프를 설명하기 위한 도면이다.FIG. 18 is a diagram for explaining the loop present in FIG. 16 .
도 19는 루프 2의 최적화 수행을 설명하기 위한 도면이다.19 is a diagram for explaining optimization of loop 2;
도 20은 루프 탐색 알고리즘 흐름도이다.20 is a flowchart of a loop search algorithm.
도 21은 하나의 루프에 포함된 선로 개방을 설명하기 위한 도면이다.21 is a view for explaining the opening of a line included in one loop.
도 22는 두 개의 루프에 포함된 선로 개방을 설명하기 위한 도면이다.22 is a view for explaining the opening of a line included in two loops.
도 23은 개방 상태인 개폐기 반영 과정을 설명하기 위한 도면이다.23 is a view for explaining a process of reflecting the switch in the open state.
도 24는 두 개 이상의 전원 존재하는 계통을 설명하기 위한 도면이다. 24 is a diagram for explaining a system in which two or more power sources exist.
도 25는 현재 상태 반영 알고리즘 흐름도이다.25 is a flowchart of a current state reflection algorithm.
도 26은 노드의 고립 조건을 설명하기 위한 도면이다.26 is a diagram for explaining an isolation condition of a node.
도 27은 IEEE 33 BUS DISTRIBUTION NETWORK를 설명하기 위한 도면이다.27 is a diagram for explaining the IEEE 33 BUS DISTRIBUTION NETWORK.
도 28은 고립이 발생하는 BSS 조합을 설명하기 위한 도면이다.28 is a diagram for explaining a BSS combination in which isolation occurs.
도 29는 표 13의 선택 1, 2를 설명하기 위한 도면이다.29 is a view for explaining selections 1 and 2 of Table 13;
도 30은 표 13의 선택 3과 세부 개폐기를 설명하기 위한 도면이다.30 is a view for explaining selection 3 of Table 13 and a detailed switchgear.
도 31은 배전계통의 단선도를 설명하기 위한 도면이다.31 is a diagram for explaining a single line diagram of a distribution system.
도 32는 가능한 전체 조합을 모의하기 위한 흐름도이다.32 is a flow chart for simulating all possible combinations.
도 33은 손실 계산을 위한 BSS를 설명하기 위한 도면이다.33 is a diagram for explaining a BSS for calculating a loss.
도 34는 유전 알고리즘의 다양한 수렴 특성 곡선을 설명하기 위한 도면이다.34 is a diagram for explaining various convergence characteristic curves of a genetic algorithm.
도 35는 유전 알고리즘 흐름도이다.35 is a flow chart of a genetic algorithm.
도 36은 IEEE 118 BUS DISTRIBUTION NETWORK 구역 구분을 설명하기 위한 도면이다.36 is a diagram for explaining IEEE 118 BUS DISTRIBUTION NETWORK zone division.
도 37은 계통 재구성에 참여하는 BSS를 설명하기 위한 도면이다.37 is a diagram for explaining a BSS participating in system reconfiguration.
도 38은 IEEE 118 BUS DISTRIBUTION NETWORK 부하 구분을 설명하기 위한 도면이다.38 is a diagram for explaining IEEE 118 BUS DISTRIBUTION NETWORK load classification.
도 39는 여름철 월요일 부하 패턴을 설명하기 위한 도면이다.39 is a diagram for explaining a Monday load pattern in summer.
배전 계통에는 고장이 발생하거나 공사 계획이 수립되는 경우, 최소한의 구역만 정전을 경험하도록 신속한 구간 고립 및 전력 복구가 수행될 수 있다. 이는 계통 내에 수많은 연계 선로와 백업 선로가 존재하기 때문에 가능한 작업이며, 이러한 선로들로 인해 배전 계통의 루프 구조는 도 1과 같이 형성될 수 있다. 도 1을 참조하면, 배전 계통의 루프 구조는 표 1과 같이 정의될 수 있다.In the event of a breakdown in the distribution system or a construction plan is established, rapid section isolation and power recovery can be performed so that only a minimal number of areas experience a power outage. This is possible because there are numerous interconnected lines and backup lines in the system, and due to these lines, the loop structure of the distribution system can be formed as shown in FIG. 1 . Referring to FIG. 1 , the loop structure of the distribution system may be defined as shown in Table 1.
Loop in feederLoop in feeder 하나의 피더 내부에 형성된 루프Loop formed inside one feeder
Loop between substationsLoop between substations 변압기/변전소는 동일하지만
서로 다른 피더 사이에 형성된 루프
The transformer/substation is the same but
Loop formed between different feeders
Loop between feedersLoop between feeders 서로 다른 변압기/변전소에 형성된 루프Loops formed in different transformers/substations
배전 계통이 루프나 매쉬 구조로 운영되는 경우, 조류의 흐름이 양방향성을 갖기 때문에 보호기기 사이의 보호 협조가 복잡해진다. 또한, 방사상 구조와 비교하였을 때 전압의 적정치를 유지하기 위한 전력 설비들의 전압 제어가 어려워진다. 따라서, 계통의 운영자는 배전 계통에 존재하는 개폐기 중 일부를 개방 상태로 변경하여 계통의 구조를 도 2와 같이 방사상 구조로 전환하여 운영한다. 개방되는 개폐기의 위치에 따라 도 3의 (a)와 같이 부하의 불균등 분배가 발생하여 운영 효율이 악화될 수 있으며, 도 3의 (b)와 같이 전력을 공급받지 못하는 고립 구간이 나타날 수 있다. 그렇기 때문에 루프 구조를 방사상 구조로 전환하는 동시에, 운영 효율을 충분히 만족시키는 개폐기의 조합이 탐색되어야 한다. 이에 대한 내용은 후술되는 루프 기반의 배전 계통 해석 방안에서 자세히 설명한다.When the distribution system is operated in a loop or mesh structure, the protection coordination between the protection devices is complicated because the flow of the current is bidirectional. In addition, it becomes difficult to control the voltage of the power facilities to maintain an appropriate value of the voltage compared to the radial structure. Therefore, the operator of the system changes some of the switchgear existing in the distribution system to an open state and operates the system by converting the system structure into a radial structure as shown in FIG. 2 . Depending on the position of the open switch, unequal distribution of the load may occur as shown in (a) of FIG. 3, thereby deteriorating operating efficiency, and an isolated section in which power is not supplied may appear as shown in (b) of FIG. 3 . Therefore, while converting the loop structure to the radial structure, a combination of switchgear that sufficiently satisfies the operating efficiency should be searched. This will be described in detail in the loop-based distribution system analysis method to be described later.
도 4를 참조하면, 배전 계통의 방사상 구조는 아래와 같은 특징을 가질 수 있다.Referring to FIG. 4 , the radial structure of the power distribution system may have the following characteristics.
- 방사상 구조의 계통 내 모든 노드는 전원으로 향하는 유일한 선로를 가질 수 있다.- Every node in a system with a radial structure can have a unique line to the power source.
- 방사상 구조의 계통에서 선로가 하나 추가되면 루프가 하나 형성될 수 있다.- If one line is added in a system with a radial structure, one loop can be formed.
배전 계통의 모든 부하 노드들은 전원 노드로 향하는 유일한 선로를 가질 수 있다. 또한, 노드의 추가 없이 기존에 있던 노드 사이에 선로가 하나씩 추가될 때마다 루프도 하나씩 추가될 수 있다. 수학식 1을 통해 루프 구조의 배전 계통 내부에 존재하는 루프의 개수를 파악할 수 있다.All load nodes in the distribution system can have a unique line to the power node. In addition, each time a line is added between existing nodes without adding a node, one loop may be added. Through Equation 1, it is possible to determine the number of loops existing in the distribution system of the loop structure.
Figure PCTKR2020018214-appb-M000001
Figure PCTKR2020018214-appb-M000001
도 5를 참조하면, 방사상 구조에 루프가 형성되는 조건을 역으로 활용하면 루프 구조를 방사상 구조로 전환할 수 있다. 각 루프에서 선로를 하나씩 개방하면 도 5 (a)와 같은 방사상 구조를 얻을 수 있으며, 개방되는 선로에 따라 도 5 (b)와 같은 고립 구간이 발생할 수 있다. 결과적으로 계통에 존재하는 루프에 포함된 개폐기들을 파악하고, 고립이 발생하는 조건을 특정할 수 있다면 루프 구조에서 방사상 구조로 전환되는 개폐기 조합을 간단하게 찾을 수 있다. 이와 같은 관계를 기반으로 아래와 같은 사실을 특정할 수 있다.Referring to FIG. 5 , the loop structure can be converted into a radial structure by reversely utilizing a condition for forming a loop in the radial structure. If one line is opened in each loop, a radial structure as shown in Fig. 5 (a) can be obtained, and an isolated section as shown in Fig. 5 (b) may occur depending on the opened line. As a result, if the switchgear included in the loop existing in the system can be identified and the conditions under which the isolation occurs can be specified, it is easy to find a switchgear combination that is converted from the loop structure to the radial structure. Based on this relationship, the following facts can be specified.
- 각 루프에서 선로가 하나씩 개방되면, 루프 구조는 방사상 구조로 전환될 수 있다. 단, 계통에 고립 구간이 발생하는 개폐기 조합은 선택될 수 없다. - If one line is opened in each loop, the loop structure can be converted to a radial structure. However, a switch combination in which an isolated section occurs in the system cannot be selected.
3. 배전 계통 재구성을 위한 데이터 가공 방안3. Data processing plan for reconfiguration of distribution system
본 발명은 배전 계통의 구조를 해석하기에 앞서 계통의 일부를 생략하고, 축약할 수 있다. 이를 통해 배전 계통의 구조 해석에 불필요한 성분을 제거함으로써, 고려해야 하는 개폐기 조합의 수를 최소화 할 수 있다. 또한, 계통을 단순화함으로써, 계통에 존재하는 로프와 그에 소속된 개폐기들을 간단하게 탐색할 수 있다. 이에 따라, 향후 배전 계통 재구성의 성능을 향상시킬 수 있다.In the present invention, a part of the system may be omitted and abbreviated prior to analyzing the structure of the distribution system. Through this, the number of switch combinations to be considered can be minimized by removing unnecessary components for structural analysis of the distribution system. In addition, by simplifying the system, it is possible to simply search for the rope existing in the system and the switches belonging to it. Accordingly, it is possible to improve the performance of the future distribution system reconfiguration.
가. 루프 기반의 계통 단순화go. Loop-based system simplification
1) Super Branch Node(SBN)1) Super Branch Node (SBN)
배전 계통에 존재하는 노드는 연결된 선로의 수에 따라 표 2와 같이 구분될 수 있다. 이러한 노드와 선로 사이의 구조적인 관계를 활용함으로써, 필연적으로 고립이 발생하는 조건을 파악하고, 계통의 구조를 해석하는데 불필요한 성분들을 제거할 수 있다. 이러한 노드를 갖는 계통은 도 6과 같이 표현될 수 있다.Nodes existing in the distribution system can be classified as shown in Table 2 according to the number of connected lines. By utilizing the structural relationship between the node and the line, it is possible to grasp the condition in which isolation occurs inevitably, and to remove components unnecessary for analyzing the system structure. A line having such a node may be represented as shown in FIG. 6 .
종류Kinds 연결된 서로 수connected to each other 비고note
End NodeEnd Node 1One 계통의 시작점 혹은 말단에 위치located at the beginning or end of a lineage
Connected Node Connected Nodes 22 두 개의 선로와 연결connected with two lines
Super Branch Node(SBN)Super Branch Nodes (SBNs) 3 이상3 or more 세 개 이상의 선로와 연결connection with three or more lines
도 7 (a)를 참조하면, end node가 존재하고, 그 끝이 SBN인 선로 집합에서 개폐기가 개방되는 경우, 필연적으로 고립 구간이 생성될 수 있다. 즉, SBN과 end node로 구성된 구간은 개폐기를 개방해야 하는 계통 재구성 풀이에 불필요한 성분이 되므로 도 7 (b)와 같이 생략할 수 있다.Referring to FIG. 7 (a), when an end node is present and a switchgear is opened in a line set whose end is an SBN, an isolated section may inevitably be generated. That is, the section composed of the SBN and the end node becomes an unnecessary component for solving the system reconfiguration in which the switch is opened, so it can be omitted as shown in FIG. 7(b).
도 8 (a)를 참조하면, 양단이 SBN으로 구성된 구간에서는 2개 이상의 개폐기가 개방되는 경우, 필연적으로 고립 구간이 생성될 수 있다. 즉, 해당 집합에서는 하나의 개폐기만 개방되어야 하므로 도 8 (b)와 같이 하나의 선로로 축약될 수 있다.Referring to FIG. 8 ( a ) , in a section in which both ends are composed of SBNs, when two or more switchgear are opened, an isolated section may inevitably be created. That is, since only one switch should be opened in the corresponding set, it can be abbreviated to one line as shown in FIG. 8(b).
이러한 사실을 근거로 하여, SBN을 중심으로 선로들을 정리하면 필연적으로 고립이 발생하는 개폐기가 선택되는 것을 방지할 수 있다.Based on this fact, if the lines are arranged around the SBN, it is possible to prevent the selection of a switchgear that inevitably causes isolation.
2) Branch Switch Set(BSS)2) Branch Switch Set (BSS)
고립이 발생하는 상황을 최소화하기 위해서 계통 내의 모든 connected node를 생략하여 계통을 단순화할 수 있다. 그 후, SBN을 중심으로 선로의 끝에 존재하는 노드의 종류에 맞춰 선로의 집합을 표 3과 같이 정의할 수 있으며, 정의된 선로의 집합은 도 9와 같이 표현될 수 있다.In order to minimize the situation where isolation occurs, the system can be simplified by omitting all connected nodes in the system. Thereafter, a set of lines may be defined as shown in Table 3 according to the type of node existing at the end of the line centered on the SBN, and the defined set of lines may be expressed as shown in FIG. 9 .
종류Kinds 연결된 노드 종류Linked node type 고립 구간 생성 조건Conditions for creating an isolated section
BSS #1BSS #1 SBN - SBNSBN - SBN 두 개 이상의 개폐기 개방Two or more switchgear open
BSS #2BSS #2 SBN - end nodeSBN - end node 한 개 이상의 개폐기 개방One or more switchgear open
앞에서 설명한 바와 같이, BSS #1의 경우 하나의 개폐기가 개방되어도 고립 구간이 발생하지 않지만 BSS #2의 경우 하나의 개폐기만 개방되어도 고립구간이 발생한다. 따라서, 해당 계통에서 BSS #2를 생략하는 것에 의해, 도 8 (b)의 계통을 취득할 수 있다.As described above, in the case of BSS #1, an isolation section does not occur even when one switch is opened, but in the case of BSS #2, an isolation section occurs even when only one switch is opened. Therefore, by omitting BSS #2 from the said system|strain, the system|strain of FIG.8(b) can be acquired.
이러한 축약과 생략을 통해 계통의 단순화 작업을 수행함으로써, 최소한의 SBN과 BSS으로 계통을 표현하고, 계통의 구조 해석에 불필요한 고립이 발생하는 경우를 최소화할 수 있다.By performing the system simplification work through such abbreviations and omissions, the system can be expressed with a minimum of SBN and BSS, and unnecessary isolation can be minimized in the structural analysis of the system.
