WO2021153629A1 - 光モジュールおよび光学装置 - Google Patents

光モジュールおよび光学装置 Download PDF

Info

Publication number
WO2021153629A1
WO2021153629A1 PCT/JP2021/002889 JP2021002889W WO2021153629A1 WO 2021153629 A1 WO2021153629 A1 WO 2021153629A1 JP 2021002889 W JP2021002889 W JP 2021002889W WO 2021153629 A1 WO2021153629 A1 WO 2021153629A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
optical module
correction
module according
Prior art date
Application number
PCT/JP2021/002889
Other languages
English (en)
French (fr)
Inventor
和哉 長島
石川 陽三
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202180010378.8A priority Critical patent/CN115004063A/zh
Priority to JP2021574082A priority patent/JPWO2021153629A1/ja
Publication of WO2021153629A1 publication Critical patent/WO2021153629A1/ja
Priority to US17/814,390 priority patent/US20220365340A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to an optical module and an optical device.
  • Patent Document 1 an optical module including an array lens having a plurality of parallel lens portions is known.
  • the optical path and beam diameter of at least one of the light passing through each lens portion are desired due to manufacturing variations of the array lens or the like. There was a risk of deviation from the value of.
  • one of the problems of the present invention is, for example, to correct the light passing through the lens portion in an optical module and an optical device including an array lens member having a plurality of parallel lens portions.
  • the optical module of the present invention includes, for example, an optical device, an array lens member optically connected to the optical device and integrally having a plurality of parallel lens portions, and a correction optical element that corrects light passing through the lens portion. And.
  • the correction optical element corrects at least one of an optical path and a beam diameter of light passing through the lens portion.
  • the optical module includes, for example, a plurality of correction optical elements having different optical path lengths from the lens portion as the correction optical element.
  • the optical module includes, for example, a plurality of correction optical elements having a difference in optical path length between the lens portion and the lens portion of 0.1 mm or more as the correction optical element.
  • the array lens member has, as the lens portion, a first lens portion having the corresponding correction optical element and a second lens portion without the corresponding correction optical element. ..
  • the first lens portion and the second lens portion are adjacent to each other in the arrangement direction of the lens portions.
  • the array lens member has a plurality of lens portions having different profiles of refracting surfaces as the lens portions.
  • the pitch in the arrangement direction of the lens portions is 2 mm or less.
  • the pitch in the alignment direction of the lens portions is 0.2 mm or more and 2 mm or less.
  • the pitch in the alignment direction of the lens portions is 0.2 mm or more and 1 mm or less.
  • the array lens member has a lens portion having a radius of curvature of 0.2 mm or more and 2 mm or less as the lens portion.
  • the array lens member has a plurality of lens portions having a difference in radius of curvature of a refracting surface of 0.05 mm or more or a difference in aspherical coefficient of 0.3 or more. It has a lens unit.
  • the array lens member is at least one of a light receiving lens portion that allows light entering the optical device and a light emitting lens portion that transmits light emitted from the optical device as the lens portion.
  • the distance between the optical axis of the light receiving lens portion and the optical axis of the light emitting lens portion is 1.5 mm or less.
  • the optical module includes, for example, at least one lens as the correction optical element.
  • the radius of curvature of the refractive surface of the lens as the correction optical element is 5 times or more and 20 times or less the radius of curvature of the refractive surface of the lens portion.
  • the radius of curvature of the refractive surface of the lens as the correction optical element is 8 times or more and 12 times or less the radius of curvature of the refractive surface of the lens portion.
  • the optical module includes, for example, at least one prism as the correction optical element.
  • the optical module includes, for example, an array correction member integrally having the plurality of correction optical elements.
  • the optical device of the present invention includes, for example, the optical module.
  • FIG. 1 is an exemplary and schematic plan view of the optical module of the first embodiment.
  • FIG. 2 is an exemplary and schematic plan view showing an example of the direction of light in the optical module of the first embodiment.
  • FIG. 3 is an exemplary and schematic plan view of the optical module of the first modification.
  • FIG. 4 is an exemplary and schematic plan view of the optical module of the second modification.
  • FIG. 5 is an exemplary and schematic plan view of the optical module of the third modification.
  • FIG. 6 is an exemplary and schematic plan view of the optical module of the fourth modification.
  • FIG. 7 is an exemplary and schematic plan view of the optical module of the fifth modification.
  • FIG. 8 is an exemplary and schematic plan view of the optical module of the sixth modification.
  • FIG. 9 is an exemplary and schematic plan view of the optical module of the seventh modification.
  • FIG. 1 is an exemplary and schematic plan view of the optical module of the first embodiment.
  • FIG. 2 is an exemplary and schematic plan view showing an example of the direction of light in the optical module of the first
  • FIG. 10 is an exemplary and schematic plan view of the optical module of the eighth modification.
  • FIG. 11 is an exemplary and schematic plan view of the optical module of the ninth modification.
  • FIG. 12 is an exemplary and schematic plan view of the optical module of the tenth modification.
  • FIG. 13 is an exemplary and schematic plan view of the optical module of the eleventh modification.
  • FIG. 14 is an exemplary and schematic plan view of the optical module of the twelfth modification.
  • FIG. 15 is an exemplary and schematic plan view of an optical device including the optical module of the second embodiment.
  • FIG. 16 is an exemplary and schematic plan view of the optical module of the thirteenth modification.
  • FIG. 17 is an exemplary and schematic plan view of the optical device including the optical module of the 14th modification.
  • FIG. 18 is an exemplary and schematic plan view of the optical device including the optical module of the 15th modification.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X, Y, and Z directions intersect and are orthogonal to each other.
  • FIG. 1 is a plan view of the optical module 100A of the present embodiment.
  • the optical module 100A includes a substrate 10, an optical device 20, an array lens member 30, and correction optical elements 41 and 43.
  • the substrate 10 extends so as to intersect the Z direction. In this embodiment, the substrate 10 extends in the X and Y directions and is orthogonal to the Z direction. Further, the substrate 10 has a base surface 10a. The base surface 10a has a planar shape and extends so as to intersect the Z direction. In this embodiment, the base surface 10a extends in the X and Y directions and is orthogonal to the Z direction.
  • the substrate 10 is, for example, a semiconductor substrate.
  • the substrate 10 may also be referred to as a base, and the base surface 10a may also be referred to as a surface.
  • the optical device 20, the array lens member 30, and the correction optical elements 41 and 43 are mounted on the base surface 10a by adhesion, soldering, or the like, respectively.
  • the optical device 20 has a plurality of parallel light input / output units 21 to 23.
  • the input / output units 21 to 23 are, for example, an output unit of a light emitting element such as a laser light emitting element and an input unit of a light receiving element such as a photodiode.
  • the optical device 20 may be a device having a plurality of light input / output units 21 to 23, such as a modulator or a coherent mixer.
  • the spot size of the laser light emitting element, the modulator, the coherent mixer, or the like as the optical device 20 is about 3.5 ⁇ m or less, which is smaller than the spot size of the single mode optical fiber.
  • the optical device 20 may be an optical fiber array.
  • the plurality of input / output units 21 to 23 are arranged in the Y direction.
  • the ends 21a to 23a of the plurality of input / output units 21 to 23 in the X direction are arranged (aligned) in the Y direction.
  • the present invention is not limited to this, and the plurality of input / output units 21 to 23 may be arranged with a slight deviation in the X direction.
  • the plurality of input / output units 21 to 23 are arranged at equal intervals in the Y direction. However, the distance is not limited to this, and the intervals between the plurality of input / output units 21 to 23 do not have to be equidistant.
  • the plurality of input / output units 21 to 23 are arranged at the same distance in the Z direction from the base surface 10a.
  • the distance is not limited to this, and the distances of the plurality of input / output units 21 to 23 from the base surface 10a may be different from each other.
  • the light input to the plurality of input / output units 21 to 23 and the light output from the plurality of input / output units 21 to 23 are substantially parallel to each other.
  • the present invention is not limited to this, and the light input to the plurality of input / output units 21 to 23 and the light output from the plurality of input / output units 21 to 23 do not have to be substantially parallel to each other.
  • the array lens member 30 is optically connected to the optical device 20.
  • the array lens member 30 has a plurality of parallel lens portions 31 to 33.
  • the lens units 31 to 33 are, for example, convex lenses, and have a collimating function and a condensing function. When having a collimating function, the lens portions 31 to 33 may also be referred to as a collimator or a collimating lens.
  • the plurality of lens units 31 to 33 are aligned (aligned) in the Y direction.
  • the present invention is not limited to this, and the plurality of lens portions 31 to 33 may be arranged with a slight deviation in the X direction.
  • the optical axes of the plurality of lens units 31 to 33 are arranged at equal intervals in the Y direction. However, the distance is not limited to this, and the intervals between the optical axes of the plurality of input / output units 21 to 23 do not have to be equidistant.
  • the optical axes of the plurality of lens units 31 to 33 are arranged at the same distance in the Z direction from the base surface 10a.
  • the distance is not limited to this, and the distances of the plurality of lens units 31 to 33 from the base surface 10a of the optical axes may be different from each other.
  • the array lens member 30 can be entirely made of, for example, a transparent material that transmits light, such as glass, a synthetic resin material, or silicon. However, the present invention is not limited to this, and at least a part of the array lens member 30 including the lens portions 31 to 33 may be made of a material that transmits light.
