WO2021153112A1 - Method for manufacturing metal-filled microstructure - Google Patents

Method for manufacturing metal-filled microstructure Download PDF

Info

Publication number
WO2021153112A1
WO2021153112A1 PCT/JP2020/048124 JP2020048124W WO2021153112A1 WO 2021153112 A1 WO2021153112 A1 WO 2021153112A1 JP 2020048124 W JP2020048124 W JP 2020048124W WO 2021153112 A1 WO2021153112 A1 WO 2021153112A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semiconductor element
filled microstructure
plating
anisotropic conductive
Prior art date
Application number
PCT/JP2020/048124
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 糟谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021574546A priority Critical patent/JP7369797B2/en
Priority to CN202080094351.7A priority patent/CN115003864A/en
Publication of WO2021153112A1 publication Critical patent/WO2021153112A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces

Definitions

  • the present invention relates to a method for producing a metal-filled microstructure in which a plurality of pores are filled with a metal for an oxide film having a plurality of pores, and in particular, metal plating is performed in a supercritical state or a subcritical state.
  • the present invention relates to a method for producing a metal-filled microstructure in which a plurality of pores are filled with metal.
  • Metal-filled microstructures in which a plurality of through holes penetrating in the thickness direction of an insulating base material such as an oxide film are filled with metal are one of the fields that have been attracting attention in nanotechnology in recent years.
  • Metal-filled microstructures are expected to be used, for example, in battery electrodes, gas permeable membranes, sensors, and anisotropic conductive members. Since the heterogeneous conductive member can obtain an electrical connection between the electronic component and the circuit board simply by inserting it between the electronic component such as a semiconductor element and the circuit board and pressurizing it, the electronic component such as the semiconductor element can be used. It is widely used as an electrical connection member and an inspection connector for performing functional inspections. In particular, electronic components such as semiconductor elements are significantly downsized.
  • a plating method is used for metal filling in a plurality of through holes.
  • electrolytic plating or electroless plating is used.
  • an electroplating solution and a surfactant in which at least one of carbon dioxide and an inert gas is added and dispersed in an amount in which the metal powder does not dissolve is used.
  • an electroplating method that contains an activator and performs electroplating in a supercritical state or a subcritical state by utilizing an induced eutectoid phenomenon.
  • the metal powder is a metal of the same type as at least one of the metal substrate and the metal coating obtained by electroplating.
  • An object of the present invention is to provide a method for producing a metal-filled microstructure in which metal filling defects in a plurality of pores are suppressed when the metal is filled in the plurality of pores.
  • the first aspect of the present invention is a step of providing an insulating film having a plurality of pores on the surface of a metal member to obtain a structure having the metal member and the insulating film.
  • the structure has at least a surface on the side having an insulating film, which is subjected to metal plating in a supercritical state or a subcritical state and a metal is filled in a plurality of pores.
  • a metal layer other than the valve metal exists at the bottom of the pores of the structure, and a metal layer other than the valve metal is formed in a region of 80% or more of the area of the bottom of the pores.
  • the plating step is a step of forming a metal layer other than the valve metal at the bottom of the pores at the start of the plating step. It is preferable to carry out the process in a state where a metal layer other than the valve metal is formed in a region of 80% or more in terms of area.
  • the metal member is made of a metal other than the valve metal, and it is preferable that the metal member is exposed at the bottom of the pores.
  • the plurality of pores preferably have an average diameter of 1 ⁇ m or less.
  • the insulating film is preferably an oxide film.
  • the oxide film is preferably an anodic oxide film of aluminum.
  • the metal layer other than the valve metal is preferably composed of a metal nobler than aluminum.
  • the metal member is preferably composed of a noble metal or a valve metal.
  • FIG. 1 It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. FIG.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged view of one step of the first aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention. It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged view of one step of the second aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention. It is a schematic diagram which shows the electrolytic plating apparatus used in the plating process among the manufacturing method of the metal-filled microstructure of the embodiment of this invention. It is a top view which shows an example of the metal-filled microstructure of the embodiment of this invention. It is a schematic cross-sectional view which shows an example of the metal-filled microstructure of embodiment of this invention. It is a schematic cross-sectional view which shows an example of the structure of the anisotropic conductive material using the metal-filled microstructure of the embodiment of this invention.
  • the metal-filled microstructure to be produced has an insulating base material composed of an insulating film.
  • the insulating film is composed of, for example, an oxide film.
  • the oxide film is not particularly limited, but is composed of an anodic oxide film of aluminum.
  • An example will be described in which the oxide film is composed of an anodic oxide film of aluminum. In this case, an aluminum member is used as the metal member.
  • FIG. 1 to 5 are schematic cross-sectional views showing a first aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention in order of steps.
  • FIG. 6 is a schematic cross-sectional view showing one step of the first aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in an enlarged manner.
  • the metal member for example, the aluminum member 10 shown in FIG. 1 is prepared.
  • the aluminum member 10 has a thickness depending on the thickness of the aluminum anodic oxide film 14 of the finally obtained metal-filled microstructure 20 (see FIG. 5), that is, the thickness of the insulating base material, the processing apparatus, and the like. The thickness is appropriately determined.
  • the aluminum member 10 is, for example, a rectangular plate material.
  • the surface 10a (see FIG. 1) on one side of the aluminum member 10 is anodized.
  • the surface 10a (see FIG. 1) on one side of the aluminum member 10 is anodized and exists at the bottom of the plurality of through holes 12 extending in the thickness direction Dt of the aluminum member 10 as shown in FIG.
  • An anodized film 14 having a barrier layer 13 is formed.
  • the above-mentioned anodizing step is called an anodizing treatment step.
  • an oxide film having a plurality of pores is provided on the surface of the metal member to obtain a structure having the metal member and the oxide film.
  • the surface 10a on one side of the aluminum member 10 is anodized, and the aluminum anodic oxide film 14 having a plurality of through holes 12 is provided on the surface 10a of the aluminum member 10, and the aluminum member 10 and the anodic oxide film 14 are provided.
  • the structure 17 is not limited to being obtained by anodizing the aluminum member 10. As will be described later, the structure 17 can also be obtained by providing a metal member on the oxide film.
  • the barrier layer 13 exists at the bottom of the through holes 12 as described above, but the barrier layer 13 is removed as shown in FIG.
  • the step of removing the barrier layer 13 is called a barrier layer removing step.
  • the barrier layer 13 of the anodized film 14 is removed by using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, for example, the bottom of the through hole 12 of the structure 17 is used.
  • a metal layer 15a made of a metal other than the valve metal (metal M1) is formed on the 12c.
  • the metal layer 15a other than the valve metal is exposed at the bottom 12c of the through hole 12 of the structure 17.
  • a metal layer 15a is formed on the surface 10a of the aluminum member 10 at the bottom 12c of the through hole 12 of the structure 17.
  • a metal layer 15a other than the valve metal is formed on a region of 80% or more of the bottom portion 12c of the through hole 12 in the structure 17.
  • the rate at which a metal layer other than the valve metal is formed in the region at the bottom of the pores is called the area ratio. If the metal layer 15a is formed in a region of 80% or more of the bottom portion 12c of the through hole 12 in the structure 17, the area ratio of the metal layer 15a is 80%.
  • the metal layer 15a is formed on a region of 80% or more of the bottom portion 12c of the through hole 12, and 95% or more of the area of the surface 12d of the bottom portion 12c of the through hole 12. It is more preferable that the metal layer 15a is formed with respect to the region, and it is most preferable that the metal layer 15a is formed with respect to the region having an area of 100% of the bottom portion 12c of the through hole 12.
  • the above-mentioned barrier layer removing step also serves as a step of forming a metal layer made of a metal other than the valve metal at the bottom of the pores.
  • the step of forming the metal layer described above is a step carried out between the step of obtaining the structure and the step of plating.
  • a metal layer other than the valve metal is present at the bottom 12c of the through hole 12, and the area of the surface 10a of the aluminum member 10 at the bottom 12c of the through hole 12 is 80.
  • a metal layer 15a or the like is formed in a region of% or more.
  • the proportion of the surface 10a of the aluminum member 10 in the structure 17 covered by the metal layer 15a is such that the anodized film is cut with a FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is formed by FE-.
  • a surface photograph (magnification of 50,000 times) was taken in 10 fields of view by SEM, and the area ratio of the metal layer formed on the surface of the member with exposed pores in each field of view was measured and calculated as the average value. If a metal layer other than the valve metal is formed in a region of 80% or more of the bottom 12c of the through hole 12 of the structure 17, the area of the surface 10a of the aluminum member 10 in the structure 17 is set. The region is not limited to 80% or more covered with the metal layer 15a as shown in FIG.
  • the inside of the through hole 12 of the anodic oxide film 14 is filled with the metal 15b.
  • the metal layer 15a made of metal (metal M1) can be used as an electrode during metal plating.
  • the plating step of filling the inside of the through hole 12 with the metal 15b will be described in detail later.
  • it is called metal 15 in which the metal layer 15a and the metal 15b are packed together.
  • the aluminum member 10 is removed as shown in FIG. As a result, the metal-filled microstructure 20 is obtained.
  • the step of removing the aluminum member 10 is called a substrate removing step.
  • the barrier layer 13 is simply removed by removing the barrier layer using a metal member, for example, an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum.
  • a metal layer 15a of metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum member 10 exposed at the bottom 12c of the through hole 12.
  • the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
  • a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum member and the anodized film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved. In this case as well, a region of 80% or more of the surface 10a of the aluminum member 10 in the structure 17 is covered with the metal layer 15a.
  • a metal layer 15a made of a metal (metal M1) was formed on the bottom 12c of the through hole 12, but the present invention is not limited to this, and only the barrier layer 13 is removed to remove the through hole 12
  • the aluminum member 10 is exposed at the bottom of the.
  • a metal layer 15a is formed as a coating material on the surface 10a of the exposed aluminum member 10 at the bottom of the through hole 12 by using a vapor deposition method or a plating method.
  • a metal projecting step or a resin layer forming step may be included. The metal projecting step and the resin layer forming step will be described later.
  • ⁇ Second aspect> 7 to 10 are schematic cross-sectional views showing a second aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • FIG. 11 is a schematic cross-sectional view showing one step of the second aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in an enlarged manner.
  • FIGS. 7 to 11 the same components as those shown in FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the second aspect is different from the first aspect described above in that the metal member 24 (see FIGS. 9 and 11) is used without using the aluminum member 10 as the metal member. Further, in the second aspect, the steps shown below are different from those in the first aspect described above.
  • the aluminum member 10 is removed from the structure 17 having the aluminum member 10 and the anodic oxide film 14 shown in FIG. 2 in the second aspect to obtain the anodic oxide film 14 shown in FIG. Since the substrate removing step can be used for removing the aluminum member 10, detailed description thereof will be omitted.
  • the through hole 12 of the anodic oxide film 14 shown in FIG. 7 is enlarged in diameter and the barrier layer 13 is removed, and as shown in FIG. 8, the through hole 12 penetrates the anodic oxide film 14 in the thickness direction Dt.
  • a pore wide treatment is used for expanding the diameter of the through hole 12 (pore).
  • the pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore diameter of the through pores 12 (pores).
  • An aqueous solution of an inorganic acid such as phosphoric acid, sulfuric acid or hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide and lithium hydroxide can be used.
  • a metal member 24 is formed on the entire surface of the back surface 14b of the anodic oxide film 14 shown in FIG. 8, for example, as shown in FIG.
  • a structure 17 having the metal member 24 and the anodic oxide film 14 is obtained by providing the anodic oxide film 14 having a plurality of through holes 12 on the surface 24a of the metal member 24.
  • the step of forming the metal member 24 is called a metal member forming step.
  • a thin-film deposition method, a sputtering method, an electroless plating method, or the like is used for forming the metal member 24.
  • the metal member 24 is preferably made of a metal other than the valve metal, and is made of a noble metal such as Au (gold), for example.
  • the metal member 24 may be the same as the metal layer 15a described above.
  • the metal member 24 is provided on the back surface 14b side of the anodic oxide film 14.
  • the metal member 24 covers all the openings on the back surface 14b side of the anodic oxide film 14 of the through hole 12.
  • the metal member 24 is made of, for example, Au, and 100% of the surface 24a of the surface 24a of the metal member 24 is made of a metal other than the valve metal.
  • a metal layer other than the valve metal is exposed on the surface 12d of the bottom portion 12c of the through hole 12 of the structure 17. Moreover, 100% of the surface 12d of the bottom 12c of the through hole 12 can be made of non-valve metal. As a result, when the through hole 12 is filled with metal by metal plating, the plating is facilitated, it is suppressed that the metal is not sufficiently filled, and the through hole 12 is suppressed from being unfilled with metal.
  • a supercritical state or a subcritical state is formed inside the through hole 12 of the anodic oxide film 14 as in the first aspect.
  • the plating step of performing metal plating in the above the plurality of through holes 12 are filled with the metal 15b to form the conduction path 16.
  • the metal member 24 is removed to obtain the metal-filled microstructure 20 shown in FIG.
  • the method for removing the metal member 24 is not particularly limited as long as the metal member 24 can be removed, and examples thereof include etching and polishing.
  • the above-mentioned anodic oxidation treatment step, holding step, barrier layer removing step, plating step, surface metal projecting step, resin layer forming step, substrate removing step, and back surface metal projecting step may be combined. good. Further, a part of the surface of the aluminum member may be anodized by using a mask layer having a desired shape.
  • the above method for manufacturing a metal-filled microstructure the occurrence of partial filling defects in a plurality of through holes 12 (pores) can be suppressed, and the metal-filled microstructure with few filling defects in the through holes 12 can be suppressed. Can be obtained.
  • an anisotropic conductive member is manufactured using a metal-filled microstructure, the installation density of the conduction path is dramatically improved, and even now that the integration is further advanced, electronic components such as semiconductor elements are used. It can be used as an electrical connection member, an inspection connector, or the like.
  • the insulating base material is particularly limited as long as it is made of an inorganic material and has the same electrical resistivity (about 10 14 ⁇ ⁇ cm) as the insulating base material constituting a conventionally known anisotropic conductive film or the like. Not done. It should be noted that "consisting of an inorganic material” is a regulation for distinguishing from a polymer material constituting a resin layer, which will be described later, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material. Is the main component (50% by mass or more).
  • the insulating base material is composed of an oxide film as described above.
  • the oxide film is more preferably an anodic oxide film of a valve metal because through holes having a desired average diameter are formed and it is easy to form a conduction path described later.
  • the oxide film is an aluminum anodic oxide film as described above. Therefore, the metal member is preferably valve metal.
  • specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture a metal-filled microstructure using an aluminum member.
  • the metal member is used for manufacturing a metal-filled microstructure, preferably one capable of forming an anodic oxide film as described above, and preferably composed of the above-mentioned valve metal.
  • an aluminum member is used as the metal member.
  • a noble metal can be used in addition to the valve metal.
  • Noble metals include, for example, Au (gold), Ag (silver) and platinum group (Ru, Rh, Pd, Os, Ir, Pt) and the like.
  • the aluminum member is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material).
  • the surface on which the anodic oxide film is provided by the anodizing treatment step preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. It is more preferably mass% or more.
  • the aluminum purity is in the above range, the regularity of the through-hole arrangement becomes sufficient.
  • the surface of one side of the aluminum member to be anodized is subjected to heat treatment, degreasing treatment and mirror finish treatment in advance.
  • heat treatment the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be performed.
  • one side of the above-mentioned aluminum member is anodized, so that one side of the above-mentioned aluminum member has a through hole penetrating in the thickness direction and a barrier layer existing at the bottom of the through hole.
  • This is the process of forming a film.
  • a conventionally known method can be used, but from the viewpoint of increasing the regularity of the through-hole arrangement and ensuring the anisotropic conductivity of the metal-filled microstructure, a self-regulating method or a constant voltage treatment can be used. Is preferably used.
  • the average flow rate of the electrolytic solution in the anodizing treatment is preferably 0.5 to 20.0 m / min, more preferably 1.0 to 15.0 m / min, and 2.0 to 10.0 m / min. It is more preferably min.
  • the method for flowing the electrolytic solution under the above conditions is not particularly limited, but for example, a method using a general stirring device such as a stirrer is used. In particular, it is preferable to use a stirrer whose stirring speed can be controlled by a digital display because the average flow velocity can be controlled. Examples of such a stirrer include "Magnetic stirrer HS-50D (manufactured by AS ONE)" and the like.
  • anodizing treatment for example, a method of energizing an aluminum member as an anode in a solution having an acid concentration of 1 to 10% by mass can be used.
  • the solution used for the anodic oxidation treatment is preferably an acid solution, and sulfuric acid, phosphoric acid, chromic acid, oxalic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartrate acid, phosphoric acid, citric acid and the like are more preferable.
  • sulfuric acid, phosphoric acid and oxalic acid are particularly preferable. These acids can be used alone or in combination of two or more.
  • the conditions of the anodic oxidation treatment cannot be unconditionally determined because they vary depending on the electrolytic solution used, but in general, the electrolytic solution concentration is 0.1 to 20% by mass, the liquid temperature is -10 to 30 ° C, and the current.
  • the density is preferably 0.01 to 20 A / dm 2 , the voltage is 3 to 300 V, the electrolysis time is preferably 0.5 to 30 hours, the electrolyte concentration is 0.5 to 15 mass%, the liquid temperature is -5 to 25 ° C, and the current density. More preferably, the concentration is 0.05 to 15 A / dm 2 , the voltage is 5 to 250 V, and the electrolysis time is 1 to 25 hours. It is more preferable that / dm 2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours.
  • the average thickness of the anodizing film formed by the anodizing treatment is 30 ⁇ m or less from the viewpoint of supplying the metal-filled microstructure 20 in a form wound around the winding core. It is preferably 5 to 20 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the average thickness is obtained by cutting the anodized film in the thickness direction with a focused ion beam (FIB) and cutting the cross section with a field emission scanning electron microscope (FE-SEM). ) was taken, and a surface photograph (magnification of 50,000 times) was taken and calculated as an average value measured at 10 points.
  • FIB focused ion beam
  • FE-SEM field emission scanning electron microscope
  • the method for producing a metal-filled microstructure may include a holding step.
  • the holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more.
  • This is the process of holding.
  • the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step.
  • This is a step of performing electrolytic treatment for 5 minutes or more.
  • the "voltage in the anodizing treatment” is a voltage applied between the aluminum and the counter electrode. For example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. It is the average value.
  • the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably 5% or more and 20% or less.
  • the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
  • the holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
  • the voltage in the holding step may be set by continuously or stepwise (step-like) dropping from the voltage in the anodizing process to the voltage in the holding step, but for the reason that the in-plane uniformity is further improved. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the anodizing treatment step.
  • the above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step by, for example, lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted except for the conditions other than the electrolytic potential.
  • the barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • the barrier layer removing step described above the barrier layer is removed, and as shown in FIG. 3, a metal layer 15a made of metal M1 is formed at the bottom 12c of the through hole 12.
  • the hydrogen overvoltage means a voltage required for hydrogen to be generated.
  • the hydrogen overvoltage of aluminum (Al) is ⁇ 1.66 V (Journal of the Chemical Society of Japan, 1982, (8)). , P1305-1313).
  • Metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
  • the metal M1 used in the barrier layer removing step described above is used because it causes a substitution reaction with the metal M2 to be filled in the anodization treatment step described later and has less influence on the electrical characteristics of the metal filled inside the through hole.
  • a metal other than the valve metal is used as the metal M1 used in the above-mentioned barrier layer removal step, and the metal other than the valve metal is It is preferably a noble metal rather than aluminum.
  • a metal that is more noble than aluminum is a metal that is more difficult to ionize than aluminum.
  • Metals that are more noble than aluminum are, for example, Zn, Cr, Fe, Co, Ni, Sn, Pb, Cu, Ag, and Au.
  • Examples of the above-mentioned metal M1 include Zn, Fe, Ni, Sn and the like. Among them, Zn and Ni are preferably used, and Zn is more preferably used.
  • examples of the metal M1 used in the barrier layer removing step described above include Zn and Fe, and among them, Zn is preferably used.
  • the method of removing the barrier layer using such an alkaline aqueous solution containing the ions of the metal M1 is not particularly limited, and examples thereof include the same methods as those of the conventionally known chemical etching treatment.
  • ⁇ Chemical etching process> To remove the barrier layer by chemical etching treatment, for example, the structure after the anodization treatment step is immersed in an alkaline aqueous solution, the inside of the through hole is filled with the alkaline aqueous solution, and then the opening side of the through hole of the anodized film is formed. Only the barrier layer can be selectively dissolved by contacting the surface of the surface with a pH (hydrogen ion index) buffer solution or the like.
  • the alkaline aqueous solution containing the ions of the metal M1 described above it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C. Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C.
  • sodium hydroxide aqueous solution 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
  • a buffer solution corresponding to the above-mentioned alkaline aqueous solution can be appropriately used.
  • the immersion time in the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, further preferably 8 to 90 minutes, and preferably 10 to 90 minutes. Especially preferable. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
  • the barrier layer removing step may be a step of removing the barrier layer of the anodic oxide film and exposing a part of the aluminum member to the bottom of the through hole.
  • the method for removing the barrier layer is not particularly limited, and for example, a method for electrochemically dissolving the barrier layer at a potential lower than the potential in the anodizing treatment in the anodizing treatment step (hereinafter, "electrolytic removal treatment"".
  • etch removal treatment a method of removing the barrier layer by etching (hereinafter, also referred to as “etch removal treatment”); a method combining these (particularly, after performing an electrolytic removal treatment, the remaining barrier layer is subjected to an etching removal treatment. Method of removing with); etc.
  • the electrolytic removal treatment is not particularly limited as long as it is an electrolytic treatment performed at a potential lower than the potential (electrolytic potential) in the anodizing treatment in the anodizing treatment step.
  • the electrolytic dissolution treatment can be performed continuously with the anodizing treatment, for example, by lowering the electrolytic potential at the end of the anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the conventionally known anodizing treatment described above can be adopted except for the conditions other than the electrolytic potential.
  • the electrolytic removal treatment and the anodizing treatment are continuously performed as described above, it is preferable to perform the treatment using the same electrolytic solution.
  • the electrolytic potential in the electrolytic removal treatment is preferably lowered continuously or stepwise (step-like) to a potential lower than the electrolytic potential in the anodizing treatment.
  • the reduction width (step width) when the electrolytic potential is gradually lowered is preferably 10 V or less, more preferably 5 V or less, and 2 V or less from the viewpoint of the withstand voltage of the barrier layer. It is more preferable to have.
  • the voltage drop rate when the electrolytic potential is continuously or stepwise lowered is preferably 1 V / sec or less, more preferably 0.5 V / sec or less, and 0.2 V / sec, from the viewpoint of productivity and the like. Seconds or less is more preferable.
  • the etching removal treatment is not particularly limited, but may be a chemical etching treatment that dissolves using an acid aqueous solution or an alkaline aqueous solution, or may be a dry etching treatment.
  • the structure after the anodic oxidation treatment step is immersed in an acid aqueous solution or an alkaline aqueous solution, and the pores are filled with the acid aqueous solution or the alkaline aqueous solution, and then the anodic oxide film is removed.
  • the surface on the opening side of the pores is brought into contact with a pH (hydrogen ion index) buffer, and the like, and only the barrier layer can be selectively dissolved.
  • an aqueous acid solution when used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof.
  • concentration of the aqueous acid solution is preferably 1% by mass to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 15 ° C. to 80 ° C., more preferably 20 ° C. to 60 ° C., and further preferably 30 ° C. to 50 ° C.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 ° C. to 60 ° C., more preferably 15 ° C. to 45 ° C., and further preferably 20 ° C. to 35 ° C.
  • the alkaline aqueous solution may contain zinc and other metals. Specifically, for example, 50 g / L, 40 ° C.
  • phosphoric acid aqueous solution 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
  • a buffer solution corresponding to the above-mentioned acid aqueous solution or alkaline aqueous solution can be appropriately used.
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 minutes to 120 minutes, more preferably 10 minutes to 90 minutes, and further preferably 15 minutes to 60 minutes.
  • the plating step is a step of performing metal plating in a supercritical state or a subcritical state after the above-mentioned barrier layer removing step, and filling the inside of a plurality of through holes (pores) of the anodic oxide film with metal M2.
  • a metal layer other than the valve metal is present at the bottom of the pores of the structure, and the valve covers a region of 80% or more of the area of the bottom of the pores.
  • a metal layer other than metal is formed.
  • metal plating may be either electrolytic plating or electroless plating, but electrolytic plating is preferable because it can be processed in a short time.
  • FIG. 12 is a schematic view showing an electrolytic plating apparatus used in the plating step in the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention.
  • the plating apparatus 28 shown in FIG. 12 includes a plating tank 29, an oven 30 surrounding the plating tank 29, a counter electrode 31, a power supply unit 32, and a control unit 33.
  • the above-mentioned structure 17 is arranged in the plating tank 29 so as to face the counter electrode 31. Further, the plating tank 29 is filled with the plating solution AQ, and the structure 17 and the counter electrode 31 are immersed.
  • the structure 17 has a metal member and an anodic oxide film 14 having a plurality of through holes 12 as described above.
  • the power supply unit 32 is electrically connected to the structure 17 and the counter electrode 31, and applies a current to the structure 17. At the time of metal plating, an electric current is applied to the metal layer or the metal member of the structure 17.
  • the control unit 33 is connected to the power supply unit 32 and controls the power supply unit 32.
  • the control unit 33 controls the current value, timing, and period of the current applied by the power supply unit 32.
  • a plurality of current patterns of the applied current are stored in the control unit 33, and a current is applied from the power supply unit 32 to the structure 17 in any of the current patterns.
  • the power supply unit 32 may be provided with the function of the control unit 33, and in this case, the control unit 33 is unnecessary. Further, the current pattern of the applied current is also referred to as a current control pattern.
  • the oven 30 adjusts the temperature of the plating solution AQ in the plating tank 29.
  • the oven 30 is not particularly limited as long as the temperature of the plating solution AQ in the plating tank 29 can be adjusted, and a known heater or the like can be used.
  • the oven 30 maintains the temperature of the plating solution AQ at the temperature required for supercritical or subcritical.
  • the plating apparatus 28 has a supply unit 34, a pump 35, and a valve 36, and a supply pipe 37 is provided on the lid 29a of the plating tank 29.
  • a supply pipe 37 is provided on the lid 29a of the plating tank 29.
  • high-pressure carbon dioxide is supplied into the plating tank 29.
  • the pressure adjusting unit 38 is connected to the plating tank 29 via a discharge pipe 39 provided on the lid 29a of the plating tank 29.
  • the pressure adjusting unit 38 maintains the pressure in the plating tank 29 at a pressure required for supercritical or subcritical.
  • the supply unit 34 stores a substance that makes it supercritical or subcritical. When the substance to be supercritical is carbon dioxide, the supply unit 34 is a carbon dioxide cylinder.
  • the pump 35 pressurizes a substance to be supercritical or subcritical and supplies it into the plating tank 29, and a known pressure pump is used.
  • the valve 36 controls the supply of supercritical or subcritical substances into the plating tank 29.
  • the pressure adjusting unit 38 maintains the pressure in the plating tank 29 as described above, and reduces or releases the pressure in the plating tank 29.
  • a valve is used for the pressure adjusting unit 38.
  • carbon dioxide is used as the supercritical medium.
  • the critical point (point of supercritical state) of carbon dioxide is a temperature of 31.0 ° C. and a pressure of 7.38 MPa, and at a temperature and pressure above this critical point, carbon dioxide is in a supercritical state. Therefore, the temperature inside the plating tank 29 is set to 31.0 ° C. or higher and the pressure is set to 7.38 MPa or higher. At this time, if the supercritical medium is stirred at the same time, plating can be effectively performed. Therefore, it is preferable to provide a stirrer (not shown) for stirring in the plating tank 29. Further, as the sub-supercritical medium, the same one as the above-mentioned supercritical medium can be used.
  • the structure 17 and the counter electrode 31 are arranged to face each other in the plating tank 29 shown in FIG. Then, the inside of the plating tank 29 is filled with the plating solution AQ.
  • the oven 30 sets the temperature of the plating solution AQ in the plating tank 29 to, for example, 40 ° C.
  • carbon dioxide is supplied from the supply unit 34 to the pump 35, pressurized by the pump 35, is supplied into the plating tank 29 via the valve 36, and is supplied into the plating tank 29 via the supply pipe 37, and the pressure in the plating tank 29.
  • the pressure is increased so as to be, for example, 10 MPa. At this time, it is preferable to stir the plating solution AQ.
  • carbon dioxide is in a supercritical state in an environment of a temperature of 31.0 ° C. and a pressure of 7.38 MPa, so that the inside of the plating tank 29 is substantially in a supercritical state, and the plating solution AQ is substantially in a supercritical state. It becomes an emulsion state.
