WO2021153504A1 - Coated metal plate - Google Patents

Coated metal plate Download PDF

Info

Publication number
WO2021153504A1
WO2021153504A1 PCT/JP2021/002443 JP2021002443W WO2021153504A1 WO 2021153504 A1 WO2021153504 A1 WO 2021153504A1 JP 2021002443 W JP2021002443 W JP 2021002443W WO 2021153504 A1 WO2021153504 A1 WO 2021153504A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
film
nickel
hydroxide
forming metal
Prior art date
Application number
PCT/JP2021/002443
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 吉松
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to JP2021574022A priority Critical patent/JPWO2021153504A1/ja
Publication of WO2021153504A1 publication Critical patent/WO2021153504A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32

Definitions

  • the present invention relates to a film-forming metal plate having excellent adhesion to a resin.
  • BGA ball grid arrays
  • IC integrated circuit elements
  • LSI conductive substrates used for capacitive touch panels
  • metal plates and resins are bonded.
  • the body is used.
  • Patent Document 1 as a bonded body of a metal plate and a resin used for electronic and electrical parts applications, a bonded body of a resin and a metal plate having a chromium compound layer having a large number of fine scaly protrusions on the surface. Is disclosed. However, in the technique of Patent Document 1, chromium contained in the chromium compound layer is not desirable from the viewpoint of environmental load, and a material having less environmental load is required. Further, there is a demand for a metal plate having good adhesion to a resin.
  • An object of the present invention is to provide a film-forming metal plate having excellent adhesion to a resin.
  • the present inventors have formed a hydroxide film containing specific nickel on a metal plate, and specifically, the most of the hydroxide film.
  • the state of nickel on the surface the state of Ni alone represented by Ni metal , the state of nickel oxide (II) represented by NiO, and the state of nickel (II) hydroxide represented by Ni (OH) 2.
  • the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface of the hydroxide film is 1: 1 to 1: 62, which is the ratio of "Ni metal : Ni (OH) 2". It has been found that the above object can be achieved by forming a hydroxide film within the range of the above, and the present invention has been completed.
  • the present invention is a film-forming metal plate including a metal plate and a hydroxide film formed on the metal plate and containing nickel.
  • the state of nickel on the outermost surface of the hydroxide film is the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and Ni (OH).
  • the state ratio of Ni metal to Ni (OH) 2 in the nickel on the outermost surface of the hydroxide film is 1: 1 to 1:62 in terms of the ratio of "Ni metal: Ni (OH) 2".
  • a film-forming metal plate is provided.
  • the film-forming metal plate of the present invention is provided with a plurality of protruding protrusions on the surface thereof.
  • the height of the protruding convex portion is set to H [nm], and the height is defined as H [nm].
  • the width at the portion showing the widest width in the range higher than the height of H / 2 from the tip of the protruding convex portion is defined as the maximum width W max [nm].
  • the width in the portion showing the narrowest width is defined as the minimum width W min [nm], and the following equation (1) is used. And it is preferable that the following formula (2) is satisfied. 20 nm ⁇ H ⁇ 500 nm (1) 20 nm ⁇ H x (W min / W max ) ⁇ 500 nm (2)
  • the film-forming metal plate of the present invention further includes a nickel conductive layer containing nickel on the metal plate, and the hydroxide film is formed on the metal plate via the nickel conductive layer. Is preferable.
  • the film-forming metal plate of the present invention further includes a zinc-containing underlayer and a nickel-containing nickel conductive layer formed on the underlayer on the metal plate, and the hydroxide coating is under the above. It is preferably formed on the metal plate via the ground layer and the nickel conductive layer.
  • the state ratio of Ni (OH) 2 in all nickel elements on the outermost surface of the hydroxide film is preferably 50% or more.
  • the thickness of the hydroxide film is preferably 20 to 500 nm.
  • the hydroxide film may be formed in a predetermined pattern.
  • the metal plate is an aluminum plate.
  • a jig for transporting electronic components provided with a resin adsorption portion for adsorbing electronic components on the above-mentioned film-forming metal plate.
  • FIG. 1 is a cross-sectional view of the film-forming metal plate according to the present embodiment.
  • FIG. 2 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 1, and FIG. 2 (B) shows the shape of the protruding convex portion. It is a figure for demonstrating the measurement method.
  • 3 (A) and 3 (B) are views for explaining a method of measuring the shape of the protruding convex portion.
  • FIG. 4 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12, and FIG. 4 (B) shows the shape of the protruding convex portion.
  • FIG. 5 is a cross-sectional view of the film-forming metal plate according to another embodiment.
  • FIG. 6 is a diagram for explaining the jig for transporting electronic components according to the present embodiment.
  • FIG. 7 is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 21.
  • FIG. 1 is a cross-sectional view showing the configuration of the film-forming metal plate 10 according to the present embodiment.
  • the film-forming metal plate 10 of the present embodiment is formed by forming a hydroxide film 12 as the outermost layer on the metal plate 11.
  • the hydroxide film 12 is formed on the metal plate 11 via the nickel conductive layer 13.
  • the embodiment is not particularly limited, and the hydroxide coating 12 may be formed directly on the metal plate 11 without passing through the nickel conductive layer 13. Alternatively, the hydroxide coating 12 may be formed on the metal plate 11 via a layer different from the nickel conductive layer 13.
  • the metal plate 11 is not particularly limited, and examples thereof include a steel plate, a stainless steel plate, a copper plate, an aluminum plate, an aluminum alloy plate, a nickel plate, and a metal-plated base material. Among these, a steel plate, an aluminum plate, or an aluminum alloy plate is preferable because of its low price. Further, an aluminum plate is more preferable, and an aluminum alloy plate is particularly preferable, from the viewpoint that the weight of the obtained resin-metal plate composite material can be reduced when the resin-metal plate composite material is bonded to the resin.
  • the thickness of the metal plate 11 is not particularly limited, but is preferably 0.025 to 2 mm, more preferably 0.05 to 0.8 mm from the viewpoint of handleability when transporting electronic components.
  • the hydroxide film 12 is a film formed on the metal plate 11, and constitutes the outermost layer of the film-forming metal plate 10.
  • the hydroxide coating 12 is formed on the metal plate 11 via the nickel conductive layer 13.
  • the hydroxide film 12 has nickel as the outermost surface, a simple substance of Ni represented by Ni metal , a state of nickel (II) oxide represented by NiO, and Ni (OH) 2.
  • Ni (II) hydroxide represented by that is, when X-ray photoelectron spectroscopy (XPS) measurement was performed on the outermost surface of the hydroxide film 12, the peak of Ni alone represented by Ni metal and the peak of nickel (II) oxide represented by NiO. And the peak of nickel (II) hydroxide represented by Ni (OH) 2 is detected.
  • Ni alone means a nickel element that exists in a state where it is not oxidized or hydroxylated.
  • the hydroxide film 12 has a state ratio of Ni metal to Ni (OH) 2 in nickel on the outermost surface thereof, which is a ratio of “Ni metal : Ni (OH) 2 ”, which is 1: 1 to 1: 1. 62.
  • the state ratio of Ni metal and Ni (OH) 2 was determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the hydroxide coating 12 and measuring the integrated value of the peak of Ni alone and Ni (OH). Obtain the integrated value of the peak of 2 , calculate the state ratio of Ni alone and Ni (OH) 2 in all nickel elements on the outermost surface, and obtain the state ratio of Ni and Ni (OH) 2. Can be done.
  • XPS X-ray photoelectron spectroscopy
  • the hydroxide film 12 is the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and Ni (OH). )
  • the film-forming metal plate 10 is made of a resin. It can be made to have excellent adhesion to the material.
  • the state ratio of Ni metal to Ni (OH) 2 is the ratio of "Ni metal : Ni (OH) 2 ", which is 1: 1 to 1:62, preferably 1: 1.5 to 1:10. It is more preferably 1: 1.5 to 1: 4, still more preferably 1: 1.6 to 1: 3, and particularly preferably 1: 1.6 to 1: 2.2. If the ratio of Ni (OH) 2 to Ni metal is too low or too high, the film-forming metal plate will have poor adhesion to the resin.
  • State ratio of Ni (OH) 2 in all nickel elements on the outermost surface of the hydroxide film 12 that is, Ni alone, an oxide such as NiO, a hydroxide such as Ni (OH) 2 and Ni
  • the ratio of the state of Ni (OH) 2 in terms of nickel element to the total of the oxide and the Ni compound other than the hydroxide is preferably 50% or more, more preferably 50 to 93%, still more preferably. Is 53-87%.
  • the state ratio of Ni metal (Ni simple substance) in all nickel elements on the outermost surface of the hydroxide film 12 (that is, Ni simple substance, an oxide such as NiO, and a hydroxide such as Ni (OH) 2).
  • the ratio of the state of Ni alone in terms of nickel element to the total of Ni oxides and Ni compounds other than hydroxide.) Is preferably 1.5 to 50%, more preferably 7 to 34%. , More preferably 13-34%.
  • State ratio of NiO in all nickel elements on the outermost surface of the hydroxide film 12 that is, Ni alone, an oxide such as NiO, a hydroxide such as Ni (OH) 2 , Ni oxide and water.
  • the ratio of the state of NiO in terms of nickel element to the total with Ni compounds other than oxides) may be 0.1 to 13%.
  • the thickness of the hydroxide film 12 is not particularly limited, but from the viewpoint of making the obtained resin-metal plate composite material more sufficient when bonded to the resin to form a resin-metal plate composite material. It is more preferably 20 to 500 nm, more preferably 22 to 500 nm, and even more preferably 50 to 500 nm.
  • the method for forming the hydroxide film 12 on the metal plate 11 is not particularly limited, but a plating layer containing nickel is formed on the metal plate 11, and the formed plating layer containing nickel is subjected to electrolytic treatment. There is a way to do it.
  • the formed hydroxide film 12 is represented by the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of Ni (OH) 2 .
  • the method of performing the electrolytic treatment is preferable from the viewpoint that the state of nickel (II) hydroxide is contained and the state ratio of Ni metal and Ni (OH) 2 can be within the above range.
  • the hydroxide film 12 is formed by the method of forming the plating layer containing nickel and performing the electrolytic treatment on the formed plating layer containing nickel, the film-forming metal plate 10 obtained is shown in FIG. As shown in 1, the hydroxide film 12 is formed on the metal plate 11 via the nickel conductive layer 13.
  • the plating layer containing nickel is not particularly limited, and may be either a plating layer made of nickel alone or a plating layer made of a nickel alloy, but from the viewpoint that the hydroxide film 12 can be formed satisfactorily, nickel is used. It is preferably a plating layer made of an alloy, and preferably a Ni-P alloy plating layer.
  • the obtained film-forming metal plate 10 is provided with a nickel plating layer as the nickel conductive layer 13, and when a plating layer made of a nickel alloy is formed, it is possible.
  • the obtained film-forming metal plate 10 includes a nickel alloy plating layer as the nickel conductive layer 13.
  • the nickel conductive layer 13 can be either crystalline or amorphous, but is more preferably amorphous because of its good corrosion resistance.
  • the obtained film-forming metal plate 10 includes a Ni-P alloy plating layer as the nickel conductive layer 13.
  • the Ni-P alloy plating layer can be formed, for example, by electroless plating on the metal plate 11 using a plating bath containing a Ni-P alloy.
  • the content of P in the Ni—P alloy plating layer is preferably 1 to 13% by weight, more preferably 5 to 13%.
  • the electrolytic treatment conditions for forming a nickel-containing plating layer and performing electrolytic treatment on the formed nickel-containing plating layer are not particularly limited, but the electrolytic treatment bath includes nickel sulfate, nickel chloride, nickel nitrate, etc. A method using an electrolytic treatment bath containing nickel ions of the above can be mentioned.
  • the nickel ion concentration in the electrolytic treatment bath used for the electrolytic treatment bath is preferably 0.03 to 0.4 mol / L, more preferably 0.05 to 0.3 mol / L, and further preferably 0.1 to 0.1 to L. It is 0.2 mol / L.
  • the bath temperature of the electrolysis bath during the electrolysis treatment is preferably 20 to 80 ° C., more preferably 25 to 80 ° C., still more preferably 50 to 60 ° C., and the current during the electrolysis treatment.
  • density is preferably 0.8 ⁇ 3.5mA / cm 2, more preferably 1 ⁇ 3mA / cm 2, more preferably from 1.5 ⁇ 2mA / cm 2, electrolytic treatment at the time of performing the electrolytic treatment
  • the time is preferably 30 to 200 seconds, more preferably 60 to 180 seconds, and even more preferably 120 to 180 seconds.
  • the nickel conductive layer 13 is formed.
  • the thickness of the nickel conductive layer 13 is not particularly limited, and is preferably 1 to 40 ⁇ m, more preferably 1 to 20 ⁇ m, and further preferably 1 to 10 ⁇ m.
  • the plating layer containing nickel when the plating layer containing nickel is formed on the metal plate 11, the plating layer containing nickel may be directly formed, but the plating layer containing nickel and the plating layer thereof are used. From the viewpoint of satisfactorily forming the hydroxide film 12 formed by the electrolytic treatment, a base layer containing zinc as a base layer is previously formed on the metal plate 11, and then the base layer containing the zinc is formed. It is preferable to form a plating layer containing nickel on the plating layer.
  • the method for forming the base layer containing zinc is not particularly limited, and examples thereof include a method in which the metal plate 11 is subjected to a degreasing treatment, and then etched or pickled as necessary and then subjected to zinc replacement plating. Be done.
  • the zinc substitution plating known ones can be used, and a single zincate treatment or a double zincate treatment can be used.
  • the double zincate treatment it is carried out by going through each step of a first zinc substitution treatment (1st zincate treatment), a zinc nitrate stripping treatment (dezyering treatment), and a second zinc substitution treatment (2nd zincate treatment). In this case, a washing treatment is carried out after each step.
  • the film-forming metal plate 10 of the present embodiment preferably has a plurality of protruding protrusions on its surface, and the cut surfaces of the plurality of protruding protrusions are observed with a scanning electron microscope. At that time, it is preferable that the following conditions are satisfied. That is, the height of the protruding convex portion is H [nm], and the width in the portion showing the widest width in a range higher than the height of H / 2, which is half the height of the protruding convex portion, is the maximum width W max.
  • FIG. 2A is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 1.
  • the SEM photograph according to FIG. 2A is a cross-sectional SEM photograph showing a width of 1.25 ⁇ m among the cut surfaces of the film-forming metal plate 10, and in the present embodiment, such a width of 1.25 ⁇ m.
  • the height H, the maximum width W max , and the minimum width W min are measured for the highest protruding convex portion among the protruding convex portions passing through the cut surface. ..
  • the reason is that when measuring the cut surface of the film-forming metal plate 10, the cut surface is measured by filling with resin and polishing, etc., but the protruding protrusions appearing on the cut surface
  • the shape of the portion depends on the cutting position, and the exact shape may not appear depending on the cutting position.
  • the highest protruding protrusion that is, the protruding protrusion indicated by the arrow in FIG. 2A
  • the protruding protrusion indicated by the arrow in FIG. 2A may be used.
  • a protruding convex portion having the highest height that is, the protruding convex portion indicated by the arrow in FIG. 2A
  • the height H, the maximum width W max , and the minimum width W min are measured.
  • the specific measurement method is as follows. First, as shown in FIG. 2B, the height H of the protruding convex portion is obtained. That is, first, a line connecting the valleys on both sides of the protruding convex portion is drawn, and this is used as the baseline. Then, the length from the baseline to the top of the protruding convex portion is defined as the height H [nm] of the protruding convex portion.