도 10은 계통 단순화 알고리즘의 흐름도이다. 도 10을 참조하면, 앞에서 설명한 계통 단순화 흐름이 보다 명확해 질 수 있다.10 is a flowchart of a systematic simplification algorithm. Referring to FIG. 10 , the systematic simplification flow described above may become more clear.
나. 루프 탐색 방안me. loop search method
사람이 직관적으로 계통도나 평면도를 보고 각 루프와 루프에 포함되어 있는 개폐기들을 파악하는 것은 간단한 작업이다. 하지만, 선로 데이터와 노드 데이터 만을 활용하여 해당 계통에 존재하는 루프를 정의하고, 루프에 포함된 개폐기를 정확히 파악하기 위해서는 체계적인 논리가 필요하다.It is a simple task for a person to intuitively look at the schematic or floor plan and grasp each loop and the switches included in the loop. However, systematic logic is required to define the loop existing in the system using only line data and node data and to accurately identify the switchgear included in the loop.
1) 루프 탐색 필요성1) Necessity of loop navigation
루프 구조를 갖는 계통을 방사상 구조로 전환하기 위해서는 각 루프에서 개폐기를 하나씩 개방해야 한다. 하지만, 선택된 개폐기의 조합에 따라, 해당 계통에는 고립 구간이 발생할 수 있다. 따라서, 고립이 발생하는 조건을 회피하면서 개폐기를 선택하기 위한 체계적이고 논리적인 절차가 필요하다. 이를 위해, 우선적으로 각 루프에 포함되어 있는 개폐기에 대한 정확한 정보가 취득되어야 한다.To convert a system with a loop structure to a radial structure, one switchgear must be opened in each loop. However, depending on the selected combination of switchgear, an isolated section may occur in the corresponding system. Therefore, a systematic and logical procedure is required to select a switchgear while avoiding the condition in which isolation occurs. For this, first, accurate information about the switch included in each loop should be acquired.
2) 루프 탐색 과정2) Loop search process
데이터를 활용하여 루프를 탐색하는 가장 단순한 방법은 선로의 연결 관계를 추적하는 것이다. 하나의 노드를 선택하고, 동일한 노드로 돌아오는 경로를 탐색하면 되지만, 복잡한 계통에서는 수많은 시행착오를 겪어야만 결과를 취득할 수 있다. 또한, 도 11과 같이 2개의 루프에 포함된 선로의 중간에서 다른 선로와 교차되는 선로(S14)가 존재하는 경우, 정확한 루프 정보를 취득할 수 없다.The simplest way to explore a loop using data is to track the connection relationship of the line. You just need to select one node and search the path back to the same node, but in a complex system, you can only get results by going through a lot of trial and error. Also, as shown in FIG. 11 , when a line S14 intersecting another line exists in the middle of the lines included in the two loops, accurate loop information cannot be obtained.
도 11의 교차 선로(S14)의 존재로 인해, 도 12와 같이 3개의 루프만이 탐색되어야 하는 구역에서 최대 6개의 루프가 탐색 될 수 있다. 따라서, 선로의 연결 관계를 활용하는 방법이 아닌, 다른 루프 탐색 방안이 필요하다.Due to the existence of the crossing line S14 of FIG. 11 , as shown in FIG. 12 , a maximum of six loops may be searched in an area where only three loops should be searched. Therefore, a method other than a method that utilizes the connection relationship of the lines is required.
본 발명은 앞서 설명한 '선로가 하나 추가될 때마다 루프가 하나씩 추가될 수 있다'는 성질과 '루프를 구성하는 개폐기가 하나 개방될 때마다 루프가 하나씩 사라질 수 있다'는 성질을 활용하여 루프에 포함된 개폐기를 탐색할 수 있다.The present invention utilizes the property that 'one loop can be added every time a line is added' and 'a loop can disappear one by one whenever a switch constituting the loop is opened' described above. You can browse the included switchgear.
배전 계통 내에 존재하는 루프의 수와 각 루프에 포함되어 있는 BSS를 정의하기 위해 '루프를 구성하는 개폐기가 하나 개방될 때마다 루프가 하나씩 사라질 수 있다'는 특징을 활용할 수 있다. 도 13 (a)는 단순화를 수행하기 전의 계통을 표현한 도면이고, 도 13 (b)는 단순화 수행 후의 계통을 표현한 도면이다. 도 13 (b)과 같이 단순화된 계통에서 도 14와 같이 임의의 선로를 한 개 삭제하면 하나의 루프가 제거됨과 동시에 해당 루프에 포함된 선로를 정의할 수 있다. 즉, S1을 삭제하면서 루프 1을 정의하고, S2를 삭제하면서 루프 2를 정의할 수 있다. 이때, 임의의 선로가 삭제되면서 end node가 나타날 수 있는데, 이에 연결된 선로인 S3는 제거하여 루프 성분만을 남긴다. 마지막으로 S6를 삭제하면서 루프 3을 정의하고, end node에 연결된 S4와 S5를 제거할 수 있다. 결과적으로 도 13 (b)의 계통을 표 4와 같이 초기 루프 데이터로 정의할 수 있다.In order to define the number of loops that exist in the distribution system and the BSS included in each loop, the feature that 'a loop can disappear one by one whenever a switch composing a loop is opened' can be utilized. 13 (a) is a diagram illustrating a system before simplification, and FIG. 13 (b) is a diagram illustrating a system after simplification. In the simplified system as shown in FIG. 13(b), if one arbitrary line is deleted as shown in FIG. 14, one loop is removed and a line included in the corresponding loop can be defined. That is, loop 1 can be defined while S1 is deleted, and loop 2 can be defined while S2 is deleted. At this time, an end node may appear as an arbitrary line is deleted, and the line S3 connected thereto is removed to leave only the loop component. Finally, while deleting S6, loop 3 can be defined, and S4 and S5 connected to the end node can be removed. As a result, the system of FIG. 13(b) can be defined as initial loop data as shown in Table 4.
루프loop 포함된 BSSIncluded BSS
1One S1 S1
22 S2 S2
33 S6S6
각 루프에 포함되어 있는 모든 BSS를 파악하기 위해서 '선로가 하나 추가될 때마다 루프가 하나씩 추가될 수 있다'는 방사상 계통의 특징을 활용할 수 있다.In order to understand all the BSSs included in each loop, it is possible to utilize the characteristic of the radial system that 'one loop can be added every time one line is added'.
도 13 (b)의 계통에서 표 4의 각 루프에 포함된 것으로 파악된 BSS인 S1, S2 및 S6를 개방하면 도 15와 같은 방사상 구조의 계통을 확보할 수 있다.In the system of FIG. 13 (b), if the BSSs S1, S2, and S6 identified as included in each loop of Table 4 are opened, the system of the radial structure as shown in FIG. 15 can be secured.
여기서, 도 16과 같이 표 4의 각 루프에 포함된 선로를 하나씩 투입하고, end node, connected node에 연결된 선로를 제거함으로써, 하나의 루프에 포함된 모든 선로의 데이터를 탐색할 수 있다.Here, as shown in FIG. 16 , data of all the lines included in one loop can be searched by inputting the lines included in each loop of Table 4 one by one and removing the lines connected to the end node and the connected node.
이에 따라, 최종적으로 도 13 (b)의 계통은 표 5의 루프 데이터로 정의될 수 있다.Accordingly, finally, the line of FIG. 13(b) may be defined as the loop data of Table 5. As shown in FIG.
루프loop 루프에 포함된 BSSBSS in loop
1One S1, S3, S5S1, S3, S5
22 S2, S3, S4, S5S2, S3, S4, S5
33 S6, S4, S5S6, S4, S5
3) 루프 탐색 시 고려사항3) Considerations when exploring loops
계통 내에 존재하는 루프를 탐색하는데 있어서, 필수적인 요소는 모든 BSS가 최소 하나 이상의 루프에 속해야만 한다는 것이다. 앞에서 설명된 과정을 통해 루프를 탐색하면 모든 BSS를 빠짐없이 탐색할 수 있다. 그러나, 데이터만을 활용하여 루프를 탐색할 때 몇 가지 고려 사항이 존재할 수 있다. 이는 향후 루프 해석 과정에서 무의미한 개폐기 조합의 수를 증가시키므로, 사전에 해소되는 것이 바람직할 수 있다.In searching for loops existing in the system, an essential element is that all BSSs must belong to at least one loop. If the loop is searched through the process described above, all BSSs can be searched without exception. However, there may be some considerations when exploring loops using only data. Since this increases the number of meaningless switch combinations in the future loop analysis process, it may be desirable to resolve them in advance.
가) 피더 간 루프가 없는 상태에서 피더 내 루프만 존재하는 경우A) When there is no loop between feeders and only loops within the feeder exist
도 1의 'Loop in feeder'에 해당하는 구간은 루프 구조를 판단하는 관점에서 'BSS #2'로 취급되므로 생략할 수 있다. 이 루프 구조에 대한 최적의 개폐기는 해당 부분에 대한 것만 따로 추출한 후 탐색할 수 있다.The section corresponding to 'Loop in feeder' of FIG. 1 is treated as 'BSS #2' from the viewpoint of determining the loop structure, and thus may be omitted. The optimal switchgear for this loop structure can be searched after extracting only the relevant part.
나) 동일한 데이터에서 다른 조합의 루프 데이터가 탐색되는 경우B) When loop data of a different combination is searched for in the same data
표 6과 같이 동일한 데이터가 주어지더라도 도 17과 같이 서로 다른 계통 (a) 및 (b)로 표현되어 표 7과 같이 다른 루프 데이터가 정의될 수 있다. 이는 결과적으로는 루프 데이터의 활용 과정에서 각 루프에서 선택될 수 있는 개폐기에 차이를 발생시키지만, 루프 기반의 해석 자체에는 영향을 주지 않는다.Even when the same data is given as shown in Table 6, different loop data can be defined as shown in Table 7 by expressing different lines (a) and (b) as shown in FIG. 17 . This results in a difference in the switchgear that can be selected in each loop in the process of using loop data, but does not affect the loop-based analysis itself.
BSSBSS FromFrom ToTo BSSBSS FromFrom ToTo
S1S1 1One 22 S4 S4 22 33
S2S2 1One 33 S5 S5 22 44
S3S3 1One 44 S6 S6 33 44
루프
번호
loop
number
루프에 포함된 BSSBSS in loop
(a)(a) (b)(b)
1One S1, S2, S4S1, S2, S4 S1, S2, S4S1, S2, S4
22 S4, S5, S6S4, S5, S6 S1, S3, S5S1, S3, S5
33 S2, S3, S6S2, S3, S6 S2, S3, S6S2, S3, S6
다) Optimal Loop를 찾지 못한 경우C) When Optimal Loop is not found
임의의 개폐기를 개방하고 이를 기반으로 하나의 루프에 포함된 개폐기를 탐색하기 때문에, 도 18 (b)와 같이 루프 내부에 또 다른 루프가 존재할 수 있다. 이 경우, 각 루프에서 선택될 수 있는 개폐기의 수가 증가하지 때문에 계통 재구성의 풀이에 악영향을 미칠 수 있으므로, 사전에 해소해야 한다.Since an arbitrary switch is opened and a switch included in one loop is searched based on this, another loop may exist inside the loop as shown in FIG. 18( b ). In this case, since the number of switchgear that can be selected in each loop does not increase, it may adversely affect the solution of the system reconfiguration, so it should be addressed in advance.
도 18의 루프들을 보면 루프 2 내부에 루프 1이 존재하는 것으로 보인다. 루프 2에 포함된 루프 1을 제거한다면 루프 2는 최소한의 개폐기를 갖는 최적 루프가 될 수 있다. 이를 데이터만으로 해결하기 위하여, 2개 이상의 BSS가 공유되는 루프 쌍을 탐색하고, 공유되는 BSS의 수와 공유되지 않는 BSS의 수를 비교할 수 있다. 공유되는 BSS의 수가 공유되지 않는 BSS의 수보다 많은 경우, 두개의 루프는 포함관계를 가질 수 있으며, 최종적으로 데이터 치환을 통해 루프를 최적화할 수 있다.Looking at the loops of FIG. 18 , it appears that loop 1 exists inside loop 2. If loop 1 included in loop 2 is removed, loop 2 can be an optimal loop with a minimum number of switchgear. In order to solve this problem only with data, a loop pair in which two or more BSSs are shared may be searched, and the number of shared BSSs may be compared with the number of non-shared BSSs. When the number of shared BSSs is greater than the number of non-shared BSSs, the two loops may have a containment relationship, and finally the loops may be optimized through data substitution.
루프loop 비교 루프comparison loop 공유 선로shared track 비 공유 선로non-shared track 포함 관계 inclusive relationship
22 1One 22 1One O O
33 22 1One OO
표 8을 참조하면, 비교결과 루프 2와 루프 1, 루프 2와 루프 3은 모두 포함관계에 있는 것으로 판단할 수 있다. 사람이 직관적으로 평면도를 볼 때는 루프 1만이 루프 2에 포함되어 있는 것으로 볼 수 있지만, 데이터 상으로는 루프 3 또한 루프 2에 포함된 것으로 판단될 수 있다. 즉, 도 19 및 표 9와 같이 동일한 데이터에서 각기 다른 최적의 루프 데이터가 취득될 수 있음에 주의해야 한다.Referring to Table 8, as a result of comparison, it can be determined that loop 2 and loop 1 and loop 2 and loop 3 all have an inclusive relationship. When a person intuitively views the plan view, it can be seen that only loop 1 is included in loop 2, but it can be determined that loop 3 is also included in loop 2 from the data point of view. That is, it should be noted that different optimal loop data may be obtained from the same data as shown in FIGS. 19 and 9 .
루프
번호
loop
number
루프에 포함된 BSSBSS in loop
(a)(a) (b)(b)
1One S1, S3, S5S1, S3, S5 S1, S3, S5S1, S3, S5
22 S1, S2, S4S1, S2, S4 S2, S3, S6S2, S3, S6
33 S6, S4, S5S6, S4, S5 S6, S4, S5S6, S4, S5
도 20은 루프 탐색 알고리즘의 흐름도이다. 도 20을 참조하면, 앞에서 설명한 루프 탐색의 흐름이 보다 명확해 질 수 있다.20 is a flowchart of a loop search algorithm. Referring to FIG. 20 , the flow of the loop search described above may become more clear.
4. 루프 기반의 배전 계통 해석 방안4. Loop-based distribution system analysis method
본 발명은 배전 계통의 기본 골격인 루프 개념을 배전 계통 재구성 풀이에 적극적으로 활용할 수 있다. 배전 계통에서의 고장 발생과 공사 계획 수립으로 인해 선로가 개방 상태로 일시적 제어 불가능한 상황과 하나의 계통에 다수개의 전원이 존재하여 다수개의 방사상 구조로 구분되어야 하는 상황을 루프 데이터에 반영할 수 있다. 이를 통해, 계통의 물리적인 변동에 보다 유연하게 대응할 수 있다. 또한, 앞서 설명한 루프 탐색에 의해, 취득되는 루프 기반의 데이터를 활용하여 고립 구간이 발생되는 조건을 특정할 수 있기 때문에, 루프 구조를 방사상 구조로 전환하는 개폐기를 선로의 연결 관계 추척 없이 탐색하는 논리를 설계할 수 있다.The present invention can actively utilize the loop concept, which is the basic framework of the distribution system, for solving the distribution system reconfiguration. It is possible to reflect the situation in which the line is temporarily uncontrollable due to the occurrence of a failure in the distribution system and the establishment of a construction plan, and the situation in which multiple power sources exist in one system and must be divided into multiple radial structures in the loop data. Through this, it is possible to respond more flexibly to the physical fluctuations of the system. In addition, since the condition under which an isolated section occurs can be specified using the loop-based data obtained by the loop search described above, the logic of searching the switchgear that converts the loop structure to the radial structure without tracking the connection relationship of the line can be designed.