  • the plating process proceeds with the plating solution AQ in an emulsion state, and the metal M2 is filled inside the through holes in the anodized film to form a conductive passage 16.
  • metal plating is performed in a supercritical state using a supercritical medium. Further, the pressure and temperature can be adjusted to bring carbon dioxide into a subcritical state, and metal plating can be performed in a subsupercritical state using a subcritical medium.
  • supercritical media include, for example, oxygen, argon, krypton, xenone, ammonia, methane, ethane, methanol, ethanol, isopropanol, dimethyl ketone, sulfur hexafluoride, carbon monoxide, and dinitrogen monoxide.
  • Forming gas which is a mixed gas of 95% nitrogen and 5% hydrogen, hydrogen and a mixture of two or more of these can be used. Water can also be used. Of these, carbon dioxide is preferable. Water becomes a supercritical medium in an environment where the temperature is 374.2 ° C. or higher and the pressure is 22.1 MPa or higher.
  • Methanol becomes a supercritical medium in an environment where the temperature is 239.4 ° C. or higher and the pressure is 8.1 MPa or higher.
  • Ethanol becomes a supercritical medium in an environment where the temperature is 243 ° C. or higher and the pressure is 6.4 MPa or higher.
  • the supercritical state means a state in which the temperature is equal to or higher than the temperature at the critical point (critical temperature) and the pressure is higher than the pressure at the critical point (critical pressure).
  • the subcritical state is a state in which the temperature is slightly lower than the critical temperature or the pressure is slightly lower than the critical pressure near the critical point.
  • the subcritical medium the same one as the supercritical medium can be used.
  • the subcritical medium is a state in which the temperature is slightly lower or the pressure is slightly lower than that in the critical state, as described above for the subcritical state, as compared with the supercritical medium.
  • Metal M2 described above, it is preferable that the electric resistivity is less material 10 3 ⁇ ⁇ cm, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), Magnesium (Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified. Among them, from the viewpoint of electrical conductivity, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is further preferable.
  • ⁇ Filling method> As a method of plating treatment for filling the inside of the through hole with the metal M2 described above, an electrolytic plating method is used. In the electroless plating method, it takes a long time to completely fill the holes formed by the through holes having a high aspect with the metal. Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
  • the electrolytic plating method when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis.
  • the rest time is required to be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
  • the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential + 1 V.
  • the plating solution contains metal ions, and a conventionally known plating solution is used depending on the metal to be filled.
  • the main component of the solid content is preferably copper sulfate, and for example, a mixed aqueous solution of copper sulfate, sulfuric acid, and hydrochloric acid is used.
  • an aqueous solution of copper sulfate is generally used for precipitating copper, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the plating solution.
  • the hydrochloric acid concentration is preferably 10 to 20 g / L.
  • the main component of the solid content is that the proportion of the electrolytic solution in the solid content is 20% by mass or more.
  • copper sulfate is contained in the solid content of the electrolytic solution in an amount of 20% by mass or more. That is.
  • the plating solution preferably contains a surfactant.
  • Known surfactants can be used.
  • Both ionic (cationic / anionic / bimodal) and nonionic (nonionic) hydrophilic parts can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated.
  • a cation ray activator is desirable.
  • the concentration of the surfactant in the plating solution composition is preferably 1% by mass or less.
  • the pore-wide treatment is a treatment in which the aluminum member is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the diameter of the through hole 12. This makes it easy to control the regularity of the arrangement of the through holes 12 and the variation in diameter. Further, by dissolving the barrier film at the bottom of the plurality of through holes 12 of the anodic oxide film, the inside of the through holes 12 is selectively electrodeposited and the diameter is increased, so that the surface area as an electrode is dramatically increased. It becomes possible to do.
  • an aqueous acid solution When an aqueous acid solution is used for the pore-wide treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 40 ° C.
  • an alkaline aqueous solution When an alkaline aqueous solution is used for the pore-wide treatment, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
  • a phosphoric acid aqueous solution at 50 g / L and 40 ° C. a sodium hydroxide aqueous solution at 0.5 g / L and 30 ° C.
  • a potassium hydroxide aqueous solution at 0.5 g / L and 30 ° C. is preferably used.
  • the immersion time in the acid aqueous solution or the alkali aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and even more preferably 15 to 30 minutes.
  • the substrate removing step is a step of removing the above-mentioned aluminum member after the plating step.
  • the method for removing the aluminum member is not particularly limited, and for example, a method for removing the aluminum member by melting is preferable.
  • a treatment liquid in which the anodized film is difficult to dissolve and aluminum is easily dissolved.
  • a treatment liquid preferably has a dissolution rate in aluminum of 1 ⁇ m / min or more, more preferably 3 ⁇ m / min or more, and further preferably 5 ⁇ m / min or more.
  • the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and further preferably 0.01 nm / min or less.
  • the treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum.
  • a gold compound for example, chloroplatinic acid
  • these fluorides, these chlorides and the like are preferably blended.
  • an acid aqueous solution base is preferable, and a chloride blend is preferable.
  • a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of the treatment liquid that dissolves aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of the treatment liquid that dissolves aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
  • the treatment temperature using the treatment liquid for dissolving aluminum is preferably ⁇ 10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
  • the above-mentioned aluminum member is melted by bringing the aluminum member after the above-mentioned plating step into contact with the above-mentioned treatment liquid.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • the surface metal projecting step means that after the above-mentioned plating step and before the above-mentioned substrate removal step, the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum member is not provided is set in the thickness direction. This is a step of partially removing the metal M2 filled in the plating step and projecting the metal M2 from the surface of the anodized film.
  • the back surface metal projecting step after the above-mentioned substrate removing step, a part of the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum member is provided is removed in the thickness direction and filled by the above-mentioned plating step. This is a step of projecting the above-mentioned metal M2 from the surface of the above-mentioned anodic oxide film.
  • Partial removal of the anodic oxide film in the metal projecting step does not dissolve the above-mentioned metal M1 and metal M2 (particularly metal M2), but for the anodic oxide film, that is, an acid aqueous solution or an alkaline aqueous solution that dissolves aluminum oxide.
  • This can be done by bringing an anodic oxide film having through holes filled with metal into contact with each other.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
  • an aqueous acid solution When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. Above all, an aqueous solution containing no chromic acid is preferable because it is excellent in safety.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 60 ° C.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a phosphoric acid aqueous solution at 50 g / L and 40 ° C., a sodium hydroxide aqueous solution at 0.5 g / L and 30 ° C., or a potassium hydroxide aqueous solution at 0.5 g / L and 30 ° C. is preferably used. ..
  • the immersion time in the acid aqueous solution or the alkali aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes.
  • the immersion time means the total of each immersion time when the immersion treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
  • the above-mentioned front surface metal projecting step and back surface metal projecting are performed because the pressure-bonding property with an object to be adhered such as a wiring substrate is improved when the produced metal-filled microstructure is used as an anisotropic conductive member.
  • at least one step is preferably a step of projecting the above-mentioned metal M2 from the surface of the above-mentioned anodic oxide film by 10 to 1000 nm, and more preferably a step of projecting the above-mentioned metal M2 by 50 to 500 nm.
  • the above-mentioned surface can be sufficiently secured in the surface direction when the protruding portion is crushed.
  • the aspect ratio (height of the projecting portion / diameter of the projecting portion) of the projecting portion formed by at least one step is preferably 0.01 or more and less than 20. It is preferably about 20.
  • the conduction path made of metal formed by the above-mentioned plating step, substrate removal step, and arbitrary metal projecting step is preferably columnar.
  • the diameter of the conduction path is approximately the same as the diameter of the through hole filled with metal.
  • the average diameter of the conduction path is the average diameter of the through holes, preferably 1 ⁇ m or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, and preferably 40 to 200 nm. Even more preferably, it is most preferably 50 to 100 nm.
  • the above-mentioned conduction paths exist in a state of being insulated from each other by an anodic oxide film of an aluminum member, and the density thereof is preferably 20,000 pieces / mm 2 or more, preferably 2 million pieces / mm. more preferably 2 or more, and more preferably, especially preferably at 50 million / mm 2 or more, and most preferably 100 million / mm 2 or more and 10,000,000 / mm 2 or more ..
  • the distance between the centers of the adjacent conduction paths is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
  • the resin layer forming step may be provided as described above for the reason that the transportability of the produced metal-filled microstructure is improved.
  • the resin layer forming step is after the above-mentioned plating step (after the above-mentioned surface metal projecting step if the above-mentioned surface metal projecting step is provided) and before the above-mentioned substrate removing step.
  • This is a step of providing a resin layer on the surface of the anodized film on the side where the above-mentioned aluminum member is not provided.
  • the resin material constituting the above-mentioned resin layer include ethylene-based copolymers, polyamide resins, polyester resins, polyurethane resins, polyolefin-based resins, acrylic resins, and cellulose-based resins.
  • the above-mentioned resin layer is preferably a film with a peelable adhesive layer, and is adhered by heat treatment or ultraviolet exposure treatment. It is more preferable that the film has an adhesive layer, which has a weak property and can be peeled off.
  • the above-mentioned film with an adhesive layer is not particularly limited, and examples thereof include a heat-peeling type resin layer and an ultraviolet (ultraviolet) peeling type resin layer.
  • the heat-peeling type resin layer has adhesive strength at room temperature and can be easily peeled off only by heating, and most of them mainly use effervescent microcapsules or the like.
  • Specific examples of the adhesive constituting the adhesive layer include a rubber adhesive, an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, and a polyamide adhesive. , Urethane-based pressure-sensitive adhesives, styrene-diene block copolymer-based pressure-sensitive adhesives, and the like.
  • the UV peeling type resin layer has a UV curable adhesive layer, and the adhesive strength is lost by curing so that the resin layer can be peeled off.
  • the UV-curable adhesive layer include a polymer in which a carbon-carbon double bond is introduced into the polymer side chain or the main chain or at the end of the main chain as the base polymer.
  • the base polymer having a carbon-carbon double bond it is preferable to use an acrylic polymer as a basic skeleton. Further, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization, if necessary.
  • the base polymer having a carbon-carbon double bond can be used alone, but UV curable monomers or oligomers can also be blended. It is preferable to use a photopolymerization initiator in combination with the UV curable adhesive layer in order to cure it by UV irradiation.
  • Photopolymerization initiators include benzoin ether compounds; ketal compounds; aromatic sulfonyl chloride compounds; photoactive oxime compounds; benzophenone compounds; thioxanson compounds; camphorquinone; halogenated ketones; acylphosphinoxides; acyls. Phosphonate and the like can be mentioned.
  • Examples of commercially available heat-release type resin layers include Intellimar [registered trademark] tapes (manufactured by Nitta Corporation) such as WS5130C02 and WS5130C10; Somatac [registered trademark] TE series (manufactured by SOMAR Corporation); 3198, No. 3198LS, No. 3198M, No. 3198MS, No. 3198H, No. 3195, No. 3196, No. 3195M, No. 3195MS, No. 3195H, No. 3195HS, No. 3195V, No. 3195VS, No. 319Y-4L, No. 319Y-4LS, No. 319Y-4M, No. 319Y-4MS, No. 319Y-4H, No.
  • ELP holders such as ELP DU-300, ELP DU-2385KS, ELP DU-2187G, ELP NBD-3190K, ELP UE-2091J [registered trademark] (Nitto Denko).
  • Adwill D-210, Adwill D-203, Adwill D-202, Adwill D-175, Adwill D-675 all manufactured by Lintec Corporation
  • Dicing tape ELPRF-7232DB, ELPUB-5133D (all manufactured by Nitto Denko Corporation); SP-575B-150, SP-541B Back grind tapes such as -205, SP-537T-160, SP-537T-230 (all manufactured by Furukawa Electric Co., Ltd.) can be used.
  • the method of attaching the above-mentioned film with an adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device and a laminator.
  • a winding step of winding the metal-filled microstructure into a roll shape with the above-mentioned resin layer after the above-mentioned arbitrary resin layer forming step. May have.
  • the winding method in the above-mentioned winding step is not particularly limited, and examples thereof include a method of winding on a winding core having a predetermined diameter and a predetermined width.
  • the average thickness of the metal-filled microstructure excluding the resin layer is preferably 30 ⁇ m or less, and more preferably 5 to 20 ⁇ m. preferable.
  • the average thickness was measured at 10 points by cutting a metal-filled microstructure excluding the resin layer with FIB in the thickness direction and taking a surface photograph (magnification of 50,000 times) of the cross section by FE-SEM. It can be calculated by using an average value or the like.
  • the production method of the present invention includes a polishing step, a surface smoothing step, a protective film forming treatment, and a water washing treatment described in paragraphs [0049] to [0057] of International Publication No. 2015/029881. You may have. Further, from the viewpoint of manufacturing handleability and the use of the metal-filled microstructure as the anisotropic conductive member, various processes and types as shown below can be applied.
  • the metal-filled microstructure is fixed on a silicon wafer using a temporary adhesive (Temporary Bonding Materials) and thinned by polishing. You may be. Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed. Next, a temporary adhesive having a stronger adhesive force than the previous temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the silicon wafer bonded with the previous temporary adhesive is peeled off. Then, the above-mentioned back surface metal projecting step can be performed on the surface of the peeled metal-filled microstructure side.
  • a temporary adhesive Temporary Bonding Materials
  • the metal-filled microstructure After obtaining the metal-filled microstructure by the above-mentioned substrate removing step, the metal-filled microstructure may be fixed on a silicon wafer with wax and thinned by polishing. Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed. Next, a temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the wax is melted by heating to peel off the silicon wafer, and the surface on the side of the peeled metal-filled microstructure is peeled off. On the other hand, the above-mentioned back surface metal projecting step can be performed. Although solid wax may be used, liquid wax such as Skycoat (manufactured by Nikka Seiko Co., Ltd.) can be used to improve the uniformity of coating thickness.
  • Skycoat manufactured by Nikka Seiko Co., Ltd.
  • ⁇ Example of process for removing the substrate later> After fixing the aluminum member to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) using a temporary adhesive, wax, or a functional adsorption film after the above-mentioned plating step and before the above-mentioned substrate removal step. It may have a step of thinning the surface of the above-mentioned anodized film on the side where the above-mentioned aluminum member is not provided by polishing. Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
  • a rigid substrate for example, a silicon wafer, a glass substrate, etc.
  • a temporary adhesive, wax, or a functional adsorption film after the above-mentioned plating step and before the above-mentioned substrate removal step. It may have a step of thinning the surface of the above-mentioned anodized film on the
  • a resin material for example, epoxy resin, polyimide resin, etc.
  • a rigid substrate for example, epoxy resin, polyimide resin, etc.
  • For sticking with a resin material select one whose adhesive strength is greater than the adhesive strength with a temporary adhesive or the like, and after sticking with the resin material, peel off the rigid substrate pasted first, and then peel off the above-mentioned substrate. It can be performed by sequentially performing the removal step, the polishing step, and the back surface metal protrusion treatment step.
  • Q-chuck registered trademark
  • the functional adsorption film Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.) or the like can be used.
  • the metal-filled microstructure is provided as a product in a state of being attached to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) by a peelable layer.
  • a rigid substrate for example, a silicon wafer, a glass substrate, etc.
  • the metal-filled microstructure is used as a joining member, the surface of the metal-filled microstructure is temporarily adhered to the device surface, the rigid substrate is peeled off, and then the device to be connected is attached.
  • the peelable layer a heat peeling layer may be used, or a light peeling layer may be used in combination with a glass substrate.
  • each of the above-mentioned steps can be performed on a single sheet, or can be continuously processed on a web using an aluminum coil as a raw material. Further, in the case of continuous treatment, it is preferable to set an appropriate cleaning step and drying step between each step.
  • a metal-filled microstructure in which a metal is filled inside a through hole derived from a through hole provided in an insulating base material made of an anodic oxide film of an aluminum member can be obtained. ..
  • the above-mentioned production method for example, in the anisotropic conductive member described in Japanese Patent Application Laid-Open No. 2008-270158, that is, in an insulating base material (anodized film of an aluminum member having through holes).
  • FIG. 13 is a plan view showing an example of the metal-filled microstructure according to the embodiment of the present invention
  • FIG. 14 is a schematic cross-sectional view showing an example of the metal-filled microstructure according to the embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line IB-IB of FIG.
  • FIG. 15 is a schematic cross-sectional view showing an example of the configuration of the anisotropic conductive material using the metal-filled microstructure of the embodiment of the present invention.
  • the metal-filled microstructure 20 manufactured as described above has, for example, an insulating base material 40 made of an aluminum anodic oxide film 14 (see FIG. 5) and an insulating base material 40. It is a member provided with a plurality of conduction paths 16 that penetrate the base material 40 in the thickness direction Dt (see FIG. 14) and are provided in a state of being electrically insulated from each other.
  • the metal-filled microstructure 20 further includes a resin layer 44 provided on the front surface 40a and the back surface 40b of the insulating base material 40.
  • the "state of being electrically insulated from each other" means that the conduction paths existing inside the insulating base material have sufficiently low conductivity between the conduction paths inside the insulating base material.
  • the metal-filled microstructure 20 is a member exhibiting anisotropic conductivity.
  • the metal-filled microstructure 20 is arranged so that the thickness direction Dt (see FIG. 14) coincides with the stacking direction Ds of the stacking device 60.
  • the conduction path 16 is provided so as to penetrate the insulating base material 40 in the thickness direction Dt in a state of being electrically insulated from each other.
  • the conduction path 16 may have a protruding portion 16a and a protruding portion 16b protruding from the front surface 40a and the back surface 40b of the insulating base material 40.
  • the metal-filled microstructure 20 may further include a resin layer 44 provided on the front surface 40a and the back surface 40b of the insulating base material 40.
  • the resin layer 44 also has adhesiveness and imparts bondability.
  • the length of the protruding portion 16a and the protruding portion 16b is preferably 6 nm or more, more preferably 30 nm to 500 nm.
  • FIGS. 15 and 14 those having the resin layer 44 on the front surface 40a and the back surface 40b of the insulating base material 40 are shown, but the present invention is not limited to this, and at least the insulating base material 40 is at least.
  • a resin layer 44 may be provided on one surface.
  • the conduction path 16 of FIGS. 15 and 14 has a protruding portion 16a and a protruding portion 16b at both ends, but the present invention is not limited to this, and the surface of the insulating base material 40 on the side having at least the resin layer 44. It may be configured to have a protruding portion.
  • the thickness h of the metal-filled microstructure 20 shown in FIG. 14 is, for example, 30 ⁇ m or less. Further, the metal-filled microstructure 20 preferably has a TTV (Total Thickness Variation) of 10 ⁇ m or less.
  • TTV Total Thickness Variation
  • the thickness h of the metal-filled microstructure 20 is obtained by observing the metal-filled microstructure 20 with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times to obtain the contour shape of the metal-filled microstructure 20. It is an average value measured at 10 points in the region corresponding to the thickness h.
  • the TTV (Total Thickness Variation) of the metal-filled microstructure 20 is a value obtained by cutting the metal-filled microstructure 20 together with the support 46 by dicing and observing the cross-sectional shape of the metal-filled microstructure 20. be.
  • the metal-filled microstructure 20 is provided on the support 46 as shown in FIG. 15 for transfer, transport, transport, storage, and the like.
  • a release layer 47 is provided between the support 46 and the metal-filled microstructure 20.
  • the support 46 and the metal-filled microstructure 20 are separably bonded by a release layer 47.
  • the metal-filled microstructure 20 provided on the support 46 via the release layer 47 is referred to as an anisotropic conductive material 50.
  • the support 46 supports the metal-filled microstructure 20, and is made of, for example, a silicon substrate.
  • the support 46 in addition to the silicon substrate, for example, a ceramic substrate such as SiC, SiC, GaN and alumina (Al 2 O 3 ), a glass substrate, a fiber reinforced plastic substrate, and a metal substrate can be used.
  • the fiber reinforced plastic substrate also includes a FR-4 (Flame Retardant Type 4) substrate, which is a printed wiring board.
  • the support 46 one having flexibility and being transparent can be used.
  • the flexible and transparent support 46 include PET (polyethylene terephthalate), polycycloolefin, polycarbonate, acrylic resin, PEN (polyethylene naphthalate), PE (polyethylene), PP (polypropylene), and the like.
  • plastic films such as polypropylene, polyvinyl chloride, polyvinylidene chloride and TAC (triacetyl cellulose).
  • "transparency” means that the light having a wavelength used for alignment has a transmittance of 80% or more.
  • the transmittance may be low in the entire visible light having a wavelength of 400 to 800 nm, but it is preferable that the transmittance is 80% or more in the entire visible light having a wavelength of 400 to 800 nm.
  • the transmittance is measured by a spectrophotometer.
  • the release layer 47 is preferably a laminate of the support layer 48 and the release agent 49.
  • the release agent 49 is in contact with the metal-filled microstructure 20, and the support 46 and the metal-filled microstructure 20 are separated from each other starting from the release layer 47.
  • the anisotropic conductive material 50 for example, by heating to a predetermined temperature, the adhesive force of the release agent 49 is weakened, and the support 46 is removed from the metal-filled microstructure 20.
  • the release agent 49 for example, Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation, Somatac (registered trademark) manufactured by SOMAR Corporation, or the like can be used.
  • the resin layer 44 may be provided with a protective layer (not shown). Since the protective layer is used to protect the surface of the structure from scratches and the like, an easily peelable tape is preferable.
  • a film with an adhesive layer may be used.
  • SANYTECT registered trademark (manufactured by Sanei Kaken Co., Ltd.) in which an adhesive layer is formed on the surface of a polyethylene resin film, and an adhesive layer is formed on the surface of a polyethylene terephthalate resin film.
  • E-MASK registered trademark
  • Massac registered trademark
  • the method of attaching the film with the adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device and a laminator.
  • the physical characteristics and composition of the insulating base material are as described above.
  • the thickness ht of the insulating base material 40 is preferably in the range of 1 to 1000 ⁇ m, more preferably in the range of 5 to 500 ⁇ m, and further preferably in the range of 10 to 300 ⁇ m. When the thickness of the insulating base material is within this range, the handleability of the insulating base material is improved.
  • the thickness ht of the insulating base material 40 is obtained by cutting the insulating base material 40 with a focused ion beam (FIB) in the thickness direction Dt and cutting a cross section thereof with a field emission scanning electron microscope 20. It is an average value obtained by observing at a magnification of 10,000 times, acquiring the contour shape of the insulating base material 40, and measuring 10 points in a region corresponding to the thickness ht.
  • FIB focused ion beam
  • the distance between the through holes in the insulating base material is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 50 nm to 140 nm. When the distance between the through holes in the insulating base material is within this range, the insulating base material sufficiently functions as an insulating partition wall.
  • the spacing between the through holes is the same as the spacing between the conduction paths.
  • the interval between the through holes that is, the interval between the conduction paths means the width w between the adjacent conduction paths (see FIG. 14), and the cross section of the heteroconductive member is measured by a field emission scanning electron microscope 20. It is the average value measured at 10 points by observing at a magnification of 10,000 times and measuring the width between adjacent conduction paths.
  • the average diameter of the pores that is, the average diameter d of the through holes 12 (see FIG. 14) is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, still more preferably 20 to 400 nm. It is even more preferably 40 to 200 nm, and most preferably 50 to 100 nm.
  • the average diameter d of the through hole 12 is 1 ⁇ m or less and is within the above range, a sufficient response can be obtained when an electric signal is passed through the obtained conduction path 16, so that a connector for inspection of electronic components can be obtained. It can be used more preferably.
  • the average diameter d of the through holes 12 is obtained by photographing the surface of the anodic oxide film 14 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 through holes having an annular shape around them are extracted, the diameters thereof are measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the through holes.
  • magnification the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more through holes can be obtained.
  • the maximum value of the distance between the ends of the through hole portion was measured.
  • the shape of the opening of the through hole is not limited to a substantially circular shape
  • the maximum value of the distance between the ends of the through hole portion is set as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portion is set as the opening diameter. ..
  • the conduction path is made of metal.
  • the metal are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, and copper and gold are more preferable.
  • the conduction path can be provided with sufficient insulation in the surface direction when the protruding portion is crushed.
  • the aspect ratio of the protruding portion is preferably 0.5 or more and less than 50, more preferably 0.8 to 20, and further preferably 1 to 10. preferable.
  • the height of the protruding portion of the conduction path is preferably 20 nm or more, more preferably 100 nm to 500 nm, as described above.
  • the height of the protruding portion of the conduction path is the average obtained by observing the cross section of the metal-filled microstructure with a field emission scanning electron microscope at a magnification of 20,000 times and measuring the height of the protruding portion of the conduction path at 10 points.
  • the diameter of the protruding portion of the conduction path is an average value obtained by observing the cross section of the metal-filled microstructure with a field emission scanning electron microscope and measuring the diameter of the protruding portion of the conduction path at 10 points.
  • the conduction paths 16 exist in a state of being electrically insulated from each other by the insulating base material 40, but the density thereof is preferably 20,000 / mm 2 or more, and 2 million. more preferably / mm 2 or more, still more preferably 10,000,000 / mm 2 or more, particularly preferably at 50 million / mm 2 or more, 100 million / mm 2 or more Most preferred. Further, the distance p between the centers of the adjacent conduction paths 16 (see FIG. 13) is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
  • the resin layer is provided on the front surface and the back surface of the insulating base material, and the protruding portion of the conduction path is embedded as described above. That is, the resin layer covers the end of the conduction path protruding from the insulating base material and protects the protruding portion.
  • the resin layer is formed by the above-mentioned resin layer forming step.
  • the resin layer preferably exhibits fluidity in the temperature range of 50 ° C. to 200 ° C. and cures at 200 ° C. or higher.
  • the resin layer is formed by the above-mentioned resin layer forming step, but the composition of the resin agent shown below can also be used. Hereinafter, the composition of the resin layer will be described.
  • the resin layer contains a polymer material.
  • the resin layer may contain an antioxidant material.
  • the polymer material contained in the resin layer is not particularly limited, but the gap between the semiconductor chip or the semiconductor wafer and the anisotropic conductive member can be efficiently filled, and the adhesion to the semiconductor chip or the semiconductor wafer is further improved.
  • it is preferably a thermosetting resin.
  • the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, polyurethane resin, bismaleimide resin, melamine resin, isocyanate resin and the like. Of these, a polyimide resin and / or an epoxy resin is preferably used because the insulation reliability is further improved and the chemical resistance is excellent.
  • benzotriazole and its derivatives are preferable.
  • the benzotriazole derivative include a hydroxyl group, an alkoxy group (for example, methoxy group, ethoxy group, etc.), an amino group, a nitro group, and an alkyl group (for example, a methyl group, an ethyl group, a butyl group, etc.) on the benzene ring of benzotriazole.
  • Substituted benzotriazole having a halogen atom for example, fluorine, chlorine, bromine, iodine, etc.
  • substituted naphthalene triazole the substituted naphthalene bistriazole and the like which have been substituted in the same manner as naphthalene triazole and naphthalene bistriazole can also be mentioned.
  • antioxidant material contained in the resin layer general antioxidants such as higher fatty acids, higher fatty acid copper, phenol compounds, alkanolamines, hydroquinones, copper chelating agents, organic amines, and organic substances are used. Examples include ammonium salts.
  • the content of the antioxidant material contained in the resin layer is not particularly limited, but from the viewpoint of the anticorrosion effect, 0.0001% by mass or more is preferable, and 0.001% by mass or more is more preferable with respect to the total mass of the resin layer. Further, for the reason of obtaining an appropriate electric resistance in this joining process, 5.0% by mass or less is preferable, and 2.5% by mass or less is more preferable.
  • the resin layer contains a migration prevention material for the reason that the insulation reliability is further improved by trapping the metal ions and halogen ions that can be contained in the resin layer and the metal ions derived from the semiconductor chip and the semiconductor wafer. Is preferable.
  • an ion exchanger for example, an ion exchanger, specifically, a mixture of a cation exchanger and an anion exchanger, or only a cation exchanger can be used.
  • the cation exchanger and the anion exchanger can be appropriately selected from, for example, the inorganic ion exchanger and the organic ion exchanger described later, respectively.
  • inorganic ion exchanger examples include hydrous oxides of metals typified by zirconium hydroxide.
  • zirconium hydroxide As the type of metal, for example, in addition to zirconium, iron, aluminum, tin, titanium, antimony, magnesium, beryllium, indium, chromium, bismuth and the like are known. Of these, the zirconium-based one has the ability to exchange the cations Cu 2+ and Al 3+. In addition, iron-based products also have exchangeability for Ag + and Cu 2+. Similarly, tin-based, titanium-based, and antimony-based ones are cation exchangers. On the other hand, those of bismuth-based, anion Cl - has exchange capacity for.
  • zirconium-based products show anion exchange ability depending on the manufacturing conditions. The same applies to aluminum-based and tin-based ones.
