WO2021153180A1 - Ceramic structure manufacturing method - Google Patents

Ceramic structure manufacturing method Download PDF

Info

Publication number
WO2021153180A1
WO2021153180A1 PCT/JP2021/000309 JP2021000309W WO2021153180A1 WO 2021153180 A1 WO2021153180 A1 WO 2021153180A1 JP 2021000309 W JP2021000309 W JP 2021000309W WO 2021153180 A1 WO2021153180 A1 WO 2021153180A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
support member
ceramic structure
contact
manufacturing
Prior art date
Application number
PCT/JP2021/000309
Other languages
French (fr)
Japanese (ja)
Inventor
丈幸 荒井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202180011161.9A priority Critical patent/CN115004353A/en
Priority to KR1020227025957A priority patent/KR20220120656A/en
Priority to JP2021574579A priority patent/JP7447154B2/en
Publication of WO2021153180A1 publication Critical patent/WO2021153180A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the disclosed embodiment relates to a method for manufacturing a ceramic structure.
  • Patent Document 1 As a ceramic structure used as an electrostatic chuck for holding a semiconductor wafer or the like, a ceramic structure having electrodes formed inside is known (see, for example, Patent Document 1).
  • the method for producing a ceramic structure includes a step of forming an electrode layer containing a metal inside a raw material containing a ceramic and molding the whole into a plate shape to obtain a molded body, and the molding.
  • a step of placing the molded product on a support member that contacts and supports a part of the main surface with the main surface of the body close to the electrode layer facing downward, and the step of placing the molded product on the support member. Includes a step of degreasing the molded body.
  • FIG. 1 is a perspective view showing a configuration of a molded product according to an embodiment.
  • FIG. 2 is a plan view showing the arrangement of the electrode layer inside the molded body according to the embodiment.
  • FIG. 3 is a plan view showing the arrangement of the flow paths inside the molded body according to the embodiment.
  • FIG. 4 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 5 is a cross-sectional view showing the arrangement of the molded body and the support member in the degreasing step according to the embodiment.
  • FIG. 6 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the embodiment.
  • FIG. 7 is a perspective view showing the configuration of the ceramic structure according to the embodiment.
  • FIG. 8 is a plan view showing the configuration of the ceramic structure according to the embodiment.
  • FIG. 9 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the first modification of the embodiment.
  • FIG. 10 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the second modification of the embodiment.
  • FIG. 11 is a plan view showing the configuration of the support member according to the third modification of the embodiment.
  • FIG. 12 is a cross-sectional view showing the configuration of the support member according to the third modification of the embodiment.
  • FIG. 13 is a cross-sectional view showing the configuration of the support member according to the modified example 4 of the embodiment.
  • the degreasing step was performed by placing the contact surface on a shelf plate with the contact surface facing downward. In this case, since the entire contact surface does not come into contact with the outside air, the organic component may not be sufficiently removed from the contact surface.
  • ⁇ Molding process> In the step of manufacturing the ceramic structure 100 (see FIG. 7) according to the embodiment, first, a step of molding the molded body 10 is performed. Therefore, first, the configuration of the molded body 10 will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is a perspective view showing the configuration of the molded body 10 according to the embodiment
  • FIG. 2 is a plan view showing the arrangement of the electrode layer 11 inside the molded body 10 according to the embodiment
  • FIG. 3 is a plan view showing the arrangement. It is a top view which shows the arrangement of the flow path 14 in the molded body 10 which concerns on a form
  • FIG. 4 is a cross-sectional view taken along the line AA shown in FIG.
  • the molded body 10 is formed by molding a raw material containing ceramic into a substantially disk shape, and has a front surface 10a which is one main surface and a main surface 10a of the other. It has a back surface 10b, which is a surface, and a side surface 10c.
  • the thickness of the molded body 10 is, for example, about 20 to 60 mm.
  • the molded body 10 contains, for example, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), cordierite, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and the like as main components. Further, an electrode layer 11 and a flow path 14 are provided inside the molded body 10.
  • the electrode layer 11 is formed of a paste containing a metal such as platinum, tungsten, or molybdenum, and is a portion that becomes an electrode 101 (see FIG. 7) of the ceramic structure 100 after the molded body 10 is fired. As shown in FIG. 2, the electrode layer 11 according to the embodiment is separated into a first electrode layer 12 and a second electrode layer 13.
  • the first electrode layer 12 and the second electrode layer 13 are each formed in a semicircular shape, and are arranged inside the molded body 10 so that the semicircular strings face each other. Then, the first electrode layer 12 and the second electrode layer 13 are combined to form the circular electrode layer 11.
  • the first electrode layer 12 has a connecting portion 12a exposed from the side surface 10c of the molded body 10
  • the second electrode layer 13 has a connecting portion 13a exposed from the side surface 10c of the molded body 10.
  • the connecting portions 12a and 13a are provided so as to extend along the chord from a portion of the first electrode layer 12 and the second electrode layer 13 where the arc and the chord intersect.
  • the center of the circular shape in the outer shape of the entire electrode layer 11 is set to be the same as the center of the circle in the outer shape of the molded body 10.
  • the thickness of the electrode layer 11 is, for example, about 1 to 100 ⁇ m.
  • the electrode layer 11 is provided inside the molded body 10 closer to the front surface 10a than the back surface 10b, and is arranged substantially parallel to the front surface 10a.
  • the front surface 10a of the molded body 10 is the main surface of the pair of main surfaces of the molded body 10 on the side closer to the electrode layer 11.
  • the configuration of the electrode layer 11 according to the embodiment is not limited to the examples of FIGS. 1 to 4.
  • the electrode layer 11 according to the embodiment may be spiral or concentric in a plan view, or two or more electrode layers 11 may be stacked and arranged.
  • the flow path 14 has a meandering shape that extends over the entire front surface 10a in a plan view.
  • the side surfaces 10c of the molded body 10 are provided with openings 14a and 14b of the flow path 14.
  • the flow path 14 is provided inside the molded body 10 at a position distant from the electrode layer 11 with respect to the front surface 10a, and is substantially parallel to the front surface 10a. Is placed in.
  • the configuration of the flow path 14 according to the embodiment is not limited to the examples of FIGS. 1 to 4.
  • the flow path 14 according to the embodiment may be spiral in a plan view, or two or more layers of flow paths 14 may be stacked and arranged.
  • aluminum oxide powder with an average particle size of 1.5 ⁇ m and a purity of 99.9% is used. Then, the aluminum oxide powder is prepared by mixing an organic binder and a solvent without adding a sintering aid, drying at 60 ° C., and then sizing using a mesh path. Make granules.
  • this granulated powder is filled in a mold, and a plurality of disk-shaped green sheets having a predetermined diameter and thickness are molded by a molding pressure of 98 MPa.
  • a notch corresponding to the flow path 14 is formed on the predetermined green sheet by cutting. Further, a platinum powder paste is screen-printed on another predetermined green sheet to form the electrode layer 11.
  • a plurality of disk-shaped green sheets are laminated via an organic binder so that the structure of the molded body 10 shown in FIGS. 1 to 4 is realized, and the laminated body is pressed at a molding pressure of 98 MPa. Mold and adhere. As a result, the molding step of the molded body 10 according to the embodiment is completed.
  • FIG. 5 is a cross-sectional view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the embodiment
  • FIG. 6 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the embodiment. It is a figure.
  • the degreasing step of the molded body 10 is performed in a state where the molded body 10 is placed on the support member 20. That is, in the step of manufacturing the ceramic structure 100, a step of placing the molded body 10 on the support member 20 is performed before the step of degreasing the molded body 10.
  • the support member 20 is first arranged on the shelf board 21.
  • a plurality of support members 20 that are linear in a plan view are arranged side by side substantially in parallel.
  • the support member 20 has, for example, a square pillar shape, and is arranged on the shelf board 21 with the square pillar lying down.
  • the support member 20 has an abutting portion 20a on the upper surface that is in contact with the molded body 10.
  • the upper surfaces (that is, the contact portions 20a) of the plurality of support members 20 are arranged substantially flush with each other.
  • the molded body 10 is placed on the upper surface of the plurality of support members 20 arranged in this way.
  • the molded body 10 is mounted on the support member 20 with the front surface 10a of the molded body 10 facing downward.
  • the support member 20 is in a state where a part of the front surface 10a is in contact with the contact portion 20a of the support member 20 and the remaining portion of the front surface 10a is exposed to the outside air. It is placed in.
  • the back surface 10b and the side surface 10c are all exposed to the outside air.
  • the molded body 10 placed on the support member 20 is degreased.
  • the molded body 10 placed on the support member 20 is heated to a predetermined degreasing temperature (for example, about 250 to 350 ° C.) in an air atmosphere, and held for a predetermined time (for example, about 24 hours) after the temperature rise.
  • a predetermined degreasing temperature for example, about 250 to 350 ° C.
  • a predetermined time for example, about 24 hours
  • the molded body 10 placed on the support member 20 is placed at a predetermined degreasing temperature (for example, in a nitrogen atmosphere). It is carried out by raising the temperature to 250 to 350 ° C.) and holding the temperature for a predetermined time (for example, about 24 hours) after the temperature rise.
  • a predetermined degreasing temperature for example, in a nitrogen atmosphere
