WO2014038742A1 - Apparatus and method for estimating section loads in power distribution system - Google Patents

Apparatus and method for estimating section loads in power distribution system Download PDF

Info

Publication number
WO2014038742A1
WO2014038742A1 PCT/KR2012/007561 KR2012007561W WO2014038742A1 WO 2014038742 A1 WO2014038742 A1 WO 2014038742A1 KR 2012007561 W KR2012007561 W KR 2012007561W WO 2014038742 A1 WO2014038742 A1 WO 2014038742A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
voltage
calculated
error data
section
Prior art date
Application number
PCT/KR2012/007561
Other languages
French (fr)
Korean (ko)
Inventor
윤상윤
권성철
추철민
송일근
조성수
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2014038742A1 publication Critical patent/WO2014038742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a section load estimation apparatus and method for distribution system (APPARATUS AND METHOD FOR ESTIMATING SECTION LOADS IN POWER DISTRIBUTION SYSTEMS), and more specifically, the system by the recovery of power failure section and system reconstruction, bird flow calculation, etc.
  • Distribution system refers to a power system that converts the high voltage supplied from the power transmission system to a low voltage used in the customer to supply to the customer.
  • the section load is measured through the direct measurement 11 for the load.
  • the transmission system measures the measurement (12) of the amount of generation and the outflow and inflow measurement (13) of the pure line with the load removed. Therefore, in the transmission system, when a problem occurs in the direct measurement of the load, it is possible to estimate the section load using the remaining measurement amount (for example, the inflow of power generation, the outflow of the line, etc.).
  • the estimation of distribution system section load has the following importance in terms of system analysis and control.
  • Distribution system planning Network reconfiguration, a typical distribution system planning solution, also minimizes this by calculating load leveling and tidal flow-based losses based on each D / L (distribution line) load. Since the objective function is used, accurate estimation of the section load is a very important factor. In case of system planning with wrong section load, economic loss such as unnecessary line and equipment construction is expected.
  • Control of distribution system In the event of a failure of the distribution system, fault isolation by the protection device, isolation of the fault section by the automatic switchgear, and restoration of the interruption section are performed sequentially. In order to recover the blackout section, information on the load of the blackout section and the loads of nearby lines that can be transferred are determined. Through this, whether and how to recover the blackout section is determined. The establishment of tracks and automated switchgear in the case of non-recoverable cases is considered, so inaccurate estimates of section loads lead to economic losses.
  • the section load is estimated. Estimation of the section load in the distribution system is an essential factor for grasping the current status of the system by restoring the power failure section, reconfiguring the system, and calculating the current in case of system failure.
  • the conventional distribution system section load estimation system collects and processes acquisition data acquired by a plurality of acquisition devices 31 and a plurality of acquisition devices 31 for acquiring site data from a distribution system.
  • Request data collection by transmitting a data scan command to the data processing device 32 and the field data processing device 32, and receiving the acquired data collected by the field data processing device 32 to perform the section load.
  • It comprises a main device 33 for estimating.
  • the main device 33 includes an interval load estimating apparatus 34 for estimating the interval load using the received acquisition data, and a storage database 35 (hereinafter, stored DB) for storing the received acquisition data and the estimated interval load. It is configured to include.
  • FIG. 4 is a flowchart illustrating a section load estimation method using a conventional distribution system section load estimation system.
  • the distribution system section load estimation system classifies an inflow / outflow measurement apparatus (S10).
  • the distribution system section load estimation system distinguishes the inflow / outflow measurement device of a specific section by searching a topology path from the power supply side (DL lead end) to the load side on the premise that the system configuration is radial. .
  • the distribution system section load estimation system calculates the deviation between the inflow and outflow by using the current measurement values of the divided measuring devices (S20). That is, the distribution system section load estimation system calculates the inflow amount using the current measurement values of the measuring devices divided into the inflow measurement device. The distribution system section load estimating system calculates the outflow amount by using the current measurement values of the measuring devices divided into the outflow measuring device. Then, the distribution system section load estimation system calculates the deviation between the inflow and outflow based on the calculated inflow and outflow.
  • the distribution system section load estimating system distributes the calculated inflows and outflows into individual sections to calculate the loads for the individual sections (S30), and stores the calculated loads for the individual sections in the temporary data storage daily (S40). .
  • the distribution system section load estimation system calculates and stores the maximum value during the week and the maximum value on the weekend (S60). That is, the distribution system section load estimating system calculates the maximum value (ie, the maximum value during the week) of individual section loads during the last five days of the week during the specific time every day, and loads the individual section loads on the last four weeks on Saturday and Sunday. Calculate the maximum of the calculated value (ie, weekend maximum).
  • the distribution system section load estimation system stores the calculated weekly maximums and weekend maximums, and uses the maximums stored in system restoration and reconstruction and protection coordination.
  • the low accuracy of the section load estimation has a significant impact on the reliability and economics of distribution system operation.
  • the section load is lowered in the accuracy of estimation in the distribution system, resulting in a problem of lowering reliability and economic efficiency. Therefore, a technique for increasing the accuracy of estimating the section load in the distribution system has been developed.
  • Korean Patent Registration No. 10-1132015 name: distribution automation server supporting the failure recovery of the distribution line and method
  • the maximum, minimum and average current is calculated using the measured current of each switch, and each section
  • the technique of calculating the section load by using the difference between the maximum current of the power supply switch and the load switching period is described.
  • the section load amount is calculated by subtracting the drawn current value from the draw current value drawn in each section. It mentions a technique to make.
  • section load is estimated using actual measurements of the distribution system, but a large amount of error data exists in the actual measurement of the distribution system.
  • the section load is estimated using the actual measured value including the error data as it is, so that a large number of errors occur in the deviation between the inflow and outflow. Therefore, when using the conventional section load estimation method, there is an error in the estimation of the individual load, so a method of detecting and replacing error data in the actual measurement is required.
  • the conventional section load estimation method stores only the maximum values of the weekdays and weekends of each section, and thus does not take into account the variation in inequality for each section. Therefore, in the conventional section load estimation method, the excessive load is calculated, and there is a problem that a large number of errors occur during system restoration, reconfiguration, and protection coordination.
  • the conventional section load estimation method does not use voltage and phase data for estimating section load, but uses only current data as a measured value. That is, since the inflow and outflow are determined according to the flow direction of the current by the voltage and its phase, it is necessary to estimate the interval load in the unit of reactive power (P / Q) considering the voltage and phase in order to determine the flow by the distributed power supply.
  • the conventional section load estimation method since only the current data is used as a measurement value, there is a problem that an error occurs in the section load calculation by the output of the distributed power source.
  • the present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system which detects and replaces error data in actual measurements of the distribution system to estimate the section load. do.
  • Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates a section load in consideration of variation in inequality rate of individual sections of a distribution system.
  • Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates the section load using current data, voltage data, and phase data of the distribution system.
  • Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates the section load by reflecting a loss due to impedance in a section of a distribution system.
  • an error data processing unit for processing the error data of the acquired data received from the field data processing device to calculate the individual section load;
  • a voltage estimating unit estimating a voltage based on the individual section loads calculated by the error data processing unit;
  • a section load calculator configured to calculate the individual section loads based on the individual section loads calculated by the error data processor and the voltage estimated by the voltage estimator;
  • a tidal current calculation unit that calculates a voltage and a phase based on the individual section loads calculated by the section load calculation unit, and calculates tidal current information of each line based on the calculated voltage and phase;
  • a load pattern generator for generating a load pattern based on the algae information calculated by the algal calculation processor.
  • the error data processing unit configures the switch group by using the DL drawing breaker and the switch processing results during initial driving.
  • the error data processing unit configures the switch group by using the measurement quality when it is not the initial driving, but selects the switch units whose measurement quality is set to be reliable by the user or the error data processing unit, and selects voltage quality and current quality among the selected switch units. And the switch groups using the switch devices whose phase quality is all set to be reliable by the user or the error data processing unit.
  • the error data processing unit processes the error data by performing a phase consistency check and a current consistency check for each configured switch group.
  • the error data processing unit calculates the total load for each switch group by using the deviations of the inflow and outflow amounts of each of the configured switch groups, calculates the total load for the switch groups by using the nominal voltage, and individually calculates the total load for the switch groups. Individual section loads are calculated by distributing to section loads.
  • the voltage estimator configures a gain matrix by performing preprocessing on the individual section loads and the voltage and transformer taps calculated by the error data processor, and calculates and observes the standard deviation based on the individual section loads and the quality calculated by the error data processor.
  • a gender test is performed, a covariance is calculated by constructing the gain matrix and the inverse of the gain matrix, and voltage estimation is performed using the calculated covariance.
  • the section load calculation unit configures an automatic switch group based on the measurement quality and the section loss, calculates the section loss based on the inflow current, the outgoing current and the line impedance of the group, and calculates the section on the basis of the calculated section loss.
  • the total load of the group is calculated and the individual loads are calculated by allocating the total load to the individual loads.
  • the section load calculation unit configures the switch group by using the measurement values of the DL drawer breaker and the DG switch during initial driving, and when the initial driving is not the initial driving, the section load calculation unit configures the switch group only by the switch set to be reliable by the error data processing unit. .
  • the tidal current calculation unit calculates the difference value between the reference value and the calculated power inflow value of each line, and calculates the voltage magnitude and the voltage The amount of change is calculated and based on the calculated voltage magnitude and voltage phase, information on tidal current including line flow and loss amount of each line is calculated.
  • the load pattern generator generates weekday and weekend load patterns using the track tide and the loss amount calculated by the tide calculator.
  • the section load estimation method of the distribution system by the error data processing unit to process the error data of the acquired data received from the field data processing apparatus to calculate the individual section load step; Estimating a voltage based on the calculated individual section load by the voltage estimating unit; Calculating, by the section load calculator, the individual section loads based on the calculated individual section loads and the estimated voltages; Calculating, by the tidal current calculation unit, a voltage and a phase based on the individual section loads and the individual section loads calculated based on the estimated voltage, and calculating tidal current information of each line based on the calculated voltage and phase; And generating, by the load pattern generation unit, a load pattern based on the algae information calculated by the algal calculation processing unit.
  • the step of calculating the individual section load by processing the error data includes generating, by the error data processing unit, a switch group based on a current driving state of the distribution system.
  • a switch group is formed using the DL drawout breaker and the switch processing result.
  • the step of calculating the individual section load by processing the error data includes the step of configuring the switchgear group by using the measurement quality when the error data processing unit is not the initial driving, and the step of configuring the switchgear group includes the error data Selecting, by the processing unit, switchgears having the measurement quality set to be reliable by the user or the error data processing unit; And configuring, by the error data processing unit, switch groups using the switch units in which the voltage quality, the current quality and the phase quality among the selected switches are all set to be reliable by the user or the error data processing unit.
  • the step of calculating the individual section load by processing the error data includes processing the error data by performing a phase consistency check and a current consistency check for each configured switch group by the error data processor.
  • the step of calculating the individual section load by processing the error data may include calculating, by the error data processing unit, the total load for each switch group by using deviations of the inflow and outflow amounts of the configured switch groups; And calculating, by the error data processing unit, the calculated total load for each switchgear group to the individual section loads, and calculating the individual section loads. Calculate the total load.
  • the estimating of the voltage may include: configuring, by the voltage estimating unit, a gain matrix by performing preprocessing on the calculated individual section load, the voltage, and the transformer tap; Performing a observability check by calculating, by the voltage estimating unit, a standard deviation based on the calculated individual section load and quality; Calculating a covariance by generating the configured gain matrix and the inverse of the gain matrix by the voltage estimating unit; And performing, by the voltage estimating unit, voltage estimation using the calculated covariance.
  • the step of calculating the individual section load based on the calculated individual section load and the estimated voltage includes: configuring, by the section load calculating unit, an automatic switch group based on the measured quality and the section loss; Calculating, by the section load calculation unit, a section loss based on the inflow current, the outflow current, and the line impedance of the configured auto switch group; Calculating, by the section load calculator, the total load of the group of automatic switchgears based on the calculated section loss; And distributing the calculated total load to the individual loads by the section load calculation unit to calculate the individual section loads.
  • the calculating of the individual section loads based on the calculated individual section loads and the estimated voltage includes: configuring, by the section load calculation unit, a switch group by using the measured values of the DL drawing breaker and the DG switch during initial driving; And configuring, by the section load calculation unit, the switch group only with the switch set in which the measurement quality is reliable by the error data processing unit when it is not the initial driving.
  • the load pattern generation unit In the step of generating the load pattern, the load pattern generation unit generates the weekend and weekend load patterns using the calculated line current and loss amount.
  • the apparatus and method for estimating the interval load of a distribution system can overcome the absence of an error data processing scheme of the distribution system of the existing system, thereby enabling more accurate load identification and data generation.
  • section load estimation device and method of the distribution system can overcome the absence of the load pattern of the existing system to realize the system recovery, system reconfiguration and protection coordination correction through the supply of realistic load data considering the inequality rate There is.
  • the section load estimating apparatus and method of the distribution system will be able to calculate the load of the effective power unit considering the voltage, current and phase, and the load estimation considering the effect of the output of the distributed power supply. Accordingly, the apparatus and method for estimating the interval load of the distribution system can solve the problem that the load calculation using only the current data of the existing system does not reflect the distributed power output.
  • the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the loss consideration of the existing system, and thus it is possible to calculate realistic load data considering the interval loss.
  • the section load estimating apparatus and method of the distribution system can more accurately calculate the line margin in the event of a system failure through more accurate section load calculation, thereby reducing the number of new lines and new equipment for system recovery.
  • the section load estimating apparatus and method of the distribution system can secure the economic feasibility of new line construction and equipment construction at the time of system planning or system reconstruction through more accurate section load estimation.
  • the device and method for estimating the section load of the distribution system can secure economic feasibility for new protection equipment by realizing protection coordination through more accurate section load calculation.
  • 1 to 4 are diagrams for explaining a conventional section load estimation technique.
  • FIG. 5 is a view for explaining a section load estimation apparatus of the power distribution system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method for estimating the interval load of a distribution system according to an embodiment of the present invention.
  • 11 and 12 are flowcharts for describing the voltage estimation step of FIG. 6.
  • FIG. 13 and 14 are flowcharts for explaining the section load calculation step of FIG. 6.
  • 15 and 16 are flowcharts for explaining the tidal current information calculating step of FIG.
  • FIG. 17 is a flowchart for explaining a load pattern generation step of FIG. 6;
  • 18 and 19 are diagrams showing the results of testing by applying a random 10% change in the voltage, current and phase measurements of all automated switchgear.
  • 20 and 21 are diagrams showing the results of testing by applying a random 20% change in the voltage, current and phase measurements of all automatic switchgear.
  • FIG. 5 is a block diagram illustrating an apparatus for estimating the interval load of a power distribution system according to an embodiment of the present invention.
  • the section load estimating system 100 of the distribution system includes a section load estimating apparatus 200 and a storage database 300 of the distribution system, and the section load estimating apparatus 200 of the distribution system is
  • the error data processor 210, the voltage estimator 230, the section load calculator 250, the tidal current calculator 270, and the load pattern generator 290 are configured.
  • the error data processing unit 210 performs error data processing on the acquired data received from the field data processing apparatus 32.
  • the error data processing unit 210 generates a switch group according to a current driving state (that is, whether the error data processing is initially driven). To this end, the error data processing unit 210 processes the information related to the switch connected to the distributed power source (DG) in the distribution system. That is, the error data processing unit 210 searches for a switch and a line connected to the distributed power (hereinafter, referred to as a 'DG switch') when the distributed power is present in the distribution system.
  • the error data processor 210 detects whether a line is pressurized by using a node and open / close state information of the switch. This is to prevent the section load calculation for the non-pressurized lines from among the lines of the distribution system.
  • the error data processing unit 210 configures the switch group by using the processing result of the information related to the DL drawer breaker and the switch at the time of initial driving. That is, the error data processor 210 configures a switch group by using only the DL drawer and the previously detected DG switch.
  • the error data processor 210 selects a switch to participate in the configuration of the switch group by using the measurement quality when the initial driving is not performed. That is, the error data processing unit 210 selects the switch whose measurement quality is set to be reliable by the user or the error data processing unit 210 (that is, the switch whose measurement quality is "Good”, “Manual”, or “MGood”). do.
  • the measurement quality used in the embodiment of the present invention is as described in Table 1 below.
  • the error data processor 210 detects the participating target switch based on the voltage quality, current quality and phase quality of the selected switch. At this time, the error data processor 210 detects a switch whose voltage quality, current quality and phase quality are set to be reliable by the modu user or the error data processor 210 among the selected switches as the participating target switch. The error data processor 210 configures a switch group by using the detected participation target switches.
  • the error data processor 210 performs a phase consistency check and a current consistency check for each switch group. That is, the error data processor 210 performs a phase consistency check based on the alga calculation result calculated in the previous execution. At this time, the error data processing unit 210 determines that the phase upper limit (1 to 4 upper limit) of the switch included in the switch group is different based on the tidal calculation result calculated in the previous execution, and determines the measurement quality of the phase as "Bad". Change to The error data processor 210 compares the inflow and outflow amounts of each switch group to perform a current consistency check for the switch group.
  • the error data processing unit 210 changes the current measurement quality of all the switchgear of the corresponding switch group to "Bad" when the inflow amount is less than the outflow amount. At this time, if any of the consistency check results for each switch group is detected as a violation of the consistency check, the error data processing unit 210 repeatedly performs the selection or consistency check of the switch to participate in the switch group configuration described above.
  • the error data processing unit 210 calculates the total load of each generated group. That is, when the switch group configuration using the DL drawer breaker and the DG switch is completed or a consistency check violation does not occur, the error data processing unit 210 calculates the total load amount of each switch group. At this time, the error data processing unit 210 uses a deviation between the inflow and outflow amounts of the switch group, and in the case of voltage measurement, it is assumed that "Bad data" exists in almost all measurement values, and the switch is operated using a nominal voltage. Calculate the total load for each group. At this time, the error data processing unit 210 calculates the total load of each switch group through the following equation (1).
  • SWGPi is the active power of the i-th automatic switchgear section
  • SWGQi is the reactive power of the i-th automated switchgear section
  • aj is the inflow and outflow direction of the j-th automatic switchgear of the i-th section. In this case, aj is positive for inflow and aj is negative for outflow.
  • Ij is the current of the j-th automated switch
  • ⁇ j is the voltage / current phase difference of the j-th automated switch.
  • the error data processor 210 calculates the load of the individual sections by using the generated auto switch group and the total load of each group calculated. That is, the error data processing unit 210 distributes individual section loads by using the calculated total load for each switch group. At this time, the error data processing unit 210 distributes the individual section load through the following equation (2).
  • LDPij is the active power of the i-th automatic switchgear section
  • LDQij is the reactive power of the i-th automated switchgear section
  • Ni is the number of individual loads in the section.
  • the voltage estimator 230 performs voltage estimation using the initial load data and other measurements calculated by the error data processor 210. That is, the voltage estimator 230 performs preprocessing on the initial load data and other measured values calculated by the error data processor 210. In this case, the voltage estimator 230 performs preprocessing on the load of the individual section, which is the initial load data calculated by the error data processor 210, and the voltage and the transformer tap, which are other measurement values.
  • the voltage estimator 230 performs a zero impedance line (ZBR) process based on the line impedance and the tie switch. That is, the voltage estimator 230 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
  • ZBR zero impedance line
  • the voltage estimator 230 constructs a gain matrix using preprocessed initial load data and other measurements. That is, the voltage estimator 230 calculates a standard deviation using the individual section load calculated by the error data processor 210 and its quality, and performs an observability test. In this case, the voltage estimator 230 applies the order of Equation 4 below to use the weight used for calculating the standard deviation according to the quality of the individual section load.
  • W manual is the weight for the user input
  • W Mgood is the weight for the value entered by the user as “Good”
  • W Good is for the value calculated as “Good.”
  • W Sgood is the weight for the value treated as "Suspected Good.”
  • the voltage estimator 230 selects a reference bus and forms a gain matrix. Thereafter, the voltage estimator 230 changes the structure by extending the preformed gain matrix into a full matrix. The voltage estimator 230 calculates a value of the gain matrix through the voltage and phase partial derivatives of each measurement, and generates an inverse of the gain matrix.
  • the voltage estimator 230 calculates covariance using the gain matrix. That is, the voltage estimator 230 calculates a covariance value using the calculated gain matrix value and the inverse matrix.
  • the voltage estimator 230 estimates a voltage that is a state variable by using the calculated covariance. That is, the voltage estimator 230 updates the state variable by calculating the change amount of the state variable (voltage) using the covariance value. At this time, the voltage estimating unit 230 updates the voltage value by calculating a change amount of the voltage, which is a state variable, using the calculated covariance value.
  • the voltage estimator 230 performs voltage estimation using Equation 4 below.
  • V i + 1 is a calculated voltage at time t + 1
  • V i is a calculated voltage at time t.
  • G is a gain matrix
  • H is a Hessian matrix
  • T is a transpose of the matrix
  • W is a weight matrix.
  • the voltage estimator 230 adjusts the transformer tap by using the updated voltage value. At this time, the voltage estimator 230 performs transformer tap adjustment by using Equation 5 below.
  • TapIni is a tap position of the transformer before estimation
  • TapEst is a tap position of the transformer after estimation
  • VIni is the corresponding transformer secondary voltage before estimation
  • VEst is the corresponding transformer secondary voltage after estimation
  • TapStep is the gap between the taps of the transformer.
  • the unit of the interval between the voltage and the tap (Tap) is a PU
  • the calculation result is represented by an integer (Interger) by cutting off the decimal point.
  • the voltage estimator 230 ends the voltage estimation. If the estimated voltage does not satisfy the convergence condition, the voltage estimator 230 re-performs the voltage estimation using the above-described gain matrix configuration or covariance.
  • the section load calculator 250 calculates the section load based on the processing results of the error data processor 210 and the voltage estimator 230. To this end, the section load calculator 250 performs the processing of the measurement quality QC processed by the error data processor 210. That is, the section load calculation unit 250 processes the DG switch information and determines whether the track is pressurized.
  • the section load calculator 250 configures an automatic switch group using the measurement quality and the section loss.
  • the section load calculation unit 250 configures the switchgear group using only the measured values of the DL withdrawal breaker and the DG switchgear.
  • the section load calculator 250 selects a switch to participate in the switch group group by using the measured quality when the driving condition is not the initial driving situation. That is, the section load calculator 250 selects a switch to participate in the switch group group using the measurement quality processed by the error data processor 210.
  • the section load calculation unit 250 configures the switch group by using only the switch (that is, the switch whose measurement quality is “Good”) in which all the measurement quality is set to be reliable by the error data processing unit 210. That is, the section load calculator 250 configures a switch group by using only the switch whose voltage quality, current quality, and phase quality are all set by the error data processor 210 to be reliable.
  • the section load calculator 250 calculates a section loss. To this end, the section load calculator 250 updates the estimated voltage estimated by the voltage estimator 230 with the voltage of the switch.
  • the interval load calculation unit 250 updates the switch measurement voltage by replacing the estimated voltage estimated by the voltage estimator 230 with the nominal voltage when the error data is processed.
  • the section load calculator 250 calculates a switch group loss (that is, a section loss). That is, the section load calculator 250 calculates section loss using the inflow current and the outflow current and the line impedance of the switch section.
  • the section load calculator 250 calculates the total load of each group. That is, the section load calculation unit 250 calculates the switch group total load using the calculated switch section loss.
  • the section load calculator 250 calculates individual section loads. That is, the section load calculation unit 250 calculates the individual section load by distributing the calculated switch group total load to the individual loads.
  • the algal calculation processing unit 270 calculates algal information of each track.
  • the algal calculation processing unit 270 constitutes the Y matrix of the tracks.
  • the tidal current calculation unit 270 performs a zero impedance line (ZBR) process based on the line impedance and the associated switch.
  • ZBR zero impedance line
  • the tidal current calculation unit 270 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of errors in the inverse matrix calculation.
  • the algal calculation processing unit 270 selects a reference bus bar.
  • the tidal current calculation processing unit 270 selects a generator bus having the largest active power output as a reference bus.
  • the tidal current calculation processing unit 270 configures the Y matrix, and sets the active power inflow reference value, the reactive power inflow reference value, and the control amount of each bus to be used for the iterative operation. At this time, the tidal current calculation processing unit 270 sets the control amount of the control equipment, such as a generator, a transformer.
  • the control equipment such as a generator, a transformer.
  • the algal calculation processor 270 generates a Jacobean matrix.
  • the algal calculation processing unit 270 generates the structure of the J11 part of the Jacobean matrix, and reconstructs it into a Full Jacobean matrix.
  • the algal calculation processing unit 270 calculates an inverse of the parasitic Jacobean matrix. To this end, the algal calculation processing unit 270 calculates a difference value between the power input amount reference value and the calculated value. That is, the tidal current calculation processing unit 270 calculates a difference value (ie, mismatch) between the reference value of power inflow and the calculated value in each bus. The algal calculation processor 270 generates Jacobean values using the Full Jacobean matrix, and calculates the Jacobean inverse matrix.
  • the tidal current calculation processor 270 calculates a voltage and a phase in which an error is minimized (ie, entered into a convergence range) based on the individual section loads calculated by the section load calculator 250. That is, the algal calculation processing unit 270 calculates the state variable change amount using the Jacobean value, the Jacobean inverse matrix, and the calculated difference value. At this time, the tidal current calculation unit 270 calculates the amount of change in the voltage magnitude and voltage phase which are state variables.
  • the algae calculating unit 270 calculates algae information of each line by using the calculated voltage and phase. That is, the algal calculation processor 270 updates the state variable by using the calculated state variable change amount, and determines whether the state variable is completely converged. At this time, the tidal current calculation processing unit 270 calculates tidal current information including the line tidal current and loss amount using the renewed state variables (ie, voltage magnitude and voltage phase) when the state variables are completely converged.
  • the algae calculation processing unit 270 repeatedly calculates the inverse of the above-described Jacobean matrix and updates the state variables when it is not in full convergence.
  • the load pattern generator 290 generates a load pattern based on the result of calculating the tidal current information of the tidal current calculation processor 270. That is, the load pattern generation unit 290 generates the weekday and weekend load patterns using the line tide and the loss amount calculated by the tide calculation processor 270. Here, weekday and weekend load patterns are used for grid reconstruction, grid recovery and protection coordination. To this end, the load pattern generator 290 determines the update target load pattern and detects the load pattern at the update target time. That is, the load pattern generator 290 determines the processing time point of the current section load data and determines how many parking weekdays and weekend patterns of the year should be updated. The load pattern generator 290 detects load pattern data (weekday / weekend load pattern data of the week during the year) from the storage database 300 at the present time.
  • the load pattern generator 290 calculates a load pattern by using the existing load pattern and the current value, and updates the previously stored load pattern with the calculated load pattern. That is, the load pattern generator 290 calculates the weighted average of the previous value and the current value by the ratio specified by the user for the load pattern data. Through this, the load pattern generator 290 calculates a load pattern. The load pattern generator 290 updates the data of the storage database 300 at that time with the calculated load pattern data.
  • FIG. 6 is a flowchart illustrating a section load estimation method of a distribution system according to an embodiment of the present invention.
  • 7 and 10 are flowcharts for describing the error data processing step of FIG. 6, and
  • FIGS. 11 and 12 are flowcharts for explaining the voltage estimation step of FIG. 6.
  • 13 and 14 are flowcharts for describing the section load calculation step of FIG. 6, and
  • FIGS. 15 and 16 are flowcharts for explaining the tidal flow information calculation step of FIG. 6.
  • FIG. 17 is a flowchart for describing a load pattern generation step of FIG. 6.
  • the error data processing unit 210 performs error data processing on the acquired data received from the field data processing apparatus 32 (S100). That is, as shown in FIG. 7, the error data processor 210 determines the current driving state (S111). At this time, the error data processing unit 210 determines whether the initial run state of the error data processing (initial run). At this time, if the initial drive state (S111; Yes), the error data processing unit 210 forms an initial automated switch group, and calculates the total load of each group (S113). If not in the initial driving state (S111; No), the error data processing unit 210 performs a consistency check (consistency check) for the current and phase (S115).
  • a consistency check consistency check
  • the error data processing unit 210 generates an automated crock group and calculates a total load of each group (S117).
  • the error data processing unit 210 calculates the load of the individual sections by using the generated automatic switch group and the total load of each group calculated (S119).
  • the error data processing unit 210 processes information related to a switch (hereinafter, referred to as a 'DG switch') connected to distributed power in the distribution system (S120). That is, the error data processing unit 210 searches for a switch and a line connected to the distributed power supply when there is a distributed power supply in the distribution system.
  • a 'DG switch' a switch connected to distributed power in the distribution system
  • the error data processor 210 detects whether a line is pressurized by using a node and switch open / close state information (S125). This is to prevent the section load calculation for the non-pressurized lines from among the lines of the distribution system.
  • the error data processing unit 210 configures a switch group by using a result of processing information related to the DL draw breaker and the switch (S135). That is, the error data processor 210 configures a switch group by using only the DL drawer breaker and the DG switch detected in step S120.
  • the error data processing unit 210 selects the switch to participate in the configuration of the switch group using the measurement quality (S140). That is, the error data processing unit 210 selects the switch whose measurement quality is set to be reliable by the user or the error data processing unit 210.
  • the error data processor 210 detects the participating target switch based on the voltage quality, current quality and phase quality of the selected switch. At this time, the error data processing unit 210 detects the switch which is set to be reliable by the user or the error data processing unit all of the voltage quality, current quality and phase quality among the switch selected in step S140 to the participating target switch. The error data processor 210 configures a switch group by using the detected participation target switches (S150). Here, the steps of configuring the switch group (that is, step S150) will be described in more detail with reference to FIGS. 9 and 10.
  • the error data processing unit 210 extracts the line and the transformer number (S151).
  • the error data processor 210 determines whether the extracted line is processed. At this time, the error data processing unit 210 determines that the processing status indicator (Flag) of the extracted line is "1", the processing state, and "0" determines that it is not processed.
  • the processing status indicator (Flag) of the extracted line is "1", the processing state, and "0" determines that it is not processed.
  • the error data processor 210 allocates the extracted line and the transformer to the n-th line and the n-th switch of the N group (S153). To this end, the error data processing unit 210 increases the group number N, and assigns the extracted line and transformer numbers to the n-th line and switch numbers of the N groups.
  • the error data processing unit 210 extracts a starting node (From Node) and an ending node (To Node) number of the extracted line (S154). That is, the error data processor 210 extracts the number of the start node and the end node, which are electrical nodes of the extracted line.
  • the error data processing unit 210 adds the extracted start node and the end node to the node list Node_List (S156).
  • the error data processing unit 210 changes the state of the extracted start node and end node to the processing state (S157). That is, the error data processing unit 210 changes the processing status indicator Flag of the extracted start node and end node to "1".
  • the error data processor 210 increments the leading indicators g_number_snodes of the extracted start node and end node by 1 (S158).
  • the error data processing unit 210 stores the retrieved automation switch and the line number in the final breaker group Group_Last_CB and the last branch group Group_Last_BR of the switch list SW_List. (S160). Thereafter, the error data processing unit 210 performs the operation again from the above-described step S151.
  • the error data processor 210 increments the trailing indicator (g_number_pnodes) by one (S161).
  • the error data processing unit 210 extracts a node corresponding to the position of the trailing indicator from the node list (S162), and extracts a switch list connected to the extracted node (S163).
  • the error data processor 210 adds the automated switch included in the extracted switch list to the switch group list Group_SW_List (S164).
  • the error data processing unit 210 changes the state of the switch which is in the unprocessed state and the unopened state among the switches included in the extracted switch list to the processed state (S165), adds the opposite node to the node list (Node_List), and then precedes the indicator. Increase (S166).
  • the error data processing unit 210 extracts the line list connected to the extracted node (S168).
  • the error data processing unit 210 changes the unprocessed line to the processing state (S169), adds the opposite node to the node list, and increases the leading indicator (S170).
  • the error data processing unit 210 ends the configuration of the switch group. At this time, the error data processing unit 210 performs the process again from the above-described step S151 when the process for the line and the transformer is not completed.
  • the error data processor 210 performs a phase consistency check and a current consistency check for each switch group (S170). That is, the error data processor 210 performs a phase consistency check based on the alga calculation result calculated in the previous execution. At this time, the error data processing unit 210 determines that the phase upper limit (1 to 4 upper limit) of the switch included in the switch group is different based on the tidal calculation result calculated in the previous execution, and determines the measurement quality of the phase as "Bad". Change to The error data processor 210 compares the inflow and outflow amounts of each switch group to perform a current consistency check for the switch group. At this time, the error data processing unit 210 changes the current measurement quality of all the switchgear of the corresponding switch group to "Bad" when the inflow amount is less than the outflow amount.
  • the error data processing unit 210 repeats the above steps S140 to S170.
  • the error data processing unit 210 calculates the total load amount for each switch group (S180). At this time, the error data processing unit 210 uses a deviation between the inflow and outflow amounts of the switch group, and in the case of voltage measurement, it is assumed that "Bad data" exists in almost all measurement values, and the switch is operated using a nominal voltage. Calculate the total load for each group.
  • the error data processor 210 distributes individual section loads by using the calculated total load for each switch group (S185).
  • the voltage estimator 230 performs voltage estimation using the initial load data and other measurements calculated by the error data processor 210 (S200). That is, as shown in FIG. 11, the voltage estimator 230 is configured to calculate initial load data (ie, loads of individual sections) and other measurements (ie, voltage and transformer taps) calculated by the error data processor 210. The pretreatment is performed (S211). The voltage estimator 230 constructs a gain matrix using the preprocessed initial load data and other measurements (S213), and the voltage estimator 230 calculates covariance using the gain matrix. (S215). The voltage estimator 230 estimates a voltage that is a state variable using the calculated covariance (S217).
  • the voltage estimator 230 ends the voltage estimation, and if the convergence condition is not satisfied, the above-described steps S213 to S217 are repeated to perform the voltage estimation again.
  • the voltage estimator 230 performs a zero impedance line (ZBR) process based on a line impedance and a tie switch (S220). That is, the voltage estimator 230 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
  • ZBR zero impedance line
  • S220 tie switch
  • the voltage estimator 230 calculates a standard deviation using the individual section load calculated by the error data processor 210 and the quality thereof, and performs an observability test (S225).
  • the voltage estimator 230 selects a reference bus (S230) and forms a gain matrix (S235). Thereafter, the voltage estimator 230 changes the structure by extending the preformed gain matrix into a full matrix (S240). The voltage estimator 230 calculates a value of the gain matrix through the voltage and the phase partial derivative of each measurement (S245) and generates an inverse of the gain matrix (S250).
  • the voltage estimator 230 calculates a covariance value using the calculated gain matrix value and the inverse matrix (S255), and calculates a state variable (voltage) change amount using the covariance value (S260). Update (S265). That is, the voltage estimator 230 updates the voltage value by calculating a change amount of the voltage, which is a state variable, by using the calculated covariance value.
  • the voltage estimator 230 adjusts the transformer tap Tap using the updated voltage value (S270).
  • the voltage estimator 230 ends the voltage estimation. If the voltage value does not fall within the convergence range (S275; NO), the voltage estimator 230 repeats the above-described step S245 to step S270 to perform the transformer tap adjustment again.
  • the section load calculator 250 calculates the section load based on the results of the error detection step S100 and the voltage estimating step S200 (S300). That is, as shown in FIG. 13, the section load calculation unit 250 performs the processing of the measurement quality QC processed in the error data processing step S100 (S312) and calculates the section loss (S314). .
  • the section load calculator 250 configures an automatic switch group using the measured quality and the section loss, and calculates the total amount load of each group (S316).
  • the section load calculation unit 250 calculates the individual load by distributing the calculated total load to the individual loads (S318).
  • the interval load calculation step S300 will be described in more detail with reference to the accompanying drawings.
  • the section load calculator 250 processes the DG switch information (S320), and determines whether the line is pressurized (S325).
  • the section load calculation unit 250 configures the switch group by using only the measurement value of the DL draw breaker and the DG switch (S335).
  • the section load calculator 250 selects a switch to participate in the switch group group using the measured quality when the driving condition is not the initial driving condition (S340). That is, the section load calculator 250 selects a switch to participate in the switch group group using the measurement quality processed by the error data processor 210.
  • the section load calculator 250 configures a switch group by using only the switch set to be reliable by the error data processor 210 (S345). That is, the section load calculator 250 configures a switch group by using only the switch whose voltage quality, current quality, and phase quality are all set by the error data processor 210 to be reliable.
  • the section load calculator 250 updates the estimated voltage estimated by the voltage estimator 230 with respect to the voltage of the switch (S350).
  • the interval load calculation unit 250 updates the switch measurement voltage by replacing the estimated voltage estimated by the voltage estimator 230 with the nominal voltage when the error data is processed.
  • the section load calculation unit 250 calculates a switch group loss (S355). That is, the section load calculator 250 calculates section loss using the inflow current and the outflow current and the line impedance of the switch section.
  • the section load calculation unit 250 calculates the switch group total load amount (S360). That is, the section load calculation unit 250 calculates the switch group total load using the calculated switch group loss.
  • the section load calculator 250 calculates individual section loads (S365). That is, the section load calculation unit 250 calculates the individual section load by distributing the calculated switch group total load to the individual loads.
  • the algal calculation processing unit 270 calculates algal information of each track (S400). That is, as shown in Figure 15, the algal calculation processing unit 270 constitutes the Y matrix of the lines (S411), and generates a Jacobean matrix (S413). The algae calculation unit 270 calculates the inverse of the parasitic Jacobean matrix (S415), and the voltage of which the error is minimized (ie, in the convergence range) based on the individual section loads calculated by the section load calculation unit 250. And the phase (S417). The algae calculation processing unit 270 calculates algae information of each line using the calculated voltage and phase (S419).
  • the tidal current calculation unit 270 performs a zero impedance line (ZBR) process based on the line impedance and the associated switch (S420). That is, the tidal current calculation processing unit 270 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
  • ZBR zero impedance line
  • the algal calculation processing unit 270 selects a reference bus bar (S425). At this time, the tidal current calculation processing unit 270 selects a generator bus having the largest active power output as a reference bus.
  • the tidal current calculation processing unit 270 configures the Y matrix (S430), and sets the active power inflow reference value, the reactive power inflow reference value, and the control amount of each bus to be used for the iterative operation (S435). At this time, the tidal current calculation processing unit 270 sets the control amount of the control equipment, such as a generator, a transformer.
  • the algal calculation processing unit 270 generates the structure of the J11 portion of the Jacobean matrix (S440), and reconstructs it into a Full Jacobean matrix form (S445).
  • the tidal current calculation processing unit 270 calculates a difference value between the power input amount reference value and the calculated value (S450). That is, the tidal current calculation processing unit 270 calculates a difference value (ie, mismatch) between the reference value of power inflow and the calculated value in each bus.
  • the algal calculation processor 270 generates Jacobean values using the Full Jacobean matrix (S455) and calculates the Jacobean inverse matrix (S460).
  • the algal calculation processing unit 270 calculates the change amount of the state variable by using the Jacobean value, the Jacobean inverse matrix, and the calculated difference value (910). At this time, the tidal current calculation unit 270 calculates the amount of change in the voltage magnitude and voltage phase which are state variables.
  • the algal calculation processing unit 270 updates the state variable using the calculated state variable change amount (S470) and determines whether the state variable is completely converged (S475). At this time, if it is not a complete convergence (S475; No), the algal calculation processing unit 270 repeats the above-described step S450 to step S470. In the case of complete convergence (S475; Yes), tidal current information including track tide and loss amount is calculated using the updated state variable (S480).
  • the load pattern generator 290 generates a load pattern based on the result of calculating the tidal current information of the tidal current processor 270 (S500). That is, the load pattern generation unit 290 generates the weekday and weekend load patterns using the line tide and the loss amount calculated by the tide calculation processor 270.
  • weekday and weekend load patterns are used for grid reconstruction, grid recovery and protection coordination.
  • the load pattern generator 290 determines an update target load pattern (S520). That is, the load pattern generator 290 determines the processing time point of the current section load data and determines how many parking weekdays and weekend patterns of the year should be updated.
  • the load pattern generator 290 detects a load pattern at an update target time point (S540). That is, the load pattern generator 290 detects load pattern data (weekday / weekend load pattern data of the week during the year) from the storage database 300 at the present time.
  • the load pattern generator 290 calculates a load pattern using the existing load pattern and the current value (S560). That is, the load pattern generator 290 calculates the weighted average of the previous value and the current value by the ratio specified by the user for the load pattern data. Through this, the load pattern generator 290 calculates a load pattern.
  • the load pattern generator 290 updates the previously stored load pattern with the calculated load pattern (S580). That is, the load pattern generation unit 290 updates the data of the storage database 300 at that time with the calculated load pattern data.
  • the estimation capability is verified using actual system data.
  • the data used for verification uses actual data for 65 D / L of KJC jurisdiction.
  • the load is randomly distributed using the measured data of the D / L lead-out end, the switch measurement is calculated through algae calculation, and the test is performed using the true value.
  • Table 2 below describes the system data used in the test and its processing method.
  • the estimated value at switch 252 was derived as shown in Table 4 below.
  • test results using the apparatus and method for estimating the interval load of the distribution system according to the present invention estimate the value close to the true value, and it can be seen that there is no problem in the estimation of the measurement value of the automatic switchgear nearby.
  • the bad phase data were inserted into switch 252 and switch 595 and the estimated trend was observed. As shown in Table 5 below, in case of switch 252, the true value is 182 degrees and the bad data of 92 degrees is input.
  • test results using the apparatus and method for estimating the interval load of the distribution system according to the present invention estimate the value close to the true value, and it can be seen that there is no problem in estimating the measured value of the automatic switchgear nearby.
  • 18 and 19 are diagrams showing the results of testing the random 10% change in the voltage, current and phase measurements of all automatic switchgear.
  • 18 is a diagram illustrating a voltage estimate
  • FIG. 19 is a diagram illustrating a current estimate.
  • 20 and 21 are diagrams showing the results of testing by applying a random 20% change value to the voltage, current and phase measurements of all automatic switchgear.
  • 20 is a diagram illustrating a voltage estimate
  • FIG. 21 is a diagram illustrating a current estimate.
  • the section load estimation apparatus and method of the distribution system according to the present invention is the error data processing problem, which is the biggest vulnerability of the conventional method through detection and replacement of voltage, current and phase errors Overcome As shown in the above figure, we can see the result of following the true value even for the random noise of 20%.
  • the load estimation of the directional reactive power unit can be used directly in the analysis and control of the above-described distribution system, it can be used in power distribution planning, etc. by generating a load pattern. If the proposed system of the present invention is employed in the future, it will contribute to securing the efficiency and economics of the distribution system operation through more accurate grasp of the section load.
  • the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the error data processing method of the distribution system of the existing system, thereby enabling more accurate load identification and data generation.
  • section load estimation device and method of the distribution system can overcome the absence of the load pattern of the existing system to realize the system recovery, system reconfiguration and protection coordination correction through the supply of realistic load data considering the inequality rate There is.
  • the section load estimating apparatus and method of the distribution system will be able to calculate the load of the effective power unit considering the voltage, current and phase, and the load estimation considering the effect of the output of the distributed power supply. Accordingly, the apparatus and method for estimating the interval load of the distribution system can solve the problem that the load calculation using only the current data of the existing system does not reflect the distributed power output.
  • the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the loss consideration of the existing system, and thus it is possible to calculate realistic load data considering the interval loss.
  • the section load estimating apparatus and method of the distribution system can more accurately calculate the line margin in the event of a system failure through more accurate section load calculation, thereby reducing the number of new lines and new equipment for system recovery.
  • the section load estimating apparatus and method of the distribution system can secure the economic feasibility of new line construction and equipment construction at the time of system planning or system reconstruction through more accurate section load estimation.
  • the device and method for estimating the section load of the distribution system can secure economic feasibility for new protection equipment by realizing protection coordination through more accurate section load calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided are an apparatus and method for estimating section loads in a power distribution system, which involve detecting and replacing error data in an actual measurement, considering the deviation in a diversity factor of an individual section, using current data, voltage data and phase data, and reflecting the loss caused by impedance, thereby estimating section loads in the power distribution system. The provided apparatus for estimating section loads in a power distribution system comprises: an error data processing unit for processing error data of acquired data in order to calculate an individual section load; a voltage estimation unit for estimating a voltage based on the calculated individual section load; a section load calculation unit for calculating an individual section load based on the calculated individual section load and the estimated voltage; a power flow calculation unit for calculating a voltage and phase based on the calculated individual section load, and calculating power flow information for each line based on the calculated voltage and phase; and a load pattern generating unit for generating a load pattern based on the calculated power flow information.