  • "transparency” means transmitting the light input to the input / output units 21 to 23 and the light output from the input / output units 21 to 23.
  • the profiles of the refracting surfaces 31a to 33a of the lens portions 31 to 33 may be different from each other.
  • the profiles of the lens units 31 and 33 having the corresponding correction optical elements 41 and 43 and the lens units 32 without the corresponding correction optical elements are different.
  • "there are corresponding correction optical elements 41 and 43” means that there are correction optical elements 41 and 43 through which light passes before or after passing through the lens units 31 and 33.
  • the lens units 31 and 33 are examples of the first lens unit, and the lens unit 32 is an example of the second lens unit.
  • the correction optical elements 41 and 43 are located on the opposite side of the optical device 20 with respect to the array lens member 30.
  • the correction optical element 41 is provided corresponding to the lens unit 31, and the correction optical element 43 is provided corresponding to the lens unit 33.
  • the correction optical element 41 is separated from the lens unit 31 in the X direction, and the correction optical element 43 is separated from the lens unit 33 in the X direction.
  • the correction optical elements 41 and 43 are lenses in the present embodiment as an example.
  • the plurality of correction optical elements 41 and 43 are substantially arranged in the Y direction. However, the present invention is not limited to this, and the plurality of correction optical elements 41 and 43 may be arranged with a slight deviation in the X direction.
  • optical path length between the lens unit 31 and the correction optical element 41 and the optical path length between the lens unit 33 and the correction optical element 43 are substantially the same.
  • the present invention is not limited to this, and the optical path lengths between the plurality of correction optical elements 41 and 43 and the corresponding lens units 31 and 33 may be different from each other.
  • the optical axes of the plurality of correction optical elements 41 and 43 are arranged apart from the base surface 10a in the Z direction by substantially the same distance.
  • the distance is not limited to this, and the distances of the plurality of correction optical elements 41 and 43 from the base surface 10a of the optical axes may be different from each other.
  • the correction optical elements 41 and 43 correct the light before or after passing through the corresponding lens portions 31 and 33 (hereinafter, simply referred to as light passing through the lens portions 31 and 33).
  • the correction optical elements 41 and 43 correct, for example, the position, direction, beam diameter, and the like of the optical path.
  • the array lens member 30 has a plurality of lens units 31 to 33, and the optical device 20 has a plurality of input / output units 21 to 23.
  • the plurality of lens units 31 to 33 can be arranged according to the arrangement of the plurality of input / output units 21 to 23 in the optical device 20.
  • the arrangement of the input / output portions 21 to 23 in the optical device 20 and the array lens member 30 may occur due to manufacturing variations and the like.
  • the desired values of the optical paths and beam diameters of the plurality of light passing through the plurality of lens units 31 to 33 (for example, depending on the deviation).
  • the deviation from the optimum value, the design value, the median value of the tolerance range, etc.) may be large, and it may be difficult to suppress the deviation individually.
  • the correction optical elements 41 and 43 for correcting the optical path and the beam diameter, the deviation of the optical path and the beam diameter of the plurality of lights passing through the plurality of lens portions 31 to 33 from the expected values. Can be suppressed.
  • the pitch in the alignment direction of the plurality of lens units 31 to 33 that is, the pitch in the Y direction
  • the hand or tool holding the correction optical elements 41, 43 easily interferes with the peripheral parts, and the correction optical element 41, It becomes difficult to mount 43 on the substrate 10.
  • the correction optical elements 41 and 43 are moved in the Y direction as compared with the case where the correction optical element corresponding to the lens unit 32 exists. Since the correction optical elements 41 and 43 can be arranged apart from each other, there is an advantage that the correction optical elements 41 and 43 can be mounted more easily or more smoothly on the substrate 10.
  • the profiles of the refracting surfaces 31a and 33a of the lens portions 31 and 33 and the profiles of the refracting surfaces 32a of the lens portions 32 are different from each other.
  • the synthetic optical system including the lens unit 31 and the correction optical element 41, the lens unit 32, and the synthetic optical system including the lens unit 33 and the correction optical element 43 have optical characteristics such as a focal length. Can be set to be approximately the same.
  • FIG. 2 is a schematic diagram showing four configuration examples of the optical device 20 in the optical module 100A of the present embodiment.
  • the upper left of FIG. 2 is a configuration example in which all the input / output units 21 to 23 are light output units
  • the upper right of FIG. 2 is a configuration example in which all the input / output units 21 to 23 are light input units.
  • the input / output units 21 and 23 are light output units and the input / output unit 22 is an optical input unit.
  • the input / output unit 22 is optical.
  • This is a configuration example in which the input / output units 21 and 23 are the output units and the input / output units 21 and 23 are optical input units.
  • the optical device 20 of the present embodiment can be applied to the light input / output form shown in FIG. 2 or various light input / output forms other than those shown in FIG.
  • the optical module 100A includes an optical device 20, an array lens member 30, and correction optical elements 41 and 43.
  • the array lens member 30 has a plurality of parallel lens portions 31 to 33.
  • the correction optical elements 41 and 43 correct the light passing through the lens portions 31 and 33.
  • the correction optical elements 41 and 43 correct at least one of the optical path and the beam diameter of the light passing through the lens portions 31 and 33.
  • the correction optical elements 41 and 43 cause a deviation of the spatial characteristics of the light passing through the lens portions 31 and 33 with respect to the expected value, for example, a deviation of the optical path and the beam diameter with respect to the expected value. , Can be suppressed.
  • the array lens member 30 includes a lens unit 31, 33 (first lens unit) having the corresponding correction optical elements 41, 43 and a lens unit 32 (second lens unit) without the corresponding correction optical element. Part) and.
  • the number of correction optical elements can be reduced as compared with a configuration in which correction optical elements are provided corresponding to all the lens portions 31 to 33. Therefore, for example, the number of parts of the optical module 100A can be reduced, and the labor and cost of manufacturing the optical module 100A can be suppressed.
  • the lens units 31 and 33 (first lens unit) having the corresponding correction optical elements 41 and 43 and the lens unit 32 (second lens unit) without the corresponding correction optical elements are lenses.
  • the portions 31 to 33 are adjacent to each other in the arrangement direction.
  • the correction optical elements 41 and 43 are gripped by a gripping member such as a robot hand or tweezers. This facilitates the mounting of the correction optical elements 41 and 43 on the substrate 10 more easily or more smoothly.
  • the array lens member 30 has a plurality of lens portions 31 to 33 having different profiles of the refracting surfaces 31a to 33a.
  • Optical characteristics can be set to be substantially the same.
  • the pitch (pitch of the optical axis) of the plurality of lens portions 31 to 33 is, for example, 2 [mm] or less, and preferably 0.2 [mm] or more and 2 [mm]. ] Or less, and more preferably 0.2 [mm] or more and 1 [mm] or less.
  • the radius of curvature of the refracting surfaces 31a to 33a of the lens portions 31 to 33 is, for example, 0.2 [mm] or more and 2 [mm] or less. This is because the collimating beam diameter is limited due to the wide angle of the beam emitted from the device, the limitation of the component layout, and the like, so that a steep refractive index gradient is required. This makes it possible to form a desired optical path in a narrow region.
  • the difference in the radius of curvature of the refractive surfaces 31a to 33a of the plurality of lens portions 31 to 33 is 0.05 [mm] or more, or the difference in the aspherical coefficient is 0.3 or more. be.
  • the optical characteristics of the lens portions 31 to 33 are different from each other.
  • the array lens member 30 has a lens portion (light receiving lens portion, for example, a lens portion 32 in the lower left example of FIG. 2) that allows light entering the optical device 20 to pass through. ), And a light emitting lens unit (light emitting lens unit, for example, lens units 31 and 33 in the lower left example of FIG. 2) that allows light emitted from the optical device 20 to pass through.
  • a lens portion light receiving lens portion, for example, a lens portion 32 in the lower left example of FIG. 2
  • a light emitting lens unit light emitting lens unit, for example, lens units 31 and 33 in the lower left example of FIG. 2 that allows light emitted from the optical device 20 to pass through.
  • the optical module 100A of the present embodiment can be applied to a configuration having an optical device 20 in which light is input and light is output.
  • the optical axis of the lens unit (light receiving lens unit, for example, the lens unit 32 in the lower left example of FIG. 2) that allows light entering the optical device 20 to pass through, and the light emitted from the optical device 20 are combined.
  • the distance between the light emitting lens unit (the light emitting lens unit, for example, the lens units 31 and 33 in the lower left example of FIG. 2) and the optical axis is 1.5 [mm] or less.
  • the correction optical elements 41 and 43 are lenses.
  • the spatial characteristics of the light passing through the lens portions 31 and 33, for example, the optical path and the beam diameter can be corrected by adjusting the positions and orientations of the correction optical elements 41 and 43.
  • the radius of curvature of the refracting surfaces 41a, 43a of the lens as the correction optical elements 41, 43 is 5 times or more and 20 times or less the radius of curvature of the refracting surfaces 31a to 33a of the lens portions 31 to 33. It is preferably 8 times or more and 12 times or less.