  • inorganic ion exchangers compounds such as acid salts of polyvalent metals typified by zirconium phosphate, heteropolylates typified by ammonium molybdrinate, and insoluble ferrocyanides are known. Some of these inorganic ion exchangers are already on the market, and for example, various grades under the trade name IXE of Toagosei Co., Ltd. are known.
  • natural zeolite or powder of an inorganic ion exchanger such as montmorillonite can also be used.
  • organic ion exchanger examples include crosslinked polystyrene having a sulfonic acid group as a cation exchanger, and those having a carboxylic acid group, a phosphonic acid group or a phosphinic acid group.
  • anion exchanger examples include crosslinked polystyrene having a quaternary ammonium group, a quaternary phosphonium group or a tertiary sulfonium group.
  • inorganic ion exchangers and organic ion exchangers may be appropriately selected in consideration of the types of cations and anions to be captured and the exchange capacity for the ions.
  • the inorganic ion exchanger and the organic ion exchanger may be mixed and used. Since the manufacturing process of the electronic device includes a heating process, an inorganic ion exchanger is preferable.
  • the mixing ratio of the migration prevention material and the above-mentioned polymer material is preferably 10% by mass or less for the migration prevention material and 5% by mass or less for the migration prevention material, for example, from the viewpoint of mechanical strength. It is more preferable, and it is further preferable that the migration prevention material is 2.5% by mass or less. Further, from the viewpoint of suppressing migration when the semiconductor chip or semiconductor wafer is bonded to the anisotropic conductive member, the migration prevention material is preferably 0.01% by mass or more.
  • the resin layer preferably contains an inorganic filler.
  • the inorganic filler is not particularly limited and may be appropriately selected from known ones. For example, kaolin, barium sulfate, barium titanate, silicon oxide powder, finely powdered silicon oxide, vapor phase silica, amorphous silica. , Crystalline silica, molten silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica, aluminum nitride, zirconium oxide, yttrium oxide, silicon carbide, silicon nitride and the like.
  • the average particle size of the inorganic filler is larger than the distance between the conduction paths in order to prevent the inorganic filler from entering between the conduction paths and further improve the conduction reliability.
  • the average particle size of the inorganic filler is preferably 30 nm to 10 ⁇ m, more preferably 80 nm to 1 ⁇ m.
  • the average particle size is the primary particle size measured by a laser diffraction / scattering type particle size measuring device (Microtrac MT3300 manufactured by Nikkiso Co., Ltd.) as the average particle size.
  • the resin layer may contain a curing agent.
  • a curing agent When a curing agent is contained, a solid curing agent is not used at room temperature, but a liquid curing agent at room temperature is contained from the viewpoint of suppressing poor bonding with the surface shape of the semiconductor chip or semiconductor wafer to be connected. Is more preferable.
  • solid at room temperature means a solid at 25 ° C., for example, a substance having a melting point higher than 25 ° C.
  • the curing agent examples include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives such as 4-methylimidazole, dicyandiamide, tetramethylguanidine, thiourea-added amines, and methyl.
  • aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines examples include imidazole derivatives such as 4-methylimidazole, dicyandiamide, tetramethylguanidine, thiourea-added amines, and methyl.
  • carboxylic acid anhydrides such as hexahydrophthalic anhydride, carboxylic acid hydrazide, carboxylic acid amides, polyphenol compounds, novolak resins, and polymercaptans. From these curing agents, liquid ones at 25 ° C.
  • the resin layer may contain various additives such as a dispersant, a buffer, and a viscosity regulator, which are generally added to the resin insulating film of a semiconductor package, as long as the characteristics are not impaired.
  • the thickness of the resin layer is preferably larger than the height of the protruding portion of the conduction path and is preferably 1 ⁇ m to 5 ⁇ m.
  • FIG. 16 is a schematic view showing a first example of a laminated device using the metal-filled microstructure of the embodiment of the present invention
  • FIG. 17 is a laminated device using the metal-filled microstructure of the embodiment of the present invention
  • FIG. 18 is a schematic view showing a second example of the above
  • FIG. 18 is a schematic view showing a third example of a laminated device using the metal-filled microstructure of the embodiment of the present invention
  • FIG. 19 is an embodiment of the present invention. It is a schematic diagram which shows the 4th example of the laminated device which used the metal-filled microstructure of the form.
  • the semiconductor element 62 and the semiconductor element 64 are joined in the stacking direction Ds via the anisotropic conductive member 22 exhibiting anisotropic conductivity, and the semiconductor element 62 and the semiconductor are joined.
  • the element 64 may be electrically connected.
  • the anisotropic conductive member 22 has the same configuration as the metal-filled microstructure 20 described above, has a conduction path 16 (see FIG. 5) conducting in the stacking direction Ds, and fulfills the function of a TSV (Through Silicon Via). ..
  • the anisotropic conductive member 22 can also be used as an interposer.
  • the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are laminated and joined in the lamination direction Ds via the anisotropic conductive member 22.
  • the configuration may be electrically connected.
  • the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are laminated and joined in the lamination direction Ds by using the interposer 23 and the anisotropic conductive member 22. It may be electrically connected.
  • the semiconductor element 72 and the sensor chip 74 are laminated in the lamination direction Ds via the anisotropic conductive member 22. Further, the sensor chip 74 is provided with a lens 76.
  • the semiconductor element 72 has a logic circuit formed therein, and its configuration is not particularly limited as long as it can process the signal obtained by the sensor chip 74.
  • the sensor chip 74 has an optical sensor that detects light. The optical sensor is not particularly limited as long as it can detect light, and for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • the semiconductor element 72 and the sensor chip 74 are connected via the anisotropic conductive member 22, but the present invention is not limited to this, and the semiconductor element 72 and the sensor chip 74 are connected to each other. May be directly joined.
  • the configuration of the lens 76 is not particularly limited as long as it can condense light on the sensor chip 74, and for example, a lens called a microlens is used.
  • the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 described above have an element region (not shown).
  • the element region is an region in which various element constituent circuits such as a capacitor, a resistor, and a coil for functioning as an electronic element are formed.
  • a memory circuit such as a flash memory
  • a transmission circuit or a MEMS may be formed in the element region.
  • MEMS is, for example, a sensor, an actuator, an antenna, or the like.
  • Sensors include, for example, various sensors such as acceleration, sound and light.
  • an element constituent circuit or the like is formed in the element region, and the semiconductor element is provided with, for example, a rewiring layer (not shown).
  • a combination of a semiconductor element having a logic circuit and a semiconductor element having a memory circuit can be used. Further, all the semiconductor elements may have a memory circuit, or all the semiconductor elements may have a logic circuit. Further, the combination of the semiconductor elements in the laminated device 60 may be a combination of a sensor, an actuator, an antenna or the like, a memory circuit and a logic circuit, and is appropriately determined according to the application of the laminated device 60 and the like.
  • semiconductor element 62, semiconductor element 64, and semiconductor element 66 include, for example, logic integration of ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific Standard Product), and the like.
  • the circuit can be mentioned.
  • a microprocessor such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit) can be mentioned.
  • DRAM Dynamic Random Access Memory
  • HMC Hybrid Memory Cube
  • MRAM Magneticoresistive Random Access Memory
  • PCM Phase-Change Memory
  • ReRAM Resistance Random Access Memory
  • FeRAM Feroelectric Random Access Memory
  • Flash memory Flash memory and other memories.
  • analog integrated circuits such as LEDs (Light Emitting Diodes), power devices, DC (Direct Current) -DC (Direct Current) converters, and insulated gate bipolar transistors (IGBTs) can be mentioned.
  • semiconductor elements for example, GPS (Global Positioning System), FM (Frequency Modulation), NFC (Near Field Communication), RFEM (RF Expansion Module), MMIC (Monolithic Microwave Integrated Circuit), WLAN (Wireless Local Area Network).
  • GPS Global Positioning System
  • FM Frequency Modulation
  • NFC Near Field Communication
  • RFEM RF Expansion Module
  • MMIC Monitoring Microwave Integrated Circuit
  • WLAN Wireless Local Area Network
  • Etc. discrete elements, Passive devices, SAW (Surface Acoustic Wave) filters, RF (Radio Frequency) filters, IPDs (Integrated Passive Devices) and the like.
  • the first example of a method for manufacturing a laminated device using a metal-filled microstructure relates to a chip-on-wafer, and shows a method for manufacturing the laminated device 60 shown in FIG. 20 to 22 are schematic views showing a first example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • a semiconductor element 64 in which the anisotropic conductive member 22 is provided on the surface 64a is prepared.
  • the semiconductor element 64 is arranged so that the anisotropic conductive member 22 is directed toward the first semiconductor wafer 80.
  • the alignment mark of the semiconductor element 64 and the alignment mark of the first semiconductor wafer 80 are used to align the semiconductor element 64 with respect to the first semiconductor wafer 80.
  • the configuration is particularly limited as long as digital image data can be obtained for the image or reflection image of the alignment mark of the first semiconductor wafer 80 and the image or reflection image of the alignment mark of the semiconductor element 64.
  • a known imaging device can be used as appropriate.
  • the semiconductor element 64 is placed in the element region of the first semiconductor wafer 80 via the anisotropic conductive member 22, and for example, a predetermined pressure is applied to heat the semiconductor element 64 to a predetermined temperature in advance. It is held for a predetermined time and temporarily joined using the resin layer 44 (see FIG. 14). This is performed for all the semiconductor elements 64, and as shown in FIG. 21, all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80.
  • Using the resin layer 44 for temporary bonding is one of the methods, and the method shown below may also be used.
  • a sealing resin or the like may be supplied onto the first semiconductor wafer 80 by a dispenser or the like to temporarily bond the semiconductor element 64 to the element region of the first semiconductor wafer 80, or the first semiconductor wafer 80 may be temporarily bonded.
  • the semiconductor element 64 may be temporarily bonded to the element region by using an insulating resin film (NCF (Non-conductive Film)) supplied in advance.
  • NCF Non-conductive Film
  • a predetermined pressure is applied to the semiconductor element 64, and the semiconductor element 64 is heated to a predetermined temperature in advance. While holding for a predetermined time, all of the plurality of semiconductor elements 64 are collectively bonded to the element region of the first semiconductor wafer 80.
  • This joint is called a main joint.
  • the terminal (not shown) of the semiconductor element 64 is bonded to the anisotropic conductive member 22, and the terminal (not shown) of the first semiconductor wafer 80 is bonded to the anisotropic conductive member 22.
  • the first semiconductor wafer 80 to which the semiconductor element 64 is bonded via the anisotropic conductive member 22 is separated into individual pieces by dicing, laser scribing, or the like for each element region. As a result, it is possible to obtain a laminated device 60 in which the semiconductor element 62, the anisotropic conductive member 22, and the semiconductor element 64 are bonded.
  • the temperature conditions in the temporary joining process are not particularly limited, but are preferably 0 ° C. to 300 ° C., more preferably 10 ° C. to 200 ° C., and particularly preferably room temperature (23 ° C.) to 100 ° C. preferable.
  • the pressurizing conditions in the temporary joining process are not particularly limited, but are preferably 10 MPa or less, more preferably 5 MPa or less, and particularly preferably 1 MPa or less.
  • the temperature condition in the main bonding is not particularly limited, but it is preferably a temperature higher than the temperature of the temporary bonding, specifically, 150 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C. Is particularly preferable.
  • the pressurizing conditions in this joining are not particularly limited, but are preferably 30 MPa or less, and more preferably 0.1 MPa to 20 MPa.
  • the time of the main joining is not particularly limited, but is preferably 1 second to 60 minutes, and more preferably 5 seconds to 10 minutes.
  • a second example of a method for manufacturing a laminated device using a metal-filled microstructure will be described.
  • 23 to 25 are schematic views showing a second example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • the second example of the method for manufacturing a laminated device using a metal-filled microstructure has three semiconductor elements 62, 64 as compared with the first example of the method for manufacturing a laminated device using a metal-filled microstructure.
  • 66 is the same as the first example of the method for manufacturing a laminated device using a metal-filled microstructure, except that 66 is laminated and joined via an anisotropic conductive member 22.
  • the semiconductor element 64 is provided with an alignment mark (not shown) on the back surface 64b and a terminal (not shown). Further, the semiconductor element 64 is provided with an anisotropic conductive member 22 on the surface 64a. Further, the semiconductor element 66 is also provided with the anisotropic conductive member 22 on the surface 66a.
  • the alignment marks on the back surface 64b of the semiconductor element 64 and the alignment marks are used to align the semiconductor element 66 with respect to the semiconductor element 64.
  • the semiconductor element 66 is temporarily joined to the back surface 64b of the semiconductor element 64 via the anisotropic conductive member 22.
  • all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80 via the anisotropic conductive member 22, and all the semiconductor elements 64 are temporarily bonded to the semiconductor elements via the anisotropic conductive member 22.
  • the main joining is performed under predetermined conditions. As a result, the semiconductor element 64 and the semiconductor element 66 are joined via the anisotropic conductive member 22, and the semiconductor element 64 and the first semiconductor wafer 80 are joined via the anisotropic conductive member 22.
  • the semiconductor element 64, the semiconductor element 66, and the terminals (not shown) of the first semiconductor wafer 80 are joined to the anisotropic conductive member 22.
  • the first semiconductor wafer 80 in which the semiconductor element 64 and the semiconductor element 66 are joined via the anisotropic conductive member 22 is placed in each element region, for example, by dicing or laser scribing. Individualized by. Thereby, the laminated device 60 in which the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are bonded via the anisotropic conductive member 22 can be obtained.
  • a third example of a method for manufacturing a laminated device using a metal-filled microstructure will be described.
  • a third example of a method for manufacturing a laminated device using a metal-filled microstructure relates to a wafer-on-wafer, and shows a method for manufacturing the laminated device 60 shown in FIG. 26 and 27 are schematic views showing a third example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • a third example of a method for manufacturing a laminated device using a metal-filled microstructure is a first semiconductor wafer 80 via an anisotropic conductive member 22 as compared with the first example of a method for manufacturing a laminated device.
  • the first semiconductor wafer 80 and the second semiconductor wafer 82 are prepared.
  • the anisotropic conductive member 22 is provided on either the surface 80a of the first semiconductor wafer 80 or the surface 82a of the second semiconductor wafer 82.
  • the surface 80a of the first semiconductor wafer 80 and the surface 82a of the second semiconductor wafer 82 are opposed to each other.
  • the alignment mark of the first semiconductor wafer 80 and the alignment mark of the second semiconductor wafer 82 are used to align the second semiconductor wafer 82 with respect to the first semiconductor wafer 80.
  • the surface 80a of the first semiconductor wafer 80 and the surface 82a of the second semiconductor wafer 82 are opposed to each other, and the first semiconductor wafer 80 and the second semiconductor wafer 80 and the second semiconductor wafer 80 are used as shown in FIG.
  • the semiconductor wafer 82 is joined via the anisotropic conductive member 22.
  • the main joining may be performed, or only the main joining may be performed.
  • a two-layer structure in which a semiconductor element 62 and a semiconductor element 64 are laminated has been described as an example, but the present invention is not limited to this.
  • three or more layers may be used.
  • the alignment mark (not shown) and the terminal (not shown) are provided on the back surface 82b of the second semiconductor wafer 82. It is possible to obtain a laminated device 60 having more than one layer.
  • the anisotropic conductive member 22 in the laminated device 60 even if the semiconductor element has irregularities, the irregularities are absorbed by using the protruding portion 16a and the protruding portion 16b as a buffer layer. can do. Since the protruding portion 16a and the protruding portion 16b function as a buffer layer, high surface quality can not be required for the surface of the semiconductor element having the element region. Therefore, smoothing treatment such as polishing is not required, production cost can be suppressed, and production time can be shortened.
  • the laminated device 60 can be manufactured using the chip-on-wafer, by joining only the non-defective product of the semiconductor chip to the non-defective product portion in the semiconductor wafer, the profitability can be maintained and the manufacturing loss can be reduced. Can be done. Further, as described above, the resin layer 44 has adhesiveness and can be used as a temporary bonding agent at the time of temporary bonding, and can be collectively main-bonded.
  • the semiconductor element 64 provided with the above-mentioned anisotropic conductive member 22 can be formed by using the anisotropic conductive member 22 and a semiconductor wafer having a plurality of element regions (not shown). As described above, the element region is provided with an alignment mark (not shown) and a terminal (not shown) for alignment. In the anisotropic conductive material 50 (see FIG. 15), the anisotropic conductive member 22 is formed in a pattern that matches the element region.
  • a predetermined pressure is applied, the temperature is heated to a predetermined temperature, and the temperature is held for a predetermined time to join the anisotropic conductive member 22 of the anisotropic conductive material 50 to the element region of the semiconductor wafer. ..
  • the support 46 of the anisotropic conductive material 50 is removed, and only the anisotropic conductive member 22 is bonded to the semiconductor wafer.
  • the anisotropic conductive material 50 is heated to a predetermined temperature to reduce the adhesive force of the release agent 49 of the release layer 47, and the support 46 starts from the release layer 47 of the anisotropic conductive material 50. Get rid of.
  • the semiconductor wafer is fragmented for each element region to obtain a plurality of semiconductor elements 64.
  • the semiconductor element 64 provided with the anisotropic conductive member 22 has been described as an example, the semiconductor element 66 provided with the anisotropic conductive member 22 also has a second semiconductor element 22 provided with the anisotropic conductive member 22. In the same way as the semiconductor element 64 in which the anisotropic conductive member 22 is provided, the anisotropic conductive member 22 can be provided in the semiconductor wafer 82.
  • FIG. 28 is a schematic view showing a fifth example of the laminated device according to the embodiment of the present invention
  • FIG. 29 is a schematic view showing a sixth example of the laminated device according to the embodiment of the present invention
  • FIG. 30 is a schematic view showing the sixth example.
  • FIG. 31 is a schematic view showing a seventh example of a laminated device according to an embodiment of the present invention
  • FIG. 31 is a schematic view showing an eighth example of a laminated device according to an embodiment of the present invention
  • FIG. 32 is a schematic view showing an eighth example of the laminated device according to the embodiment of the present invention. It is a schematic diagram which shows the 9th example of the laminated device of.
  • the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are joined to each other by using an anisotropic conductive member 22, and are electrically connected to each other.
  • a laminated device 83 in a different form is exemplified.
  • the semiconductor element 62 may have an interposer function.
  • a semiconductor element wafer may be used instead of the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66.
  • the semiconductor element 64 and the semiconductor element 66 are bonded to one semiconductor element 62 by using the anisotropic conductive member 22.
  • An example is an electrically connected laminated device 84.
  • the semiconductor element 62 may have an interposer function.
  • the size of the electrodes 88 is not the same, and some of them have different sizes.
  • a semiconductor using an anisotropic conductive member 22 is used for one semiconductor element 62.
  • the element 64 and the semiconductor element 66 are joined and electrically connected.
  • the semiconductor element 86 is joined to the semiconductor element 64 by using the anisotropic conductive member 22, and is electrically connected.
  • the semiconductor element 87 is joined and electrically connected by using the anisotropic conductive member 22 across the semiconductor element 64 and the semiconductor element 66.
  • the semiconductor element 64 and the semiconductor element 66 are joined and electrically connected to one semiconductor element 62 by using the anisotropic conductive member 22.
  • the semiconductor element 86 and the semiconductor element 87 are joined to the semiconductor element 64 by using the heterogeneous conductive member 22, and the semiconductor element 91 is joined to the semiconductor element 66 by using the heterogeneous conductive member 22 and electrically. It can also be a connected configuration.
  • a light emitting element such as a VCSEL (Vertical Cavity Surface Emitting Laser) and a light receiving element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor are laminated on a device surface including an optical waveguide.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • CMOS Complementary Metal Oxide Semiconductor
  • the semiconductor element 64 and the semiconductor element 66 are joined to one semiconductor element 62 by using an anisotropic conductive member 22, and are electrically connected to each other. There is.
  • the semiconductor element 86 and the semiconductor element 87 are joined to the semiconductor element 64 by using the heterogeneous conductive member 22, and the semiconductor element 91 is joined to the semiconductor element 66 by using the heterogeneous conductive member 22 and electrically. It is connected.
  • the semiconductor element 62 is provided with an optical waveguide 81.
  • the semiconductor element 66 is provided with a light emitting element 95, and the semiconductor element 64 is provided with a light receiving element 96.
  • the light Lo output from the light emitting element 95 of the semiconductor element 66 passes through the optical waveguide 81 of the semiconductor element 62 and is emitted as the emitted light Ld to the light receiving element 96 of the semiconductor element 64. This makes it possible to deal with the above-mentioned silicon photonics.
  • the anisotropic conductive member 22 is formed with holes 27 at locations corresponding to the optical paths of the light Lo and the emitted light Ld.
  • TSV Three-dimensional lamination using a laminate.
  • the wiring responsible for the electrical connection in the stacking direction is formed in the device to be stacked, and the wiring responsible for the connection in the stacking direction is TSV (Through Silicon Via).
  • Devices with TSVs are classified into three types, via first, viamidol, and vialast, depending on the stage at which the TSV is formed.
  • the one that forms the TSV before forming the transistor of the device is called via first.
  • What is formed after the formation of the transistor and before the formation of the rewiring layer is called viamidol.
  • What is formed after the rewiring layer is formed is called a via last.
  • TSV formation by either method requires thinning of the silicon substrate in order to perform the penetration process.
  • a method of joining a semiconductor chip or wafer to which TSV is applied will be described together with an example of a usage pattern of the laminate.
  • a typical example of via-first or viamidol is a stacked memory chip called HBM (High Bandwidth Memory) or HMC (Hybrid Memory Cube).
  • HBM High Bandwidth Memory
  • HMC Hybrid Memory Cube
  • the memory area is formed and the TSV area is formed in the same die shape, the base wafer is thinned, the TSV is formed, an electrode called a micro bump is formed on the surface of the via, and the electrodes are laminated and bonded. Is going.
  • An example of a vialast is a step of joining a semiconductor chip or wafer having no metal bump with an insulating adhesive or an insulating oxide, and then forming a TSV.
  • the area of the joint portion can be increased and the resistance per shear stress can be improved. Further, since the heat conduction between the layers is good, the heat is easily diffused to the entire laminated body. These mechanisms further improve connection strength and heat dissipation.
  • Examples of bonding methods applicable to any of ViaFirst, Viamidol, and Vialast include metal diffusion bonding, oxide film direct bonding, metal bump bonding, and eutectic bonding.
  • Metal diffusion bonding or oxide film direct bonding has good bondability under low pressure and low temperature conditions.
  • a high degree of cleanliness for the joint surface for example, a level equivalent to that immediately after surface cleaning by Ar etching is required.
  • the flatness for example, since the arithmetic mean roughness Ra is required to be 1 nm or less, strict atmosphere control and parallelism control are required at the time of joining.
  • different companies, or semiconductor device product groups manufactured in different factories even if the companies are the same may have different types of semiconductor devices or wiring rules, and such semiconductor device product groups are three-dimensional. When stacking, the strictest precision or control is required.
  • metal bump bonding or eutectic bonding has good bondability even when there are some defects or the process is redundant. Further, due to deformation or flow of bumps or solder, the cleanliness or flatness of the device surface when joining dissimilar devices may be lower than that of metal diffusion bonding or oxide film direct bonding. The problems with these bonding methods are that the bonding strength is lower than that of metal diffusion bonding and oxide film direct bonding, and that the already bonded portion may be reheated each time the lamination is repeated, causing device failure. Can be mentioned.
  • the anisotropic conductive member used in the laminate preferably has a resin layer formed on at least one surface, and more preferably formed on both sides. Further, the resin layer 44 of the above-mentioned anisotropic conductive member preferably contains a thermosetting resin.
  • the formed resin layer is used as a temporary bonding layer to suppress misalignment after lamination. Since the temporary joining can be performed at a low temperature and in a short time, the adverse effect on the device can be reduced.
  • the thickness of the above-mentioned resin layer is preferably 100 nm to 1000 nm, and the thermal conductivity of the anisotropic conductive member is 20 to 100 W / (m. K) is preferable, and the coefficient of thermal expansion (CTE) of the anisotropic conductive member is preferably 5 ppm to 10 ppm.
  • the anisotropic conductive member is preferably supplied in a form held by the support via a peelable adhesive layer.
  • the material of the support is not particularly limited, but a material such as silicon or glass is preferable because it is difficult to bend and a certain flatness can be secured.
  • the peelable adhesive layer may be an adhesive layer having low adhesiveness, but an adhesive layer whose adhesiveness is lowered by heating or light irradiation is preferable. Examples of the adhesive layer whose adhesiveness is lowered by heating include Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation or Somatac (registered trademark) manufactured by SOMAR Corporation.
  • Riva Alpha registered trademark
  • Somatac registered trademark
  • As the adhesive layer whose adhesiveness is lowered by light irradiation a material such as that used as a general dicing tape can be used, and a light release layer manufactured by 3M Co., Ltd. is also mentioned as an example.
  • the anisotropic conductive member may have a pattern formed at the stage of being held by the support.
  • pattern formation include, for example, uneven pattern formation, individualization, and prohydrophobic pattern formation, and it is preferable that a prohydrophobic pattern is formed, and that the prohydrophobic pattern is individualized. More preferred. Since the anisotropic conductive member contains a conductive material, it is sufficient that an electrode is formed on the surface of the object to be joined in order to perform the joining, and a special metal bump such as a fine conical gold bump or Connectec Japan Corporation is used. No special technology such as monster pack core technology by the company, Tohoku Microtech Co., Ltd. and Masahiro Aoyagi Research Group of AIST is required.
  • the anisotropic conductive member preferably has protrusions on the surface, and as described above, the protruding portion 16a, that is, the protrusions are conductive. It is more preferable to include protrusions made of wood. Further, since the laminated body having the terminals having the area ratio of the present invention has good heat conduction between the layers, heat is easily diffused to the entire laminated body, so that the heat dissipation property is particularly good.
  • Examples of laminating different semiconductor chips include a COC (Chip on Chip) method, a COW (Chip on Wafer) method, and a WOW (Wafer on Wafer) method.
  • the COC method is a method in which semiconductor chips are laminated on a semiconductor chip fixed on a substrate, and it is possible to laminate semiconductor chips of different sizes, and it is possible to select non-defective semiconductor chips before joining.
  • alignment is required each time, which is expensive.
  • the COW method is a method in which semiconductor chips are laminated on a substrate wafer, and when a large number of semiconductor chips are laminated, alignment is required each time as in the COC method, which is costly.
  • the WOW method is a method of joining wafers to each other, and has advantages such as shortening of joining time and easy alignment. However, since good semiconductor chips cannot be selected, the yield of multilayer laminates tends to decrease. ..
  • the laminated body may include joining by a conventional method.
  • Examples of including bonding by the conventional method include a mode in which a laminate having bonding by an anisotropic conductive member has hybrid bonding between an optical semiconductor and an ASIC (Application Specific Integrated Circuit), and a surface between a memory and an ASIC. Examples include an embodiment having an activated junction. Joining by the conventional method has an advantage that devices manufactured according to different rules can be easily laminated.
  • the first semiconductor chip group is inspected and individualized, and the first non-defective semiconductor chip group is selected.
  • the first non-defective semiconductor chip group is arranged on the first substrate via the first anisotropic conductive member, and temporary bonding is performed. Temporary joining can be performed by a device such as a flip chip bonder.
  • the first substrate is not particularly limited, and examples thereof include a device having a transistor or a substrate having a wiring layer and a through electrode.
  • the group of semiconductor chips to be laminated is not particularly limited, and examples thereof include a mode having a through electrode or a mode in which the back surface of the semiconductor chip having an embedded via is removed.
  • Examples of the method for removing the back surface include back grind, CMP, and chemical etching. In particular, a removal method such as chemical etching with less lateral stress is preferable.
  • the group of non-defective semiconductor chips to be laminated is arranged at a position corresponding to the arrangement of the first group of non-defective semiconductor chips on the first substrate of the second substrate.
  • a second anisotropic conductive member is sandwiched between the first substrate and the second substrate, and the second anisotropic conductive member is sandwiched between the first substrate and the second substrate.
  • the second substrate is peeled off from the group of good semiconductor chips to be laminated and removed.
  • the structure consisting of the first non-defective semiconductor chip group, the second anisotropic conductive member, and the laminated non-defective semiconductor chip group is designated as a new first non-defective semiconductor chip group, and a predetermined hierarchical structure is formed.
  • the stacking of the second anisotropic conductive member and the semiconductor chip group to be laminated is repeated until.
  • the layers are mainly joined by heating and pressurizing all at once to obtain a three-dimensional bonded structure.
  • the obtained three-dimensional bonding structure is sealed by a method such as compression bonding and individualized to obtain a target device.
  • an embodiment in which the semiconductor chip group to be laminated is individualized after being bonded to the first non-defective semiconductor chip group via the second anisotropic conductive member, and the anisotropic conductivity in which a pattern is formed.