Description

배전계통의 구간부하 추정 장치 및 방법Apparatus and method for estimating load on distribution system
본 발명은 배전계통의 구간부하 추정 장치 및 방법(APPARATUS AND METHOD FOR ESTIMATING SECTION LOADS IN POWER DISTRIBUTION SYSTEMS)에 관한 것으로, 더욱 상세하게는 배전계통의 고장 발생시 정전구간 복구 및 계통 재구성, 조류계산 등에 의한 계통 현재상태 파악을 위해 구간부하를 추정하는 배전계통의 구간부하 추정 장치 및 방법에 대한 것이다.The present invention relates to a section load estimation apparatus and method for distribution system (APPARATUS AND METHOD FOR ESTIMATING SECTION LOADS IN POWER DISTRIBUTION SYSTEMS), and more specifically, the system by the recovery of power failure section and system reconstruction, bird flow calculation, etc. An apparatus and method for estimating the interval load of a distribution system for estimating the interval load for grasping the current state.
배전계통은 송전계통으로부터 공급되는 고전압을 수용가에서 사용되는 저전압으로 변환하여 수용가로 공급하는 전력계통을 의미한다.Distribution system refers to a power system that converts the high voltage supplied from the power transmission system to a low voltage used in the customer to supply to the customer.
도 1에 도시된 바와 같이, 송전계통에서는 부하에 대한 직접 측정(11)을 통해 구간부하를 측정한다. 이와 함께, 송전계통에서는 발전량에 대한 측정(12) 및 부하가 제거된 순수한 선로의 유출 및 유입 측정치(13)를 측정한다. 따라서, 송전계통에서는 부하의 직접 측정에 문제가 발생하는 경우 나머지 측정량(예컨대, 발전량의 유입, 선로 유출량 등)을 이용하여 구간부하를 추정할 수 있다.As shown in FIG. 1, in the power transmission system, the section load is measured through the direct measurement 11 for the load. In addition, the transmission system measures the measurement (12) of the amount of generation and the outflow and inflow measurement (13) of the pure line with the load removed. Therefore, in the transmission system, when a problem occurs in the direct measurement of the load, it is possible to estimate the section load using the remaining measurement amount (for example, the inflow of power generation, the outflow of the line, etc.).
반면, 도 2에 도시된 바와 같이, 배전계통의 경우 자동화 개폐기(21)를 제외한 측정지점이 없다. 즉, 배전계통의 경우 자동화 개폐기(21)에서는 전압, 전류, 위상의 측정이 가능하지만, 수동 개폐기(22)가 설치된 지점(23)에서는 전압, 전류, 위상의 측정이 불가능하다. 또한, 배전계통에는 자동화 개폐기(21)와 자동화 개폐기(21)사이에는 많은 부하들이 산재하여 분포되어 있고, 자동화 개폐기(21)와 자동화 개폐기(21)간의 선로에 대한 측정치는 부하를 포함하고 있으므로 개별부하의 추정이 불가능하다. 따라서, 배전계통의 경우 자동화개폐기(21) 사이의 구간(24)에 대한 총량부하(dumped loads) 추정을 통해 구간부하를 추정한다.On the other hand, as shown in Figure 2, in the case of the distribution system there is no measuring point except for the automatic switch 21. That is, in the case of the distribution system, it is possible to measure the voltage, current, and phase in the automated switchgear 21, but it is impossible to measure the voltage, current, and phase at the point 23 where the manual switch 22 is installed. In addition, in the distribution system, many loads are distributed between the automation switch 21 and the automation switch 21, and the measurement value for the line between the automation switch 21 and the automation switch 21 includes loads. It is impossible to estimate the load. Therefore, in the case of the distribution system, the section load is estimated through estimation of the dumped loads for the section 24 between the automatic switchgear 21.
배전계통 구간부하의 추정은 계통 해석 및 제어의 측면에서 다음과 같은 중요성을 가진다.The estimation of distribution system section load has the following importance in terms of system analysis and control.
1) 배전계통의 해석 : 배전계통의 조류계산은 취약 개소(전압 및 선로조류량)를 파악하기 위한 기본적인 솔루션이다. 조류계산은 결국 부하량을 기준으로 현재 계통상태(전압 및 위상)를 파악하는 기법으로 구간부하의 정확한 추정은 매우 중요하다. 잘못된 해석을 통해 특정 개소의 전압 및 선로조류의 위배(violation)를 오탐지 또는 미탐지하는 경우 계통운영에 손실을 가져온다.1) Interpretation of distribution system: Calculation of tidal current of distribution system is a basic solution for identifying weak points (voltage and line algae). Algae calculation is a technique to determine the current system state (voltage and phase) based on load, and accurate estimation of section load is very important. Misinterpretation results in a loss of system operation if the error is detected or not detected at certain points of voltage and violation of line birds.
2) 배전계통의 계획 : 대표적인 배전계통의 계획 솔루션인 배전계통 재구성(network reconfiguration) 역시 각 D/L(distribution line)의 부하량을 기준으로 부하평준화 및 조류계산 기반의 손실량을 계산하여 이를 최소화하는 것을 목적함수로 하고 있으므로 구간부하의 정확한 추정은 매우 중요한 요소이다. 잘못된 구간부하를 이용하여 계통계획을 수립하는 경우 불필요한 선로 및 기기의 신설 등의 경제적인 손실이 예상된다.2) Distribution system planning: Network reconfiguration, a typical distribution system planning solution, also minimizes this by calculating load leveling and tidal flow-based losses based on each D / L (distribution line) load. Since the objective function is used, accurate estimation of the section load is a very important factor. In case of system planning with wrong section load, economic loss such as unnecessary line and equipment construction is expected.
3) 배전계통의 제어 : 배전계통의 고장발생 시 보호기기에 의한 고장차단, 자동화개폐기에 의한 고장구간 고립(isolation) 및 정전구간의 복구(restoration)가 순차적으로 수행된다. 정전구간을 복구하기 위해서는 정전구간의 부하량과 절체가 가능한 인근선로들의 부하량에 대한 정보가 필요하며 이를 통해 정전구간의 복구여부 및 방법이 결정된다. 복구가 불가능한 경우에 대한 선로 및 자동화 개폐기의 신설이 검토되며 따라서 구간부하의 부정확한 추정은 경제적 손실을 발생시킨다.3) Control of distribution system: In the event of a failure of the distribution system, fault isolation by the protection device, isolation of the fault section by the automatic switchgear, and restoration of the interruption section are performed sequentially. In order to recover the blackout section, information on the load of the blackout section and the loads of nearby lines that can be transferred are determined. Through this, whether and how to recover the blackout section is determined. The establishment of tracks and automated switchgear in the case of non-recoverable cases is considered, so inaccurate estimates of section loads lead to economic losses.
이처럼, 배전계통에서는 송전계통과 달리 부하량을 직접 측정할 수 없기 때문에 구간부하를 추정한다. 배전계통에서 구간부하의 추정은 계통 고장 발생시 정전구간 복구 및 계통 재구성, 조류계산 등에 의한 계통 현재상태 파악을 위한 필수적인 요소이다.Thus, in the distribution system, unlike the power transmission system, since the load cannot be measured directly, the section load is estimated. Estimation of the section load in the distribution system is an essential factor for grasping the current status of the system by restoring the power failure section, reconfiguring the system, and calculating the current in case of system failure.
도 3은 종래 배전계통 구간부하 추정 시스템이다. 도 3에 도시된 바와 같이, 종래의 배전계통 구간부하 추정 시스템은 배전계통에서 현장 데이터를 취득하는 복수의 취득장치(31), 복수의 취득장치(31)에서 취득한 취득 데이터를 수집하여 처리하는 현장데이터 처리장치(32), 현장데이터 처리 장치(32)에게로 데이터 스캔(Data Scan) 명령을 전송하여 데이터 수집을 요청하고, 현장데이터 처리 장치(32)에서 수집된 취득 데이터를 수신하여 구간부하를 추정하는 주장치(33)를 포함하여 구성된다. 이때, 주장치(33)는 수신한 취득 데이터를 이용하여 구간부하를 추정하는 구간부하 추정 장치(34), 및 수신한 취득 데이터 및 추정한 구간부하를 저장하는 저장 데이터베이스(35, 이하, 저장 DB)를 포함하여 구성된다.3 is a conventional distribution system section load estimation system. As shown in FIG. 3, the conventional distribution system section load estimation system collects and processes acquisition data acquired by a plurality of acquisition devices 31 and a plurality of acquisition devices 31 for acquiring site data from a distribution system. Request data collection by transmitting a data scan command to the data processing device 32 and the field data processing device 32, and receiving the acquired data collected by the field data processing device 32 to perform the section load. It comprises a main device 33 for estimating. At this time, the main device 33 includes an interval load estimating apparatus 34 for estimating the interval load using the received acquisition data, and a storage database 35 (hereinafter, stored DB) for storing the received acquisition data and the estimated interval load. It is configured to include.
도 4는 종래 배전계통 구간부하 추정 시스템을 이용한 구간부하 추정 방법을 설명하기 위한 흐름도이다. 도 4에 도시된 바와 같이, 배전계통 구간부하 추정 시스템은 유입/유출 측정장치를 구분한다(S10). 이때, 배전계통 구간부하 추정 시스템은 계통의 구성이 방사상(radial)이라는 전제로, 전원측(DL 인출단)에서 부하측으로의 토폴로지(topology) 경로를 탐색하여 특정 구간의 유입/유출 측정장치를 구분한다. 4 is a flowchart illustrating a section load estimation method using a conventional distribution system section load estimation system. As shown in FIG. 4, the distribution system section load estimation system classifies an inflow / outflow measurement apparatus (S10). At this time, the distribution system section load estimation system distinguishes the inflow / outflow measurement device of a specific section by searching a topology path from the power supply side (DL lead end) to the load side on the premise that the system configuration is radial. .
이후, 배전계통 구간부하 추정 시스템은 구분된 측정장치들의 전류 측정값을 이용하여 유입량과 유출량의 편차를 계산한다(S20). 즉, 배전계통 구간부하 추정 시스템은 유입 측정장치로 구분된 측정장치들의 전류 측정값을 이용하여 유입량을 산출한다. 배전계통 구간부하 추정 시스템은 유출 측정장치로 구분된 측정장치들의 전류 측정값을 이용하여 유출량을 산출한다. 이후, 배전계통 구간부하 추정 시스템은 기산출한 유입량 및 유출량을 근거로 유입량과 유출량의 편차를 산출한다Then, the distribution system section load estimation system calculates the deviation between the inflow and outflow by using the current measurement values of the divided measuring devices (S20). That is, the distribution system section load estimation system calculates the inflow amount using the current measurement values of the measuring devices divided into the inflow measurement device. The distribution system section load estimating system calculates the outflow amount by using the current measurement values of the measuring devices divided into the outflow measuring device. Then, the distribution system section load estimation system calculates the deviation between the inflow and outflow based on the calculated inflow and outflow.
배전계통 구간부하 추정 시스템은 기산출한 유입량과 유출량의 편차를 개별 구간에 분배하여 개별 구간별 부하량을 산출하고(S30), 기산출한 개별 구간별 부하량을 일간 임시데이터 저장소에 저장한다(S40). The distribution system section load estimating system distributes the calculated inflows and outflows into individual sections to calculate the loads for the individual sections (S30), and stores the calculated loads for the individual sections in the temporary data storage daily (S40). .
일간 데이터 저장이 완료되면(S50; 예), 배전계통 구간부하 추정 시스템은 주중 최대치 및 주말 최대치를 산출하여 저장한다(S60). 즉, 배전계통 구간부하 추정 시스템은 매일 특정시간이 되면 지난 5일간의 주중 시간별 개별구간의 부하계산값들 중에서 최대치(즉, 주중 최대치)를 산출하고, 지난 4주간의 토요일 및 일요일의 개별구간 부하계산값의 최대치(즉, 주말 최대치)를 산출한다. 배전계통 구간부하 추정 시스템은 기산출한 주중 최대치 및 주말 최대치를 저장하고, 계통 복구 및 재구성, 보호협조 재정정 등에 저장된 최대치를 사용한다.When the daily data storage is completed (S50; Yes), the distribution system section load estimation system calculates and stores the maximum value during the week and the maximum value on the weekend (S60). That is, the distribution system section load estimating system calculates the maximum value (ie, the maximum value during the week) of individual section loads during the last five days of the week during the specific time every day, and loads the individual section loads on the last four weeks on Saturday and Sunday. Calculate the maximum of the calculated value (ie, weekend maximum). The distribution system section load estimation system stores the calculated weekly maximums and weekend maximums, and uses the maximums stored in system restoration and reconstruction and protection coordination.
구간부하 추정의 정확성이 낮아지는 경우 배전계통 운영의 신뢰성 및 경제성에 막대한 영향을 미친다. 하지만, 상술한 종래의 구간부하 추정 기술에 이용하는 경우 배전계통에서 구간부하를 추정의 정확도 낮아져 신뢰성 및 경제성이 저하되는 문제가 발생한다. 따라서, 배전계통에서 구간부하를 추정의 정확도를 높이기 위한 기술이 개발되고 있다.The low accuracy of the section load estimation has a significant impact on the reliability and economics of distribution system operation. However, when the above-described conventional section load estimation technique is used, the section load is lowered in the accuracy of estimation in the distribution system, resulting in a problem of lowering reliability and economic efficiency. Therefore, a technique for increasing the accuracy of estimating the section load in the distribution system has been developed.
일례로, 한국등록특허 제10-1132015호(명칭: 배전선로의 고장복구를 지원하는 배전 자동화 서버 및 그 방법)에서는 각 개폐기의 측정전류를 이용하여 최대, 최소 및 평균전류를 계산하고, 각 구간의 전원측 개폐기와 부하측 개폐기간의 일 최대전류의 차이를 이용하여 구간부하를 산출하는 기술을 언급하고 있다.For example, in Korean Patent Registration No. 10-1132015 (name: distribution automation server supporting the failure recovery of the distribution line and method), the maximum, minimum and average current is calculated using the measured current of each switch, and each section The technique of calculating the section load by using the difference between the maximum current of the power supply switch and the load switching period is described.
또한, 한국등록특허 제10-1026238호(명칭: 계폐기 설치위치 결정 방법, 시스템 및 이를 포함하는 기록매체)에서는 각 구간에 인입되는 인입전류값에서 인출되는 전류값을 뺀 값으로 구간부하량을 산출하는 기술을 언급하고 있다.In addition, in Korean Patent Registration No. 10-1026238 (name: method and system for determining the installation position of the attenuator, and a recording medium including the same), the section load amount is calculated by subtracting the drawn current value from the draw current value drawn in each section. It mentions a technique to make.
하지만, 종래기술에서는 오류 데이터(bad data) 검출 및 대체가 없는 문제점이 있다. 즉, 종래의 구간부하 추정 방법에서는 배전계통의 실제 측정치를 이용하여 구간부하를 추정하지만, 배전계통의 실제 측정치에는 많은 오류 데이터가 존재한다. 종래의 구간부하 추정 방법에서는 오류 데이터가 포함된 실제 측정치를 그대로 사용하여 구간부하를 추정하기 때문에 유입/유출간의 편차에도 많은 오류가 발생하게 된다. 따라서, 종래의 구간부하 추정 방법을 이용하는 경우 개별 부하의 추정에도 오차가 존재하게 되므로 실제 측정치에서 오류 데이터를 검출하고 대체하는 방법이 필요하다.However, there is a problem in the prior art that there is no detection and replacement of bad data. That is, in the conventional section load estimation method, section load is estimated using actual measurements of the distribution system, but a large amount of error data exists in the actual measurement of the distribution system. In the conventional section load estimation method, the section load is estimated using the actual measured value including the error data as it is, so that a large number of errors occur in the deviation between the inflow and outflow. Therefore, when using the conventional section load estimation method, there is an error in the estimation of the individual load, so a method of detecting and replacing error data in the actual measurement is required.
또한, 종래의 구간부하 추정 방법에서는 각 개별 구간의 주중 및 주말 최대치만을 저장하므로 각 구간마다의 부등률 편차를 고려하지 않고 있다. 따라서, 종래의 구간부하 추정 방법에서는 과도한 부하량이 산정되어, 계통 복구, 재구성 및 보호협조시 많은 오차가 발생하는 문제점이 있다.In addition, the conventional section load estimation method stores only the maximum values of the weekdays and weekends of each section, and thus does not take into account the variation in inequality for each section. Therefore, in the conventional section load estimation method, the excessive load is calculated, and there is a problem that a large number of errors occur during system restoration, reconfiguration, and protection coordination.
또한, 종래의 구간부하 추정 방법에서는 구간 부하의 추정을 위해 전압 및 위상 데이터를 이용하지 않고, 전류 데이터만 측정값으로 사용하고 있다. 즉, 전압 및 그 위상에 의한 조류 방향에 따라 유입과 유출이 결정되므로 분산전원에 의한 조류 판별을 위해서는 전압 및 위상을 고려한 유/무효전력(P/Q) 단위의 구간부하 추정이 필요하다. 하지만, 종래의 구간부하 추정 방법에서는 전류 데이터만 측정값으로 사용하기 때문에 분산전원 등의 출력에 의한 구간부하 산정에 오류가 발생하는 문제점이 있다.In addition, the conventional section load estimation method does not use voltage and phase data for estimating section load, but uses only current data as a measured value. That is, since the inflow and outflow are determined according to the flow direction of the current by the voltage and its phase, it is necessary to estimate the interval load in the unit of reactive power (P / Q) considering the voltage and phase in order to determine the flow by the distributed power supply. However, in the conventional section load estimation method, since only the current data is used as a measurement value, there is a problem that an error occurs in the section load calculation by the output of the distributed power source.
또한, 종래의 구간부하 추정 방법에서는 구간 내의 임피던스에 의한 손실을 고려하지 않기 때문에 구간부하 추정에 오차가 발생하는 문제점이 있다.In addition, in the conventional section load estimation method, there is a problem that an error occurs in section load estimation because the loss due to impedance in the section is not considered.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 배전계통의 실제 측정치에서 오류 데이터를 검출 및 대체하여 구간부하를 추정하도록 한 배전계통의 구간부하 추정 장치 및 방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system which detects and replaces error data in actual measurements of the distribution system to estimate the section load. do.
본 발명의 다른 목적은 배전계통의 개별 구간의 부등률 편차를 고려하여 구간부하를 추정하도록 한 배전계통의 구간부하 추정 장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates a section load in consideration of variation in inequality rate of individual sections of a distribution system.
본 발명의 다른 목적은 배전계통의 전류 데이터와 전압 데이터 및 위상 데이터를 이용하여 구간부하를 추정하도록 한 배전계통의 구간부하 추정 장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates the section load using current data, voltage data, and phase data of the distribution system.
본 발명의 다른 목적은 배전계통의 구간에서 임피던스에 의한 손실을 반영하여 구간부하를 추정하도록 한 배전계통의 구간부하 추정 장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and method for estimating a section load of a distribution system, which estimates the section load by reflecting a loss due to impedance in a section of a distribution system.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치는, 현장 데이터 처리 장치로부터 수신한 취득데이터의 오류 데이터를 처리하여 개별 구간 부하를 산출하는 오류데이터 처리부; 오류데이터 처리부에서 산출한 개별 구간 부하를 근거로 전압을 추정하는 전압 추정부; 오류데이터 처리부에서 산출한 개별 구간 부하 및 전압 추정부에서 추정한 전압을 근거로 개별 구간 부하를 산출하는 구간부하 산출부; 구간부하 산출부에서 산출한 개별 구간 부하를 근거로 전압 및 위상을 산출하고, 산출한 전압 및 위상을 근거로 각 선로의 조류 정보를 산출하는 조류계산 처리부; 및 조류계산 처리부에서 산출한 조류 정보를 근거로 부하패턴을 생성하는 부하패턴 생성부를 포함한다.In order to achieve the above object, the section load estimation apparatus of the distribution system according to an embodiment of the present invention, an error data processing unit for processing the error data of the acquired data received from the field data processing device to calculate the individual section load; A voltage estimating unit estimating a voltage based on the individual section loads calculated by the error data processing unit; A section load calculator configured to calculate the individual section loads based on the individual section loads calculated by the error data processor and the voltage estimated by the voltage estimator; A tidal current calculation unit that calculates a voltage and a phase based on the individual section loads calculated by the section load calculation unit, and calculates tidal current information of each line based on the calculated voltage and phase; And a load pattern generator for generating a load pattern based on the algae information calculated by the algal calculation processor.
오류데이터 처리부는, 초기 구동시 DL 인출 차단기와 개폐기 처리 결과를 이용하여 개폐기 그룹을 구성한다.The error data processing unit configures the switch group by using the DL drawing breaker and the switch processing results during initial driving.
오류데이터 처리부는, 초기 구동이 아닌 경우 측정 품질을 이용하여 개폐기 그룹을 구성하되, 측정 품질이 사용자 또는 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 선택하고, 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모두 사용자 또는 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 이용하여 개폐기 그룹을 구성한다.The error data processing unit configures the switch group by using the measurement quality when it is not the initial driving, but selects the switch units whose measurement quality is set to be reliable by the user or the error data processing unit, and selects voltage quality and current quality among the selected switch units. And the switch groups using the switch devices whose phase quality is all set to be reliable by the user or the error data processing unit.
오류데이터 처리부는, 구성한 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행하여 오류데이터를 처리한다.The error data processing unit processes the error data by performing a phase consistency check and a current consistency check for each configured switch group.
오류데이터 처리부는, 구성한 개폐기 그룹 각각의 유입량 및 유출량의 편차를 이용하여 개폐기 그룹별 총 부하를 산출하되, 공칭전압을 이용하여 개폐기 그룹별 총 부하를 산출하고, 산출한 개폐기 그룹별 총 부하를 개별 구간 부하에 분배하여 개별 구간 부하를 산출한다.The error data processing unit calculates the total load for each switch group by using the deviations of the inflow and outflow amounts of each of the configured switch groups, calculates the total load for the switch groups by using the nominal voltage, and individually calculates the total load for the switch groups. Individual section loads are calculated by distributing to section loads.
전압 추정부는, 오류데이터 처리부에서 산출한 개별 구간 부하와 전압 및 변압기 탭에 대한 전처리를 수행하여 이득행렬을 구성하고, 오류데이터 처리부에서 산출한 개별 구간 부하 및 품질을 근거로 표준편차를 산출하여 관측성 검사를 수행하고, 구성한 이득행렬 및 이득행렬의 역행렬을 생성하여 공분산을 산출하고, 산출한 공분산을 이용하여 전압 추정을 수행한다.The voltage estimator configures a gain matrix by performing preprocessing on the individual section loads and the voltage and transformer taps calculated by the error data processor, and calculates and observes the standard deviation based on the individual section loads and the quality calculated by the error data processor. A gender test is performed, a covariance is calculated by constructing the gain matrix and the inverse of the gain matrix, and voltage estimation is performed using the calculated covariance.