  • the organic component can be sufficiently degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be sufficiently degreased. Therefore, according to the embodiment, it is possible to prevent cracks from being generated after the molded product 10 is fired.
  • heat is similarly applied to the front surface 10a and the back surface 10b of the molded body 10 through the air atmosphere, so that the heat applied to the top and bottom during the degreasing step is non-uniform. It is possible to prevent the molded body 10 from warping due to the above.
  • the contact portions 20a of the plurality of support members 20 are substantially flush with each other, the front surface 10a (that is, the contact surface with the semiconductor wafer) in the molded body 10 after degreasing. Flatness can be ensured.
  • the flatness of the front surface 100a (see FIG. 7) with which the semiconductor wafer abuts can be ensured. ..
  • the molded body 10 on a plurality of linear support members 20 arranged side by side in parallel. As a result, all the organic components degreased from the front surface 10a that do not come into contact with the contact portion 20a can be released to the outside without being trapped in the closed space.
  • the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be degreased more effectively.
  • the contact portion 20a of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
  • the contact portion 20a of the support member 20 may be arranged so as to avoid the flow path 14 in a plan view. As a result, it is possible to prevent the molded body 10 from being deformed due to the support member 20 pressing the portion near the flow path 14, which is a structurally weak portion.
  • the contact portion 20a of the support member 20 may be arranged so as to intersect the flow path 14 in a plan view. This also makes it possible to prevent the molded body 10 from being deformed due to the support member 20 pressing the portion near the flow path 14, which is a structurally weak portion.
  • the molded body 10 may be fired in the same state as the degreasing step (that is, the molded body 10 is placed on the support member 20).
  • the molded body 10 placed on the support member 20 is heated to a predetermined firing temperature (for example, about 1500 to 1700 ° C.) in an air atmosphere, and after the temperature rise, it is heated for a predetermined time (for example, for example). It is done by holding (about 2 hours).
  • a predetermined firing temperature for example, about 1500 to 1700 ° C.
  • a predetermined time for example, for example. It is done by holding (about 2 hours).
  • the molded body 10 placed on the support member 20 is placed at a predetermined firing temperature (for example, in a nitrogen atmosphere). It is carried out by raising the temperature to 1500 to 1700 ° C.) and holding the temperature for a predetermined time (for example, about 2 hours) after the temperature rise.
  • a predetermined firing temperature for example, in a nitrogen atmosphere
  • the molded body 10 can be fired while the organic component partially remaining in the vicinity of the front surface 10a of the molded body 10 is sufficiently degreased in the firing step. Therefore, according to the embodiment, cracks generated due to insufficient degreasing can be suppressed.
  • the degreasing step and the firing step of the molded body 10 can be continuously performed, the entire manufacturing process of the ceramic structure 100 can be shortened.
  • FIG. 7 is a perspective view showing the configuration of the ceramic structure 100 according to the embodiment.
  • the ceramic structure 100 according to the embodiment can be used as a sample holder that holds a sample such as a semiconductor wafer on the front surface 100a by an electrostatic force.
  • the ceramic structure 100 is substantially disk-shaped and has a front surface 100a and a back surface 100b.
  • the front surface 100a is a portion corresponding to the front surface 10a of the molded body 10
  • the back surface 100b is a portion corresponding to the back surface 10b of the molded body 10.
  • the front surface 100a and the back surface 100b are polished to a flat surface in a predetermined polishing step after the firing step.
  • a predetermined polishing step For example, in the embodiment, it is preferable to polish the front surface 100a and then the back surface 100b.
  • the front surface 100a can be accurately polished to a flat surface.
  • an electrode 101 and a flow path 104 are provided inside the ceramic structure 100.
  • the electrode 101 is a portion corresponding to the electrode layer 11 of the molded body 10
  • the flow path 104 is a portion corresponding to the flow path 14 of the molded body 10.
  • the electrode 101 is separated into a positive electrode 102 and a negative electrode 103.
  • the positive electrode 102 is a portion corresponding to the first electrode layer 12, and is connected to a positive electrode of an external power source (not shown).
  • the negative electrode 103 is a portion corresponding to the second electrode layer 13 and is connected to the negative electrode of the external power supply.
  • the sample held on the front surface 100a can be heated, cooled, or kept warm by flowing the heat medium through the flow path 104.
  • any heat medium may be used as long as it is a substance that can exchange heat with the sample held on the front surface 100a from the flow path 104.
  • a heat medium various fluids such as hot water, cold water, an aqueous medium such as steam, an organic medium such as ethylene glycol, or a gas containing air can be used.
  • an aqueous solvent such as pure water
  • the support member 20 is composed of the same main component as the molded body 10.
  • “composed of the same main component” here means that 80% or more of the composition is the same.
  • the fact that the molded body 10 and the support member 20 are composed of the same main component means that, for example, the composition can be identified by using a fluorescent X-ray analyzer, or the crystal phase can be identified by using an X-ray diffractometer. It can be confirmed by doing.
  • FIG. 8 is a plan view showing the configuration of the ceramic structure 100 according to the embodiment.
  • the first region 100a1 is a portion that comes into contact with the contact portion 20a of the support member 20 during the degreasing step
  • the second region 100a2 is a portion that comes into contact with the contact portion 20a of the support member 20 during the degreasing step. This is the part that was not in contact.
  • the first region 100a1 is, for example, white, has a brightness index L * in the CIE1976L * a * b * color space of 94.23, a chromaticity index a * of ⁇ 0.10, and a chromaticity index b *. Is +1.65.
  • the second region 100a2 is, for example, yellow, and has a brightness index L * in the CIE1976L * a * b * color space of 91.74, a chromaticity index a * of ⁇ 0.26, and a chromaticity index.
  • b * is +5.04.
  • two regions having different color tones can be formed on the front surface 100a. Therefore, by using the contours of these two regions, a sample such as a semiconductor wafer can be formed. Alignment can be easily carried out.
  • FIG. 9 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the first modification of the embodiment.
  • a plurality of linear support members 20 are arranged side by side to perform degreasing
  • the shape of the support members 20 is not limited to the linear shape.
  • a plurality of arc-shaped support members 20 may be arranged side by side for degreasing.
  • This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased.
  • the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be more effectively degreased.
  • the contact portion 20a (see FIG. 5) of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
  • the contact portion 20a of the support member 20 may be arranged so as not to be in contact with the edge 10a2 of the front surface 10a.
  • FIG. 10 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the second modification of the embodiment.
  • the molded body 10 may be placed on the grid-shaped support member 20 to perform the degreasing step.
  • This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased in the degreasing step.
  • the space surrounded by the grid-shaped support member 20 may be ventilated to the outside by a slit or the like (not shown).
  • a slit or the like not shown
  • the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be more effectively degreased.
  • the contact portion 20a (see FIG. 5) of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
  • FIG. 11 is a plan view showing the configuration of the support member 20 according to the modified example 3 of the embodiment
  • FIG. 12 is a cross-sectional view showing the configuration of the support member 20 according to the modified example 3 of the embodiment.
  • a pair of semi-arc-shaped support members 20A adjacent to the central portion of the molded body 10 and a pair of semi-arc-shaped support members adjacent to the peripheral portion of the molded body 10 20B and 20B are arranged side by side.
  • the contact portion 20a1 of the support member 20A adjacent to the central portion of the molded body 10 is located at a position higher than the contact portion 20a2 of the support member 20B adjacent to the peripheral edge portion of the molded body 10. Be placed.
  • the degreasing step and the firing step can be performed in a state where the molded body 10 is warped upward. Therefore, according to the modified example 3, in the ceramic structure 100 (see FIG. 7) having a structure in which a convex warp is generated downward by the degreasing step and the firing step, the flatness of the front surface 100a to which the semiconductor wafer abuts is ensured. can do.
  • FIG. 13 is a cross-sectional view showing the configuration of the support member 20 according to the modified example 4 of the embodiment, and is a drawing corresponding to FIG. 12 of the modified example 3.
  • the contact portion 20a1 of the support member 20A adjacent to the central portion of the molded body 10 is larger than the contact portion 20a2 of the support member 20B adjacent to the peripheral portion of the molded body 10. It is placed in a low position.
  • the degreasing step and the firing step can be performed in a state where the molded body 10 is warped downward. Therefore, according to the modified example 4, in the ceramic structure 100 (see FIG. 7) having a structure in which a convex warp is generated by the degreasing step and the firing step, the flatness of the front surface 100a to which the semiconductor wafer abuts is ensured. can do.
  • the support member 20 according to the embodiment may be made of a porous body.
  • This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased in the degreasing step.
  • the process of manufacturing the disc-shaped ceramic structure 100 is shown, but the shape of the manufactured ceramic structure 100 is not limited to the disc shape.
  • the ring-shaped ceramic structure 100 may be manufactured in each of the above steps.
  • the ring-shaped ceramic structure 100 can be formed, for example, by firing the disk-shaped ceramic structure 100 and then cutting the inside to hollow out.
  • the ceramic structure of the present embodiment may be used, for example, as a high-frequency electrode or a heater in semiconductor manufacturing.