  • An embodiment in which the member is used as the first or second anisotropic conductive member, and the anisotropic conductive member in which the pattern is formed are used as an adhesive for arranging the group of semiconductor chips to be laminated on the second substrate. Examples thereof include a mode in which peeling is performed at the interface between the second substrate and the anisotropic conductive member.
  • the first anisotropic conductive member is provided on the surface of the first substrate.
  • a mode in which MOS (Metal Oxide Semiconductor) is present may be used, or a mode in which MOS (Metal Oxide Semiconductor) is not present may be used.
  • the first semiconductor chip group is inspected, individualized, and the first non-defective semiconductor chip group is selected.
  • a second anisotropic conductive member is provided on the surface of the support via a temporary bonding layer whose adhesiveness is reduced by the treatment.
  • the material of the support is not particularly limited, but silicon or glass is preferable.
  • the temporary bonding layer whose adhesiveness is lowered by the treatment a temporary bonding layer whose adhesiveness is lowered by heating or a temporary bonding layer whose adhesiveness is lowered by light irradiation is preferable.
  • the individualizing method is not particularly limited, and examples thereof include a dicing method, a laser irradiation method, a stealth dicing method, a wet etching method, and a dry etching method.
  • the first non-defective semiconductor chip group is arranged on the support via the second anisotropic conductive member, and temporary joining is performed.
  • a self-assembly technique for example, a droplet containing an activator is formed on a mounting region of a substrate, a group of semiconductor chips is placed on the droplet, a device is positioned in the mounting region, and the droplet is dried. Examples thereof include a method in which the element and the mounting substrate are joined via a curable resin layer to wash away the activator. These techniques are disclosed in Japanese Patent Application Laid-Open No. 2005-150385 or Japanese Patent Application Laid-Open No. 2014-57019. Electrodes may be used as alignment marks during self-assembly.
  • the first substrate and the first non-defective semiconductor chip group are temporarily joined via the first anisotropic conductive member.
  • a treatment for lowering the adhesiveness of the temporary bonding layer is performed, and peeling is performed at the interface between the second anisotropic conductive member and the support.
  • the structure consisting of the first substrate, the first anisotropic conductive member, and the first non-defective semiconductor chip group is used as the new first substrate, and the second anisotropic conductive member is used as the new first anisotropic member.
  • the conductive member is formed, and the first non-defective semiconductor chip group and the second anisotropic conductive member are repeatedly laminated until a predetermined hierarchical structure is formed.
  • the layers are mainly joined by performing batch processing under the conditions of higher pressure and higher temperature than the conditions used for the temporary joining to obtain a three-dimensional joining structure. Since the temporary bonding layer remains in the laminated body, it is preferable to use a material for which the curing reaction proceeds under the main bonding conditions as the temporary bonding layer.
  • the obtained three-dimensional bonded structure is sealed by a method such as compression bonding and individualized to obtain the desired laminated device. It should be noted that treatments such as thinning, rewiring, and electrode formation may be performed before the individualization.
  • the temporary bonding and the main bonding can be separated by using the anisotropic conductive member, it is not necessary to perform a high temperature process such as solder reflow a plurality of times, and the risk of device failure can be reduced. Further, as described above, in the embodiment in which the anisotropic conductive member having the resin layer on the surface is used, the influence of the process conditions on the joint portion can be alleviated by the resin layer. Further, in the embodiment using the anisotropic conductive member having protrusions on the surface, joining is possible even when the surface flatness of the object to be joined is low, so that the flattening process can be simplified.
  • FIGS. 33 to 48 are schematic views showing a fourth example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • FIGS. 44 to 46 are schematic views showing the manufacturing method of the laminated body used in the fourth example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of the present invention in the order of steps.
  • 47 and 48 are schematic views showing the manufacturing method of the laminated body used in the fourth example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of the present invention in the order of processes.
  • the fourth example of the method for manufacturing a laminated device using a metal-filled microstructure relates to three-dimensional lamination, and is different from the second example of the method for manufacturing a laminated device using a metal-filled microstructure.
  • a direction conductive member is used. Therefore, a detailed description of the manufacturing method common to the second example of the manufacturing method of the laminated device using the metal-filled microstructure will be omitted.
  • a first laminated substrate 90 provided with an anisotropic conductive member 22 on the entire surface 92a of the semiconductor wafer 92 is prepared.
  • the semiconductor wafer 92 can have, for example, the same configuration as the first semiconductor wafer 80 having a plurality of element regions (not shown).
  • the semiconductor wafer 92 can also be the above-mentioned interposer 23.
  • a second laminated substrate 100 provided with a plurality of semiconductor elements 64 is prepared. In the second laminated substrate 100, the peeling functional layer 104 and the anisotropic conductive member 22 are laminated on the surface 102a of the second substrate 102. A plurality of semiconductor elements 64 are provided on the anisotropic conductive member 22.
  • a hydrophobic film 105 is provided on the anisotropic conductive member 22 in a region where the semiconductor element 64 is not provided.
  • the back surface 64b of the semiconductor element 64 is the surface on the second substrate 102 side, and the surface 64a is the surface on the opposite side.
  • the semiconductor element 64 for example, a non-defective semiconductor element that has been inspected and selected is used.
  • the peeling function layer 104 is composed of, for example, an adhesive layer whose adhesiveness is lowered by heating or light irradiation.
  • the adhesive layer whose adhesiveness is lowered by heating include Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation or Somatac (registered trademark) manufactured by SOMAR Corporation.
  • Riva Alpha registered trademark
  • Somatac registered trademark
  • SOMAR Corporation As the adhesive layer whose adhesiveness is lowered by light irradiation, a material such as that used as a general dicing tape can be used, and a light release layer manufactured by 3M Co., Ltd. is also mentioned as an example.
  • the first laminated base 90 and the second laminated base 100 are temporarily joined.
  • the method of temporary joining is as described above. Further, a device such as a flip chip bonder can be used for temporary joining.
  • the second substrate 102 of the second laminated substrate 100 is removed.
  • the semiconductor element 64 is in a state of being temporarily bonded to the anisotropic conductive member 22 of the semiconductor wafer 92, and the anisotropic conductive member 22 is reprinted on the surface 64a of the semiconductor element 64.
  • the second substrate 102 is removed by, for example, heating or irradiating with light to reduce the adhesiveness of the peeling functional layer 104.
  • another second laminated substrate 100 is temporarily joined to the anisotropic conductive member 22 on the surface 64a side of the semiconductor element 64 by aligning the positions of the semiconductor elements 64 with each other.
  • the back surface 64b of the semiconductor element 64 of another second laminated substrate 100 and the anisotropic conductive member 22 on the front surface 64a side of the semiconductor element 64 temporarily bonded to the semiconductor wafer 92 are temporarily bonded.
  • the method of temporary joining is as described above.
  • the second substrate 102 of another second laminated substrate 100 is removed. The method for removing the second substrate 102 is as described above. As shown in FIG.
  • the semiconductor element 64 is in a state of being temporarily joined to the anisotropic conductive member 22 of the semiconductor element 64 on the side of the semiconductor wafer 92, and the anisotropic conductive member 22 is attached to the surface 64a of the semiconductor element 64. Is reprinted.
  • FIG. 38 shows a configuration in which the semiconductor element 64 is provided in two layers. By repeating the temporary bonding of the second laminated substrate 100 in this way, the number of laminated semiconductor elements 64 can be controlled.
  • the third composite laminate 106 shown in FIG. 39 is prepared.
  • the third composite laminate 106 has a third substrate 108, and a hydrophobic film 109 is formed on the surface 108a thereof in a specific pattern.
  • the semiconductor element 64 is provided on the surface 108a of the third substrate 108, that is, in a region where the hydrophobic film 109 is not provided.
  • the semiconductor element 64 for example, a non-defective semiconductor element that has been inspected and selected is used.
  • a water-repellent material is applied through a mask to form a desired pattern to obtain a specific pattern.
  • water-repellent material a compound such as alkylsilane or fluoroalkylsilane can be used.
  • a material that exhibits a water-repellent effect depending on the shape for example, a phase-separated structure of isotactic polypropylene (i-PP) or the like can be used.
  • the third composite laminate is formed on the anisotropic conductive member 22 on the surface 64a side of the semiconductor element 64.
  • the body 106 is temporarily joined by aligning the positions of the semiconductor elements 64 with each other.
  • the semiconductor element 64 is provided with three layers.
  • the third substrate 108 of the third composite laminate 106 is removed.
  • the method for removing the third substrate 108 is the same as the method for removing the second substrate 102 described above.
  • the semiconductor element 64, the anisotropic conductive member 22, and the semiconductor wafer 92 are main-bonded by performing batch processing under conditions of higher pressure and higher temperature than those used in the temporary bonding, and the three dimensions shown in FIG. 42 are obtained.
  • a bonded structure 94 is obtained.
  • the three-dimensional bonded structure 94 may be subjected to processing such as thinning, rewiring, and electrode formation.
  • the semiconductor wafer 92 of the three-dimensional bonded structure 94 and the anisotropic conductive member 22 are cut into pieces as shown in FIG. 43.
  • the semiconductor wafer 92 of the three-dimensional bonded structure 94 and the anisotropic conductive member 22 are cut into pieces as shown in FIG. 43.
  • the above-mentioned method can be appropriately used.
  • the second laminated substrate 100 shown in FIG. 34 is formed by laminating the peeling functional layer 104 and the anisotropic conductive member 22 on the surface 102a of the second substrate 102.
  • the anisotropic hydrophobic film 105 is formed on the anisotropic conductive member 22 in a specific pattern.
  • the hydrophobic film 105 is formed with a pattern on the anisotropic conductive member 22 by a method such as a lithography method or a self-assembling method.
  • examples of the hydrophilic material forming the hydrophilic pattern include a hydrophilic polymer such as polyvinyl alcohol.
  • the material used for the above-mentioned prohydrophobic membrane 109 can also be used to form the prohydrophobic membrane 105.
  • the hydrophilic film 105 can also form a specific pattern by exposure development using, for example, a resist material containing a fluorine-based compound.
  • the semiconductor element 64 is provided in the region where the hydrophobic film 105 is not provided.
  • the second laminated substrate 100 shown in FIG. 34 is obtained.
  • a method of providing the semiconductor element 64 for example, a droplet containing an activator is formed in a region where the hydrophobic membrane 105 is not provided, the semiconductor element 64 is placed on the droplet, positioned, and the droplet is placed. A method of drying, joining the semiconductor element 64 and the second substrate 102 via a curable resin layer, and washing away the activator is used.
  • the third composite laminate 106 shown in FIG. 39 prepares a third substrate 108.
  • the hydrophobic film 109 is formed on the surface 108a of the third substrate 108 in a specific pattern.
  • the hydrophobic membrane 109 has the same structure as the above-mentioned hydrophobic membrane 105 and can be formed by the same method.
  • the semiconductor element 64 is provided in the region where the hydrophobic film 109 is not provided.
  • a method of providing the semiconductor element 64 for example, a droplet containing an activator is formed in a region where the hydrophobic membrane 109 is not provided, the semiconductor element 64 is placed on the droplet, positioned, and the droplet is placed.
  • a method is used in which the semiconductor element 64 and the third substrate 108 are joined to each other via a curable resin layer after drying, and the activator is washed away. As a result, the third composite laminate 106 shown in FIG. 39 is obtained.
  • FIGS. 49-66 are schematic views showing a fifth example of a method for manufacturing a laminated device using the metal-filled microstructure of the embodiment of the present invention in process order, and FIGS. 62 to 66 are embodiments of the present invention.
  • FIGS. 49 to 66 it is a schematic diagram which shows the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the above in the order of steps.
  • FIGS. 49 to 66 the same components as those of the anisotropic conductive material 50 shown in FIG. 13 and the laminated device 60 shown in FIG. 13 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • an anisotropic conductive material 50 having a support 46 and an anisotropic conductive member 22, and a wafer 112 provided with a rewiring layer 110 are prepared.
  • the rewiring layer 110 has the above-mentioned interposer function. As shown in FIG. 49, the rewiring layer 110 is arranged so as to face the anisotropic conductive member 22, and as shown in FIG. 50, the anisotropic conductive member 22 and the rewiring layer 110 are joined and electrically. Connecting. Next, as shown in FIG. 51, the wafer 112 is separated from the rewiring layer 110.
  • the anisotropic conductive material 50 is arranged on the rewiring layer 110 with the anisotropic conductive member 22 facing each other.
  • the rewiring layer 110 and the anisotropic conductive member 22 are joined as shown in FIG. 53, and one support 46 is separated as shown in FIG. 54.
  • the semiconductor element 62 is arranged so that one of the supports 46 faces the isolated anisotropic conductive member 22.
  • the anisotropic conductive member 22 and the semiconductor element 62 are joined and electrically connected.
  • the remaining support 46 is separated.
  • the semiconductor element 64 is arranged so that the remaining support 46 on the side where the semiconductor element 62 is not provided faces the anisotropic conductive member 22 from which the semiconductor element 62 is separated.
  • the anisotropic conductive member 22 and the semiconductor element 64 are joined and electrically connected.
  • the semiconductor element 62 and the semiconductor element 64 can be laminated without using the TSV.
  • the semiconductor element 64 is arranged in FIG. 58, the present invention is not limited to this, and as shown in FIG. 60, the semiconductor element 64 and the semiconductor element 66 may be arranged with respect to one semiconductor element 62. good.
  • a plurality of semiconductor elements 64 and semiconductor elements 66 are arranged in one semiconductor element 62.
  • the semiconductor element 64 and the semiconductor element 66 can be laminated on the semiconductor element 62 without using the TSV.
  • the rewiring layer 110 is not limited to being used alone, and can be used by being embedded in an organic substrate.
  • the organic substrate 120 is arranged so as to face the rewiring layer 110 with respect to the anisotropic conductive material 50 provided with the rewiring layer 110.
  • the organic substrate 120 functions as, for example, an interposer.
  • the organic substrate 120 is electrically connected to the rewiring layer 110 by using, for example, solder.
  • the rewiring layer 110 may be embedded in the organic substrate 120.
  • the support 46 is separated as shown in FIG. Next, as shown in FIG.
  • the semiconductor element 62 is arranged so as to face the anisotropic conductive member 22.
  • the semiconductor element 62 is joined to the anisotropic conductive member 22 and electrically connected.
  • the semiconductor element has been described as an example, but the present invention is not limited to this, and a semiconductor wafer may be used instead of the semiconductor element. Further, the configuration of the semiconductor element is not particularly limited, and the above-exemplified ones can be appropriately used.
  • temporary bonding means fixing a semiconductor element or a semiconductor wafer on an object to be bonded in a state of being aligned with the object to be bonded.
  • This joining refers to joining objects under predetermined conditions in a temporarily joined state. This joining refers to a state in which the joining state is not permanently released unless a special external force or the like acts on it. By performing this joining collectively as described above, the tact time can be reduced and the productivity can be increased.
  • the joining method is not particularly limited to the above-mentioned method, and DBI (Direct Bond Interconnect) and SAB (Surface Activated Bond) can be used.
  • DBI Direct Bond Interconnect
  • SAB Surface Activated Bond
  • a silicon oxide film is laminated on the anisotropic conductive member and the semiconductor wafer, and chemical mechanical polishing is performed. After that, the silicon oxide film interface is activated by plasma treatment, and the anisotropic conductive member semiconductor wafers are brought into contact with each other to bond the two.
  • each bonding surface of the anisotropic conductive member and the semiconductor wafer is surface-treated and activated in a vacuum.
  • the anisotropic conductive member and the semiconductor wafer are brought into contact with each other in a room temperature environment to join them.
  • ion irradiation of an inert gas such as argon or irradiation with a neutral atom beam is used.
  • the semiconductor wafer and the semiconductor element are inspected so that the good product and the defective product can be identified in advance, and only the good product of the semiconductor element is weird. Manufacturing loss can be reduced by joining to a non-defective portion in the semiconductor wafer via a conductive member.
  • a non-defective semiconductor element whose quality is guaranteed is called KGD (Know Good Die).
  • the present invention is not limited to this.
  • temporary joining may not be possible.
  • the temporary bonding of the semiconductor element may be omitted.
  • the semiconductor elements may be bonded to the element region of the semiconductor wafer one by one. Transport and picking of semiconductor elements and semiconductor wafers, as well as temporary bonding and main bonding, can be realized by using known semiconductor manufacturing equipment.
  • the devices of Toray Engineering Co., Ltd., Shibuya Kogyo Co., Ltd., Shinkawa Co., Ltd., Hyundai Motor Co., Ltd., and the like can be used. Wafers of various companies such as Mitsubishi Heavy Industries Machine Tool, Bond Tech, PMT Co., Ltd., Ayumi Kogyo, Tokyo Electron (TEL), EVG, Sus Microtech Co., Ltd. (SUSS), Musashino Engineering, etc.
  • a joining device can be used.
  • the atmosphere at the time of joining, the heating temperature, the pressing force (load), and the processing time are listed as control factors, but it is necessary to select the conditions suitable for the device such as the semiconductor element to be used. can.
  • the atmosphere at the time of joining can be selected from the atmosphere, an inert atmosphere such as a nitrogen atmosphere, and a vacuum state.
  • the heating temperature can be variously selected from a temperature of 100 ° C. to 400 ° C., and the heating rate can also be selected from 10 ° C./min to 10 ° C./sec according to the performance of the heating stage or the heating method.
  • Regarding the pressure (load) it is possible to select to pressurize rapidly or in steps depending on the characteristics of the resin encapsulant.
  • the atmosphere at the time of joining, the holding time for each of heating and pressurization, and the changing time can be appropriately set.
  • the order can be changed as appropriate. For example, after the vacuum is reached, the first stage is pressurized, and then the temperature is raised by heating, and then the second stage is pressurized to hold it for a certain period of time. It is possible to take steps such as returning to the atmosphere at the stage when it becomes.
  • Such a procedure can be rearranged in various ways, and may be heated in a vacuum state after being pressurized in the atmosphere, or may be evacuated, pressurized, and heated at once. Examples of these combinations are shown in FIGS. 67 to 73.
  • the yield of joining can be improved.
  • the temporary bonding can be changed in the same manner. For example, by creating an inert atmosphere, oxidation of the electrode surface of the semiconductor element can be suppressed. It is also possible to perform bonding while adding ultrasonic waves.
  • 67 to 73 are graphs showing the first example to the seventh example of this joining condition.
  • 67 to 73 show the atmosphere at the time of joining, the heating temperature, the pressing force (load), and the processing time, where the reference numeral V indicates the degree of vacuum, the reference numeral L indicates the load, and the reference numeral T indicates the temperature. ..
  • a high degree of vacuum means a low pressure.
  • the lower the degree of vacuum the closer to atmospheric pressure.
  • the temperature may be increased after the load is applied in a state where the pressure is reduced. Further, as shown in FIGS.
  • the timing of applying the load and the timing of raising the temperature may be matched.
  • the load may be applied after the temperature is raised.
  • the timing of reducing the pressure and the timing of raising the temperature may be matched.
  • the temperature may be raised in steps as shown in FIGS. 67, 68 and 72, or may be heated in two steps as shown in FIG. 73.
  • the load may also be applied in steps as shown in FIGS. 69 and 72.
  • the timing of depressurizing the pressure may be the timing of depressurizing as shown in FIGS. 67, 69, 71, 72 and 73, and then applying the load, and the timing of depressurizing as shown in FIGS. 68 and 70.
  • the timing of applying the load may be matched. In this case, depressurization and joining are performed in parallel.
  • the present invention is basically configured as described above. Although the method for producing the metal-filled microstructure of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.
  • the present invention will be described in more detail with reference to Examples below.
  • the materials, reagents, amounts of substances and their ratios, operations, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
  • the metal-filled microstructures of Examples 1 and 2 and the metal-filled microstructures of Comparative Examples 1 to 3 were produced.
  • the number of micro defects and the nano-defect rate were evaluated for the metal-filled microstructures of Examples 1 and 2 and the metal-filled microstructures of Comparative Examples 1 to 3.
  • the evaluation results of the number of micro defects and the nano defect rate are shown in Table 2 below. Hereinafter, the number of micro defects and the nano defect rate will be described.
  • the evaluation of the number of micro defects will be described. ⁇ Evaluation of the number of micro defects> After polishing one side of the manufactured metal-filled microstructure, the polished surface was observed with an optical microscope to try to find defects. Then, the number of defects was counted, the number of defects per unit area was obtained, and the number of defects was evaluated according to the evaluation criteria shown in Table 1 below. In the evaluation, it is necessary to satisfy both the evaluation criteria of 20 to 50 ⁇ m in diameter and the evaluation criteria of more than 50 ⁇ m in diameter. For example, in the evaluation AA, those having a diameter of 20 to 50 ⁇ m satisfying 0.001 to 0.1 and having a diameter of more than 50 ⁇ m were not detected.
  • the above-mentioned single-sided polishing was carried out as follows.
  • the metal-filled microstructure manufactured on a 4-inch wafer is attached with Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.), and the metal-filled microstructure is subjected to arithmetic average roughness using a polishing device manufactured by MAT.
  • Q-chuck registered trademark
  • JIS Japanese Industrial Standards
  • B0601 Japanese Industrial Standards
  • Abrasive grains containing alumina were used for polishing.
  • Example 1 The metal-filled microstructure of Example 1 will be described.
  • Metal-filled microstructure ⁇ Manufacturing of aluminum members> Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal is treated and filtered, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
  • the surface was scraped to an average thickness of 10 mm by a surface milling machine, and then kept at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate. Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, it was finished by cold rolling to a thickness of 1.0 mm to obtain a JIS (Japanese Industrial Standards) 1050 aluminum member. After forming the aluminum member into a wafer shape having a diameter of 200 mm (8 inches), each of the following treatments was performed.
  • JIS Japanese Industrial Standards
  • the above-mentioned aluminum member was subjected to electrolytic polishing treatment under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow velocity of 3.0 m / min using an electrolytic polishing liquid having the following composition.
  • the cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • the aluminum member after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regularization method according to the procedure described in JP-A-2007-204802.
  • the aluminum member after the electrolytic polishing treatment was subjected to a pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min. ..
  • the pre-anodized aluminum member was subjected to a film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid (liquid temperature: 50 ° C.) for 12 hours.
  • the electrolytic solution of 0.50 mol / L oxalic acid was subjected to reanodizing treatment for 3 hours and 45 minutes under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min, and an anodized film having a film thickness of 30 ⁇ m.
  • An oxide film was obtained.
  • the cathode was a stainless steel electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
  • a NeoCool BD36 manufactured by Yamato Scientific Co., Ltd. was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • the average diameter of the pores, which are through holes existing in the anodic oxide film after the barrier layer removing step was 60 nm.
  • the average diameter was calculated as an average value measured at 50 points by taking a surface photograph (magnification of 50,000 times) with an FE-SEM (Field emission-Scanning Electron Microscope).
  • the average thickness of the anodic oxide film after the barrier layer removing step was 80 ⁇ m.
  • the average thickness was measured at 10 points by cutting the anodized film with FIB (Focused Ion Beam) in the thickness direction and taking a surface photograph (magnification of 50,000 times) of the cross section with FE-SEM. Calculated as an average value.
  • the density of through holes present in the anodic oxide film was about 100 million / mm 2 .
  • the density of the through holes was measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
  • the degree of regularization of the through holes present in the anodic oxide film was 92%.
  • the degree of regularization was calculated by taking a surface photograph (magnification of 20000 times) with an FE-SEM and measuring by the method described in paragraphs [0024] to [0027] of JP-A-2008-270158.
  • a metal layer was formed on the exposed aluminum member using Zn (zinc).
  • Zn zinc
  • an alkaline aqueous solution containing Zn ions was used to form a barrier.
  • a metal layer made of Zn was formed at the bottom of the pores.
  • a metal layer other than the valve metal was formed in the area ratio of the metal layer made of Zn, that is, in the region of the bottom of the pores having an area of 80% or more.
  • the area ratio of the metal layer other than the valve metal is referred to as "area ratio other than the valve metal" in Table 2.
  • the anodized film is cut with FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is surface photographed by FE-SEM (magnification 5). 10 times) was photographed in 10 fields of view, and the area ratio of the Zn layer formed on the surface of the aluminum member with exposed pores in each field of view was measured and calculated as the average value.
  • FIB Fluorine Beam
  • Metal plating process> the aluminum member on which the anodic oxide film was formed was subjected to metal plating in a supercritical state with the aluminum member as the cathode and platinum (Pt) as the positive electrode.
  • the copper plating solution shown below was used for metal plating.
  • carbon dioxide was used to bring the temperature to 35 ° C. and the pressure to 15 MPa to bring the state into a supercritical state.
  • Metal plating was performed in a supercritical state.
  • the electrolytic plating apparatus shown in FIG. 12 described above was used for metal plating.
  • a metal-filled microstructure was prepared by dissolving and removing the aluminum member by immersing it in a 20 mass% mercury chloride aqueous solution (rise) at 20 ° C. for 3 hours.
  • Example 2 In Example 2, as compared with Example 1, the aluminum member (metal part) was removed after forming the anodic oxide film. Then, the diameter of the pores was expanded and the barrier layer was removed. As a result, the anodic oxide film 14 was made into a simple substance (see FIG. 8). The pores were enlarged and the barrier layer was removed by immersing in a phosphoric acid aqueous solution at 50 g / L and 40 ° C. for 15 minutes. Next, an Au (gold) film was formed on the back surface 14b of the anodic oxide film 14 by an electroless plating method, and a metal member 24 (see FIG. 10) was provided on the back surface 14b of the anodic oxide film 14.
  • the metal member covers the entire opening of the pore, and the metal member 24 (see FIG. 10) other than the valve metal is exposed at the bottom of the pore.
  • a region of 100% of the area of the bottom of the pores was composed of a metal member 24 (see FIG. 10) other than the valve metal, and the area ratio other than the valve metal was 100%.
  • the anodic oxide film 14 provided with the metal member 24 was metal-plated under the same conditions as in Example 1 in a supercritical state. After metal plating, the metal member was polished and removed to prepare a metal-filled microstructure.
  • the average diameter of the pores was 60 nm and the degree of regularization of the pores was 92%, as in Example 1.
  • Comparative Example 1 Comparative Example 1 was the same as that of Example 1 except that the plating reaction field was a liquid phase and metal plating was performed at atmospheric pressure in the plating step as compared with Example 1. In Comparative Example 1, metal plating was not performed in a supercritical state.
  • Comparative Example 2 Comparative Example 2 was the same as that of Example 2 except that the plating reaction field was a liquid phase and metal plating was performed at atmospheric pressure in the plating step as compared with Example 2. In Comparative Example 2, metal plating was not performed in a supercritical state.
  • Comparative Example 3 Comparative Example 3 was the same as that of Example 1 except that the area ratio of the metal layer made of Zn was 50% as compared with Example 1. In Comparative Example 3, the area ratio was adjusted by shortening the etching treatment time in the barrier layer removing step described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Provided is a method for manufacturing a metal-filled microstructure in which metal filling defects in a plurality of pores are suppressed when the metal is filled in the plurality of pores. The method for manufacturing a metal-filled microstructure comprises: a step of providing an insulating film having a plurality of pores on the surface of a metal member to obtain a structure having the metal member and the insulating film, and a plating step of performing metal plating on the surface of the structure at least on the side having the insulating film in a supercritical state or a subcritical state and filling the plurality of pores with a metal. At the start of the plating step, a metal layer other than a valve metal is present at the bottom of the pores of the structure, and the metal layer other than the valve metal is formed on a region of 80% or more of the area of the bottom of the pores.

Description

金属充填微細構造体の製造方法Manufacturing method of metal-filled microstructure
 本発明は、複数の細孔を有する酸化膜に対して複数の細孔に金属が充填された金属充填微細構造体の製造方法に関し、特に、超臨界状態又は亜臨界状態で金属めっきを行なって、複数の細孔に金属を充填する金属充填微細構造体の製造方法に関する。 The present invention relates to a method for producing a metal-filled microstructure in which a plurality of pores are filled with a metal for an oxide film having a plurality of pores, and in particular, metal plating is performed in a supercritical state or a subcritical state. The present invention relates to a method for producing a metal-filled microstructure in which a plurality of pores are filled with metal.
 酸化膜等の絶縁性基材の厚み方向に貫通した複数の貫通孔に金属が充填された金属充填微細構造体は、近年ナノテクノロジーでも注目されている分野のひとつである。金属充填微細構造体は、例えば、電池用電極、ガス透過膜、センサー、及び異方導電性部材等の用途が期待されている。
 異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、及び機能検査を行う際の検査用コネクタ等として広く使用されている。
 特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、及びサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができないため、電子接続部材として異方導電性部材が注目されている。
Metal-filled microstructures in which a plurality of through holes penetrating in the thickness direction of an insulating base material such as an oxide film are filled with metal are one of the fields that have been attracting attention in nanotechnology in recent years. Metal-filled microstructures are expected to be used, for example, in battery electrodes, gas permeable membranes, sensors, and anisotropic conductive members.