가. 배전 계통의 현재 상태 반영 방법go. How to reflect the current state of the distribution system
1) 개방된 상태로 제어 불가능한 개폐기1) Open and uncontrollable switchgear
데이터 가공을 통해 SBN과 BSS만으로 정의된 루프 계통에서, 하나의 개폐기가 개방되는 경우 기존에 'BSS #1'으로 정의되었던 선로가 2개의 'BSS #2'로 변환될 수 있다. 이때, 해당 BSS가 도 21과 같이 하나의 루프에만 포함되어 있다면 루프를 삭제하고, 둘 이상의 루프에 포함되어 있다면 도 22와 같이 다수개의 루프들을 통합함으로써, 루프 데이터를 갱신할 수 있다.In a loop system defined only by SBN and BSS through data processing, when one switch is opened, a line previously defined as 'BSS #1' can be converted into two 'BSS #2'. At this time, if the corresponding BSS is included in only one loop as shown in FIG. 21 , the loop is deleted, and if the BSS is included in two or more loops, loop data may be updated by integrating a plurality of loops as shown in FIG. 22 .
도 23을 참조하면, 같은 계통에서 두개의 개폐기, S10과 S37이 개방된 상태로 존재하는 경우, BSS S8과 S2가 개방된 것과 같을 수 있다. 이때, S2는 하나의 루프에 속해있고, S8은 2개의 루프에 속해 있으므로 S2는 루프 1과 함께 제거될 수 있고, S8은 제거되면서 루프 3과 루프 4를 하나로 통합할 수 있다. 즉, 현재 계통의 상태가 반영됨으로써 5개의 루프가 존재하던 계통에서 3개의 루프만이 남을 수 있다.Referring to FIG. 23 , when two switchgear, S10 and S37, exist in an open state in the same system, it may be the same as BSS S8 and S2 are opened. In this case, since S2 belongs to one loop and S8 belongs to two loops, S2 may be removed together with loop 1, and loop 3 and loop 4 may be integrated into one while S8 is removed. That is, only three loops may remain in a system in which five loops existed by reflecting the current state of the system.
2) 다수개의 전원이 존재2) Multiple power sources exist
하나의 배전 계통에 전원으로 취급되는 배전소, 변전소, 변압기와 독립 운전이 가능한 분산전원들이 다수 연계되어 있는 경우, 배전 계통 재구성의 결과로 독립적인 전원에 연결된 다수개의 방사상 구조가 형성되어야 한다.When a distribution system, a substation, a transformer, and a large number of distributed power sources capable of independent operation are connected to one distribution system, a plurality of radial structures connected to independent power sources should be formed as a result of the distribution system reconfiguration.
도 24를 참조하면, 다수개의 전원이 존재하는 경우, 각 전원들 사이에 개방될 수 없는 가상의 선로(Virtual branch, VB)를 형성할 수 있으며, 이에 따라 전원들끼리의 연결 관계가 형성될 수 있다. 이는 독립 전원으로 취급되는 경우, 연결은 되어 있으나 개방될 수 없는 선로로 취급하고, 부하 전원으로 취급되는 경우 개방된 선로로 취급할 수 있다. 이에 따라, 추가된 루프를 루프데이터에 반영할 수 있고, 전원의 독립성을 확보하는 동시에 특정한 제약 없이 루프 기반의 해석에 그대로 적용할 수 있다. 이때, 가상의 선로로 인해 계통에 존재하는 SBN이 증가되어 기존에 가공된 데이터가 변경되지 않도록 현재 상태를 반영할 수 있다.Referring to FIG. 24 , when a plurality of power sources exist, a virtual branch (VB) that cannot be opened may be formed between the respective power sources, and thus a connection relationship between the power sources may be formed. there is. When treated as an independent power source, it can be treated as a line that is connected but cannot be opened, and when treated as a load power source, it can be treated as an open line. Accordingly, the added loop can be reflected in the loop data, and at the same time, it can be applied to the loop-based analysis without any specific restrictions while securing the independence of the power source. In this case, the current state may be reflected so that the previously processed data is not changed because the SBN existing in the system is increased due to the virtual line.
도 25는 현재 상태 반영 알고리즘의 흐름도이다. 도 25를 참조하면, 앞에서 설명한 배전 계통의 현재 상태 반영 방법의 흐름이 보다 명확해 질 수 있다.25 is a flowchart of a current state reflection algorithm. Referring to FIG. 25 , the flow of the method for reflecting the current state of the power distribution system described above may become more clear.
나. 고립 구간의 발생 조건 정의me. Define the condition for occurrence of an isolated section
계통 재구성을 풀이하기 위해, 각 루프에 존재하는 BSS를 하나씩 개방하는 경우, 선택된 조합에 따라 고립 구간이 발생할 수 있다. 고립이 발생하는 조건은 앞에서 설명한 가공한 루프 데이터와 선로 데이터를 활용하여 사전에 정의될 수 있다.When one BSS existing in each loop is opened to solve the systematic reconstruction, an isolation period may occur according to the selected combination. The condition in which the isolation occurs can be defined in advance using the processed loop data and line data described above.
고립이 발생한 다는 것은 하나의 노드에 연결된 모든 선로가 개방 상태로 전환된다는 것을 의미할 수 있다. 하지만 루프 기반의 해석 기법에서 하나의 선로만이 선택된다. 따라서, 도 26과 같이 하나의 노드가 포함되어 있는 루프의 수가 해당 노드에 연결된 BSS 수보다 크거나 같아야 해당 노드가 고립될 가능성을 갖는다. 고립 가능성을 갖는 노드가 파악되는 경우, 선로의 연결 관계를 통해 단일 노드가 고립되는 개폐기 조합을 정의할 수 있다. 또한, 도 26 (c) 내지 (e)와 같이 다수개의 노드를 하나의 덩어리로 취급하였을 때, 앞에서 설명한 관계를 만족하면 다중 노드가 고립되는 조건이 생성될 수 있다.Isolation may mean that all lines connected to one node are switched to an open state. However, in the loop-based analysis method, only one line is selected. Therefore, as shown in FIG. 26 , the number of loops including one node must be greater than or equal to the number of BSSs connected to the node to have a possibility that the node is isolated. When a node with the possibility of isolation is identified, a switchgear combination in which a single node is isolated can be defined through the connection relationship of the line. In addition, when a plurality of nodes are treated as one lump as shown in FIGS. 26 (c) to (e), a condition in which multiple nodes are isolated may be generated if the above-described relationship is satisfied.
SBN No.SBN No. SBN에 연결된 BSS 수Number of BSSs connected to SBNs SBN이 포함된 Loop 수Number of Loops with SBN
33 33 22
66 33 33
88 33 33
99 33 33
1212 33 22
1515 33 22
2121 33 22
2929 33 22
표 10과 같이 도 27 (b)의 계통에서 각 SBN에 연결된 BSS 수와 SBN이 속해 있는 루프의 수를 비교하면 SBN 6, 8, 9가 고립 가능성을 가짐을 파악할 수 있다. 해당 SBN을 기반으로 단일 노드가 고립되는 BSS 조합과 다중 노드가 고립되는 조건을 표 11 및 도 28과 같이 정의할 수 있다.As shown in Table 10, by comparing the number of BSSs connected to each SBN and the number of loops to which the SBNs belong in the system of FIG. Based on the corresponding SBN, a BSS combination in which a single node is isolated and a condition in which multiple nodes are isolated may be defined as shown in Table 11 and FIG. 28 .
SBN No.SBN No. 고립이 발생하는 BSS 조합BSS combinations where isolation occurs
66 S1, S4, S5S1, S4, S5
88 S4, S6, S7S4, S6, S7
99 S6, S8, S9S6, S8, S9
6, 86, 8 S1, S5, S6, S7S1, S5, S6, S7
8, 98, 9 S4, S7, S8, S9S4, S7, S8, S9
6, 8, 96, 8, 9 S1, S5, S7, S8, S9S1, S5, S7, S8, S9
다. 배전 계통의 방사상 구조 판단 방법all. How to determine the radial structure of the distribution system
루프 구조가 방사상 구조로 전환되기 위해서는 각 루프에서 선로가 하나씩 개방되어야 한다. 이때, 서로 다른 루프에서 동일한 선로가 선택되면 도 7과 같은 이유로 고립구간이 발생할 수 있다. 또한, 고립이 발생하는 선로의 조합이 선택되는 경우, 도 26과 같은 이유로 고립구간이 발생할 수 있다. 즉, 고립구간이 발생하는 2 가지 경우에 해당하지 않는 경우, 해당 조합은 방사상 구조를 만족할 수 있다.In order for the loop structure to be converted into a radial structure, one line must be opened in each loop. In this case, if the same line is selected in different loops, an isolated section may occur for the same reason as in FIG. 7 . Also, when a combination of lines in which isolation occurs is selected, an isolated section may occur for the same reason as in FIG. 26 . That is, if the two cases in which the isolated section occurs do not correspond, the corresponding combination may satisfy the radial structure.
루프loop
NONO PathPath
1One S4, S6, S9, S12, S5S4, S6, S9, S12, S5
22 S6, S8, S11, S7S6, S8, S11, S7
33 S8, S9, S10S8, S9, S10
44 S1, S3, S4, S7S1, S3, S4, S7
55 S1, S2, S5S1, S2, S5
표 12는 도 27의 계통에 대응한 루프 데이터이다. 표 12의 루프 데이터를 활용하면 각 루프에서 표 13의 선택 1~3과 같은 BSS 조합이 선택될 수 있다. 여기서, 선택 1은 서로 다른 루프에서 동일한 선로가 선택되었기 때문에 도 29 (a)와 같은 고립 구조를 가질 수 있으며, 선택 2는 SBN 8, 9가 고립되는 조합이 선택되었기 때문에 도 29 (b)와 같은 고립 구조를 가질 수 있다. 선택 3은 앞에서 설명한 2 가지 경우에 해당하지 않으므로 도 30 (a)와 같은 방사상 구조를 만족할 수 있다. 또한, 각 BSS는 도 30 (b)와 같이 세부 개폐기 집합을 가지고 있기 때문에 그 중 어떠한 개폐기 조합이 선택되더라도 방사상 구조를 만족할 수 있다.Table 12 is loop data corresponding to the system in FIG. 27 . Using the loop data in Table 12, BSS combinations such as selections 1 to 3 in Table 13 can be selected in each loop. Here, selection 1 may have an isolated structure as shown in FIG. 29 (a) because the same line is selected in different loops, and selection 2 is similar to FIG. 29 (b) because a combination in which SBNs 8 and 9 are isolated is selected. They can have the same isolated structure. Since option 3 does not correspond to the two cases described above, the radial structure shown in FIG. 30 (a) may be satisfied. In addition, since each BSS has a detailed switchgear set as shown in FIG. 30(b), the radial structure can be satisfied no matter which switchgear combination is selected among them.
루프 loop PathPath 선택 1Choice 1 선택 2 choice 2 선택 3 choice 3 세부 개폐기detail opener 선택Select
1One S4, S6, S9, S12, S5S4, S6, S9, S12, S5 S4S4 S9S9 S12S12 S15, S16, S17, S36, S32, S31, S30, S29S15, S16, S17, S36, S32, S31, S30, S29 S36S36
22 S6, S8, S11, S7S6, S8, S11, S7 S11S11 S7S7 S7 S7 S33S33 S33S33
33 S8, S9, S10S8, S9, S10 S8S8 S8S8 S8S8 S9, S10, S11S9, S10, S11 S9S9
44 S1, S3, S4, S7S1, S3, S4, S7 S4S4 S4S4 S4S4 S6, S7S6, S7 S7S7
55 S1, S2, S5S1, S2, S5 S2S2 S2S2 S2S2 S22, S23, S24, S37S22, S23, S24, S37 S37S37
루프 기반의 계통 해석 방안을 활용하면 표 14와 같이 계통에서 고립이 발생하는 개폐기 조합을 간단하게 파악할 수 있으며, 표 15와 같이 실제 배전 계통의 방사상 구조를 만족시키는 세부 개폐기 조합을 취득할 수 있다. 여기서, 표 15는 배전 계통의 대표적인 밴치마크 모델인 IEEE 33/69/118 BUS DISTRIBUTION에 대하여 앞서 설명된 데이터 가공법을 통해 도출된 데이터를 이용하여 방사상 구조를 판단한 결과이다.If the loop-based system analysis method is used, it is possible to easily identify the switch combinations that cause isolation in the system as shown in Table 14, and as shown in Table 15, the detailed switch combinations that satisfy the radial structure of the actual distribution system can be obtained. Here, Table 15 shows the results of determining the radial structure using the data derived through the data processing method described above for the IEEE 33/69/118 BUS DISTRIBUTION, which is a representative benchmark model of the distribution system.
CaseCase NumberNumber RemainderReminder
선택 가능한 전체 BSS 조합Selectable full BSS combinations 720720 720720
동일한 BSS를 갖는 조합Combinations with the same BSS 308308 412412
단일 SBN 고립 Single SBN Isolation 66 2222 350350
88 1818
99 2222
다중 SBN 고립 Multiple SBN Isolation 6, 86, 8 66 336336
8, 98, 9 66
6, 8, 96, 8, 9 22
IEEE Test SystemIEEE Test System IEEE33 BUSIEEE33 BUS IEEE69 BUSIEEE69 BUS IEEE118 BUSIEEE118 BUS
방사상 판단이 필요한 BSS 조합 수Number of BSS combinations that require radial judgment 720720 720720 10,450,944,00010,450,944,000
방사상 구조를 만족하는 BSS 조합 수The number of BSS combinations that satisfy the radial structure 336336 336336 678,187,952678,187,952
가능한 전체 개폐기 조합 수Total number of possible actuator combinations 50,75150,751 407,924407,924 3*
Figure PCTKR2020018214-appb-I000002
이상
3*
Figure PCTKR2020018214-appb-I000002
More than
5. 손실 최소화 목적의 전역 최적 계통 재구성5. Globally optimal system reconstruction for the purpose of minimizing loss
본 발명은 선로 손실 최소화를 목적으로 배전 계통 재구성을 수행하기 위해 가능한 전체 조합을 고려하는 경우와 인공지능 기법 중 하나인 유전 알고리즘을 활용할 수 있다. 이때, 선로 손실의 연산 시간을 최소화하기 위해서 배전 계통의 조류 계산에 특화된 'Distflow branch equation'기법을 활용할 수 있다. 이후, 가능한 전체 개폐기 조합과 유전 알고리즘을 활용한 전역 최적의 배전 계통 재구성을 수행하면서 배전 계통의 특징을 활용한 제약 조건을 통해 계통 재구성의 성능을 향상시킬 수 있다.The present invention can utilize a genetic algorithm that is one of artificial intelligence techniques and a case in which all possible combinations are considered to perform distribution system reconfiguration for the purpose of minimizing line loss. In this case, in order to minimize the calculation time of line loss, a 'distflow branch equation' technique specialized for calculating the current in the distribution system may be used. Thereafter, it is possible to improve the performance of the grid reconfiguration through the constraint that utilizes the characteristics of the distribution system while performing the global optimal distribution system reconfiguration using the possible combination of all switchgear and the genetic algorithm.