Abstract

This ceramic structure manufacturing method includes: a step in which an electrode layer (11) that includes a metal is formed in the interior of a source material that includes a ceramic, and the whole result is molded into a plate shape to obtain a molded body (10); a step in which, while the main surface of the molded body (10) that is on the side close to the electrode layer (11) is facing downward, the molded body (10) is mounted on support members (20) that contact a section of said main surface and provide support; and a step in which the molded body (10) that is mounted on the support members (20) is degreased.

Description

セラミック構造体の製造方法Manufacturing method of ceramic structure
 開示の実施形態は、セラミック構造体の製造方法に関する。 The disclosed embodiment relates to a method for manufacturing a ceramic structure.
 半導体ウェハなどを保持するための静電チャックとして用いられるセラミック構造体として、内部に電極が形成されたセラミック構造体が知られている(例えば、特許文献1参照)。 As a ceramic structure used as an electrostatic chuck for holding a semiconductor wafer or the like, a ceramic structure having electrodes formed inside is known (see, for example, Patent Document 1).
国際公開第2015/029575号International Publication No. 2015/029575
 実施形態の一態様に係るセラミック構造体の製造方法は、セラミックを含有する原料の内部に金属を含有する電極層を形成し、全体を板状に成形して成形体を得る工程と、前記成形体における前記電極層に近い側の主面を下向きにした状態で、前記主面の一部と接して支える支持部材に前記成形体を載置する工程と、前記支持部材に載置された前記成形体を脱脂する工程と、を含む。 The method for producing a ceramic structure according to one aspect of the embodiment includes a step of forming an electrode layer containing a metal inside a raw material containing a ceramic and molding the whole into a plate shape to obtain a molded body, and the molding. A step of placing the molded product on a support member that contacts and supports a part of the main surface with the main surface of the body close to the electrode layer facing downward, and the step of placing the molded product on the support member. Includes a step of degreasing the molded body.
図1は、実施形態に係る成形体の構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a molded product according to an embodiment. 図2は、実施形態に係る成形体内部の電極層の配置を示す平面図である。FIG. 2 is a plan view showing the arrangement of the electrode layer inside the molded body according to the embodiment. 図3は、実施形態に係る成形体内部の流路の配置を示す平面図である。FIG. 3 is a plan view showing the arrangement of the flow paths inside the molded body according to the embodiment. 図4は、図3に示すA-A線の矢視断面図である。FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. 図5は、実施形態に係る脱脂工程における成形体および支持部材の配置を示す断面図である。FIG. 5 is a cross-sectional view showing the arrangement of the molded body and the support member in the degreasing step according to the embodiment. 図6は、実施形態に係る脱脂工程における成形体および支持部材の配置を示す平面図である。FIG. 6 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the embodiment. 図7は、実施形態に係るセラミック構造体の構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of the ceramic structure according to the embodiment. 図8は、実施形態に係るセラミック構造体の構成を示す平面図である。FIG. 8 is a plan view showing the configuration of the ceramic structure according to the embodiment. 図9は、実施形態の変形例1に係る脱脂工程における成形体および支持部材の配置を示す平面図である。FIG. 9 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the first modification of the embodiment. 図10は、実施形態の変形例2に係る脱脂工程における成形体および支持部材の配置を示す平面図である。FIG. 10 is a plan view showing the arrangement of the molded body and the support member in the degreasing step according to the second modification of the embodiment. 図11は、実施形態の変形例3に係る支持部材の構成を示す平面図である。FIG. 11 is a plan view showing the configuration of the support member according to the third modification of the embodiment. 図12は、実施形態の変形例3に係る支持部材の構成を示す断面図である。FIG. 12 is a cross-sectional view showing the configuration of the support member according to the third modification of the embodiment. 図13は、実施形態の変形例4に係る支持部材の構成を示す断面図である。FIG. 13 is a cross-sectional view showing the configuration of the support member according to the modified example 4 of the embodiment.
 以下、添付図面を参照して、本願の開示するセラミック構造体の製造方法の実施形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。また、以下に示す各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the method for manufacturing a ceramic structure disclosed in the present application will be described with reference to the attached drawings. The present invention is not limited to the embodiments shown below. Further, in each of the following embodiments, the same parts are designated by the same reference numerals, so that duplicate description will be omitted.
 半導体ウェハなどを保持するための静電チャックとして用いられるセラミック構造体として、内部に電極が形成されたセラミック構造体が知られている。 As a ceramic structure used as an electrostatic chuck for holding a semiconductor wafer or the like, a ceramic structure having electrodes formed inside is known.
 しかしながら、半導体ウェハとの当接面(すなわち、電極に近い側の主面)の平坦性を確保するため、かかる当接面を下向きにした状態で棚板に載置して脱脂工程を行った場合、当接面全体が外気に触れないことから、かかる当接面から有機成分が十分に抜けない場合があった。 However, in order to ensure the flatness of the contact surface with the semiconductor wafer (that is, the main surface on the side close to the electrode), the degreasing step was performed by placing the contact surface on a shelf plate with the contact surface facing downward. In this case, since the entire contact surface does not come into contact with the outside air, the organic component may not be sufficiently removed from the contact surface.
 すなわち、従来技術では、内部に電極が形成されたセラミック構造体を製造する際に、成形体の全体から十分に脱脂することができない場合があった。これにより、焼成した後の焼成体にクラックが生じる恐れがあった。 That is, in the prior art, when manufacturing a ceramic structure in which electrodes are formed inside, it may not be possible to sufficiently degreas from the entire molded body. As a result, there is a risk that cracks will occur in the fired body after firing.
 そこで、上述の問題点を克服し、成形体の全体から十分に脱脂することができるセラミック構造体の製造方法の実現が期待されている。 Therefore, it is expected to realize a method for manufacturing a ceramic structure that can overcome the above-mentioned problems and sufficiently degreas from the entire molded body.
<成形工程>
 実施形態に係るセラミック構造体100(図7参照)を製造する工程では、まず、成形体10を成形する工程が行われる。そこで、最初に、かかる成形体10の構成について、図1~図4を参照しながら説明する。
<Molding process>
In the step of manufacturing the ceramic structure 100 (see FIG. 7) according to the embodiment, first, a step of molding the molded body 10 is performed. Therefore, first, the configuration of the molded body 10 will be described with reference to FIGS. 1 to 4.
 図1は、実施形態に係る成形体10の構成を示す斜視図であり、図2は、実施形態に係る成形体10内部の電極層11の配置を示す平面図であり、図3は、実施形態に係る成形体10内部の流路14の配置を示す平面図であり、図4は、図3に示すA-A線の矢視断面図である。 FIG. 1 is a perspective view showing the configuration of the molded body 10 according to the embodiment, FIG. 2 is a plan view showing the arrangement of the electrode layer 11 inside the molded body 10 according to the embodiment, and FIG. 3 is a plan view showing the arrangement. It is a top view which shows the arrangement of the flow path 14 in the molded body 10 which concerns on a form, and FIG. 4 is a cross-sectional view taken along the line AA shown in FIG.
 図1などに示すように、実施形態に係る成形体10は、セラミックを含有する原料を略円板状に成形したものであり、一方の主面であるおもて面10aと、他方の主面である裏面10bと、側面10cとを有する。成形体10の厚みは、たとえば、20~60mm程度である。 As shown in FIG. 1 and the like, the molded body 10 according to the embodiment is formed by molding a raw material containing ceramic into a substantially disk shape, and has a front surface 10a which is one main surface and a main surface 10a of the other. It has a back surface 10b, which is a surface, and a side surface 10c. The thickness of the molded body 10 is, for example, about 20 to 60 mm.
 成形体10は、たとえば、酸化アルミニウム(Al)や窒化アルミニウム(AlN)、コージェライト、炭化珪素(SiC)、窒化珪素(Si)などを主成分として含んでいる。また、成形体10の内部には、電極層11および流路14が設けられる。 The molded body 10 contains, for example, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), cordierite, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and the like as main components. Further, an electrode layer 11 and a flow path 14 are provided inside the molded body 10.
 電極層11は、白金やタングステン、モリブデンなどの金属を含有するペーストで構成され、成形体10が焼成された後にセラミック構造体100の電極101(図7参照)となる部位である。図2に示すように、実施形態に係る電極層11は、第1電極層12と第2電極層13とに分離されている。 The electrode layer 11 is formed of a paste containing a metal such as platinum, tungsten, or molybdenum, and is a portion that becomes an electrode 101 (see FIG. 7) of the ceramic structure 100 after the molded body 10 is fired. As shown in FIG. 2, the electrode layer 11 according to the embodiment is separated into a first electrode layer 12 and a second electrode layer 13.
 第1電極層12および第2電極層13は、それぞれ半円板状に形成され、半円の弦同士が対向するように成形体10の内部に配置される。そして、第1電極層12および第2電極層13の2つが合わさって、円形状の電極層11が構成される。 The first electrode layer 12 and the second electrode layer 13 are each formed in a semicircular shape, and are arranged inside the molded body 10 so that the semicircular strings face each other. Then, the first electrode layer 12 and the second electrode layer 13 are combined to form the circular electrode layer 11.
 第1電極層12は、成形体10の側面10cから露出する接続部12aを有し、第2電極層13は、成形体10の側面10cから露出する接続部13aを有する。かかる接続部12a、13aは、第1電極層12および第2電極層13における円弧と弦とが交差する部位から、かかる弦に沿って延びるように設けられる。 The first electrode layer 12 has a connecting portion 12a exposed from the side surface 10c of the molded body 10, and the second electrode layer 13 has a connecting portion 13a exposed from the side surface 10c of the molded body 10. The connecting portions 12a and 13a are provided so as to extend along the chord from a portion of the first electrode layer 12 and the second electrode layer 13 where the arc and the chord intersect.
 この電極層11全体の外形における円形状の中心は、成形体10の外形における円の中心と同一に設定される。電極層11の厚みは、たとえば、1~100μm程度である。 The center of the circular shape in the outer shape of the entire electrode layer 11 is set to be the same as the center of the circle in the outer shape of the molded body 10. The thickness of the electrode layer 11 is, for example, about 1 to 100 μm.
 また、図4に示すように、電極層11は、成形体10の内部において、裏面10bよりもおもて面10aの近くに設けられ、かかるおもて面10aと略平行に配置される。換言すると、成形体10のおもて面10aは、成形体10における1対の主面のうち、電極層11に近い側の主面である。 Further, as shown in FIG. 4, the electrode layer 11 is provided inside the molded body 10 closer to the front surface 10a than the back surface 10b, and is arranged substantially parallel to the front surface 10a. In other words, the front surface 10a of the molded body 10 is the main surface of the pair of main surfaces of the molded body 10 on the side closer to the electrode layer 11.