  • the position of H / 2, which is half the height position from the baseline, is obtained with respect to the height H of the protruding convex portion.
  • a portion showing the widest width in a range higher than the height of H / 2, which is half the height of the protruding convex portion is obtained, and the width of the widest portion is set to the maximum.
  • W max [nm] is set to the maximum.
  • the width of the narrow portion is defined as the minimum width W min [nm]. Then, the value of H ⁇ (W min / W max ) is obtained from the measured height H of the protruding convex portion, the maximum width W max , and the minimum width W min. In the present embodiment, such measurement is performed for 5 visual fields at different positions, and the measurement results of the 5 visual fields are averaged.
  • FIG. 4 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12, and in FIG. 4 (A), the width is 1.25 ⁇ m.
  • the highest protruding protrusion that is, the protruding protrusion indicated by the arrow in FIG. 4 (A)
  • the structure is such that a branch is provided in a range equal to or less than the height of H / 2, which is half the height of the protruding convex portion.
  • width W1, width W2, width W3, width W4 in FIG. 4B width W1, width W2, width W3, width W4 in FIG. 4B.
  • the plurality of protruding protrusions formed on the surface of the film-forming metal plate 10 preferably satisfy the above formulas (1) and (2), but the following formula (3). ) And the following formula (4) are more preferable, and it is further preferable to satisfy the following formula (5) and the following formula (6).
  • the method of forming a plurality of protruding convex portions satisfying the above formulas (1) and (2) on the surface of the film-forming metal plate 10 is not particularly limited, but the metal plate 11
  • a plating layer containing nickel is formed, and the formed plating layer containing nickel is formed by electrolytic treatment under the above-mentioned electrolytic treatment conditions. Be done.
  • the plurality of protruding protrusions formed on the surface of the film-forming metal plate 10 are substantially formed of the material constituting the hydroxide film 12.
  • the film-forming metal plate 10a may be used. That is, the film-forming metal plate 10a is the same as the film-forming metal plate 10 shown in FIG. 1, except that the hydroxide film 12a is formed in a predetermined pattern. Specifically, the hydroxide film 12a of the film-forming metal plate 10a is the same as the hydroxide film 12 of the film-forming metal plate 10 except that it is formed in a predetermined pattern.
  • a nickel-containing plating layer is formed on the metal plate 11, and a mask having a predetermined pattern is used to cover the nickel-containing plating layer. It can be manufactured by a method of performing electrolytic treatment or the like.
  • the hydroxide film 12a can be satisfactorily formed with a pattern corresponding to the mask used (the hydroxide film 12a can be formed with a pattern substantially the same as that of the mask used). It is a product and has excellent pattern forming properties.
  • the film-forming metal plate 10a also preferably has a plurality of protruding protrusions satisfying the above formulas (1) and (2) on its surface, and the film-forming metal plate 10a preferably has a plurality of protruding protrusions. A portion of the surface on which the hydroxide coating 12a is formed may be provided with a plurality of protruding protrusions satisfying the above formulas (1) and (2).
  • the film-forming metal plates 10 and 10a of the present embodiment described above are excellent in adhesion to a resin, and the resin is not particularly limited, but for example, a silicone-based resin such as polydimethylsiloxane (PDMS) is used. Resin can be used. In addition to polydimethylsiloxane, the silicone-based resin has a siloxane bond as the main skeleton and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. Those containing can be preferably used.
  • PDMS polydimethylsiloxane
  • a non-silicone resin can be used in addition to the silicone resin.
  • the non-silicone resin include a polyether resin, a polyester resin, a fluororesin, and the like.
  • a polyether resin is used.
  • Resin is suitable.
  • the polyether resin preferably has an ether bond as a main skeleton and contains any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group.
  • polyester-based resin one having an ester bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group is preferable.
  • non-silicone resin a urethane resin, a polylactic acid resin, a fluorine resin, an ester resin, and an acrylic-styrene resin can also be used.
  • the urethane-based resin, polylactic acid-based resin, fluorine-based resin, ester-based resin, and acrylic-styrene-based resin include, for example, any one of urethane bond, ester bond, ether bond, amide bond, and acrylic bond as the main skeleton.
  • a functional group those containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, a ketone group, and an acrylic group are preferably used.
  • the fluororesin include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), polyvinylidene fluoride (PVDF) and the like.
  • the film-forming metal plates 10 and 10a of the present embodiment have excellent adhesion to the resin, they can be used for various purposes by joining them with the resin to form a resin-metal plate composite material.
  • Such applications include, for example, electronic and electrical components such as ball grid arrays (BGA) and integrated circuit elements (IC, LSI), conductive substrates used for capacitive touch panels, jigs for transporting electronic components, and gas. It is suitably used for flow path forming members, chemical resistant members, sliding parts, electronic circuit forming substrates, and the like.
  • the film-forming metal plates 10 and 10a of the present embodiment are used as an electronic component transporting tool, particularly as an electronic component transporting tool for transporting fine electronic components such as micro LEDs, capacitors, and semiconductor elements. It can be preferably used.
  • the electronic component transporting jig 40 of the present embodiment has a resin portion (resin adsorption) formed in a pattern on the film-forming metal plate 10 (10a) of the present embodiment. Part) 20 is provided, and as shown in FIG. 6A, the electronic component transporting jig 40 is formed in a pattern by being pressed against a plurality of electronic components 60 mounted on the stocker 50. A plurality of electronic components 60 are adsorbed by the resin portion (resin adsorbing portion) 20. Then, as shown in FIG. 6 (B), the electronic component transporting jig 40 transports a plurality of electronic components 60 onto the circuit board 70 for mounting the electronic components 60, and then shows in FIG.
  • the resin portion (resin adsorption portion) 20 is also formed in a pattern according to the electronic component to be transported, and such a patterned resin portion (resin).
  • a coating-forming metal plate 10a in which the hydroxide coating 12a as shown in FIG. 5 is formed in a predetermined pattern is preferably used.
  • the state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are such that the peak of Ni2p3 / 2 is separated into waveforms corresponding to each chemical state, and the peak area of Ni2p3 / 2 is divided into the peak area of Ni alone. It was calculated from the ratio of the peak area corresponding to (Ni metal ), the peak area corresponding to NiO, or the peak area corresponding to Ni (OH) 2.
  • the height H, the maximum width W max , and the minimum width W min of the highest protruding convex portion are measured, and the obtained measurement results are averaged to obtain the height of the protruding convex portion.
  • the values of H, maximum width W max , minimum width W min , and H ⁇ (W min / W max ) were determined.
  • the protrusion-like convex portion having the highest height is branched in a range equal to or less than the height of H / 2, which is half the height of the protrusion-like convex portion.
  • the width of the portion showing the narrowest width in each branch portion was measured, and the total of these was defined as the minimum width W min .
  • Siccarol manufactured by Asahi Group Foods Co., Ltd.
  • Siccarol manufactured by Asahi Group Foods Co., Ltd.
  • the peel strength (peeling load) of the resin layer was measured at a rate of 1 minute. The higher the value of the peel strength, the better the adhesion between the film-forming metal plate and the resin layer.
  • ⁇ Pattern formation> The pattern-forming property of the film-forming metal plates obtained in Examples and Comparative Examples was evaluated by measuring the size of the formed hydroxide coating and comparing it with the size of the mask. The pattern forming property was evaluated according to the following criteria. ⁇ : The size of the formed hydroxide film is within ⁇ 0.2 mm compared to the size of the mask ⁇ : The size of the formed hydroxide film is ⁇ 0. Over 2 mm
  • ⁇ Difficult to peel off the resin layer> With respect to the film-forming metal plate provided with the resin layer obtained in Examples and Comparative Examples, the difficulty of peeling (difficulty of peeling) when the resin layer is peeled by pulling at 100 mm / min is determined according to the following criteria. evaluated. ⁇ : The resin layer broke without peeling ⁇ : It was possible to peel, but peeling was not easy ⁇ : It peeled easily
  • Example 1 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 ⁇ m-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was degreased and pickled, and then electrolyzed under the following conditions using a mask with an opening of 4 cm in length and 4 cm in width.
  • Electrolysis bath composition NiSO 4 0.2 mol / L
  • Electrolysis bath temperature 25 ° C
  • Current density 1.0mA / cm 2
  • Electrolysis treatment time 30 seconds
  • a layer made of dimethylsiloxane (DMS) was formed as a resin layer on the surface of the film-forming metal plate obtained above on which the hydroxide film was formed, and heated at 85 ° C. for 10 minutes.
  • a polydimethylsiloxane (PDMS) layer (resin layer) having a thickness of 100 ⁇ m was formed on the hydroxide film.
  • the peel strength and the resistance to peeling were measured according to the above method. The results are shown in Table 1.
  • Examples 2 to 11 An electrolyzed plating plate and a film-forming metal plate provided with a PDMS layer were produced in the same manner as in Example 1 except that the electrolysis treatment conditions were changed to the conditions shown in Table 1, and evaluation was performed in the same manner. The results are shown in Table 1.
  • Comparative Examples 1 to 3 A film-forming metal plate and a film-forming metal plate provided with a PDMS layer were produced and evaluated in the same manner as in Example 1 except that the electrolysis treatment conditions were changed to the conditions shown in Table 1. The results are shown in Table 1.
  • Comparative Example 4 A plating plate and a plating plate provided with a PDMS layer were produced in the same manner as in Example 1 except that the electrolytic treatment was not performed, and evaluation was performed in the same manner. The results are shown in Table 1.
  • the "state ratio of nickel on the outermost surface of the electrolytically treated film” is the chemical state of all nickel on the outermost surface in the nickel element (Ni alone, Ni oxide, and Ni hydroxide). , Ni oxides and Ni compounds other than hydroxides) as 100%, "Ni alone (Ni metal " state nickel, “NiO” state nickel, “Ni (OH) 2 " The proportion of nickel in the state is shown (the same applies to Tables 2 and 3).
  • Ni metal As shown in Table 1, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2.
  • the state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2".
  • the film-forming metal plate provided with the hydroxide film of 1:62 the peel strength with respect to the resin (PDMS) is high, the peeling resistance is excellent, and the adhesion with the resin (PDMS) is excellent. (Examples 1 to 11).
  • FIG. 2A shows an SEM photograph of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to the first embodiment.
  • the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface is outside the range of 1: 1 to 1:62 in the ratio of "Ni metal: Ni (OH) 2”.
  • Has low peel strength with respect to resin (PDMS) is also inferior in peelability, and is inferior in adhesion to resin (PDMS) (Comparative Examples 1 to 4).
  • Example 12 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 ⁇ m-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was electrolyzed under the following conditions using a mask having an opening of 4 cm in length and 4 cm in width to form a hydroxide film having a thickness of 335 nm. A film-forming metal plate formed was obtained.
  • Electrolysis bath composition NiSO 4 0.1 mol / L
  • Electrolysis bath temperature 25 ° C Current density: 1.5mA / cm 2 Electrolysis treatment time: 180 seconds
  • the state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are calculated from the results of XPS measurement according to the above method, and the protrusions are convex.
  • the shape of the part and the pattern forming property were measured. The results are shown in Table 2.
  • a layer made of a non-silicone resin (polyether resin) was formed as a resin layer on the surface of the film-forming metal plate obtained above on which the hydroxide film was formed, and the temperature was 110 ° C.
  • a non-silicone resin layer having a thickness of 200 ⁇ m was formed on the film-forming metal plate.
  • the peel strength and the peel resistance of the film-forming metal plate provided with the non-silicone resin layer were measured according to the above method. The results are shown in Table 2.
  • Examples 13 to 20 A film-forming metal plate and a film-forming metal plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolysis treatment conditions were changed to the conditions shown in Table 2, and evaluation was performed in the same manner. rice field. The results are shown in Table 2.
  • Comparative Examples 5 to 7 A film-forming metal plate and a film-forming metal plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolysis treatment conditions were changed to the conditions shown in Table 2, and evaluation was performed in the same manner. rice field. The results are shown in Table 2.
  • Comparative Example 8 A plated plate and a plated plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolytic treatment was not performed, and the evaluation was performed in the same manner. The results are shown in Table 2.
  • the state of nickel on the outermost surface As shown in Table 2, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2.
  • the state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2".
  • the peel strength is high with respect to the resin (non-silicone resin), the peeling resistance is excellent, and the adhesion with the resin (non-silicone resin) is excellent. It was excellent in properties (Examples 12 to 20).
  • Example 19 since the resin (non-silicone resin) broke during the measurement of the peel strength, it is considered that the resin (non-silicone resin) has better adhesion.
  • Example 19 the peel strength at the time of resin breakage is shown.
  • FIG. 4A shows an SEM photograph of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12.
  • the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface is outside the range of 1: 1 to 1: 62 in the ratio of "Ni metal : Ni (OH) 2”.
  • Has low peel strength, poor peelability, and poor adhesion to the resin (non-silicone resin) with respect to the resin (non-silicone resin) (Comparative Examples 5 to 8).
  • Example 21 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 ⁇ m-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was electrolyzed under the following conditions using a mask having an opening of 4 cm in length and 4 cm in width to form a hydroxide film having a thickness of 386 nm. A film-forming metal plate formed was obtained.
  • Electrolysis bath composition NiSO 4 0.1 mol / L
  • Electrolysis bath temperature 50 ° C Current density: 1.5mA / cm 2 Electrolysis treatment time: 180 seconds
  • Comparative Example 9 A plated plate and a plated plate provided with a non-silicone resin layer were produced in the same manner as in Example 21 except that the electrolytic treatment was not performed, and the evaluation was performed in the same manner. The results are shown in Table 3.
  • Ni metal As shown in Table 3, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2.
  • the state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2".
  • the film-forming metal plate provided with the hydroxide film having a ratio of 1: 2 the peel strength with respect to the resin (PTFE) is high, the peeling resistance is excellent, and the adhesion with the resin (PTFE) is excellent. (Example 21). Note that FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention provides a coated metal plate which is provided with: a metal plate; and a hydroxide coating film that is formed on the metal plate and contains nickel. The hydroxide coating film contains, as the states of nickel in the outermost surface of the hydroxide coating film, elemental Ni represented by Nimetal, nickel (II) oxide represented by NiO, and nickel (II) hydroxide represented by Ni(OH)2; and the state ratio of Nimetal to Ni(OH)2 in the nickel in the outermost surface of the hydroxide coating film, namely, the Nimetal: Ni(OH)2 ratio is from 1:1 to 1:62.