  • This numerical range is obtained by calculation and experiment. This is because when the correction optical elements 41 and 43, which are lenses, correct the positional deviation of the lens portions 31 to 33 having a steep refractive index gradient, if the radius of curvature is too small, the correction optical elements 41 and 43 themselves are displaced. This is because the fluctuation of the optical characteristics becomes large, and conversely, if the radius of curvature is too large, it becomes difficult to obtain the correction effect. With such a setting, it is possible to compensate for the coupling loss.
  • FIG. 3 is a plan view of the optical module 100B of the first modification.
  • the correction optical element 41 is provided corresponding to the lens unit 31
  • the correction optical element 42 is provided corresponding to the lens unit 32
  • the correction optical element 42 is provided corresponding to the lens unit 33.
  • a correction optical element 43 is provided.
  • the deviation of the spatial characteristics of the light passing through all the lens portions 31 to 33 with respect to the expected value for example, with respect to the expected value of the optical path and the beam diameter.
  • the deviation can be suppressed.
  • FIG. 4 is a plan view of the optical module 100C of the second modification. As shown in FIG. 4, in this modification, the optical module 100C is provided with an array correction member 40C in which correction optical elements 41 to 43 as a lens portion are integrated.
  • the labor and cost for mounting the correction optical elements 41 to 43 can be suppressed as compared with the configuration in which the correction optical elements 41 to 43 are separate bodies.
  • FIG. 5 is a plan view of the optical module 100D of the third modification.
  • the optical module 100D is provided with an array correction member 40D integrally having correction optical elements 41 to 43 as prism portions.
  • the array correction member 40D can translate the light passing through the lens portions 31 to 33 in the Y direction.
  • the labor and cost for mounting the correction optical elements 41 to 43 can be suppressed as compared with the configuration in which the correction optical elements 41 to 43 are separate bodies.
  • FIG. 6 is a plan view of the optical module 100E of the fourth modification.
  • the optical module 100E is provided with an array correction member 40E having a correction optical element 41 as a lens and correction optical elements 42 and 43 as a prism portion integrally. There is.
  • the array correction member 40D can translate the light passing through the lens portions 32 and 33 in the Y direction.
  • FIG. 7 is a plan view of the optical module 100F of the fifth modification. As shown in FIG. 7, in this modification, correction optical elements 41 to 43 as lenses are provided for each of the lens portions 31 to 33.
  • the optical module 100F includes a plurality of correction optical elements 41 to 43 having different optical path lengths between the lens units 31 to 33.
  • the optical path length between the lens unit 32 and the correction optical element 42 is longer than the optical path length between the lens units 31, 33 and the correction optical elements 41, 43.
  • a space adjacent to the correction optical element 42 in the X direction is formed on the substrate 10, so that the correction optical element 42 can be easily gripped by a gripping member such as a robot hand or tweezers, and the substrate.
  • the correction optical element 42 can be mounted on the 10 more easily or more smoothly.
  • the difference between the optical path length between the lens unit 32 and the correction optical element 42 and the optical path length between the lens units 31, 33 and the correction optical elements 41, 43 is 0.1. It is preferably [mm] or more.
  • the profiles of the refracting surfaces 31a and 33a of the lens portions 31 and 33 and the profiles of the refracting surfaces 32a of the lens portions 32 are different from each other.
  • the optical characteristics such as the focal distance can be set to be substantially the same.
  • FIG. 8 is a plan view of the optical module 100G of the sixth modification. As shown in FIG. 8, in this modification, the correction optical element 42 as a lens is provided only for the lens portion 32.
  • a space adjacent to the correction optical element 42 in the Y direction is formed on the substrate 10, so that the correction optical element 42 can be easily gripped by a gripping member such as a robot hand or tweezers, and the substrate.
  • the correction optical element 42 can be mounted on the 10 more easily or more smoothly.
  • the profiles of the refracting surfaces 31a and 33a of the lens portions 31 and 33 and the profiles of the refracting surfaces 32a of the lens portions 32 are different from each other.
  • the optical characteristics such as the focal length can be set substantially the same for the lens unit 31, the synthetic optical system including the lens unit 32 and the correction optical element 42, and the lens unit 33.
  • FIG. 9 is a plan view of the optical module 100H of the seventh modification.
  • the number of input / output units 21 to 26 of the optical device 20 and the number of lens units 31 to 36 of the array lens member 30 are 6.
  • the number of correction optical elements 41, 43, 45 as a lens is 3.
  • the same effect as that of the above-described embodiment or modification can be obtained.
  • FIG. 10 is a plan view of the optical module 100I of the 8th modification
  • FIG. 11 is a plan view of the optical module 100J of the 9th modification
  • FIG. 12 is a plan view of the optical module 100K of the 10th modification. It is a figure.
  • the number of input / output units 21 and 22 of the optical device 20 and the number of lens units 31 and 32 of the array lens member 30 are 2.
  • the number of correction optical elements 41 and 42 as lenses is 1 or 2.
  • the number of input / output units 21 to 26 and the number of lens units 31 to 36 are not limited to 2, 3, or 6, and may be 4, 5, or 7 or more. ..
  • FIG. 13 is a plan view of the optical module 100L of the eleventh modification
  • FIG. 14 is a plan view of the optical module 100M of the twelfth modification.
  • these modifications include a plurality of independent optical devices 20 that are not integrated.
  • the optical module 100L of FIG. 13 has three optical devices 20 having input / output units 21 to 23, respectively
  • the optical module 100M of FIG. 14 has an optical device 20 having input / output units 21 and 22 and an input / output unit 20. It has an optical device 20 having an output unit 23, and an optical device 20.
  • the same effect as that of the above-described embodiment or modification can be obtained by the configuration including the plurality of optical devices 20.
  • FIG. 15 is a plan view of the optical device 1 of the second embodiment including the optical module 100A.
  • the optical module 100A has the same configuration as that of the first embodiment. Further, in the optical module 100A, light is input to the input / output unit 23 of the optical device 20, and light is output from the input / output units 21 and 22 of the optical device 20.
  • the optical device 20 of the optical module 100A is a modulator.
  • the light (input light Li) emitted from the input optical fiber (not shown) is input to the optical device 20 as a modulator via the lens 101 and the lens unit 33 of the array lens member 30.
  • the optical device 20 is, for example, an MZ (Machzenda) type phase modulator using InP (indium phosphide) as a constituent material, and is driven by a modulator driver (not shown) and functions as an IQ modulator. It is a device.
  • the optical device 20 may have, for example, a configuration similar to that disclosed in International Publication No. 2016/021163.
  • the optical device 20 modulates the input light Li and outputs the modulated lights Lo1 and Lo2 whose planes of polarization are orthogonal to each other. Both of these modulated lights Lo1 and Lo2 are linearly polarized lights and are IQ-modulated.
  • the modulator driver that operates the optical device 20 includes, for example, an IC. The operation of the modulator driver is controlled by a controller (not shown).
  • the lens unit 31 collimates the modulated light Lo1 and inputs it to the polarization synthesizing unit 103. Further, the lens unit 32 collimates the modulated light Lo2 and inputs it to the polarization synthesizing unit 103.
  • the polarization synthesizing unit 103 rotates the polarization plane of the modulated light Lo2, polarizes and synthesizes the modulated light Lo1 and Lo2, and outputs the output signal light Lo including the modulated light Lo1 and Lo2.
  • the output signal light Lo output from the polarization synthesizing unit 103 is input to the end portion (not shown) of the output optical fiber via the lens 104.
  • the optical device 1 having the above configuration, since the optical module 100A is provided, the effect obtained by the optical module 100A can be obtained.
  • the optical module 100A can be appropriately replaced with a modified example or an optical module having the same configuration as the modified example. Further, the optical device 1 is not limited to the one provided with a modulator.
  • FIG. 16 is a plan view of the optical module 100N of the thirteenth modification, which is a modification of the first embodiment.
  • the optical module 100N of this modification has the same configuration as that of the first embodiment.
  • the optical device 20 and the array lens member 30 are in contact with each other in the X direction and are integrated.
  • the same effect as that of the first embodiment can be obtained by this modification as well.
  • FIG. 17 is a plan view of the optical device 1P of the 14th modification, which is a modification of the second embodiment.
  • the optical device 1P of the present modification has the same configuration as that of the second embodiment.
  • the optical device 1P includes an optical fiber array 105 (block) having an optical fiber 105i for transmitting the input optical Li and an optical fiber 105o for transmitting the output signal optical Lo.
  • the same effect as that of the second embodiment can be obtained by this modification as well.
  • FIG. 18 is a plan view of the optical device 1Q of the fifteenth modification, which is a modification of the second embodiment.
  • the optical device 1Q of this modified example has the same configuration as that of the 14th modified example.
  • the lenses 101 and 104 and the optical fiber array 105 are in contact with each other in the X direction and are integrated.
  • the same effect as that of the 14th modification and the 2nd embodiment can be obtained by this modification as well.
  • the present invention can be used for optical modules and optical devices.
  • Optical device 10 ... Substrate 10a ... Base surface 20 ... Optical devices 21, 22, 23, 24, 25, 26 ... Input / output units 21a to 23a ... Ends 30 ... Array lens members 31, 32, 33 , 34, 35, 36 ... Lens portions 31a to 33a ... Refracting surfaces 40C to 40E ... Array correction members 41, 42, 43, 45 ... Correction optical elements 41a, 42a, 43a, 45a ... Refracting surfaces 100A to 100N ... Optical module 101 ... Lens 102 ... Prism 103 ... Polarization synthesis unit 104 ... Lens 105 ... Optical fiber array 105i ... Optical fiber 105o ... Optical fiber Li ... Input light Lo ... Output signal light Lo1, Lo2 ... Modulated light X ... Direction Y ... Direction Z ... direction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光モジュールは、例えば、光デバイスと、当該光デバイスと光学的に接続され複数の並列なレンズ部を一体に有したアレイレンズ部材と、レンズ部を通る光を補正する補正光学素子と、を備える。補正光学素子は、例えば、レンズ部を通る光の光路およびビーム径のうち少なくとも一つを補正する。