 なお、実施形態に係る電極層11の構成は、図1~図4の例に限られない。たとえば、実施形態に係る電極層11は、平面視で渦巻き状や同心円状などであってもよいし、2層以上の電極層11が積層して配置されてもよい。 The configuration of the electrode layer 11 according to the embodiment is not limited to the examples of FIGS. 1 to 4. For example, the electrode layer 11 according to the embodiment may be spiral or concentric in a plan view, or two or more electrode layers 11 may be stacked and arranged.
 図3に示すように、流路14は、平面視で、おもて面10aの全体に行き渡るような蛇行形状を有する。成形体10の側面10cには、流路14の開口部14a、14bが設けられる。 As shown in FIG. 3, the flow path 14 has a meandering shape that extends over the entire front surface 10a in a plan view. The side surfaces 10c of the molded body 10 are provided with openings 14a and 14b of the flow path 14.
 また、図4に示すように、流路14は、成形体10の内部において、おもて面10aに対して電極層11よりも離れた位置に設けられ、かかるおもて面10aと略平行に配置される。 Further, as shown in FIG. 4, the flow path 14 is provided inside the molded body 10 at a position distant from the electrode layer 11 with respect to the front surface 10a, and is substantially parallel to the front surface 10a. Is placed in.
 なお、実施形態に係る流路14の構成は、図1~図4の例に限られない。たとえば、実施形態に係る流路14は、平面視で渦巻き状などであってもよいし、2層以上の流路14が積層して配置されてもよい。 The configuration of the flow path 14 according to the embodiment is not limited to the examples of FIGS. 1 to 4. For example, the flow path 14 according to the embodiment may be spiral in a plan view, or two or more layers of flow paths 14 may be stacked and arranged.
 ここまで説明した成形体10の成形工程の一例について、次に説明する。なお、以下では、成形体10の主成分として酸化アルミニウムを用いた場合の例について示す。 An example of the molding process of the molded body 10 described so far will be described below. In the following, an example in which aluminum oxide is used as the main component of the molded product 10 will be shown.
 出発原料として、平均粒径1.5μmで純度99.9%の酸化アルミニウム粉末を用いる。そして、この酸化アルミニウム粉末に対して焼結助剤を加えずに、有機系のバインダおよび溶剤を混合して、60℃で乾燥させた後に、メッシュパスを用いて整粒を行なうことによって、造粒粉を製作する。 As a starting material, aluminum oxide powder with an average particle size of 1.5 μm and a purity of 99.9% is used. Then, the aluminum oxide powder is prepared by mixing an organic binder and a solvent without adding a sintering aid, drying at 60 ° C., and then sizing using a mesh path. Make granules.
 次に、この造粒粉を型内に充填して、98MPaの成形圧によって、所定の直径および厚みを有する複数枚の円板状のグリーンシートを成形する。 Next, this granulated powder is filled in a mold, and a plurality of disk-shaped green sheets having a predetermined diameter and thickness are molded by a molding pressure of 98 MPa.
 しかる後、所定のグリーンシートに対して、切削加工によって流路14に対応する切欠きを形成する。また、別の所定のグリーンシートに対して、白金粉末のペーストをスクリーン印刷して電極層11を形成する。 After that, a notch corresponding to the flow path 14 is formed on the predetermined green sheet by cutting. Further, a platinum powder paste is screen-printed on another predetermined green sheet to form the electrode layer 11.
 そして、図1~図4に示した成形体10の構造が実現されるように、複数枚の円板状のグリーンシートを有機バインダを介して積層し、この積層体を98MPaの成形圧でプレス成形して密着させる。これにより、実施形態に係る成形体10の成形工程が完了する。 Then, a plurality of disk-shaped green sheets are laminated via an organic binder so that the structure of the molded body 10 shown in FIGS. 1 to 4 is realized, and the laminated body is pressed at a molding pressure of 98 MPa. Mold and adhere. As a result, the molding step of the molded body 10 according to the embodiment is completed.
<脱脂工程および焼成工程>
 実施形態に係るセラミック構造体100(図7参照)を製造する工程では、上述した成形工程につづいて、成形体10の脱脂工程および焼成工程が行われる。そこで、かかる成形体10の脱脂工程および焼成工程の詳細について、図5~図8を参照しながら説明する。
<Solvent degreasing process and firing process>
In the step of manufacturing the ceramic structure 100 (see FIG. 7) according to the embodiment, the degreasing step and the firing step of the molded body 10 are performed following the molding step described above. Therefore, the details of the degreasing step and the firing step of the molded body 10 will be described with reference to FIGS. 5 to 8.
 図5は、実施形態に係る脱脂工程における成形体10および支持部材20の配置を示す断面図であり、図6は、実施形態に係る脱脂工程における成形体10および支持部材20の配置を示す平面図である。 FIG. 5 is a cross-sectional view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the embodiment, and FIG. 6 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the embodiment. It is a figure.
 図5に示すように、実施形態に係る成形体10の脱脂工程は、成形体10を支持部材20の上に載置した状態で行われる。すなわち、セラミック構造体100を製造する工程では、成形体10を脱脂する工程の前に、成形体10を支持部材20上に載置する工程が行われる。 As shown in FIG. 5, the degreasing step of the molded body 10 according to the embodiment is performed in a state where the molded body 10 is placed on the support member 20. That is, in the step of manufacturing the ceramic structure 100, a step of placing the molded body 10 on the support member 20 is performed before the step of degreasing the molded body 10.
 かかる成形体10の載置工程では、まず、棚板21上に支持部材20が配置される。実施形態では、図6に示すように、平面視で直線状である複数の支持部材20が、略平行に並んで配置される。 In the mounting process of the molded body 10, the support member 20 is first arranged on the shelf board 21. In the embodiment, as shown in FIG. 6, a plurality of support members 20 that are linear in a plan view are arranged side by side substantially in parallel.
 支持部材20は、たとえば、四角柱形状であり、かかる四角柱を横たえた状態で棚板21上に配置される。支持部材20は、上面に成形体10と接する当接部20aを有する。なお、実施形態では、複数の支持部材20の上面(すなわち、当接部20a)が略面一に配置される。 The support member 20 has, for example, a square pillar shape, and is arranged on the shelf board 21 with the square pillar lying down. The support member 20 has an abutting portion 20a on the upper surface that is in contact with the molded body 10. In the embodiment, the upper surfaces (that is, the contact portions 20a) of the plurality of support members 20 are arranged substantially flush with each other.
 このように配置された複数の支持部材20の上面に、成形体10が載置される。ここで、実施形態に係る載置工程では、図5に示すように、成形体10のおもて面10aを下向きにした状態で、成形体10が支持部材20に載置される。 The molded body 10 is placed on the upper surface of the plurality of support members 20 arranged in this way. Here, in the mounting step according to the embodiment, as shown in FIG. 5, the molded body 10 is mounted on the support member 20 with the front surface 10a of the molded body 10 facing downward.
 これにより、成形体10は、おもて面10aの一部の部位が支持部材20の当接部20aと当接し、おもて面10aの残りの部位が外気に露出した状態で支持部材20に載置される。なお、載置された成形体10において、裏面10bおよび側面10cはすべて外気に露出している。 As a result, in the molded body 10, the support member 20 is in a state where a part of the front surface 10a is in contact with the contact portion 20a of the support member 20 and the remaining portion of the front surface 10a is exposed to the outside air. It is placed in. In the mounted molded body 10, the back surface 10b and the side surface 10c are all exposed to the outside air.
 そして、実施形態では、支持部材20に載置された成形体10を脱脂する。たとえば、支持部材20に載置された成形体10を大気雰囲気中で所定の脱脂温度(たとえば、250~350℃程度)に昇温し、昇温後に所定の時間(たとえば、24時間程度)保持することにより、成形体10に含まれる有機バインダなどの有機成分を脱脂することができる。 Then, in the embodiment, the molded body 10 placed on the support member 20 is degreased. For example, the molded body 10 placed on the support member 20 is heated to a predetermined degreasing temperature (for example, about 250 to 350 ° C.) in an air atmosphere, and held for a predetermined time (for example, about 24 hours) after the temperature rise. By doing so, it is possible to degreas the organic components such as the organic binder contained in the molded product 10.
 なお、電極層11の材料としてタングステン粉末やモリブデン粉末のペーストを用いる場合、上記の脱脂工程は、たとえば、支持部材20に載置された成形体10を窒素雰囲気中で所定の脱脂温度(たとえば、250~350℃程度)に昇温し、昇温後に所定の時間(たとえば、24時間程度)保持することにより行われる。 When a paste of tungsten powder or molybdenum powder is used as the material of the electrode layer 11, in the above degreasing step, for example, the molded body 10 placed on the support member 20 is placed at a predetermined degreasing temperature (for example, in a nitrogen atmosphere). It is carried out by raising the temperature to 250 to 350 ° C.) and holding the temperature for a predetermined time (for example, about 24 hours) after the temperature rise.
 そして、実施形態では、成形体10を支持部材20に載置した状態で脱脂を行うことから、成形体10におけるおもて面10aの一部が外気に露出した状態で脱脂を行うことができる。 Then, in the embodiment, since the molded body 10 is degreased while being placed on the support member 20, degreasing can be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air. ..
 これにより、成形体10のおもて面10aからも十分に有機成分を脱脂することができることから、成形体10の全体から十分に脱脂することができる。したがって、実施形態によれば、成形体10を焼成した後にクラックが生じることを抑制することができる。 As a result, the organic component can be sufficiently degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be sufficiently degreased. Therefore, according to the embodiment, it is possible to prevent cracks from being generated after the molded product 10 is fired.
 また、実施形態によれは、大気雰囲気を介して成形体10のおもて面10aおよび裏面10bに同じように熱をかけられることから、脱脂工程の際に、上下にかかる熱の不均一性に起因して成形体10が反ることを抑制することができる。 Further, according to the embodiment, heat is similarly applied to the front surface 10a and the back surface 10b of the molded body 10 through the air atmosphere, so that the heat applied to the top and bottom during the degreasing step is non-uniform. It is possible to prevent the molded body 10 from warping due to the above.
 また、実施形態では、複数の支持部材20の当接部20aが略面一であることから、脱脂した後の成形体10において、おもて面10a(すなわち、半導体ウェハとの当接面)の平坦性を確保することができる。 Further, in the embodiment, since the contact portions 20a of the plurality of support members 20 are substantially flush with each other, the front surface 10a (that is, the contact surface with the semiconductor wafer) in the molded body 10 after degreasing. Flatness can be ensured.
 したがって、実施形態によれば、脱脂工程および焼成工程によって反りが生じない構成のセラミック構造体100において、半導体ウェハが当接するおもて面100a(図7参照)の平坦性を確保することができる。 Therefore, according to the embodiment, in the ceramic structure 100 having a structure in which warpage does not occur during the degreasing step and the firing step, the flatness of the front surface 100a (see FIG. 7) with which the semiconductor wafer abuts can be ensured. ..
 また、実施形態では、平行に並んで配置された複数の直線状の支持部材20上に、成形体10を載置するとよい。これにより、当接部20aに当接しないおもて面10aから脱脂される有機成分を閉鎖空間にこもらせることなく、すべて外部に放出することができる。 Further, in the embodiment, it is preferable to place the molded body 10 on a plurality of linear support members 20 arranged side by side in parallel. As a result, all the organic components degreased from the front surface 10a that do not come into contact with the contact portion 20a can be released to the outside without being trapped in the closed space.
 したがって、実施形態によれば、成形体10のおもて面10aからさらに効果的に有機成分を脱脂することができることから、成形体10の全体からさらに効果的に脱脂することができる。 Therefore, according to the embodiment, the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be degreased more effectively.