Description

被膜形成金属板Film-forming metal plate
 本発明は、樹脂に対する密着性に優れた被膜形成金属板に関する。 The present invention relates to a film-forming metal plate having excellent adhesion to a resin.
 従来、ボールグリッドアレイ(BGA)、集積回路素子(IC、LSI)などの電子電気用部品や、静電容量式タッチパネルに用いられる導電性基板など、様々な分野において、金属板と樹脂との接合体が用いられている。 Conventionally, in various fields such as electronic and electrical parts such as ball grid arrays (BGA) and integrated circuit elements (IC, LSI), and conductive substrates used for capacitive touch panels, metal plates and resins are bonded. The body is used.
 たとえば、特許文献1では、電子電気部品用途に用いられる金属板と樹脂との接合体として、表面に、多数の微細な鱗片状突起を備えるクロム化合物層を有する金属板と、樹脂との接合体が開示されている。しかしながら、この特許文献1の技術では、クロム化合物層に含まれるクロムは、環境負荷の点より望ましくなく、環境負荷の少ない材料が求められている。さらに、樹脂に対する密着性の良好な金属板が求められている。 For example, in Patent Document 1, as a bonded body of a metal plate and a resin used for electronic and electrical parts applications, a bonded body of a resin and a metal plate having a chromium compound layer having a large number of fine scaly protrusions on the surface. Is disclosed. However, in the technique of Patent Document 1, chromium contained in the chromium compound layer is not desirable from the viewpoint of environmental load, and a material having less environmental load is required. Further, there is a demand for a metal plate having good adhesion to a resin.
特開2000-183235号公報Japanese Unexamined Patent Publication No. 2000-183235
 本発明の目的は、樹脂に対する密着性に優れた被膜形成金属板を提供することにある。 An object of the present invention is to provide a film-forming metal plate having excellent adhesion to a resin.
 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、金属板上に、特定のニッケルを含む水酸化物被膜を形成することで、具体的には、水酸化物被膜の最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態で含み、かつ、水酸化物被膜の最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62の範囲である水酸化物被膜を形成することで、上記目的を達成することができることを見出し、本発明を完成させるに至った。 As a result of diligent studies to achieve the above object, the present inventors have formed a hydroxide film containing specific nickel on a metal plate, and specifically, the most of the hydroxide film. As the state of nickel on the surface, the state of Ni alone represented by Ni metal , the state of nickel oxide (II) represented by NiO, and the state of nickel (II) hydroxide represented by Ni (OH) 2. The state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface of the hydroxide film is 1: 1 to 1: 62, which is the ratio of "Ni metal : Ni (OH) 2". It has been found that the above object can be achieved by forming a hydroxide film within the range of the above, and the present invention has been completed.
 すなわち、本発明によれば、金属板と、前記金属板上に形成され、ニッケルを含む水酸化物被膜と、を備える被膜形成金属板であって、
 前記水酸化物被膜は、前記水酸化物被膜の最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態を含み、
 前記水酸化物被膜の最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62である、被膜形成金属板が提供される。
That is, according to the present invention, it is a film-forming metal plate including a metal plate and a hydroxide film formed on the metal plate and containing nickel.
In the hydroxide film, the state of nickel on the outermost surface of the hydroxide film is the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and Ni (OH). Including the state of nickel (II) hydroxide represented by 2.
The state ratio of Ni metal to Ni (OH) 2 in the nickel on the outermost surface of the hydroxide film is 1: 1 to 1:62 in terms of the ratio of "Ni metal: Ni (OH) 2". A film-forming metal plate is provided.
 本発明の被膜形成金属板は、表面に、複数の突起状凸部を備え、
 前記突起状凸部の切断面を走査型電子顕微鏡により観察した際に、
 前記突起状凸部の高さをH[nm]とし、
 前記突起状凸部の先端部からH/2の高さより高い範囲において最も広い幅を示す部分における幅を、最大幅Wmax[nm]とし、
 前記突起状凸部の半分の高さであるH/2の高さ以下の範囲において、最も狭い幅を示す部分における幅を、最小幅Wmin[nm]とした場合に、下記式(1)および下記式(2)を満たすものであることが好ましい。
  20nm≦H≦500nm  (1)
  20nm≦H×(Wmin/Wmax)≦500nm  (2)
The film-forming metal plate of the present invention is provided with a plurality of protruding protrusions on the surface thereof.
When the cut surface of the protruding convex portion was observed with a scanning electron microscope,
The height of the protruding convex portion is set to H [nm], and the height is defined as H [nm].
The width at the portion showing the widest width in the range higher than the height of H / 2 from the tip of the protruding convex portion is defined as the maximum width W max [nm].
In the range below the height of H / 2, which is half the height of the protruding convex portion, the width in the portion showing the narrowest width is defined as the minimum width W min [nm], and the following equation (1) is used. And it is preferable that the following formula (2) is satisfied.
20 nm ≤ H ≤ 500 nm (1)
20 nm ≤ H x (W min / W max ) ≤ 500 nm (2)
 本発明の被膜形成金属板は、前記金属板上に、ニッケルを含むニッケル導電層をさらに備え、前記水酸化物被膜は、前記ニッケル導電層を介して、前記金属板上に形成されていることが好ましい。
 本発明の被膜形成金属板は、前記金属板上に、亜鉛を含有する下地層、および、前記下地層に形成されたニッケルを含むニッケル導電層をさらに備え、前記水酸化物被膜は、前記下地層および前記ニッケル導電層を介して、前記金属板上に形成されていることが好ましい。
 本発明の被膜形成金属板において、前記水酸化物被膜の最表面における全ニッケル元素中における、Ni(OH)の状態割合が、50%以上であることが好ましい。
 本発明の被膜形成金属板において、前記水酸化物被膜の厚みが、20~500nmであることが好ましい。
 本発明の被膜形成金属板において、前記水酸化物被膜が、所定のパターンにて形成されていてもよい。
 本発明の被膜形成金属板において、前記金属板が、アルミニウム板であることが好ましい。
The film-forming metal plate of the present invention further includes a nickel conductive layer containing nickel on the metal plate, and the hydroxide film is formed on the metal plate via the nickel conductive layer. Is preferable.
The film-forming metal plate of the present invention further includes a zinc-containing underlayer and a nickel-containing nickel conductive layer formed on the underlayer on the metal plate, and the hydroxide coating is under the above. It is preferably formed on the metal plate via the ground layer and the nickel conductive layer.
In the film-forming metal plate of the present invention, the state ratio of Ni (OH) 2 in all nickel elements on the outermost surface of the hydroxide film is preferably 50% or more.
In the film-forming metal plate of the present invention, the thickness of the hydroxide film is preferably 20 to 500 nm.
In the film-forming metal plate of the present invention, the hydroxide film may be formed in a predetermined pattern.
In the film-forming metal plate of the present invention, it is preferable that the metal plate is an aluminum plate.
 また、本発明によれば、上記の被膜形成金属板上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具が提供される。 Further, according to the present invention, there is provided a jig for transporting electronic components provided with a resin adsorption portion for adsorbing electronic components on the above-mentioned film-forming metal plate.
 本発明によれば、樹脂に対する密着性に優れた被膜形成金属板を提供することができる。 According to the present invention, it is possible to provide a film-forming metal plate having excellent adhesion to a resin.
図1は、本実施形態に係る被膜形成金属板の断面図である。FIG. 1 is a cross-sectional view of the film-forming metal plate according to the present embodiment. 図2(A)は、実施例1に係る被膜形成金属板10の表面近傍における切断面の走査型電子顕微鏡写真(SEM写真)であり、図2(B)は、突起状凸部の形状の測定方法を説明するための図である。FIG. 2 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 1, and FIG. 2 (B) shows the shape of the protruding convex portion. It is a figure for demonstrating the measurement method. 図3(A)、図3(B)は、突起状凸部の形状の測定方法を説明するための図である。3 (A) and 3 (B) are views for explaining a method of measuring the shape of the protruding convex portion. 図4(A)は、実施例12に係る被膜形成金属板10の表面近傍における切断面の走査型電子顕微鏡写真(SEM写真)であり、図4(B)は、突起状凸部の形状の測定方法を説明するための図である。FIG. 4 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12, and FIG. 4 (B) shows the shape of the protruding convex portion. It is a figure for demonstrating the measurement method. 図5は、他の実施形態に係る被膜形成金属板の断面図である。FIG. 5 is a cross-sectional view of the film-forming metal plate according to another embodiment. 図6は、本実施形態に係る電子部品搬送用冶具について説明するための図である。FIG. 6 is a diagram for explaining the jig for transporting electronic components according to the present embodiment. 図7は、実施例21に係る被膜形成金属板10の表面近傍における切断面の走査型電子顕微鏡写真(SEM写真)である。FIG. 7 is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 21.
 図1は、本実施形態に係る被膜形成金属板10の構成を示す断面図である。図1に示すように、本実施形態の被膜形成金属板10は、金属板11上に、最表層として水酸化物被膜12が形成されてなる。なお、本実施形態においては、被膜形成金属板10として、水酸化物被膜12が、ニッケル導電層13を介して、金属板11上に形成されてなる態様を例示しているが、このような態様に特に限定されず、ニッケル導電層13を介さずに、金属板11上に、直接、水酸化物被膜12が形成されてなる態様であってもよい。あるいは、ニッケル導電層13とは異なる層を介して、金属板11上に、水酸化物被膜12が形成されてなる態様であってもよい。 FIG. 1 is a cross-sectional view showing the configuration of the film-forming metal plate 10 according to the present embodiment. As shown in FIG. 1, the film-forming metal plate 10 of the present embodiment is formed by forming a hydroxide film 12 as the outermost layer on the metal plate 11. In the present embodiment, as the film-forming metal plate 10, the hydroxide film 12 is formed on the metal plate 11 via the nickel conductive layer 13. The embodiment is not particularly limited, and the hydroxide coating 12 may be formed directly on the metal plate 11 without passing through the nickel conductive layer 13. Alternatively, the hydroxide coating 12 may be formed on the metal plate 11 via a layer different from the nickel conductive layer 13.
 金属板11としては、特に限定されないが、鋼板、ステンレス鋼板、銅板、アルミニウム板、アルミニウム合金板、ニッケル板または金属めっきを施された基材などが挙げられる。これらのなかでも、価格が安いことから、鋼板またはアルミニウム板、アルミニウム合金板が好ましい。さらに、樹脂と接合し、樹脂-金属板複合材料とした場合に、得られる樹脂-金属板複合材料の軽量化が可能となるという観点より、アルミニウム板がより好ましく、アルミニウム合金板が特に好ましい。金属板11の厚みは、特に限定されないが、電子部品を搬送する際における取り扱い性の観点より、好ましくは0.025~2mm、より好ましくは0.05~0.8mmである。 The metal plate 11 is not particularly limited, and examples thereof include a steel plate, a stainless steel plate, a copper plate, an aluminum plate, an aluminum alloy plate, a nickel plate, and a metal-plated base material. Among these, a steel plate, an aluminum plate, or an aluminum alloy plate is preferable because of its low price. Further, an aluminum plate is more preferable, and an aluminum alloy plate is particularly preferable, from the viewpoint that the weight of the obtained resin-metal plate composite material can be reduced when the resin-metal plate composite material is bonded to the resin. The thickness of the metal plate 11 is not particularly limited, but is preferably 0.025 to 2 mm, more preferably 0.05 to 0.8 mm from the viewpoint of handleability when transporting electronic components.
 水酸化物被膜12は、金属板11上に形成される被膜であり、被膜形成金属板10の最表層を構成する。なお、本実施形態においては、水酸化物被膜12は、ニッケル導電層13を介して、金属板11上に形成されている。 The hydroxide film 12 is a film formed on the metal plate 11, and constitutes the outermost layer of the film-forming metal plate 10. In this embodiment, the hydroxide coating 12 is formed on the metal plate 11 via the nickel conductive layer 13.
 本実施形態において、水酸化物被膜12は、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態を含む。すなわち、水酸化物被膜12の最表面について、X線光電子分光(XPS)測定を行った際に、Nimetalで表されるNi単体のピーク、NiOで表される酸化ニッケル(II)のピーク、およびNi(OH)で表される水酸化ニッケル(II)のピークが検出されるものである。なお、本実施形態において、Ni単体とは、酸化あるいは水酸化されていない状態で存在するニッケル元素を意味する。 In the present embodiment, the hydroxide film 12 has nickel as the outermost surface, a simple substance of Ni represented by Ni metal , a state of nickel (II) oxide represented by NiO, and Ni (OH) 2. Includes the state of nickel (II) hydroxide represented by. That is, when X-ray photoelectron spectroscopy (XPS) measurement was performed on the outermost surface of the hydroxide film 12, the peak of Ni alone represented by Ni metal and the peak of nickel (II) oxide represented by NiO. And the peak of nickel (II) hydroxide represented by Ni (OH) 2 is detected. In this embodiment, Ni alone means a nickel element that exists in a state where it is not oxidized or hydroxylated.
 また、水酸化物被膜12は、その最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62である。なお、Nimetalと、Ni(OH)との状態比は、水酸化物被膜12の表面について、X線光電子分光(XPS)測定を行い、Ni単体のピークの積分値と、Ni(OH)のピークの積分値とを求め、これらより、最表面における全ニッケル元素におけるNi単体およびNi(OH)の状態割合を算出し、Niと、Ni(OH)との状態比を求めることができる。 Further, the hydroxide film 12 has a state ratio of Ni metal to Ni (OH) 2 in nickel on the outermost surface thereof, which is a ratio of “Ni metal : Ni (OH) 2 ”, which is 1: 1 to 1: 1. 62. The state ratio of Ni metal and Ni (OH) 2 was determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the hydroxide coating 12 and measuring the integrated value of the peak of Ni alone and Ni (OH). Obtain the integrated value of the peak of 2 , calculate the state ratio of Ni alone and Ni (OH) 2 in all nickel elements on the outermost surface, and obtain the state ratio of Ni and Ni (OH) 2. Can be done.
 本実施形態によれば、水酸化物被膜12を、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態を含み、かつ、NimetalとNi(OH)との状態比が上記範囲であるものとすることにより、被膜形成金属板10を、樹脂に対する密着性に優れたものとすることができるものである。 According to this embodiment, the hydroxide film 12 is the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and Ni (OH). ) By including the state of nickel (II) hydroxide represented by 2 and assuming that the state ratio of Ni metal and Ni (OH) 2 is in the above range, the film-forming metal plate 10 is made of a resin. It can be made to have excellent adhesion to the material.
 NimetalとNi(OH)との状態比は、「Nimetal:Ni(OH)」の比で、1:1~1:62であり、好ましくは1:1.5~1:10、より好ましくは1:1.5~1:4、さらに好ましくは1:1.6~1:3、特に好ましくは1:1.6~1:2.2である。Nimetalに対する、Ni(OH)の割合が低すぎても、あるいは、高すぎても、被膜形成金属板は、樹脂に対する密着性に劣るものとなってしまう。 The state ratio of Ni metal to Ni (OH) 2 is the ratio of "Ni metal : Ni (OH) 2 ", which is 1: 1 to 1:62, preferably 1: 1.5 to 1:10. It is more preferably 1: 1.5 to 1: 4, still more preferably 1: 1.6 to 1: 3, and particularly preferably 1: 1.6 to 1: 2.2. If the ratio of Ni (OH) 2 to Ni metal is too low or too high, the film-forming metal plate will have poor adhesion to the resin.
 水酸化物被膜12の最表面における全ニッケル元素中におけるNi(OH)の状態割合(すなわち、Ni単体と、NiOなどの酸化物と、Ni(OH)などの水酸化物と、Niの酸化物および水酸化物以外のNi化合物との合計に対する、ニッケル元素換算でのNi(OH)の状態割合。)は、好ましくは50%以上であり、より好ましくは50~93%、さらに好ましくは53~87%である。最表面における全ニッケル元素中におけるNi(OH)の状態割合を上記範囲とすることにより、被膜形成金属板10を、樹脂に対する密着性により優れたものとすることができる。 State ratio of Ni (OH) 2 in all nickel elements on the outermost surface of the hydroxide film 12 (that is, Ni alone, an oxide such as NiO, a hydroxide such as Ni (OH) 2 and Ni The ratio of the state of Ni (OH) 2 in terms of nickel element to the total of the oxide and the Ni compound other than the hydroxide is preferably 50% or more, more preferably 50 to 93%, still more preferably. Is 53-87%. By setting the state ratio of Ni (OH) 2 in all nickel elements on the outermost surface within the above range, the film-forming metal plate 10 can be made more excellent in adhesion to the resin.
 また、水酸化物被膜12の最表面における全ニッケル元素中におけるNimetal(Ni単体)の状態割合(すなわち、Ni単体と、NiOなどの酸化物と、Ni(OH)などの水酸化物と、Niの酸化物および水酸化物以外のNi化合物との合計に対する、ニッケル元素換算でのNi単体の状態割合。)は、好ましくは1.5~50%であり、より好ましくは7~34%、さらに好ましくは13~34%である。水酸化物被膜12の最表面における全ニッケル元素中におけるNiOの状態割合(すなわち、Ni単体と、NiOなどの酸化物と、Ni(OH)などの水酸化物と、Niの酸化物および水酸化物以外のNi化合物との合計に対する、ニッケル元素換算でのNiOの状態割合。)は、0.1~13%存在していてもよい。 Further, the state ratio of Ni metal (Ni simple substance) in all nickel elements on the outermost surface of the hydroxide film 12 (that is, Ni simple substance, an oxide such as NiO, and a hydroxide such as Ni (OH) 2). , The ratio of the state of Ni alone in terms of nickel element to the total of Ni oxides and Ni compounds other than hydroxide.) Is preferably 1.5 to 50%, more preferably 7 to 34%. , More preferably 13-34%. State ratio of NiO in all nickel elements on the outermost surface of the hydroxide film 12 (that is, Ni alone, an oxide such as NiO, a hydroxide such as Ni (OH) 2 , Ni oxide and water. The ratio of the state of NiO in terms of nickel element to the total with Ni compounds other than oxides) may be 0.1 to 13%.