가. 배전 계통을 위한 조류 계산go. Algae Calculation for Distribution Grid
전력 계통에서의 조류 계산은 선로 데이터와 노드 데이터를 통해 각 지점의
Figure PCTKR2020018214-appb-I000003
를 계산하여 선로에 흐르는 조류를 추정하는 계통 해석 방법이다. 흔히 조류 계산에 활용되는 'Newton-Raphson', 'Gauss-Seidel' 계열의 해석 기법은 전력 계통 중에서도 송전 계통에 특화되어 있으며, 노그간의 상호 연결성을 통해 연산을 반복 수행하여 오차를 개선할 수 있다. 하지만, 배전 계통은 매우 낮은 상호 연결성을 갖는 방사상 구조이기 때문에 송전 계통을 위한 해석기법들은 불필요한 연산과정을 발생시킨다. 따라서, 연산시간을 개선하고 배전 계통에 최적화된 조류 계산 기법을 하기와 같이 제안되었다.
Calculation of current flow in the power system is performed at each point through line data and node data.
Figure PCTKR2020018214-appb-I000003
It is a systematic analysis method that calculates and estimates the current flowing in the track. The analysis techniques of the 'Newton-Raphson' and 'Gauss-Seidel' series, which are often used for tidal current calculation, are specialized in the transmission system among the power systems. . However, since the distribution system is a radial structure with very low interconnectivity, analysis techniques for the transmission system generate unnecessary computational processes. Therefore, the tidal current calculation technique that improves the operation time and is optimized for the distribution system has been proposed as follows.
배전 계통의 조류 해석 기법으로는 Baran이 제안한 'Distflow branch equation'이 주로 사용될 수 있다. 이는 계통의 선로 임피던스
Figure PCTKR2020018214-appb-I000004
와 부하량
Figure PCTKR2020018214-appb-I000005
의 값을 알고 있을 때, 모든 노드의 전압
Figure PCTKR2020018214-appb-I000006
를1[p.u.]로 두고 식 5.1 'Backward update'를 통해 말단부터 전원까지의
Figure PCTKR2020018214-appb-I000007
를 계산한다. 이후, 식 5.2 'Forward update'를 활용하여 각 지점의
Figure PCTKR2020018214-appb-I000008
를 계산하고 최종적으로 선로 말단의 계측 전력 값이 계산 값과 동일할 때, 연산을 종료한다. 만일 일치 하지 않는 경우, 적절한 보상과 함께 수학식 2와 수학식 3을 반복 수행하여 오차를 개선할 수 있다.
The 'Distflow branch equation' proposed by Baran can be mainly used as a tidal current analysis technique for the distribution system. This is the line impedance of the system
Figure PCTKR2020018214-appb-I000004
and load
Figure PCTKR2020018214-appb-I000005
When the value of is known, the voltage of all nodes
Figure PCTKR2020018214-appb-I000006
is 1[pu], and through Equation 5.1 'Backward update',
Figure PCTKR2020018214-appb-I000007
to calculate After that, using Equation 5.2 'Forward update',
Figure PCTKR2020018214-appb-I000008
, and finally, when the measured power value at the end of the line is the same as the calculated value, the calculation is terminated. If they do not match, the error may be improved by repeatedly performing Equations 2 and 3 with appropriate compensation.
Figure PCTKR2020018214-appb-M000002
Figure PCTKR2020018214-appb-M000002
Figure PCTKR2020018214-appb-I000009
Figure PCTKR2020018214-appb-I000009
Figure PCTKR2020018214-appb-I000010
Figure PCTKR2020018214-appb-I000010
Figure PCTKR2020018214-appb-M000003
Figure PCTKR2020018214-appb-M000003
Figure PCTKR2020018214-appb-I000011
Figure PCTKR2020018214-appb-I000011
Figure PCTKR2020018214-appb-I000012
Figure PCTKR2020018214-appb-I000012
여기서,
Figure PCTKR2020018214-appb-I000013
는 선로 i에 흐르는 유효, 무효 전력이며,
Figure PCTKR2020018214-appb-I000014
는 선로 i의 임피던스 성분이다. 또한, 도 31을 참조하면, 'Forward Update' 과정에서 분기되는 지점(k)에서의 전력 분배는 'Backward Update' 과정에서 더해진 전력을 기반으로 분배될 수 있다. 수학식 2, 수학식 3에서 선로 손실 값과 전압 강하를 무시하면 더욱 간단한 조류 계산 식인 'Simplified Distflow'를 수학식 4, 수학식 5와 같이 얻을 수 있다.
here,
Figure PCTKR2020018214-appb-I000013
is the active and reactive power flowing in line i,
Figure PCTKR2020018214-appb-I000014
is the impedance component of line i. Also, referring to FIG. 31 , power distribution at a branching point k in the 'Forward Update' process may be distributed based on the power added in the 'Backward Update' process. If the line loss value and voltage drop are ignored in Equations 2 and 3, 'Simplified Distflow', which is a simpler tidal current calculation expression, can be obtained as Equations 4 and 5.
Figure PCTKR2020018214-appb-M000004
Figure PCTKR2020018214-appb-M000004
Figure PCTKR2020018214-appb-I000015
Figure PCTKR2020018214-appb-I000015
Figure PCTKR2020018214-appb-I000016
Figure PCTKR2020018214-appb-I000016
Figure PCTKR2020018214-appb-M000005
Figure PCTKR2020018214-appb-M000005
Figure PCTKR2020018214-appb-I000017
Figure PCTKR2020018214-appb-I000017
Figure PCTKR2020018214-appb-I000018
Figure PCTKR2020018214-appb-I000018
IEEE 33/69/118 BUS DISTRIBUTION SYSTEM을 대상으로 17 CPU 3.60 GHz, RAM 16GB, Matlab 환경에서 'Newton-Raphson법'과 'Simplified Dist-flow'의 수행시간을 표 16과 같이 비교하였다. Table 16 compares the execution times of 'Newton-Raphson method' and 'Simplified Dist-flow' in the IEEE 33/69/118 BUS DISTRIBUTION SYSTEM under 17 CPU 3.60 GHz, RAM 16GB, and Matlab environment.
IEEE Test SystemIEEE Test System IEEE33 BUSIEEE33 BUS IEEE69 BUSIEEE69 BUS IEEE118 BUSIEEE118 BUS
Gauss-SeidelGauss-Seidel 0.085 초0.085 seconds 14 초14 seconds 1.75 초1.75 seconds
Newton-RaphsonNewton-Raphson 0.005 초0.005 seconds 0.01 초0.01 seconds 0.02 초0.02 seconds
Simplified DistflowSimplified Distflow 8.27*
Figure PCTKR2020018214-appb-I000019
8.27*
Figure PCTKR2020018214-appb-I000019
candle
1.22*
Figure PCTKR2020018214-appb-I000020
1.22*
Figure PCTKR2020018214-appb-I000020
candle
2.5*
Figure PCTKR2020018214-appb-I000021
2.5*
Figure PCTKR2020018214-appb-I000021
candle
표 17과 같이 IEEE 118 BUS DISTRIBUTION NETWORK에서 선로 손실 값에 따라 개폐기 조합을 정렬할 때, Rank 5, 6을 제외하고 개폐기 조합의 순서에는 큰 차이가 없다. 따라서, 배전 계통 재구성 문제를 풀이할 때는 정확한 손실 값을 구하는 것보다 손실을 최소로 하는 개폐기 조합을 찾는 것이 중요하므로, 수행 시간이 수십배 더 빠른 Simplified Distflow를 활용하는 것이 더 바람직할 수 있다.As shown in Table 17, when arranging switchgear combinations according to line loss values in IEEE 118 BUS DISTRIBUTION NETWORK, there is no significant difference in the order of switchgear combinations except for Rank 5 and 6. Therefore, when solving the distribution system reconfiguration problem, it is more important to find a switch combination that minimizes loss than to obtain an accurate loss value.
BSS 조합BSS Combination Simplified
Distflow
power loss [kW]
Simplified
Distflow
power loss [kW]
RankRank Newton-Raphson
power loss [kW]
Newton-Raphson
power loss [kW]
RankRank
1One 0.7795610.779561 1One 0.8539230.853923 1One
22 0.7799390.779939 22 0.8543760.854376 22
33 0.7801210.780121 33 0.8547090.854709 33
44 0.7801810.780181 44 0.8547430.854743 44
55 0.7802490.780249 55 0.8550310.855031 66
66 0.7805000.780500 66 0.8549930.854993 55
나. 가능한 전체 조합에 대한 시뮬레이션me. Simulation of all possible combinations
전역 최적 해를 찾는 가장 간단하고 확실한 방법을 계통의 구조 해석을 통해 방사상 구조로 판단된 모든 BSS 조합에 소속된 개폐기들의 투입/개방을 제어하여 가능한 전체 조합에 대한 계통 해석을 수행하는 것이다. 이후, 선로 손실이 가장 적게 나타나는 개폐기 조합을 해당 계통의 전역 최적해로 취급할 수 있다.The simplest and surest way to find the global optimal solution is to perform systematic analysis for all possible combinations by controlling the closing/opening of switches belonging to all BSS combinations determined as radial structures through structural analysis of the system. Thereafter, the switch combination in which the line loss is the least can be treated as the global optimal solution of the corresponding system.
1) 전수 조사 과정1) Complete Investigation Process
앞에서 설명된 방식에 의해, 계통의 데이터 가공을 거쳐 각 루프에 포함된 BSS를 탐색할 수 있으며, 방사상 구조를 만족시키는 BSS 조합을 도출할 수 있다. 그리고, 각 BSS를 구성하는 세부 개폐기를 알고 있기 때문에 실제 투입/개방 제어가 수행될 세부 개폐기 조합을 파악할 수 있으며, 이에 따라, 선로 손실을 계산할 수 있다. 도 32는 가능한 전체 조합을 모의하기 위한 흐름도이다. 도 32를 참조하면, 가능한 전체 조합에 대한 시뮬레이션의 흐름이 보다 명확해질 수 있다.By the method described above, it is possible to search for the BSS included in each loop through data processing of the system, and to derive a BSS combination that satisfies the radial structure. In addition, since detailed switchgear constituting each BSS is known, a detailed switchgear combination for which actual closing/opening control is to be performed can be grasped, and accordingly, line loss can be calculated. 32 is a flow chart for simulating all possible combinations. Referring to FIG. 32 , the flow of simulation for all possible combinations can be made clearer.
3) 전수 조사의 한계3) Limitations of full investigation
IEEE 33/69 BUS DISTRIBUTION SYSTEM의 전수 조사를 수행할 경우, 계통 재구성 풀이 시간은 표 18과 같이 각각 4.2초, 50초가 소요된다. 하지만, 더 복잡한 구조를 갖는 IEEE 118 BUS DISTRIBUTION SYSTEM의 경우 방사상 구조를 판단해야 하는 BSS 조합만 10,450,944,000개가 넘어가며 세부 개폐기 조합은 3천조 개를 월등히 넘어선다. 그렇기 때문에 계통이 크고 복잡할 수록 가능한 모든 조합을 모의하여 최적의 계통 구성을 탐색하는 것은 매우 긴 수행 시간과 메모리를 요구하며, 현실적으로 수행하는 것이 불가능하다.When performing a full investigation of the IEEE 33/69 BUS DISTRIBUTION SYSTEM, the system reconfiguration solving time takes 4.2 seconds and 50 seconds, respectively, as shown in Table 18. However, in the case of IEEE 118 BUS DISTRIBUTION SYSTEM, which has a more complex structure, there are more than 10,450,944,000 BSS combinations that need to determine the radial structure, and the number of detailed switchgear combinations far exceeds 3,000 trillion. Therefore, as the system becomes larger and more complex, searching for the optimal system configuration by simulating all possible combinations requires a very long execution time and memory, and is impossible to perform in reality.
IEEE Test SystemIEEE Test System IEEE 33 BUSIEEE 33 BUS IEEE 69 BUSIEEE 69 BUS IEEE 118 BUSIEEE 118 BUS
가능한 전체 개폐기 조합All possible switchgear combinations 50,75150,751 407,924407,924 3*
Figure PCTKR2020018214-appb-I000022
이상
3*
Figure PCTKR2020018214-appb-I000022
More than
Distflow branch equationDistflow branch equation 4.2초4.2 seconds 50초50 seconds --
4) 전수 조사의 성능 향상 방안4) Measures to improve the performance of the full investigation
계통을 축약하더라도 해석이 수행되어야 하는 세부 개폐기 조합의 수가 많기 때문에 전수 조사의 소요 시간이 길어진다. 이를 효과적으로 단축하기 위해서 배전 계통의 노드는 일정한 부하량을 가지도록 구분된다는 사실을 이용할 수 있다. BSS의 중심을 파악하여 하나의 BSS 내에 선택될 수 있는 세부 개폐기 수를 제한함으로써, 보다 빠르게 전수 조사를 수행할 수 있다.Even if the system is abbreviated, the time required for a full investigation is prolonged because the number of detailed switchgear combinations that need to be analyzed is large. In order to effectively shorten this, the fact that the nodes of the distribution system are divided to have a constant load can be used. By identifying the center of the BSS and limiting the number of detailed switchgear that can be selected within one BSS, it is possible to conduct a full investigation more quickly.
수학식 6, 수학식 7을 활용하면 해당 BSS에서 특정 개폐기가 개방되었을 때 전류의 방향에 따른 선로 손실 값을 계산할 수 있다. 그리고, BSS의 전체 선로에서 발생하는 손실을 최소로 하는 개폐기를 중심 선로로 취급할 수 있다.Using Equations 6 and 7, it is possible to calculate a line loss value according to the direction of current when a specific switchgear is opened in the corresponding BSS. And, it is possible to treat the switchgear that minimizes the loss occurring in the entire line of the BSS as a center line.
Figure PCTKR2020018214-appb-M000006
Figure PCTKR2020018214-appb-M000006
Figure PCTKR2020018214-appb-M000007
Figure PCTKR2020018214-appb-M000007
도 33을 참조하면, 개폐기의 개방 위치에 따라 왼쪽 구간, 오른쪽 구간으로 구분될 수 있으며, 각 구간에 따른 선로 손실은 표 19와 같다. 결과적으로, 전체 손실이 최소가 되는 S3이 도 33의 중심 선로로 취급될 수 있으며, 해당 BSS에서 활용되는 개폐기는 S1, S3, S6으로 정의될 수 있다.Referring to FIG. 33 , it can be divided into a left section and a right section according to the opening position of the switchgear, and the line loss according to each section is shown in Table 19. As a result, S3 having the minimum total loss may be treated as the center line of FIG. 33 , and the switchgear utilized in the corresponding BSS may be defined as S1, S3, and S6.
개방 스위치open switch 왼쪽 구간 손실Left Segment Loss 오른쪽 구간 손실right leg loss 전체 손실total loss
S1S1 00 0.99680.9968 0.99680.9968
S2S2 0.02460.0246 0.89930.8993 0.92390.9239
S3S3 0.38270.3827 0.15950.1595 0.54220.5422
S4S4 0.40480.4048 0.13900.1390 0.54380.5438
S5S5 0.57010.5701 0.5490.549 1.11911.1191
S6S6 0.98780.9878 00 0.98780.9878
'IEEE 69 BUS DISTRIBUTION NETWORK'의 경우, 표 20과 같이 선로 집합의 중심을 파악하여 개방 가능한 세부 개폐기를 제약함으로써, 표 21과 같이 계통 해석 횟수와 수행 시간을 상당량 개선할 수 있다.In the case of 'IEEE 69 BUS DISTRIBUTION NETWORK', as shown in Table 20, the number of systematic analysis times and execution time can be significantly improved by identifying the center of the line set and restricting the openable detailed switchgear as shown in Table 21.