 また、実施形態では、図6に示すように、支持部材20の当接部20aが、円状のおもて面10aの中心10a1とは接しないように配置されるとよい。これにより、かかる中心10a1が支持部材20で押圧され、成形体10の中心部が変形してしまうことを抑制することができる。 Further, in the embodiment, as shown in FIG. 6, it is preferable that the contact portion 20a of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
 また、実施形態では、支持部材20の当接部20aが、平面視で流路14を避けて配置されるとよい。これにより、構造的に弱い部分である流路14近傍の部位が支持部材20で押圧され、成形体10が変形してしまうことを抑制することができる。 Further, in the embodiment, the contact portion 20a of the support member 20 may be arranged so as to avoid the flow path 14 in a plan view. As a result, it is possible to prevent the molded body 10 from being deformed due to the support member 20 pressing the portion near the flow path 14, which is a structurally weak portion.
 また、実施形態では、支持部材20の当接部20aが、平面視で流路14と交差するように配置されてもよい。これによっても、構造的に弱い部分である流路14近傍の部位が支持部材20で押圧され、成形体10が変形してしまうことを抑制することができる。 Further, in the embodiment, the contact portion 20a of the support member 20 may be arranged so as to intersect the flow path 14 in a plan view. This also makes it possible to prevent the molded body 10 from being deformed due to the support member 20 pressing the portion near the flow path 14, which is a structurally weak portion.
 また、実施形態では、ここまで説明した脱脂工程の後、かかる脱脂工程と同じ状態(すなわち、成形体10が支持部材20に載置された状態)のままで、成形体10を焼成するとよい。 Further, in the embodiment, after the degreasing step described so far, the molded body 10 may be fired in the same state as the degreasing step (that is, the molded body 10 is placed on the support member 20).
 かかる焼成工程は、たとえば、支持部材20に載置された成形体10を大気雰囲気中で所定の焼成温度(たとえば、1500~1700℃程度)に昇温し、昇温後に所定の時間(たとえば、2時間程度)保持することにより行われる。 In such a firing step, for example, the molded body 10 placed on the support member 20 is heated to a predetermined firing temperature (for example, about 1500 to 1700 ° C.) in an air atmosphere, and after the temperature rise, it is heated for a predetermined time (for example, for example). It is done by holding (about 2 hours).
 なお、電極層11の材料としてタングステン粉末やモリブデン粉末のペーストを用いる場合、上記の焼成工程は、たとえば、支持部材20に載置された成形体10を窒素雰囲気中で所定の焼成温度(たとえば、1500~1700℃程度)に昇温し、昇温後に所定の時間(たとえば、2時間程度)保持することにより行われる。 When a paste of tungsten powder or molybdenum powder is used as the material of the electrode layer 11, in the above firing step, for example, the molded body 10 placed on the support member 20 is placed at a predetermined firing temperature (for example, in a nitrogen atmosphere). It is carried out by raising the temperature to 1500 to 1700 ° C.) and holding the temperature for a predetermined time (for example, about 2 hours) after the temperature rise.
 これにより、成形体10のおもて面10aの近傍に一部残った有機成分を焼成工程で十分に脱脂しながら、成形体10を焼成することができる。したがって、実施形態によれば、脱脂が不十分なことに起因して発生するクラックを抑制することができる。 As a result, the molded body 10 can be fired while the organic component partially remaining in the vicinity of the front surface 10a of the molded body 10 is sufficiently degreased in the firing step. Therefore, according to the embodiment, cracks generated due to insufficient degreasing can be suppressed.
 また、実施形態では、成形体10の脱脂工程と焼成工程とを連続して行うことができることから、セラミック構造体100の製造工程全体を短縮することができる。 Further, in the embodiment, since the degreasing step and the firing step of the molded body 10 can be continuously performed, the entire manufacturing process of the ceramic structure 100 can be shortened.
 実施形態では、この焼成工程によって、図7に示すセラミック構造体100が得られる。図7は、実施形態に係るセラミック構造体100の構成を示す斜視図である。実施形態に係るセラミック構造体100は、半導体ウェハなどの試料を静電気力によっておもて面100aに保持する試料保持具として用いることができる。 In the embodiment, the ceramic structure 100 shown in FIG. 7 is obtained by this firing step. FIG. 7 is a perspective view showing the configuration of the ceramic structure 100 according to the embodiment. The ceramic structure 100 according to the embodiment can be used as a sample holder that holds a sample such as a semiconductor wafer on the front surface 100a by an electrostatic force.
 実施形態に係るセラミック構造体100は、略円板状であり、おもて面100aと、裏面100bとを有する。おもて面100aは、成形体10のおもて面10aに対応する部位であり、裏面100bは、成形体10の裏面10bに対応する部位である。 The ceramic structure 100 according to the embodiment is substantially disk-shaped and has a front surface 100a and a back surface 100b. The front surface 100a is a portion corresponding to the front surface 10a of the molded body 10, and the back surface 100b is a portion corresponding to the back surface 10b of the molded body 10.
 なお、おもて面100aおよび裏面100bは、焼成工程の後、所定の研磨工程で平坦面に研磨される。たとえば、実施形態では、おもて面100aを研磨した後に裏面100bを研磨するとよい。これにより、おもて面100aを精度よく平坦面に研磨することができる。 The front surface 100a and the back surface 100b are polished to a flat surface in a predetermined polishing step after the firing step. For example, in the embodiment, it is preferable to polish the front surface 100a and then the back surface 100b. As a result, the front surface 100a can be accurately polished to a flat surface.
 また、セラミック構造体100の内部には、電極101と、流路104とが設けられる。電極101は、成形体10の電極層11に対応する部位であり、流路104は、成形体10の流路14に対応する部位である。 Further, inside the ceramic structure 100, an electrode 101 and a flow path 104 are provided. The electrode 101 is a portion corresponding to the electrode layer 11 of the molded body 10, and the flow path 104 is a portion corresponding to the flow path 14 of the molded body 10.
 また、電極101は、正電極102と負電極103とに分離されている。正電極102は、第1電極層12に対応する部位であり、図示しない外部電源の正極に接続される。負電極103は、第2電極層13に対応する部位であり、外部電源の負極に接続される。 Further, the electrode 101 is separated into a positive electrode 102 and a negative electrode 103. The positive electrode 102 is a portion corresponding to the first electrode layer 12, and is connected to a positive electrode of an external power source (not shown). The negative electrode 103 is a portion corresponding to the second electrode layer 13 and is connected to the negative electrode of the external power supply.
 そして、実施形態に係るセラミック構造体100では、流路104に熱媒体が流されることにより、おもて面100aに保持された試料を加熱、冷却または保温することができる。 Then, in the ceramic structure 100 according to the embodiment, the sample held on the front surface 100a can be heated, cooled, or kept warm by flowing the heat medium through the flow path 104.
 流路104に流される熱媒体としては、流路104からおもて面100aに保持される試料と熱交換可能な物質であれば、どのような熱媒体を用いてもよい。そのような熱媒体としては、各種の流体、たとえば温水、冷水またはスチームなどの水系媒体、エチレングリコールなどの有機系媒体、あるいは空気を含む気体などを用いることができる。 As the heat medium flowing through the flow path 104, any heat medium may be used as long as it is a substance that can exchange heat with the sample held on the front surface 100a from the flow path 104. As such a heat medium, various fluids such as hot water, cold water, an aqueous medium such as steam, an organic medium such as ethylene glycol, or a gas containing air can be used.
 なお、実施形態において、熱媒体として純水などの水系溶媒を用いる場合には、耐水性に優れる酸化アルミニウムまたは炭化珪素などをセラミック構造体100の主成分として用いることが好ましい。 In the embodiment, when an aqueous solvent such as pure water is used as the heat medium, it is preferable to use aluminum oxide or silicon carbide having excellent water resistance as the main component of the ceramic structure 100.
 また、実施形態では、支持部材20が、成形体10と同じ主成分で構成されるとよい。これにより、脱脂工程や焼成工程の際に支持部材20から脱離した異なる主成分が成形体10に混入し、成形体10の品質が低下することを抑制することができる。なお、ここでいう「同じ主成分で構成される」とは、組成の80%以上が同一であるということを意味している。 Further, in the embodiment, it is preferable that the support member 20 is composed of the same main component as the molded body 10. As a result, it is possible to prevent the different main components desorbed from the support member 20 during the degreasing step and the firing step from being mixed into the molded body 10 and deteriorating the quality of the molded body 10. In addition, "composed of the same main component" here means that 80% or more of the composition is the same.
 また、成形体10と支持部材20とが同じ主成分で構成されることは、たとえば、蛍光X線分析装置を用いて組成を同定したり、X線回折装置を用いて結晶相を同定したりすることによって確認することができる。 Further, the fact that the molded body 10 and the support member 20 are composed of the same main component means that, for example, the composition can be identified by using a fluorescent X-ray analyzer, or the crystal phase can be identified by using an X-ray diffractometer. It can be confirmed by doing.
 また、実施形態では、おもて面10aを下向きにした状態で支持部材20に載置しながら脱脂工程および焼成工程を行うことにより、図8に示すように、色調が異なる第1領域100a1と第2領域100a2とをおもて面100aに形成することができる。図8は、実施形態に係るセラミック構造体100の構成を示す平面図である。 Further, in the embodiment, as shown in FIG. 8, the degreasing step and the firing step are performed while the front surface 10a is placed on the support member 20 in a state of facing downward, so that the first region 100a1 having a different color tone is used. The second region 100a2 can be formed on the front surface 100a. FIG. 8 is a plan view showing the configuration of the ceramic structure 100 according to the embodiment.
 ここで、第1領域100a1は、脱脂工程の際に支持部材20の当接部20aと当接した部位であり、第2領域100a2は、脱脂工程の際に支持部材20の当接部20aと当接していなかった部位である。 Here, the first region 100a1 is a portion that comes into contact with the contact portion 20a of the support member 20 during the degreasing step, and the second region 100a2 is a portion that comes into contact with the contact portion 20a of the support member 20 during the degreasing step. This is the part that was not in contact.
 実施形態に係る第1領域100a1は、たとえば、白色であり、CIE1976L*a*b*色空間における明度指数L*が94.23、クロマティクネス指数a*が-0.10、クロマティクネス指数b*が+1.65である。 The first region 100a1 according to the embodiment is, for example, white, has a brightness index L * in the CIE1976L * a * b * color space of 94.23, a chromaticity index a * of −0.10, and a chromaticity index b *. Is +1.65.
 また、実施形態に係る第2領域100a2は、たとえば、黄色であり、CIE1976L*a*b*色空間における明度指数L*が91.74、クロマティクネス指数a*が-0.26、クロマティクネス指数b*が+5.04である。 The second region 100a2 according to the embodiment is, for example, yellow, and has a brightness index L * in the CIE1976L * a * b * color space of 91.74, a chromaticity index a * of −0.26, and a chromaticity index. b * is +5.04.
 このように、実施形態に係るセラミック構造体100では、色調の異なる2つの領域をおもて面100aに形成することができることから、かかる2つの領域の輪郭を用いることにより、半導体ウェハなどの試料の位置合わせを容易に実施することができる。 As described above, in the ceramic structure 100 according to the embodiment, two regions having different color tones can be formed on the front surface 100a. Therefore, by using the contours of these two regions, a sample such as a semiconductor wafer can be formed. Alignment can be easily carried out.
<変形例>
 つづいて、実施形態の各種変形例について、図9~図13を参照しながら説明する。図9は、実施形態の変形例1に係る脱脂工程における成形体10および支持部材20の配置を示す平面図である。