Description

光モジュールおよび光学装置
 本発明は、光モジュールおよび光学装置に関する。
 従来、複数の並列なレンズ部を有したアレイレンズを備えた光モジュールが、知られている(特許文献1)。
特開2004-101848号公報
 しかしながら、アレイレンズは複数の並列なレンズ部が一体に設けられているため、例えば、アレイレンズの製造ばらつき等によって、各レンズ部を通る光のうち少なくとも一つの光の光路やビーム径が、所望の値からずれてしまう虞があった。
 そこで、本発明の課題の一つは、例えば、複数の並列なレンズ部を有したアレイレンズ部材を備えた光モジュールおよび光学装置において、レンズ部を通る光を補正することである。
 本発明の光モジュールは、例えば、光デバイスと、前記光デバイスと光学的に接続され複数の並列なレンズ部を一体に有したアレイレンズ部材と、前記レンズ部を通る光を補正する補正光学素子と、を備える。
 また、前記光モジュールでは、例えば、前記補正光学素子は、前記レンズ部を通る光の光路およびビーム径のうち少なくとも一つを補正する。
 また、前記光モジュールは、例えば、前記補正光学素子として、前記レンズ部との間の光路長の異なる複数の補正光学素子を備える。
 また、前記光モジュールは、例えば、前記補正光学素子として、前記レンズ部との間の光路長の差が0.1mm以上である複数の補正光学素子を備える。
 また、前記光モジュールでは、例えば、前記アレイレンズ部材は、前記レンズ部として、対応する前記補正光学素子が有る第一レンズ部と、対応する前記補正光学素子が無い第二レンズ部と、を有する。
 また、前記光モジュールでは、例えば、前記第一レンズ部と前記第二レンズ部とが前記レンズ部の並び方向に隣接する。
 また、前記光モジュールでは、例えば、前記アレイレンズ部材は、前記レンズ部として、屈折面のプロファイルが異なる複数のレンズ部を有する。
 また、前記光モジュールでは、例えば、前記レンズ部の並び方向のピッチは、2mm以下である。
 また、前記光モジュールでは、例えば、前記レンズ部の並び方向のピッチは、0.2mm以上2mm以下である。
 また、前記光モジュールでは、例えば、前記レンズ部の並び方向のピッチは、0.2mm以上1mm以下である。
 また、本発明の光モジュールでは、例えば、前記アレイレンズ部材は、前記レンズ部として、屈折面の曲率半径が0.2mm以上2mm以下のレンズ部を有する。
 また、前記光モジュールでは、例えば、前記アレイレンズ部材は、前記レンズ部として、屈折面の曲率半径の差が0.05mm以上であるかまたは非球面係数の差が0.3以上である複数のレンズ部を有する。
 また、前記光モジュールでは、例えば、前記アレイレンズ部材は、前記レンズ部として、前記光デバイスに入る光を通す受光レンズ部、および前記光デバイスから出た光を通す発光レンズ部のうち少なくとも一つを有する。
 また、前記光モジュールでは、例えば、前記受光レンズ部の光軸と前記発光レンズ部の光軸との間隔は、1.5mm以下である。
 また、前記光モジュールは、例えば、前記補正光学素子として、少なくとも一つのレンズを備える。
 また、前記光モジュールでは、例えば、前記補正光学素子としてのレンズの屈折面の曲率半径は、前記レンズ部の屈折面の曲率半径の5倍以上20倍以下である。
 また、前記光モジュールでは、例えば、記補正光学素子としてのレンズの屈折面の曲率半径は、前記レンズ部の屈折面の曲率半径の8倍以上12倍以下である。
 また、前記光モジュールは、例えば、前記補正光学素子として、少なくとも一つのプリズムを備える。
 また、前記光モジュールは、例えば、前記複数の補正光学素子を一体に有したアレイ補正部材を備える。
 また、本発明の光学装置は、例えば、前記光モジュールを備える。
 本発明によれば、例えば、複数の並列なレンズ部を有したアレイレンズ部材を備えた光モジュールおよび光学装置において、レンズ部を通る光を補正することができる。
図1は、第1実施形態の光モジュールの例示的かつ模式的な平面図である。 図2は、第1実施形態の光モジュールにおける光の向きの例を示す例示的かつ模式的な平面図である。 図3は、第1変形例の光モジュールの例示的かつ模式的な平面図である。 図4は、第2変形例の光モジュールの例示的かつ模式的な平面図である。 図5は、第3変形例の光モジュールの例示的かつ模式的な平面図である。 図6は、第4変形例の光モジュールの例示的かつ模式的な平面図である。 図7は、第5変形例の光モジュールの例示的かつ模式的な平面図である。 図8は、第6変形例の光モジュールの例示的かつ模式的な平面図である。 図9は、第7変形例の光モジュールの例示的かつ模式的な平面図である。 図10は、第8変形例の光モジュールの例示的かつ模式的な平面図である。 図11は、第9変形例の光モジュールの例示的かつ模式的な平面図である。 図12は、第10変形例の光モジュールの例示的かつ模式的な平面図である。 図13は、第11変形例の光モジュールの例示的かつ模式的な平面図である。 図14は、第12変形例の光モジュールの例示的かつ模式的な平面図である。 図15は、第2実施形態の光モジュールを含む光学装置の例示的かつ模式的な平面図である。 図16は、第13変形例の光モジュールの例示的かつ模式的な平面図である。 図17は、第14変形例の光モジュールを含む光学装置の例示的かつ模式的な平面図である。 図18は、第15変形例の光モジュールを含む光学装置の例示的かつ模式的な平面図である。
 以下、本発明の例示的な実施形態および変形例が開示される。以下に示される実施形態および変形例の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態および変形例に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 以下に示される実施形態および変形例は、同様の構成を備えている。よって、各実施形態および変形例の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
 本明細書において、序数は、部品や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表す。X方向、Y方向、およびZ方向は、互いに交差するとともに互いに直交している。
[第1実施形態]
 図1は、本実施形態の光モジュール100Aの平面図である。図1に示されるように、光モジュール100Aは、基板10と、光デバイス20と、アレイレンズ部材30と、補正光学素子41,43と、を備えている。
 基板10は、Z方向と交差して広がっている。本実施形態では、基板10は、X方向およびY方向に延びるとともに、Z方向と直交している。また、基板10は、ベース面10aを有している。ベース面10aは、平面状の形状を有し、Z方向と交差して広がっている。本実施形態では、ベース面10aは、X方向およびY方向に延びるとともに、Z方向と直交している。基板10は、例えば、半導体基板である。基板10は、ベースとも称され、ベース面10aは、表面とも称されうる。
 光デバイス20、アレイレンズ部材30、および補正光学素子41,43は、それぞれ、接着やはんだ付け等により、ベース面10a上に実装される。
 光デバイス20は、複数の並列な光の入出力部21~23を有している。入出力部21~23は、例えば、レーザ発光素子のような発光素子の出力部や、フォトダイオードのような受光素子の入力部である。
 また、光デバイス20は、例えば、変調器や、コヒーレントミキサのような、複数の光の入出力部21~23を有したデバイスであってもよい。光デバイス20としてのレーザ発光素子や、変調器、コヒーレントミキサ等のスポットサイズは、シングルモード光ファイバのスポットサイズよりも小さい、3.5μm程度以下である。さらに、光デバイス20は、光ファイバアレイであってもよい。