구간부하 산출부는, 측정품질 및 구간손실을 근거로 자동화 개폐기 그룹을 구성하고, 자동화 개폐기 그룹의 유입 전류와 유출 전류 및 선로 임피던스를 근거로 구간 손실을 산출하고, 산출한 구간 손실을 근거로 자동화 개폐기 그룹의 총 부하량을 산출하고, 총 부하량을 개별 부하에 분배하여 개별 구간 부하를 산출한다.The section load calculation unit configures an automatic switch group based on the measurement quality and the section loss, calculates the section loss based on the inflow current, the outgoing current and the line impedance of the group, and calculates the section on the basis of the calculated section loss. The total load of the group is calculated and the individual loads are calculated by allocating the total load to the individual loads.
구간부하 산출부는, 초기 구동시 DL 인출 차단기와 DG 개폐기의 측정치를 이용하여 개폐기 그룹을 구성하고, 초기 구동이 아닌 경우 측정 품질이 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기만으로 개폐기 그룹을 구성한다.The section load calculation unit configures the switch group by using the measurement values of the DL drawer breaker and the DG switch during initial driving, and when the initial driving is not the initial driving, the section load calculation unit configures the switch group only by the switch set to be reliable by the error data processing unit. .
조류계산 처리부는, 각 선로의 전력 유입량 기준값과 계산치의 차이값을 산출하고, 구간부하 산출부에서 산출한 개별 구간 부하와 jacobean 값과 jacobean 역행렬 및 산출한 차이값을 근거로 전압 크기 및 전압 위상의 변화량을 산출하고, 산출한 전압 크기 및 전압 위상을 근거로 각 선로의 선로 조류 및 손실량을 포함하는 조류 정보를 산출한다.The tidal current calculation unit calculates the difference value between the reference value and the calculated power inflow value of each line, and calculates the voltage magnitude and the voltage The amount of change is calculated and based on the calculated voltage magnitude and voltage phase, information on tidal current including line flow and loss amount of each line is calculated.
부하패턴 생성부는, 조류계산 처리부에서 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성한다.The load pattern generator generates weekday and weekend load patterns using the track tide and the loss amount calculated by the tide calculator.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 배전계통의 구간부하 추정 방법은, 오류데이터 처리부에 의해, 현장 데이터 처리 장치로부터 수신한 취득데이터의 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계; 전압 추정부에 의해, 산출한 개별 구간 부하를 근거로 전압을 추정하는 단계; 구간부하 산출부에 의해, 산출한 개별 구간 부하 및 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계; 조류계산 처리부에 의해, 개별 구간 부하 및 추정한 전압을 근거로 산출한 개별 구간 부하를 근거로 전압 및 위상을 산출하고, 산출한 전압 및 위상을 근거로 각 선로의 조류 정보를 산출하는 단계; 및 부하패턴 생성부에 의해, 조류계산 처리부에서 산출한 조류 정보를 근거로 부하패턴을 생성하는 단계를 포함한다.In order to achieve the above object, the section load estimation method of the distribution system according to the embodiment of the present invention, by the error data processing unit to process the error data of the acquired data received from the field data processing apparatus to calculate the individual section load step; Estimating a voltage based on the calculated individual section load by the voltage estimating unit; Calculating, by the section load calculator, the individual section loads based on the calculated individual section loads and the estimated voltages; Calculating, by the tidal current calculation unit, a voltage and a phase based on the individual section loads and the individual section loads calculated based on the estimated voltage, and calculating tidal current information of each line based on the calculated voltage and phase; And generating, by the load pattern generation unit, a load pattern based on the algae information calculated by the algal calculation processing unit.
오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는, 오류데이터 처리부에 의해, 배전계통의 현재 구동 상태를 근거로 개폐기 그룹을 생성하는 단계를 포함하되, 개폐기 그룹을 생성하는 단계에서는, 초기 구동시 DL 인출 차단기와 개폐기 처리 결과를 이용하여 개폐기 그룹을 구성한다.The step of calculating the individual section load by processing the error data includes generating, by the error data processing unit, a switch group based on a current driving state of the distribution system. A switch group is formed using the DL drawout breaker and the switch processing result.
오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는, 오류데이터 처리부에 의해, 초기 구동이 아닌 경우 측정 품질을 이용하여 개폐기 그룹을 구성하는 단계를 포함하되, 개폐기 그룹을 구성하는 단계는, 오류데이터 처리부에 의해, 측정 품질이 사용자 또는 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 측정 품질을 갖는 개폐기들을 선택하는 단계; 및 오류데이터 처리부에 의해, 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모두 사용자 또는 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 이용하여 개폐기 그룹을 구성하는 단계를 포함한다.The step of calculating the individual section load by processing the error data includes the step of configuring the switchgear group by using the measurement quality when the error data processing unit is not the initial driving, and the step of configuring the switchgear group includes the error data Selecting, by the processing unit, switchgears having the measurement quality set to be reliable by the user or the error data processing unit; And configuring, by the error data processing unit, switch groups using the switch units in which the voltage quality, the current quality and the phase quality among the selected switches are all set to be reliable by the user or the error data processing unit.
오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는, 오류데이터 처리부에 의해, 구성한 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행하여 오류데이터를 처리하는 단계를 포함한다.The step of calculating the individual section load by processing the error data includes processing the error data by performing a phase consistency check and a current consistency check for each configured switch group by the error data processor.
오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는, 오류데이터 처리부에 의해, 구성한 개폐기 그룹 각각의 유입량 및 유출량의 편차를 이용하여 개폐기 그룹별 총 부하를 산출하는 단계; 및 오류데이터 처리부에 의해, 산출한 개폐기 그룹별 총 부하를 개별 구간 부하에 분배하여 개별 구간 부하를 산출하는 단계를 포함하되, 개폐기 그룹별 총 부하를 산출하는 단계에서는 공칭전압을 이용하여 개폐기 그룹별 총 부하를 산출한다.The step of calculating the individual section load by processing the error data may include calculating, by the error data processing unit, the total load for each switch group by using deviations of the inflow and outflow amounts of the configured switch groups; And calculating, by the error data processing unit, the calculated total load for each switchgear group to the individual section loads, and calculating the individual section loads. Calculate the total load.
전압을 추정하는 단계는, 전압 추정부에 의해, 산출한 개별 구간 부하와 전압 및 변압기 탭에 대한 전처리를 수행하여 이득행렬을 구성하는 단계; 전압 추정부에 의해, 산출한 개별 구간 부하 및 품질을 근거로 표준편차를 산출하여 관측성 검사를 수행하는 단계; 전압 추정부에 의해, 구성한 이득행렬 및 이득행렬의 역행렬을 생성하여 공분산을 산출하는 단계; 및 전압 추정부에 의해, 산출한 공분산을 이용하여 전압 추정을 수행하는 단계를 포함한다.The estimating of the voltage may include: configuring, by the voltage estimating unit, a gain matrix by performing preprocessing on the calculated individual section load, the voltage, and the transformer tap; Performing a observability check by calculating, by the voltage estimating unit, a standard deviation based on the calculated individual section load and quality; Calculating a covariance by generating the configured gain matrix and the inverse of the gain matrix by the voltage estimating unit; And performing, by the voltage estimating unit, voltage estimation using the calculated covariance.
산출한 개별 구간 부하 및 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계는, 구간부하 산출부에 의해, 측정품질 및 구간손실을 근거로 자동화 개폐기 그룹을 구성하는 단계; 구간부하 산출부에 의해, 구성한 자동화 개폐기 그룹의 유입 전류와 유출 전류 및 선로 임피던스를 근거로 구간 손실을 산출하는 단계; 구간부하 산출부에 의해, 산출한 구간 손실을 근거로 자동화 개폐기 그룹의 총 부하량을 산출하는 단계; 및 구간부하 산출부에 의해, 산출한 총 부하량을 개별 부하에 분배하여 개별 구간 부하를 산출하는 단계를 포함한다.The step of calculating the individual section load based on the calculated individual section load and the estimated voltage includes: configuring, by the section load calculating unit, an automatic switch group based on the measured quality and the section loss; Calculating, by the section load calculation unit, a section loss based on the inflow current, the outflow current, and the line impedance of the configured auto switch group; Calculating, by the section load calculator, the total load of the group of automatic switchgears based on the calculated section loss; And distributing the calculated total load to the individual loads by the section load calculation unit to calculate the individual section loads.
산출한 개별 구간 부하 및 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계는, 구간부하 산출부에 의해, 초기 구동시 DL 인출 차단기와 DG 개폐기의 측정치를 이용하여 개폐기 그룹을 구성하는 단계; 및 구간부하 산출부에 의해, 초기 구동이 아닌 경우 측정 품질이 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기만으로 개폐기 그룹을 구성하는 단계를 더 포함한다.The calculating of the individual section loads based on the calculated individual section loads and the estimated voltage includes: configuring, by the section load calculation unit, a switch group by using the measured values of the DL drawing breaker and the DG switch during initial driving; And configuring, by the section load calculation unit, the switch group only with the switch set in which the measurement quality is reliable by the error data processing unit when it is not the initial driving.
각 선로의 조류 정보를 산출하는 단계는, 조류계산 처리부에 의해, 각 선로의 전력 유입량 기준값과 계산치의 차이값을 산출하는 단계; 조류계산 처리부에 의해, 산출한 개별 구간 부하와 jacobean 값과 jacobean 역행렬 및 산출한 차이값을 근거로 전압 크기 및 전압 위상의 변화량을 산출하는 단계; 및 조류계산 처리부에 의해, 산출한 전압 크기 및 전압 위상을 근거로 각 선로의 선로 조류 및 손실량을 포함하는 조류 정보를 산출하는 단계를 포함한다.Computing the tidal current information of each line, the tidal current calculation unit, the step of calculating the difference value between the power input amount reference value and the calculated value of each line; Calculating an amount of change in voltage magnitude and voltage phase on the basis of the calculated individual section load, the jacobean value, the jacobean inverse matrix, and the calculated difference value by the algal calculation processor; And calculating, by the tidal current calculation unit, tidal current information including line tides and loss amounts of each line based on the calculated voltage magnitude and voltage phase.
부하패턴을 생성하는 단계에서는, 부하패턴 생성부에 의해, 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성한다.In the step of generating the load pattern, the load pattern generation unit generates the weekend and weekend load patterns using the calculated line current and loss amount.
본 발명에 의하면, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 배전계통의 오류데이터 처리 방식의 부재를 극복하여 좀더 정확한 부하 파악 및 데이터 생성이 가능한 효과가 있다.According to the present invention, the apparatus and method for estimating the interval load of a distribution system can overcome the absence of an error data processing scheme of the distribution system of the existing system, thereby enabling more accurate load identification and data generation.
또한, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 부하 패턴의 부재를 극복하여 부등율을 고려한 현실적인 부하데이터의 공급을 통해 계통복구, 계통재구성 및 보호협조 정정 등을 현실화할 수 있는 효과가 있다.In addition, the section load estimation device and method of the distribution system can overcome the absence of the load pattern of the existing system to realize the system recovery, system reconfiguration and protection coordination correction through the supply of realistic load data considering the inequality rate There is.
배전계통의 구간부하 추정 장치 및 방법은 전압, 전류 및 위상을 고려한 유무효 전력 단위의 부하산정이 가능해질 것이며 분산전원의 출력에 의한 영향을 고려한 부하 추정이 가능한 효과가 있다. 그에 따라, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 전류데이터만을 이용한 부하 산정은 분산전원 출력을 반영하지 못한다는 문제점을 해결할 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system will be able to calculate the load of the effective power unit considering the voltage, current and phase, and the load estimation considering the effect of the output of the distributed power supply. Accordingly, the apparatus and method for estimating the interval load of the distribution system can solve the problem that the load calculation using only the current data of the existing system does not reflect the distributed power output.
또한, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 손실 고려의 부재를 극복하여 구간 손실을 고려한 현실적인 부하데이터의 산정이 가능한 효과가 있다.In addition, the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the loss consideration of the existing system, and thus it is possible to calculate realistic load data considering the interval loss.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 계통 고장시 좀더 정확한 선로 여유용량 산출이 가능함으로써 계통복구를 위한 선로 신설 및 기기 신설을 줄일 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system can more accurately calculate the line margin in the event of a system failure through more accurate section load calculation, thereby reducing the number of new lines and new equipment for system recovery.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 계통계획시 또는 계통 재구성시 선로 신설 및 기기 신설의 경제성을 확보할 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system can secure the economic feasibility of new line construction and equipment construction at the time of system planning or system reconstruction through more accurate section load estimation.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 보호협조 정정을 현실화함으로써 보호기기 신설에 대한 경제성을 확보할 수 있는 효과가 있다.The device and method for estimating the section load of the distribution system can secure economic feasibility for new protection equipment by realizing protection coordination through more accurate section load calculation.
도 1 내지 도 4는 종래의 구간부하 추정 기술을 설명하기 위한 도면.1 to 4 are diagrams for explaining a conventional section load estimation technique.
도 5는 본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치를 설명하기 위한 도면.5 is a view for explaining a section load estimation apparatus of the power distribution system according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 배전계통의 구간부하 추정 방법을 설명하기 위한 흐름도.6 is a flowchart illustrating a method for estimating the interval load of a distribution system according to an embodiment of the present invention.
도 7 내지 도 10은 도 6의 오류데이터 처리 단계를 설명하기 위한 흐름도.7 to 10 are flowcharts for explaining the error data processing step of FIG.
도 11 및 도 12는 도 6의 전압 추정 단계를 설명하기 위한 흐름도.11 and 12 are flowcharts for describing the voltage estimation step of FIG. 6.
도 13 및 도 14는 도 6의 구간부하 산출 단계를 설명하기 위한 흐름도.13 and 14 are flowcharts for explaining the section load calculation step of FIG. 6.
도 15 및 도 16은 도 6의 조류 정보 산출 단계를 설명하기 위한 흐름도.15 and 16 are flowcharts for explaining the tidal current information calculating step of FIG.
도 17은 도 6의 부하패턴 생성 단계를 설명하기 위한 흐름도.17 is a flowchart for explaining a load pattern generation step of FIG. 6;
도 18 및 도 19는 모든 자동화개폐기의 전압, 전류 및 위상 측정치에 Random 10% 변동치를 적용하여 시험한 결과를 도시한 도면.18 and 19 are diagrams showing the results of testing by applying a random 10% change in the voltage, current and phase measurements of all automated switchgear.
도 20 및 도 21은 모든 자동화개폐기의 전압, 전류 및 위상 측정치에 Random 20% 변동치를 적용하여 시험한 결과를 도시한 도면. 20 and 21 are diagrams showing the results of testing by applying a random 20% change in the voltage, current and phase measurements of all automatic switchgear.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. . First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치를 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 5는 본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치를 설명하기 위한 블록도이다.Hereinafter, a section load estimation apparatus for a distribution system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 5 is a block diagram illustrating an apparatus for estimating the interval load of a power distribution system according to an embodiment of the present invention.
도 5에 도시된 바와 같이, 배전계통의 구간부하 추정 시스템(100)은 배전계통의 구간부하 추정 장치(200) 및 저장 데이터베이스(300)로 구성되며, 배전계통의 구간부하 추정 장치(200)는 오류데이터 처리부(210), 전압 추정부(230), 구간부하 산출부(250), 조류계산 처리부(270), 부하패턴 생성부(290)를 포함하여 구성된다.As shown in FIG. 5, the section load estimating system 100 of the distribution system includes a section load estimating apparatus 200 and a storage database 300 of the distribution system, and the section load estimating apparatus 200 of the distribution system is The error data processor 210, the voltage estimator 230, the section load calculator 250, the tidal current calculator 270, and the load pattern generator 290 are configured.
오류데이터 처리부(210)는 현장 데이터 처리 장치(32)로부터 수신한 취득데이터에 대한 오류 데이터 처리를 수행한다.The error data processing unit 210 performs error data processing on the acquired data received from the field data processing apparatus 32.
오류데이터 처리부(210)는 현재 구동 상태(즉, 오류데이터 처리의 초기 구동 여부)에 따라 개폐기 그룹을 생성한다. 이를 위해, 오류데이터 처리부(210)는 배전계통에서 분산전원(DG)이 연결된 개폐기에 관련된 정보를 처리한다. 즉, 오류데이터 처리부(210)는 배전계통에 분산전원이 존재하는 경우 분산전원에 연결된 개폐기(이하, 'DG 개폐기'라 함)와 선로를 탐색한다. 오류데이터 처리부(210)는 노드(node)와 개폐기 개폐 상태 정보(open/close)를 이용하여 선로의 가압 유무를 검출한다. 이는, 배전계통의 선로들 중에서 비가압 상태인 선로들에 대한 구간부하 산출을 수행하지 않도록 하기 위함이다.The error data processing unit 210 generates a switch group according to a current driving state (that is, whether the error data processing is initially driven). To this end, the error data processing unit 210 processes the information related to the switch connected to the distributed power source (DG) in the distribution system. That is, the error data processing unit 210 searches for a switch and a line connected to the distributed power (hereinafter, referred to as a 'DG switch') when the distributed power is present in the distribution system. The error data processor 210 detects whether a line is pressurized by using a node and open / close state information of the switch. This is to prevent the section load calculation for the non-pressurized lines from among the lines of the distribution system.
여기서, 오류데이터 처리부(210)는 초기 구동시 DL 인출 차단기와 개폐기에 관련된 정보의 처리 결과를 이용하여 개폐기 그룹을 구성한다. 즉, 오류데이터 처리부(210)는 DL 인출 차단기와 기검출한 DG 개폐기만을 이용하여 개폐기 그룹을 구성한다.Here, the error data processing unit 210 configures the switch group by using the processing result of the information related to the DL drawer breaker and the switch at the time of initial driving. That is, the error data processor 210 configures a switch group by using only the DL drawer and the previously detected DG switch.
오류데이터 처리부(210)는 초기 구동이 아닌 경우 측정 품질을 이용하여 개폐기 그룹의 구성에 참여할 개폐기를 선택한다. 즉, 오류데이터 처리부(210)는 측정 품질이 사용자 또는 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기(즉, 측정 품질이 "Good", "Manual", "MGood"인 개폐기)를 선택한다. 여기서, 본 발명의 실시예에서 사용되는 측정 품질은 아래 표 1에 기재된 바와 같다.The error data processor 210 selects a switch to participate in the configuration of the switch group by using the measurement quality when the initial driving is not performed. That is, the error data processing unit 210 selects the switch whose measurement quality is set to be reliable by the user or the error data processing unit 210 (that is, the switch whose measurement quality is "Good", "Manual", or "MGood"). do. Here, the measurement quality used in the embodiment of the present invention is as described in Table 1 below.
표 1
번호 측정품질 의미 활용
1 Good 측정값을 신뢰할 수 있음 그대로 사용
2 Bad 측정값을 신뢰할 수 없음 측정값 버림
3 Manual 사용자가 값을 입력함 입력값 그대로 사용
4 MGood 사용자가 측정값을 신뢰할 수 있음으로 강제함 측정값 그대로 사용
5 MBad 사용자가 측정값을 신뢰할 수 없음으로 강제함 측정값 버림
Table 1
number Measurement quality meaning uses
One Good Reliable measurement Use as is
2 Bad The measure is not reliable Discarded measure
3 Manual User enters a value Use input as is
4 Mgood User forces the measure to be trusted Use measure as is
5 MBad User forces measure to untrusted Discarded measure
오류데이터 처리부(210)는 선택된 개폐기들의 전압 품질, 전류 품질 및 위상 품질을 근거로 참여 대상 개폐기를 검출한다. 이때, 오류데이터 처리부(210)는 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모듀 사용자 또는 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기를 참여 대상 개폐기로 검출한다. 오류데이터 처리부(210)는 검출한 참여 대상 개폐기들을 이용하여 개폐기 그룹을 구성한다.The error data processor 210 detects the participating target switch based on the voltage quality, current quality and phase quality of the selected switch. At this time, the error data processor 210 detects a switch whose voltage quality, current quality and phase quality are set to be reliable by the modu user or the error data processor 210 among the selected switches as the participating target switch. The error data processor 210 configures a switch group by using the detected participation target switches.