<Modification example>
Subsequently, various modifications of the embodiment will be described with reference to FIGS. 9 to 13. FIG. 9 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the first modification of the embodiment.
 上述の実施形態では、直線状の支持部材20を複数並べて脱脂を行った例について示したが、支持部材20の形状は直線状に限られない。たとえば、図9に示すように、円弧状の支持部材20を複数並べて脱脂を行ってもよい。 In the above-described embodiment, an example in which a plurality of linear support members 20 are arranged side by side to perform degreasing is shown, but the shape of the support members 20 is not limited to the linear shape. For example, as shown in FIG. 9, a plurality of arc-shaped support members 20 may be arranged side by side for degreasing.
 これによっても、成形体10におけるおもて面10aの一部が外気に露出した状態で脱脂を行うことができることから、成形体10の全体から十分に脱脂することができる。 This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased.
 なお、図9の例では、4つの半円弧状の支持部材20を同心円状に並べて配置し、かかる複数の支持部材20の上におもて面10aを下向きにした成形体10を載置した状態で、脱脂工程が行われる。 In the example of FIG. 9, four semicircular support members 20 are arranged concentrically, and a molded body 10 with the front surface 10a facing downward is placed on the plurality of support members 20. In this state, the degreasing step is performed.
 このように、半円弧状の支持部材20を同心円状に並べて配置することにより、当接部20aに当接しないおもて面10aから脱脂される有機成分を閉鎖空間にこもらせることなく、すべて外部に放出することができる。 By arranging the semicircular support members 20 in a concentric manner in this way, all the organic components degreased from the front surface 10a that do not abut on the abutting portion 20a are not trapped in the closed space. It can be released to the outside.
 したがって、変形例1によれば、成形体10のおもて面10aからさらに効果的に有機成分を脱脂することができることから、成形体10の全体からさらに効果的に脱脂することができる。 Therefore, according to the first modification, the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be more effectively degreased.
 また、変形例1では、支持部材20の当接部20a(図5参照)が、円状のおもて面10aの中心10a1とは接しないように配置されるとよい。これにより、かかる中心10a1が支持部材20で押圧され、成形体10の中心部が変形してしまうことを抑制することができる。 Further, in the modified example 1, it is preferable that the contact portion 20a (see FIG. 5) of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
 また、変形例1では、支持部材20の当接部20aが、おもて面10aの縁10a2とは接しないように配置されるとよい。これにより、成形体10が脱脂工程および焼成工程において縮んだとしても、成形体10の全体が支持部材20で支持できなくなることを抑制することができる。 Further, in the first modification, the contact portion 20a of the support member 20 may be arranged so as not to be in contact with the edge 10a2 of the front surface 10a. As a result, even if the molded body 10 shrinks in the degreasing step and the firing step, it is possible to prevent the entire molded body 10 from being unable to be supported by the support member 20.
 図10は、実施形態の変形例2に係る脱脂工程における成形体10および支持部材20の配置を示す平面図である。たとえば、図10に示すように、格子状の支持部材20の上に成形体10を載置して脱脂工程を行ってもよい。 FIG. 10 is a plan view showing the arrangement of the molded body 10 and the support member 20 in the degreasing step according to the second modification of the embodiment. For example, as shown in FIG. 10, the molded body 10 may be placed on the grid-shaped support member 20 to perform the degreasing step.
 これによっても、成形体10におけるおもて面10aの一部が外気に露出した状態で脱脂を行うことができることから、脱脂工程において成形体10の全体から十分に脱脂することができる。 This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased in the degreasing step.
 なお、図10の例において、格子状の支持部材20で囲まれる空間は、図示しないスリットなどにより外部と通気可能とすればよい。これにより、当接部20aに当接しないおもて面10aから脱脂される有機成分を閉鎖空間にこもらせることなく、すべて外部に放出することができる。 In the example of FIG. 10, the space surrounded by the grid-shaped support member 20 may be ventilated to the outside by a slit or the like (not shown). As a result, all the organic components degreased from the front surface 10a that do not come into contact with the contact portion 20a can be released to the outside without being trapped in the closed space.
 したがって、変形例2によれば、成形体10のおもて面10aからさらに効果的に有機成分を脱脂することができることから、成形体10の全体からさらに効果的に脱脂することができる。 Therefore, according to the second modification, the organic component can be more effectively degreased from the front surface 10a of the molded body 10, so that the entire molded body 10 can be more effectively degreased.
 また、変形例2では、支持部材20の当接部20a(図5参照)が、円状のおもて面10aの中心10a1とは接しないように配置されるとよい。これにより、かかる中心10a1が支持部材20で押圧され、成形体10の中心部が変形してしまうことを抑制することができる。 Further, in the modified example 2, it is preferable that the contact portion 20a (see FIG. 5) of the support member 20 is arranged so as not to be in contact with the center 10a1 of the circular front surface 10a. As a result, it is possible to prevent the central portion 10a1 from being pressed by the support member 20 and deforming the central portion of the molded body 10.
 図11は、実施形態の変形例3に係る支持部材20の構成を示す平面図であり、図12は、実施形態の変形例3に係る支持部材20の構成を示す断面図である。 FIG. 11 is a plan view showing the configuration of the support member 20 according to the modified example 3 of the embodiment, and FIG. 12 is a cross-sectional view showing the configuration of the support member 20 according to the modified example 3 of the embodiment.
 この変形例3では、図11に示すように、成形体10の中央部に隣接する一対の半円弧状の支持部材20Aと、成形体10の周縁部に隣接する一対の半円弧状の支持部材20Bとが並んで配置される。 In this modification 3, as shown in FIG. 11, a pair of semi-arc-shaped support members 20A adjacent to the central portion of the molded body 10 and a pair of semi-arc-shaped support members adjacent to the peripheral portion of the molded body 10 20B and 20B are arranged side by side.
 そして、図12に示すように、成形体10の中央部に隣接する支持部材20Aの当接部20a1が、成形体10の周縁部に隣接する支持部材20Bの当接部20a2よりも高い位置に配置される。 Then, as shown in FIG. 12, the contact portion 20a1 of the support member 20A adjacent to the central portion of the molded body 10 is located at a position higher than the contact portion 20a2 of the support member 20B adjacent to the peripheral edge portion of the molded body 10. Be placed.
 これにより、変形例3では、成形体10を上に凸に反らせた状態で、脱脂工程および焼成工程を行うことができる。したがって、変形例3によれば、脱脂工程および焼成工程によって下に凸の反りが生じる構成のセラミック構造体100(図7参照)において、半導体ウェハが当接するおもて面100aの平坦性を確保することができる。 As a result, in the modified example 3, the degreasing step and the firing step can be performed in a state where the molded body 10 is warped upward. Therefore, according to the modified example 3, in the ceramic structure 100 (see FIG. 7) having a structure in which a convex warp is generated downward by the degreasing step and the firing step, the flatness of the front surface 100a to which the semiconductor wafer abuts is ensured. can do.
 図13は、実施形態の変形例4に係る支持部材20の構成を示す断面図であり、変形例3の図12に対応する図面である。図13に示すように、変形例4では、成形体10の中央部に隣接する支持部材20Aの当接部20a1が、成形体10の周縁部に隣接する支持部材20Bの当接部20a2よりも低い位置に配置される。 FIG. 13 is a cross-sectional view showing the configuration of the support member 20 according to the modified example 4 of the embodiment, and is a drawing corresponding to FIG. 12 of the modified example 3. As shown in FIG. 13, in the modified example 4, the contact portion 20a1 of the support member 20A adjacent to the central portion of the molded body 10 is larger than the contact portion 20a2 of the support member 20B adjacent to the peripheral portion of the molded body 10. It is placed in a low position.
 これにより、変形例4では、成形体10を下に凸に反らせた状態で、脱脂工程および焼成工程を行うことができる。したがって、変形例4によれば、脱脂工程および焼成工程によって上に凸の反りが生じる構成のセラミック構造体100(図7参照)において、半導体ウェハが当接するおもて面100aの平坦性を確保することができる。 As a result, in the modified example 4, the degreasing step and the firing step can be performed in a state where the molded body 10 is warped downward. Therefore, according to the modified example 4, in the ceramic structure 100 (see FIG. 7) having a structure in which a convex warp is generated by the degreasing step and the firing step, the flatness of the front surface 100a to which the semiconductor wafer abuts is ensured. can do.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、実施形態に係る支持部材20は、多孔体で構成されていてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the support member 20 according to the embodiment may be made of a porous body.
 これによっても、成形体10におけるおもて面10aの一部が外気に露出した状態で脱脂を行うことができることから、脱脂工程において成形体10の全体から十分に脱脂することができる。 This also allows degreasing to be performed in a state where a part of the front surface 10a of the molded body 10 is exposed to the outside air, so that the entire molded body 10 can be sufficiently degreased in the degreasing step.
 また、上記の実施形態では、円板状のセラミック構造体100を製造する工程について示したが、製造されるセラミック構造体100の形状は円板状に限られない。たとえば、リング状のセラミック構造体100を上記した各工程で製造してもよい。 Further, in the above embodiment, the process of manufacturing the disc-shaped ceramic structure 100 is shown, but the shape of the manufactured ceramic structure 100 is not limited to the disc shape. For example, the ring-shaped ceramic structure 100 may be manufactured in each of the above steps.
 かかるリング状のセラミック構造体100は、たとえば、円板状のセラミック構造体100を焼成した後に、内側を切削加工してくり抜くことにより形成することができる。 The ring-shaped ceramic structure 100 can be formed, for example, by firing the disk-shaped ceramic structure 100 and then cutting the inside to hollow out.
 また、上記の実施形態では、成形体10を支持部材20に載置した状態で、成形体10の脱脂工程および焼成工程を行った例について示したが、成形体10を支持部材20に載置した状態で、成形体10の脱脂工程のみを行ってもよい。 Further, in the above embodiment, an example in which the degreasing step and the firing step of the molded body 10 are performed in a state where the molded body 10 is placed on the support member 20, but the molded body 10 is placed on the support member 20. In this state, only the degreasing step of the molded product 10 may be performed.
 なお、本実施形態のセラミック構造体は、例えば半導体製造における高周波電極やヒータとして利用しても構わない。 The ceramic structure of the present embodiment may be used, for example, as a high-frequency electrode or a heater in semiconductor manufacturing.
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and other aspects can be easily derived by those skilled in the art. For this reason, the broader aspects of the invention are not limited to the particular details and representative embodiments expressed and described as described above. Thus, various modifications can be made without departing from the spirit or scope of the general concept of the invention as defined by the appended claims and their equivalents.
 10  成形体
 10a おもて面(主面の一例)
 11  電極層
 12  第1電極層
 13  第2電極層
 14  流路
 20  支持部材
 20a 当接部
 21  棚板
 100 セラミック構造体
10 Molded body 10a Front surface (example of main surface)
11 Electrode layer 12 1st electrode layer 13 2nd electrode layer 14 Flow path 20 Support member 20a Abutment part 21 Shelf board 100 Ceramic structure