 複数の入出力部21~23は、Y方向に並んでいる。複数の入出力部21~23のX方向の端部21a~23aは、Y方向に並んでいる(整列されている)。ただし、これには限定されず、複数の入出力部21~23は、X方向に多少のずれをもって配置されてもよい。
 複数の入出力部21~23は、Y方向に等間隔に配置されている。ただし、これには限定されず、複数の入出力部21~23の間隔は、等距離で無くてもよい。
 また、複数の入出力部21~23は、ベース面10aからZ方向に同じ距離だけ離れて配置されている。ただし、これには限定されず、複数の入出力部21~23のベース面10aからの距離は、互いに異なってもよい。
 複数の入出力部21~23に入力される光、および複数の入出力部21~23から出力される光は、互いに略平行である。ただし、これには限定されず、複数の入出力部21~23に入力される光、および複数の入出力部21~23から出力される光は、互いに略平行でなくてもよい。
 アレイレンズ部材30は、光デバイス20と光学的に接続されている。アレイレンズ部材30は、複数の並列なレンズ部31~33を有している。レンズ部31~33は、例えば、凸レンズであり、コリメート機能や、集光機能を有している。コリメート機能を有する場合、レンズ部31~33は、コリメータや、コリメートレンズとも称されうる。
 複数のレンズ部31~33は、Y方向に並んでいる(整列されている)。ただし、これには限定されず、複数のレンズ部31~33は、X方向に多少のずれをもって配置されてもよい。
 複数のレンズ部31~33の光軸は、Y方向に等間隔に配置されている。ただし、これには限定されず、複数の入出力部21~23の光軸の間隔は、等距離で無くてもよい。
 複数のレンズ部31~33の光軸は、ベース面10aからZ方向に同じ距離だけ離れて配置されている。ただし、これには限定されず、複数のレンズ部31~33の光軸のベース面10aからの距離は、互いに異なってもよい。
 アレイレンズ部材30は、例えば、その全体が、ガラスや、合成樹脂材料、シリコンのような光を透過する透明材料によって作られうる。ただし、これには限定されず、アレイレンズ部材30の少なくともレンズ部31~33を含む一部が、光を透過する材料によって作られてもよい。ここで、透明とは、入出力部21~23に入力される光、および入出力部21~23から出力される光を透過することを意味する。
 レンズ部31~33の屈折面31a~33aのプロファイルは、それぞれ異なってもよい。本実施形態では、一例として、対応する補正光学素子41,43が有るレンズ部31,33と、対応する補正光学素子が無いレンズ部32とで、プロファイルが異なっている。なお、レンズ部31,33について「対応する補正光学素子41,43が有る」とは、当該レンズ部31,33を通る前または通った後の光が経由する補正光学素子41,43が存在することを意味し、レンズ部32について「対応する補正光学素子41,43が無い」とは、当該レンズ部32を通る前または通った後の光が経由する補正光学素子が存在しないことを意味する。レンズ部31,33は、第一レンズ部の一例であり、レンズ部32は、第二レンズ部の一例である。
 補正光学素子41,43は、アレイレンズ部材30に対して光デバイス20の反対側に位置されている。補正光学素子41は、レンズ部31に対応して設けられ、補正光学素子43は、レンズ部33に対応して設けられている。補正光学素子41は、レンズ部31からX方向に離間し、補正光学素子43は、レンズ部33からX方向に離間している。
 補正光学素子41,43は、本実施形態では、一例として、レンズである。
 複数の補正光学素子41,43は、Y方向に略並んでいる。ただし、これには限定されず、複数の補正光学素子41,43は、X方向に多少のずれをもって配置されてもよい。
 レンズ部31と補正光学素子41との間の光路長と、レンズ部33と補正光学素子43との間の光路長とは、略同じである。ただし、これには限定されず、複数の補正光学素子41,43と対応するレンズ部31,33との間の光路長は、互いに異なってもよい。
 また、複数の補正光学素子41,43の光軸は、ベース面10aからZ方向に略同じ距離だけ離れて配置されている。ただし、これには限定されず、複数の補正光学素子41,43の光軸のベース面10aからの距離は、互いに異なってもよい。
 補正光学素子41,43は、それぞれ、対応するレンズ部31,33を通る前または通った後の光(以下、単にレンズ部31,33を通る光と称する)を補正する。補正光学素子41,43は、例えば、光路の位置や、方向、ビーム径等を補正する。アレイレンズ部材30は、複数のレンズ部31~33を有し、光デバイス20は、複数の入出力部21~23を有している。複数のレンズ部31~33が、それぞれ別の部材であった場合、光デバイス20における複数の入出力部21~23の配置に合わせて、複数のレンズ部31~33を配置することができる。しかしながら、本実施形態では、複数のレンズ部31~33がアレイレンズ部材30に一体化されているため、製造ばらつき等により、光デバイス20における入出力部21~23の配置と、アレイレンズ部材30における複数のレンズ部31~33の配置とがずれていた場合にあっては、当該ずれに応じて、複数のレンズ部31~33を通る複数の光の光路やビーム径の所期値(例えば最適値や、設計値、公差範囲の中央値など)に対するずれが大きくなる場合があり、かつ当該ずれを個別に抑制するのが難しい場合がある。この点、本実施形態では、光路やビーム径を補正する補正光学素子41,43を設けることにより、複数のレンズ部31~33を通る複数の光の光路やビーム径の所期値とのずれを抑制することができる。
 また、複数のレンズ部31~33の並び方向のピッチ、すなわちY方向のピッチが小さい場合、補正光学素子41,43を保持するハンドやツールが周辺部品と干渉しやすくなり、補正光学素子41,43を基板10上に実装し難くなる。この点、本実施形態では、レンズ部32に対応する補正光学素子が存在しない分、当該レンズ部32に対応する補正光学素子が存在した場合に比べて、補正光学素子41,43をY方向に互いに離間して配置することができるため、補正光学素子41,43を基板10上により容易にあるいはより円滑に実装しやすいという利点が得られる。
 また、上述したように、本実施形態では、レンズ部31,33の屈折面31a,33aのプロファイルと、レンズ部32の屈折面32aのプロファイルとが、互いに異なっている。これにより、例えば、レンズ部31と補正光学素子41とを含む合成光学系、レンズ部32、およびレンズ部33と補正光学素子43とを含む合成光学系について、焦点距離のような光学的な特性を、略同じに設定することができる。
 図2は、本実施形態の光モジュール100Aにおける光デバイス20の四つの構成例を示す模式図である。図2の左上は、全ての入出力部21~23が光の出力部である構成例であり、図2の右上は、全ての入出力部21~23が光の入力部である構成例であり、図2の左下は、入出力部21,23が光の出力部であり入出力部22が光の入力部である構成例であり、図2の右下は、入出力部22が光の出力部であり入出力部21,23が光の入力部である構成例である。図2に示される光の入出力の形態、あるいは図2以外の種々の光の入出力の形態に対して、本実施形態の光デバイス20を適用することができる。
 以上、説明したように、本実施形態では、光モジュール100Aは、光デバイス20と、アレイレンズ部材30と、補正光学素子41,43と、を備えている。アレイレンズ部材30は、複数の並列なレンズ部31~33を有している。補正光学素子41,43は、レンズ部31,33を通る光を補正する。
 また、本実施形態では、補正光学素子41,43は、レンズ部31,33を通る光の光路およびビーム径のうち少なくとも一つを補正する。
 このような構成によれば、例えば、補正光学素子41,43により、レンズ部31,33を通る光の空間的な特性の所期値に対するずれ、例えば光路やビーム径の所期値に対するずれを、抑制することができる。