Since the heterogeneous conductive member can obtain an electrical connection between the electronic component and the circuit board simply by inserting it between the electronic component such as a semiconductor element and the circuit board and pressurizing it, the electronic component such as the semiconductor element can be used. It is widely used as an electrical connection member and an inspection connector for performing functional inspections.
In particular, electronic components such as semiconductor elements are significantly downsized. As a method of directly connecting wiring boards such as conventional wire bonding, flip-chip bonding, thermocompression bonding, etc., it is not possible to sufficiently guarantee the stability of electrical connection of electronic components, so it can be used as an electronic connection member. An anisotropic conductive member is attracting attention.
 上述の金属充填微細構造体の製造方法において、複数の貫通孔への金属充填には、めっき法が用いられる。めっき法としては、電解めっき、又は無電解めっきが用いられる。他にも、例えば、特許文献1に記載されているように、二酸化炭素及び不活性ガスの少なくとも一方、金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させた電気めっき液及び界面活性剤を含み、超臨界状態又は亜臨界状態で誘導共析現象を利用して電気めっきを行う電気めっき方法がある。なお、金属粉末は金属基体、電気めっき処理にて得られる金属被膜の少なくとも一方と同種の金属である。
 また、特許文献2に記載されているように、磁性体を細孔内に充填する際に、磁性体含有粒子を含む超臨界流体又は亜臨界流体を用い、超臨界流体又は亜臨界流体を細孔内に流入させることで磁性体を細孔内に充填する方法もある。
In the method for producing a metal-filled microstructure described above, a plating method is used for metal filling in a plurality of through holes. As the plating method, electrolytic plating or electroless plating is used. In addition, for example, as described in Patent Document 1, an electroplating solution and a surfactant in which at least one of carbon dioxide and an inert gas is added and dispersed in an amount in which the metal powder does not dissolve. There is an electroplating method that contains an activator and performs electroplating in a supercritical state or a subcritical state by utilizing an induced eutectoid phenomenon. The metal powder is a metal of the same type as at least one of the metal substrate and the metal coating obtained by electroplating.
Further, as described in Patent Document 2, when the magnetic material is filled in the pores, a supercritical fluid or a subcritical fluid containing magnetic material-containing particles is used, and the supercritical fluid or the subcritical fluid is made fine. There is also a method of filling the pores with a magnetic material by allowing it to flow into the pores.
特許第4163728号公報Japanese Patent No. 4163728 特開2008-305443号公報Japanese Unexamined Patent Publication No. 2008-305443
 上述の金属充填微細構造体において、全ての細孔に対して、金属が十分に充填されないこと等の充填欠陥が生じる可能性を考慮する必要がある。上述の特許文献1、2では、いずれも超臨界状態又は亜臨界状態を利用しているが、超臨界状態又は亜臨界状態を利用しただけでは、必ずしも全ての細孔に金属を十分に充填できない可能性がある。 In the above-mentioned metal-filled microstructure, it is necessary to consider the possibility of filling defects such as insufficient filling of metal in all pores. In the above-mentioned Patent Documents 1 and 2, the supercritical state or the subcritical state is used, but it is not always possible to sufficiently fill all the pores with the metal only by using the supercritical state or the subcritical state. there is a possibility.
 本発明の目的は、複数の細孔への金属充填に際し、複数の細孔への金属の充填欠陥を抑制した金属充填微細構造体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a metal-filled microstructure in which metal filling defects in a plurality of pores are suppressed when the metal is filled in the plurality of pores.
 上述の目的を達成するために、本発明の第1の態様は、金属部材の表面に複数の細孔を有する絶縁膜を設けて、金属部材と絶縁膜とを有する構造体を得る工程と、構造体に対して、少なくとも絶縁膜を有する側の面に、超臨界状態又は亜臨界状態で金属めっきを行い、複数の細孔に金属を充填するめっき工程とを有し、めっき工程の開始時において、構造体の細孔の底部にバルブ金属以外の金属層が存在しており、細孔の底部のうち面積にして80%以上の領域に対してバルブ金属以外の金属層が形成されている、金属充填微細構造体の製造方法を提供するものである。 In order to achieve the above object, the first aspect of the present invention is a step of providing an insulating film having a plurality of pores on the surface of a metal member to obtain a structure having the metal member and the insulating film. At the start of the plating process, the structure has at least a surface on the side having an insulating film, which is subjected to metal plating in a supercritical state or a subcritical state and a metal is filled in a plurality of pores. In, a metal layer other than the valve metal exists at the bottom of the pores of the structure, and a metal layer other than the valve metal is formed in a region of 80% or more of the area of the bottom of the pores. , Provide a method for manufacturing a metal-filled microstructure.
 構造体を得る工程と、めっき工程との間に、細孔の底部にバルブ金属以外の金属層を形成する工程を有し、めっき工程は、めっき工程の開始時において、細孔の底部のうち面積にして80%以上の領域に対してバルブ金属以外の金属層が形成された状態で実施されることが好ましい。
 金属部材はバルブ金属以外の金属で構成されており、細孔の底部は、金属部材が露出していることが好ましい。
 複数の細孔は、平均径が1μm以下であることが好ましい。
 絶縁膜は、酸化膜であることが好ましい。酸化膜は、アルミニウムの陽極酸化膜であることが好ましい。
 バルブ金属以外の金属層は、アルミニウムよりも貴な金属で構成されることが好ましい。金属部材は、貴金属又はバルブ金属で構成されることが好ましい。
Between the step of obtaining the structure and the step of plating, there is a step of forming a metal layer other than the valve metal at the bottom of the pores, and the plating step is a step of forming a metal layer other than the valve metal at the bottom of the pores at the start of the plating step. It is preferable to carry out the process in a state where a metal layer other than the valve metal is formed in a region of 80% or more in terms of area.
The metal member is made of a metal other than the valve metal, and it is preferable that the metal member is exposed at the bottom of the pores.
The plurality of pores preferably have an average diameter of 1 μm or less.
The insulating film is preferably an oxide film. The oxide film is preferably an anodic oxide film of aluminum.
The metal layer other than the valve metal is preferably composed of a metal nobler than aluminum. The metal member is preferably composed of a noble metal or a valve metal.
 本発明によれば、複数の細孔への金属充填に際し、複数の細孔への金属の充填欠陥を抑制することができる。 According to the present invention, when filling a plurality of pores with metal, it is possible to suppress a defect in filling the plurality of pores with metal.
本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を拡大して示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an enlarged view of one step of the first aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention. 本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd aspect of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を拡大して示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an enlarged view of one step of the second aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention. 本発明の実施形態の金属充填微細構造体の製造方法のうち、めっき工程に用いられる電解めっき装置を示す模式図である。It is a schematic diagram which shows the electrolytic plating apparatus used in the plating process among the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の一例を示す平面図である。It is a top view which shows an example of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the metal-filled microstructure of embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた異方導電材の構成の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the structure of the anisotropic conductive material using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第1の例を示す模式図である。It is a schematic diagram which shows the 1st example of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第2の例を示す模式図である。It is a schematic diagram which shows the 2nd example of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第3の例を示す模式図である。It is a schematic diagram which shows the 3rd example of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第4の例を示す模式図である。It is a schematic diagram which shows the 4th example of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第1の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 1st example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第1の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 1st example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第1の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 1st example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第2の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 2nd example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第2の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 2nd example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第2の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 2nd example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第3の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 3rd example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第3の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 3rd example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の積層デバイスの第5の例を示す模式図である。It is a schematic diagram which shows the 5th example of the laminated device of embodiment of this invention. 本発明の実施形態の積層デバイスの第6の例を示す模式図である。It is a schematic diagram which shows the 6th example of the laminated device of embodiment of this invention. 本発明の実施形態の積層デバイスの第7の例を示す模式図である。It is a schematic diagram which shows the 7th example of the laminated device of embodiment of this invention. 本発明の実施形態の積層デバイスの第8の例を示す模式図である。It is a schematic diagram which shows the 8th example of the laminated device of embodiment of this invention. 本発明の実施形態の積層デバイスの第9の例を示す模式図である。It is a schematic diagram which shows the 9th example of the laminated device of embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法の一工程を示す模式図である。It is a schematic diagram which shows one step of the manufacturing method of the laminated body used in the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法の一工程を示す模式図である。It is a schematic diagram which shows one step of the manufacturing method of the laminated body used in the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法の一工程を示す模式図である。It is a schematic diagram which shows one step of the manufacturing method of the laminated body used in the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法の一工程を示す模式図である。It is a schematic diagram which shows one step of the manufacturing method of the laminated body used in the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法の一工程を示す模式図である。It is a schematic diagram which shows one step of the manufacturing method of the laminated body used in the 4th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 5th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例の一工程を示す模式図である。It is a schematic diagram which shows one step of the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of this invention. 本接合条件の第1の例を示すグラフである。It is a graph which shows the 1st example of this joining condition. 本接合条件の第2の例を示すグラフである。It is a graph which shows the 2nd example of this joining condition. 本接合条件の第3の例を示すグラフである。It is a graph which shows the 3rd example of this joining condition. 本接合条件の第4の例を示すグラフである。It is a graph which shows the 4th example of this joining condition. 本接合条件の第5の例を示すグラフである。It is a graph which shows the 5th example of this joining condition. 本接合条件の第6の例を示すグラフである。It is a graph which shows the sixth example of this joining condition. 本接合条件の第7の例を示すグラフである。It is a graph which shows the 7th example of this joining condition.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の金属充填微細構造体の製造方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 「直交」等の角度、温度、及び圧力について、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 また、「同一」とは、該当する技術分野で一般的に許容される誤差範囲を含む。また、「全面」等は、該当する技術分野で一般的に許容される誤差範囲を含む。
Hereinafter, the method for producing the metal-filled microstructure of the present invention will be described in detail based on the preferred embodiments shown in the attached drawings.
It should be noted that the figures described below are exemplary for explaining the present invention, and the present invention is not limited to the figures shown below.
In the following, "-" indicating the numerical range includes the numerical values described on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and is α ≦ ε ≦ β in mathematical symbols.
Angles, temperatures, and pressures such as "orthogonal" include error ranges generally tolerated in the art, unless otherwise stated.
In addition, “identical” includes an error range generally accepted in the relevant technical field. In addition, "whole surface" and the like include an error range generally allowed in the relevant technical field.
 非常に微細な貫通孔を有するアルミニウムの陽極酸化膜等の絶縁性基材の貫通孔内に金属を充填めっきする要望が多い。しかし、部分的な充填欠陥が発生する。充填欠陥は実験用途であれば問題にならないが、電池用電極、ガス透過膜、及びセンサー等に用いるために、金属充填微細構造体の面積を大きくすると、上述の充填欠陥により、接合不良等の影響が生じる。
 以下、金属充填微細構造体の製造方法について、具体的に説明する。製造される金属充填微細構造体は、絶縁膜で構成される絶縁性基材を有する。絶縁膜は、例えば、酸化膜で構成される。酸化膜は、特に限定されるものではないが、アルミニウムの陽極酸化膜で構成される。酸化膜がアルミニウムの陽極酸化膜で構成されることを例にして説明する。この場合、金属部材は,アルミニウム部材が用いられる。
There is a lot of demand for filling and plating a metal in the through-holes of an insulating base material such as an aluminum anodic oxide film having very fine through-holes. However, partial filling defects occur. Filling defects are not a problem for experimental use, but if the area of the metal-filled microstructure is increased for use in battery electrodes, gas permeable membranes, sensors, etc., the above-mentioned filling defects may cause joint defects, etc. There will be an impact.
Hereinafter, a method for manufacturing a metal-filled microstructure will be specifically described. The metal-filled microstructure to be produced has an insulating base material composed of an insulating film. The insulating film is composed of, for example, an oxide film. The oxide film is not particularly limited, but is composed of an anodic oxide film of aluminum. An example will be described in which the oxide film is composed of an anodic oxide film of aluminum. In this case, an aluminum member is used as the metal member.
 <第1態様>
 図1~図5は、本発明の実施形態の金属充填微細構造体の製造方法の第1態様を工程順に示す模式的断面図である。図6は本発明の実施形態の金属充填微細構造体の製造方法の第1態様の一工程を拡大して示す模式的断面図である。
 まず、金属部材として、例えば、図1に示すアルミニウム部材10を用意する。
 アルミニウム部材10は、最終的に得られる金属充填微細構造体20(図5参照)のアルミニウムの陽極酸化膜14の厚み、すなわち、絶縁性基材の厚み、加工する装置等に応じて大きさ及び厚みが適宜決定されるものである。アルミニウム部材10は、例えば、矩形状の板材である。
<First aspect>
1 to 5 are schematic cross-sectional views showing a first aspect of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention in order of steps. FIG. 6 is a schematic cross-sectional view showing one step of the first aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in an enlarged manner.
First, as the metal member, for example, the aluminum member 10 shown in FIG. 1 is prepared.
The aluminum member 10 has a thickness depending on the thickness of the aluminum anodic oxide film 14 of the finally obtained metal-filled microstructure 20 (see FIG. 5), that is, the thickness of the insulating base material, the processing apparatus, and the like. The thickness is appropriately determined. The aluminum member 10 is, for example, a rectangular plate material.
 次に、アルミニウム部材10の片側の表面10a(図1参照)を陽極酸化処理する。これにより、アルミニウム部材10の片側の表面10a(図1参照)が陽極酸化されて、図2に示すように、アルミニウム部材10の厚み方向Dtに延在する複数の貫通孔12の底部に存在するバリア層13を有する陽極酸化膜14が形成される。上述の陽極酸化する工程を陽極酸化処理工程という。例えば、陽極酸化処理により、金属部材の表面に複数の細孔を有する酸化膜を設けて、金属部材と酸化膜とを有する構造体を得る。すなわち、アルミニウム部材10の片側の表面10aを陽極酸化処理して、アルミニウム部材10の表面10aに、複数の貫通孔12を有するアルミニウムの陽極酸化膜14を設けて、アルミニウム部材10と陽極酸化膜14とを有する構造体17を得る。
 なお、構造体17は、アルミニウム部材10を陽極酸化処理することにより得ることに限定されるものではない。後述のように、酸化膜に金属部材を設ける方法でも構造体17を得ることができる。
Next, the surface 10a (see FIG. 1) on one side of the aluminum member 10 is anodized. As a result, the surface 10a (see FIG. 1) on one side of the aluminum member 10 is anodized and exists at the bottom of the plurality of through holes 12 extending in the thickness direction Dt of the aluminum member 10 as shown in FIG. An anodized film 14 having a barrier layer 13 is formed. The above-mentioned anodizing step is called an anodizing treatment step. For example, by anodizing treatment, an oxide film having a plurality of pores is provided on the surface of the metal member to obtain a structure having the metal member and the oxide film. That is, the surface 10a on one side of the aluminum member 10 is anodized, and the aluminum anodic oxide film 14 having a plurality of through holes 12 is provided on the surface 10a of the aluminum member 10, and the aluminum member 10 and the anodic oxide film 14 are provided. A structure 17 having and is obtained.
The structure 17 is not limited to being obtained by anodizing the aluminum member 10. As will be described later, the structure 17 can also be obtained by providing a metal member on the oxide film.
 複数の貫通孔12を有する陽極酸化膜14には、上述のように貫通孔12の底部にバリア層13が存在するが、図3に示すようにバリア層13を除去する。このバリア層13を除去する工程をバリア層除去工程という。
 バリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いることにより、陽極酸化膜14のバリア層13を除去すると同時に、例えば、構造体17の貫通孔12の底部12cに、バルブ金属以外の金属(金属M1)からなる金属層15aを形成する。これにより、構造体17の貫通孔12の底部12cにバルブ金属以外の金属層15aが露出する。
 具体的には、図6に示すように、構造体17の貫通孔12の底部12cのアルミニウム部材10の表面10aは金属層15aが形成される。この場合、構造体17における貫通孔12の底部12cのうち面積にして80%以上の領域に対してバルブ金属以外の金属層15aで構成される。細孔の底部の領域においてバルブ金属以外の金属層が形成される割合のことを面積率という。構造体17における貫通孔12の底部12cのうち面積にして80%以上の領域に対して金属層15aが形成されていれば、金属層15aの面積率は80%である。
In the anodic oxide film 14 having the plurality of through holes 12, the barrier layer 13 exists at the bottom of the through holes 12 as described above, but the barrier layer 13 is removed as shown in FIG. The step of removing the barrier layer 13 is called a barrier layer removing step.
In the barrier layer removing step, the barrier layer 13 of the anodized film 14 is removed by using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, for example, the bottom of the through hole 12 of the structure 17 is used. A metal layer 15a made of a metal other than the valve metal (metal M1) is formed on the 12c. As a result, the metal layer 15a other than the valve metal is exposed at the bottom 12c of the through hole 12 of the structure 17.
Specifically, as shown in FIG. 6, a metal layer 15a is formed on the surface 10a of the aluminum member 10 at the bottom 12c of the through hole 12 of the structure 17. In this case, a metal layer 15a other than the valve metal is formed on a region of 80% or more of the bottom portion 12c of the through hole 12 in the structure 17. The rate at which a metal layer other than the valve metal is formed in the region at the bottom of the pores is called the area ratio. If the metal layer 15a is formed in a region of 80% or more of the bottom portion 12c of the through hole 12 in the structure 17, the area ratio of the metal layer 15a is 80%.
 なお、貫通孔12の底部12cのうち面積にして80%以上の領域に対して金属層15aが形成されることが好ましく、貫通孔12の底部12cの面12dのうち面積にして95%以上の領域に対して金属層15aが形成されることがより好ましく、貫通孔12の底部12cのうち面積にして100%の領域に対して金属層15aが形成されることが最も好ましい。
 上述のバリア層除去工程は、細孔の底部にバルブ金属以外の金属で構成された金属層を形成する工程を兼ねる。上述の金属層を形成する工程は、構造体を得る工程と、めっき工程との間で実施される工程である。
It is preferable that the metal layer 15a is formed on a region of 80% or more of the bottom portion 12c of the through hole 12, and 95% or more of the area of the surface 12d of the bottom portion 12c of the through hole 12. It is more preferable that the metal layer 15a is formed with respect to the region, and it is most preferable that the metal layer 15a is formed with respect to the region having an area of 100% of the bottom portion 12c of the through hole 12.
The above-mentioned barrier layer removing step also serves as a step of forming a metal layer made of a metal other than the valve metal at the bottom of the pores. The step of forming the metal layer described above is a step carried out between the step of obtaining the structure and the step of plating.
 めっき工程は、めっき工程の開始時において、貫通孔12の底部12cにバルブ金属以外の金属層が存在しており、貫通孔12の底部12cにあるアルミニウム部材10の表面10aのうち面積にして80%以上の領域に対して、金属層15a等を形成する。これにより、貫通孔12への金属めっきによる金属充填の際に、めっきが進行しやすくなり、金属が十分に充填されないことが抑制され、貫通孔12への金属の未充填等が抑制される。
 なお、構造体17におけるアルミニウム部材10の表面10aのうち、金属層15aで覆われる割合は、陽極酸化膜を厚さ方向に対してFIB(Focused Ion Beam)で切削加工し、その断面をFE-SEMにより表面写真(倍率5万倍)を10視野撮影し、各視野における細孔の露出した部材の表面に形成された金属層の面積率を測定し、その平均値として算出した。
 構造体17の貫通孔12の底部12cのうち面積にして80%以上の領域に対してバルブ金属以外の金属層が形成されていれば、構造体17におけるアルミニウム部材10の表面10aのうち面積にして80%以上の領域を、図6に示すように金属層15aで覆う構成とすることに限定されるものではない。
In the plating step, at the start of the plating step, a metal layer other than the valve metal is present at the bottom 12c of the through hole 12, and the area of the surface 10a of the aluminum member 10 at the bottom 12c of the through hole 12 is 80. A metal layer 15a or the like is formed in a region of% or more. As a result, when the through hole 12 is filled with metal by metal plating, the plating is facilitated, it is suppressed that the metal is not sufficiently filled, and the through hole 12 is suppressed from being unfilled with metal.
The proportion of the surface 10a of the aluminum member 10 in the structure 17 covered by the metal layer 15a is such that the anodized film is cut with a FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is formed by FE-. A surface photograph (magnification of 50,000 times) was taken in 10 fields of view by SEM, and the area ratio of the metal layer formed on the surface of the member with exposed pores in each field of view was measured and calculated as the average value.
If a metal layer other than the valve metal is formed in a region of 80% or more of the bottom 12c of the through hole 12 of the structure 17, the area of the surface 10a of the aluminum member 10 in the structure 17 is set. The region is not limited to 80% or more covered with the metal layer 15a as shown in FIG.
 次に、構造体17に対して少なくとも酸化膜を有する側の面、すなわち、陽極酸化膜14を有する側の面に、超臨界状態又は亜臨界状態で金属めっきを行うめっき工程により、図4に示すように、陽極酸化膜14の貫通孔12の内部に金属15bを充填する。貫通孔12の内部に金属15bを充填することにより、導電性を有する導通路16が形成される。この場合、金属(金属M1)からなる金属層15aを、金属めっきの際に電極として用いることができる。貫通孔12の内部に金属15bを充填するめっき工程については後に詳細に説明する。なお、金属層15aと金属15bとをまとめて充填した金属15という。
 めっき工程の後に、図5に示すようにアルミニウム部材10を除去する。これにより、金属充填微細構造体20が得られる。アルミニウム部材10を除去する工程を基板除去工程という。
Next, by a plating step in which metal plating is performed on the surface of the structure 17 having at least the oxide film, that is, the surface having the anodic oxide film 14 in a supercritical state or a subcritical state, as shown in FIG. As shown, the inside of the through hole 12 of the anodic oxide film 14 is filled with the metal 15b. By filling the inside of the through hole 12 with the metal 15b, a conductive passage 16 having conductivity is formed. In this case, the metal layer 15a made of metal (metal M1) can be used as an electrode during metal plating. The plating step of filling the inside of the through hole 12 with the metal 15b will be described in detail later. In addition, it is called metal 15 in which the metal layer 15a and the metal 15b are packed together.
After the plating step, the aluminum member 10 is removed as shown in FIG. As a result, the metal-filled microstructure 20 is obtained. The step of removing the aluminum member 10 is called a substrate removing step.
 めっき工程の前のバリア層除去工程において、金属部材、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いてバリア層を除去することにより、バリア層13を除去するだけでなく、貫通孔12の底部12cに露出したアルミニウム部材10にアルミニウムよりも水素ガスが発生しにくい金属M1の金属層15aが形成される。その結果、金属充填の面内均一性が良好となる。これは、めっき液による水素ガスの発生が抑制され、電解めっきによる金属充填が進行しやすくなったと考えられる。
 詳しいメカニズムは不明だが、バリア層除去工程において、金属M1のイオンを含むアルカリ水溶液を用いることでバリア層下部に金属M1の層が形成され、これによりアルミニウム部材と陽極酸化膜との界面がダメージを受けることを抑制することができ、バリア層の溶解の均一性が向上したためと考えられる。この場合も、構造体17におけるアルミニウム部材10の表面10aのうち面積にして80%以上の領域が金属層15aで覆われている。
In the barrier layer removing step before the plating step, the barrier layer 13 is simply removed by removing the barrier layer using a metal member, for example, an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum. Instead, a metal layer 15a of metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum member 10 exposed at the bottom 12c of the through hole 12. As a result, the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
Although the detailed mechanism is unknown, in the barrier layer removal step, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum member and the anodized film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved. In this case as well, a region of 80% or more of the surface 10a of the aluminum member 10 in the structure 17 is covered with the metal layer 15a.
 なお、バリア層除去工程において、貫通孔12の底部12cに金属(金属M1)からなる金属層15aを形成したが、これに限定されるものではなく、バリア層13だけを除去し、貫通孔12の底にアルミニウム部材10を露出させる。貫通孔12の底の露出させたアルミニウム部材10の表面10aに、蒸着法、めっき法を用いて、被覆材として、例えば、金属層15aを形成する。
 上述の第1態様において、金属突出工程、又は樹脂層形成工程を含んでもよい。金属突出工程、及び樹脂層形成工程については、後に説明する。
In the barrier layer removing step, a metal layer 15a made of a metal (metal M1) was formed on the bottom 12c of the through hole 12, but the present invention is not limited to this, and only the barrier layer 13 is removed to remove the through hole 12 The aluminum member 10 is exposed at the bottom of the. A metal layer 15a is formed as a coating material on the surface 10a of the exposed aluminum member 10 at the bottom of the through hole 12 by using a vapor deposition method or a plating method.
In the first aspect described above, a metal projecting step or a resin layer forming step may be included. The metal projecting step and the resin layer forming step will be described later.
 <第2態様>
 図7~図10は、本発明の実施形態の金属充填微細構造体の製造方法の第2態様を工程順に示す模式的断面図である。図11は本発明の実施形態の金属充填微細構造体の製造方法の第2態様の一工程を拡大して示す模式的断面図である。なお、図7~図11において、図1~図5に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
<Second aspect>
7 to 10 are schematic cross-sectional views showing a second aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps. FIG. 11 is a schematic cross-sectional view showing one step of the second aspect of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in an enlarged manner. In FIGS. 7 to 11, the same components as those shown in FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
 第2態様は、上述の第1態様に比して、金属部材にアルミニウム部材10を用いることなく、金属部材24(図9、図11参照)を用いる点が異なる。
 また、第2態様は、上述の第1態様に比して、以下に示す工程が異なる。第1態様において、図2に示すアルミニウム部材10と陽極酸化膜14とを有する構造体17に対して、第2態様ではアルミニウム部材10を除去し、図7に示す陽極酸化膜14を得る。アルミニウム部材10の除去は、基板除去工程を利用することができるため、詳細な説明は省略する。
The second aspect is different from the first aspect described above in that the metal member 24 (see FIGS. 9 and 11) is used without using the aluminum member 10 as the metal member.
Further, in the second aspect, the steps shown below are different from those in the first aspect described above. In the first aspect, the aluminum member 10 is removed from the structure 17 having the aluminum member 10 and the anodic oxide film 14 shown in FIG. 2 in the second aspect to obtain the anodic oxide film 14 shown in FIG. Since the substrate removing step can be used for removing the aluminum member 10, detailed description thereof will be omitted.
 次に、図7に示す陽極酸化膜14の貫通孔12を拡径し、かつバリア層13を除去して、図8に示すように、陽極酸化膜14に厚み方向Dtに貫通する貫通孔12を複数形成する。
 貫通孔12(細孔)の拡径には、例えば、ポアワイド処理が用いられる。ポアワイド処理は、陽極酸化膜を、酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、貫通孔12(細孔)の孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液、又は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等の水溶液を用いることができる。
Next, the through hole 12 of the anodic oxide film 14 shown in FIG. 7 is enlarged in diameter and the barrier layer 13 is removed, and as shown in FIG. 8, the through hole 12 penetrates the anodic oxide film 14 in the thickness direction Dt. To form a plurality.
For example, a pore wide treatment is used for expanding the diameter of the through hole 12 (pore). The pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore diameter of the through pores 12 (pores). An aqueous solution of an inorganic acid such as phosphoric acid, sulfuric acid or hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide and lithium hydroxide can be used.
 次に、図8に示す陽極酸化膜14の裏面14bの全面に、例えば、図9に示すように、金属部材24を形成する。これにより、金属部材24の表面24aに複数の貫通孔12を有する陽極酸化膜14を設けた、金属部材24と陽極酸化膜14とを有する構造体17を得る。金属部材24を形成する工程を、金属部材形成工程という。
 金属部材形成工程では、金属部材24の形成に、例えば、蒸着法、スパッタ法、又は無電解めっき法等が用いられる。金属部材24は、バルブ金属以外の金属で構成することが好ましく、例えば、Au(金)等の貴金属で構成される。金属部材24は、上述の金属層15aと同じものでもよい。
 ここで、図11に示すように、陽極酸化膜14の裏面14b側に金属部材24が設けられている。金属部材24は、貫通孔12の陽極酸化膜14の裏面14b側の開口を全て覆っている。金属部材24は、例えば、Auで構成されており、金属部材24の表面24aのうち、表面24aの100%がバルブ金属以外の金属で構成される。陽極酸化膜14の裏面14bに金属部材24を設けることにより、構造体17の貫通孔12の底部12cの面12dにバルブ金属以外の金属層が露出する。しかも、貫通孔12の底部12cの面12dの100%をバルブ金属ではないものとすることができる。これにより、貫通孔12へ金属めっきによる金属充填の際に、めっきが進行しやすくなり、金属が十分に充填されないことが抑制され、貫通孔12への金属の未充填等が抑制される。
Next, a metal member 24 is formed on the entire surface of the back surface 14b of the anodic oxide film 14 shown in FIG. 8, for example, as shown in FIG. As a result, a structure 17 having the metal member 24 and the anodic oxide film 14 is obtained by providing the anodic oxide film 14 having a plurality of through holes 12 on the surface 24a of the metal member 24. The step of forming the metal member 24 is called a metal member forming step.