Claims (14)

  1.  セラミックを含有する原料の内部に金属を含有する電極層を形成し、全体を板状に成形して成形体を得る工程と、
     前記成形体における前記電極層に近い側の主面を下向きにした状態で、前記主面の一部と接して支える支持部材に前記成形体を載置する工程と、
     前記支持部材に載置された前記成形体を脱脂する工程と、
     を含むセラミック構造体の製造方法。
    A process of forming an electrode layer containing a metal inside a raw material containing a ceramic and molding the whole into a plate shape to obtain a molded body.
    A step of placing the molded body on a support member that contacts and supports a part of the main surface with the main surface of the molded body on the side close to the electrode layer facing downward.
    A step of degreasing the molded body placed on the support member, and
    A method for manufacturing a ceramic structure including.
  2.  前記成形体と接する前記支持部材の当接部は、すべて略面一である
     請求項1に記載のセラミック構造体の製造方法。
    The method for manufacturing a ceramic structure according to claim 1, wherein all the contact portions of the support member in contact with the molded body are substantially flush with each other.
  3.  前記成形体と接する前記支持部材の当接部のうち、前記成形体の中央部に隣接する前記当接部は、前記成形体の周縁部に隣接する前記当接部よりも高い位置に配置される
     請求項1に記載のセラミック構造体の製造方法。
    Of the contact portions of the support member in contact with the molded body, the contact portion adjacent to the central portion of the molded body is arranged at a position higher than the contact portion adjacent to the peripheral edge portion of the molded body. The method for manufacturing a ceramic structure according to claim 1.
  4.  前記成形体と接する前記支持部材の当接部のうち、前記成形体の中央部に隣接する前記当接部は、前記成形体の周縁部に隣接する前記当接部よりも低い位置に配置される
     請求項1に記載のセラミック構造体の製造方法。
    Of the contact portions of the support member in contact with the molded body, the contact portion adjacent to the central portion of the molded body is arranged at a position lower than the contact portion adjacent to the peripheral edge portion of the molded body. The method for manufacturing a ceramic structure according to claim 1.
  5.  前記支持部材は、平面視で直線状であり、
     複数の直線状の前記支持部材が平行に並んで配置される
     請求項1~4のいずれか一つに記載のセラミック構造体の製造方法。
    The support member is linear in a plan view and
    The method for manufacturing a ceramic structure according to any one of claims 1 to 4, wherein a plurality of linear support members are arranged side by side in parallel.
  6.  前記支持部材は、平面視で円弧状であり、
     複数の円弧状の前記支持部材が同心円状に並んで配置される
     請求項1~4のいずれか一つに記載のセラミック構造体の製造方法。
    The support member has an arcuate shape in a plan view and has an arc shape.
    The method for manufacturing a ceramic structure according to any one of claims 1 to 4, wherein a plurality of arc-shaped support members are arranged concentrically.
  7.  前記支持部材は、平面視で格子状である
     請求項1~4のいずれか一つに記載のセラミック構造体の製造方法。
    The method for manufacturing a ceramic structure according to any one of claims 1 to 4, wherein the support member has a lattice shape in a plan view.
  8.  前記支持部材は、多孔体で構成される
     請求項1~4のいずれか一つに記載のセラミック構造体の製造方法。
    The method for manufacturing a ceramic structure according to any one of claims 1 to 4, wherein the support member is made of a porous body.
  9.  前記成形体は、円板状であり、
     前記成形体と接する前記支持部材の当接部は、円状の前記主面の中心とは接しないように配置される
     請求項1~8のいずれか一つに記載のセラミック構造体の製造方法。
    The molded body has a disk shape and has a disk shape.
    The method for manufacturing a ceramic structure according to any one of claims 1 to 8, wherein the contact portion of the support member in contact with the molded body is arranged so as not to be in contact with the center of the circular main surface. ..
  10.  前記成形体と接する前記支持部材の当接部は、前記主面の縁とは接しないように配置される
     請求項1~9のいずれか一つに記載のセラミック構造体の製造方法。
    The method for manufacturing a ceramic structure according to any one of claims 1 to 9, wherein the contact portion of the support member in contact with the molded body is arranged so as not to be in contact with the edge of the main surface.
  11.  前記成形体は、内部に流路を有し、
     前記成形体と接する前記支持部材の当接部は、平面視で前記流路を避けて配置される
     請求項1~10のいずれか一つに記載のセラミック構造体の製造方法。
    The molded product has a flow path inside and has a flow path inside.
    The method for manufacturing a ceramic structure according to any one of claims 1 to 10, wherein the contact portion of the support member in contact with the molded body is arranged so as to avoid the flow path in a plan view.
  12.  前記成形体は、内部に流路を有し、
     前記成形体と接する前記支持部材の当接部は、平面視で前記流路と交差するように配置される
     請求項1~10のいずれか一つに記載のセラミック構造体の製造方法。
    The molded product has a flow path inside and has a flow path inside.
    The method for manufacturing a ceramic structure according to any one of claims 1 to 10, wherein the contact portion of the support member in contact with the molded body is arranged so as to intersect the flow path in a plan view.
  13.  前記支持部材は、前記成形体と同じ主成分で構成される
     請求項1~12のいずれか一つに記載のセラミック構造体の製造方法。
    The method for manufacturing a ceramic structure according to any one of claims 1 to 12, wherein the support member is composed of the same main component as the molded body.
  14.  前記成形体を脱脂する工程の後に、前記支持部材に載置された前記成形体を焼成する工程をさらに含む
     請求項1~13のいずれか一つに記載のセラミック構造体の製造方法。
    The method for producing a ceramic structure according to any one of claims 1 to 13, further comprising a step of firing the molded body placed on the support member after the step of degreasing the molded body.
PCT/JP2021/000309 2020-01-31 2021-01-07 Ceramic structure manufacturing method WO2021153180A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180011161.9A CN115004353A (en) 2020-01-31 2021-01-07 Method for manufacturing ceramic structure
KR1020227025957A KR20220120656A (en) 2020-01-31 2021-01-07 Method for manufacturing a ceramic structure
JP2021574579A JP7447154B2 (en) 2020-01-31 2021-01-07 Method for manufacturing ceramic structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014571 2020-01-31
JP2020014571 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153180A1 true WO2021153180A1 (en) 2021-08-05