Branch Switch Set dataBranch Switch Set data
BSSBSS Before included SwitchBefore included Switch After included SwitchAfter included switch
1One s4, s5, s6, s7, s8s4, s5, s6, s7, s8 s4, s6, s8s4, s6, s8
22 s46, s47, s48, s49, s73s46, s47, s48, s49, s73 s3, s38, s39, s42s3, s38, s39, s42
33 s3, s35, s36, s37, s38, s39, s40, s41, s42s3, s35, s36, s37, s38, s39, s40, s41, s42 s46, s48, s73s46, s48, s73
44 s9, s10s9, s10 s9, s10s9, s10
55 s52, s53, s54, s55, s56, s57, s58s52, s53, s54, s55, s56, s57, s58 s52, s57, s58s52, s57, s58
66 s11, s12s11, s12 s11, s12s11, s12
77 s69 s69 s69s69
88 s13, s14s13, s14 s13, s14s13, s14
99 s70 s70 s70s70
1010 s15, s16, s17, s18, s19, s20s15, s16, s17, s18, s19, s20 s15, s17, s20s15, s17, s20
1111 s43, s44, s45, s71s43, s44, s45, s71 s43, s45, s71s43, s45, s71
1212 s21, s22, s23, s24, s25, s26, s72, s64, s63, s62, s61, s60, s59s21, s22, s23, s24, s25, s26, s72, s64, s63, s62, s61, s60, s59 s21, s72, s59s21, s72, s59
IEEE Test SystemIEEE Test System IEEE 33 BUSIEEE 33 BUS IEEE 69 BUSIEEE 69 BUS
가능한 전체 개폐기 조합All possible switchgear combinations 6,7686,768 23,94923,949
Distflow branch equationDistflow branch equation 0.5초0.5 seconds 3초3 seconds
다. 유전 알고리즘을 활용한 시뮬레이션all. Simulation using genetic algorithm
루프 계통으로 주어진 배전 계통에서 방사상 구조를 갖게 하는 모든 세부 개폐기의 조합을 해석하는 것은 현실적으로 어려운 작업이다. 표 18과 같이, 계통이 크고 복잡할수록 방사상 구조를 만족하는 개폐기의 수가 기하급수적으로 증가하기 때문에 최적 개폐기 조합을 효율적으로 탐색하기 위한 방안이 필요하다.It is a difficult task in reality to analyze the combination of all the detailed switchgear that have a radial structure in a given distribution system as a loop system. As shown in Table 18, since the number of switches satisfying the radial structure increases exponentially as the system becomes larger and more complex, a method for efficiently searching for the optimal switch combination is required.
이러한 조합 최적화 문제를 위해 TS, SA, GA, ACO, PSO 등의 매우 다양한 Meta Heuristic 기법, 인공지능 기법들이 연구되고 있으며, 그 중에서도 유전 알고리즘은 탐색해야 하는 해의 공간이 넓고 지역 최적해가 다량으로 존재하는 문제에 최적인 기법이다. 이를 활용하기 위해서 가장 중요한 것은, 알고리즘의 기반이 되는 유전 형질을 배열 형태로 표현하는 것이다. 기존의 유전 알고리즘을 활용한 계통 재구성 기법에서는 개폐기 성분을 배열 형태로 표기하는 것에 특정한 논리가 설명되지 않았으나, 본 발명에서 제안한 루프 기반의 해석 기법을 활용하여 더욱 체계적이고 논리적으로 유전 형질을 표현할 수 있다.For this combinatorial optimization problem, a wide variety of meta-heuristic methods and artificial intelligence methods such as TS, SA, GA, ACO, and PSO are being studied. It is the best method for the problem. The most important thing to utilize this is to express the genetic trait that is the basis of the algorithm in the form of an array. In the phylogenetic reconstruction technique using the existing genetic algorithm, a specific logic was not explained for expressing the switchgear components in an array form, but the genetic trait can be expressed more systematically and logically by using the loop-based analysis technique proposed in the present invention. .
2) 유전 알고리즘을 통한 루프 기반 계통 재구성2) Loop-based lineage reconstruction through genetic algorithm
루프 기반의 데이터를 유전 알고리즘에 적용하기 위해서 표 13의 '선택 1, 2, 3'과 같이 유전체를 구성하는 유전자를 각 루프에서 무작위로 선택된 BSS로 정의할 수 있다. 이후 각 BSS에서도 무작위로 세부 개폐기를 선택하여 BSS에 종속된 세부 개폐기 조합을 형성할 수 있다. 표 22와 같이 입력된 인구 수 만큼 첫 세대가 형성되면 루프 데이터를 기반으로 방사상 구조에 대한 판단을 수행할 수 있다. 이때, 방사상 구조를 만족하지 않는 형질에는 적합도 부분에 높은 수준의 패널티를 부여하여 향후 낮은 가중치가 부여되도록 할 수 있다.In order to apply the loop-based data to the genetic algorithm, genes constituting the genome can be defined as BSSs randomly selected in each loop as shown in ' Selection 1, 2, 3' in Table 13. After that, each BSS can also randomly select a detailed switchgear to form a detailed switchgear combination subordinate to the BSS. As shown in Table 22, when the first generation is formed as much as the input population, the radial structure can be determined based on the loop data. In this case, traits that do not satisfy the radial structure may be given a lower weight in the future by giving a high level of penalty to the fitness part.
최적의 선로 손실을 갖는 유전체를 다음 세대로 그대로 보존하고 전체 유전체에 대한 교차를 수행할 수 있다. 또한, 'Roulette wheel selection'을 활용하여 각 형질의 선로 손실 값에 따라 각 형질이 선택될 수 있는 가능성에 차등을 줄 수 있다. 선로 손실은 낮을 수록 좋은 값이기 때문에 이에 따라, 적합도를 부여하기 위해서 수학식 8, 수학식 9를 활용하여 각 형질의 적합도를 계산할 수 있다. 표 22의 x와 100번재 형질은 고립 구간이 발생하기 대문에 패널티가 부여되었다.It is possible to preserve the dielectric with optimal line loss as it is to the next generation and perform crossing over the entire dielectric. In addition, by utilizing 'Roulette wheel selection', it is possible to differentiate the possibility that each trait can be selected according to the line loss value of each trait. Since the lower the line loss, the better the value. Accordingly, the fitness of each trait can be calculated by using Equations 8 and 9 to give the fitness. The x and 100 traits in Table 22 were penalized because an isolated section occurred.
Figure PCTKR2020018214-appb-M000008
Figure PCTKR2020018214-appb-M000008
Figure PCTKR2020018214-appb-M000009
Figure PCTKR2020018214-appb-M000009
Figure PCTKR2020018214-appb-I000023
Generation
Figure PCTKR2020018214-appb-I000023
Generation
Fitnessfitness
NoNo BSSBSS SwitchSwitch
1One S12S12 S7S7 S8S8 S4S4 S2S2 S36S36 S33S33 S9S9 S7S7 S37S37 2.182.18
:: :: :: :: :: :: :: :: :: :: :: ::
xx S4S4 S11S11 S8S8 S4S4 S5S5 S7S7 S35S35 S9S9 S6S6 S27S27 0.680.68
:: :: :: :: :: :: :: :: :: :: :: ::
9999 S12S12 S8S8 S10S10 S1S1 S2S2 S32S32 S11S11 S14S14 S4S4 S37S37 1.161.16
100100 S9S9 S7S7 S8S8 S4S4 S2S2 S34S34 S33S33 S10S10 S7S7 S24S24 0.680.68
각 루프별로 선택되는 BSS들은 상호간에 영향을 미치지 않기 때문에 높은 수준의 돌연변이 확률을 설정하고 'Uniform crossover method'로 교차를 수행하여 유전 형질의 다양성을 확보할 수 있다.가중치에 따라 표 23과 같이 선택된 2개의 부모 형질은 교차확률에 따라 교차를 수행할 수 있다. 이때, BSS를 대상으로 교차가 진행되며, 세부 개폐기는 BSS와 동일하게 수행될 수 있다. 교차가 수행되지 않으면 부모 형질은 자손 형질로 유전될 수 있다.Since the BSSs selected for each loop do not affect each other, the diversity of genetic traits can be secured by setting a high level of mutation probability and performing crossover using the 'Uniform crossover method'. Two parental traits can cross over according to their cross probability. At this time, the crossing proceeds with respect to the BSS, and the detailed switchgear may be performed in the same manner as the BSS. If crossover is not performed, the parental trait can be passed on to the offspring.
부모 형질parental trait
NoNo BSSBSS SwitchSwitch
1One S12S12 S7S7 S8S8 S4S4 S2S2 S36S36 S33S33 S10S10 S7S7 S37S37
crosscross
9999 S12S12 S8S8 S10S10 S1S1 S2S2 S32S32 S11S11 S14S14 S4S4 S37S37
자손 형질offspring trait
NoNo BSSBSS SwitchSwitch
1One S12S12 S7S7 S10S10 S1S1 S2S2 S36S36 S33S33 S14 S14 S4S4 S37S37
22 S12S12 S8S8 S8S8 S4S4 S2S2 S32S32 S11S11 S10S10 S7S7 S37S37
이후, 표 25와 같이 각 유전자에 돌연변이 확률을 적용하여 다음 세대를 구성할 수 있다. 돌연변이를 통해 각 루프에서 선택되는 BSS가 무작위로 변경될 수 있으며, 이에 맞추어 세부 개폐기도 무작위로 재선택될 수 있다.Thereafter, as shown in Table 25, the next generation can be constructed by applying the mutation probability to each gene. Through mutation, the BSS selected in each loop can be changed randomly, and the detailed switchgear can also be randomly reselected accordingly.
자손 형질offspring trait
NoNo BSSBSS SwitchSwitch
1One S12S12 S7S7 S10S10 S1S1 S2S2 S36S36 S33S33 S14S14 S4S4 S37S37
MutMut OO XX X X OO XX
22 S12S12 S8S8 S8S8 S4S4 S2S2 S32S32 S11S11 S10S10 S7S7 S37S37
MutMut XX OO XX XX OO
자손 형질offspring trait
NoNo BSSBSS SwitchSwitch
1One S5S5 S7S7 S10S10 S3S3 S2S2 S26S26 S33S33 S14 S14 S2S2 S37S37
22 S12S12 S11S11 S8S8 S4S4 S1S1 S32S32 S21S21 S10S10 S7S7 S3S3
유전 알고리즘은 동일한 매개변수들을 입력하더라도 최초 세대에서 형성되는 유전 형질에 따라 도 34와 같이 다양한 수렴 특성을 갖는다. 또한, IEEE 118 BUS DISTRIBUTION NETWORK'의 경우 12,000여 가지 이상의 지역 최적해를 갖는다. 본 발명은 독립적으로 병렬 연산을 수행하는 다수개의 Island를 형성하여 Island끼리의 이주를 수행할 수 있다. 그 결과 각 섬에서 형성되고 있는 유전체를 공유함으로써, 전역 최적해가 도출될 가능성을 향상시킬 수 있다. 그리고, 각 섬에서의 최적의 유전 형질들만을 추출하여 Elite island를 운영할 수 있다.표 27 내지 29는 CPU 3.60GHz, RAM 16GB, Matlab 환경에서 다양한 파라미터에 대한 유전 알고리즘을 활용한 최적 계통 재구성을 수행한 결과이다. 입력된 파라미터 중에서, 전체 인구수에 대한 elite 비율은 1%, 교차 확률은 85%, 이주 확률은 전체 인구의 1%로 고정하였다. 또한, 방사상 구조를 만족하지 않거나 만족하더라도 적합도의 값이 무의미한 수치를 갖는 경우, 전체 개폐기가 투입된 상태에서의 전력 손실값의 120%에 해당하는 패널티를 부여할 수 있다. 여기서, 고정된 각 확률은 실험적으로 가변될 수 있다.The genetic algorithm has various convergence characteristics as shown in FIG. 34 according to the genetic trait formed in the first generation even when the same parameters are input. In addition, IEEE 118 BUS DISTRIBUTION NETWORK' has more than 12,000 local optimal solutions. The present invention can perform migration between islands by forming a plurality of islands independently performing parallel operations. As a result, by sharing the dielectric being formed on each island, the possibility of deriving a global optimal solution can be improved. And, it is possible to operate the Elite island by extracting only the optimal genetic traits from each island. Tables 27 to 29 show the optimal lineage reconstruction using the genetic algorithm for various parameters in the CPU 3.60GHz, RAM 16GB, and Matlab environment. is the result of Among the input parameters, the elite ratio to the total population was fixed at 1%, the crossover probability was 85%, and the migration probability was fixed to 1% of the total population. In addition, if the radial structure is not satisfied or the fitness value has an insignificant numerical value even if it is satisfied, a penalty corresponding to 120% of the power loss value in the state in which the entire switchgear is turned on may be given. Here, each fixed probability may be experimentally varied.
표 27 및 표 28의 IEEE 33/69 BUS DISTRIBUTION NETWORK는 모든 case에 대해 1000회 반복 수행한 것의 평균이고, 표 29의 IEEE 118 BUS DISTRIBUTION NETWORK는 100회 반복 수행한 것의 평균이다. 또한, 해당 시뮬레이션에서의 최적해 산출 시간은 정적인 계통에 대한 전역 최적해의 정보를 알고 있기 때문에 취득할 수 있으며, 이를 통해 유전 알고리즘의 성능을 검증할 수 있다. 유전 알고리즘은 무작위성을 기반으로 한 알고리즘이기 때문에 긴 수행 시간을 고려하지 않는 이상 전역 최적해를 보장하지는 못한다. 그러나, 전역 최적해가 탐색되지 않더라도 취득되는 해는 우수한 결과 값을 가지고 있으므로 상황에 맞추어 각 파라미터들을 적절히 선정할 수 있다.The IEEE 33/69 BUS DISTRIBUTION NETWORK of Tables 27 and 28 is the average of 1000 repetitions for all cases, and the IEEE 118 BUS DISTRIBUTION NETWORK of Table 29 is the average of 100 repetitions. In addition, the optimal solution calculation time in the simulation can be obtained because the information of the global optimal solution for a static system is known, and through this, the performance of the genetic algorithm can be verified. Since the genetic algorithm is an algorithm based on randomness, it cannot guarantee a global optimal solution unless a long execution time is taken into account. However, even if the global optimal solution is not searched, the obtained solution has an excellent result value, so that each parameter can be appropriately selected according to the situation.
현재 구현된 유전 알고리즘 프로그램은 하나의 프로세스 코어로 Island의 독립 연산을 연산하기 때문에 실질적인 병렬 연산으로 수행되지 않고, 그렇기 때문에 라즈베리 파이 등을 활용하여 멀티 코어 기반의 병렬 연산 과정을 활용할 수 있다면 그 성능을 효과적으로 개선할 수 있다.Since the currently implemented genetic algorithm program operates the independent operation of the island with one process core, it is not performed as a practical parallel operation. can be improved effectively.