오류데이터 처리부(210)는 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행한다. 즉, 오류데이터 처리부(210)는 이전 수행에서 산출한 조류계산 결과를 근거로 위상 일관성 검사를 수행한다. 이때, 오류데이터 처리부(210)는 이전 수행에서 산출한 조류계산 결과를 기준으로 개폐기 그룹에 포함된 개폐기의 위상 상한(1~4상한)이 서로 다른 것을 파악하여 그 위상의 측정 품질을 "Bad"로 변경한다. 오류데이터 처리부(210)는 각 개폐기 그룹의 유입량 및 유출량을 비교하여 개폐기 그룹에 대한 전류 일관성 검사를 수행한다. 이때, 오류데이터 처리부(210)는 유입량이 유출량 미만이면 해당 개폐기 그룹의 모든 개폐기의 전류 측정 품질을 "Bad"로 변경한다. 이때, 개폐기 그룹별 일관성 검사 결과 한 개라도 일관성 검사 위배로 검출되면, 오류데이터 처리부(210)는 상술한 개폐기 그룹 구성에 참여할 개폐기의 선택 내지 일관성 검사를 반복 수행한다.The error data processor 210 performs a phase consistency check and a current consistency check for each switch group. That is, the error data processor 210 performs a phase consistency check based on the alga calculation result calculated in the previous execution. At this time, the error data processing unit 210 determines that the phase upper limit (1 to 4 upper limit) of the switch included in the switch group is different based on the tidal calculation result calculated in the previous execution, and determines the measurement quality of the phase as "Bad". Change to The error data processor 210 compares the inflow and outflow amounts of each switch group to perform a current consistency check for the switch group. At this time, the error data processing unit 210 changes the current measurement quality of all the switchgear of the corresponding switch group to "Bad" when the inflow amount is less than the outflow amount. At this time, if any of the consistency check results for each switch group is detected as a violation of the consistency check, the error data processing unit 210 repeatedly performs the selection or consistency check of the switch to participate in the switch group configuration described above.
오류데이터 처리부(210)는 생성한 각 그룹의 총부하를 산출한다. 즉, DL 인출 차단기와 DG 개폐기를 이용한 개폐기 그룹 구성이 완료되거나, 일관성 검사 위배 미발생시, 오류데이터 처리부(210)는 개폐기 그룹별 총부하량을 산출한다. 이때, 오류데이터 처리부(210)는 개폐기 그룹의 유입량과 유출량의 편차를 이용하며, 전압 측정치의 경우 거의 모든 측정치에서 "Bad data"가 존재하는 것으로 가정하여, 공칭전압(nominal voltage)을 이용하여 개폐기 그룹별 총부하량을 산출한다. 이때, 오류데이터 처리부(210)는 하기의 수학식 1을 통해 개폐기 그룹별 총부하량을 산출한다.The error data processing unit 210 calculates the total load of each generated group. That is, when the switch group configuration using the DL drawer breaker and the DG switch is completed or a consistency check violation does not occur, the error data processing unit 210 calculates the total load amount of each switch group. At this time, the error data processing unit 210 uses a deviation between the inflow and outflow amounts of the switch group, and in the case of voltage measurement, it is assumed that "Bad data" exists in almost all measurement values, and the switch is operated using a nominal voltage. Calculate the total load for each group. At this time, the error data processing unit 210 calculates the total load of each switch group through the following equation (1).
수학식 1
Figure PCTKR2012007561-appb-M000001
Equation 1
Figure PCTKR2012007561-appb-M000001
Figure PCTKR2012007561-appb-I000001
Figure PCTKR2012007561-appb-I000001
여기서, SWGPi는 i번째 자동화 개폐기 구간의 유효 전력이고, SWGQi는 i번째 자동화 개폐기 구간의 무효 전력이다. aj는 i번째 구간의 j번째 자동화 개폐기의 유입 및 유출 전력 방향이다. 이때, 유입의 경우 aj는 양수(+)이며, 유출의 경우 aj는 음수(-)이다. Ij는 j번째 자동화 개폐기의 전류이고, θj는 j번째 자동화 개폐기의 전압/전류 위상차이다.Here, SWGPi is the active power of the i-th automatic switchgear section, and SWGQi is the reactive power of the i-th automated switchgear section. aj is the inflow and outflow direction of the j-th automatic switchgear of the i-th section. In this case, aj is positive for inflow and aj is negative for outflow. Ij is the current of the j-th automated switch, and θj is the voltage / current phase difference of the j-th automated switch.
오류데이터 처리부(210)는 기생성한 자동화 개폐기 그룹 및 기산출한 각 그룹의 총부하량을 이용하여 개별 구간의 부하를 산출한다. 즉, 오류데이터 처리부(210)는 기산출한 개폐기 그룹별 총부하량을 이용하여 개별 구간 부하를 분배한다. 이때, 오류데이터 처리부(210)는 하기의 수학식 2 통해 개별 구간 부하를 분배한다.The error data processor 210 calculates the load of the individual sections by using the generated auto switch group and the total load of each group calculated. That is, the error data processing unit 210 distributes individual section loads by using the calculated total load for each switch group. At this time, the error data processing unit 210 distributes the individual section load through the following equation (2).
수학식 2
Figure PCTKR2012007561-appb-M000002
Equation 2
Figure PCTKR2012007561-appb-M000002
Figure PCTKR2012007561-appb-I000002
Figure PCTKR2012007561-appb-I000002
여기서, LDPij는 i번째 자동화 개폐기 구간의 유효 전력이고, LDQij는 i번째 자동화 개폐기 구간의 무효 전력이고, Ni는 구간내의 개별 부하의 갯수이다.Here, LDPij is the active power of the i-th automatic switchgear section, LDQij is the reactive power of the i-th automated switchgear section, and Ni is the number of individual loads in the section.
전압 추정부(230)는 오류데이터 처리부(210)에서 산출된 초기 부하 데이터와 기타 측정치를 이용하여 전압 추정을 수행한다. 즉, 전압 추정부(230)는 오류데이터 처리부(210)에서 계산된 초기 부하 데이터와 기타 측정치에 대한 전처리를 수행한다. 이때, 전압 추정부(230)는 오류데이터 처리부(210)에서 계산된 초기 부하 데이터인 개별 구간의 부하와 기타 측정치인 전압 및 변압기 탭에 대한 전처리를 수행한다. 전압 추정부(230)는 선로 임피던스 및 연계 개폐기(Tie Switch)를 근거로 영임피던스 선로(ZBR) 처리를 수행한다. 즉, 전압 추정부(230)는 역행렬 연산시 오류 발생을 최소화하기 위해서 선로 임피던스가 매우 작은 선로들과 변전소간 연계 개폐기를 영임피던스 선로로 처리한다.The voltage estimator 230 performs voltage estimation using the initial load data and other measurements calculated by the error data processor 210. That is, the voltage estimator 230 performs preprocessing on the initial load data and other measured values calculated by the error data processor 210. In this case, the voltage estimator 230 performs preprocessing on the load of the individual section, which is the initial load data calculated by the error data processor 210, and the voltage and the transformer tap, which are other measurement values. The voltage estimator 230 performs a zero impedance line (ZBR) process based on the line impedance and the tie switch. That is, the voltage estimator 230 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
전압 추정부(230)는 전처리된 초기 부하 데이터 및 기타 측정치를 이용하여 이득행렬(gain matrix)을 구성한다. 즉, 전압 추정부(230)는 오류데이터 처리부(210)에서 산출한 개별 구간 부하 및 그 품질을 이용하여 표준편차를 산출하고, 가 관측성(Observability) 검사를 수행한다. 이때, 전압 추정부(230)는 개별 구간 부하의 품질에 따른 표준편차 산출시 사용되는 가중치(Weight)는 아래 수학식 4의 순서를 적용한다.The voltage estimator 230 constructs a gain matrix using preprocessed initial load data and other measurements. That is, the voltage estimator 230 calculates a standard deviation using the individual section load calculated by the error data processor 210 and its quality, and performs an observability test. In this case, the voltage estimator 230 applies the order of Equation 4 below to use the weight used for calculating the standard deviation according to the quality of the individual section load.
수학식 3
Figure PCTKR2012007561-appb-M000003
Equation 3
Figure PCTKR2012007561-appb-M000003
여기서, Wmanual은 사용자 입력값에 대한 가중치이고, WMgood는 사용자가 "상태 좋음(Good)"으로 입력한 값에 대한 가중치이고, WGood는 "상태 좋음(Good)"으로 계산된 값에 대한 가중치이고, WSgood는 "대체값이 적용됨(Suspected Good)"으로 처리된 값에 대한 가중치이다.Where W manual is the weight for the user input, W Mgood is the weight for the value entered by the user as "Good", and W Good is for the value calculated as "Good." W Sgood is the weight for the value treated as "Suspected Good."
전압 추정부(230)는 기준 모선을 선택하고, 이득 행렬(Gain Matrix)을 형성한다. 이후, 전압 추정부(230)는 기형성한 이득 행렬을 Full Matrix 형태로 확장하여 구조를 변경한다. 전압 추정부(230)는 각 측정치의 전압 및 위상 편미분을 통해 이득 행렬의 값을 산출하고, 이득 행렬의 역행렬을 생성한다.The voltage estimator 230 selects a reference bus and forms a gain matrix. Thereafter, the voltage estimator 230 changes the structure by extending the preformed gain matrix into a full matrix. The voltage estimator 230 calculates a value of the gain matrix through the voltage and phase partial derivatives of each measurement, and generates an inverse of the gain matrix.
전압 추정부(230)는 이득행렬을 이용하여 공분산(covariance)을 산출한다. 즉, 전압 추정부(230)는 기산출한 이득 행렬 값과 역행렬을 이용하여 공분산(Covariance) 값을 산출한다.The voltage estimator 230 calculates covariance using the gain matrix. That is, the voltage estimator 230 calculates a covariance value using the calculated gain matrix value and the inverse matrix.
전압 추정부(230)는 기산출한 공분산을 이용하여 상태변수인 전압을 추정한다. 즉, 전압 추정부(230)는 공분산 값을 이용하여 상태변수(전압) 변화량을 산출하여 상태변수를 갱신한다. 이때, 전압 추정부(230)는 기산출한 공분산 값을 이용하여 상태변수인 전압의 변화량을 산출하여 전압값을 갱신한다. 여기서, 전압 추정부(230)는 하기 수학식 4를 이용해 전압추정을 수행한다.The voltage estimator 230 estimates a voltage that is a state variable by using the calculated covariance. That is, the voltage estimator 230 updates the state variable by calculating the change amount of the state variable (voltage) using the covariance value. At this time, the voltage estimating unit 230 updates the voltage value by calculating a change amount of the voltage, which is a state variable, using the calculated covariance value. Here, the voltage estimator 230 performs voltage estimation using Equation 4 below.
수학식 4
Figure PCTKR2012007561-appb-M000004
Equation 4
Figure PCTKR2012007561-appb-M000004
여기서, Vi+1은 t+1 시점의 전압 계산값이고, Vi는 t 시점의 전압 계산값이다. G는 이득 행렬이고, H는 Hessian 행렬이고, T는 행렬의 치환(transpose)이고, W는 가중치 행렬이다.Here, V i + 1 is a calculated voltage at time t + 1, and V i is a calculated voltage at time t. G is a gain matrix, H is a Hessian matrix, T is a transpose of the matrix, and W is a weight matrix.
전압 추정부(230)는 기갱신한 전압값을 이용하여 변압기 탭(Tap)을 조정한다. 이때, 전압 추정부(230)는 하기의 수학식 5를 이용하여 변압기 탭 조정을 수행한다.The voltage estimator 230 adjusts the transformer tap by using the updated voltage value. At this time, the voltage estimator 230 performs transformer tap adjustment by using Equation 5 below.
수학식 5
Figure PCTKR2012007561-appb-M000005
Equation 5
Figure PCTKR2012007561-appb-M000005
여기서, TapIni는 추정 전의 해당 변압기의 탭 위치(Tap position)이고, TapEst는 추정 후의 해당 변압기의 탭 위치이다. VIni는 추정 전의 해당 변압기 2차측 전압이고, VEst는 추정 후의 해당 변압기 2차측 전압이다. TapStep는 해당 변압기의 탭(Tap)간 간격이다. 이때, 전압과 탭(Tap)간 간격의 단위는 PU이며, 계산결과는 소숫점 이하를 절삭하여 정수형(Interger)으로 나타낸다.Here, TapIni is a tap position of the transformer before estimation, and TapEst is a tap position of the transformer after estimation. VIni is the corresponding transformer secondary voltage before estimation and VEst is the corresponding transformer secondary voltage after estimation. TapStep is the gap between the taps of the transformer. At this time, the unit of the interval between the voltage and the tap (Tap) is a PU, the calculation result is represented by an integer (Interger) by cutting off the decimal point.
전압 추정부(230)는 추정한 전압이 수렴조건에 만족하면 전압 추정을 종료하고, 수렴조건을 만족하지 않으면 상술한 이득행렬의 구성 내지 공분산을 이용한 전압 추정을 재수행한다.When the estimated voltage satisfies the convergence condition, the voltage estimator 230 ends the voltage estimation. If the estimated voltage does not satisfy the convergence condition, the voltage estimator 230 re-performs the voltage estimation using the above-described gain matrix configuration or covariance.
구간부하 산출부(250)는 오류데이터 처리부(210) 및 전압 추정부(230)의 처리 결과를 근거로 구간부하를 산출한다. 이를 위해, 구간부하 산출부(250)는 오류데이터 처리부(210)에서 처리된 측정품질(QC)의 처리를 수행한다. 즉, 구간부하 산출부(250)는 DG 개폐기 정보를 처리하고, 선로의 가압 유무를 파악한다.The section load calculator 250 calculates the section load based on the processing results of the error data processor 210 and the voltage estimator 230. To this end, the section load calculator 250 performs the processing of the measurement quality QC processed by the error data processor 210. That is, the section load calculation unit 250 processes the DG switch information and determines whether the track is pressurized.
구간부하 산출부(250)는 측정품질과 구간손실을 이용하여 자동화 개폐기 그룹을 구성한다. 이때, DG 개폐기의 초기 구동 상황인 경우, 구간부하 산출부(250)는 DL 인출 차단기와 DG 개폐기의 측정치만을 사용하여 개폐기 그룹을 구성한다. 구간부하 산출부(250)는 초기 구동 상황이 아닌 경우 측정 품질을 이용하여 개폐기 그룹 구성에 참여할 개폐기를 선택한다. 즉, 구간부하 산출부(250)는 오류데이터 처리부(210)에서 처리된 측정 품질을 이용하여 개폐기 그룹 구성에 참여할 개폐기를 선택한다. 이때, 구간부하 산출부(250)는 모든 측정 품질이 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기(즉, 측정 품질이 "Good"인 개폐기)만을 사용하여 개폐기 그룹을 구성한다. 즉, 구간부하 산출부(250)는 전압 품질, 전류 품질, 위상 품질이 모두 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기만을 사용하여 개폐기 그룹을 구성한다.The section load calculator 250 configures an automatic switch group using the measurement quality and the section loss. In this case, in the initial driving situation of the DG switchgear, the section load calculation unit 250 configures the switchgear group using only the measured values of the DL withdrawal breaker and the DG switchgear. The section load calculator 250 selects a switch to participate in the switch group group by using the measured quality when the driving condition is not the initial driving situation. That is, the section load calculator 250 selects a switch to participate in the switch group group using the measurement quality processed by the error data processor 210. At this time, the section load calculation unit 250 configures the switch group by using only the switch (that is, the switch whose measurement quality is “Good”) in which all the measurement quality is set to be reliable by the error data processing unit 210. That is, the section load calculator 250 configures a switch group by using only the switch whose voltage quality, current quality, and phase quality are all set by the error data processor 210 to be reliable.
구간부하 산출부(250)는 구간손실을 산출한다. 이를 위해, 구간부하 산출부(250)는 개폐기의 전압을 전압 추정부(230)에서 추정한 추정 전압을 갱신한다. 구간부하 산출부(250)는 개폐기 측정전압을 오류데이터 처리시 공칭전압을 사용하던 것에서 전압 추정부(230)에서 추정한 추정 전압으로 대체하여 갱신한다. 구간부하 산출부(250)는 개폐기 그룹 손실(즉, 구간손실)을 산출한다. 즉, 구간부하 산출부(250)는 개폐기 구간의 유입 전류 및 유출 전류와 선로 임피던스를 이용하여 구간손실을 산출한다.The section load calculator 250 calculates a section loss. To this end, the section load calculator 250 updates the estimated voltage estimated by the voltage estimator 230 with the voltage of the switch. The interval load calculation unit 250 updates the switch measurement voltage by replacing the estimated voltage estimated by the voltage estimator 230 with the nominal voltage when the error data is processed. The section load calculator 250 calculates a switch group loss (that is, a section loss). That is, the section load calculator 250 calculates section loss using the inflow current and the outflow current and the line impedance of the switch section.
구간부하 산출부(250)는 각 그룹의 총부하를 산출한다. 즉, 구간부하 산출부(250)는 기산출한 개폐기 구간손실을 이용하여 개폐기 그룹 총 부하량을 산출한다.The section load calculator 250 calculates the total load of each group. That is, the section load calculation unit 250 calculates the switch group total load using the calculated switch section loss.
구간부하 산출부(250)는 개별 구간 부하량을 산출한다. 즉, 구간부하 산출부(250)는 기산출한 개폐기 그룹 총 부하량을 개별 부하에 분배하여 개별 구간 부하량을 산출한다.The section load calculator 250 calculates individual section loads. That is, the section load calculation unit 250 calculates the individual section load by distributing the calculated switch group total load to the individual loads.
조류계산 처리부(270)는 각 선로의 조류 정보를 산출한다. 조류계산 처리부(270)는 선로들의 Y행렬을 구성한다. 이를 위해, 조류계산 처리부(270)는 선로 임피던스 및 연계 개폐기를 근거로 영임피던스 선로(ZBR) 처리를 수행한다. 이때, 조류계산 처리부(270)는 역행렬 연산시 오류 발생을 최소화하기 위해서 선로 임피던스가 매우 작은 선로들과 변전소간 연계 개폐기를 영임피던스 선로로 처리한다. 조류계산 처리부(270)는 기준 모선을 선택한다. 이때, 조류계산 처리부(270)는 가장 큰 유효 전력 출력을 가지는 발전기 모선을 기준모선으로 선택한다. 조류계산 처리부(270)는 Y행렬을 구성하고, 반복연산에 사용할 각 모선의 유효전력 유입량 기준값 및 무효전력 유입량 기준값 및 제어량을 설정한다. 이때, 조류계산 처리부(270)는 발전기, 변압기 등의 제어설비의 제어량을 설정한다.The algal calculation processing unit 270 calculates algal information of each track. The algal calculation processing unit 270 constitutes the Y matrix of the tracks. To this end, the tidal current calculation unit 270 performs a zero impedance line (ZBR) process based on the line impedance and the associated switch. At this time, the tidal current calculation unit 270 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of errors in the inverse matrix calculation. The algal calculation processing unit 270 selects a reference bus bar. At this time, the tidal current calculation processing unit 270 selects a generator bus having the largest active power output as a reference bus. The tidal current calculation processing unit 270 configures the Y matrix, and sets the active power inflow reference value, the reactive power inflow reference value, and the control amount of each bus to be used for the iterative operation. At this time, the tidal current calculation processing unit 270 sets the control amount of the control equipment, such as a generator, a transformer.
조류계산 처리부(270)는 Jacobean 행렬을 생성한다. 조류계산 처리부(270)는 Jacobean 행렬의 J11 부분의 구조를 생성하고, 이를 Full Jacobean 행렬 형태로 재구성한다.The algal calculation processor 270 generates a Jacobean matrix. The algal calculation processing unit 270 generates the structure of the J11 part of the Jacobean matrix, and reconstructs it into a Full Jacobean matrix.
조류계산 처리부(270)는 기생성한 Jacobean 행렬의 역행렬을 산출한다. 이를 위해, 조류계산 처리부(270)는 전력 유입량 기준값과 계산치의 차이값을 산출한다. 즉, 조류계산 처리부(270)는 각 모선에서의 전력 유입량 기준값와 계산치의 차이값(즉, mismatch)를 산출한다. 조류계산 처리부(270)는 Full Jacobean 행렬을 이용하여 Jacobean 값을 생성하고, Jacobean 역행렬을 산출한다.The algal calculation processing unit 270 calculates an inverse of the parasitic Jacobean matrix. To this end, the algal calculation processing unit 270 calculates a difference value between the power input amount reference value and the calculated value. That is, the tidal current calculation processing unit 270 calculates a difference value (ie, mismatch) between the reference value of power inflow and the calculated value in each bus. The algal calculation processor 270 generates Jacobean values using the Full Jacobean matrix, and calculates the Jacobean inverse matrix.
조류계산 처리부(270)는 구간부하 산출부(250)에서 산출한 개별 구간 부하를 기준으로 오차가 최소화된(즉, 수렴범위에 들어온) 전압 및 위상을 산출한다. 즉, 조류계산 처리부(270)는 Jacobean 값과 Jacobean 역행렬 및 기산출한 차이값을 이용하여 상태변수 변화량을 산출한다. 이때, 조류계산 처리부(270)는 상태변수인 전압 크기 및 전압 위상의 변화량을 산출한다.The tidal current calculation processor 270 calculates a voltage and a phase in which an error is minimized (ie, entered into a convergence range) based on the individual section loads calculated by the section load calculator 250. That is, the algal calculation processing unit 270 calculates the state variable change amount using the Jacobean value, the Jacobean inverse matrix, and the calculated difference value. At this time, the tidal current calculation unit 270 calculates the amount of change in the voltage magnitude and voltage phase which are state variables.
조류계산 처리부(270)는 기산출한 전압 및 위상을 이용하여 각 선로의 조류 정보를 산출한다. 즉, 조류계산 처리부(270)는 기산출한 상태변수 변화량을 이용하여 상태변수를 갱신하고, 상태변수의 완전수렴 여부를 판단한다. 이때, 조류계산 처리부(270)는 상태변수의 완전수렴인 경우 기갱신한 상태변수(즉, 전압 크기 및 전압 위상)를 이용하여 선로 조류 및 손실량을 포함하는 조류 정보를 산출한다. 여기서, 조류계산 처리부(270)는 완전수렴이 아닌 경우 상술한 Jacobean 행렬의 역행렬을 산출 및 상태변수를 갱신을 반복수행한다.The algae calculating unit 270 calculates algae information of each line by using the calculated voltage and phase. That is, the algal calculation processor 270 updates the state variable by using the calculated state variable change amount, and determines whether the state variable is completely converged. At this time, the tidal current calculation processing unit 270 calculates tidal current information including the line tidal current and loss amount using the renewed state variables (ie, voltage magnitude and voltage phase) when the state variables are completely converged. Here, the algae calculation processing unit 270 repeatedly calculates the inverse of the above-described Jacobean matrix and updates the state variables when it is not in full convergence.
부하패턴 생성부(290)는 조류계산 처리부(270)의 조류 정보 산출 결과를 근거로 부하패턴을 생성한다. 즉, 부하패턴 생성부(290)는 조류계산 처리부(270)에서 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성한다. 여기서, 주중 및 주말 부하패턴은 계통 재구성, 계통 복구 및 보호협조 재정정 등에 사용된다. 이를 위해, 부하패턴 생성부(290)는 갱신 대상 부하패턴을 결정하고, 갱신 대상 시점의 부하패턴을 검출한다. 즉, 부하패턴 생성부(290)는 현재 구간부하데이터의 처리시점을 판별하여 1년 중 몇 주차의 주중 및 주말 패턴을 갱신해야하는지 결정한다. 부하패턴 생성부(290)는 현재 해당 시점의 부하패턴 데이터(1년중 해당 주의 주중/주말 부하패턴 데이터)를 저장 데이터베이스(300)로부터 검출한다.The load pattern generator 290 generates a load pattern based on the result of calculating the tidal current information of the tidal current calculation processor 270. That is, the load pattern generation unit 290 generates the weekday and weekend load patterns using the line tide and the loss amount calculated by the tide calculation processor 270. Here, weekday and weekend load patterns are used for grid reconstruction, grid recovery and protection coordination. To this end, the load pattern generator 290 determines the update target load pattern and detects the load pattern at the update target time. That is, the load pattern generator 290 determines the processing time point of the current section load data and determines how many parking weekdays and weekend patterns of the year should be updated. The load pattern generator 290 detects load pattern data (weekday / weekend load pattern data of the week during the year) from the storage database 300 at the present time.
부하패턴 생성부(290)는 기존 부하패턴과 현재값을 이용하여 부하패턴을 산출하고, 기저장된 부하패턴을 기산출한 부하패턴으로 갱신한다. 즉, 부하패턴 생성부(290)는 해당 부하패턴 데이터를 사용자가 지정한 비율에 의해 이전값과 현재값의 가중평균을 계산한다. 이를 통해, 부하패턴 생성부(290)는 부하패턴을 산출한다. 부하패턴 생성부(290)는 기산출한 부하패턴 데이터로 해당 시점의 저장 데이터베이스(300)의 데이터를 갱신한다.The load pattern generator 290 calculates a load pattern by using the existing load pattern and the current value, and updates the previously stored load pattern with the calculated load pattern. That is, the load pattern generator 290 calculates the weighted average of the previous value and the current value by the ratio specified by the user for the load pattern data. Through this, the load pattern generator 290 calculates a load pattern. The load pattern generator 290 updates the data of the storage database 300 at that time with the calculated load pattern data.