 水酸化物被膜12の厚みは、特に限定されないが、樹脂と接合し、樹脂-金属板複合材料とした場合に、得られる樹脂-金属板複合材料の接合強度をより十分なものとするという観点より、好ましくは20~500nm、より好ましくは22~500nm、さらに好ましくは50~500nmである。 The thickness of the hydroxide film 12 is not particularly limited, but from the viewpoint of making the obtained resin-metal plate composite material more sufficient when bonded to the resin to form a resin-metal plate composite material. It is more preferably 20 to 500 nm, more preferably 22 to 500 nm, and even more preferably 50 to 500 nm.
 金属板11上に、水酸化物被膜12を形成する方法としては特に限定されないが、金属板11上に、ニッケルを含むめっき層を形成し、形成されたニッケルを含むめっき層について、電解処理を行う方法が挙げられる。形成される水酸化物皮膜12を、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態を含み、かつ、NimetalとNi(OH)との状態比が上記範囲であるものとすることができるという観点より、電解処理を行う方法が好ましい。 The method for forming the hydroxide film 12 on the metal plate 11 is not particularly limited, but a plating layer containing nickel is formed on the metal plate 11, and the formed plating layer containing nickel is subjected to electrolytic treatment. There is a way to do it. The formed hydroxide film 12 is represented by the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of Ni (OH) 2 . The method of performing the electrolytic treatment is preferable from the viewpoint that the state of nickel (II) hydroxide is contained and the state ratio of Ni metal and Ni (OH) 2 can be within the above range.
 なお、ニッケルを含むめっき層を形成し、形成されたニッケルを含むめっき層について、電解処理を行う方法により、水酸化物被膜12を形成した場合には、得られる被膜形成金属板10は、図1に示すように、ニッケル導電層13を介して、金属板11上に、水酸化物被膜12が形成されてなるものとなる。 In addition, when the hydroxide film 12 is formed by the method of forming the plating layer containing nickel and performing the electrolytic treatment on the formed plating layer containing nickel, the film-forming metal plate 10 obtained is shown in FIG. As shown in 1, the hydroxide film 12 is formed on the metal plate 11 via the nickel conductive layer 13.
 ニッケルを含むめっき層としては、特に限定されず、ニッケル単体からなるめっき層、ニッケル合金からなるめっき層のいずれであってもよいが、水酸化物被膜12を良好に形成できるという観点より、ニッケル合金からなるめっき層であることが好ましく、Ni-P合金めっき層であることが好ましい。なお、ニッケル単体からなるめっき層を形成した場合には、得られる被膜形成金属板10は、ニッケル導電層13として、ニッケルめっき層を備えるものとなり、ニッケル合金からなるめっき層を形成した場合には、得られる被膜形成金属板10は、ニッケル導電層13として、ニッケル合金めっき層を備えるものとなる。ニッケル導電層13は、結晶質又は非晶質のどちらも使用することができるが、耐食性が良好であるという理由から非晶質であることがより好ましい。また、Ni-P合金めっき層を形成した場合には、得られる被膜形成金属板10は、ニッケル導電層13として、Ni-P合金めっき層を備えるものとなる。なお、Ni-P合金めっき層は、たとえば、金属板11に対し、Ni-P合金を含むめっき浴を用いた無電解めっきにより形成することができる。Ni-P合金めっき層中における、Pの含有量は、好ましくは1~13重量%であり、より好ましくは5~13%である。 The plating layer containing nickel is not particularly limited, and may be either a plating layer made of nickel alone or a plating layer made of a nickel alloy, but from the viewpoint that the hydroxide film 12 can be formed satisfactorily, nickel is used. It is preferably a plating layer made of an alloy, and preferably a Ni-P alloy plating layer. When a plating layer made of nickel alone is formed, the obtained film-forming metal plate 10 is provided with a nickel plating layer as the nickel conductive layer 13, and when a plating layer made of a nickel alloy is formed, it is possible. The obtained film-forming metal plate 10 includes a nickel alloy plating layer as the nickel conductive layer 13. The nickel conductive layer 13 can be either crystalline or amorphous, but is more preferably amorphous because of its good corrosion resistance. When the Ni-P alloy plating layer is formed, the obtained film-forming metal plate 10 includes a Ni-P alloy plating layer as the nickel conductive layer 13. The Ni-P alloy plating layer can be formed, for example, by electroless plating on the metal plate 11 using a plating bath containing a Ni-P alloy. The content of P in the Ni—P alloy plating layer is preferably 1 to 13% by weight, more preferably 5 to 13%.
 ニッケルを含むめっき層を形成し、形成されたニッケルを含むめっき層について、電解処理を行う際における電解処理条件としては、特に限定されないが、電解処理浴として、硫酸ニッケル、塩化ニッケル、硝酸ニッケルなどのニッケルイオンを含有する電解処理浴を用いる方法が挙げられる。電解処理浴に用いる電解処理浴中における、ニッケルイオン濃度は、好ましくは0.03~0.4mol/Lであり、より好ましくは0.05~0.3mol/L、さらに好ましくは0.1~0.2mol/Lである。 The electrolytic treatment conditions for forming a nickel-containing plating layer and performing electrolytic treatment on the formed nickel-containing plating layer are not particularly limited, but the electrolytic treatment bath includes nickel sulfate, nickel chloride, nickel nitrate, etc. A method using an electrolytic treatment bath containing nickel ions of the above can be mentioned. The nickel ion concentration in the electrolytic treatment bath used for the electrolytic treatment bath is preferably 0.03 to 0.4 mol / L, more preferably 0.05 to 0.3 mol / L, and further preferably 0.1 to 0.1 to L. It is 0.2 mol / L.
 また、電解処理を行う際における電解処理浴の浴温は、好ましくは20~80℃であり、より好ましくは25~80℃、さらに好ましくは50~60℃であり、電解処理を行う際における電流密度は、好ましくは0.8~3.5mA/cmであり、より好ましくは1~3mA/cm、さらに好ましくは1.5~2mA/cmであり、電解処理を行う際における電解処理時間は、好ましくは30~200秒であり、より好ましくは60~180秒、さらに好ましくは120~180秒である。 The bath temperature of the electrolysis bath during the electrolysis treatment is preferably 20 to 80 ° C., more preferably 25 to 80 ° C., still more preferably 50 to 60 ° C., and the current during the electrolysis treatment. density is preferably 0.8 ~ 3.5mA / cm 2, more preferably 1 ~ 3mA / cm 2, more preferably from 1.5 ~ 2mA / cm 2, electrolytic treatment at the time of performing the electrolytic treatment The time is preferably 30 to 200 seconds, more preferably 60 to 180 seconds, and even more preferably 120 to 180 seconds.
 なお、ニッケルを含むめっき層を形成し、形成されたニッケルを含むめっき層について、電解処理を行う方法により、水酸化物被膜12を形成した場合には、ニッケル導電層13が形成されることとなるが、ニッケル導電層13の厚みは、特に限定されず、好ましくは1~40μm、より好ましくは1~20μm、さらに好ましくは1~10μmである。 In addition, when the hydroxide film 12 is formed by forming the plating layer containing nickel and performing the electrolytic treatment on the formed plating layer containing nickel, the nickel conductive layer 13 is formed. However, the thickness of the nickel conductive layer 13 is not particularly limited, and is preferably 1 to 40 μm, more preferably 1 to 20 μm, and further preferably 1 to 10 μm.
 また、本実施形態においては、金属板11上に、ニッケルを含むめっき層を形成する際には、直接、ニッケルを含むめっき層を形成してもよいが、ニッケルを含むめっき層、およびこれを電解処理することにより形成される水酸化物被膜12を良好に形成するという観点より、予め金属板11上に下地層としての亜鉛を含有する下地層を形成した後、その亜鉛を含有する下地層上に、ニッケルを含むめっき層を形成することが好ましい。 Further, in the present embodiment, when the plating layer containing nickel is formed on the metal plate 11, the plating layer containing nickel may be directly formed, but the plating layer containing nickel and the plating layer thereof are used. From the viewpoint of satisfactorily forming the hydroxide film 12 formed by the electrolytic treatment, a base layer containing zinc as a base layer is previously formed on the metal plate 11, and then the base layer containing the zinc is formed. It is preferable to form a plating layer containing nickel on the plating layer.
 亜鉛を含有する下地層を形成する方法としては、特に限定されないが、金属板11について、脱脂処理を行ない、次いで、必要に応じてエッチングや酸洗した後、亜鉛の置換めっきを行なう方法が挙げられる。亜鉛の置換めっきは、公知のものを使用することができ、シングルジンケート処理や、ダブルジンケート処理を用いることができる。ダブルジンケート処理の場合、第一亜鉛置換処理(1stジンケート処理)、硝酸亜鉛剥離処理(脱ジンケート処理)、第二亜鉛置換処理(2ndジンケート)の各工程を経ることにより行なわれる。この場合、各工程の処理後には水洗処理を実施する。 The method for forming the base layer containing zinc is not particularly limited, and examples thereof include a method in which the metal plate 11 is subjected to a degreasing treatment, and then etched or pickled as necessary and then subjected to zinc replacement plating. Be done. As the zinc substitution plating, known ones can be used, and a single zincate treatment or a double zincate treatment can be used. In the case of the double zincate treatment, it is carried out by going through each step of a first zinc substitution treatment (1st zincate treatment), a zinc nitrate stripping treatment (dezincating treatment), and a second zinc substitution treatment (2nd zincate treatment). In this case, a washing treatment is carried out after each step.
 また、本実施形態の被膜形成金属板10は、表面に、複数の突起状凸部を備えるものであることが好ましく、複数の突起状凸部は、その切断面を走査型電子顕微鏡により観察した際に、次の条件を満たすものであることが好ましい。
 すなわち、突起状凸部の高さをH[nm]とし、突起状凸部の半分の高さであるH/2の高さより高い範囲において最も広い幅を示す部分における幅を、最大幅Wmax[nm]とし、突起状凸部の半分の高さであるH/2の高さ以下の範囲において、最も狭い幅を示す部分における幅を、最小幅Wmin[nm]とした場合に、下記式(1)および下記式(2)を満たすものであることが好ましく、複数の突起状凸部が、下記式(1)および下記式(2)満たすことにより、樹脂に対する密着性により優れたものとすることができる。
  20nm≦H≦500nm  (1)
  20nm≦H×(Wmin/Wmax)≦500nm  (2)
Further, the film-forming metal plate 10 of the present embodiment preferably has a plurality of protruding protrusions on its surface, and the cut surfaces of the plurality of protruding protrusions are observed with a scanning electron microscope. At that time, it is preferable that the following conditions are satisfied.
That is, the height of the protruding convex portion is H [nm], and the width in the portion showing the widest width in a range higher than the height of H / 2, which is half the height of the protruding convex portion, is the maximum width W max. When [nm] is set and the width in the portion showing the narrowest width is set to the minimum width W min [nm] in the range below the height of H / 2, which is half the height of the protruding convex portion, the following It is preferable that the formulas (1) and the following formula (2) are satisfied, and the plurality of protruding protrusions satisfy the following formulas (1) and the following formula (2), so that the adhesion to the resin is superior. Can be.
20 nm ≤ H ≤ 500 nm (1)
20 nm ≤ H x (W min / W max ) ≤ 500 nm (2)
 ここで、突起状凸部の高さH、最大幅Wmax、最小幅Wminの測定方法について、説明する。図2(A)は、実施例1に係る被膜形成金属板10の表面近傍における切断面の走査型電子顕微鏡写真(SEM写真)である。図2(A)に係るSEM写真は、被膜形成金属板10の切断面のうち、幅1.25μmの範囲を示す断面SEM写真であり、本実施形態においては、このような幅1.25μmの範囲を示す断面SEM写真において、切断面を通る突起状凸部のうち、最も高さの高い突起状凸部について、高さH、最大幅Wmax、最小幅Wminの測定を行うものである。その理由としては、被膜形成金属板10について切断面を測定する際には、樹脂埋め等を行い、研磨等することにより、切断面の測定を行うものであるが、切断面に現れる突起状凸部の形状は、切断位置に依存するものであり、切断位置によっては、正確な形状が現れない場合もある。一方で、幅1.25μmの範囲に現れる複数の突起状凸部のうち、最も高さが高い突起状凸部(すなわち、図2(A)中、矢印で示した突起状凸部)であれば、その頂点近傍を通る切断面が表れていると判断できることから、このような最も高さが高い突起状凸部(すなわち、図2(A)中、矢印で示した突起状凸部)に着目して、高さH、最大幅Wmax、最小幅Wminの測定を行うものである。 Here, a method for measuring the height H, the maximum width W max , and the minimum width W min of the protruding convex portion will be described. FIG. 2A is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 1. The SEM photograph according to FIG. 2A is a cross-sectional SEM photograph showing a width of 1.25 μm among the cut surfaces of the film-forming metal plate 10, and in the present embodiment, such a width of 1.25 μm. In the cross-sectional SEM photograph showing the range, the height H, the maximum width W max , and the minimum width W min are measured for the highest protruding convex portion among the protruding convex portions passing through the cut surface. .. The reason is that when measuring the cut surface of the film-forming metal plate 10, the cut surface is measured by filling with resin and polishing, etc., but the protruding protrusions appearing on the cut surface The shape of the portion depends on the cutting position, and the exact shape may not appear depending on the cutting position. On the other hand, among the plurality of protruding protrusions appearing in the range of 1.25 μm in width, the highest protruding protrusion (that is, the protruding protrusion indicated by the arrow in FIG. 2A) may be used. For example, since it can be determined that the cut surface passing near the apex appears, such a protruding convex portion having the highest height (that is, the protruding convex portion indicated by the arrow in FIG. 2A) is formed. Focusing on this, the height H, the maximum width W max , and the minimum width W min are measured.
 具体的な測定方法としては、以下の通りである。まず、図2(B)に示すように、突起状凸部の高さHを求める。すなわち、まず、突起状凸部の両サイドの谷部同士をつないだ線を引き、これをベースラインとする。そして、ベースラインから、突起状凸部の頂部までの長さを、突起状凸部の高さH[nm]とする。 The specific measurement method is as follows. First, as shown in FIG. 2B, the height H of the protruding convex portion is obtained. That is, first, a line connecting the valleys on both sides of the protruding convex portion is drawn, and this is used as the baseline. Then, the length from the baseline to the top of the protruding convex portion is defined as the height H [nm] of the protruding convex portion.
 次いで、図3(A)に示すように、突起状凸部の高さHに対して、ベースラインから半分の高さ位置であるH/2の位置を求める。そして、図3(B)に示すように、突起状凸部の半分の高さであるH/2の高さより高い範囲において最も広い幅を示す部分を求め、この最も広い部分の幅を、最大幅Wmax[nm]とする。さらに、図3(B)に示すように、突起状凸部の半分の高さであるH/2の高さ以下の範囲において、最も狭い幅を示す部分における幅を示す部分を求め、この最も狭い部分の幅を、最小幅Wmin[nm]とする。そして、測定した突起状凸部の高さH、最大幅Wmax、最小幅Wminより、H×(Wmin/Wmax)の値を求める。なお、本実施形態では、このような測定を、異なる位置の5視野について行い、5視野の測定結果を平均したものとする。 Next, as shown in FIG. 3A, the position of H / 2, which is half the height position from the baseline, is obtained with respect to the height H of the protruding convex portion. Then, as shown in FIG. 3B, a portion showing the widest width in a range higher than the height of H / 2, which is half the height of the protruding convex portion, is obtained, and the width of the widest portion is set to the maximum. Significantly W max [nm]. Further, as shown in FIG. 3 (B), in the range below the height of H / 2, which is half the height of the protruding convex portion, the portion showing the width in the portion showing the narrowest width is obtained, and the portion showing the width is the most. The width of the narrow portion is defined as the minimum width W min [nm]. Then, the value of H × (W min / W max ) is obtained from the measured height H of the protruding convex portion, the maximum width W max , and the minimum width W min. In the present embodiment, such measurement is performed for 5 visual fields at different positions, and the measurement results of the 5 visual fields are averaged.
 また、図4(A)は、実施例12に係る被膜形成金属板10の表面近傍における切断面の走査型電子顕微鏡写真(SEM写真)であり、図4(A)において、幅1.25μmの範囲に現れる複数の突起状凸部のうち、最も高さが高い突起状凸部(すなわち、図4(A)中、矢印で示した突起状凸部)は、図4(A)からも明らかなように、突起状凸部の半分の高さであるH/2の高さ以下の範囲において、分岐を有するような構成となっている。そして、この場合には、各分岐部における、最も狭い幅を示す部分の幅(図4(B)において、幅W1、幅W2、幅W3、幅W4)それぞれを測定し、これらの合計を、最小幅Wminとする(すなわち、Wmin=W1+W2+W3+W4とする。)。 Further, FIG. 4 (A) is a scanning electron micrograph (SEM photograph) of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12, and in FIG. 4 (A), the width is 1.25 μm. Of the plurality of protruding protrusions appearing in the range, the highest protruding protrusion (that is, the protruding protrusion indicated by the arrow in FIG. 4 (A)) is also clear from FIG. 4 (A). As described above, the structure is such that a branch is provided in a range equal to or less than the height of H / 2, which is half the height of the protruding convex portion. Then, in this case, the width of the portion showing the narrowest width in each branch portion (width W1, width W2, width W3, width W4 in FIG. 4B) is measured, and the total of these is measured. The minimum width is W min (that is, W min = W1 + W2 + W3 + W4).
 本実施形態において、被膜形成金属板10の表面に形成される、複数の突起状凸部は、上記式(1)および上記式(2)を満たすものであることが好ましいが、下記式(3)および下記式(4)を満たすことがより好ましく、下記式(5)および下記式(6)を満たすことがさらに好ましい。
  30nm≦H≦360nm  (3)
  48nm≦H×(Wmin/Wmax)≦225nm  (4)
  66nm≦H≦300nm  (5)
  60nm≦H×(Wmin/Wmax)≦225nm  (6)