 また、本実施形態では、アレイレンズ部材30は、対応する補正光学素子41,43が有るレンズ部31,33(第一レンズ部)と、対応する補正光学素子が無いレンズ部32(第二レンズ部)と、を有している。
 このような構成によれば、全てのレンズ部31~33に対応して補正光学素子を設けた構成に比べて、補正光学素子の数を減らすことができる。よって、例えば、光モジュール100Aの部品点数をより少なくし、光モジュール100Aの製造の手間やコストを抑制することができる。
 また、本実施形態では、対応する補正光学素子41,43が有るレンズ部31,33(第一レンズ部)と、対応する補正光学素子が無いレンズ部32(第二レンズ部)とが、レンズ部31~33の並び方向に隣接している。
 このような構成によれば、例えば、基板10上に補正光学素子41,43とY方向に隣接した空間ができるため、ロボットハンドやピンセットのような把持部材によって補正光学素子41,43を把持しやすくなり、基板10上に補正光学素子41,43をより容易にあるいはより円滑に実装することができる。
 また、本実施形態では、アレイレンズ部材30は、屈折面31a~33aのプロファイルが異なる複数のレンズ部31~33を有している。
 このような構成によれば、例えば、レンズ部31と補正光学素子41とを含む合成光学系、レンズ部32、およびレンズ部32と補正光学素子43とを含む合成光学系について、焦点距離のような光学的な特性を、略同じに設定することができる。
 また、本実施形態では、例えば、複数のレンズ部31~33のピッチ(光軸のピッチ)は、例えば、2[mm]以下であり、好適には、0.2[mm]以上2[mm]以下であり、さらに好適には、0.2[mm]以上1[mm]以下である。これにより、アレイレンズ部材30、ひいては光モジュール100Aが、Y方向、すなわちレンズ部31~33の並び方向に大きくなるのを抑制することができる。
 また、本実施形態では、例えば、レンズ部31~33の屈折面31aから33aの曲率半径は、例えば、0.2[mm]以上2[mm]以下である。これは、デバイスからの出射ビーム角度が広いことや部品レイアウトの制限等により、コリメートビーム径が制限されるため、急峻な屈折率勾配が必要となるからである。これにより、狭小な領域内で所望の光路を形成することが可能となる。
 また、本実施形態では、例えば、複数のレンズ部31~33の屈折面31aから33aの曲率半径の差が0.05[mm]以上であるかまたは非球面係数の差が0.3以上である。これは、レンズ部31~33の光学的な特性が互いに異なっていることを意味している。これにより、例えば、各レンズ部31~33に対応する補正レンズの設計をより精度良く行えたり、補正レンズの要否の選択をより柔軟に行えたり、といった効果が得られる。
 また、本実施形態では、アレイレンズ部材30は、図2に一例が示されるように、光デバイス20に入る光を通すレンズ部(受光レンズ部、例えば、図2の左下の例におけるレンズ部32)と、光デバイス20を出た光を通す発光レンズ部(発光レンズ部、例えば、図2の左下の例におけるレンズ部31,33)と、を有してもよい。
 このような構成によれば、例えば、本実施形態の光モジュール100Aを、光が入力されるとともに光を出力する光デバイス20を有した構成に、適用することができる。
 また、本実施形態では、例えば、光デバイス20に入る光を通すレンズ部(受光レンズ部、例えば、図2の左下の例におけるレンズ部32)の光軸と、光デバイス20を出た光を通す発光レンズ部(発光レンズ部、例えば、図2の左下の例におけるレンズ部31,33)の光軸との間隔は、1.5[mm]以下である。これにより、アレイレンズ部材30、ひいては光モジュール100Aが、Y方向、すなわちレンズ部31~33の並び方向に大きくなるのを抑制することができる。
 また、本実施形態では、補正光学素子41,43は、レンズである。
 このような構成によれば、補正光学素子41,43の位置や、向きの調整により、レンズ部31,33を通る光の空間的な特性、例えば、光路やビーム径を補正することができる。
 また、本実施形態では、例えば、補正光学素子41,43としてのレンズの屈折面41a,43aの曲率半径は、レンズ部31~33の屈折面31a~33aの曲率半径の5倍以上20倍以下であり、好適には、8倍以上12倍以下である。この数値範囲は、計算および実験により得られたものである。これは、レンズである補正光学素子41,43によって急峻な屈折率勾配を有するレンズ部31~33の位置ずれを補正する場合、曲率半径が小さすぎると補正光学素子41,43自体の位置ずれによる光学特性の変動が大きくなってしまい、逆に曲率半径が大きすぎると補正効果が得られ難くなるからである。このような設定により、結合損失の補償が可能となる。
[第1変形例]
 図3は、第1変形例の光モジュール100Bの平面図である。図3に示されるように、本変形例では、レンズ部31に対応して補正光学素子41が設けられ、レンズ部32に対応して補正光学素子42が設けられ、レンズ部33に対応して補正光学素子43が設けられている。
 このような構成によれば、例えば、補正光学素子41~43により、全てのレンズ部31~33を通る光の空間的な特性の所期値に対するずれ、例えば光路やビーム径の所期値に対するずれを、抑制することができる。
[第2変形例]
 図4は、第2変形例の光モジュール100Cの平面図である。図4に示されるように、本変形例では、光モジュール100Cは、レンズ部としての補正光学素子41~43が一体化されたアレイ補正部材40Cが設けられている。
 このような構成によれば、例えば、補正光学素子41~43が別体である構成に比べて、補正光学素子41~43を実装する手間やコストを抑制することができる。
[第3変形例]
 図5は、第3変形例の光モジュール100Dの平面図である。図5に示されるように、本変形例では、光モジュール100Dは、プリズム部としての補正光学素子41~43を一体に有したアレイ補正部材40Dが設けられている。アレイ補正部材40Dは、レンズ部31~33を通る光を、Y方向に平行移動することができる。
 このような構成によれば、例えば、補正光学素子41~43が別体である構成に比べて、補正光学素子41~43を実装する手間やコストを抑制することができる。
[第4変形例]
 図6は、第4変形例の光モジュール100Eの平面図である。図6に示されるように、本変形例では、光モジュール100Eは、レンズとしての補正光学素子41と、プリズム部としての補正光学素子42,43を一体に有したアレイ補正部材40Eが設けられている。アレイ補正部材40Dは、レンズ部32,33を通る光を、Y方向に平行移動することができる。
 このような構成によれば、例えば、レンズ部31~33を通る光のそれぞれについてより好適な補正を行うことができる。
[第5変形例]
 図7は、第5変形例の光モジュール100Fの平面図である。図7に示されるように、本変形例では、レンズ部31~33のそれぞれについて、レンズとしての補正光学素子41~43が設けられている。
 図7に示されるように、光モジュール100Fは、レンズ部31~33との間の光路長の異なる複数の補正光学素子41~43を備えている。レンズ部32と補正光学素子42との間の光路長は、レンズ部31,33と補正光学素子41,43との間の光路長よりも長い。
 このような構成によれば、例えば、基板10上に補正光学素子42とX方向に隣接した空間ができるため、ロボットハンドやピンセットのような把持部材によって補正光学素子42を把持しやすくなり、基板10上に補正光学素子42をより容易にあるいはより円滑に実装することができる。
 また、このような観点から、レンズ部32と補正光学素子42との間の光路長と、レンズ部31,33と補正光学素子41,43との間の光路長との差は、0.1[mm]以上であるのが、好適である。