이하, 본 발명의 실시예에 따른 배전계통의 구간부하 추정 방법을 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 6은 본 발명의 실시예에 따른 배전계통의 구간부하 추정 방법을 설명하기 위한 흐름도이다. 도 7 내 도 10은 도 6의 오류데이터 처리 단계를 설명하기 위한 흐름도이고, 도 11 및 도 12는 도 6의 전압 추정 단계를 설명하기 위한 흐름도이다. 도 13 및 도 14는 도 6의 구간부하 산출 단계를 설명하기 위한 흐름도이고, 도 15 및 도 16은 도 6의 조류 정보 산출 단계를 설명하기 위한 흐름도이다. 도 17은 도 6의 부하패턴 생성 단계를 설명하기 위한 흐름도이다.Hereinafter, the section load estimation method of the power distribution system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 6 is a flowchart illustrating a section load estimation method of a distribution system according to an embodiment of the present invention. 7 and 10 are flowcharts for describing the error data processing step of FIG. 6, and FIGS. 11 and 12 are flowcharts for explaining the voltage estimation step of FIG. 6. 13 and 14 are flowcharts for describing the section load calculation step of FIG. 6, and FIGS. 15 and 16 are flowcharts for explaining the tidal flow information calculation step of FIG. 6. FIG. 17 is a flowchart for describing a load pattern generation step of FIG. 6.
먼저, 오류데이터 처리부(210)는 현장 데이터 처리 장치(32)로부터 수신한 취득데이터에 대한 오류 데이터 처리를 수행한다(S100). 즉, 도 7에 도시된 바와 같이, 오류데이터 처리부(210)는 현재 구동 상태를 판단한다(S111). 이때, 오류데이터 처리부(210)는 오류 데이터 처리의 초기 구동 상태(initial run)인지를 판단한다. 이때, 초기 구동 상태이면(S111; 예), 오류데이터 처리부(210)는 초기 자동화 개폐기 그룹을 구성하고, 각 그룹의 총부하를 산출한다(S113). 초기 구동 상태가 아니면(S111; 아니오), 오류데이터 처리부(210)는 전류 및 위상에 대한 일관성 검사(consistency check)를 수행한다(S115). 이후, 오류데이터 처리부(210)는 자동화 계폐기 그룹을 생성하고, 각 그룹의 총부하량을 산출한다(S117). 오류데이터 처리부(210)는 기생성한 자동화 개폐기 그룹 및 기산출한 각 그룹의 총부하량을 이용하여 개별 구간의 부하를 산출한다(S119).First, the error data processing unit 210 performs error data processing on the acquired data received from the field data processing apparatus 32 (S100). That is, as shown in FIG. 7, the error data processor 210 determines the current driving state (S111). At this time, the error data processing unit 210 determines whether the initial run state of the error data processing (initial run). At this time, if the initial drive state (S111; Yes), the error data processing unit 210 forms an initial automated switch group, and calculates the total load of each group (S113). If not in the initial driving state (S111; No), the error data processing unit 210 performs a consistency check (consistency check) for the current and phase (S115). Thereafter, the error data processing unit 210 generates an automated crock group and calculates a total load of each group (S117). The error data processing unit 210 calculates the load of the individual sections by using the generated automatic switch group and the total load of each group calculated (S119).
오류데이터 처리 단계(S100)를 첨부된 도면을 참조하여 더욱 상세하게 설명하면 아래와 같다. 도 8에 도시된 바와 같이, 오류데이터 처리부(210)는 배전계통에서 분산전원이 연결된 개폐기(이하, 'DG 개폐기'라 함)에 관련된 정보를 처리한다(S120). 즉, 오류데이터 처리부(210)는 배전계통에 분산전원이 존재하는 경우 분산전원에 연결된 개폐기와 선로를 탐색한다.Referring to the error data processing step (S100) in more detail with reference to the accompanying drawings as follows. As shown in FIG. 8, the error data processing unit 210 processes information related to a switch (hereinafter, referred to as a 'DG switch') connected to distributed power in the distribution system (S120). That is, the error data processing unit 210 searches for a switch and a line connected to the distributed power supply when there is a distributed power supply in the distribution system.
오류데이터 처리부(210)는 노드(node)와 개폐기 개폐 상태 정보(open/close)를 이용하여 선로의 가압 유무를 검출한다(S125). 이는, 배전계통의 선로들 중에서 비가압 상태인 선로들에 대한 구간부하 산출을 수행하지 않도록 하기 위함이다.The error data processor 210 detects whether a line is pressurized by using a node and switch open / close state information (S125). This is to prevent the section load calculation for the non-pressurized lines from among the lines of the distribution system.
초기 구동시(S130; 예), 오류데이터 처리부(210)는 DL 인출 차단기와 개폐기에 관련된 정보의 처리 결과를 이용하여 개폐기 그룹을 구성한다(S135). 즉, 오류데이터 처리부(210)는 DL 인출 차단기와 S120 단계에서 검출한 DG 개폐기만을 이용하여 개폐기 그룹을 구성한다.During initial driving (S130; YES), the error data processing unit 210 configures a switch group by using a result of processing information related to the DL draw breaker and the switch (S135). That is, the error data processor 210 configures a switch group by using only the DL drawer breaker and the DG switch detected in step S120.
초기 구동이 아닌 경우(S130; 아니오), 오류데이터 처리부(210)는 측정 품질을 이용하여 개폐기 그룹의 구성에 참여할 개폐기를 선택한다(S140). 즉, 오류데이터 처리부(210)는 측정 품질이 사용자 또는 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기를 선택한다.If not the initial drive (S130; No), the error data processing unit 210 selects the switch to participate in the configuration of the switch group using the measurement quality (S140). That is, the error data processing unit 210 selects the switch whose measurement quality is set to be reliable by the user or the error data processing unit 210.
오류데이터 처리부(210)는 선택된 개폐기들의 전압 품질, 전류 품질 및 위상 품질을 근거로 참여 대상 개폐기를 검출한다. 이때, 오류데이터 처리부(210)는 S140 단계에서 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모두 사용자 또는 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기를 참여 대상 개폐기로 검출한다. 오류데이터 처리부(210)는 검출한 참여 대상 개폐기들을 이용하여 개폐기 그룹을 구성한다(S150). 여기서, 개폐기 그룹을 구성하는 단계(즉, S150 단계)를 첨부된 도 9 및 도 10을 참조하여 더욱 상세하게 설명하면 아래와 같다.The error data processor 210 detects the participating target switch based on the voltage quality, current quality and phase quality of the selected switch. At this time, the error data processing unit 210 detects the switch which is set to be reliable by the user or the error data processing unit all of the voltage quality, current quality and phase quality among the switch selected in step S140 to the participating target switch. The error data processor 210 configures a switch group by using the detected participation target switches (S150). Here, the steps of configuring the switch group (that is, step S150) will be described in more detail with reference to FIGS. 9 and 10.
오류데이터 처리부(210)는 선로 및 변압기 번호를 추출한다(S151).The error data processing unit 210 extracts the line and the transformer number (S151).
오류데이터 처리부(210)는 추출한 선로의 처리여부를 판단한다. 이때, 오류데이터 처리부(210)는 추출한 선로의 처리여부 표시자(Flag)가 "1"이면 처리상태로 판단하고, "0"이면 미처리 상태로 판단한다.The error data processor 210 determines whether the extracted line is processed. At this time, the error data processing unit 210 determines that the processing status indicator (Flag) of the extracted line is "1", the processing state, and "0" determines that it is not processed.
추출한 선로가 미처리 상태이면(S152; 예), 오류데이터 처리부(210)는 추출한 선로 및 변압기를 N 그룹의 n번째 선로 및 n번째 개폐기로 할당한다(S153). 이를 위해, 오류데이터 처리부(210)는 그룹 번호(N)를 증가시키고, 추출한 선로 및 변압기 번호를 N 그룹의 n번째 선로 및 개폐기 번호로 할당한다.If the extracted line is in the unprocessed state (S152; YES), the error data processor 210 allocates the extracted line and the transformer to the n-th line and the n-th switch of the N group (S153). To this end, the error data processing unit 210 increases the group number N, and assigns the extracted line and transformer numbers to the n-th line and switch numbers of the N groups.
오류데이터 처리부(210)는 추출한 선로의 시작 노드(From Node) 및 끝 노드(To Node) 번호를 추출한다(S154). 즉, 오류데이터 처리부(210)는 추출한 선로의 전기적 절점인 시작 노드 및 끝 노드의 번호를 추출한다.The error data processing unit 210 extracts a starting node (From Node) and an ending node (To Node) number of the extracted line (S154). That is, the error data processor 210 extracts the number of the start node and the end node, which are electrical nodes of the extracted line.
추출한 시작 노드 및 끝 노드가 미처리 상태이면(S155; 예), 오류데이터 처리부(210)는 추출한 시작 노드 및 끝 노드를 노드 리스트(Node_List)에 추가한다(S156).If the extracted start node and the end node are in the unprocessed state (S155; YES), the error data processing unit 210 adds the extracted start node and the end node to the node list Node_List (S156).
오류데이터 처리부(210)는 추출한 시작 노드 및 끝 노드의 상태를 처리상태로 변경한다(S157). 즉, 오류데이터 처리부(210)는 추출한 시작 노드 및 끝 노드의 처리여부 표시자(Flag)를 "1"로 변경한다.The error data processing unit 210 changes the state of the extracted start node and end node to the processing state (S157). That is, the error data processing unit 210 changes the processing status indicator Flag of the extracted start node and end node to "1".
이후, 오류데이터 처리부(210)는 추출한 시작 노드 및 끝 노드의 선행지표(g_number_snodes)를 1씩 증가시킨다(S158).Thereafter, the error data processor 210 increments the leading indicators g_number_snodes of the extracted start node and end node by 1 (S158).
이때, 선행지표가 후행지표 이하이면(S159; 아니오), 오류데이터 처리부(210)는 검색된 자동화 개폐기와 선로 번호를 개폐기 리스트(SW_List)의 최종 차단기 그룹(Group_Last_CB) 및 최종 브렌치 그룹(Group_Last_BR)에 저장한다(S160). 이후, 오류데이터 처리부(210)는 상술한 S151 단계부터 재수행한다.At this time, if the leading indicator is less than the trailing indicator (S159; No), the error data processing unit 210 stores the retrieved automation switch and the line number in the final breaker group Group_Last_CB and the last branch group Group_Last_BR of the switch list SW_List. (S160). Thereafter, the error data processing unit 210 performs the operation again from the above-described step S151.
선행지표가 후행지표를 초과하면(S159; 예), 오류데이터 처리부(210)는 후행지표(g_number_pnodes)를 1 증가시킨다(S161).If the leading indicator exceeds the trailing indicator (S159; YES), the error data processor 210 increments the trailing indicator (g_number_pnodes) by one (S161).
오류데이터 처리부(210)는 노드 리스트에서 후행지표의 위치에 해당하는 노드를 추출하고(S162), 추출한 노드에 연결된 개폐기 리스트를 추출한다(S163).The error data processing unit 210 extracts a node corresponding to the position of the trailing indicator from the node list (S162), and extracts a switch list connected to the extracted node (S163).
오류데이터 처리부(210)는 추출한 개폐기 리스트에 포함된 자동화 개폐기를 개폐기 그룹 리스트(Group_SW_List)에 추가한다(S164).The error data processor 210 adds the automated switch included in the extracted switch list to the switch group list Group_SW_List (S164).
오류데이터 처리부(210)는 추출한 개폐기 리스트에 포함된 개폐기들 중에서 미처리 상태이고 미개방 상태인 개폐기의 상태를 처리 상태로 변경하고(S165), 반대편 노드를 노드 리스트(Node_List)에 추가한 후 선행지표를 증가시킨다(S166).The error data processing unit 210 changes the state of the switch which is in the unprocessed state and the unopened state among the switches included in the extracted switch list to the processed state (S165), adds the opposite node to the node list (Node_List), and then precedes the indicator. Increase (S166).
모든 개폐기 리스트에 대한 처리가 완료되면(S167; 예), 오류데이터 처리부(210)는 추출된 노드에 연결된 선로 리스트를 추출한다(S168).When the processing for all the switch list is completed (S167; YES), the error data processing unit 210 extracts the line list connected to the extracted node (S168).
이때, 오류데이터 처리부(210)는 미처리 상태인 선로를 처리상태로 변경하고(S169), 반대편 노드를 노드 리스트에 추가한 후 선행지표를 증가시킨다(S170).At this time, the error data processing unit 210 changes the unprocessed line to the processing state (S169), adds the opposite node to the node list, and increases the leading indicator (S170).
선로 및 변압기에 대한 처리가 완료되면(S171;예), 오류데이터 처리부(210)는 개폐기 그룹의 구성을 종료한다. 이때, 오류데이터 처리부(210)는 선로 및 변압기에 대한 처리가 완료되지 않은 경우 상술한 S151 단계부터 재수행한다.When the process for the line and the transformer is completed (S171; Yes), the error data processing unit 210 ends the configuration of the switch group. At this time, the error data processing unit 210 performs the process again from the above-described step S151 when the process for the line and the transformer is not completed.
오류데이터 처리부(210)는 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행한다(S170). 즉, 오류데이터 처리부(210)는 이전 수행에서 산출한 조류계산 결과를 근거로 위상 일관성 검사를 수행한다. 이때, 오류데이터 처리부(210)는 이전 수행에서 산출한 조류계산 결과를 기준으로 개폐기 그룹에 포함된 개폐기의 위상 상한(1~4상한)이 서로 다른 것을 파악하여 그 위상의 측정 품질을 "Bad"로 변경한다. 오류데이터 처리부(210)는 각 개폐기 그룹의 유입량 및 유출량을 비교하여 개폐기 그룹에 대한 전류 일관성 검사를 수행한다. 이때, 오류데이터 처리부(210)는 유입량이 유출량 미만이면 해당 개폐기 그룹의 모든 개폐기의 전류 측정 품질을 "Bad"로 변경한다.The error data processor 210 performs a phase consistency check and a current consistency check for each switch group (S170). That is, the error data processor 210 performs a phase consistency check based on the alga calculation result calculated in the previous execution. At this time, the error data processing unit 210 determines that the phase upper limit (1 to 4 upper limit) of the switch included in the switch group is different based on the tidal calculation result calculated in the previous execution, and determines the measurement quality of the phase as "Bad". Change to The error data processor 210 compares the inflow and outflow amounts of each switch group to perform a current consistency check for the switch group. At this time, the error data processing unit 210 changes the current measurement quality of all the switchgear of the corresponding switch group to "Bad" when the inflow amount is less than the outflow amount.
이때, 개폐기 그룹별 일관성 검사 결과 한 개라도 일관성 검사 위배로 검출되면(S175; 아니오), 오류데이터 처리부(210)는 상술한 S140 단계 내지 S170 단계를 반복 수행한다.At this time, if any of the consistency check results for each switch group is detected as a violation of the consistency check (S175; No), the error data processing unit 210 repeats the above steps S140 to S170.
DL 인출 차단기와 DG 개폐기를 이용한 개폐기 그룹 구성이 완료되거나, 일관성 검사 위배 미발생시(즉, S175; 예), 오류데이터 처리부(210)는 개폐기 그룹별 총부하량을 산출한다(S180). 이때, 오류데이터 처리부(210)는 개폐기 그룹의 유입량과 유출량의 편차를 이용하며, 전압 측정치의 경우 거의 모든 측정치에서 "Bad data"가 존재하는 것으로 가정하여, 공칭전압(nominal voltage)을 이용하여 개폐기 그룹별 총부하량을 산출한다.When the switch group configuration using the DL drawer breaker and the DG switch is completed, or when the consistency check violation does not occur (that is, S175; YES), the error data processing unit 210 calculates the total load amount for each switch group (S180). At this time, the error data processing unit 210 uses a deviation between the inflow and outflow amounts of the switch group, and in the case of voltage measurement, it is assumed that "Bad data" exists in almost all measurement values, and the switch is operated using a nominal voltage. Calculate the total load for each group.
오류데이터 처리부(210)는 기산출한 개폐기 그룹별 총부하량을 이용하여 개별 구간 부하를 분배한다(S185).The error data processor 210 distributes individual section loads by using the calculated total load for each switch group (S185).
전압 추정부(230)는 오류데이터 처리부(210)에서 산출된 초기 부하 데이터와 기타 측정치를 이용하여 전압 추정을 수행한다(S200). 즉, 도 11에 도시된 바와 같이, 전압 추정부(230)는 오류데이터 처리부(210)에서 계산된 초기 부하 데이터(즉, 개별 구간의 부하)와 기타 측정치(즉, 전압 및 변압기 탭)에 대한 전처리를 수행한다(S211). 전압 추정부(230)는 전처리된 초기 부하 데이터 및 기타 측정치를 이용하여 이득행렬(gain matrix)를 구성하고(S213), 전압 추정부(230)는 이득행렬을 이용하여 공분산(covariance)을 산출한다(S215). 전압 추정부(230)는 기산출한 공분산을 이용하여 상태변수인 전압을 추정한다(S217).The voltage estimator 230 performs voltage estimation using the initial load data and other measurements calculated by the error data processor 210 (S200). That is, as shown in FIG. 11, the voltage estimator 230 is configured to calculate initial load data (ie, loads of individual sections) and other measurements (ie, voltage and transformer taps) calculated by the error data processor 210. The pretreatment is performed (S211). The voltage estimator 230 constructs a gain matrix using the preprocessed initial load data and other measurements (S213), and the voltage estimator 230 calculates covariance using the gain matrix. (S215). The voltage estimator 230 estimates a voltage that is a state variable using the calculated covariance (S217).
추정한 전압이 수렴조건에 만족하면(S219; 예), 전압 추정부(230)는 전압 추정을 종료하고, 수렴조건을 만족하지 않으면 상술한 S213 단계 내지 S217 단계를 반복하여 전압 추정을 재수행한다.If the estimated voltage satisfies the convergence condition (S219; YES), the voltage estimator 230 ends the voltage estimation, and if the convergence condition is not satisfied, the above-described steps S213 to S217 are repeated to perform the voltage estimation again.
전압 추정 단계(S200)를 첨부된 도면을 참조하여 더욱 상세하게 설명하면 아래와 같다. 도 12에 도시된 바와 같이, 전압 추정부(230)는 선로 임피던스 및 연계 개폐기(Tie Switch)를 근거로 영임피던스 선로(ZBR) 처리를 수행한다(S220). 즉, 전압 추정부(230)는 역행렬 연산시 오류 발생을 최소화하기 위해서 선로 임피던스가 매우 작은 선로들과 변전소간 연계 개폐기를 영임피던스 선로로 처리한다.Referring to the voltage estimation step (S200) in more detail with reference to the accompanying drawings as follows. As shown in FIG. 12, the voltage estimator 230 performs a zero impedance line (ZBR) process based on a line impedance and a tie switch (S220). That is, the voltage estimator 230 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
전압 추정부(230)는 오류데이터 처리부(210)에서 산출한 개별 구간 부하 및 그 품질을 이용하여 표준편차를 산출하고, 가 관측성(Observability) 검사를 수행한다(S225).The voltage estimator 230 calculates a standard deviation using the individual section load calculated by the error data processor 210 and the quality thereof, and performs an observability test (S225).
전압 추정부(230)는 기준 모선을 선택하고(S230), 이득 행렬(Gain Matrix)을 형성한다(S235). 이후, 전압 추정부(230)는 기형성한 이득 행렬을 Full Matrix 형태로 확장하여 구조를 변경한다(S240). 전압 추정부(230)는 각 측정치의 전압 및 위상 편미분을 통해 이득 행렬의 값을 산출하고(S245), 이득 행렬의 역행렬을 생성한다(S250).The voltage estimator 230 selects a reference bus (S230) and forms a gain matrix (S235). Thereafter, the voltage estimator 230 changes the structure by extending the preformed gain matrix into a full matrix (S240). The voltage estimator 230 calculates a value of the gain matrix through the voltage and the phase partial derivative of each measurement (S245) and generates an inverse of the gain matrix (S250).
전압 추정부(230)는 기산출한 이득 행렬 값과 역행렬을 이용하여 공분산(Covariance) 값을 산출하고(S255), 공분산 값을 이용하여 상태변수(전압) 변화량을 산출(S260)하여 상태변수를 갱신한다(S265). 즉, 전압 추정부(230)는 기산출한 공분산 값을 이용하여 상태변수인 전압의 변화량을 산출하여 전압값을 갱신한다.The voltage estimator 230 calculates a covariance value using the calculated gain matrix value and the inverse matrix (S255), and calculates a state variable (voltage) change amount using the covariance value (S260). Update (S265). That is, the voltage estimator 230 updates the voltage value by calculating a change amount of the voltage, which is a state variable, by using the calculated covariance value.
이후, 전압 추정부(230)는 기갱신한 전압값을 이용하여 변압기 탭(Tap)을 조정한다(S270).Thereafter, the voltage estimator 230 adjusts the transformer tap Tap using the updated voltage value (S270).
전압값이 수렴범위에 들어오면(S275; 예), 전압 추정부(230)는 전압 추정을 종료한다. 전압값이 수렴범위에 들어오지 않으면(S275; 아니오), 전압 추정부(230)는 상술한 S245 단계부터 S270 단계를 반복 수행하여 변압기 탭 조정을 재수행한다.When the voltage value is within the convergence range (S275; YES), the voltage estimator 230 ends the voltage estimation. If the voltage value does not fall within the convergence range (S275; NO), the voltage estimator 230 repeats the above-described step S245 to step S270 to perform the transformer tap adjustment again.
구간부하 산출부(250)는 오류 검출 단계(S100) 및 전압 추정 단계(S200)의 결과를 근거로 구간부하를 산출한다(S300). 즉, 도 13에 도시된 바와 같이, 구간부하 산출부(250)는 오류데이터 처리 단계(S100)에서 처리된 측정품질(QC)의 처리를 수행하고(S312), 구간손실을 산출한다(S314). 구간부하 산출부(250)는 측정품질과 구간손실을 이용하여 자동화 개폐기 그룹을 구성하고, 각 그룹의 총량 부하를 산출한다(S316). 구간부하 산출부(250)는 기산출한 총부하량을 개별 부하에 분배하여 개별 부하를 산출한다(S318).The section load calculator 250 calculates the section load based on the results of the error detection step S100 and the voltage estimating step S200 (S300). That is, as shown in FIG. 13, the section load calculation unit 250 performs the processing of the measurement quality QC processed in the error data processing step S100 (S312) and calculates the section loss (S314). . The section load calculator 250 configures an automatic switch group using the measured quality and the section loss, and calculates the total amount load of each group (S316). The section load calculation unit 250 calculates the individual load by distributing the calculated total load to the individual loads (S318).
구간부하 산출 단계(S300)를 첨부된 도면을 참조하여 더욱 상세하게 설명하면 아래와 같다. 도 14에 도시된 바와 같이, 구간부하 산출부(250)는 DG 개폐기 정보를 처리하고(S320), 선로의 가압 유무를 파악한다(S325).The interval load calculation step S300 will be described in more detail with reference to the accompanying drawings. As shown in FIG. 14, the section load calculator 250 processes the DG switch information (S320), and determines whether the line is pressurized (S325).
초기 구동 상황인 경우(S330; 예), 구간부하 산출부(250)는 DL 인출 차단기와 DG 개폐기의 측정치만을 사용하여 개폐기 그룹을 구성한다(S335).If the initial driving situation (S330; Yes), the section load calculation unit 250 configures the switch group by using only the measurement value of the DL draw breaker and the DG switch (S335).
구간부하 산출부(250)는 초기 구동 상황이 아닌 경우 측정 품질을 이용하여 개폐기 그룹 구성에 참여할 개폐기를 선택한다(S340). 즉, 구간부하 산출부(250)는 오류데이터 처리부(210)에서 처리된 측정 품질을 이용하여 개폐기 그룹 구성에 참여할 개폐기를 선택한다.The section load calculator 250 selects a switch to participate in the switch group group using the measured quality when the driving condition is not the initial driving condition (S340). That is, the section load calculator 250 selects a switch to participate in the switch group group using the measurement quality processed by the error data processor 210.