In the present embodiment, the plurality of protruding protrusions formed on the surface of the film-forming metal plate 10 preferably satisfy the above formulas (1) and (2), but the following formula (3). ) And the following formula (4) are more preferable, and it is further preferable to satisfy the following formula (5) and the following formula (6).
30 nm ≤ H ≤ 360 nm (3)
48 nm ≤ H x (W min / W max ) ≤ 225 nm (4)
66nm ≤ H ≤ 300nm (5)
60 nm ≤ H x (W min / W max ) ≤ 225 nm (6)
 また、本実施形態において、被膜形成金属板10の表面に、上記式(1)および上記式(2)を満たす複数の突起状凸部を形成する方法としては、特に限定されないが、金属板11上に、水酸化物被膜12を形成する際に、ニッケルを含むめっき層を形成し、形成されたニッケルを含むめっき層について、上記した電解処理条件にて、電解処理により形成する方法などが挙げられる。そして、この場合には、被膜形成金属板10の表面に形成される複数の突起状凸部は、実質的に、水酸化物被膜12を構成する材料により形成されるものとなる。 Further, in the present embodiment, the method of forming a plurality of protruding convex portions satisfying the above formulas (1) and (2) on the surface of the film-forming metal plate 10 is not particularly limited, but the metal plate 11 Above, when forming the hydroxide film 12, a plating layer containing nickel is formed, and the formed plating layer containing nickel is formed by electrolytic treatment under the above-mentioned electrolytic treatment conditions. Be done. In this case, the plurality of protruding protrusions formed on the surface of the film-forming metal plate 10 are substantially formed of the material constituting the hydroxide film 12.
 さらに、本実施形態においては、図5に示すように、被膜形成金属板10aであってもよい。すなわち、被膜形成金属板10aは、水酸化物被膜12aが所定のパターン状に形成されている以外は、図1に示す被膜形成金属板10と同様のものである。具体的には、被膜形成金属板10aの水酸化物被膜12aは、所定のパターン状に形成されている以外は、被膜形成金属板10の水酸化物被膜12と同様である。なお、被膜形成金属板10aは、金属板11上に、ニッケルを含むめっき層を形成し、所定パターンを有するマスクを用いて、マスクをした状態にて、形成されたニッケルを含むめっき層について、電解処理を行う方法などにより製造することができる。特に、本実施形態によれば、使用したマスクに応じたパターンにて、水酸化物被膜12aを良好に形成できる(使用したマスクとほぼ同様のパターンにて、水酸化物被膜12aを形成できる)ものであり、パターン形成性に優れているものである。なお、被膜形成金属板10aにおいても、その表面に、上記式(1)および上記式(2)を満たす複数の突起状凸部を備えるものであることが好ましく、被膜形成金属板10aにおいては、その表面のうち、水酸化物被膜12aが形成されている部分において、上記式(1)および上記式(2)を満たす複数の突起状凸部を備えるものであればよい。 Further, in the present embodiment, as shown in FIG. 5, the film-forming metal plate 10a may be used. That is, the film-forming metal plate 10a is the same as the film-forming metal plate 10 shown in FIG. 1, except that the hydroxide film 12a is formed in a predetermined pattern. Specifically, the hydroxide film 12a of the film-forming metal plate 10a is the same as the hydroxide film 12 of the film-forming metal plate 10 except that it is formed in a predetermined pattern. In the film-forming metal plate 10a, a nickel-containing plating layer is formed on the metal plate 11, and a mask having a predetermined pattern is used to cover the nickel-containing plating layer. It can be manufactured by a method of performing electrolytic treatment or the like. In particular, according to the present embodiment, the hydroxide film 12a can be satisfactorily formed with a pattern corresponding to the mask used (the hydroxide film 12a can be formed with a pattern substantially the same as that of the mask used). It is a product and has excellent pattern forming properties. The film-forming metal plate 10a also preferably has a plurality of protruding protrusions satisfying the above formulas (1) and (2) on its surface, and the film-forming metal plate 10a preferably has a plurality of protruding protrusions. A portion of the surface on which the hydroxide coating 12a is formed may be provided with a plurality of protruding protrusions satisfying the above formulas (1) and (2).
 上述した本実施形態の被膜形成金属板10,10aは、樹脂との密着性に優れたものであり、このような樹脂としては特に限定されないが、たとえば、ポリジメチルシロキサン(PDMS)などのシリコーン系樹脂を用いることができる。シリコーン系樹脂としては、ポリジメチルシロキサン以外にも、主骨格として、シロキサン結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものを好適に用いることができる。 The film-forming metal plates 10 and 10a of the present embodiment described above are excellent in adhesion to a resin, and the resin is not particularly limited, but for example, a silicone-based resin such as polydimethylsiloxane (PDMS) is used. Resin can be used. In addition to polydimethylsiloxane, the silicone-based resin has a siloxane bond as the main skeleton and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. Those containing can be preferably used.
 あるいは、シリコーン系樹脂以外に、非シリコーン系樹脂を用いることもでき、非シリコーン系樹脂としては、ポリエーテル系樹脂や、ポリエステル系樹脂、フッ素樹脂などが挙げられ、これらのなかでも、ポリエーテル系樹脂が好適である。ポリエーテル系樹脂としては、主骨格として、エーテル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適であり、また、ポリエステル系樹脂としては、主骨格として、エステル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適である。また、非シリコーン系樹脂としては、ウレタン系樹脂や、ポリ乳酸系樹脂、フッ素系樹脂、エステル系樹脂、アクリル-スチレン系樹脂を用いることもできる。ウレタン系樹脂、ポリ乳酸系樹脂、フッ素系樹脂、エステル系樹脂、およびアクリル-スチレン系樹脂としては、たとえば、主骨格として、ウレタン結合、エステル結合、エーテル結合、アミド結合、アクリル結合のいずれか1つを含み、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、ケトン基、およびアクリル基のいずれか1つを含むものが好適に用いられる。また、フッ素樹脂としては、たとえば、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシアルカン(PFA)、ポリフッ化ビニリデン(PVDF)などが挙げられる。 Alternatively, a non-silicone resin can be used in addition to the silicone resin. Examples of the non-silicone resin include a polyether resin, a polyester resin, a fluororesin, and the like. Among these, a polyether resin is used. Resin is suitable. The polyether resin preferably has an ether bond as a main skeleton and contains any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. Further, as the polyester-based resin, one having an ester bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group is preferable. Is. Further, as the non-silicone resin, a urethane resin, a polylactic acid resin, a fluorine resin, an ester resin, and an acrylic-styrene resin can also be used. The urethane-based resin, polylactic acid-based resin, fluorine-based resin, ester-based resin, and acrylic-styrene-based resin include, for example, any one of urethane bond, ester bond, ether bond, amide bond, and acrylic bond as the main skeleton. As a functional group, those containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, a ketone group, and an acrylic group are preferably used. Examples of the fluororesin include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), polyvinylidene fluoride (PVDF) and the like.
 本実施形態の被膜形成金属板10,10aは、樹脂との密着性に優れるものであるため、樹脂と接合させ、樹脂-金属板複合材料とすることで、種々の用途に用いることができる。このような用途としては、たとえば、ボールグリッドアレイ(BGA)、集積回路素子(IC、LSI)などの電子電気用部品、静電容量式タッチパネルに用いられる導電性基板、電子部品搬送用冶具、ガス流路形成部材、耐薬品部材、摺動部品、電子回路形成用基板などに好適に用いられる。これらのなかでも、本実施形態の被膜形成金属板10,10aは、電子部品搬送用冶具、とりわけ、マイクロLED、コンデンサ、半導体素子などの微細な電子部品を搬送するための電子部品搬送用冶具として好適に用いることができる。 Since the film-forming metal plates 10 and 10a of the present embodiment have excellent adhesion to the resin, they can be used for various purposes by joining them with the resin to form a resin-metal plate composite material. Such applications include, for example, electronic and electrical components such as ball grid arrays (BGA) and integrated circuit elements (IC, LSI), conductive substrates used for capacitive touch panels, jigs for transporting electronic components, and gas. It is suitably used for flow path forming members, chemical resistant members, sliding parts, electronic circuit forming substrates, and the like. Among these, the film-forming metal plates 10 and 10a of the present embodiment are used as an electronic component transporting tool, particularly as an electronic component transporting tool for transporting fine electronic components such as micro LEDs, capacitors, and semiconductor elements. It can be preferably used.
 たとえば、図6(A)に示すように、本実施形態の電子部品搬送用冶具40は、本実施形態の被膜形成金属板10(10a)上に、パターン状に形成された樹脂部(樹脂吸着部)20を備え、図6(A)に示すように、電子部品搬送用冶具40は、ストッカ50に載置された複数の電子部品60に対し、押し付けられることで、パターン状に形成された樹脂部(樹脂吸着部)20によって、複数の電子部品60を吸着する。そして、図6(B)に示すように、電子部品搬送用冶具40は、複数の電子部品60を、これを実装するための回路基板70上に搬送し、次いで、図6(C)に示すように、回路基板70上に押し付けられることで、複数の電子部品60を、回路基板70上に実装するために使用される。特に、電子部品搬送用冶具40においては、搬送する電子部品にあわせて、樹脂部(樹脂吸着部)20もパターン状で形成されていることが求められ、このようなパターン状の樹脂部(樹脂吸着部)20との接合を十分なものとするという観点より、図5に示すような水酸化物被膜12aが所定のパターン状に形成されている被膜形成金属板10aが好適に用いられる。 For example, as shown in FIG. 6A, the electronic component transporting jig 40 of the present embodiment has a resin portion (resin adsorption) formed in a pattern on the film-forming metal plate 10 (10a) of the present embodiment. Part) 20 is provided, and as shown in FIG. 6A, the electronic component transporting jig 40 is formed in a pattern by being pressed against a plurality of electronic components 60 mounted on the stocker 50. A plurality of electronic components 60 are adsorbed by the resin portion (resin adsorbing portion) 20. Then, as shown in FIG. 6 (B), the electronic component transporting jig 40 transports a plurality of electronic components 60 onto the circuit board 70 for mounting the electronic components 60, and then shows in FIG. 6 (C). As described above, by being pressed onto the circuit board 70, a plurality of electronic components 60 are used for mounting on the circuit board 70. In particular, in the electronic component transporting jig 40, it is required that the resin portion (resin adsorption portion) 20 is also formed in a pattern according to the electronic component to be transported, and such a patterned resin portion (resin). From the viewpoint of sufficient bonding with the adsorption portion) 20, a coating-forming metal plate 10a in which the hydroxide coating 12a as shown in FIG. 5 is formed in a predetermined pattern is preferably used.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
The evaluation method of each characteristic is as follows.
<XPS測定>
 実施例および比較例にて得られた被膜形成金属板(比較例1においては、電解処理を行っていないめっき板、以下、各測定、評価についての説明において同様。)の表面に形成した水酸化物被膜の表面について、X線光電子分光装置(アルバック・ファイ社製、型番:VersaProbeII)を用いて、Ni2p3/2、O1sのピークをそれぞれ測定した。
 Ni単体の状態割合、NiOの状態割合、および、Ni(OH)の状態割合は、Ni2p3/2のピークを各化学状態に対応する波形に分離し、Ni2p3/2のピーク面積に、Ni単体(Nimetal)に対応するピーク面積、NiOに対応するピーク面積、又は、Ni(OH)に対応するピーク面積の割合から算出した。
<XPS measurement>
Hydrohydration formed on the surface of the film-forming metal plate obtained in Examples and Comparative Examples (in Comparative Example 1, the plating plate not subjected to electrolysis treatment, hereinafter the same in the description of each measurement and evaluation). On the surface of the film, the peaks of Ni2p3 / 2 and O1s were measured using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI, model number: VersaProbeII).
The state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are such that the peak of Ni2p3 / 2 is separated into waveforms corresponding to each chemical state, and the peak area of Ni2p3 / 2 is divided into the peak area of Ni alone. It was calculated from the ratio of the peak area corresponding to (Ni metal ), the peak area corresponding to NiO, or the peak area corresponding to Ni (OH) 2.
<突起状凸部の形状>
 実施例および比較例にて得られた被膜形成金属板の切断面について、走査型電子顕微鏡(SEM)による観察を行うことで、突起状凸部の高さH[nm]、最大幅Wmax[nm]、および最小幅Wmin[nm]、およびH×(Wmin/Wmax)[nm]の値を求めた。具体的には、走査型電子顕微鏡(SEM)による観察により、任意の断面について、幅1.25μmとなるような条件にて、5枚の断面SEM写真を撮影し、得られた5枚の断面SEM写真について、最も高さの高い突起状凸部の高さH、最大幅Wmax、および最小幅Wminを測定し、得られた測定結果を平均することで、突起状凸部の高さH、最大幅Wmax、および最小幅Wmin、およびH×(Wmin/Wmax)の値を求めた。なお、この際に、図4(A)に示すように、最も高さが高い突起状凸部が、突起状凸部の半分の高さであるH/2の高さ以下の範囲において、分岐を有するような構成となっている場合には、各分岐部における、最も狭い幅を示す部分の幅それぞれを測定し、これらの合計を、最小幅Wminとした。
<Shape of protruding protrusion>
By observing the cut surface of the film-forming metal plate obtained in Examples and Comparative Examples with a scanning electron microscope (SEM), the height H [nm] of the protruding convex portion and the maximum width W max [ The values of nm], the minimum width W min [nm], and H × (W min / W max ) [nm] were determined. Specifically, by observing with a scanning electron microscope (SEM), five cross-sectional SEM photographs were taken under the condition that the width was 1.25 μm for any cross section, and the obtained five cross sections were taken. For the SEM photograph, the height H, the maximum width W max , and the minimum width W min of the highest protruding convex portion are measured, and the obtained measurement results are averaged to obtain the height of the protruding convex portion. The values of H, maximum width W max , minimum width W min , and H × (W min / W max ) were determined. At this time, as shown in FIG. 4 (A), the protrusion-like convex portion having the highest height is branched in a range equal to or less than the height of H / 2, which is half the height of the protrusion-like convex portion. In the case of the configuration having the above, the width of the portion showing the narrowest width in each branch portion was measured, and the total of these was defined as the minimum width W min .
<水酸化物被膜の厚み測定>
 実施例および比較例にて得られた被膜形成金属板の切断面について、査型電子顕微鏡(SEM)による観察を行い、SEM像の基材とはコントラストが異なる箇所から突起状凸部の先端までを、水酸化物被膜の厚みとして測定した。
<Measurement of hydroxide film thickness>
The cut surface of the film-forming metal plate obtained in Examples and Comparative Examples was observed with a scanning electron microscope (SEM), and from a portion having a contrast different from that of the substrate of the SEM image to the tip of the protruding convex portion. Was measured as the thickness of the hydroxide film.
<樹脂層のピール強度>
 実施例および比較例にて得られた樹脂層を備える被膜形成金属板の、樹脂層をカッターにより幅20mmに切出し、端部より20mmの長さで剥離した。剥離部にガムテープ(日東電工CSシステム株式会社製、「スーパー布テープNo.757スーパー」)を両面に貼付した。ガムテープ未貼付部の樹脂層にシッカロール(アサヒグループ食品株式会社製)を塗布し、テンシロン万能材料試験機RTC-1210A(株式会社オリエンテック製)と5kgfのロードセルを用いて180°方向に、50mm/分の速度で上記樹脂層のピール強度(剥離荷重)の測定を行った。ピール強度の値が高いほど、被膜形成金属板と、樹脂層との密着性に優れることを示している。
<Peel strength of resin layer>
The resin layer of the film-forming metal plate provided with the resin layer obtained in Examples and Comparative Examples was cut out to a width of 20 mm by a cutter and peeled off to a length of 20 mm from the end portion. Gum tape (manufactured by Nitto Denko CS System Co., Ltd., "Super Cloth Tape No. 757 Super") was attached to both sides of the peeled portion. Siccarol (manufactured by Asahi Group Foods Co., Ltd.) is applied to the resin layer of the part where the gum tape is not attached, and 50 mm / 50 mm in the 180 ° direction using the Tencilon universal material tester RTC-1210A (manufactured by Orientec Co., Ltd.) and a 5 kgf load cell. The peel strength (peeling load) of the resin layer was measured at a rate of 1 minute. The higher the value of the peel strength, the better the adhesion between the film-forming metal plate and the resin layer.
<パターン形成性>
 実施例および比較例にて得られた被膜形成金属板について、形成された水酸化物被膜のサイズを測定し、マスクの大きさと比較することで、パターン形成性の評価を行った。パターン形成性の評価は、下記の基準で行った。
  ○:形成された水酸化物被膜のサイズが、マスクの大きさと比較して、±0.2mm以内
  ×:形成された水酸化物被膜のサイズが、マスクの大きさと比較して、±0.2mm超
<Pattern formation>
The pattern-forming property of the film-forming metal plates obtained in Examples and Comparative Examples was evaluated by measuring the size of the formed hydroxide coating and comparing it with the size of the mask. The pattern forming property was evaluated according to the following criteria.
◯: The size of the formed hydroxide film is within ± 0.2 mm compared to the size of the mask ×: The size of the formed hydroxide film is ± 0. Over 2 mm
<樹脂層の難剥離性>
 実施例および比較例にて得られた樹脂層を備える被膜形成金属板について、100mm/分で引っ張ることにより、樹脂層の剥離した際における、剥離のし難さ(難剥離性)を下記基準で評価した。
  ◎:剥離せずに樹脂層が破断した
  ○:剥離することができたが、剥離が容易ではない
  ×:容易に剥離した
<Difficult to peel off the resin layer>
With respect to the film-forming metal plate provided with the resin layer obtained in Examples and Comparative Examples, the difficulty of peeling (difficulty of peeling) when the resin layer is peeled by pulling at 100 mm / min is determined according to the following criteria. evaluated.