NoNo populationpopulation Max generationMax generation Island numberIsland number Muta
tion rate
Muta
tion rate
Execution timeExecution time Optimal solutionOptimal solution
rate
[%]
rate
[%]
avg time[s]/ generationavg time[s]/generation min time[s]/ generationmin time[s]/ generation max time[s]/ generationmax time[s]/ generation
1One 100100 1010 55 4040 0.360.36 88.688.6 0.226/6.10.226/6.1 0.045/10.045/1 0.433/100.433/10
22 100100 2020 55 4040 0.730.73 99.799.7 0.260/6.90.260/6.9 0.045/10.045/1 0.711/200.711/20
33 100100 4040 55 4040 1.441.44 100100 0.268/6.90.268/6.9 0.044/10.044/1 6.629/206.629/20
44 100100 4040 1One 4040 0.840.84 89.889.8 0.356/170.356/17 0.015/10.015/1 1.167/401.167/40
55 100100 4040 33 4040 0.950.95 99.599.5 0.222/8.10.222/8.1 0.027/10.027/1 0.980/200.980/20
66 100100 2020 1One 2020 0.260.26 55.455.4 0.138/10.80.138/10.8 0.009/10.009/1 0.311/200.311/20
77 100100 2020 33 2020 0.530.53 95.395.3 0.207/7.80.207/7.8 0.029/10.029/1 0.541/200.541/20
88 100100 2020 55 2020 0.800.80 99.699.6 0.258/6.30.258/6.3 0.046/10.046/1 0.803/200.803/20
99 100100 2020 1010 2020 1.491.49 100100 0.363/4.70.363/4.7 0.095/10.095/1 0.829/200.829/20
1010 5050 2020 1010 2020 0.860.86 99.499.4 0.293/6.60.293/6.6 0.053/10.053/1 0.921/200.921/20
1111 5050 1010 1010 1010 0.420.42 91.491.4 0.255/5.20.255/5.2 0.049/10.049/1 0.523/100.523/10
1212 100100 1010 1010 1010 0.800.80 99.999.9 0.370/4.50.370/4.5 0.096/10.096/1 0.816/100.816/10
1313 5050 2020 55 4040 0.370.37 86.486.4 0.182/9.70.182/9.7 0.024/10.024/1 0.44/200.44/20
1414 5050 3030 55 4040 0.590.59 96.496.4 0.219/11.10.219/11.1 0.025/10.025/1 0.575/400.575/40
1515 5050 4040 55 4040 1.291.29 98.498.4 0.386/8.80.386/8.8 0.041/10.041/1 1.742/401.742/40
1616 3030 4040 1010 4040 0.850.85 98.798.7 0.253/11.50.253/11.5 0.030/10.030/1 0.867/400.867/40
1717 5050 4040 1010 4040 1.371.37 100100 0.277/7.60.277/7.6 0.046/10.046/1 1.141/401.141/40
1818 5050 2020 1010 4040 0.720.72 98.998.9 0.279/7.40.279/7.4 0.049/10.049/1 0.717/400.717/40
NoNo populationpopulation Max generationMax generation Island numberIsland number Muta
tion rate
Muta
tion rate
Execution timeExecution time Optimal solutionOptimal solution
rate
[%]
rate
[%]
avg time[s]/ generationavg time[s]/generation min time[s]/ generationmin time[s]/ generation max time[s]/ generationmax time[s]/ generation
1One 100100 2020 55 2020 1.061.06 9999 0.255/4.30.255/4.3 0.067/10.067/1 1.052/201.052/20
22 100100 2020 55 4040 0.990.99 99.199.1 0.242/4.30.242/4.3 0.063/10.063/1 0.957/400.957/40
33 100100 1010 55 4040 0.570.57 97.097.0 0.268/4.80.268/4.8 0.074/10.074/1 0.552/400.552/40
44 100100 4040 55 4040 1.901.90 100100 0.258/4.60.258/4.6 0.065/10.065/1 1.372/401.372/40
55 100100 2020 55 6060 0.980.98 99.499.4 0.283/5.20.283/5.2 0.066/10.066/1 0.928/690.928/69
66 100100 2020 1010 2020 2.022.02 100100 0.374/3.10.374/3.1 0.138/10.138/1 3.079/203.079/20
77 5050 2020 1010 2020 1.031.03 98.898.8 0.277/4.70.277/4.7 0.069/10.069/1 1.059/201.059/20
88 5050 1010 2020 4040 0.990.99 99.999.9 0.416/3.80.416/3.8 0.146/10.146/1 0.988/400.988/40
NoNo populationpopulation Max generationMax generation Island numberIsland number Muta
tion rate
Muta
tion rate
Execution timeExecution time Optimal solutionOptimal solution
rate
[%]
rate
[%]
avg time[s]/ generationavg time[s]/generation min time[s]/ generationmin time[s]/ generation max time[s]/ generationmax time[s]/ generation
1One 10001000 100100 1010 00 189.06189.06 6464 60.0/44.360.0/44.3 22.60/2622.60/26 126.54/73126.54/73
22 10001000 100100 1010 2020 68.2768.27 6767 28.7/84.028.7/84.0 11.91/5111.91/51 65.17/11765.17/117
33 10001000 100100 1010 4040 45.3745.37 4141 21.5/47.021.5/47.0 10.43/2810.43/28 37.08/7837.08/78
44 10001000 100100 1010 6060 34.6134.61 2323 25.3/73.625.3/73.6 17.33/5117.33/51 33.16/9633.16/96
55 10001000 100100 2020 4040 88.1388.13 8181 34.6/43.334.6/43.3 17.14/2417.14/24 87.55/10087.55/100
66 10001000 200200 1010 4040 96.8996.89 6262 31.6/67.931.6/67.9 10.74/2710.74/27 92.35/17492.35/174
77 10001000 300300 1010 4040 138.92138.92 6666 35.5/80.535.5/80.5 12.01/3112.01/31 131.30/282131.30/282
88 500500 100100 1010 4040 24.6824.68 4444 14.2/59.914.2/59.9 8.15/368.15/36 24.66/9924.66/99
99 500500 200200 1010 4040 49.8149.81 5252 19.6/81.019.6/81.0 7.90/367.90/36 53.52/19653.52/196
1010 500500 300300 1010 4040 74.6874.68 5959 24.4/101.424.4/101.4 6.70/316.70/31 76.16/29976.16/299
1111 10001000 200200 55 4040 51.2151.21 4646 19.5/79.519.5/79.5 8.49/388.49/38 47.10/18047.10/180
1212 10001000 200200 1515 4040 134.33134.33 7575 41.4/65.541.4/65.5 18.19/3218.19/32 131.21/200131.21/200
1313 500500 100100 2020 2020 70.7370.73 7070 28.0/43.228.0/43.2 14.35/2414.35/24 64.61/9264.61/92
1414 500500 100100 2020 4040 48.0948.09 5959 23.4/51.423.4/51.4 51.86/10051.86/100 13.49/3013.49/30
1515 100100 100100 2020 2020 11.7411.74 1717 8.5/73.98.5/73.9 5.77/525.77/52 11.54/9711.54/97
1616 100100 200200 2020 2020 24.7124.71 3131 12.0/100.112.0/100.1 7.08/627.08/62 20.22/16620.22/166
1717 100100 300300 2020 2020 36.7636.76 2323 15.9/134.615.9/134.6 4.26/444.26/44 34.04/28434.04/284
1818 100100 100100 5050 2020 42.0342.03 5555 21.6/54.421.6/54.4 13.38/3613.38/36 40.85/9740.85/97
1919 100100 100100 100100 2020 82.9382.93 9090 35.2/45.935.2/45.9 20.94/2920.94/29 77.06/9277.06/92
2020 100100 100100 100100 4040 56.6856.68 7272 29.6/54.829.6/54.8 14.91/3014.91/30 55.03/9655.03/96
2121 200200 100100 100100 2020 117.95117.95 9191 53.2/49.753.2/49.7 29.22/3229.22/32 105.21/93105.21/93
도 35는 유전 알고리즘의 흐름도이다. 도 35를 참조하면, 유전 알고리즘을 통한 루프 기반 계통 재구성 흐름에 대해 보다 명확해 질 수 있다.35 is a flowchart of a genetic algorithm. Referring to FIG. 35 , it may be clearer for the loop-based systemic reconstruction flow through the genetic algorithm.
라. 배전 계통 재구성의 성능 향상 방안La. How to improve the performance of the distribution grid reconfiguration
부하의 탈락, 선로의 개방, 독립 운전 등으로 인한 물리적인 변동이 발생하지 않는 고정된 계통에서, 최적의 운영 효율을 만족시키는 계통 구성은 현재 계통의 전기적인 상태에 따라 달라질 수 있다. 하지만 배전 계통의 특성상, 피더의 시작점이나 거대 부하에 연결되어 있는 BSS는 계통 재구성에 참여하지 않고 상시 투입 상태로 고정될 수 있다. 즉, 하나의 계통에서 최악의 조건부터 최상의 조건까지의 부하 변동률이 적용될 때, 항상 투입 상태가 유지되는 BSS를 특정할 수 있다면, 해당 BSS는 최적의 계통 구성 탐색 과정에 불필요한 성분으로 취급할 수 있다.In a fixed system in which physical fluctuations do not occur due to load drop, line opening, independent operation, etc., the system configuration that satisfies the optimal operating efficiency may vary depending on the current electrical state of the system. However, due to the characteristics of the distribution system, the BSS connected to the start point of the feeder or a large load can be fixed in the always-on state without participating in system reconfiguration. That is, when the load change rate from the worst condition to the best condition is applied in one system, if the BSS in which the input state is always maintained can be specified, the BSS can be treated as an unnecessary component in the optimal system configuration search process. .
이를 위해, 'IEEE 118 BUS DISTRIBUTION NETWORK'의 초기 계통을 도 36과 같이 4가지 구역으로 구분하였다. 그리고 각 구역에 표 30과 같은 부하 변동률을 표 31의 시나리오로 부여하여 상시 투입 상태를 유지하는 BSS를 탐색하였다. 이때, 타입 A 내지 D에 해당하는 부하 변동률은 각 노드에 무작위로 부여할 수 있으며, 타입 E 및 F는 극한의 상황을 모의하기 위해 고정된 값을 부여하였다. Case 1 내지 5는 타입 E 및 F만을 사용하였고, Case 6 내지 13은 5번씩 반복 수행하여 전역 최적해를 탐색하였다. 최종적으로 계통 재구성에 참여하는 BSS는 도 37 및 표 32로 축약될 수 있다. For this purpose, the initial system of 'IEEE 118 BUS DISTRIBUTION NETWORK' was divided into four zones as shown in FIG. 36 . In addition, the BSS that maintains the constant input state was searched by assigning the load change rate as shown in Table 30 to each zone as the scenario in Table 31. In this case, the load variation rates corresponding to types A to D can be randomly assigned to each node, and fixed values are assigned to types E and F to simulate extreme situations. Cases 1 to 5 used only types E and F, and cases 6 to 13 were repeated 5 times to search for a global optimal solution. BSS finally participating in the lineage reconstruction can be abbreviated to FIG. 37 and Table 32.
타입type 부하 변동량load variation 타입type 부하 변동량load variation
AA +30 ~ +70 %+30 to +70 % DD +50 ~ -50 %+50 to -50%
BB -30 ~ +30 %-30 to +30 % EE +70 %+70%
CC -70 ~ -30 %-70 to -30% FF -70 %-70%
CASE CASE 구역 1Zone 1 구역 2 Zone 2 구역 3 Zone 3 구역 4 Zone 4
1One EE EE EE EE
22 FF FF FF FF
33 EE FF FF EE
44 FF EE EE FF
55 EE FF EE FF
66 BB BB BB BB
77 AA AA AA AA
88 CC CC CC CC
99 AA CC CC AA
1010 AA BB CC CC
1111 AA AA CC AA
1212 CC AA CC CC
1313 DD DD DD DD
LoopLoop
NoNo Before Path fixedBefore Path fixed After Path fixedAfter Path fixed
1One S39, S40, S41S39, S40, S41 S40, S41S40, S41
22 S2, S3, S28, S35, S40S2, S3, S28, S35, S40 S35, S40S35, S40
33 S37, S36, S35, S41S37, S36, S35, S41 S37, S36S37, S36
44 S38, S31, S33, S32S38, S31, S33, S32 S33S33
55 S27, S28, S29, S31, S34, S36S27, S28, S29, S31, S34, S36 S29, S31S29, S31
66 S1, S2, S4, S7, S18, S26, S27, S30, S38S1, S2, S4, S7, S18, S26, S27, S30, S38 S26, S38S26, S38
77 S29, S30, S32S29, S30, S32 S29, S32S29, S32
88 S16, S18, S20, S25S16, S18, S20, S25 S25S25
99 S20, S21, S24, S19S20, S21, S24, S19 S21, S24S21, S24
1010 S14, S15, S21, S23, S13S14, S15, S21, S23, S13 S15, S21, S23S15, S21, S23
1111 S8, S15, S22, S9, S12, S13S8, S15, S22, S9, S12, S13 S22S22
1212 S6, S7, S9, S12, S14, S16, S19S6, S7, S9, S12, S14, S16, S19 S14, S19S14, S19
1313 S6, S7, S8, S17S6, S7, S8, S17 S17S17
1414 S10, S12, S13, S11S10, S12, S13, S11 S10, S13S10, S13
1515 S4, S5, S6, S9, S11S4, S5, S6, S9, S11 S11S11
배전 계통의 현실적인 특성을 활용하여 배전 계통 재구성 풀이에 참여하지 않는 BSS들을 제한할 수 있다. 이 후, 축약된 루프 기반의 데이터를 유전 알고리즘에 적용함으로써, 배전 계통 재구성을 수행할 수 있으며, 다양한 파라미터에 대한 시뮬레이션 결과는 표 33과 같을 수 있다.By utilizing the realistic characteristics of the distribution system, it is possible to limit BSSs that do not participate in the distribution system reconstruction solution. Thereafter, by applying the reduced loop-based data to the genetic algorithm, distribution system reconstruction can be performed, and simulation results for various parameters may be shown in Table 33.
NoNo populationpopulation Max generationMax generation Island numberIsland number Mutation rateMutation rate Executi on timeExecution on time Optimal solutionOptimal solution
rate[%]rate[%] avg time[s]/generationavg time[s]/generation min time[s]/gnerationmin time[s]/gneration max time[s]/generationmax time[s]/generation
1One 100100 100100 1010 4040 13.8313.83 76.576.5 8.58/608.58/60 2.886/202.886/20 14.334/9914.334/99
22 100100 100100 2020 4040 27.6027.60 94.594.5 14.26/5014.26/50 5.842/205.842/20 27.507/9927.507/99
33 100100 100100 2020 2020 31.5231.52 99.699.6 11.02/3411.02/34 4.721/144.721/14 28.752/9228.752/92
44 200200 100100 1010 4040 24.4624.46 48.648.6 18.02/7318.02/73 5.419/215.419/21 24.719/9924.719/99
55 200200 100100 1010 2020 27.7327.73 84.984.9 16.20/5716.20/57 6.487/236.487/23 28.087/9828.087/98
이를 통해, 'IEEE 118 BUS DISTRIBUTION NETWORK'의 전역 최적 계통 구성의 탐색 확률과 속도를 90%, 35.2초에서 99.6%, 11.02초로 개선할 수 있었다. 이러한 계통 재구성에 참여하지 않는 BSS를 제약하는 방안은 유전 알고리즘에만 국한된 것이 아니고, 계통 재구성 자체의 성능을 향상 시킬수 있는 방안이 될 수 있다.Through this, the search probability and speed of the global optimal system configuration of 'IEEE 118 BUS DISTRIBUTION NETWORK' could be improved from 90% and 35.2 seconds to 99.6% and 11.02 seconds. The method of restricting the BSS not participating in such phylogenetic reconstruction is not limited to the genetic algorithm, but can be a method to improve the performance of the phylogenetic reconstruction itself.