이때, 구간부하 산출부(250)는 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기만을 사용하여 개폐기 그룹을 구성한다(S345). 즉, 구간부하 산출부(250)는 전압 품질, 전류 품질, 위상 품질이 모두 오류데이터 처리부(210)에 의해 신뢰성이 있는 것으로 설정된 개폐기만을 사용하여 개폐기 그룹을 구성한다.In this case, the section load calculator 250 configures a switch group by using only the switch set to be reliable by the error data processor 210 (S345). That is, the section load calculator 250 configures a switch group by using only the switch whose voltage quality, current quality, and phase quality are all set by the error data processor 210 to be reliable.
구간부하 산출부(250)는 개폐기의 전압을 전압 추정부(230)에서 추정한 추정 전압을 갱신한다(S350). 구간부하 산출부(250)는 개폐기 측정전압을 오류데이터 처리시 공칭전압을 사용하던 것에서 전압 추정부(230)에서 추정한 추정 전압으로 대체하여 갱신한다. The section load calculator 250 updates the estimated voltage estimated by the voltage estimator 230 with respect to the voltage of the switch (S350). The interval load calculation unit 250 updates the switch measurement voltage by replacing the estimated voltage estimated by the voltage estimator 230 with the nominal voltage when the error data is processed.
구간부하 산출부(250)는 개폐기 그룹 손실을 산출한다(S355). 즉, 구간부하 산출부(250)는 개폐기 구간의 유입 전류 및 유출 전류와 선로 임피던스를 이용하여 구간 손실을 산출한다.The section load calculation unit 250 calculates a switch group loss (S355). That is, the section load calculator 250 calculates section loss using the inflow current and the outflow current and the line impedance of the switch section.
구간부하 산출부(250)는 개폐기 그룹 총 부하량을 산출한다(S360). 즉, 구간부하 산출부(250)는 기산출한 개폐기 그룹 손실을 이용하여 개폐기 그룹 총 부하량을 산출한다.The section load calculation unit 250 calculates the switch group total load amount (S360). That is, the section load calculation unit 250 calculates the switch group total load using the calculated switch group loss.
구간부하 산출부(250)는 개별 구간 부하량을 산출한다(S365). 즉, 구간부하 산출부(250)는 기산출한 개폐기 그룹 총 부하량을 개별 부하에 분배하여 개별 구간 부하량을 산출한다.The section load calculator 250 calculates individual section loads (S365). That is, the section load calculation unit 250 calculates the individual section load by distributing the calculated switch group total load to the individual loads.
조류계산 처리부(270)는 각 선로의 조류 정보를 산출한다(S400). 즉, 도 15에 도시된 바와 같이, 조류계산 처리부(270)는 선로들의 Y행렬을 구성하고(S411), Jacobean 행렬을 생성한다(S413). 조류계산 처리부(270)는 기생성한 Jacobean 행렬의 역행렬을 산출하고(S415), 구간부하 산출부(250)에서 산출한 개별 구간 부하를 기준으로 오차가 최소화된(즉, 수렴범위에 들어온) 전압 및 위상을 산출한다(S417). 조류계산 처리부(270)는 기산출한 전압 및 위상을 이용하여 각 선로의 조류 정보를 산출한다(S419).The algal calculation processing unit 270 calculates algal information of each track (S400). That is, as shown in Figure 15, the algal calculation processing unit 270 constitutes the Y matrix of the lines (S411), and generates a Jacobean matrix (S413). The algae calculation unit 270 calculates the inverse of the parasitic Jacobean matrix (S415), and the voltage of which the error is minimized (ie, in the convergence range) based on the individual section loads calculated by the section load calculation unit 250. And the phase (S417). The algae calculation processing unit 270 calculates algae information of each line using the calculated voltage and phase (S419).
조류 정보 산출 단계(S400)를 첨부된 도면을 참조하여 더욱 상세하게 설명하면 아래와 같다. 도 16에 도시된 바와 같이, 조류계산 처리부(270)는 선로 임피던스 및 연계 개폐기를 근거로 영임피던스 선로(ZBR) 처리를 수행한다(S420). 즉, 조류계산 처리부(270)는 역행렬 연산시 오류 발생을 최소화하기 위해서 선로 임피던스가 매우 작은 선로들과 변전소간 연계 개폐기를 영임피던스 선로로 처리한다.Referring to the bird information calculating step (S400) in more detail with reference to the accompanying drawings as follows. As shown in FIG. 16, the tidal current calculation unit 270 performs a zero impedance line (ZBR) process based on the line impedance and the associated switch (S420). That is, the tidal current calculation processing unit 270 processes the link switch between the lines having a very small line impedance and the substation as a zero impedance line in order to minimize the occurrence of an error in the inverse matrix operation.
조류계산 처리부(270)는 기준 모선을 선택한다(S425). 이때, 조류계산 처리부(270)는 가장 큰 유효 전력 출력을 가지는 발전기 모선을 기준모선으로 선택한다.The algal calculation processing unit 270 selects a reference bus bar (S425). At this time, the tidal current calculation processing unit 270 selects a generator bus having the largest active power output as a reference bus.
조류계산 처리부(270)는 Y행렬을 구성하고(S430), 반복연산에 사용할 각 모선의 유효전력 유입량 기준값 및 무효전력 유입량 기준값 및 제어량을 설정한다(S435). 이때, 조류계산 처리부(270)는 발전기, 변압기 등의 제어설비의 제어량을 설정한다.The tidal current calculation processing unit 270 configures the Y matrix (S430), and sets the active power inflow reference value, the reactive power inflow reference value, and the control amount of each bus to be used for the iterative operation (S435). At this time, the tidal current calculation processing unit 270 sets the control amount of the control equipment, such as a generator, a transformer.
조류계산 처리부(270)는 Jacobean 행렬의 J11 부분의 구조를 생성하고(S440), 이를 Full Jacobean 행렬 형태로 재구성한다(S445).The algal calculation processing unit 270 generates the structure of the J11 portion of the Jacobean matrix (S440), and reconstructs it into a Full Jacobean matrix form (S445).
조류계산 처리부(270)는 전력 유입량 기준값과 계산치의 차이값을 산출한다(S450). 즉, 조류계산 처리부(270)는 각 모선에서의 전력 유입량 기준값와 계산치의 차이값(즉, mismatch)를 산출한다.The tidal current calculation processing unit 270 calculates a difference value between the power input amount reference value and the calculated value (S450). That is, the tidal current calculation processing unit 270 calculates a difference value (ie, mismatch) between the reference value of power inflow and the calculated value in each bus.
조류계산 처리부(270)는 Full Jacobean 행렬을 이용하여 Jacobean 값을 생성하고(S455), Jacobean 역행렬을 산출한다(S460).The algal calculation processor 270 generates Jacobean values using the Full Jacobean matrix (S455) and calculates the Jacobean inverse matrix (S460).
조류계산 처리부(270)는 Jacobean 값과 Jacobean 역행렬 및 기산출한 차이값을 이용하여 상태변수 변화량을 산출한다(910). 이때, 조류계산 처리부(270)는 상태변수인 전압 크기 및 전압 위상의 변화량을 산출한다.The algal calculation processing unit 270 calculates the change amount of the state variable by using the Jacobean value, the Jacobean inverse matrix, and the calculated difference value (910). At this time, the tidal current calculation unit 270 calculates the amount of change in the voltage magnitude and voltage phase which are state variables.
조류계산 처리부(270)는 기산출한 상태변수 변화량을 이용하여 상태변수를 갱신하고(S470), 상태변수의 완전수렴 여부를 판단한다(S475). 이때, 완전수렴이 아닌 경우(S475; 아니오), 조류계산 처리부(270)는 상술한 S450 단계 내지 S470 단계를 반복수행한다. 완전수렴인 경우(S475; 예), 기갱신한 상태변수를 이용하여 선로 조류 및 손실량을 포함하는 조류 정보를 산출한다(S480). The algal calculation processing unit 270 updates the state variable using the calculated state variable change amount (S470) and determines whether the state variable is completely converged (S475). At this time, if it is not a complete convergence (S475; No), the algal calculation processing unit 270 repeats the above-described step S450 to step S470. In the case of complete convergence (S475; Yes), tidal current information including track tide and loss amount is calculated using the updated state variable (S480).
부하패턴 생성부(290)는 조류계산 처리부(270)의 조류 정보 산출 결과를 근거로 부하패턴을 생성한다(S500). 즉, 부하패턴 생성부(290)는 조류계산 처리부(270)에서 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성한다. 여기서, 주중 및 주말 부하패턴은 계통 재구성, 계통 복구 및 보호협조 재정정 등에 사용된다.The load pattern generator 290 generates a load pattern based on the result of calculating the tidal current information of the tidal current processor 270 (S500). That is, the load pattern generation unit 290 generates the weekday and weekend load patterns using the line tide and the loss amount calculated by the tide calculation processor 270. Here, weekday and weekend load patterns are used for grid reconstruction, grid recovery and protection coordination.
부하패턴 생성 단계(S500)를 첨부된 도면을 참조하여 더욱 상세하게 설명하면 아래와 같다. 도 17에 도시된 바와 같이, 부하패턴 생성부(290)는 갱신 대상 부하패턴을 결정한다(S520). 즉, 부하패턴 생성부(290)는 현재 구간부하데이터의 처리시점을 판별하여 1년 중 몇 주차의 주중 및 주말 패턴을 갱신해야하는지 결정한다.Referring to the load pattern generation step (S500) in more detail with reference to the accompanying drawings as follows. As shown in FIG. 17, the load pattern generator 290 determines an update target load pattern (S520). That is, the load pattern generator 290 determines the processing time point of the current section load data and determines how many parking weekdays and weekend patterns of the year should be updated.
부하패턴 생성부(290)는 갱신 대상 시점의 부하패턴을 검출한다(S540). 즉, 부하패턴 생성부(290)는 현재 해당 시점의 부하패턴 데이터(1년중 해당 주의 주중/주말 부하패턴 데이터)를 저장 데이터베이스(300)로부터 검출한다.The load pattern generator 290 detects a load pattern at an update target time point (S540). That is, the load pattern generator 290 detects load pattern data (weekday / weekend load pattern data of the week during the year) from the storage database 300 at the present time.
부하패턴 생성부(290)는 기존 부하패턴과 현재값을 이용하여 부하패턴 산출한다(S560). 즉, 부하패턴 생성부(290)는 해당 부하패턴 데이터를 사용자가 지정한 비율에 의해 이전값과 현재값의 가중평균을 계산한다. 이를 통해, 부하패턴 생성부(290)는 부하패턴을 산출한다.The load pattern generator 290 calculates a load pattern using the existing load pattern and the current value (S560). That is, the load pattern generator 290 calculates the weighted average of the previous value and the current value by the ratio specified by the user for the load pattern data. Through this, the load pattern generator 290 calculates a load pattern.
부하패턴 생성부(290)는 기저장된 부하패턴을 기산출한 부하패턴으로 갱신한다(S580). 즉, 부하패턴 생성부(290)는 기산출한 부하패턴 데이터로 해당 시점의 저장 데이터베이스(300)의 데이터를 갱신한다.The load pattern generator 290 updates the previously stored load pattern with the calculated load pattern (S580). That is, the load pattern generation unit 290 updates the data of the storage database 300 at that time with the calculated load pattern data.
이하, 본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치 및 방법을 이용한 부하 추정 시뮬레이션 결과를 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. Hereinafter, a load estimation simulation result using the apparatus and method for estimating the interval load of a distribution system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예에 따른 배전계통의 구간부하 추정 장치 및 방법의 기술적 개선점 및 효과를 입증하기 위해 실제 계통 데이터를 활용하여 추정 능력을 검증한다. 검증을 위해 사용한 데이터는 한전 제주직할지사 관할의 65개 D/L에 대한 실측 데이터를 사용한다. D/L 인출단의 실측데이터를 이용하여 랜덤하게 부하를 분포시켜 조류계산을 통해 개폐기 측정치를 산출하고 이를 참값으로 이용하여 시험을 수행한다. 하기의 표 2에 시험에 사용된 계통 데이터와 그 가공방법을 설명한다.In order to prove the technical improvements and effects of the apparatus and method for estimating the interval load of the distribution system according to the embodiment of the present invention, the estimation capability is verified using actual system data. The data used for verification uses actual data for 65 D / L of KJC jurisdiction. The load is randomly distributed using the measured data of the D / L lead-out end, the switch measurement is calculated through algae calculation, and the test is performed using the true value. Table 2 below describes the system data used in the test and its processing method.
표 2
번호 항목 설명
1 대상 계통 한전 제주직할지사 관할 7개 변전소 및 산하 65개 D/L 데이터
2 시험 데이터 각 D/L별 2011년 11월 2주간의 1분단위의 동기 데이터 사용(전력거래소의 EMS에 보관중인 D/L 측정 데이터사용함)
3 초기 자동화 개폐기측정치 산정 방식 1)각 D/L별 측정 데이터(P/Q)를 각 D/L의 Dump 부하로 보고 세부 부하에 분배하여 조류계산 수행함2)조류계산 결과 자동화 개폐기의 관통 P/Q 조류량과 전압을 이용하여 전류 및 위상 계산
4 분산전원 출력량의 산정 1)모두 4대의 분산전원을 추가(김녕 2대, 송당 2대)하고 SVR을 2대 추가함2)분산전원의 출력량이 5분단위로 25%씩 변동되는 상황을 모의함
5 시험 데이터 Set의 작성 위 3과 4항의 결과를 이용하여 각 5분마다의 측정데이터 참값 set을 준비함
6 Bad data test 수행 1)전류 및 위상 값의 bad data 주입 시험(관찰시험): 특정 개소의 데이터를 입력하여 관찰함2)전류 및 위상 QC bad data 주입 시험(관찰시험): 특정 개소의 QC 값을 입력하여 관찰함3)Random Noise 주입 시험: Random 개소의 전압/전류/위상 데이터에 Random Noise를 주입하여 시험함
TABLE 2
number Item Explanation
One Target line 7 substations under KEPCO Jeju branch office and 65 D / L data
2 Test data 1-minute synchronous data for 2 weeks in November 2011 for each D / L (using D / L measurement data stored in EMS of power exchange)
3 Initial Automated Switch Measurement Method 1) The measurement data (P / Q) for each D / L is reported as the dump load of each D / L and distributed to the detailed load to perform algae calculation. Calculate Current and Phase
4 Calculation of Distributed Power Output 1) Add 4 distributed power sources (2 at Gimnyeong, 2 per Songd) and add 2 SVRs. 2) Simulate a situation where the output of distributed power varies by 25% in 5 minute increments.
5 Creating a Test Data Set Prepare the true data set for every 5 minutes by using the result of 3 and 4 above.
6 Bad data test 1) Bad data injection test (observation test) of current and phase value: observation by inputting data of specific location 2) Current and phase QC bad data injection test (observation test): observation by inputting QC value of specific location 3) Random noise injection test: Test by injecting random noise into voltage / current / phase data of random location
1) Bad 전류값 주입시험 결과1) Bad current value injection test result
제주지사 직할 시험대상 계통 중에 개폐기 252번에 bad data를 삽입하였고 그 추정 추이를 관찰한다. 아래 표3과 같이, 개폐기 252번의 경우 측정 참값은 Bad data was inserted in switch 252 of the test subject to be operated in Jeju branch and observe the estimated trend. As shown in Table 3 below, in case of switch 252, the true value is
표 3
Figure PCTKR2012007561-appb-T000001
TABLE 3
Figure PCTKR2012007561-appb-T000001
그 결과 아래 표4와 같이 개폐기 252에서의 추정값이 도출되었다.As a result, the estimated value at switch 252 was derived as shown in Table 4 below.
표 4
Figure PCTKR2012007561-appb-T000002
Table 4
Figure PCTKR2012007561-appb-T000002
이처럼, 본 발명에 따른 배전계통의 구간부하 추정 장치 및 방법을 이용한 시험결과 참값과 근접한 값을 추정하며 인근의 자동화 개폐기 측정치의 추정에도 문제가 없음을 알 수 있다.As such, the test results using the apparatus and method for estimating the interval load of the distribution system according to the present invention estimate the value close to the true value, and it can be seen that there is no problem in the estimation of the measurement value of the automatic switchgear nearby.
2) Bad 위상값 주입시험 결과2) Bad phase value injection test result
개폐기 252번과 개폐기 595번에 bad 위상 data를 삽입하였고 그 추정 추이를 관찰한다. 아래 표 5와 같이, 개폐기 252번의 경우 측정 참값은 182도이며 92도의 bad data를 입력한다. The bad phase data were inserted into switch 252 and switch 595 and the estimated trend was observed. As shown in Table 5 below, in case of switch 252, the true value is 182 degrees and the bad data of 92 degrees is input.
표 5
Figure PCTKR2012007561-appb-T000003
Table 5
Figure PCTKR2012007561-appb-T000003
이처럼, 본 발명에 따른 배전계통의 구간부하 추정 장치 및 방법을 이용한 시험결과 참값에 근접한 값을 추정하며 인근의 자동화 개폐기 측정치의 추정에도 문제가 없음을 알 수 있다.As such, the test results using the apparatus and method for estimating the interval load of the distribution system according to the present invention estimate the value close to the true value, and it can be seen that there is no problem in estimating the measured value of the automatic switchgear nearby.
아래 표 6과 같이, 개폐기 595번의 경우 측정 참값은 17.4도이며 197.4도의 bad data를 입력하였다. 본 발명에 따른 배전계통의 구간부하 추정 장치 및 방법을 이용한 시험결과 참값에 근접한 값을 추정하며 인근의 자동화 개폐기 측정치의 추정에도 문제가 없음을 알 수 있다.As shown in Table 6 below, in case of switch 595, the true value was 17.4 degrees and 197.4 degrees of bad data was input. As a result of the test using the apparatus and method for estimating the section load of the distribution system according to the present invention, a value close to the true value can be estimated, and it can be seen that there is no problem in the estimation of the measurement value of the automatic switchgear nearby.
표 6
Figure PCTKR2012007561-appb-T000004
Table 6
Figure PCTKR2012007561-appb-T000004
3) 전압/전류/위상 측정치에 Random Noise를 적용한 상황3) The situation where random noise is applied to voltage / current / phase measurement
도 18 및 도 19는 모든 자동화개폐기의 전압, 전류 및 위상 측정치에 Random 10% 변동치를 적용하여 시험한 결과를 도시한 도면이다. 이때, 도 18은 전압 추정치를 도시한 도면이고, 도 19는 전류 추정치를 도시한 도면이다.18 and 19 are diagrams showing the results of testing the random 10% change in the voltage, current and phase measurements of all automatic switchgear. 18 is a diagram illustrating a voltage estimate, and FIG. 19 is a diagram illustrating a current estimate.
도 20 및 도 21은 모든 자동화개폐기의 전압, 전류 및 위상 측정치에 Random 20% 변동치를 적용하여 시험한 결과를 도시한 도면이다. 이때, 도 20은 전압 추정치를 도시한 도면이고, 도 21은 전류 추정치를 도시한 도면이다.20 and 21 are diagrams showing the results of testing by applying a random 20% change value to the voltage, current and phase measurements of all automatic switchgear. 20 is a diagram illustrating a voltage estimate, and FIG. 21 is a diagram illustrating a current estimate.
위의 기술적 검증에서도 볼 수 있는 것처럼, 본 발명에 따른 배전계통의 구간부하 추정 장치 및 방법은 전압, 전류 및 위상 오류에 대한 검출과 대체를 통해 기존 방식이 가지던 가장 큰 취약점인 오류데이터 처리문제를 극복하였다. 위 그림에서 보는 바와 같이 20%의 Random Noise에 대해서도 참값을 추종하는 결과를 확인할 수 있다. 또한 방향성을 가지는 유무효 전력 단위의 부하 추정을 수행함으로써 앞서 설명한 배전계통의 해석 및 제어에 직접적으로 사용될 수 있으며 부하패턴을 생성하므로 배전계획 등에도 활용이 가능하다. 향후 본 발명의 제안 시스템이 채용되면 구간부하의 좀더 정확한 파악을 통해 배전계통 운영의 효율성 및 경제성을 확보하는데 기여할 것이다.As can be seen from the above technical verification, the section load estimation apparatus and method of the distribution system according to the present invention is the error data processing problem, which is the biggest vulnerability of the conventional method through detection and replacement of voltage, current and phase errors Overcome As shown in the above figure, we can see the result of following the true value even for the random noise of 20%. In addition, by performing the load estimation of the directional reactive power unit can be used directly in the analysis and control of the above-described distribution system, it can be used in power distribution planning, etc. by generating a load pattern. If the proposed system of the present invention is employed in the future, it will contribute to securing the efficiency and economics of the distribution system operation through more accurate grasp of the section load.
이처럼, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 배전계통의 오류데이터 처리 방식의 부재를 극복하여 좀더 정확한 부하 파악 및 데이터 생성이 가능한 효과가 있다.As described above, the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the error data processing method of the distribution system of the existing system, thereby enabling more accurate load identification and data generation.
또한, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 부하 패턴의 부재를 극복하여 부등율을 고려한 현실적인 부하데이터의 공급을 통해 계통복구, 계통재구성 및 보호협조 정정 등을 현실화할 수 있는 효과가 있다.In addition, the section load estimation device and method of the distribution system can overcome the absence of the load pattern of the existing system to realize the system recovery, system reconfiguration and protection coordination correction through the supply of realistic load data considering the inequality rate There is.
배전계통의 구간부하 추정 장치 및 방법은 전압, 전류 및 위상을 고려한 유무효 전력 단위의 부하산정이 가능해질 것이며 분산전원의 출력에 의한 영향을 고려한 부하 추정이 가능한 효과가 있다. 그에 따라, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 전류데이터만을 이용한 부하 산정은 분산전원 출력을 반영하지 못한다는 문제점을 해결할 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system will be able to calculate the load of the effective power unit considering the voltage, current and phase, and the load estimation considering the effect of the output of the distributed power supply. Accordingly, the apparatus and method for estimating the interval load of the distribution system can solve the problem that the load calculation using only the current data of the existing system does not reflect the distributed power output.
또한, 배전계통의 구간부하 추정 장치 및 방법은 기존시스템이 가지는 손실 고려의 부재를 극복하여 구간 손실을 고려한 현실적인 부하데이터의 산정이 가능한 효과가 있다.In addition, the apparatus and method for estimating the interval load of the distribution system can overcome the absence of the loss consideration of the existing system, and thus it is possible to calculate realistic load data considering the interval loss.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 계통 고장시 좀더 정확한 선로 여유용량 산출이 가능함으로써 계통복구를 위한 선로 신설 및 기기 신설을 줄일 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system can more accurately calculate the line margin in the event of a system failure through more accurate section load calculation, thereby reducing the number of new lines and new equipment for system recovery.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 계통계획시 또는 계통 재구성시 선로 신설 및 기기 신설의 경제성을 확보할 수 있는 효과가 있다.The section load estimating apparatus and method of the distribution system can secure the economic feasibility of new line construction and equipment construction at the time of system planning or system reconstruction through more accurate section load estimation.
배전계통의 구간부하 추정 장치 및 방법은 좀더 정확한 구간부하 산정을 통해 보호협조 정정을 현실화함으로써 보호기기 신설에 대한 경제성을 확보할 수 있는 효과가 있다.The device and method for estimating the section load of the distribution system can secure economic feasibility for new protection equipment by realizing protection coordination through more accurate section load calculation.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.Although a preferred embodiment according to the present invention has been described above, it is possible to modify in various forms, and those skilled in the art to various modifications and modifications without departing from the claims of the present invention It is understood that it may be practiced.