In the metal member forming step, for example, a thin-film deposition method, a sputtering method, an electroless plating method, or the like is used for forming the metal member 24. The metal member 24 is preferably made of a metal other than the valve metal, and is made of a noble metal such as Au (gold), for example. The metal member 24 may be the same as the metal layer 15a described above.
Here, as shown in FIG. 11, the metal member 24 is provided on the back surface 14b side of the anodic oxide film 14. The metal member 24 covers all the openings on the back surface 14b side of the anodic oxide film 14 of the through hole 12. The metal member 24 is made of, for example, Au, and 100% of the surface 24a of the surface 24a of the metal member 24 is made of a metal other than the valve metal. By providing the metal member 24 on the back surface 14b of the anodic oxide film 14, a metal layer other than the valve metal is exposed on the surface 12d of the bottom portion 12c of the through hole 12 of the structure 17. Moreover, 100% of the surface 12d of the bottom 12c of the through hole 12 can be made of non-valve metal. As a result, when the through hole 12 is filled with metal by metal plating, the plating is facilitated, it is suppressed that the metal is not sufficiently filled, and the through hole 12 is suppressed from being unfilled with metal.
 次に、図10に示すように、陽極酸化膜14に金属部材24が形成された状態で、陽極酸化膜14の貫通孔12の内部に、第1態様と同じく、超臨界状態又は亜臨界状態で金属めっきを行うめっき工程により、複数の貫通孔12に金属15bを充填し、導通路16を形成する。
 次に、金属部材24を除去して、図5に示す金属充填微細構造体20を得る。金属部材24を除去する方法は、金属部材24を除去することができれば、特に限定されるものではなく、エッチング、又は研磨が挙げられる。
Next, as shown in FIG. 10, in a state where the metal member 24 is formed on the anodic oxide film 14, a supercritical state or a subcritical state is formed inside the through hole 12 of the anodic oxide film 14 as in the first aspect. By the plating step of performing metal plating in the above, the plurality of through holes 12 are filled with the metal 15b to form the conduction path 16.
Next, the metal member 24 is removed to obtain the metal-filled microstructure 20 shown in FIG. The method for removing the metal member 24 is not particularly limited as long as the metal member 24 can be removed, and examples thereof include etching and polishing.
 <他の態様>
 製造方法としては、例えば、上述の陽極酸化処理工程、保持工程、バリア層除去工程、めっき工程、表面金属突出工程、樹脂層形成工程、基板除去工程及び裏面金属突出工程を組み合わせて実施してもよい。
 また、所望の形状のマスク層を用いてアルミニウム部材の表面の一部に陽極酸化処理を施してもよい。
 以上の金属充填微細構造体の製造方法では、複数の貫通孔12(細孔)への部分的な充填欠陥の発生を抑制することができ、貫通孔12に対する充填欠陥が少ない金属充填微細構造体を得ることがきる。このため、金属充填微細構造体を用いて異方導電性部材を製造した場合、導通路の設置密度を飛躍的に向上させ、高集積化が一層進んだ現在においても半導体素子等の電子部品の電気的接続部材、又は検査用コネクタ等として使用することができる。
<Other aspects>
As a manufacturing method, for example, the above-mentioned anodic oxidation treatment step, holding step, barrier layer removing step, plating step, surface metal projecting step, resin layer forming step, substrate removing step, and back surface metal projecting step may be combined. good.
Further, a part of the surface of the aluminum member may be anodized by using a mask layer having a desired shape.
In the above method for manufacturing a metal-filled microstructure, the occurrence of partial filling defects in a plurality of through holes 12 (pores) can be suppressed, and the metal-filled microstructure with few filling defects in the through holes 12 can be suppressed. Can be obtained. For this reason, when an anisotropic conductive member is manufactured using a metal-filled microstructure, the installation density of the conduction path is dramatically improved, and even now that the integration is further advanced, electronic components such as semiconductor elements are used. It can be used as an electrical connection member, an inspection connector, or the like.
 〔絶縁性基材〕
 絶縁性基材は、無機材料からなり、従来公知の異方導電性フィルム等を構成する絶縁性基材と同程度の電気抵抗率(1014Ω・cm程度)を有するものであれば特に限定されない。
 なお、「無機材料からなり」とは、後述する樹脂層を構成する高分子材料と区別するための規定であり、無機材料のみから構成された絶縁性基材に限定する規定ではなく、無機材料を主成分(50質量%以上)とする規定である。
[Insulating base material]
The insulating base material is particularly limited as long as it is made of an inorganic material and has the same electrical resistivity (about 10 14 Ω · cm) as the insulating base material constituting a conventionally known anisotropic conductive film or the like. Not done.
It should be noted that "consisting of an inorganic material" is a regulation for distinguishing from a polymer material constituting a resin layer, which will be described later, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material. Is the main component (50% by mass or more).
 絶縁性基材は、上述のように酸化膜で構成される。酸化膜としては、所望の平均径を有する貫通孔が形成され、後述する導通路を形成しやすいという理由から、バルブ金属の陽極酸化膜であることがより好ましい。例えば、酸化膜は、上述のように、アルミニウムの陽極酸化膜である。このため、金属部材は、バルブ金属であることが好ましい。
 ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化膜であることが好ましい。このため、アルミニウム部材を用いて、金属充填微細構造体を製造することが好ましい。
The insulating base material is composed of an oxide film as described above. The oxide film is more preferably an anodic oxide film of a valve metal because through holes having a desired average diameter are formed and it is easy to form a conduction path described later. For example, the oxide film is an aluminum anodic oxide film as described above. Therefore, the metal member is preferably valve metal.
Here, specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Of these, an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture a metal-filled microstructure using an aluminum member.
 〔金属部材〕
 金属部材は、金属充填微細構造体の製造に用いられるものであり、上述のように、陽極酸化膜が形成できるものであることが好ましく、上述のバルブ金属で構成されることが好ましい。上述のように金属部材としてアルミニウム部材が用いられる。
 また、金属部材としては、第2態様のように、陽極酸化膜に金属部材を設ける場合、バルブ金属以外に、例えば、貴金属を用いることもできる。貴金属は、例えば、Au(金)、Ag(銀)及び白金族(Ru,Rh,Pd,Os,Ir,Pt)等である。
[Metal member]
The metal member is used for manufacturing a metal-filled microstructure, preferably one capable of forming an anodic oxide film as described above, and preferably composed of the above-mentioned valve metal. As described above, an aluminum member is used as the metal member.
Further, as the metal member, when the metal member is provided on the anodic oxide film as in the second aspect, for example, a noble metal can be used in addition to the valve metal. Noble metals include, for example, Au (gold), Ag (silver) and platinum group (Ru, Rh, Pd, Os, Ir, Pt) and the like.
 <アルミニウム部材>
 アルミニウム部材は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
<Aluminum member>
The aluminum member is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material). A substrate; a substrate obtained by coating the surface of a silicon wafer, quartz, glass or the like with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate laminated with aluminum; and the like.
 アルミニウム部材のうち、陽極酸化処理工程により陽極酸化膜を設ける表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。アルミニウム純度が上述の範囲であると、貫通孔配列の規則性が十分となる。 Among the aluminum members, the surface on which the anodic oxide film is provided by the anodizing treatment step preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. It is more preferably mass% or more. When the aluminum purity is in the above range, the regularity of the through-hole arrangement becomes sufficient.
 また、アルミニウム部材のうち陽極酸化処理工程を施す片側の表面は、予め熱処理、脱脂処理及び鏡面仕上げ処理が施されることが好ましい。
 ここで、熱処理、脱脂処理及び鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。
Further, it is preferable that the surface of one side of the aluminum member to be anodized is subjected to heat treatment, degreasing treatment and mirror finish treatment in advance.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be performed.
 〔陽極酸化処理工程〕
 陽極酸化工程は、上述のアルミニウム部材の片面に陽極酸化処理を施すことにより、上述のアルミニウム部材の片面に、厚み方向に貫通する貫通孔と貫通孔の底部に存在するバリア層とを有する陽極酸化膜を形成する工程である。
 陽極酸化処理は、従来公知の方法を用いることができるが、貫通孔配列の規則性を高くし、金属充填微細構造体の異方導電性を担保する観点から、自己規則化法又は定電圧処理を用いることが好ましい。
 ここで、陽極酸化処理の自己規則化法及び定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落及び[図3]に記載された各処理と同様の処理を施すことができる。
[Anodizing process]
In the anodizing step, one side of the above-mentioned aluminum member is anodized, so that one side of the above-mentioned aluminum member has a through hole penetrating in the thickness direction and a barrier layer existing at the bottom of the through hole. This is the process of forming a film.
For the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the through-hole arrangement and ensuring the anisotropic conductivity of the metal-filled microstructure, a self-regulating method or a constant voltage treatment can be used. Is preferably used.
Here, regarding the self-regularization method and the constant voltage treatment of the anodizing treatment, the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
 <陽極酸化処理>
 陽極酸化処理における電解液の平均流速は、0.5~20.0m/minであることが好ましく、1.0~15.0m/minであることがより好ましく、2.0~10.0m/minであることが更に好ましい。
 また、電解液を上述の条件で流動させる方法は、特に限定されないが、例えば、スターラーのような一般的なかくはん装置を使用する方法が用いられる。特に、かくはん速度をデジタル表示でコントロールできるようなスターラーを用いると、平均流速が制御できるため好ましい。このようなかくはん装置としては、例えば、「マグネティックスターラーHS-50D(AS ONE製)」等が挙げられる。
<Anodizing treatment>
The average flow rate of the electrolytic solution in the anodizing treatment is preferably 0.5 to 20.0 m / min, more preferably 1.0 to 15.0 m / min, and 2.0 to 10.0 m / min. It is more preferably min.
The method for flowing the electrolytic solution under the above conditions is not particularly limited, but for example, a method using a general stirring device such as a stirrer is used. In particular, it is preferable to use a stirrer whose stirring speed can be controlled by a digital display because the average flow velocity can be controlled. Examples of such a stirrer include "Magnetic stirrer HS-50D (manufactured by AS ONE)" and the like.
 陽極酸化処理は、例えば、酸濃度1~10質量%の溶液中で、アルミニウム部材を陽極として通電する方法を用いることができる。
 陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が特に好ましい。これらの酸は単独で又は2種以上を組み合わせて用いることができる。
For the anodizing treatment, for example, a method of energizing an aluminum member as an anode in a solution having an acid concentration of 1 to 10% by mass can be used.
The solution used for the anodic oxidation treatment is preferably an acid solution, and sulfuric acid, phosphoric acid, chromic acid, oxalic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartrate acid, phosphoric acid, citric acid and the like are more preferable. Of these, sulfuric acid, phosphoric acid and oxalic acid are particularly preferable. These acids can be used alone or in combination of two or more.
 陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には、電解液濃度0.1~20質量%、液温-10~30℃、電流密度0.01~20A/dm2、電圧3~300V、電解時間0.5~30時間であることが好ましく、電解液濃度0.5~15質量%、液温-5~25℃、電流密度0.05~15A/dm2、電圧5~250V、電解時間1~25時間であることがより好ましく、電解液濃度1~10質量%、液温0~20℃、電流密度0.1~10A/dm2、電圧10~200V、電解時間2~20時間であることが更に好ましい。 The conditions of the anodic oxidation treatment cannot be unconditionally determined because they vary depending on the electrolytic solution used, but in general, the electrolytic solution concentration is 0.1 to 20% by mass, the liquid temperature is -10 to 30 ° C, and the current. The density is preferably 0.01 to 20 A / dm 2 , the voltage is 3 to 300 V, the electrolysis time is preferably 0.5 to 30 hours, the electrolyte concentration is 0.5 to 15 mass%, the liquid temperature is -5 to 25 ° C, and the current density. More preferably, the concentration is 0.05 to 15 A / dm 2 , the voltage is 5 to 250 V, and the electrolysis time is 1 to 25 hours. It is more preferable that / dm 2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours.
 上述の陽極酸化処理工程は、金属充填微細構造体20を、巻き芯に巻き取られた形状で供給する観点から、陽極酸化処理により形成される陽極酸化膜の平均厚みが30μm以下であることが好ましく、5~20μmであることがより好ましい。なお、平均厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出した。 In the above-mentioned anodizing treatment step, the average thickness of the anodizing film formed by the anodizing treatment is 30 μm or less from the viewpoint of supplying the metal-filled microstructure 20 in a form wound around the winding core. It is preferably 5 to 20 μm, more preferably 5 to 20 μm. The average thickness is obtained by cutting the anodized film in the thickness direction with a focused ion beam (FIB) and cutting the cross section with a field emission scanning electron microscope (FE-SEM). ) Was taken, and a surface photograph (magnification of 50,000 times) was taken and calculated as an average value measured at 10 points.
 〔保持工程〕
 金属充填微細構造体の製造方法は保持工程を有してもよい。保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧に通算5分以上保持する工程である。言い換えると、保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧で通算5分以上電解処理を施す工程である。保持工程により、めっき処理時の金属充填の均一性が大きく良化する。
 ここで、「陽極酸化処理における電圧」とは、アルミニウムと対極間に印加する電圧であり、例えば、陽極酸化処理による電解時間が30分であれば、30分の間に保たれている電圧の平均値のことである。
[Holding process]
The method for producing a metal-filled microstructure may include a holding step. The holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more. This is the process of holding. In other words, the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step. This is a step of performing electrolytic treatment for 5 minutes or more. The holding process greatly improves the uniformity of metal filling during the plating process.
Here, the "voltage in the anodizing treatment" is a voltage applied between the aluminum and the counter electrode. For example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. It is the average value.
 陽極酸化膜の側壁厚み、すなわち、貫通孔の深さに対してバリア層の厚みを適切な厚みに制御する観点から、保持工程における電圧が、陽極酸化処理における電圧の5%以上25%以下であることが好ましく、5%以上20%以下であることがより好ましい。 From the viewpoint of controlling the thickness of the side wall of the anodized film, that is, the thickness of the barrier layer to an appropriate thickness with respect to the depth of the through hole, the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably 5% or more and 20% or less.
 また、面内均一性がより向上する理由から、保持工程における保持時間の合計が、5分以上20分以下であることが好ましく、5分以上15分以下であることがより好ましく、5分以上10分以下であることが更に好ましい。
 また、保持工程における保持時間は、通算5分以上であればよいが、連続5分以上であることが好ましい。
Further, for the reason that the in-plane uniformity is further improved, the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
The holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
 更に、保持工程における電圧は、陽極酸化処理工程における電圧から保持工程における電圧まで連続的又は段階的(ステップ状)に降下させて設定してもよいが、面内均一性が更に向上する理由から、陽極酸化処理工程の終了後、1秒以内に、上述の保持電圧の95%以上105%以下の電圧に設定することが好ましい。 Further, the voltage in the holding step may be set by continuously or stepwise (step-like) dropping from the voltage in the anodizing process to the voltage in the holding step, but for the reason that the in-plane uniformity is further improved. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the anodizing treatment step.
 上述の保持工程は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理工程と連続して行うこともできる。
 上述の保持工程は、電解電位以外の条件については、上述の従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、保持工程と陽極酸化処理工程とを連続して施す場合は、同様の電解液を用いて処理することが好ましい。
The above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step by, for example, lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
In the above-mentioned holding step, the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted except for the conditions other than the electrolytic potential.
In particular, when the holding step and the anodizing treatment step are continuously performed, it is preferable to carry out the treatment using the same electrolytic solution.
 〔バリア層除去工程〕
 バリア層除去工程は、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去する工程である。
 上述のバリア層除去工程により、バリア層が除去され、かつ、図3にも示す通り、貫通孔12の底部12cに、金属M1からなる金属層15aが形成されることになる。
 ここで、水素過電圧(hydrogen overvoltage)とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例及びその水素過電圧の値を以下に示す。
 <金属M1及び水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
[Barrier layer removal process]
The barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
By the barrier layer removing step described above, the barrier layer is removed, and as shown in FIG. 3, a metal layer 15a made of metal M1 is formed at the bottom 12c of the through hole 12.
Here, the hydrogen overvoltage means a voltage required for hydrogen to be generated. For example, the hydrogen overvoltage of aluminum (Al) is −1.66 V (Journal of the Chemical Society of Japan, 1982, (8)). , P1305-1313). An example of the metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
<Metal M1 and hydrogen (1NH 2 SO 4 ) overvoltage>
-Platinum (Pt): 0.00V
-Gold (Au): 0.02V
-Silver (Ag): 0.08V
-Nickel (Ni): 0.21V
-Copper (Cu): 0.23V
-Tin (Sn): 0.53V
-Zinc (Zn): 0.70V
 後述する陽極酸化処理工程において充填する金属M2と置換反応を起こし、貫通孔の内部に充填される金属の電気的な特性に与える影響が少なくなる理由から、上述のバリア層除去工程で用いる金属M1は、めっき工程で用いる金属M2よりもイオン化傾向が高い金属であることが好ましい。
 具体的には、めっき工程の金属M2として銅(Cu)を用いる場合には、上述のバリア層除去工程で用いる金属M1としては、バルブ金属以外の金属が用いられ、バルブ金属以外の金属は、アルミニウムよりも貴な金属であることが好ましい。
 なお、アルミニウムよりも貴な金属とは、アルミニウムよりもイオン化しにくい金属のことである。アルミニウムよりも貴な金属は、例えば、Zn、Cr、Fe、Co、Ni、Sn、Pb、Cu、Ag、Auである。
 上述の金属M1としては、例えば、Zn、Fe、Ni、Sn等が挙げられ、中でも、Zn、Niを用いることが好ましく、Znを用いるのがより好ましい。
 また、めっき工程の金属M2としてNiを用いる場合には、上述のバリア層除去工程で用いる金属M1としては、例えば、Zn、Fe等が挙げられ、中でも、Znを用いることが好ましい。
The metal M1 used in the barrier layer removing step described above is used because it causes a substitution reaction with the metal M2 to be filled in the anodization treatment step described later and has less influence on the electrical characteristics of the metal filled inside the through hole. Is preferably a metal having a higher ionization tendency than the metal M2 used in the plating step.
Specifically, when copper (Cu) is used as the metal M2 in the plating step, a metal other than the valve metal is used as the metal M1 used in the above-mentioned barrier layer removal step, and the metal other than the valve metal is It is preferably a noble metal rather than aluminum.
A metal that is more noble than aluminum is a metal that is more difficult to ionize than aluminum. Metals that are more noble than aluminum are, for example, Zn, Cr, Fe, Co, Ni, Sn, Pb, Cu, Ag, and Au.
Examples of the above-mentioned metal M1 include Zn, Fe, Ni, Sn and the like. Among them, Zn and Ni are preferably used, and Zn is more preferably used.
When Ni is used as the metal M2 in the plating step, examples of the metal M1 used in the barrier layer removing step described above include Zn and Fe, and among them, Zn is preferably used.
 このような金属M1のイオンを含むアルカリ水溶液を用いてバリア層を除去する方法は特に限定されず、例えば、従来公知の化学エッチング処理と同様の方法が挙げられる。 The method of removing the barrier layer using such an alkaline aqueous solution containing the ions of the metal M1 is not particularly limited, and examples thereof include the same methods as those of the conventionally known chemical etching treatment.
 <化学エッチング処理>
 化学エッチング処理によるバリア層の除去は、例えば、陽極酸化処理工程後の構造物をアルカリ水溶液に浸漬させ、貫通孔の内部にアルカリ水溶液を充填させた後に、陽極酸化膜の貫通孔の開口部側の表面にpH(水素イオン指数)緩衝液に接触させる方法等により、バリア層のみを選択的に溶解させることができる。
<Chemical etching process>
To remove the barrier layer by chemical etching treatment, for example, the structure after the anodization treatment step is immersed in an alkaline aqueous solution, the inside of the through hole is filled with the alkaline aqueous solution, and then the opening side of the through hole of the anodized film is formed. Only the barrier layer can be selectively dissolved by contacting the surface of the surface with a pH (hydrogen ion index) buffer solution or the like.
 ここで、上述の金属M1のイオンを含むアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。また、アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、更に15~45℃が好ましく、更に20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液、0.5g/L、30℃の水酸化カリウム水溶液等が好適に用いられる。
 なお、pH緩衝液としては、上述のアルカリ水溶液に対応した緩衝液を適宜使用することができる。
Here, as the alkaline aqueous solution containing the ions of the metal M1 described above, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
As the pH buffer solution, a buffer solution corresponding to the above-mentioned alkaline aqueous solution can be appropriately used.
 また、アルカリ水溶液への浸漬時間は、5~120分であることが好ましく、8~120分であることがより好ましく、8~90分であることが更に好ましく、10~90分であることが特に好ましい。なかでも、10~60分であることが好ましく、15~60分であることがより好ましい。 The immersion time in the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, further preferably 8 to 90 minutes, and preferably 10 to 90 minutes. Especially preferable. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
 〔バリア層除去工程の他の例〕
 バリア層除去工程は、上述以外に、陽極酸化膜のバリア層を除去し、貫通孔の底にアルミニウム部材の一部が露出する工程でもよい。
 この場合、バリア層を除去する方法は特に限定されず、例えば、陽極酸化処理工程の陽極酸化処理における電位よりも低い電位でバリア層を電気化学的に溶解する方法(以下、「電解除去処理」ともいう。);エッチングによりバリア層を除去する方法(以下、「エッチング除去処理」ともいう。);これらを組み合わせた方法(特に、電解除去処理を施した後に、残存するバリア層をエッチング除去処理で除去する方法);等が挙げられる。
[Other examples of barrier layer removal process]
In addition to the above, the barrier layer removing step may be a step of removing the barrier layer of the anodic oxide film and exposing a part of the aluminum member to the bottom of the through hole.
In this case, the method for removing the barrier layer is not particularly limited, and for example, a method for electrochemically dissolving the barrier layer at a potential lower than the potential in the anodizing treatment in the anodizing treatment step (hereinafter, "electrolytic removal treatment"". (Also also referred to as); a method of removing the barrier layer by etching (hereinafter, also referred to as “etch removal treatment”); a method combining these (particularly, after performing an electrolytic removal treatment, the remaining barrier layer is subjected to an etching removal treatment. Method of removing with); etc.
 〈電解除去処理〉
 電解除去処理は、陽極酸化処理工程の陽極酸化処理における電位(電解電位)よりも低い電位で施す電解処理であれば特に限定されない。
 電解溶解処理は、例えば、陽極酸化処理工程の終了時に電解電位を降下させることにより、陽極酸化処理と連続して施すことができる。
<Electrolytic removal treatment>
The electrolytic removal treatment is not particularly limited as long as it is an electrolytic treatment performed at a potential lower than the potential (electrolytic potential) in the anodizing treatment in the anodizing treatment step.
The electrolytic dissolution treatment can be performed continuously with the anodizing treatment, for example, by lowering the electrolytic potential at the end of the anodizing treatment step.
 電解除去処理は、電解電位以外の条件については、上述した従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、上述したように電解除去処理と陽極酸化処理とを連続して施す場合は、同様の電解液を用いて処理するのが好ましい。
For the electrolytic removal treatment, the same electrolytic solution and treatment conditions as those of the conventionally known anodizing treatment described above can be adopted except for the conditions other than the electrolytic potential.
In particular, when the electrolytic removal treatment and the anodizing treatment are continuously performed as described above, it is preferable to perform the treatment using the same electrolytic solution.
 (電解電位)
 電解除去処理における電解電位は、陽極酸化処理における電解電位よりも低い電位に、連続的又は段階的(ステップ状)に降下させるのが好ましい。
 ここで、電解電位を段階的に降下させる際の下げ幅(ステップ幅)は、バリア層の耐電圧の観点から、10V以下であることが好ましく、5V以下であることがより好ましく、2V以下であることが更に好ましい。
 また、電解電位を連続的又は段階的に降下させる際の電圧降下速度は、生産性等の観点から、いずれも1V/秒以下が好ましく、0.5V/秒以下がより好ましく、0.2V/秒以下が更に好ましい。
(Electrolytic potential)
The electrolytic potential in the electrolytic removal treatment is preferably lowered continuously or stepwise (step-like) to a potential lower than the electrolytic potential in the anodizing treatment.
Here, the reduction width (step width) when the electrolytic potential is gradually lowered is preferably 10 V or less, more preferably 5 V or less, and 2 V or less from the viewpoint of the withstand voltage of the barrier layer. It is more preferable to have.
Further, the voltage drop rate when the electrolytic potential is continuously or stepwise lowered is preferably 1 V / sec or less, more preferably 0.5 V / sec or less, and 0.2 V / sec, from the viewpoint of productivity and the like. Seconds or less is more preferable.
〈エッチング除去処理〉
 エッチング除去処理は特に限定されないが、酸水溶液又はアルカリ水溶液を用いて溶解する化学エッチング処理であってもよく、ドライエッチング処理であってもよい。
<Etching removal process>
The etching removal treatment is not particularly limited, but may be a chemical etching treatment that dissolves using an acid aqueous solution or an alkaline aqueous solution, or may be a dry etching treatment.
(化学エッチング処理)
 化学エッチング処理によるバリア層の除去は、例えば、陽極酸化処理工程後の構造物を酸水溶液又はアルカリ水溶液に浸漬させ、細孔の内部に酸水溶液又はアルカリ水溶液を充填させた後に、陽極酸化膜の細孔の開口部側の表面にpH(水素イオン指数)緩衝液に接触させる方法等であり、バリア層のみを選択的に溶解させることができる。
(Chemical etching process)
To remove the barrier layer by chemical etching treatment, for example, the structure after the anodic oxidation treatment step is immersed in an acid aqueous solution or an alkaline aqueous solution, and the pores are filled with the acid aqueous solution or the alkaline aqueous solution, and then the anodic oxide film is removed. The surface on the opening side of the pores is brought into contact with a pH (hydrogen ion index) buffer, and the like, and only the barrier layer can be selectively dissolved.
 ここで、酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。また、酸水溶液の濃度は1質量%~10質量%であることが好ましい。酸水溶液の温度は、15℃~80℃が好ましく、更に20℃~60℃が好ましく、更に30℃~50℃が好ましい。
 一方、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。また、アルカリ水溶液の濃度は0.1質量%~5質量%であることが好ましい。アルカリ水溶液の温度は、10℃~60℃が好ましく、更に15℃~45℃が好ましく、更に20℃~35℃であることが好ましい。なお、アルカリ水溶液には、亜鉛及び他の金属を含有していてもよい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液、0.5g/L、30℃の水酸化カリウム水溶液等が好適に用いられる。
 なお、pH緩衝液としては、上述した酸水溶液又はアルカリ水溶液に対応した緩衝液を適宜使用することができる。
Here, when an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. The concentration of the aqueous acid solution is preferably 1% by mass to 10% by mass. The temperature of the aqueous acid solution is preferably 15 ° C. to 80 ° C., more preferably 20 ° C. to 60 ° C., and further preferably 30 ° C. to 50 ° C.
On the other hand, when an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass. The temperature of the alkaline aqueous solution is preferably 10 ° C. to 60 ° C., more preferably 15 ° C. to 45 ° C., and further preferably 20 ° C. to 35 ° C. The alkaline aqueous solution may contain zinc and other metals.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
As the pH buffer solution, a buffer solution corresponding to the above-mentioned acid aqueous solution or alkaline aqueous solution can be appropriately used.
 また、酸水溶液又はアルカリ水溶液への浸せき時間は、8分~120分であることが好ましく、10分~90分であることがより好ましく、15分~60分であることが更に好ましい。 The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 minutes to 120 minutes, more preferably 10 minutes to 90 minutes, and further preferably 15 minutes to 60 minutes.
(ドライエッチング処理)
 ドライエッチング処理は、例えば、Cl2/Ar混合ガス等のガス種を用いることが好ましい。
(Dry etching process)
For the dry etching treatment, it is preferable to use a gas type such as Cl 2 / Ar mixed gas.
 〔めっき工程〕
 めっき工程は、上述のバリア層除去工程の後に、超臨界状態又は亜臨界状態で金属めっきを行い、陽極酸化膜の複数の貫通孔(細孔)の内部に金属M2を充填する工程である。上述のように、めっき工程の開始時において、構造体の細孔の底部にバルブ金属以外の金属層が存在しており、細孔の底部のうち面積にして80%以上の領域に対してバルブ金属以外の金属層が形成されている。めっき工程において、金属めっきは電解めっき、及び無電解めっきのうち、いずれでもよいが、電解めっきの方が短時間で処理できるため望ましい。
 ここで、図12は本発明の実施形態の金属充填微細構造体の製造方法のうち、めっき工程に用いられる電解めっき装置を示す模式図である。
[Plating process]
The plating step is a step of performing metal plating in a supercritical state or a subcritical state after the above-mentioned barrier layer removing step, and filling the inside of a plurality of through holes (pores) of the anodic oxide film with metal M2. As described above, at the start of the plating process, a metal layer other than the valve metal is present at the bottom of the pores of the structure, and the valve covers a region of 80% or more of the area of the bottom of the pores. A metal layer other than metal is formed. In the plating step, metal plating may be either electrolytic plating or electroless plating, but electrolytic plating is preferable because it can be processed in a short time.