 また、本変形例では、レンズ部31,33の屈折面31a,33aのプロファイルと、レンズ部32の屈折面32aのプロファイルとが、互いに異なっている。これにより、例えば、レンズ部31と補正光学素子41とを含む合成光学系、レンズ部32と補正光学素子42とを含む合成光学系、およびレンズ部33と補正光学素子43とを含む合成光学系について、焦点距離のような光学的な特性を、略同じに設定することができる。
[第6変形例]
 図8は、第6変形例の光モジュール100Gの平面図である。図8に示されるように、本変形例では、レンズ部32についてのみ、レンズとしての補正光学素子42が設けられている。
 このような構成によれば、例えば、基板10上に補正光学素子42とY方向に隣接した空間ができるため、ロボットハンドやピンセットのような把持部材によって補正光学素子42を把持しやすくなり、基板10上に補正光学素子42をより容易にあるいはより円滑に実装することができる。
 また、本変形例では、レンズ部31,33の屈折面31a,33aのプロファイルと、レンズ部32の屈折面32aのプロファイルとが、互いに異なっている。これにより、例えば、レンズ部31、レンズ部32と補正光学素子42とを含む合成光学系、およびレンズ部33について、焦点距離のような光学的な特性を、略同じに設定することができる。
[第7変形例]
 図9は、第7変形例の光モジュール100Hの平面図である。図9に示されるように、本変形例では、光デバイス20の入出力部21~26の数、およびアレイレンズ部材30のレンズ部31~36の数が6である。これに対し、レンズとしての補正光学素子41,43,45の数は3である。このように、各部の数が異なる構成によっても、上記実施形態や変形例と同様の効果が得られる。
[第8~第10変形例]
 図10は、第8変形例の光モジュール100Iの平面図であり、図11は、第9変形例の光モジュール100Jの平面図であり、図12は、第10変形例の光モジュール100Kの平面図である。図10~12に示されるように、これら変形例では、光デバイス20の入出力部21,22の数、およびアレイレンズ部材30のレンズ部31,32の数が2である。これに対し、レンズとしての補正光学素子41,42の数は1あるいは2である。このように、各部の数が異なる構成によっても、上記実施形態や変形例と同様の効果が得られる。なお、入出力部21~26の数、およびレンズ部31~36の数は、2,3,または6には限定されず、4,5であってもよいし、7以上であってもよい。
[第11,12変形例]
 図13は、第11変形例の光モジュール100Lの平面図であり、図14は、第12変形例の光モジュール100Mの平面図である。図13,14に示されるように、これら変形例では、一体化されていない独立した複数の光デバイス20を備えている。図13の光モジュール100Lは、それぞれ入出力部21~23を有した三つの光デバイス20を有し、図14の光モジュール100Mは、入出力部21,22を有した光デバイス20と、入出力部23を有した光デバイス20と、を有している。このように、複数の光デバイス20を備えた構成によっても、上記実施形態や変形例と同様の効果が得られる。
[第2実施形態]
 図15は、光モジュール100Aを備えた第2実施形態の光学装置1の平面図である。光モジュール100Aは、第1実施形態のものと同様の構成である。また、光モジュール100Aは、光デバイス20の入出力部23に光が入力され、光デバイス20の入出力部21,22から光が出力される。光モジュール100Aの光デバイス20は、変調器である。
 入力光ファイバ(不図示)を出た光(入力光Li)は、レンズ101、およびアレイレンズ部材30のレンズ部33を介して変調器としての光デバイス20に入力される。
 光デバイス20は、例えば、InP(インジウムリン)を構成材料に用いたMZ(マッハツェンダ)型の位相変調器であり、変調器ドライバ(不図示)によって駆動され、IQ変調器として機能する公知の光学デバイスである。光デバイス20は、例えば、国際公開第2016/021163号に開示される構成と同様の構成を有しうる。
 光デバイス20は、入力光Liを変調し、偏波面が互いに直交する変調光Lo1,Lo2を出力する。これら変調光Lo1,Lo2は、いずれも直線偏波光であり、IQ変調されている。光デバイス20を動作させる変調器ドライバは、たとえばICを含んで構成されている。変調器ドライバの作動は、制御器(不図示)によって制御される。
 レンズ部31は、変調光Lo1をコリメートし、偏波合成部103に入力する。また、レンズ部32は、変調光Lo2をコリメートし、偏波合成部103に入力する。偏波合成部103は、変調光Lo2の偏波面を回転させるとともに変調光Lo1,Lo2を偏波合成し、当該変調光Lo1,Lo2を含む出力信号光Loを出力する。偏波合成部103から出力された出力信号光Loは、レンズ104を経由して、出力光ファイバの端部(不図示)に入力される。
 以上の構成を備えた光学装置1によれば、光モジュール100Aを備えているため、当該光モジュール100Aによって得られる効果を得ることができる。なお、光モジュール100Aは、適宜変形例あるいは変形例と同様の構成を有した光モジュールに置き換えることが可能である。また、光学装置1は、変調器を備えたものには限定されない。
[第13変形例]
 図16は、第1実施形態の変形例である第13変形例の光モジュール100Nの平面図である。図16に示されるように、本変形例の光モジュール100Nは、第1実施形態と同様の構成を備えている。ただし、本変形例では、光デバイス20とアレイレンズ部材30とがX方向に互いに接し、一体化されている。本変形例によっても、上記第1実施形態と同様の効果が得られる。また、本変形例によれば、例えば、光モジュール100NをX方向により小型化することができる、という利点が得られる。
[第14変形例]
 図17は、第2実施形態の変形例である第14変形例の光学装置1Pの平面図である。図17に示されるように、本変形例の光学装置1Pは、第2実施形態と同様の構成を備えている。ただし、本変形例では、光学装置1Pは、入力光Liを伝送する光ファイバ105iと出力信号光Loを伝送する光ファイバ105oとを有した光ファイバアレイ105(ブロック)を備えている。本変形例によっても、上記第2実施形態と同様の効果が得られる。
[第15変形例]
 図18は、第2実施形態の変形例である第15変形例の光学装置1Qの平面図である。図18に示されるように、本変形例の光学装置1Qは、第14変形例と同様の構成を備えている。ただし、本変形例では、レンズ101,104と光ファイバアレイ105とがX方向に互いに接し、一体化されている。本変形例によっても、上記第14変形例および第2実施形態と同様の効果が得られる。また、本変形例によれば、例えば、光学装置1QをX方向により小型化することができる、という利点が得られる。
 以上、本発明の実施形態および変形例が例示されたが、上記実施形態および変形例は一例であって、発明の範囲を限定することは意図していない。上記実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 本発明は、光モジュールおよび光学装置に利用することができる。
1,1P,1Q…光学装置
10…基板
10a…ベース面
20…光デバイス
21,22,23,24,25,26…入出力部
21a~23a…端部
30…アレイレンズ部材
31,32,33,34,35,36…レンズ部
31a~33a…屈折面
40C~40E…アレイ補正部材
41,42,43,45…補正光学素子
41a,42a,43a,45a…屈折面
100A~100N…光モジュール
101…レンズ
102…プリズム
103…偏波合成部
104…レンズ
105…光ファイバアレイ
105i…光ファイバ
105o…光ファイバ
Li…入力光
Lo…出力信号光
Lo1,Lo2…変調光
X…方向
Y…方向
Z…方向