Claims (20)

  1. 현장 데이터 처리 장치로부터 수신한 취득데이터의 오류 데이터를 처리하여 개별 구간 부하를 산출하는 오류데이터 처리부; An error data processing unit for processing the error data of the acquired data received from the field data processing apparatus to calculate an individual section load;
    상기 오류데이터 처리부에서 산출한 개별 구간 부하를 근거로 전압을 추정하는 전압 추정부;A voltage estimating unit estimating a voltage based on the individual section loads calculated by the error data processing unit;
    상기 오류데이터 처리부에서 산출한 개별 구간 부하 및 상기 전압 추정부에서 추정한 전압을 근거로 개별 구간 부하를 산출하는 구간부하 산출부;A section load calculator configured to calculate the individual section load based on the individual section load calculated by the error data processor and the voltage estimated by the voltage estimator;
    상기 구간부하 산출부에서 산출한 개별 구간 부하를 근거로 전압 및 위상을 산출하고, 상기 산출한 전압 및 위상을 근거로 각 선로의 조류 정보를 산출하는 조류계산 처리부; 및A tidal current calculation unit calculating a voltage and a phase based on the individual section loads calculated by the section load calculation unit, and calculating tidal current information of each line based on the calculated voltage and phase; And
    상기 조류계산 처리부에서 산출한 조류 정보를 근거로 부하패턴을 생성하는 부하패턴 생성부를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.And a load pattern generator for generating a load pattern based on the tidal current information calculated by the tidal current calculating unit.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 오류데이터 처리부는,The error data processing unit,
    초기 구동시 DL 인출 차단기와 개폐기 처리 결과를 이용하여 개폐기 그룹을 구성하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.An apparatus for estimating the load of a distribution system according to claim 8, wherein the switch group is configured by using a DL draw breaker and a switch processing result.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 오류데이터 처리부는,The error data processing unit,
    초기 구동이 아닌 경우 측정 품질을 이용하여 개폐기 그룹을 구성하되, 측정 품질이 사용자 또는 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 선택하고, 상기 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모두 사용자 또는 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 이용하여 개폐기 그룹을 구성하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.If it is not the initial driving, configure the switch group using the measurement quality, but select the switches whose measurement quality is set to be reliable by the user or the error data processing unit, and among the selected switches, voltage quality, current quality and phase quality All of the apparatus for estimating the load distribution of a distribution system using switchgears which are all set as reliable by a user or the error data processor.
  4. 청구항 2 또는 청구항 3에 있어서,The method according to claim 2 or 3,
    상기 오류데이터 처리부는,The error data processing unit,
    상기 구성한 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행하여 오류데이터를 처리하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.Section load estimation device of the distribution system characterized in that for processing the error data by performing the phase consistency check and the current consistency check for each configured switch group.
  5. 청구항 2 또는 청구항 3에 있어서,The method according to claim 2 or 3,
    상기 오류데이터 처리부는,The error data processing unit,
    상기 구성한 개폐기 그룹 각각의 유입량 및 유출량의 편차를 이용하여 개폐기 그룹별 총 부하를 산출하되, 공칭전압을 이용하여 개폐기 그룹별 총 부하를 산출하고, Computing the total load for each switch group by using the deviation of the inflow and outflow amount of each of the configured switch group, using the nominal voltage to calculate the total load for each switch group,
    상기 산출한 개폐기 그룹별 총 부하를 개별 구간 부하에 분배하여 개별 구간 부하를 산출하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.And calculating the individual section load by distributing the calculated total load for each switch group to the individual section loads.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 전압 추정부는,The voltage estimator,
    상기 오류데이터 처리부에서 산출한 개별 구간 부하와 전압 및 변압기 탭에 대한 전처리를 수행하여 이득행렬을 구성하고, 상기 오류데이터 처리부에서 산출한 개별 구간 부하 및 품질을 근거로 표준편차를 산출하여 관측성 검사를 수행하고, 상기 구성한 이득행렬 및 상기 이득행렬의 역행렬을 생성하여 공분산을 산출하고, 상기 산출한 공분산을 이용하여 전압 추정을 수행하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.Preprocess the individual section load and voltage and transformer tap calculated by the error data processor to construct a gain matrix, and calculate the standard deviation based on the individual section load and quality calculated by the error data processor to observe the observability And calculating the covariance by generating the configured gain matrix and the inverse of the gain matrix, and performing voltage estimation using the calculated covariance.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 구간부하 산출부는,The section load calculation unit,
    측정품질 및 구간손실을 근거로 자동화 개폐기 그룹을 구성하고, 상기 자동화 개폐기 그룹의 유입 전류와 유출 전류 및 선로 임피던스를 근거로 구간 손실을 산출하고,Comprising the automatic switch group based on the measurement quality and section loss, calculate the section loss based on the inflow current and the outgoing current and the line impedance of the automation switch group,
    상기 산출한 구간 손실을 근거로 상기 자동화 개폐기 그룹의 총 부하량을 산출하고, 상기 총 부하량을 개별 부하에 분배하여 개별 구간 부하를 산출하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.And calculating the total load of the automation switch group based on the calculated section loss and distributing the total load to the individual loads to calculate the individual section loads.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 구간부하 산출부는,The section load calculation unit,
    초기 구동시 DL 인출 차단기와 DG 개폐기의 측정치를 이용하여 개폐기 그룹을 구성하고,In the initial operation, the switch group is formed by using the measurement values of the DL drawer breaker and the DG switch.
    초기 구동이 아닌 경우 측정 품질이 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기만으로 개폐기 그룹을 구성하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.In the case of not the initial drive, the load distribution unit of the distribution system, characterized in that for configuring the switch group only the switch set the measurement quality is reliable by the error data processing unit.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 조류계산 처리부는,The algal calculation processing unit,
    각 선로의 전력 유입량 기준값과 계산치의 차이값을 산출하고, 상기 구간부하 산출부에서 산출한 개별 구간 부하와 jacobean 값과 jacobean 역행렬 및 상기 산출한 차이값을 근거로 전압 크기 및 전압 위상의 변화량을 산출하고, 상기 산출한 전압 크기 및 전압 위상을 근거로 각 선로의 선로 조류 및 손실량을 포함하는 조류 정보를 산출하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.The difference between the reference value and the calculated power inflow reference value of each line is calculated, and the variation in voltage magnitude and voltage phase is calculated based on the individual section load, the jacobean value, the jacobean inverse matrix, and the calculated difference value calculated by the section load calculation unit. And tide information including line tide and loss amount of each line based on the calculated voltage magnitude and voltage phase.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 부하패턴 생성부는,The load pattern generator,
    상기 조류계산 처리부에서 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성하는 것을 특징으로 하는 배전계통의 구간부하 추정 장치.Section load estimation device of the distribution system, characterized in that for generating the week and weekend load pattern using the line tide and loss amount calculated by the tide calculation processing unit.
  11. 오류데이터 처리부에 의해, 현장 데이터 처리 장치로부터 수신한 취득데이터의 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계; Calculating, by the error data processing unit, the error data of the acquired data received from the field data processing apparatus to calculate the individual section loads;
    전압 추정부에 의해, 상기 산출한 개별 구간 부하를 근거로 전압을 추정하는 단계;Estimating a voltage based on the calculated individual section load by a voltage estimating unit;
    구간부하 산출부에 의해, 상기 산출한 개별 구간 부하 및 상기 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계;Calculating, by the section load calculator, the individual section loads based on the calculated individual section loads and the estimated voltage;
    조류계산 처리부에 의해, 상기 개별 구간 부하 및 상기 추정한 전압을 근거로 산출한 개별 구간 부하를 근거로 전압 및 위상을 산출하고, 상기 산출한 전압 및 위상을 근거로 각 선로의 조류 정보를 산출하는 단계; 및A current calculation processing unit calculates a voltage and a phase based on the individual section load and the individual section load calculated based on the estimated voltage, and calculates the current information on each line based on the calculated voltage and phase. step; And
    부하패턴 생성부에 의해, 상기 조류계산 처리부에서 산출한 조류 정보를 근거로 부하패턴을 생성하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And a load pattern generating unit, generating a load pattern based on the tidal current information calculated by the tidal current calculating unit.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는,The step of calculating the individual section load by processing the error data,
    상기 오류데이터 처리부에 의해, 배전계통의 현재 구동 상태를 근거로 개폐기 그룹을 생성하는 단계를 포함하되,Generating, by the error data processing unit, a switch group based on a current driving state of a distribution system;
    상기 개폐기 그룹을 생성하는 단계에서는, 초기 구동시 DL 인출 차단기와 개폐기 처리 결과를 이용하여 개폐기 그룹을 구성하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.In the generating of the switch group, the load distribution estimating method of the distribution system, characterized in that for configuring the switch group by using the DL draw breaker and the switch processing results.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는,The step of calculating the individual section load by processing the error data,
    상기 오류데이터 처리부에 의해, 초기 구동이 아닌 경우 측정 품질을 이용하여 개폐기 그룹을 구성하는 단계를 포함하되,By the error data processing unit, if it is not the initial drive comprises the step of configuring a switch group using the measurement quality,
    상기 개폐기 그룹을 구성하는 단계는,Configuring the switch group,
    상기 오류데이터 처리부에 의해, 측정 품질이 사용자 또는 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 선택하는 단계; 및Selecting, by the error data processing unit, switchgears whose measurement quality is set to be reliable by a user or the error data processing unit; And
    상기 오류데이터 처리부에 의해, 상기 선택된 개폐기들 중에서 전압 품질, 전류 품질 및 위상 품질이 모두 사용자 또는 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기들을 이용하여 개폐기 그룹을 구성하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And configuring, by the error data processing unit, switch groups using switchgears of which voltage quality, current quality and phase quality are all set to be reliable by the user or the error data processing unit among the selected switches. Section load estimation method of the distribution system.
  14. 청구항 12 또는 청구항 13에 있어서,The method according to claim 12 or 13,
    상기 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는,The step of calculating the individual section load by processing the error data,
    상기 오류데이터 처리부에 의해, 상기 구성한 개폐기 그룹별로 위상 일관성 검사 및 전류 일관성 검사를 수행하여 오류데이터를 처리하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And a step of processing the error data by performing a phase consistency check and a current consistency check for each configured switch group by the error data processor.
  15. 청구항 12 또는 청구항 13에 있어서,The method according to claim 12 or 13,
    상기 오류 데이터를 처리하여 개별 구간 부하를 산출하는 단계는,The step of calculating the individual section load by processing the error data,
    상기 오류데이터 처리부에 의해, 상기 구성한 개폐기 그룹 각각의 유입량 및 유출량의 편차를 이용하여 개폐기 그룹별 총 부하를 산출하는 단계; 및Calculating, by the error data processing unit, the total load for each switch group by using deviations of the inflow and outflow amounts of the configured switch groups; And
    상기 오류데이터 처리부에 의해, 상기 산출한 개폐기 그룹별 총 부하를 개별 구간 부하에 분배하여 개별 구간 부하를 산출하는 단계를 포함하되,Comprising the step of calculating the individual section load by distributing the calculated total load for each switch group to the individual section load by the error data processing unit,
    상기 개폐기 그룹별 총 부하를 산출하는 단계에서는 공칭전압을 이용하여 개폐기 그룹별 총 부하를 산출하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.In calculating the total load for each switch group, the section load estimation method of the distribution system, characterized in that for calculating the total load for each switch group using a nominal voltage.
  16. 청구항 11에 있어서,The method according to claim 11,
    상기 전압을 추정하는 단계는,Estimating the voltage,
    상기 전압 추정부에 의해, 상기 산출한 개별 구간 부하와 전압 및 변압기 탭에 대한 전처리를 수행하여 이득행렬을 구성하는 단계;Configuring a gain matrix by performing the preprocessing on the calculated individual section load, the voltage, and the transformer tap by the voltage estimating unit;
    상기 전압 추정부에 의해, 상기 산출한 개별 구간 부하 및 품질을 근거로 표준편차를 산출하여 관측성 검사를 수행하는 단계;Performing a observability check by calculating a standard deviation based on the calculated individual section load and quality by the voltage estimating unit;
    상기 전압 추정부에 의해, 상기 구성한 이득행렬 및 상기 이득행렬의 역행렬을 생성하여 공분산을 산출하는 단계; 및Calculating a covariance by generating the configured gain matrix and the inverse of the gain matrix by the voltage estimating unit; And
    상기 전압 추정부에 의해, 상기 산출한 공분산을 이용하여 전압 추정을 수행하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And performing a voltage estimation by the voltage estimating unit using the calculated covariance.
  17. 청구항 11에 있어서,The method according to claim 11,
    상기 산출한 개별 구간 부하 및 상기 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계는,Computing the individual section load based on the calculated individual section load and the estimated voltage,
    상기 구간부하 산출부에 의해, 측정품질 및 구간손실을 근거로 자동화 개폐기 그룹을 구성하는 단계;Configuring, by the section load calculation unit, an automatic switch group based on the measurement quality and the section loss;
    상기 구간부하 산출부에 의해, 상기 구성한 자동화 개폐기 그룹의 유입 전류와 유출 전류 및 선로 임피던스를 근거로 구간 손실을 산출하는 단계;Calculating, by the section load calculation unit, a section loss based on the inflow current, the outflow current, and the line impedance of the configured auto switch group;
    상기 구간부하 산출부에 의해, 상기 산출한 구간 손실을 근거로 상기 자동화 개폐기 그룹의 총 부하량을 산출하는 단계; 및Calculating, by the section load calculation unit, the total load of the group of automatic switches based on the calculated section loss; And
    상기 구간부하 산출부에 의해, 상기 산출한 총 부하량을 개별 부하에 분배하여 개별 구간 부하를 산출하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And distributing the calculated total load to individual loads to calculate individual section loads by the section load calculating section.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 산출한 개별 구간 부하 및 상기 추정한 전압을 근거로 개별 구간 부하를 산출하는 단계는,Computing the individual section load based on the calculated individual section load and the estimated voltage,
    상기 구간부하 산출부에 의해, 초기 구동시 DL 인출 차단기와 DG 개폐기의 측정치를 이용하여 개폐기 그룹을 구성하는 단계; 및Configuring a switch group by the section load calculation unit by using measurements of the DL draw breaker and the DG switch during initial driving; And
    상기 구간부하 산출부에 의해, 초기 구동이 아닌 경우 측정 품질이 상기 오류데이터 처리부에 의해 신뢰성이 있는 것으로 설정된 개폐기만으로 개폐기 그룹을 구성하는 단계를 더 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.The step load estimating method of the power distribution system, characterized in that the step load calculation unit, if the initial drive is not the initial drive, the step of configuring the switch group only with the switch is set to be reliable by the error data processing unit .
  19. 청구항 11에 있어서,The method according to claim 11,
    상기 각 선로의 조류 정보를 산출하는 단계는,Computing the tidal current information of each line,
    상기 조류계산 처리부에 의해, 각 선로의 전력 유입량 기준값과 계산치의 차이값을 산출하는 단계;Calculating, by the tidal current calculation unit, a difference value between a reference value of power input of each line and a calculated value;
    상기 조류계산 처리부에 의해, 상기 산출한 개별 구간 부하와 jacobean 값과 jacobean 역행렬 및 상기 산출한 차이값을 근거로 전압 크기 및 전압 위상의 변화량을 산출하는 단계; 및Calculating an amount of change in voltage magnitude and voltage phase on the basis of the calculated individual section load, jacobean value, jacobean inverse matrix, and the calculated difference value by the algal calculation processor; And
    상기 조류계산 처리부에 의해, 상기 산출한 전압 크기 및 전압 위상을 근거로 각 선로의 선로 조류 및 손실량을 포함하는 조류 정보를 산출하는 단계를 포함하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And calculating, by the tidal current calculation unit, tidal flow information including line tides and loss amounts of each line based on the calculated voltage magnitude and voltage phase.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 부하패턴을 생성하는 단계에서는,In the step of generating the load pattern,
    상기 부하패턴 생성부에 의해, 상기 산출한 선로 조류 및 손실량을 이용하여 주중 및 주말 부하패턴을 생성하는 것을 특징으로 하는 배전계통의 구간부하 추정 방법.And the load pattern generation unit generates weekday and weekend load patterns using the calculated line current and loss amount.
PCT/KR2012/007561 2012-09-06 2012-09-20 Apparatus and method for estimating section loads in power distribution system WO2014038742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0098612 2012-09-06
KR1020120098612A KR20140032138A (en) 2012-09-06 2012-09-06 Apparatus and method for estimating section loads in power distribution systems