Here, FIG. 12 is a schematic view showing an electrolytic plating apparatus used in the plating step in the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention.
 図12に示すめっき装置28は、めっき槽29と、めっき槽29を囲むオーブン30と、対向電極31と、電源部32と、制御部33とを有する。めっき槽29に、上述の構造体17が、対向電極31に対向して配置される。また、めっき槽29内にはめっき液AQが満たされ、構造体17と対向電極31とが浸漬される。構造体17は、上述のように金属部材と複数の貫通孔12を有する陽極酸化膜14とを有する。
 電源部32は、構造体17と対向電極31とに電気的に接続されており、構造体17に電流を印加するものである。金属めっきの際に、構造体17の金属層、又は金属部材に電流が印加される。
 制御部33は、電源部32に接続され、電源部32を制御するものである。制御部33により、電源部32が印加する電流の電流値、タイミング及び期間が制御される。制御部33には、例えば、印加する電流の電流パターンが複数記憶されており、いずれかの電流パターンで電源部32から構造体17に電流を印加する。
 なお、電源部32に制御部33の機能を持たせてもよく、この場合、制御部33は不要である。また、印加する電流の電流パターンのことを電流制御パターンともいう。
 オーブン30は、めっき槽29内のめっき液AQの温度を調整するものである。オーブン30は、めっき槽29内のめっき液AQの温度を調整することができれば、特に限定されるものではなく、公知のヒーター等を用いることができる。オーブン30により、めっき液AQの温度が、超臨界又は亜臨界に必要な温度に維持される。
The plating apparatus 28 shown in FIG. 12 includes a plating tank 29, an oven 30 surrounding the plating tank 29, a counter electrode 31, a power supply unit 32, and a control unit 33. The above-mentioned structure 17 is arranged in the plating tank 29 so as to face the counter electrode 31. Further, the plating tank 29 is filled with the plating solution AQ, and the structure 17 and the counter electrode 31 are immersed. The structure 17 has a metal member and an anodic oxide film 14 having a plurality of through holes 12 as described above.
The power supply unit 32 is electrically connected to the structure 17 and the counter electrode 31, and applies a current to the structure 17. At the time of metal plating, an electric current is applied to the metal layer or the metal member of the structure 17.
The control unit 33 is connected to the power supply unit 32 and controls the power supply unit 32. The control unit 33 controls the current value, timing, and period of the current applied by the power supply unit 32. For example, a plurality of current patterns of the applied current are stored in the control unit 33, and a current is applied from the power supply unit 32 to the structure 17 in any of the current patterns.
The power supply unit 32 may be provided with the function of the control unit 33, and in this case, the control unit 33 is unnecessary. Further, the current pattern of the applied current is also referred to as a current control pattern.
The oven 30 adjusts the temperature of the plating solution AQ in the plating tank 29. The oven 30 is not particularly limited as long as the temperature of the plating solution AQ in the plating tank 29 can be adjusted, and a known heater or the like can be used. The oven 30 maintains the temperature of the plating solution AQ at the temperature required for supercritical or subcritical.
 めっき装置28は、供給部34、ポンプ35、及びバルブ36を有し、供給管37がめっき槽29の蓋29aに設けられており、例えば、高圧の二酸化炭素が、めっき槽29内に供給される。また、圧力調整部38が、めっき槽29の蓋29aに設けられた排出管39を介して、めっき槽29に接続されている。圧力調整部38により、めっき槽29内の圧力が超臨界又は亜臨界に必要な圧力に維持される。
 供給部34は、超臨界又は亜臨界にする物質を貯留するものである。超臨界にする物質が二酸化炭素の場合、供給部34は二酸化炭素のボンベである。
 ポンプ35は、超臨界又は亜臨界にする物質を加圧してめっき槽29内に供給するものであり、公知の加圧ポンプが用いられる。
 バルブ36は、超臨界又は亜臨界にする物質のめっき槽29内への供給を制御するものである。
 圧力調整部38は、上述のようにめっき槽29内の圧力を維持するものであり、また、めっき槽29内の圧力を減圧又は開放するものである。圧力調整部38は、例えば、バルブが用いられる。
The plating apparatus 28 has a supply unit 34, a pump 35, and a valve 36, and a supply pipe 37 is provided on the lid 29a of the plating tank 29. For example, high-pressure carbon dioxide is supplied into the plating tank 29. NS. Further, the pressure adjusting unit 38 is connected to the plating tank 29 via a discharge pipe 39 provided on the lid 29a of the plating tank 29. The pressure adjusting unit 38 maintains the pressure in the plating tank 29 at a pressure required for supercritical or subcritical.
The supply unit 34 stores a substance that makes it supercritical or subcritical. When the substance to be supercritical is carbon dioxide, the supply unit 34 is a carbon dioxide cylinder.
The pump 35 pressurizes a substance to be supercritical or subcritical and supplies it into the plating tank 29, and a known pressure pump is used.
The valve 36 controls the supply of supercritical or subcritical substances into the plating tank 29.
The pressure adjusting unit 38 maintains the pressure in the plating tank 29 as described above, and reduces or releases the pressure in the plating tank 29. For the pressure adjusting unit 38, for example, a valve is used.
 超臨界媒体には、例えば、二酸化炭素が用いられる。二酸化炭素の臨界点(超臨界状態となる点)は、温度31.0℃、圧力7.38MPaであり、この臨界点以上の温度、圧力で、二酸化炭素は超臨界状態となる。このため、めっき槽29内の温度31.0℃以上、かつ圧力7.38MPa以上にする。このとき、同時に超臨界媒体を攪拌すると効果的にめっきできる。このため、めっき槽29内に、攪拌のためのスターラー(図示せず)を設けることが好ましい。
 また、亜超臨界媒体には、上述の超臨界媒体と同じものを用いることができる。
For example, carbon dioxide is used as the supercritical medium. The critical point (point of supercritical state) of carbon dioxide is a temperature of 31.0 ° C. and a pressure of 7.38 MPa, and at a temperature and pressure above this critical point, carbon dioxide is in a supercritical state. Therefore, the temperature inside the plating tank 29 is set to 31.0 ° C. or higher and the pressure is set to 7.38 MPa or higher. At this time, if the supercritical medium is stirred at the same time, plating can be effectively performed. Therefore, it is preferable to provide a stirrer (not shown) for stirring in the plating tank 29.
Further, as the sub-supercritical medium, the same one as the above-mentioned supercritical medium can be used.
 図12に示すめっき槽29内に、構造体17と、対向電極31とを対向して配置する。そして、めっき槽29内をめっき液AQで満たす。
 オーブン30により、めっき槽29内のめっき液AQの温度を、例えば、40℃にする。次に、例えば、供給部34から二酸化炭素を、ポンプ35に供給し、ポンプ35により加圧してバルブ36を経て、供給管37を介してめっき槽29内に供給し、めっき槽29内の圧力が、例えば、10MPaになるように加圧する。このとき、めっき液AQを撹拌することが好ましい。
 上述のように二酸化炭素は、温度31.0℃、圧力7.38MPaの環境下で超臨界状態となるため、めっき槽29内は実質的に超臨界状態であり、めっき液AQは実質的にエマルジョン状態となる。エマルジョン状態のめっき液AQにより、めっき処理が進行し、陽極酸化膜における貫通孔の内部に金属M2が充填されて、導電性を有する導通路16が形成される。めっき工程では、超臨界媒体を用いた超臨界状態で金属めっきが行われる。また、圧力及び温度を調整して、例えば、二酸化炭素を亜臨界状態にして、亜臨界媒体を用いた亜超臨界状態で金属めっきを行うこともできる。
The structure 17 and the counter electrode 31 are arranged to face each other in the plating tank 29 shown in FIG. Then, the inside of the plating tank 29 is filled with the plating solution AQ.
The oven 30 sets the temperature of the plating solution AQ in the plating tank 29 to, for example, 40 ° C. Next, for example, carbon dioxide is supplied from the supply unit 34 to the pump 35, pressurized by the pump 35, is supplied into the plating tank 29 via the valve 36, and is supplied into the plating tank 29 via the supply pipe 37, and the pressure in the plating tank 29. However, the pressure is increased so as to be, for example, 10 MPa. At this time, it is preferable to stir the plating solution AQ.
As described above, carbon dioxide is in a supercritical state in an environment of a temperature of 31.0 ° C. and a pressure of 7.38 MPa, so that the inside of the plating tank 29 is substantially in a supercritical state, and the plating solution AQ is substantially in a supercritical state. It becomes an emulsion state. The plating process proceeds with the plating solution AQ in an emulsion state, and the metal M2 is filled inside the through holes in the anodized film to form a conductive passage 16. In the plating process, metal plating is performed in a supercritical state using a supercritical medium. Further, the pressure and temperature can be adjusted to bring carbon dioxide into a subcritical state, and metal plating can be performed in a subsupercritical state using a subcritical medium.
 <超臨界媒体>
 超臨界媒体としては、二酸化炭素以外に、例えば、酸素、アルゴン、クリプトン、キセノン、アンモニア、メタン、エタン、メタノール、エタノール、イソプロパノール、ジメチルケトン、六フッ化イオウ、一酸化炭素、一酸化二窒素、窒素95%と水素5%の混合気体であるフォーミングガス、水素及びこれらの中の2以上の混合物を用いることができる。また、水も用いることができる。この中でも二酸化炭素が好ましい。
 なお、水は温度374.2℃以上かつ圧力22.1MPa以上の環境下で超臨界媒体となる。メタノールは、温度239.4℃以上かつ圧力8.1MPa以上の環境下で超臨界媒体となる。エタノールは温度243℃以上かつ圧力6.4MPa以上の環境下で超臨界媒体となる。
 <亜超臨界媒体>
 ここで、超臨界状態とは、臨界点における温度(臨界温度)以上の温度かつ臨界点における圧力(臨界圧力)以上の圧力である状態をいう。亜臨界状態とは、臨界点近傍の、臨界温度よりもやや温度が低い状態又は臨界圧力よりもやや圧力が低い状態をいう.
 亜臨界媒体は、超臨界媒体と同じものが利用可能である。亜臨界媒体は、超臨界媒体よりも、上述の亜臨界状態の説明のように、臨界状態に比して、やや温度が低い状態又はやや圧力が低い状態である。
<Supercritical medium>
In addition to carbon dioxide, supercritical media include, for example, oxygen, argon, krypton, xenone, ammonia, methane, ethane, methanol, ethanol, isopropanol, dimethyl ketone, sulfur hexafluoride, carbon monoxide, and dinitrogen monoxide. Forming gas, which is a mixed gas of 95% nitrogen and 5% hydrogen, hydrogen and a mixture of two or more of these can be used. Water can also be used. Of these, carbon dioxide is preferable.
Water becomes a supercritical medium in an environment where the temperature is 374.2 ° C. or higher and the pressure is 22.1 MPa or higher. Methanol becomes a supercritical medium in an environment where the temperature is 239.4 ° C. or higher and the pressure is 8.1 MPa or higher. Ethanol becomes a supercritical medium in an environment where the temperature is 243 ° C. or higher and the pressure is 6.4 MPa or higher.
<Sub-supercritical medium>
Here, the supercritical state means a state in which the temperature is equal to or higher than the temperature at the critical point (critical temperature) and the pressure is higher than the pressure at the critical point (critical pressure). The subcritical state is a state in which the temperature is slightly lower than the critical temperature or the pressure is slightly lower than the critical pressure near the critical point.
As the subcritical medium, the same one as the supercritical medium can be used. The subcritical medium is a state in which the temperature is slightly lower or the pressure is slightly lower than that in the critical state, as described above for the subcritical state, as compared with the supercritical medium.
 <金属M2>
 上述の金属M2は、電気抵抗率が103Ω・cm以下の材料であることが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)等が好適に例示される。
 中でも、電気伝導性の観点から、Cu、Au、Al、及びNiが好ましく、Cu、及びAuがより好ましく、Cuが更に好ましい。
<Metal M2>
Metal M2 described above, it is preferable that the electric resistivity is less material 10 3 Ω · cm, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), Magnesium (Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified.
Among them, from the viewpoint of electrical conductivity, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is further preferable.
 <充填方法>
 上述の金属M2を貫通孔の内部に充填するめっき処理の方法としては、電解めっき法を用いる。なお、無電解めっき法では、アスペクトの高い貫通孔からなる孔中に金属を完全に充填には長時間を要する。
 ここで、着色等に用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
<Filling method>
As a method of plating treatment for filling the inside of the through hole with the metal M2 described above, an electrolytic plating method is used. In the electroless plating method, it takes a long time to completely fill the holes formed by the through holes having a high aspect with the metal.
Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
 そのため、電解めっき法により金属を充填する場合は、パルス電解又は定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒であることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
Therefore, when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds.
It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
Further, the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential + 1 V. When performing constant potential electrolysis, it is desirable that cyclic voltammetry can be used in combination, and potentiometer devices such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
(めっき液)
 めっき液は、金属イオンを含むものであり、充填する金属に応じた、従来公知のめっき液が用いられる。めっき液としては、固形分の主成分が硫酸銅であることが好ましく、例えば、硫酸銅と硫酸と塩酸との混合水溶液が用いられる。具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであることが好ましく、100~200g/Lであることがより好ましい。また、めっき液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであることが好ましい。
 なお、固形分の主成分とは、電解液の固形分中での割合が20質量%以上であることであり、例えば、硫酸銅が電解液の固形分中に20質量%以上含まれていることである。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
(Plating liquid)
The plating solution contains metal ions, and a conventionally known plating solution is used depending on the metal to be filled. As the plating solution, the main component of the solid content is preferably copper sulfate, and for example, a mixed aqueous solution of copper sulfate, sulfuric acid, and hydrochloric acid is used. Specifically, an aqueous solution of copper sulfate is generally used for precipitating copper, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the plating solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L.
The main component of the solid content is that the proportion of the electrolytic solution in the solid content is 20% by mass or more. For example, copper sulfate is contained in the solid content of the electrolytic solution in an amount of 20% by mass or more. That is.
When depositing gold, it is desirable to use a sulfuric acid solution of tetrachloroauric acid and perform plating by AC electrolysis.
 めっき液は、界面活性剤を含むことが好ましい。
 界面活性剤としては公知のものを使用することができる。従来メッキ液に添加する界面活性剤として知られているラウリル硫酸ナトリウムをそのまま使用することもできる。親水性部分がイオン性(カチオン性・アニオン性・双性)のもの、非イオン性(ノニオン性)のものいずれも利用可能であるが、メッキ対象物表面への気泡の発生等を回避する点でカチオン線活性剤が望ましい。めっき液組成における界面活性剤の濃度は1質量%以下であることが望ましい。
The plating solution preferably contains a surfactant.
Known surfactants can be used. Sodium lauryl sulfate, which is conventionally known as a surfactant to be added to the plating solution, can be used as it is. Both ionic (cationic / anionic / bimodal) and nonionic (nonionic) hydrophilic parts can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated. A cation ray activator is desirable. The concentration of the surfactant in the plating solution composition is preferably 1% by mass or less.
 <ポアワイド処理>
 ポアワイド処理は、アルミニウム部材を酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、貫通孔12の径を拡大する処理である。
 これにより、貫通孔12の配列の規則性及び径のばらつきを制御することが容易となる。また、陽極酸化膜の複数の貫通孔12の底部分のバリア皮膜を溶解させることにより、貫通孔12内部に選択的に電着させること及び径を大きくし、電極としての表面積を飛躍的に大きくすることが可能となる。
<Pore wide processing>
The pore-wide treatment is a treatment in which the aluminum member is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the diameter of the through hole 12.
This makes it easy to control the regularity of the arrangement of the through holes 12 and the variation in diameter. Further, by dissolving the barrier film at the bottom of the plurality of through holes 12 of the anodic oxide film, the inside of the through holes 12 is selectively electrodeposited and the diameter is increased, so that the surface area as an electrode is dramatically increased. It becomes possible to do.
 ポアワイド処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、25~40℃であるのが好ましい。
 ポアワイド処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~60分であるのが好ましく、10~50分であるのがより好ましく、15~30分であるのが更に好ましい。
When an aqueous acid solution is used for the pore-wide treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 40 ° C.
When an alkaline aqueous solution is used for the pore-wide treatment, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a phosphoric acid aqueous solution at 50 g / L and 40 ° C., a sodium hydroxide aqueous solution at 0.5 g / L and 30 ° C., or a potassium hydroxide aqueous solution at 0.5 g / L and 30 ° C. is preferably used. ..
The immersion time in the acid aqueous solution or the alkali aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and even more preferably 15 to 30 minutes.
 〔基板除去工程〕
 基板除去工程は、めっき工程の後に、上述のアルミニウム部材を除去する工程である。アルミニウム部材を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。
[Substrate removal process]
The substrate removing step is a step of removing the above-mentioned aluminum member after the plating step. The method for removing the aluminum member is not particularly limited, and for example, a method for removing the aluminum member by melting is preferable.
 <アルミニウム部材の溶解>
 上述のアルミニウム部材の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いることが好ましい。
 このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であることが好ましく、3μm/分以上であることがより好ましく、5μm/分以上であることが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となることが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下又は8以上となる処理液であることが好ましく、そのpHが3以下又は9以上であることがより好ましく、2以下又は10以上であることが更に好ましい。
<Melting aluminum members>
For the above-mentioned dissolution of the aluminum member, it is preferable to use a treatment liquid in which the anodized film is difficult to dissolve and aluminum is easily dissolved.
Such a treatment liquid preferably has a dissolution rate in aluminum of 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and further preferably 0.01 nm / min or less.
Specifically, it is preferably a treatment liquid containing at least one metal compound having a lower ionization tendency than aluminum and having a pH of 4 or less or 8 or more, and the pH is 3 or less or 9 or more. Is more preferable, and 2 or less or 10 or more is further preferable.
 アルミニウムを溶解する処理液としては、酸又はアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであることが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドすることが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、アルミニウムを溶解する処理液の組成は、特に限定されるものではく、例えば、臭素/メタノール混合物、臭素/エタノール混合物、及び王水等を用いることができる。
The treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum. , A gold compound (for example, chloroplatinic acid), these fluorides, these chlorides and the like are preferably blended.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of the treatment liquid that dissolves aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
 また、アルミニウムを溶解する処理液の酸又はアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、アルミニウムを溶解する処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
The acid or alkali concentration of the treatment liquid that dissolves aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using the treatment liquid for dissolving aluminum is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
 また、上述のアルミニウム部材の溶解は、上述のめっき工程後のアルミニウム部材を上述の処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 Further, the above-mentioned aluminum member is melted by bringing the aluminum member after the above-mentioned plating step into contact with the above-mentioned treatment liquid. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 〔金属突出工程〕
 作製される金属充填微細構造体の金属接合性が向上する理由から、表面金属突出工程及び裏面金属突出工程のうち、少なくとも1つの工程を有してもよい。
 ここで、表面金属突出工程とは、上述のめっき工程の後であって上述の基板除去工程の前に、上述の陽極酸化膜の上述のアルミニウム部材が設けられていない側の表面を厚み方向に一部除去し、上述のめっき工程で充填した上述の金属M2を上述の陽極酸化膜の表面よりも突出させる工程である。
 また、裏面金属突出工程とは、上述の基板除去工程の後に、上述の陽極酸化膜の上述のアルミニウム部材が設けられていた側の表面を厚み方向に一部除去し、上述のめっき工程で充填した上述の金属M2を上述の陽極酸化膜の表面よりも突出させる工程である。
[Metal protrusion process]
For the reason that the metal bondability of the metal-filled microstructure to be produced is improved, at least one of the front surface metal projecting step and the back surface metal projecting step may be included.
Here, the surface metal projecting step means that after the above-mentioned plating step and before the above-mentioned substrate removal step, the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum member is not provided is set in the thickness direction. This is a step of partially removing the metal M2 filled in the plating step and projecting the metal M2 from the surface of the anodized film.
Further, in the back surface metal projecting step, after the above-mentioned substrate removing step, a part of the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum member is provided is removed in the thickness direction and filled by the above-mentioned plating step. This is a step of projecting the above-mentioned metal M2 from the surface of the above-mentioned anodic oxide film.
 金属突出工程における陽極酸化膜の一部除去は、例えば、上述の金属M1及び金属M2(特に金属M2)を溶解せず、陽極酸化膜、すなわち、酸化アルミニウムを溶解する酸水溶液又はアルカリ水溶液に対して、金属が充填された貫通孔を有する陽極酸化膜を接触させることにより行うことができる。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。 Partial removal of the anodic oxide film in the metal projecting step does not dissolve the above-mentioned metal M1 and metal M2 (particularly metal M2), but for the anodic oxide film, that is, an acid aqueous solution or an alkaline aqueous solution that dissolves aluminum oxide. This can be done by bringing an anodic oxide film having through holes filled with metal into contact with each other. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。中でも、クロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
 また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であることがより好ましく、15~60分であることが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。
When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. Above all, an aqueous solution containing no chromic acid is preferable because it is excellent in safety. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 60 ° C.
When an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a phosphoric acid aqueous solution at 50 g / L and 40 ° C., a sodium hydroxide aqueous solution at 0.5 g / L and 30 ° C., or a potassium hydroxide aqueous solution at 0.5 g / L and 30 ° C. is preferably used. ..
The immersion time in the acid aqueous solution or the alkali aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes. Here, the immersion time means the total of each immersion time when the immersion treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
 また、作製される金属充填微細構造体を異方導電性部材として用いた際に、配線基板等の被接着物との圧着性が良好となる理由から、上述の表面金属突出工程及び裏面金属突出工程のうち、少なくとも1つの工程が、上述の金属M2を上述の陽極酸化膜の表面よりも10~1000nm突出させる工程であることが好ましく、50~500nm突出させる工程であることがより好ましい。 Further, the above-mentioned front surface metal projecting step and back surface metal projecting are performed because the pressure-bonding property with an object to be adhered such as a wiring substrate is improved when the produced metal-filled microstructure is used as an anisotropic conductive member. Of the steps, at least one step is preferably a step of projecting the above-mentioned metal M2 from the surface of the above-mentioned anodic oxide film by 10 to 1000 nm, and more preferably a step of projecting the above-mentioned metal M2 by 50 to 500 nm.
 更に、作製される金属充填微細構造体と電極とを圧着等の手法により接続(接合)する際に、突出部分が潰れた場合の面方向の絶縁性を十分に確保できる理由から、上述の表面金属突出工程及び裏面金属突出工程のうち、少なくとも1つの工程により形成される突出部分のアスペクト比(突出部分の高さ/突出部分の直径)が0.01以上20未満であることが好ましく、6~20であることが好ましい。 Further, when the metal-filled microstructure to be produced and the electrode are connected (joined) by a method such as crimping, the above-mentioned surface can be sufficiently secured in the surface direction when the protruding portion is crushed. Of the metal projecting step and the back surface metal projecting step, the aspect ratio (height of the projecting portion / diameter of the projecting portion) of the projecting portion formed by at least one step is preferably 0.01 or more and less than 20. It is preferably about 20.
 上述のめっき工程及び基板除去工程ならびに任意の金属突出工程により形成される金属からなる導通路は、柱状であることが好ましい。導通路の直径は、金属が充填される貫通孔の直径と略同じである。導通路の平均直径は、貫通孔の平均径であり、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることが更に好ましく、40~200nmであることが更に一層好ましく、50~100nmであることが最も好ましい。 The conduction path made of metal formed by the above-mentioned plating step, substrate removal step, and arbitrary metal projecting step is preferably columnar. The diameter of the conduction path is approximately the same as the diameter of the through hole filled with metal. The average diameter of the conduction path is the average diameter of the through holes, preferably 1 μm or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, and preferably 40 to 200 nm. Even more preferably, it is most preferably 50 to 100 nm.
 また、上述の導通路は、アルミニウム部材の陽極酸化膜によって互いに絶縁された状態で存在するものであるが、その密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることが更に好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。 Further, the above-mentioned conduction paths exist in a state of being insulated from each other by an anodic oxide film of an aluminum member, and the density thereof is preferably 20,000 pieces / mm 2 or more, preferably 2 million pieces / mm. more preferably 2 or more, and more preferably, especially preferably at 50 million / mm 2 or more, and most preferably 100 million / mm 2 or more and 10,000,000 / mm 2 or more ..
 更に、隣接する各導通路の中心間距離は、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。 Further, the distance between the centers of the adjacent conduction paths is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
 〔樹脂層形成工程〕
 作製される金属充填微細構造体の搬送性が向上する理由から、上述のように樹脂層形成工程を有してもよい。
 ここで、樹脂層形成工程とは、上述のめっき工程の後(上述の表面金属突出工程を有している場合は表面金属突出工程の後)であって上述の基板除去工程の前に、上述の陽極酸化膜の上述のアルミニウム部材が設けられていない側の表面に、樹脂層を設ける工程である。
[Resin layer forming process]
The resin layer forming step may be provided as described above for the reason that the transportability of the produced metal-filled microstructure is improved.
Here, the resin layer forming step is after the above-mentioned plating step (after the above-mentioned surface metal projecting step if the above-mentioned surface metal projecting step is provided) and before the above-mentioned substrate removing step. This is a step of providing a resin layer on the surface of the anodized film on the side where the above-mentioned aluminum member is not provided.
 上述の樹脂層を構成する樹脂材料としては、具体的には、例えば、エチレン系共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン系樹脂、アクリル系樹脂、及びセルロース系樹脂等を挙げることができるが、搬送性の観点と、異方導電性部材として使用しやすくする観点から、上述の樹脂層は、剥離可能な粘着層付きフィルムであることが好ましく、加熱処理又は紫外線露光処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムであることがより好ましい。 Specific examples of the resin material constituting the above-mentioned resin layer include ethylene-based copolymers, polyamide resins, polyester resins, polyurethane resins, polyolefin-based resins, acrylic resins, and cellulose-based resins. However, from the viewpoint of transportability and ease of use as an heteroconductive member, the above-mentioned resin layer is preferably a film with a peelable adhesive layer, and is adhered by heat treatment or ultraviolet exposure treatment. It is more preferable that the film has an adhesive layer, which has a weak property and can be peeled off.
 上述の粘着層付きフィルムは特に限定されず、熱剥離型の樹脂層、及び紫外線(ultraviolet:UV)剥離型の樹脂層等が挙げられる。
 ここで、熱剥離型の樹脂層は、常温では粘着力があり、加熱するだけで容易に剥離可能なもので、主に発泡性のマイクロカプセル等を用いたものが多い。
 また、粘着層を構成する粘着剤としては、具体的には、例えば、ゴム系粘着剤、アクリル系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、スチレン-ジエンブロック共重合体系粘着剤等が挙げられる。
The above-mentioned film with an adhesive layer is not particularly limited, and examples thereof include a heat-peeling type resin layer and an ultraviolet (ultraviolet) peeling type resin layer.
Here, the heat-peeling type resin layer has adhesive strength at room temperature and can be easily peeled off only by heating, and most of them mainly use effervescent microcapsules or the like.
Specific examples of the adhesive constituting the adhesive layer include a rubber adhesive, an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, and a polyamide adhesive. , Urethane-based pressure-sensitive adhesives, styrene-diene block copolymer-based pressure-sensitive adhesives, and the like.
 また、UV剥離型の樹脂層は、UV硬化型の接着層を有するもので硬化により粘着力が失われて剥離可能になるというものである。
 UV硬化型の接着層としては、ベースポリマーに、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に導入したポリマー等が挙げられる。炭素-炭素二重結合を有するベースポリマーとしては、アクリル系ポリマーを基本骨格とするもことが好ましい。
 更に、アクリル系ポリマーは、架橋させるため、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。
 炭素-炭素二重結合を有するベースポリマーは単独で使用することができるが、UV硬化性のモノマー又はオリゴマーを配合することもできる。
 UV硬化型の接着層は、UV照射により硬化させるために光重合開始剤を併用することが好ましい。光重合開始剤としては、ベンゾインエーテル系化合物;ケタール系化合物;芳香族スルホニルクロリド系化合物;光活性オキシム系化合物;ベンゾフェノン系化合物;チオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。
Further, the UV peeling type resin layer has a UV curable adhesive layer, and the adhesive strength is lost by curing so that the resin layer can be peeled off.