Claims (20)

  1.  光デバイスと、
     前記光デバイスと光学的に接続され複数の並列なレンズ部を一体に有したアレイレンズ部材と、
     前記レンズ部を通る光を補正する補正光学素子と、
     を備えた、光モジュール。
  2.  前記補正光学素子は、前記レンズ部を通る光の光路およびビーム径のうち少なくとも一つを補正する、請求項1に記載の光モジュール。
  3.  前記補正光学素子として、前記レンズ部との間の光路長の異なる複数の補正光学素子を備えた、請求項1または2に記載の光モジュール。
  4.  前記補正光学素子として、前記レンズ部との間の光路長の差が0.1mm以上である複数の補正光学素子を備えた、請求項3に記載の光モジュール。
  5.  前記アレイレンズ部材は、前記レンズ部として、
     対応する前記補正光学素子が有る第一レンズ部と、
     対応する前記補正光学素子が無い第二レンズ部と、
     を有した、請求項1~4のうちいずれか一つに記載の光モジュール。
  6.  前記第一レンズ部と前記第二レンズ部とが前記レンズ部の並び方向に隣接した、請求項5に記載の光モジュール。
  7.  前記アレイレンズ部材は、前記レンズ部として、屈折面のプロファイルが異なる複数のレンズ部を有した、請求項1~6のうちいずれか一つに記載の光モジュール。
  8.  前記レンズ部の並び方向のピッチは、2mm以下である、請求項1~7のうちいずれか一つに記載の光モジュール。
  9.  前記レンズ部の並び方向のピッチは、0.2mm以上2mm以下である、請求項8に記載の光モジュール。
  10.  前記レンズ部の並び方向のピッチは、0.2mm以上1mm以下である、請求項9に記載の光モジュール。
  11.  前記アレイレンズ部材は、前記レンズ部として、屈折面の曲率半径が0.2mm以上2mm以下のレンズ部を有した、請求項1~10のうちいずれか一つに記載の光モジュール。
  12.  前記アレイレンズ部材は、前記レンズ部として、屈折面の曲率半径の差が0.05mm以上であるかまたは非球面係数の差が0.3以上である複数のレンズ部を有した、請求項11に記載の光モジュール。
  13.  前記アレイレンズ部材は、前記レンズ部として、
     前記光デバイスに入る光を通す受光レンズ部、および
     前記光デバイスから出た光を通す発光レンズ部のうち少なくとも一つ
     を有した、請求項1~12のうちいずれか一つに記載の光モジュール。
  14.  前記受光レンズ部の光軸と前記発光レンズ部の光軸との間隔は、1.5mm以下である、請求項13に記載の光モジュール。
  15.  前記補正光学素子として、少なくとも一つのレンズを備えた、請求項1~14のうちいずれか一つに記載の光モジュール。
  16.  前記補正光学素子としてのレンズの屈折面の曲率半径は、前記レンズ部の屈折面の曲率半径の5倍以上20倍以下である、請求項15に記載の光モジュール。
  17.  前記補正光学素子としてのレンズの屈折面の曲率半径は、前記レンズ部の屈折面の曲率半径の8倍以上12倍以下である、請求項16に記載の光モジュール。
  18.  前記補正光学素子として、少なくとも一つのプリズムを備えた、請求項1~17のうちいずれか一つに記載の光モジュール。
  19.  前記複数の補正光学素子を一体に有したアレイ補正部材を備えた、請求項3に記載の光モジュール。
  20.  請求項1~19のうちいずれか一つに記載の光モジュールを備えた、光学装置。
PCT/JP2021/002889 2020-01-30 2021-01-27 光モジュールおよび光学装置 WO2021153629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180010378.8A CN115004063A (zh) 2020-01-30 2021-01-27 光模块以及光学装置
JP2021574082A JPWO2021153629A1 (ja) 2020-01-30 2021-01-27
US17/814,390 US20220365340A1 (en) 2020-01-30 2022-07-22 Optical module and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020013857 2020-01-30
JP2020-013857 2020-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,390 Continuation US20220365340A1 (en) 2020-01-30 2022-07-22 Optical module and optical device

Publications (1)

Publication Number Publication Date
WO2021153629A1 true WO2021153629A1 (ja) 2021-08-05

Family

ID=77079515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002889 WO2021153629A1 (ja) 2020-01-30 2021-01-27 光モジュールおよび光学装置

Country Status (4)

Country Link
US (1) US20220365340A1 (ja)
JP (1) JPWO2021153629A1 (ja)
CN (1) CN115004063A (ja)
WO (1) WO2021153629A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040051940A1 (en) * 2002-09-18 2004-03-18 Chen Liang Independent focus compensation for a multi-axis imaging system
US20040233539A1 (en) * 2002-12-18 2004-11-25 Alex Harwit Focus-position compensator
US20050047748A1 (en) * 2001-02-09 2005-03-03 Digital Optics Corporation Compensation and/or variation of wafer level produced lenses and resultant structures
JP2007173746A (ja) * 2005-12-26 2007-07-05 Matsushita Electric Ind Co Ltd 固体撮像装置およびこれを備えるカメラ
JP2009003171A (ja) * 2007-06-21 2009-01-08 Fujitsu Ltd 光学回路
US20140087491A1 (en) * 2012-09-27 2014-03-27 Omnivision Technologies (Shanghai) Co., Ltd. Wafer level bonding method for fabricating wafer level camera lenses
JP2014526067A (ja) * 2011-08-25 2014-10-02 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッド 光学装置の、特にコンピュテーショナルカメラ用モジュールのウェハレベルの製作
US20160241751A1 (en) * 2013-09-23 2016-08-18 Lg Innotek Co., Ltd. Camera Module and Manufacturing Method for Same
JP2017513071A (ja) * 2014-03-14 2017-05-25 オクラロ テクノロジー リミテッド 光学部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050047748A1 (en) * 2001-02-09 2005-03-03 Digital Optics Corporation Compensation and/or variation of wafer level produced lenses and resultant structures
US20040051940A1 (en) * 2002-09-18 2004-03-18 Chen Liang Independent focus compensation for a multi-axis imaging system
US20040233539A1 (en) * 2002-12-18 2004-11-25 Alex Harwit Focus-position compensator
JP2007173746A (ja) * 2005-12-26 2007-07-05 Matsushita Electric Ind Co Ltd 固体撮像装置およびこれを備えるカメラ
JP2009003171A (ja) * 2007-06-21 2009-01-08 Fujitsu Ltd 光学回路
JP2014526067A (ja) * 2011-08-25 2014-10-02 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッド 光学装置の、特にコンピュテーショナルカメラ用モジュールのウェハレベルの製作
US20140087491A1 (en) * 2012-09-27 2014-03-27 Omnivision Technologies (Shanghai) Co., Ltd. Wafer level bonding method for fabricating wafer level camera lenses
US20160241751A1 (en) * 2013-09-23 2016-08-18 Lg Innotek Co., Ltd. Camera Module and Manufacturing Method for Same
JP2017513071A (ja) * 2014-03-14 2017-05-25 オクラロ テクノロジー リミテッド 光学部品

Also Published As

Publication number Publication date
US20220365340A1 (en) 2022-11-17
JPWO2021153629A1 (ja) 2021-08-05
CN115004063A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US10598873B2 (en) Optical alignment of an optical subassembly to an optoelectronic device
US11573294B2 (en) Switched optical phased array based beam steering LiDAR
US6768834B1 (en) Slab optical multiplexer
US9326050B2 (en) Wavelength selective switch and method of manufacturing same
US20150286121A1 (en) Projection device
CN108020924B (zh) 使用共用的光学器件的多激光器封装体
WO2014129506A1 (ja) 光デバイス
CN112823301B (zh) 用于为投影仪提供多色光束的装置和方法、投影仪和制造方法
US8654424B2 (en) Multibeam deflector for separating beams output from optical deflection devices
WO2021153629A1 (ja) 光モジュールおよび光学装置
US7302136B2 (en) Assembly of optical components and method for assembling same
WO2017119111A1 (ja) 合波レーザ光源
US10921606B2 (en) Optical multiplexer
US20200321747A1 (en) Wavelength-multiplexed light transmission module and method for manufacturing same
US9864147B2 (en) Optical modulator module
WO2019038997A1 (ja) プリズム及び光モジュール
US20220365310A1 (en) Optical device and optical component
JPS59119312A (ja) ハイブリツド光集積装置
US20230185064A1 (en) Compact Bi-Telecentric Projection Devices
US9467757B2 (en) Wavelength selective switch
EP3779575B1 (en) Optical modulation device
US6703605B2 (en) Optoelectronic micromodule
WO2024074254A1 (en) Optoelectronic light source and data glasses
JPH04315488A (ja) レ―ザアレイモジュ―ル
CN117858653A (zh) 光纤到芯片互连

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21746973

Country of ref document: EP

Kind code of ref document: A1