Publications (1)

Publication Number Publication Date
WO2014038742A1 true WO2014038742A1 (en) 2014-03-13

Family

ID=50237335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007561 WO2014038742A1 (en) 2012-09-06 2012-09-20 Apparatus and method for estimating section loads in power distribution system

Country Status (2)

Country Link
KR (1) KR20140032138A (en)
WO (1) WO2014038742A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374497A (en) * 2016-10-20 2017-02-01 天津大学 Integrated state estimation method of middle-low-voltage hybrid distribution network based on AMI (Advanced Metering Infrastructure)
CN108923540A (en) * 2018-08-28 2018-11-30 云南电网有限责任公司电力科学研究院 A kind of distribution feeder Load obtaining method and device measured based on segmentation
CN113131469A (en) * 2021-04-19 2021-07-16 广东电网有限责任公司佛山供电局 Static load analysis method and device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625064B1 (en) * 2014-08-27 2016-05-27 한국전력공사 Section load calculation system for distribution network based on ami power usage
KR101529296B1 (en) * 2014-12-15 2015-06-19 주식회사 파워이십일 Method for Section Load Calculation in Distribution Networks Including Energy Storage Systems
KR102096468B1 (en) * 2018-10-05 2020-04-02 한국전력공사 Active load management method
CN110705902B (en) * 2019-10-14 2022-12-16 国网山东省电力公司泰安供电公司 Method, system, terminal and storage medium for calculating power distribution network simultaneous rate estimation range
KR102600051B1 (en) * 2019-12-12 2023-11-08 한국전력공사 Method for modeling real time frequency and voltage variations due to network topology reconfiguration and electronic device thereof
KR102388741B1 (en) * 2020-04-27 2022-04-20 광주과학기술원 Method and apparatus for estimating the power status of bus in which data is not measured in the power distribution system
KR102523551B1 (en) * 2020-07-23 2023-04-20 한국전력공사 Real-time voltage/interval load management method of distribution system based on load distribution coefficient and operation device
KR102485075B1 (en) * 2020-12-03 2023-01-09 한국전력공사 An apparatus for determining relocation of remote control switches using section load estimation of power distribution system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061247A (en) * 2001-08-10 2003-02-28 Toshiba Corp Device for calculating section load in distribution line
JP2006204039A (en) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The Method and device for assuming load of distribution system
JP2006246683A (en) * 2005-03-07 2006-09-14 Toshiba Corp Automatic control method of distribution line, program, and distribution line automatic control system equipped with program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061247A (en) * 2001-08-10 2003-02-28 Toshiba Corp Device for calculating section load in distribution line
JP2006204039A (en) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The Method and device for assuming load of distribution system
JP2006246683A (en) * 2005-03-07 2006-09-14 Toshiba Corp Automatic control method of distribution line, program, and distribution line automatic control system equipped with program

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIM, SEONG - IL: "A Section Load Management Method using Daily Load Curve in Distribution Systems", JOURNAL OF INSTITUTE OF ILLUMINATION, ELECTRICAL INSTALLATIONS, vol. 26, no. 6, June 2012 (2012-06-01), pages 47 - 52 *
SON, JU HWAN ET AL.: "Method of Load Management in Distribution Networks Using the Real-Time Measured Data", PROCEEDINGS OF THE SUMMER, July 2011 (2011-07-01), pages 137 - 138 *
YUN, SANG - YUN ET AL.: "Development of Section Load Estimation Program for Smart Distribution Management System", JOURNAL OF ELECTRICAL ENGINEERING, vol. 61, no. 8, August 2012 (2012-08-01), pages 1083 - 1090 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374497A (en) * 2016-10-20 2017-02-01 天津大学 Integrated state estimation method of middle-low-voltage hybrid distribution network based on AMI (Advanced Metering Infrastructure)
CN108923540A (en) * 2018-08-28 2018-11-30 云南电网有限责任公司电力科学研究院 A kind of distribution feeder Load obtaining method and device measured based on segmentation
CN108923540B (en) * 2018-08-28 2022-11-25 云南电网有限责任公司电力科学研究院 Power distribution network feeder load acquisition method and device based on segmented measurement
CN113131469A (en) * 2021-04-19 2021-07-16 广东电网有限责任公司佛山供电局 Static load analysis method and device

Also Published As

Publication number Publication date
KR20140032138A (en) 2014-03-14

Similar Documents

Publication Publication Date Title
WO2014038742A1 (en) Apparatus and method for estimating section loads in power distribution system
WO2018199658A1 (en) Method for asset management of electric power equipment
WO2012161378A1 (en) Method for estimating the status of a power distribution system
WO2016032130A1 (en) Section load calculation system, for power distribution, on the basis of amount of ami power use
WO2019074192A1 (en) Method for output control of distributed generation power of power distribution system associated with distributed generation power, and main control device and zone control device for performing control operation for performing same
Purushothama et al. ANN applications in fault locators
CN109494720B (en) Voltage sag random estimation method based on network propagation characteristics
EP0938800B1 (en) Fault management system for a telecommunications network
WO2018199659A1 (en) Method for asset management of substation
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index
CN110907754A (en) Fault line severity evaluation method based on PSD-BPA
CN102280875A (en) Island division of power network
WO2018062611A1 (en) Method for constructing general-purpose operating system applicable to various microgrids and power distribution systems, and operating system constructed thereby
He et al. Hybrid measurements-based fast state estimation for power distribution system
WO2018199656A1 (en) Method for asset management of substation
WO2021101190A1 (en) Water treatment process optimization and automatic design system, and design method using same
WO2020036431A1 (en) Railroad fault detection method, system therefor, and network control system
WO2023163405A1 (en) Method and apparatus for updating or replacing credit evaluation model
KR20150037415A (en) Device for state estimation of power distribution system
WO2020172919A1 (en) Ai intelligent process abnormality recognition closed-loop control method, host and device system
Chandler The installation and maintenance of Colossus
WO2012036363A1 (en) Device for measuring a transmission line constant, and measurement method thereof
WO2020241959A1 (en) System for detecting abnormal control data
KR20210023128A (en) System and method for estimating voltage and section loads in power distribution systems
CN110009240A (en) A kind of Model in Reliability Evaluation of Power Systems method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-07-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12884203

Country of ref document: EP

Kind code of ref document: A1