⊚: The resin layer broke without peeling ○: It was possible to peel, but peeling was not easy ×: It peeled easily
《実施例1》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni-Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni-Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi-P合金めっき層(Pの含有量:12.0~12.5重量%)を形成した。次いで、Ni-P合金めっき層を形成したアルミニウム板について脱脂、酸洗を行った後に、縦4cm×横4cmの開口を有するマスクを用いて、下記条件にて、電解処理を行うことで、厚さ57nmの水酸化物被膜が形成されてなる被膜形成金属板を得た。
<電解処理条件>
 電解処理浴組成:NiSO 0.2mol/L
 電解処理浴温度:25℃
 電流密度:1.0mA/cm
 電解処理時間:30秒
<< Example 1 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 μm-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was degreased and pickled, and then electrolyzed under the following conditions using a mask with an opening of 4 cm in length and 4 cm in width. A film-forming metal plate on which a hydroxide film having a thickness of 57 nm was formed was obtained.
<Electrolytic treatment conditions>
Electrolysis bath composition: NiSO 4 0.2 mol / L
Electrolysis bath temperature: 25 ° C
Current density: 1.0mA / cm 2
Electrolysis treatment time: 30 seconds
 そして、得られた被膜形成金属板について、上記方法に従って、XPS測定の結果より、Ni単体の状態割合、NiOの状態割合、および、Ni(OH)の状態割合を算出するとともに、突起状凸部の形状、およびパターン形成性の測定を行った。結果を表1に示す。 Then, with respect to the obtained film-forming metal plate, the state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are calculated from the results of XPS measurement according to the above method, and the protrusions are convex. The shape of the part and the pattern forming property were measured. The results are shown in Table 1.
 次いで、上記にて得られた被膜形成金属板の、水酸化物被膜が形成された面に、樹脂層として、ジメチルシロキサン(DMS)からなる層を形成し、85℃、10分間の条件で加熱することで、ジメチルシロキサン(DMS)からなる層を硬化させることで水酸化物被膜上に、厚さ100μmのポリジメチルシロキサン(PDMS)層(樹脂層)を形成した。そして、PDMS層を備える被膜形成金属板について、上記方法にしたがって、ピール強度および難剥離性の測定を行った。結果を表1に示す。 Next, a layer made of dimethylsiloxane (DMS) was formed as a resin layer on the surface of the film-forming metal plate obtained above on which the hydroxide film was formed, and heated at 85 ° C. for 10 minutes. By curing the layer made of dimethylsiloxane (DMS), a polydimethylsiloxane (PDMS) layer (resin layer) having a thickness of 100 μm was formed on the hydroxide film. Then, with respect to the film-forming metal plate provided with the PDMS layer, the peel strength and the resistance to peeling were measured according to the above method. The results are shown in Table 1.
《実施例2~11》
 電解処理条件を表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして、電解処理めっき板、およびPDMS層を備える被膜形成金属板を製造し、同様に評価を行った。結果を表1に示す。
<< Examples 2 to 11 >>
An electrolyzed plating plate and a film-forming metal plate provided with a PDMS layer were produced in the same manner as in Example 1 except that the electrolysis treatment conditions were changed to the conditions shown in Table 1, and evaluation was performed in the same manner. The results are shown in Table 1.
《比較例1~3》
 電解処理条件を表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして、被膜形成金属板、およびPDMS層を備える被膜形成金属板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Examples 1 to 3 >>
A film-forming metal plate and a film-forming metal plate provided with a PDMS layer were produced and evaluated in the same manner as in Example 1 except that the electrolysis treatment conditions were changed to the conditions shown in Table 1. The results are shown in Table 1.
《比較例4》
 電解処理を行わなかった以外は、実施例1と同様にして、めっき板、およびPDMS層を備えるめっき板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Example 4 >>
A plating plate and a plating plate provided with a PDMS layer were produced in the same manner as in Example 1 except that the electrolytic treatment was not performed, and evaluation was performed in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 なお、表1中において、「電解処理被膜最表面のニッケルの状態割合」は、ニッケル元素中における、最表面における全ニッケルの化学状態(Ni単体、Niの酸化物と、Niの水酸化物と、Niの酸化物および水酸化物以外のNi化合物)を100%とした場合における、「Ni単体(Nimetal」の状態のニッケル、「NiO」の状態のニッケル、「Ni(OH)」の状態のニッケルの占める割合を示す(表2、表3においても同様。)。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the "state ratio of nickel on the outermost surface of the electrolytically treated film" is the chemical state of all nickel on the outermost surface in the nickel element (Ni alone, Ni oxide, and Ni hydroxide). , Ni oxides and Ni compounds other than hydroxides) as 100%, "Ni alone (Ni metal " state nickel, "NiO" state nickel, "Ni (OH) 2 " The proportion of nickel in the state is shown (the same applies to Tables 2 and 3).
 表1に示すように、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態で含み、かつ、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62である水酸化物被膜を備える被膜形成金属板によれば、樹脂(PDMS)に対する、ピール強度が高く、難剥離性にも優れ、樹脂(PDMS)との密着性に優れるものであった(実施例1~11)。特に、実施例10、11についてはピール強度の測定中に樹脂(PDMS)が破断したため、より優れた密着性を有するものと考えられる。なお、実施例10、11については樹脂破断時のピール強度を示している。なお、図2(A)に、実施例1に係る被膜形成金属板10の表面近傍における切断面のSEM写真を示す。
 一方、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62の範囲外である場合には、樹脂(PDMS)に対する、ピール強度が低く、難剥離性にも劣り、樹脂(PDMS)との密着性に劣るものであった(比較例1~4)。
As shown in Table 1, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2. The state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2". According to the film-forming metal plate provided with the hydroxide film of 1:62, the peel strength with respect to the resin (PDMS) is high, the peeling resistance is excellent, and the adhesion with the resin (PDMS) is excellent. (Examples 1 to 11). In particular, in Examples 10 and 11, since the resin (PDMS) was broken during the measurement of the peel strength, it is considered that the resin (PDMS) has better adhesion. In Examples 10 and 11, the peel strength at the time of resin breakage is shown. Note that FIG. 2A shows an SEM photograph of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to the first embodiment.
On the other hand, when the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface is outside the range of 1: 1 to 1:62 in the ratio of "Ni metal: Ni (OH) 2". Has low peel strength with respect to resin (PDMS), is also inferior in peelability, and is inferior in adhesion to resin (PDMS) (Comparative Examples 1 to 4).
《実施例12》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni-Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni-Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi-P合金めっき層(Pの含有量:12.0~12.5重量%)を形成した。次いで、Ni-P合金めっき層を形成したアルミニウム板について、縦4cm×横4cmの開口を有するマスクを用いて、下記条件にて、電解処理を行うことで、厚さ335nmの水酸化物被膜が形成されてなる被膜形成金属板を得た。
<電解処理条件>
 電解処理浴組成:NiSO 0.1mol/L
 電解処理浴温度:25℃
 電流密度:1.5mA/cm
 電解処理時間:180秒
<< Example 12 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 μm-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was electrolyzed under the following conditions using a mask having an opening of 4 cm in length and 4 cm in width to form a hydroxide film having a thickness of 335 nm. A film-forming metal plate formed was obtained.
<Electrolytic treatment conditions>
Electrolysis bath composition: NiSO 4 0.1 mol / L
Electrolysis bath temperature: 25 ° C
Current density: 1.5mA / cm 2
Electrolysis treatment time: 180 seconds
 そして、得られた被膜形成金属板について、上記方法に従って、XPS測定の結果より、Ni単体の状態割合、NiOの状態割合、および、Ni(OH)の状態割合を算出するとともに、突起状凸部の形状、およびパターン形成性の測定を行った。結果を表2に示す。 Then, with respect to the obtained film-forming metal plate, the state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are calculated from the results of XPS measurement according to the above method, and the protrusions are convex. The shape of the part and the pattern forming property were measured. The results are shown in Table 2.
 次いで、上記にて得られた被膜形成金属板の、水酸化物被膜が形成された面に、樹脂層として、非シリコーン系樹脂(ポリエーテル系の樹脂)からなる層を形成し、110℃、10分間の条件で加熱することで、非シリコーン系樹脂を硬化させることで、被膜形成金属板上に、厚さ200μmの非シリコーン系樹脂層を形成した。そして、非シリコーン系樹脂層を備える被膜形成金属板について、上記方法にしたがって、ピール強度および難剥離性の測定を行った。結果を表2に示す。 Next, a layer made of a non-silicone resin (polyether resin) was formed as a resin layer on the surface of the film-forming metal plate obtained above on which the hydroxide film was formed, and the temperature was 110 ° C. By curing the non-silicone resin by heating under the condition of 10 minutes, a non-silicone resin layer having a thickness of 200 μm was formed on the film-forming metal plate. Then, the peel strength and the peel resistance of the film-forming metal plate provided with the non-silicone resin layer were measured according to the above method. The results are shown in Table 2.
《実施例13~20》
 電解処理条件を表2に示す条件にそれぞれ変更した以外は、実施例12と同様にして、被膜形成金属板、および非シリコーン系樹脂層を備える被膜形成金属板を製造し、同様に評価を行った。結果を表2に示す。
<< Examples 13 to 20 >>
A film-forming metal plate and a film-forming metal plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolysis treatment conditions were changed to the conditions shown in Table 2, and evaluation was performed in the same manner. rice field. The results are shown in Table 2.
《比較例5~7》
 電解処理条件を表2に示す条件にそれぞれ変更した以外は、実施例12と同様にして、被膜形成金属板、および非シリコーン系樹脂層を備える被膜形成金属板を製造し、同様に評価を行った。結果を表2に示す。
<< Comparative Examples 5 to 7 >>
A film-forming metal plate and a film-forming metal plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolysis treatment conditions were changed to the conditions shown in Table 2, and evaluation was performed in the same manner. rice field. The results are shown in Table 2.
《比較例8》
 電解処理を行わなかった以外は、実施例12と同様にして、めっき板、および非シリコーン系樹脂層を備えるめっき板を製造し、同様に評価を行った。結果を表2に示す。
<< Comparative Example 8 >>
A plated plate and a plated plate provided with a non-silicone resin layer were produced in the same manner as in Example 12 except that the electrolytic treatment was not performed, and the evaluation was performed in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態で含み、かつ、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62である水酸化物被膜を備える被膜形成金属板によれば、樹脂(非シリコーン系樹脂)に対する、ピール強度が高く、難剥離性にも優れ、樹脂(非シリコーン系樹脂)との密着性に優れるものであった(実施例12~20)。特に、実施例19についてはピール強度の測定中に樹脂(非シリコーン系樹脂)が破断したため、より優れた密着性を有するものと考えられる。なお、実施例19については樹脂破断時のピール強度を示している。なお、図4(A)に、実施例12に係る被膜形成金属板10の表面近傍における切断面のSEM写真を示す。
 一方、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62の範囲外である場合には、樹脂(非シリコーン系樹脂)に対する、ピール強度が低く、難剥離性にも劣り、樹脂(非シリコーン系樹脂)との密着性に劣るものであった(比較例5~8)。
As shown in Table 2, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2. The state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2". According to the film-forming metal plate provided with the hydroxide film of 1:62, the peel strength is high with respect to the resin (non-silicone resin), the peeling resistance is excellent, and the adhesion with the resin (non-silicone resin) is excellent. It was excellent in properties (Examples 12 to 20). In particular, in Example 19, since the resin (non-silicone resin) broke during the measurement of the peel strength, it is considered that the resin (non-silicone resin) has better adhesion. In Example 19, the peel strength at the time of resin breakage is shown. Note that FIG. 4A shows an SEM photograph of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 12.
On the other hand, when the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface is outside the range of 1: 1 to 1: 62 in the ratio of "Ni metal : Ni (OH) 2". Has low peel strength, poor peelability, and poor adhesion to the resin (non-silicone resin) with respect to the resin (non-silicone resin) (Comparative Examples 5 to 8).
《実施例21》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni-Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni-Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi-P合金めっき層(Pの含有量:12.0~12.5重量%)を形成した。次いで、Ni-P合金めっき層を形成したアルミニウム板について、縦4cm×横4cmの開口を有するマスクを用いて、下記条件にて、電解処理を行うことで、厚さ386nmの水酸化物被膜が形成されてなる被膜形成金属板を得た。
<電解処理条件>
 電解処理浴組成:NiSO 0.1mol/L
 電解処理浴温度:50℃
 電流密度:1.5mA/cm
 電解処理時間:180秒
<< Example 21 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 μm-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was electrolyzed under the following conditions using a mask having an opening of 4 cm in length and 4 cm in width to form a hydroxide film having a thickness of 386 nm. A film-forming metal plate formed was obtained.
<Electrolytic treatment conditions>
Electrolysis bath composition: NiSO 4 0.1 mol / L
Electrolysis bath temperature: 50 ° C
Current density: 1.5mA / cm 2
Electrolysis treatment time: 180 seconds
 そして、得られた被膜形成金属板について、上記方法に従って、XPS測定の結果より、Ni単体の状態割合、NiOの状態割合、および、Ni(OH)の状態割合を算出するとともに、突起状凸部の形状、およびパターン形成性の測定を行った。結果を表3に示す。 Then, with respect to the obtained film-forming metal plate, the state ratio of Ni alone, the state ratio of NiO, and the state ratio of Ni (OH) 2 are calculated from the results of XPS measurement according to the above method, and the protrusions are convex. The shape of the part and the pattern forming property were measured. The results are shown in Table 3.
 次いで、上記にて得られた被膜形成金属板の、水酸化物被膜が形成された面に、樹脂層として、サイズ20mm×50mm、厚さ500μmのポリテトラフルオロエチレン(PTFE)からなる層を360℃、1.5MPaの荷重で10分間加熱することで形成した。そして、ポリテトラフルオロエチレンからなる層を備える被膜形成金属板について、上記方法にしたがって、ピール強度および難剥離性の測定を行った。結果を表3に示す。 Next, 360 layers of polytetrafluoroethylene (PTFE) having a size of 20 mm × 50 mm and a thickness of 500 μm were formed as a resin layer on the surface of the film-forming metal plate obtained above on which the hydroxide film was formed. It was formed by heating at ° C. and a load of 1.5 MPa for 10 minutes. Then, the peel strength and the peeling resistance of the film-forming metal plate provided with the layer made of polytetrafluoroethylene were measured according to the above method. The results are shown in Table 3.
《比較例9》
 電解処理を行わなかった以外は、実施例21と同様にして、めっき板、および非シリコーン系樹脂層を備えるめっき板を製造し、同様に評価を行った。結果を表3に示す。
<< Comparative Example 9 >>
A plated plate and a plated plate provided with a non-silicone resin layer were produced in the same manner as in Example 21 except that the electrolytic treatment was not performed, and the evaluation was performed in the same manner. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態で含み、かつ、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:2である水酸化物被膜を備える被膜形成金属板によれば、樹脂(PTFE)に対する、ピール強度が高く、難剥離性にも優れ、樹脂(PTFE)との密着性に優れるものであった(実施例21)。なお、図7に、実施例21に係る被膜形成金属板10の表面近傍における切断面のSEM写真を示す。
 一方、最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:2の範囲外である場合には、樹脂(PTFE)に対する、ピール強度が低く、難剥離性にも劣り、樹脂(PTFE)との密着性に劣るものであった(比較例9)。
As shown in Table 3, as the state of nickel on the outermost surface, the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and the state of water represented by Ni (OH) 2. The state ratio of Ni metal to Ni (OH) 2 in the state of nickel (II) oxide and the outermost surface nickel is 1: 1 to 1: 1 in the ratio of "Ni metal : Ni (OH) 2". According to the film-forming metal plate provided with the hydroxide film having a ratio of 1: 2, the peel strength with respect to the resin (PTFE) is high, the peeling resistance is excellent, and the adhesion with the resin (PTFE) is excellent. (Example 21). Note that FIG. 7 shows an SEM photograph of the cut surface in the vicinity of the surface of the film-forming metal plate 10 according to Example 21.
On the other hand, when the state ratio of Ni metal and Ni (OH) 2 in the nickel on the outermost surface is outside the range of 1: 1 to 1: 2 in the ratio of "Ni metal : Ni (OH) 2". Has low peel strength with respect to resin (PTFE), is also inferior in peelability, and is inferior in adhesion to resin (PTFE) (Comparative Example 9).
10…被膜形成金属板
 11…金属板
 12…水酸化物被膜
 13…ニッケル導電層
10 ... Film-forming metal plate 11 ... Metal plate 12 ... Hydroxide coating 13 ... Nickel conductive layer