Family

ID=77079337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000309 WO2021153180A1 (en) 2020-01-31 2021-01-07 Ceramic structure manufacturing method

Country Status (4)

Country Link
JP (1) JP7447154B2 (en)
KR (1) KR20220120656A (en)
CN (1) CN115004353A (en)
WO (1) WO2021153180A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089248A (en) * 1999-09-22 2001-04-03 Ngk Spark Plug Co Ltd Process for producing ceramic substrate and jig used for the same
JP2003060017A (en) * 2001-08-10 2003-02-28 Kyocera Corp Ceramic member with built-in electrode and method of manufacturing the same
JP2003128470A (en) * 2001-10-23 2003-05-08 Mitsubishi Materials Corp Method of manufacturing ceramic substrate and porous ceramic plate
JP2004214690A (en) * 2000-02-07 2004-07-29 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing and inspection device
JP2014131015A (en) * 2012-11-30 2014-07-10 Kyocera Corp Ceramic sintered body, flow-channel member using the same, and semiconductor inspection device and semiconductor manufacturing apparatus
JP2016038194A (en) * 2014-08-12 2016-03-22 東北セラミック株式会社 Setter for defatting and firing
JP2018184304A (en) * 2016-05-24 2018-11-22 三井金属鉱業株式会社 Ceramic lattice body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120653A (en) 2006-11-15 2008-05-29 Denso Corp Placing table for firing ceramic honeycomb-formed body
EP3041039B1 (en) 2013-08-26 2022-01-05 KYOCERA Corporation Sample-retainer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089248A (en) * 1999-09-22 2001-04-03 Ngk Spark Plug Co Ltd Process for producing ceramic substrate and jig used for the same
JP2004214690A (en) * 2000-02-07 2004-07-29 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing and inspection device
JP2003060017A (en) * 2001-08-10 2003-02-28 Kyocera Corp Ceramic member with built-in electrode and method of manufacturing the same
JP2003128470A (en) * 2001-10-23 2003-05-08 Mitsubishi Materials Corp Method of manufacturing ceramic substrate and porous ceramic plate
JP2014131015A (en) * 2012-11-30 2014-07-10 Kyocera Corp Ceramic sintered body, flow-channel member using the same, and semiconductor inspection device and semiconductor manufacturing apparatus
JP2016038194A (en) * 2014-08-12 2016-03-22 東北セラミック株式会社 Setter for defatting and firing
JP2018184304A (en) * 2016-05-24 2018-11-22 三井金属鉱業株式会社 Ceramic lattice body

Also Published As

Publication number Publication date
JP7447154B2 (en) 2024-03-11
JPWO2021153180A1 (en) 2021-08-05
CN115004353A (en) 2022-09-02
KR20220120656A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
KR101142000B1 (en) Electrostatic chuck
TW523855B (en) Wafer holder for semiconductor manufacturing apparatus and method of manufacturing wafer holder
KR20040031691A (en) Ceramic joint body
JP2006013302A (en) Substrate mounting device and substrate temperature adjusting method
JP7306915B2 (en) Ceramic substrate, electrostatic chuck, manufacturing method of electrostatic chuck
WO2013051713A1 (en) Specimen holder
JP2008192969A (en) Electrostatic chuck and its manufacturing method
JP6389802B2 (en) Heating apparatus and manufacturing method thereof
WO2021153180A1 (en) Ceramic structure manufacturing method
JP2006013256A (en) Electrostatic chuck
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP6438352B2 (en) Heating device
KR100551670B1 (en) Ceramics heater for semiconductor production system
KR101070605B1 (en) Ceramic heater for semiconductor wafer and a manufacturing method thereof
US7491432B2 (en) Ceramic susceptor for semiconductor manufacturing equipment
KR100611281B1 (en) Ceramics heater for semiconductor production system
JP6050505B2 (en) Sample holder
JP4744016B2 (en) Manufacturing method of ceramic heater
JPWO2019008889A1 (en) Substrate mounting table for heating semiconductor substrates
JP4788575B2 (en) Holder for semiconductor manufacturing equipment
KR101617006B1 (en) Electrostatic chuck with heater and manufacturing method for the same
JP2010283364A (en) Holder for semiconductor manufacturing device
JP2002025913A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same
JP2007088498A (en) Ceramic heater for semiconductor manufacturing apparatus
JP2006279060A (en) Ceramic heater for semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574579

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025957

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748431

Country of ref document: EP

Kind code of ref document: A1