마. 사례 연구mind. case study
1) IEEE 33/69/118 BUS DISTRIBUTION NETWORK1) IEEE 33/69/118 BUS DISTRIBUTION NETWORK
IEEE 33/69/118 BUS DISTRIBUTION NETWORK를 대상으로 전역 최적 계통 재구성을 수행한 결과를 표 34와 같을 수 있다.Table 34 shows the results of performing global optimal system reconfiguration targeting IEEE 33/69/118 BUS DISTRIBUTION NETWORK.
CaseCase 구분division BSS 조합BSS Combination 세부 개폐기 조합Detailed switchgear combination Loss[kW]Loss[kW]
3333 InitialInitial S2, S7, S9, S11, S12S2, S7, S9, S11, S12 s37, s33, s34, s35, s36s37, s33, s34, s35, s36 192192
OptimalOptimal S2, S4, S8, S10, S12S2, S4, S8, S10, S12 s37, s7, s9, s14, s32s37, s7, s9, s14, s32 134134
6969 InitialInitial S2, S7, S9, S11, S12S2, S7, S9, S11, S12 s73, s69, s70, s71, s72s73, s69, s70, s71, s72 224224
OptimalOptimal S5, S7, S8, S9, S12S5, S7, S8, S9, S12 s56, s69, s14, s70, s61s56, s69, s14, s70, s61 110110
118118 InitialInitial S8, S9, S10, S14, S15, S20, S23, S24, S26. S32, S33, S34, S35, S37, S40S8, S9, S10, S14, S15, S20, S23, S24, S26. S32, S33, S34, S35, S37, S40 s124, s120, s119, s132, s118, s123, s121, s122, s125, s126, s128, s127, s129, s130, s131s124, s120, s119, s132, s118, s123, s121, s122, s125, s126, s128, s127, s129, s130, s131 12981298
OptimalOptimal S6, S11, S13, S19, S21, S22, S23, S25, S29, S31, S33, S35, S37, S38, S40S6, S11, S13, S19, S21, S22, S23, S25, S29, S31, S33, S35, S37, S38, S40 s39, s23, s25, s34, s50, s42, s121, s58, s71, s74, s97, s129, s130, s95, s109s39, s23, s25, s34, s50, s42, s121, s58, s71, s74, s97, s129, s130, s95, s109 853853
2) 부하 변동성을 고려한 계통 재구성2) Grid reconfiguration considering load variability
'IEEE 118 BUS DISTRIBUTION NETWORK'의 계통을 도 38과 같이 6개의 구역으로 구분할 수 있다. 그리고 실제 한국 전력 공사의 6가지 계약종별 부하 중 '일반형', '주거형', '산업형', '교육형'을 활용하여 부하를 배치할 수 있다.The system of 'IEEE 118 BUS DISTRIBUTION NETWORK' can be divided into six zones as shown in FIG. 38 . And, among the loads of the six contract types of Korea Electric Power Corporation, 'general type', 'residential type', 'industrial type', and 'education type' can be used to allocate loads.
각 구역 별 부하에 차등을 주기 위해 국내총생산 및 계약종별 전력소비량에 따라, 표 35와 같은 범위의 부하를 무작위로 부여할 수 있다. 일년 중 부하의 최소값과 최대값의 편차가 가장 크게 나타나는 표 36, 도 39의 여름철 월요일에 해당하는 시간대 별 부하 패턴을 활용하여 실제와 유사한 계통 환경을 구축한 후 실시간 배전 계통 재구성 풀이를 수행할 수 있다.In order to give differential loads to each zone, loads in the range shown in Table 35 can be randomly assigned according to the gross domestic product and power consumption by contract type. Using the load pattern for each time period corresponding to Monday in summer in Table 36 and FIG. 39 where the deviation between the minimum and maximum values of the load during the year is the largest, a real-time distribution system reconstruction solution can be performed after establishing a system environment similar to the actual one. there is.
부하 종류load type 수량quantity 부하 범위 (MW)Load range (MW)
minimumminimum maximummaximum
일반형 general type 2626 0.07480.0748 0.14960.1496
주거형residential 4545 0.14960.1496 0.22440.2244
산업형industrial 2121 0.29920.2992 0.37410.3741
일반+주거형General + Residential 1515 0.07480.0748 0.22440.2244
교육형educational 1111 0.14960.1496 0.22440.2244
casecase 일반Normal 주거dwelling 산업industry 교육education
1One 42.1242.12 73.8973.89 68.1168.11 32.2332.23
22 39.0039.00 63.8863.88 67.8567.85 30.9830.98
33 36.8736.87 57.4457.44 67.5867.58 29.9629.96
44 35.5235.52 53.8653.86 67.4967.49 29.4429.44
55 35.2235.22 52.6052.60 67.5867.58 29.0729.07
66 36.7636.76 52.6352.63 68.1768.17 29.0029.00
77 41.7741.77 59.8559.85 70.3670.36 30.9130.91
88 51.5051.50 70.1170.11 76.2476.24 39.6539.65
99 68.5068.50 73.6873.68 89.3389.33 59.9159.91
1010 84.6684.66 74.4174.41 98.3698.36 82.4582.45
1111 93.7593.75 74.0674.06 99.6299.62 91.8591.85
1212 97.0597.05 74.2774.27 100.00100.00 95.8995.89
1313 97.2397.23 75.1975.19 90.8590.85 95.3795.37
1414 99.2999.29 75.9075.90 96.7896.78 99.4999.49
1515 100.00100.00 75.4975.49 99.0999.09 100.00100.00
1616 99.8299.82 75.6575.65 98.4598.45 96.4096.40
1717 99.4799.47 76.9376.93 98.4898.48 88.9988.99
1818 97.2397.23 80.2580.25 94.8094.80 75.1875.18
1919 89.2089.20 85.4985.49 90.9490.94 62.7862.78
2020 83.7883.78 93.5493.54 88.2288.22 57.4257.42
2121 77.4077.40 99.1499.14 86.1286.12 53.8253.82
2222 69.1469.14 100.00100.00 83.6683.66 48.0948.09
2323 59.9459.94 96.4096.40 83.6983.69 42.3642.36
2424 52.1552.15 88.3588.35 82.9082.90 38.1138.11
도 39를 참조하면, 여름철 월요일에 해당하는 하루 24시간에 대한 전역 계통 최적해 산출 시뮬레이션 수행 결과, 표 37과 같은 결과가 도출될 수 있다. 이때, 시간대 별로 최적 계통 재구성을 수행하면 6번의 계통 구성 변경으로 초기 계통 대비 6.784MWh의 선로 손실을 개선할 수 있다.수학식 8을 수학식 10으로 변경함으로써, 하나의 개폐기 조합에 24개의 부하 패턴을 모두 활용하여 24시간에 대한 최적의 계통 구성 하나를 취득할 수 있다. 이때, 하나의 최적 계통 구성으로 개폐기 제어 없이 계통을 운영하는 경우, 초기 계통 대비 6.684MWh의 선로 손실을 개선할 수 있다.Referring to FIG. 39 , as a result of simulation for calculating the global systematic optimal solution for 24 hours a day corresponding to Monday in summer, the results shown in Table 37 may be derived. At this time, if the optimal system reconfiguration is performed for each time period, the line loss of 6.784MWh compared to the initial system can be improved by changing the system configuration 6 times. By changing Equation 8 to Equation 10, 24 load patterns in one switchgear combination can be used to obtain one optimal system composition for 24 hours. At this time, when the system is operated without switchgear control with one optimal system configuration, the line loss of 6.684MWh can be improved compared to the initial system.
Figure PCTKR2020018214-appb-M000010
Figure PCTKR2020018214-appb-M000010
여기서,
Figure PCTKR2020018214-appb-I000024
는 i번째 계통 구성에 대한 t 시간대의 전력 손실 값이다. 시간대 별로 최적 계통 재구성을 수행하는 것과 하나의 계통 구성으로 운영하는 것의 손실 차이는 0.1MWh이다. 즉, 일반적인 계통에서는 물리적인 변동이 발생하지 않는 이상, 시간대별 계통 재구성의 성능은 매우 미미하게 나타날 수 있다.
here,
Figure PCTKR2020018214-appb-I000024
is the power loss value at time t for the i-th system configuration. The difference in loss between performing optimal system reconfiguration for each time period and operating as one system configuration is 0.1 MWh. That is, unless a physical change occurs in a general system, the performance of system reconfiguration for each time period may appear very insignificant.
시간time 전체 부하
[MW]
full load
[MW]
선로 손실 [MW]Line loss [MW]
초기 계통early lineage 시간대 별 최적 계통Optimal system for each time zone 하나의 최적 계통one optimal strain
1One 16.60916.609 0.6780.678 0.4780.478 0.4850.485
22 15.17315.173 0.5770.577 0.4060.406 0.410.41
33 14.23314.233 0.5170.517 0.3630.363 0.3670.367
44 13.70913.709 0.4870.487 0.340.34 0.3440.344
55 13.53713.537 0.4780.478 0.3330.333 0.3370.337
66 13.64313.643 0.4850.485 0.3380.338 0.3420.342
77 14.95314.953 0.5680.568 0.3990.399 0.4030.403
88 17.24117.241 0.7390.739 0.5230.523 0.5270.527
99 19.72619.726 0.9740.974 0.6920.692 0.6940.694
1010 21.57021.570 1.1691.169 0.8350.835 0.8350.835
1111 22.16822.168 1.2221.222 0.8770.877 0.8770.877
1212 22.43522.435 1.2471.247 0.8960.896 0.8960.896
1313 21.88621.886 1.1361.136 0.8290.829 0.8290.829
1414 22.57022.570 1.2341.234 0.8950.895 0.8950.895
1515 22.72422.724 1.2631.263 0.9130.913 0.9130.913
1616 22.61722.617 1.2501.250 0.9020.902 0.9020.902
1717 22.61822.618 1.2521.252 0.900.90 0.9000.900
1818 22.40322.403 1.2131.213 0.8710.871 0.8710.871
1919 22.21722.217 1.1891.189 0.8510.851 0.8520.852
2020 22.71622.716 1.2391.239 0.8830.883 0.8890.889
2121 22.94722.947 1.2711.271 0.9000.900 0.9110.911
2222 22.43422.434 1.2261.226 0.8640.864 0.8770.877
2323 21.49921.499 1.1461.146 0.8040.804 0.8150.815
2424 20.02720.027 1.0111.011 0.7060.706 0.7160.716
total 471.655471.655 23.57123.571 16.79816.798 16.88716.887
초기 계통 대비 개선량 [MWh]Improvement compared to the initial system [MWh] 6.7846.784 6.6846.684
3) 악성 부하를 고려한 계통 재구성3) Systemic reorganization considering malignant load
도 36 계통의 49, 60, 84, 97, 106 노드에 표 38과 같은 출력 변동 특성을 갖는 악성 부하가 존재하는 것을 가정하고 하루 24시간 동안의 전역 최적 계통 재구성 시뮬레이션을 수행하였다.It is assumed that a malicious load having output fluctuation characteristics as shown in Table 38 exists in the nodes 49, 60, 84, 97, and 106 of the line of FIG. 36, and the global optimal system reconstruction simulation for 24 hours a day was performed.
시간time 상대 부하량Relative load 시간 time 상대 부하량Relative load
77 0.0630.063 1414 0.8050.805
88 0.2680.268 1515 0.6750.675
99 0.3830.383 1616 0.4230.423
1010 0.3630.363 1717 0.3800.380
1111 0.7790.779 1818 0.2080.208
1212 0.9900.990 1919 0.0480.048
1313 1.0001.000 2020 0.0050.005
시뮬레이션 수행 결과, 표 39와 같은 결과가 도출되었다. 이때, 시간대 별로 최적 계통 재구성을 수행하면 12번의 계통 구성 변경으로 초기 계통 대비 5.005MWh의 선로 손실을 개선할 수 있으며, 하나의 최적 계통을 선정하여 계통을 운영하는 경우 초기 계통 대비 3.937MWh의 선로 손실을 개선할 수 있다.시간대 별로 최적 계통 재구성을 수행하는 것과 하나의 계통 구성으로 계통을 운영하는 것의 손실 개선량 차이가 1.068MWh이기 때문에 급격한 부하 변동이 존재하는 계통에서의 시간대별 계통 재구성의 성능을 확인할 수 있다. 즉, 이러한 손실 개선량을 기반으로 경제성 평가를 수행하여 운영원의 판단에 따라 적절한 제어를 수행할 수 있다.As a result of the simulation, the results shown in Table 39 were derived. At this time, if the optimal system reconfiguration is performed for each time period, the line loss of 5.005MWh compared to the initial system can be improved by 12 system configuration changes. Since the difference in loss improvement between performing optimal system reconfiguration for each time period and operating a system with one system configuration is 1.068MWh, the performance of system reconfiguration by time period in a system with rapid load fluctuations can be improved. can be checked In other words, it is possible to perform an economic evaluation based on the loss improvement amount to perform appropriate control according to the judgment of the operator.
시간time 전체 부하
[MW]
full load
[MW]
선로 손실 [MW]Line loss [MW]
초기 계통early lineage 시간대 별 최적 계통Optimal system for each time zone 하나의 최적 계통one optimal strain
1One 16.60916.609 0.6780.678 0.4780.478 0.4810.481
22 15.17315.173 0.5770.577 0.4060.406 0.4060.406
33 14.23314.233 0.5170.517 0.3630.363 0.3630.363
44 13.70913.709 0.4870.487 0.3400.340 0.340.34
55 13.53713.537 0.4780.478 0.3330.333 0.3330.333
66 13.62813.628 0.4840.484 0.3380.338 0.3380.338
77 14.00814.008 0.5150.515 0.3650.365 0.3650.365
88 13.22113.221 0.5260.526 0.3840.384 0.4010.401
99 13.98113.981 0.6410.641 0.4810.481 0.5140.514
1010 16.12516.125 0.7960.796 0.6010.601 0.6360.636
1111 10.48310.483 0.6920.692 0.5450.545 0.6830.683
1212 7.5857.585 0.7370.737 0.5840.584 0.7940.794
1313 6.8866.886 0.7010.701 0.5460.546 0.7670.767
1414 10.49510.495 0.7030.703 0.5550.555 0.7060.706
1515 12.59912.599 0.7290.729 0.5770.577 0.6850.685
1616 16.27216.272 0.8220.822 0.6290.629 0.6830.683
1717 16.91816.918 0.8530.853 0.6450.645 0.6890.689
1818 19.28319.283 0.9690.969 0.7130.713 0.7310.731
1919 21.49721.497 1.1261.126 0.8780.878 0.8840.884
2020 22.64122.641 1.2331.233 0.8780.878 0.8840.884
2121 22.94722.947 1.2711.271 0.9000.900 0.9080.908
2222 22.43422.434 1.2261.226 0.8640.864 0.8720.872
2323 21.49921.499 1.1461.146 0.8040.804 0.8090.809
2424 20.02720.027 1.0111.011 0.7060.706 0.7090.709
total 375.79375.79 18.91818.918 13.91313.913 14.98114.981
초기 계통 대비 개선량 [MWh]Improvement compared to the initial system [MWh] 5.0055.005 3.9373.937
6. 결론6. Conclusion
유전 알고리즘을 활용한 전역 최적 계통 재구성 시뮬레이션 수행 결과, 부하 변동이 크지 않는 경우에는 시간대별로 각기 다른 부하 패턴이 적용되더라도 그 성능이 매우 적게 나타날 수 있다. 하지만 부하 변동이 큰 악성 부하가 존재하는 경우 계통의 선로 손실 최소화를 목적으로 하는 최적 계통 재구성의 성능이 눈에 띄게 드러날 수 있다. 결과적으로 현재 배전 계통 재구성은 불필요한 것으로 보일 수 있지만, 앞으로 다양한 분산 전원들과 불규칙한 독립 운전이 가능한 마이크로 그리드가 계통에 연계된다면 전역 최적 계통 재구성의 의미가 커질 수 있다.As a result of performing global optimal system reconstruction simulation using a genetic algorithm, if the load fluctuation is not large, the performance may be very small even if different load patterns are applied for each time period. However, in the presence of a malignant load with large load fluctuations, the performance of the optimal system reconfiguration for the purpose of minimizing the line loss of the system may be visibly revealed. As a result, the current distribution system reconfiguration may seem unnecessary, but if various distributed power sources and a microgrid capable of irregular independent operation are connected to the grid in the future, the meaning of the global optimal grid reconfiguration may increase.