Claims (9)

  1.  金属板と、前記金属板上に形成され、ニッケルを含む水酸化物被膜と、を備える被膜形成金属板であって、
     前記水酸化物被膜は、前記水酸化物被膜の最表面のニッケルの状態として、Nimetalで表されるNi単体の状態、NiOで表される酸化ニッケル(II)の状態、およびNi(OH)で表される水酸化ニッケル(II)の状態を含み、
     前記水酸化物被膜の最表面のニッケルにおける、NimetalとNi(OH)との状態比が、「Nimetal:Ni(OH)」の比で、1:1~1:62である、被膜形成金属板。
    A film-forming metal plate comprising a metal plate and a hydroxide coating formed on the metal plate and containing nickel.
    In the hydroxide film, the state of nickel on the outermost surface of the hydroxide film is the state of Ni alone represented by Ni metal , the state of nickel (II) oxide represented by NiO, and Ni (OH). Including the state of nickel (II) hydroxide represented by 2.
    The state ratio of Ni metal to Ni (OH) 2 in the nickel on the outermost surface of the hydroxide film is 1: 1 to 1:62 in terms of the ratio of "Ni metal: Ni (OH) 2". Film-forming metal plate.
  2.  前記被膜形成金属板は、表面に、複数の突起状凸部を備え、
     前記突起状凸部の切断面を走査型電子顕微鏡により観察した際に、
     前記突起状凸部の高さをH[nm]とし、
     前記突起状凸部の半分の高さであるH/2の高さより高い範囲において最も広い幅を示す部分における幅を、最大幅Wmax[nm]とし、
     前記突起状凸部の半分の高さであるH/2の高さ以下の範囲において、最も狭い幅を示す部分における幅を、最小幅Wmin[nm]とした場合に、下記式(1)および下記式(2)を満たす請求項1に記載の被膜形成金属板。
      20nm≦H≦500nm  (1)
      20nm≦H×(Wmin/Wmax)≦500nm  (2)
    The film-forming metal plate is provided with a plurality of protruding protrusions on the surface thereof.
    When the cut surface of the protruding convex portion was observed with a scanning electron microscope,
    The height of the protruding convex portion is set to H [nm], and the height is defined as H [nm].
    The width at the portion showing the widest width in the range higher than the height of H / 2, which is half the height of the protruding convex portion, is defined as the maximum width W max [nm].
    In the range below the height of H / 2, which is half the height of the protruding convex portion, the width in the portion showing the narrowest width is defined as the minimum width W min [nm], and the following equation (1) is used. The film-forming metal plate according to claim 1, which satisfies the following formula (2).
    20 nm ≤ H ≤ 500 nm (1)
    20 nm ≤ H x (W min / W max ) ≤ 500 nm (2)
  3.  前記金属板上に、ニッケルを含むニッケル導電層をさらに備え、
     前記水酸化物被膜は、前記ニッケル導電層を介して、前記金属板上に形成されている請求項1または2に記載の被膜形成金属板。
    A nickel conductive layer containing nickel is further provided on the metal plate.
    The film-forming metal plate according to claim 1 or 2, wherein the hydroxide film is formed on the metal plate via the nickel conductive layer.
  4.  前記金属板上に、亜鉛を含有する下地層、および、前記下地層に形成されたニッケルを含むニッケル導電層をさらに備え、
     前記水酸化物被膜は、前記下地層および前記ニッケル導電層を介して、前記金属板上に形成されている請求項3に記載の被膜形成金属板。
    A zinc-containing base layer and a nickel-containing nickel conductive layer formed on the base layer are further provided on the metal plate.
    The film-forming metal plate according to claim 3, wherein the hydroxide film is formed on the metal plate via the base layer and the nickel conductive layer.
  5.  前記水酸化物被膜の最表面における全ニッケル元素中における、Ni(OH)の状態割合が、50%以上である請求項1~4のいずれかに記載の被膜形成金属板。 The film-forming metal plate according to any one of claims 1 to 4, wherein the state ratio of Ni (OH) 2 in all nickel elements on the outermost surface of the hydroxide film is 50% or more.
  6.  前記水酸化物被膜の厚みが、20~500nmである請求項1~5のいずれかに記載の被膜形成金属板。 The film-forming metal plate according to any one of claims 1 to 5, wherein the hydroxide film has a thickness of 20 to 500 nm.
  7.  前記水酸化物被膜が、所定のパターンにて形成されている請求項1~6のいずれかに記載の被膜形成金属板。 The film-forming metal plate according to any one of claims 1 to 6, wherein the hydroxide coating is formed in a predetermined pattern.
  8.  前記金属板が、アルミニウム板である請求項1~7のいずれかに記載の被膜形成金属板。 The film-forming metal plate according to any one of claims 1 to 7, wherein the metal plate is an aluminum plate.
  9.  請求項1~8のいずれかに記載の被膜形成金属板上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具。 A jig for transporting electronic components, which comprises a resin adsorption portion for adsorbing electronic components on the film-forming metal plate according to any one of claims 1 to 8.
PCT/JP2021/002443 2020-01-31 2021-01-25 Coated metal plate WO2021153504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574022A JPWO2021153504A1 (en) 2020-01-31 2021-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014794 2020-01-31
JP2020014794 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153504A1 true WO2021153504A1 (en) 2021-08-05

Family

ID=77079087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002443 WO2021153504A1 (en) 2020-01-31 2021-01-25 Coated metal plate

Country Status (3)

Country Link
JP (1) JPWO2021153504A1 (en)
TW (1) TW202138185A (en)
WO (1) WO2021153504A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064084A (en) * 1998-08-20 2000-02-29 Kobe Steel Ltd Plating material for heat radiating board of electronic parts
JP2012243889A (en) * 2011-05-18 2012-12-10 Denso Corp Semiconductor device and manufacturing method of the same
JP2014080639A (en) * 2012-10-12 2014-05-08 Nippon Parkerizing Co Ltd Aqueous metal surface treatment agent, metal surface treatment film and metallic material with metal surface treatment film
JP2016147476A (en) * 2015-02-15 2016-08-18 株式会社モレック Silicone coated metal material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064084A (en) * 1998-08-20 2000-02-29 Kobe Steel Ltd Plating material for heat radiating board of electronic parts
JP2012243889A (en) * 2011-05-18 2012-12-10 Denso Corp Semiconductor device and manufacturing method of the same
JP2014080639A (en) * 2012-10-12 2014-05-08 Nippon Parkerizing Co Ltd Aqueous metal surface treatment agent, metal surface treatment film and metallic material with metal surface treatment film
JP2016147476A (en) * 2015-02-15 2016-08-18 株式会社モレック Silicone coated metal material and method for producing the same

Also Published As

Publication number Publication date
JPWO2021153504A1 (en) 2021-08-05
TW202138185A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
KR101920976B1 (en) Copper foil, copper foil with carrier foil, and copper-clad laminate
JP5654416B2 (en) Liquid crystal polymer copper clad laminate and copper foil used for the laminate
JP4429979B2 (en) Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
KR102078897B1 (en) Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2019208521A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
TW201742212A (en) Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
JP4682271B2 (en) Copper foil for printed wiring boards
JP7012107B2 (en) Manufacturing method of composite copper foil, printed wiring board, electronic equipment and composite copper foil
JP2011166018A (en) Copper foil for printed wiring board
CN105392297B (en) Preparation method, the preparation method of copper-cover laminated plate, the preparation method of printing distributing board, the preparation method of e-machine and their product of Copper foil with carrier
TWI414215B (en) A copper foil for printed wiring board and a method for manufacturing the same, a copper clad sheet having the copper foil, and a printed wiring board
CN108124391A (en) The manufacturing method of composite metallic material, copper-clad laminated board and the copper-clad laminated board
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
WO2013065730A2 (en) Copper foil for printed circuit
JP5393903B1 (en) Copper foil with carrier, and printed wiring board, printed circuit board and copper-clad laminate using the same
WO2021153504A1 (en) Coated metal plate
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP4492806B2 (en) Flexible printed wiring board
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5345924B2 (en) Copper foil for printed wiring boards
JP2014177657A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and production method of printed wiring board
JP2011129685A (en) Environmentally friendly copper foil for printed wiring board
JP5650023B2 (en) Copper foil for printed wiring board and laminated board using the same
JP6273317B2 (en) Copper foil for printed circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747395

Country of ref document: EP

Kind code of ref document: A1