또한, 계통의 현재 상태를 기반으로 최적의 계통 재구성을 수행하는 것에 의해, 기존보다 더욱 최적의 계통 운영을 수행 할 수 있다. 이를 통해, 기존 설비의 이용률을 향상을 통한 전력 설비의 증설 억제, 신재생 에너지원들의 계통 연계율 증대가 가능할 것이며, 더 나아가 계통의 현대화, 자동화, 지능화의 기반이 될 수 있다.In addition, by performing the optimal system reconfiguration based on the current state of the system, it is possible to perform more optimal system operation than before. Through this, it will be possible to suppress the expansion of power facilities by improving the utilization rate of existing facilities, and to increase the grid connection rate of new and renewable energy sources, and furthermore, it can become the basis for system modernization, automation, and intelligence.
또한, 본 발명의 일 실시예에 따른 루프 기반의 배전 계통 재구성 방법은 실질적으로 루프 기반의 배전 계통 재구성 프로그램이 설치된 컴퓨터 시스템에 의해 수행된다.In addition, the loop-based distribution system reconfiguration method according to an embodiment of the present invention is substantially performed by a computer system in which a loop-based distribution system reconfiguration program is installed.
즉, 본 발명은 상기 루프 기반의 배전 계통 재구성 프로그램이 저장된 컴퓨터, 스마트 배전 운영 시스템, 배전 운영 시스템 또는 배전 자동화 시스템의 형태로 제공될 수도 있다.That is, the present invention may be provided in the form of a computer in which the loop-based distribution system reconfiguration program is stored, a smart distribution operating system, a distribution operating system, or a distribution automation system.
또한, 상기 루프 기반의 배전 계통 재구성 프로그램은 서버 시스템에 저장되고, 상기 컴퓨터 시스템은 상기 서버 시스템으로부터 상기 루프 기반의 배전 계통 재구성 프로그램을 다운로드받아 설치한 후, 배전 계통 재구성을 수행할 수 있다.In addition, the loop-based distribution system reconfiguration program is stored in a server system, and the computer system may download and install the loop-based distribution system reconfiguration program from the server system, and then perform distribution system reconfiguration.
또한, 상기 루프 기반의 배전 계통 재구성 프로그램은 별도로 기록 매체에 저장되어 제공될 수 있으며, 상기 기록매체는 본 발명을 위하여 특별히 설계되어 구성된 것들이거나 컴퓨터 소프트웨어 분야에서 통상의 지식을 가진자에서 공지되어 사용 가능할 것일 수 있으며, 예를 들면, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD, DVD와 같은 광 기록 매체, 자기 및 광 기록을 겸할 수 있는 자기-광 기록 매체, 롬, 램, 플래시메모리 등 단독 또는 조합에 의해 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치일 수 있다. In addition, the loop-based distribution system reconfiguration program may be separately stored and provided in a recording medium, and the recording medium is specially designed and configured for the present invention or is known and used by a person skilled in the art of computer software. It may be possible, for example, hard disks, magnetic media such as floppy disks and magnetic tapes, optical recording media such as CD and DVD, magneto-optical recording media capable of both magnetic and optical recording, ROM, RAM, flash It may be a hardware device specially configured to store and execute program instructions, alone or in combination, such as a memory.
또한, 상기 루프 기반의 배전 계통 재구성 프로그램은 프로그램 명령, 로컬 데이터 파일, 로컬 데이터 구조 등이 단독 또는 조합으로 구성된 프로그램일 수 있고, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라, 인터프리터 등을 사용하여 컴퓨터에 의해 실행될 수 있는 고급 언어 코드로 짜여진 프로그램일 수 있다.In addition, the loop-based distribution system reconfiguration program may be a program composed of program instructions, local data files, local data structures, etc. alone or in combination. It may be a program written in high-level language code that can be executed by a computer.

Claims (10)

  1. 배전 계통의 일부를 생략하고, 축약하는 계통 단순화 단계;A system simplification step of omitting a part of the distribution system and abbreviated;
    상기 계통 단순화 단계에 의해, 단순화된 계통을 이용하여 루프를 정의하고, 정의된 루프에 포함된 개폐기를 탐색하는 루프 탐색 단계;a loop search step of defining a loop using the simplified system by the system simplification step and searching for a switch included in the defined loop;
    상기 루프 탐색 단계에 의해, 탐색된 개폐기를 이용하여 계통에서 고립이 발생하는 개폐기 조합을 정의하고, 배전 계통의 방사상 구조를 만족하는 세부 개폐기 조합을 해석하는 배전 계통 해석 단계; 및a distribution system analysis step of defining a switchgear combination in which isolation occurs in the system using the switchgear found by the loop search step, and analyzing the detailed switchgear combination satisfying the radial structure of the distribution system; and
    상기 세부 개폐기 조합을 이용하여 선로 손실을 계산하고, 계산된 선로 손실을 기준으로 전역 최적해를 도출하는 계통 재구성 단계를 포함하는 것을 특징으로 하는 루프 기반의 배전 계통 재구성 방법.and calculating a line loss using the detailed switchgear combination, and deriving a global optimal solution based on the calculated line loss.
  2. 제 1항에 있어서,The method of claim 1,
    상기 계통 단순화 단계는 고립 구간이 생성될 수 있는 상황을 판단하고, 판단된 상황에 대응하여 계통을 단순화 하되, SBN을 중심으로 선로들을 축약하는 것을 특징으로 하는 루프 기반의 배전 계통 재구성 방법. The system simplification step determines a situation in which an isolated section can be generated, and simplifies the system in response to the determined situation.
  3. 제 1항에 있어서,The method of claim 1,
    상기 배전 계통 해석 단계는 배전 계통에 다수개의 전원이 존재하는 경우, 각 전원들 사이에 개방될 수 없는 가상의 선로(Virtual branch, VB)를 형성하는 것을 특징으로 하는 루프 기반의 배전 계통 재구성 방법.The distribution system analysis step is a loop-based distribution system reconfiguration method, characterized in that when a plurality of power sources exist in the distribution system, a virtual branch (VB) that cannot be opened between the respective power sources is formed.
  4. 제 1항에 있어서,The method of claim 1,
    상기 계통 재구성 단계는 BSS의 중심을 파악하여 하나의 BSS 내에 선택될 수 있는 세부 개폐기 수를 제한하는 것을 특징으로 하는 루프 기반의 배전 계통 재구성 방법.In the grid reconfiguration step, the loop-based distribution system reconfiguration method, characterized in that the number of detailed switchgear that can be selected in one BSS is limited by identifying the center of the BSS.
  5. 제 1항에 있어서,The method of claim 1,
    상기 계통 재구성 단계는 상시 투입 상태를 유지하는 BSS를 탐색하고, 탐색된 BSS를 제한하는 것을 특징으로 하는 루프 기반의 배전 계통 재구성 방법.The grid reconfiguration step is a loop-based distribution system reconfiguration method, characterized in that the search for a BSS that maintains the always-in state, and limiting the searched BSS.
  6. 컴퓨터와 결합하여 제 1 항 내지 제 5 항 중 어느 한 항의 배전 계통 재구성 방법을 수행하기 위한 매체에 저장된 루프 기반의 배전 계통 재구성 프로그램. A loop-based distribution system reconfiguration program stored in a medium for performing the distribution system reconfiguration method of any one of claims 1 to 5 in combination with a computer.
  7. 제 6 항의 배전 계통 재구성 프로그램이 저장되고 통신망을 통해 상기 배전 계통 재구성 프로그램을 전송할 수 있는 서버 시스템.A server system that stores the distribution system reconfiguration program of claim 6 and transmits the distribution system reconfiguration program through a communication network.
  8. 제 6 항의 배전 계통 재구성 프로그램을 저장하고, 상기 배전 계통 재구성 프로그램에 의해 배전 계통을 재구성하는 스마트 배전 운영 시스템(SDMS:Smart Distribution Management System).A smart distribution management system that stores the distribution system reconfiguration program of claim 6 and reconfigures the distribution system by the distribution system reconfiguration program (SDMS: Smart Distribution Management System).
  9. 제 6 항의 배전 계통 재구성 프로그램을 저장하고, 상기 배전 계통 재구성 프로그램에 의해 배전 계통을 재구성하는 배전 운영 시스템(DMS: Distribution Management System).A distribution management system (DMS) that stores the distribution system reconfiguration program of claim 6 and reconfigures the distribution system by the distribution system reconfiguration program.
  10. 제 6 항의 배전 계통 재구성 프로그램을 저장하고, 상기 배전 계통 재구성 프로그램에 의해 배전 계통을 재구성하는 배전 자동화 시스템(DAS:Distribution Automation System).A distribution automation system that stores the distribution system reconfiguration program of claim 6 and reconfigures the distribution system by the distribution system reconfiguration program (DAS: Distribution Automation System).
PCT/KR2020/018214 2020-01-31 2020-12-14 Loop-based distribution network reconfiguration method WO2021153901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0011910 2020-01-31
KR1020200011910A KR102371783B1 (en) 2020-01-31 2020-01-31 Loop-based distribution system reconfiguration method

Publications (1)

Publication Number Publication Date
WO2021153901A1 true WO2021153901A1 (en) 2021-08-05

Family

ID=77079547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018214 WO2021153901A1 (en) 2020-01-31 2020-12-14 Loop-based distribution network reconfiguration method

Country Status (2)

Country Link
KR (1) KR102371783B1 (en)
WO (1) WO2021153901A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637417B1 (en) * 2004-08-20 2006-10-20 한국전기연구원 Configuration method of the optimum distribution system for load balancing in distribution system
JP3882115B2 (en) * 2002-10-07 2007-02-14 株式会社日立製作所 Distribution load interchange system configuration creation device
JP4424494B2 (en) * 2005-02-01 2010-03-03 東京電力株式会社 Distribution system configuration optimization device and distribution system configuration optimization method
KR101375282B1 (en) * 2012-09-20 2014-03-17 한국전력공사 System and method for electric power system data abbreviation
US20180364694A1 (en) * 2016-01-19 2018-12-20 Hitachi, Ltd. Electric Power System Analysis Device and Electric Power System Analysis Method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219544B1 (en) * 2011-05-25 2013-01-09 주식회사 파워이십일 Optimised connection interpretive method of distribution line connection
KR101246383B1 (en) * 2011-09-27 2013-03-21 한국전력공사 Apparatus and method for considering load section characteristic of distribution system
KR20170029827A (en) 2015-09-08 2017-03-16 한국전력공사 Apparatus and method for reconfiguring of distribution line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882115B2 (en) * 2002-10-07 2007-02-14 株式会社日立製作所 Distribution load interchange system configuration creation device
KR100637417B1 (en) * 2004-08-20 2006-10-20 한국전기연구원 Configuration method of the optimum distribution system for load balancing in distribution system
JP4424494B2 (en) * 2005-02-01 2010-03-03 東京電力株式会社 Distribution system configuration optimization device and distribution system configuration optimization method
KR101375282B1 (en) * 2012-09-20 2014-03-17 한국전력공사 System and method for electric power system data abbreviation
US20180364694A1 (en) * 2016-01-19 2018-12-20 Hitachi, Ltd. Electric Power System Analysis Device and Electric Power System Analysis Method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, HYEON WOO: "A Study on Loop based Distribution Network Reconfiguration", THESIS, August 2019 (2019-08-01), pages 1 - 106, XP009529454 *

Also Published As

Publication number Publication date
KR20210098122A (en) 2021-08-10
KR102371783B1 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
Cheng et al. A three-phase power flow method for real-time distribution system analysis
Zhou et al. Distribution feeder reconfiguration for operation cost reduction
WO2018052163A1 (en) Pcs efficiency-considered microgrid operation device and operation method
WO2018199658A1 (en) Method for asset management of electric power equipment
WO2014038742A1 (en) Apparatus and method for estimating section loads in power distribution system
WO2019151639A1 (en) Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same
WO2023085560A1 (en) Method for managing demand response of discrete industrial manufacturing system using constrained reinforcement learning
WO2019074192A1 (en) Method for output control of distributed generation power of power distribution system associated with distributed generation power, and main control device and zone control device for performing control operation for performing same
WO2023054928A1 (en) Short-circuit current prediction device and method
WO2018062611A1 (en) Method for constructing general-purpose operating system applicable to various microgrids and power distribution systems, and operating system constructed thereby
WO2021153901A1 (en) Loop-based distribution network reconfiguration method
Sanaye-Pasand et al. A new adaptive multidimensioanal load shedding scheme using genetic algorithm
WO2019107806A1 (en) Hierarchical power control system
Sadeghi et al. Robust and adaptive coordination approaches for co-optimization of voltage dip and directional overcurrent relays coordination
Vargas et al. Optimal restoration of distribution systems considering temporary closed-loop operation
Sarathkumar et al. Review on power restoration techniques for smart power distribution systems
Ghobadpour et al. Multi-Objective Function Optimization for Locating and Sizing of Distributed‎ Generation Sources in Radial Distribution Networks with Fuse and Recloser‎ Protection
Bisheh et al. Local penetration‐free control approach against numerous changes in PV generation level in MAS‐based protection schemes
Babu et al. Network reconfiguration in distribution systems using LE method
WO2023219207A1 (en) Arc detection method and system for solar power generation facility
WO2020196983A1 (en) Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method
Paul et al. Improvements of the secondary voltage control in France
Zhu et al. A terminal distribution network black-start optimization method based on pruning algorithm considering distributed generators
WO2021221270A1 (en) Apparatus and method for improving power generation efficiency of distributed power generation facilities
WO2015030453A1 (en) Micro converter apparatus for photovoltaic energy generation source and controlling method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917015

Country of ref document: EP

Kind code of ref document: A1