Examples of the UV-curable adhesive layer include a polymer in which a carbon-carbon double bond is introduced into the polymer side chain or the main chain or at the end of the main chain as the base polymer. As the base polymer having a carbon-carbon double bond, it is preferable to use an acrylic polymer as a basic skeleton.
Further, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization, if necessary.
The base polymer having a carbon-carbon double bond can be used alone, but UV curable monomers or oligomers can also be blended.
It is preferable to use a photopolymerization initiator in combination with the UV curable adhesive layer in order to cure it by UV irradiation. Photopolymerization initiators include benzoin ether compounds; ketal compounds; aromatic sulfonyl chloride compounds; photoactive oxime compounds; benzophenone compounds; thioxanson compounds; camphorquinone; halogenated ketones; acylphosphinoxides; acyls. Phosphonate and the like can be mentioned.
 熱剥離型の樹脂層の市販品としては、例えば、WS5130C02、WS5130C10等のインテリマー〔登録商標〕テープ(ニッタ株式会社製);ソマタック〔登録商標〕TEシリーズ(ソマール株式会製);No.3198、No.3198LS、No.3198M、No.3198MS、No.3198H、No.3195、No.3196、No.3195M、No.3195MS、No.3195H、No.3195HS、No.3195V、No.3195VS、No.319Y-4L、No.319Y-4LS、No.319Y-4M、No.319Y-4MS、No.319Y-4H、No.319Y-4HS、No.319Y-4LSC、No.31935MS、No.31935HS、No.3193M、No.3193MS等のリバアルファ〔登録商標〕シリーズ(日東電工株式会社製);等が挙げられる。 Examples of commercially available heat-release type resin layers include Intellimar [registered trademark] tapes (manufactured by Nitta Corporation) such as WS5130C02 and WS5130C10; Somatac [registered trademark] TE series (manufactured by SOMAR Corporation); 3198, No. 3198LS, No. 3198M, No. 3198MS, No. 3198H, No. 3195, No. 3196, No. 3195M, No. 3195MS, No. 3195H, No. 3195HS, No. 3195V, No. 3195VS, No. 319Y-4L, No. 319Y-4LS, No. 319Y-4M, No. 319Y-4MS, No. 319Y-4H, No. 319Y-4HS, No. 319Y-4LSC, No. 31935MS, No. 31935HS, No. 3193M, No. Riva Alpha [registered trademark] series (manufactured by Nitto Denko KK) such as 3193MS; etc.
 UV剥離型の樹脂層の市販品としては、例えば、ELP DU-300、ELP DU-2385KS、ELP DU-2187G、ELP NBD-3190K、ELP UE-2091J等のエレップホルダー〔登録商標〕(日東電工株式会社製);Adwill D-210、Adwill D-203、Adwill D-202、Adwill D-175、Adwill D-675(いずれもリンテック株式会社製);スミライト〔登録商標〕FLSのN8000シリーズ(住友ベークライト株式会社製);UC353EP-110(古河電気工業株式会社製);等のダイシングテープ、ELP RF-7232DB、ELP UB-5133D(いずれも日東電工株式会社製);SP-575B-150、SP-541B-205、SP-537T-160、SP-537T-230(いずれも古河電気工業株式会社製);等のバックグラインドテープを利用することができる。 Commercially available products of the UV peeling type resin layer include, for example, ELP holders such as ELP DU-300, ELP DU-2385KS, ELP DU-2187G, ELP NBD-3190K, ELP UE-2091J [registered trademark] (Nitto Denko). (Made by Lintec Corporation); Adwill D-210, Adwill D-203, Adwill D-202, Adwill D-175, Adwill D-675 (all manufactured by Lintec Corporation); Sumilite [registered trademark] FLS N8000 series (Sumitomo Bakelite) UC353EP-110 (Furukawa Electric Co., Ltd.); etc. Dicing tape, ELPRF-7232DB, ELPUB-5133D (all manufactured by Nitto Denko Corporation); SP-575B-150, SP-541B Back grind tapes such as -205, SP-537T-160, SP-537T-230 (all manufactured by Furukawa Electric Co., Ltd.) can be used.
 また、上述の粘着層付きフィルムを貼り付ける方法は特に限定されず、従来公知の表面保護テープ貼付装置及びラミネーターを用いて貼り付けることができる。 Further, the method of attaching the above-mentioned film with an adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device and a laminator.
 〔巻取工程〕
 作製される金属充填微細構造体の搬送性が更に向上する理由から、上述の任意の樹脂層形成工程の後に上述の樹脂層を有する状態で金属充填微細構造体をロール状に巻き取る巻取工程を有してもよい。
 ここで、上述の巻取工程における巻き取り方法は特に限定されず、例えば、所定径及び所定幅の巻き芯に巻き取る方法が挙げられる。
[Winding process]
For the reason that the transportability of the metal-filled microstructure to be produced is further improved, a winding step of winding the metal-filled microstructure into a roll shape with the above-mentioned resin layer after the above-mentioned arbitrary resin layer forming step. May have.
Here, the winding method in the above-mentioned winding step is not particularly limited, and examples thereof include a method of winding on a winding core having a predetermined diameter and a predetermined width.
 また、上述の巻取工程における巻き取りやすさの観点から、樹脂層(図示せず)を除く金属充填微細構造体の平均厚みが30μm以下であることが好ましく、5~20μmであることがより好ましい。なお、平均厚みは、樹脂層を除く金属充填微細構造体を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、10点測定した平均値とする等の方法で算出できる。 Further, from the viewpoint of ease of winding in the above-mentioned winding step, the average thickness of the metal-filled microstructure excluding the resin layer (not shown) is preferably 30 μm or less, and more preferably 5 to 20 μm. preferable. The average thickness was measured at 10 points by cutting a metal-filled microstructure excluding the resin layer with FIB in the thickness direction and taking a surface photograph (magnification of 50,000 times) of the cross section by FE-SEM. It can be calculated by using an average value or the like.
 〔その他の処理工程〕
 本発明の製造方法は、上述の各工程以外に、国際公開第2015/029881号の[0049]~[0057]段落に記載された研磨工程、表面平滑化工程、保護膜形成処理、水洗処理を有していてもよい。
 また、製造上のハンドリング性、及び金属充填微細構造体を異方導電性部材として用いる観点から、以下に示すような、種々のプロセス及び形式を適用することができる。
[Other processing processes]
In addition to the above-mentioned steps, the production method of the present invention includes a polishing step, a surface smoothing step, a protective film forming treatment, and a water washing treatment described in paragraphs [0049] to [0057] of International Publication No. 2015/029881. You may have.
Further, from the viewpoint of manufacturing handleability and the use of the metal-filled microstructure as the anisotropic conductive member, various processes and types as shown below can be applied.
 <仮接着剤を使用したプロセス例>
 上述の基板除去工程によって金属充填微細構造体を得た後に、金属充填微細構造体を仮接着剤(Temporary Bonding Materials)を用いてシリコンウエハ上に固定し、研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、先の仮接着剤よりも接着力の強い仮接着剤を塗布してシリコンウエハ上に固定した後、先の仮接着剤で接着していたシリコンウエハを剥離し、剥離した金属充填微細構造体側の表面に対して、上述の裏面金属突出工程を行うことができる。
<Process example using temporary adhesive>
After obtaining the metal-filled microstructure by the above-mentioned substrate removing step, the metal-filled microstructure is fixed on a silicon wafer using a temporary adhesive (Temporary Bonding Materials) and thinned by polishing. You may be.
Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a temporary adhesive having a stronger adhesive force than the previous temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the silicon wafer bonded with the previous temporary adhesive is peeled off. Then, the above-mentioned back surface metal projecting step can be performed on the surface of the peeled metal-filled microstructure side.
 <ワックスを使用したプロセス例>
 上述の基板除去工程によって金属充填微細構造体を得た後に、金属充填微細構造体をワックスを用いてシリコンウエハ上に固定し、研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、仮接着剤を塗布してシリコンウエハ上に固定した後、加熱により先のワックスを溶解させてシリコンウエハを剥離し、剥離した金属充填微細構造体側の表面に対して、上述の裏面金属突出工程を行うことができる。
 なお、固形ワックスを使っても構わないが、スカイコート(日化精工社製)等の液体ワックスを使うと塗布厚均一性の向上を図ることができる。
<Example of process using wax>
After obtaining the metal-filled microstructure by the above-mentioned substrate removing step, the metal-filled microstructure may be fixed on a silicon wafer with wax and thinned by polishing.
Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the wax is melted by heating to peel off the silicon wafer, and the surface on the side of the peeled metal-filled microstructure is peeled off. On the other hand, the above-mentioned back surface metal projecting step can be performed.
Although solid wax may be used, liquid wax such as Skycoat (manufactured by Nikka Seiko Co., Ltd.) can be used to improve the uniformity of coating thickness.
 <基板除去処理を後から行うプロセス例>
 上述のめっき工程の後であって上述の基板除去工程の前に、アルミニウム部材を仮接着剤、ワックス又は機能性吸着フィルムを用いて剛性基板(例えば、シリコンウエハ、ガラス基板等)に固定した後に、上述の陽極酸化膜の上述のアルミニウム部材が設けられていない側の表面を研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、絶縁性材料である樹脂材料(例えば.エポキシ樹脂、ポリイミド樹脂等)を塗布したのち、その表面に上述と同様の手法で剛性基板を貼り付けることができる。樹脂材料による貼り付けは、接着力が仮接着剤等による接着力よりも大きくなるようなものを選択し、樹脂材料による貼り付けの後に、最初に貼り付けた剛性基板を剥離し、上述の基板除去工程、研磨工程及び裏面金属突出処理工程を順に行うことにより行なうことができる。
 なお、機能性吸着フィルムとしては、Q-chuck(登録商標)(丸石産業株式会社製)等を使用することができる。
<Example of process for removing the substrate later>
After fixing the aluminum member to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) using a temporary adhesive, wax, or a functional adsorption film after the above-mentioned plating step and before the above-mentioned substrate removal step. It may have a step of thinning the surface of the above-mentioned anodized film on the side where the above-mentioned aluminum member is not provided by polishing.
Then, after the step of thinning the layer, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a resin material (for example, epoxy resin, polyimide resin, etc.), which is an insulating material, is applied to the surface on which the metal is projected, and then a rigid substrate can be attached to the surface by the same method as described above. For sticking with a resin material, select one whose adhesive strength is greater than the adhesive strength with a temporary adhesive or the like, and after sticking with the resin material, peel off the rigid substrate pasted first, and then peel off the above-mentioned substrate. It can be performed by sequentially performing the removal step, the polishing step, and the back surface metal protrusion treatment step.
As the functional adsorption film, Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.) or the like can be used.
 金属充填微細構造体が剥離可能な層によって剛体基板(例えば、シリコンウエハ、ガラス基板等)に貼り付けられた状態で製品として供されることが好ましい。
 このような供給形態においては、金属充填微細構造体を接合部材として利用する場合には、金属充填微細構造体の表面をデバイス表面に仮接着し、剛体基板を剥離した後に接続対象となるデバイスを適切な場所に設置し、加熱圧着することで上下のデバイスを金属充填微細構造体によって接合することができる。
 また、剥離可能な層には、熱剥離層を用いても構わないし、ガラス基板との組合せで光剥離層を用いても構わない。
It is preferable that the metal-filled microstructure is provided as a product in a state of being attached to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) by a peelable layer.
In such a supply form, when the metal-filled microstructure is used as a joining member, the surface of the metal-filled microstructure is temporarily adhered to the device surface, the rigid substrate is peeled off, and then the device to be connected is attached. By installing in an appropriate place and heat-bonding, the upper and lower devices can be joined by a metal-filled microstructure.
Further, as the peelable layer, a heat peeling layer may be used, or a light peeling layer may be used in combination with a glass substrate.
 また、上述の各工程は、各工程を枚葉で行うことも可能であるし、アルミニウムのコイルを原反としてウェブで連続処理することもできる。
 また、連続処理する場合には各工程間に適切な洗浄工程、乾燥工程を設置することが好ましい。
In addition, each of the above-mentioned steps can be performed on a single sheet, or can be continuously processed on a web using an aluminum coil as a raw material.
Further, in the case of continuous treatment, it is preferable to set an appropriate cleaning step and drying step between each step.
 上述の各処理工程を有する製造方法により、アルミニウム部材の陽極酸化膜からなる絶縁性基材に設けられた貫通孔由来の貫通孔の内部に金属が充填されてなる金属充填微細構造体が得られる。
 具体的には、上述の製造方法により、例えば、特開2008-270158号公報に記載された異方導電性部材、すなわち、絶縁性基材(貫通孔を有するアルミニウム部材の陽極酸化膜)中に、導電性部材(金属)からなる複数の導通路が、互いに絶縁された状態で上述の絶縁性基材を厚み方向に貫通し、かつ、上述の各導通路の一端が上述の絶縁性基材の一方の面において露出し、上述の各導通路の他端が上述の絶縁性基材の他方の面において露出した状態で設けられる異方導電性部材を得ることができる。
By the manufacturing method having each of the above-mentioned treatment steps, a metal-filled microstructure in which a metal is filled inside a through hole derived from a through hole provided in an insulating base material made of an anodic oxide film of an aluminum member can be obtained. ..
Specifically, by the above-mentioned production method, for example, in the anisotropic conductive member described in Japanese Patent Application Laid-Open No. 2008-270158, that is, in an insulating base material (anodized film of an aluminum member having through holes). , A plurality of conduction paths made of conductive members (metals) penetrate the above-mentioned insulating base material in the thickness direction in a state of being insulated from each other, and one end of each of the above-mentioned conduction paths is the above-mentioned insulating base material. It is possible to obtain an anisotropic conductive member which is exposed on one surface and is provided in a state where the other end of each of the above-mentioned conduction paths is exposed on the other surface of the above-mentioned insulating base material.
 以下、上述の製造方法で製造された金属充填微細構造体20の一例について説明する。図13は本発明の実施形態の金属充填微細構造体の一例を示す平面図であり、図14は本発明の実施形態の金属充填微細構造体の一例を示す模式的断面図である。図14は図13の切断面線IB-IB断面図である。また、図15は本発明の実施形態の金属充填微細構造体を用いた異方導電材の構成の一例を示す模式的断面図である。 Hereinafter, an example of the metal-filled microstructure 20 manufactured by the above-mentioned manufacturing method will be described. FIG. 13 is a plan view showing an example of the metal-filled microstructure according to the embodiment of the present invention, and FIG. 14 is a schematic cross-sectional view showing an example of the metal-filled microstructure according to the embodiment of the present invention. FIG. 14 is a cross-sectional view taken along the line IB-IB of FIG. Further, FIG. 15 is a schematic cross-sectional view showing an example of the configuration of the anisotropic conductive material using the metal-filled microstructure of the embodiment of the present invention.
 上述のようにして製造された金属充填微細構造体20は、図13及び図14に示すように,例えば、アルミニウムの陽極酸化膜14(図5参照)からなる絶縁性基材40と、絶縁性基材40の厚み方向Dt(図14参照)に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導通路16とを備える部材である。金属充填微細構造体20は、更に、絶縁性基材40の表面40a及び裏面40bに設けられた樹脂層44を具備する。
 ここで、「互いに電気的に絶縁された状態」とは、絶縁性基材の内部に存在している各導通路が絶縁性基材の内部において互いに各導通路間の導通性が十分に低い状態であることを意味する。
 金属充填微細構造体20は、導通路16が互いに電気的に絶縁されており、絶縁性基材40の厚み方向Dt(図14参照)と直交する方向xには導電性が十分に低く、厚み方向Dt(図14参照)に導電性を有する。このように金属充填微細構造体20は異方導電性を示す部材である。例えば、金属充填微細構造体20は厚み方向Dt(図14参照)を、積層デバイス60の積層方向Dsに一致させて配置される。
As shown in FIGS. 13 and 14, the metal-filled microstructure 20 manufactured as described above has, for example, an insulating base material 40 made of an aluminum anodic oxide film 14 (see FIG. 5) and an insulating base material 40. It is a member provided with a plurality of conduction paths 16 that penetrate the base material 40 in the thickness direction Dt (see FIG. 14) and are provided in a state of being electrically insulated from each other. The metal-filled microstructure 20 further includes a resin layer 44 provided on the front surface 40a and the back surface 40b of the insulating base material 40.
Here, the "state of being electrically insulated from each other" means that the conduction paths existing inside the insulating base material have sufficiently low conductivity between the conduction paths inside the insulating base material. It means that it is in a state.
In the metal-filled microstructure 20, the conductive paths 16 are electrically insulated from each other, and the conductivity is sufficiently low in the direction x orthogonal to the thickness direction Dt (see FIG. 14) of the insulating base material 40, and the thickness is high. It has conductivity in the direction Dt (see FIG. 14). As described above, the metal-filled microstructure 20 is a member exhibiting anisotropic conductivity. For example, the metal-filled microstructure 20 is arranged so that the thickness direction Dt (see FIG. 14) coincides with the stacking direction Ds of the stacking device 60.
 導通路16は、図13及び図14に示すように、互いに電気的に絶縁された状態で絶縁性基材40を厚み方向Dtに貫通して設けられている。
 更に、導通路16は、図14に示すように、絶縁性基材40の表面40a及び裏面40bから突出した突出部分16a及び突出部分16bを有してもよい。金属充填微細構造体20は、更に、絶縁性基材40の表面40a及び裏面40bに設けられた樹脂層44を具備してもよい。樹脂層44は、粘着性を備え、接合性を付与するものでもある。突出部分16a及び突出部分16bの長さは、6nm以上であることが好ましく、より好ましくは30nm~500nmである。
As shown in FIGS. 13 and 14, the conduction path 16 is provided so as to penetrate the insulating base material 40 in the thickness direction Dt in a state of being electrically insulated from each other.
Further, as shown in FIG. 14, the conduction path 16 may have a protruding portion 16a and a protruding portion 16b protruding from the front surface 40a and the back surface 40b of the insulating base material 40. The metal-filled microstructure 20 may further include a resin layer 44 provided on the front surface 40a and the back surface 40b of the insulating base material 40. The resin layer 44 also has adhesiveness and imparts bondability. The length of the protruding portion 16a and the protruding portion 16b is preferably 6 nm or more, more preferably 30 nm to 500 nm.
 また、図15及び図14においては、絶縁性基材40の表面40a及び裏面40bに樹脂層44を有するものを示しているが、これに限定されるものではなく、絶縁性基材40の少なくとも一方の表面に、樹脂層44を有する構成でもよい。
 同様に、図15及び図14の導通路16は両端に突出部分16a及び突出部分16bがあるが、これに限定されるものではなく、絶縁性基材40の少なくとも樹脂層44を有する側の表面に突出部分を有する構成でもよい。
Further, in FIGS. 15 and 14, those having the resin layer 44 on the front surface 40a and the back surface 40b of the insulating base material 40 are shown, but the present invention is not limited to this, and at least the insulating base material 40 is at least. A resin layer 44 may be provided on one surface.
Similarly, the conduction path 16 of FIGS. 15 and 14 has a protruding portion 16a and a protruding portion 16b at both ends, but the present invention is not limited to this, and the surface of the insulating base material 40 on the side having at least the resin layer 44. It may be configured to have a protruding portion.
 図14に示す金属充填微細構造体20の厚みhは、例えば、30μm以下である。また、金属充填微細構造体20は、TTV(Total Thickness Variation)が10μm以下であることが好ましい。
 ここで、金属充填微細構造体20の厚みhは、金属充填微細構造体20を、電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、金属充填微細構造体20の輪郭形状を取得し、厚みhに相当する領域について10点測定した平均値のことである。
 また、金属充填微細構造体20のTTV(Total Thickness Variation)は、金属充填微細構造体20をダイシングで支持体46ごと切断し、金属充填微細構造体20の断面形状を観察して求めた値である。
The thickness h of the metal-filled microstructure 20 shown in FIG. 14 is, for example, 30 μm or less. Further, the metal-filled microstructure 20 preferably has a TTV (Total Thickness Variation) of 10 μm or less.
Here, the thickness h of the metal-filled microstructure 20 is obtained by observing the metal-filled microstructure 20 with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times to obtain the contour shape of the metal-filled microstructure 20. It is an average value measured at 10 points in the region corresponding to the thickness h.
Further, the TTV (Total Thickness Variation) of the metal-filled microstructure 20 is a value obtained by cutting the metal-filled microstructure 20 together with the support 46 by dicing and observing the cross-sectional shape of the metal-filled microstructure 20. be.
 金属充填微細構造体20は、移送、搬送及び運搬ならびに保管等のために図15に示すように支持体46の上に設けられる。支持体46と金属充填微細構造体20の間に剥離層47が設けられている。支持体46と金属充填微細構造体20は剥離層47により、分離可能に接着されている。上述のように金属充填微細構造体20が支持体46の上に剥離層47を介して設けられたものを異方導電材50という。
 支持体46は、金属充填微細構造体20を支持するものであり、例えば、シリコン基板で構成されている。支持体46としては、シリコン基板以外に、例えば、SiC、SiN、GaN及びアルミナ(Al)等のセラミックス基板、ガラス基板、繊維強化プラスチック基板、ならびに金属基板を用いることができる。繊維強化プラスチック基板には、プリント配線基板であるFR-4(Flame Retardant Type 4)基板等も含まれる。
The metal-filled microstructure 20 is provided on the support 46 as shown in FIG. 15 for transfer, transport, transport, storage, and the like. A release layer 47 is provided between the support 46 and the metal-filled microstructure 20. The support 46 and the metal-filled microstructure 20 are separably bonded by a release layer 47. As described above, the metal-filled microstructure 20 provided on the support 46 via the release layer 47 is referred to as an anisotropic conductive material 50.
The support 46 supports the metal-filled microstructure 20, and is made of, for example, a silicon substrate. As the support 46, in addition to the silicon substrate, for example, a ceramic substrate such as SiC, SiC, GaN and alumina (Al 2 O 3 ), a glass substrate, a fiber reinforced plastic substrate, and a metal substrate can be used. The fiber reinforced plastic substrate also includes a FR-4 (Flame Retardant Type 4) substrate, which is a printed wiring board.
 また、支持体46としては、可撓性を有し、かつ透明であるものを用いることができる。可撓性を有し、かつ透明な支持体46としては、例えば、PET(ポリエチレンテレフタレート)、ポリシクロオレフィン、ポリカーボネート、アクリル樹脂、PEN(ポリエチレンナフタレート)、PE(ポリエチレン)、PP(ポリプロピレン)、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン及びTAC(トリアセチルセルロース)等のプラスチックフィルムが挙げられる。
 ここで、透明とは、位置合せに使用する波長の光で透過率が80%以上であることをいう。このため、波長400~800nmの可視光全域で透過率が低くてもよいが、波長400~800nmの可視光全域で透過率が80%以上であることが好ましい。透過率は、分光光度計により測定される。
Further, as the support 46, one having flexibility and being transparent can be used. Examples of the flexible and transparent support 46 include PET (polyethylene terephthalate), polycycloolefin, polycarbonate, acrylic resin, PEN (polyethylene naphthalate), PE (polyethylene), PP (polypropylene), and the like. Examples thereof include plastic films such as polypropylene, polyvinyl chloride, polyvinylidene chloride and TAC (triacetyl cellulose).
Here, "transparency" means that the light having a wavelength used for alignment has a transmittance of 80% or more. Therefore, the transmittance may be low in the entire visible light having a wavelength of 400 to 800 nm, but it is preferable that the transmittance is 80% or more in the entire visible light having a wavelength of 400 to 800 nm. The transmittance is measured by a spectrophotometer.
 剥離層47は、支持層48と剥離剤49が積層されたものであることが好ましい。剥離剤49が金属充填微細構造体20に接しており、剥離層47を起点にして、支持体46と金属充填微細構造体20が分離する。異方導電材50では、例えば、予め定められた温度に加熱することで、剥離剤49の接着力が弱まり、金属充填微細構造体20から支持体46が取り除かれる。
 剥離剤49には、例えば、日東電工社製リバアルファ(登録商標)、及びソマール株式会社製ソマタック(登録商標)等を用いることができる。
The release layer 47 is preferably a laminate of the support layer 48 and the release agent 49. The release agent 49 is in contact with the metal-filled microstructure 20, and the support 46 and the metal-filled microstructure 20 are separated from each other starting from the release layer 47. In the anisotropic conductive material 50, for example, by heating to a predetermined temperature, the adhesive force of the release agent 49 is weakened, and the support 46 is removed from the metal-filled microstructure 20.
As the release agent 49, for example, Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation, Somatac (registered trademark) manufactured by SOMAR Corporation, or the like can be used.
 また、樹脂層44に保護層(図示せず)を設けてもよい。保護層は、構造体表面を傷等から保護するために用いるものであるため、易剥離テープが好ましい。保護層として、例えば、粘着層付きフィルムを用いてもよい。
 粘着層付きフィルムとして、例えば、ポリエチレン樹脂フィルム表面に粘着剤層が形成されているサニテクト(SUNYTECT)〔登録商標〕(株式会社サンエー化研製)、ポリエチレンテレフタレート樹脂フィルム表面に粘着剤層が形成されているE-MASK〔登録商標〕(日東電工株式会社製)、ポリエチレンテレフタレート樹脂フィルム表面に粘着剤層が形成されているマスタック〔登録商標〕(藤森工業株式会社製)等のシリーズ名で販売されている市販品を用いることができる。
 また、粘着層付きフィルムを貼り付ける方法は特に限定されず、従来公知の表面保護テープ貼付装置及びラミネーターを用いて貼り付けることができる。
Further, the resin layer 44 may be provided with a protective layer (not shown). Since the protective layer is used to protect the surface of the structure from scratches and the like, an easily peelable tape is preferable. As the protective layer, for example, a film with an adhesive layer may be used.
As a film with an adhesive layer, for example, SANYTECT [registered trademark] (manufactured by Sanei Kaken Co., Ltd.) in which an adhesive layer is formed on the surface of a polyethylene resin film, and an adhesive layer is formed on the surface of a polyethylene terephthalate resin film. E-MASK [registered trademark] (manufactured by Nitto Denko Co., Ltd.), Massac [registered trademark] (manufactured by Fujimori Kogyo Co., Ltd.) in which an adhesive layer is formed on the surface of a polyethylene terephthalate resin film, etc. Commercially available products can be used.
Further, the method of attaching the film with the adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device and a laminator.
 以下、金属充填微細構造体20の構成を、より具体的に説明する。
 〔絶縁性基材〕
 絶縁性基材の物性、及び組成は上述のとおりである。
 絶縁性基材40の厚みhtは、1~1000μmの範囲内であるのが好ましく、5~500μmの範囲内であるのがより好ましく、10~300μmの範囲内であるのが更に好ましい。絶縁性基材の厚みがこの範囲であると、絶縁性基材の取り扱い性が良好となる。
 絶縁性基材40の厚みhtは、絶縁性基材40を、厚み方向Dtに対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面を電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、絶縁性基材40の輪郭形状を取得し、厚みhtに相当する領域について10点測定した平均値のことである。
Hereinafter, the configuration of the metal-filled microstructure 20 will be described more specifically.
[Insulating base material]
The physical characteristics and composition of the insulating base material are as described above.
The thickness ht of the insulating base material 40 is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 500 μm, and further preferably in the range of 10 to 300 μm. When the thickness of the insulating base material is within this range, the handleability of the insulating base material is improved.
The thickness ht of the insulating base material 40 is obtained by cutting the insulating base material 40 with a focused ion beam (FIB) in the thickness direction Dt and cutting a cross section thereof with a field emission scanning electron microscope 20. It is an average value obtained by observing at a magnification of 10,000 times, acquiring the contour shape of the insulating base material 40, and measuring 10 points in a region corresponding to the thickness ht.
 絶縁性基材における各貫通孔の間隔は、5nm~800nmであることが好ましく、10nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。絶縁性基材における各貫通孔の間隔がこの範囲であると、絶縁性基材が絶縁性の隔壁として十分に機能する。貫通孔の間隔は、導通路の間隔と同じである。
 ここで、貫通孔の間隔、すなわち、導通路の間隔とは、隣接する導通路間の幅w(図14参照)をいい、異方導電性部材の断面を電界放出形走査型電子顕微鏡により20万倍の倍率で観察し、隣接する導通路間の幅を10点で測定した平均値をいう。
The distance between the through holes in the insulating base material is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 50 nm to 140 nm. When the distance between the through holes in the insulating base material is within this range, the insulating base material sufficiently functions as an insulating partition wall. The spacing between the through holes is the same as the spacing between the conduction paths.
Here, the interval between the through holes, that is, the interval between the conduction paths means the width w between the adjacent conduction paths (see FIG. 14), and the cross section of the heteroconductive member is measured by a field emission scanning electron microscope 20. It is the average value measured at 10 points by observing at a magnification of 10,000 times and measuring the width between adjacent conduction paths.
 <細孔の平均径>
 細孔の平均径、すなわち、貫通孔12の平均径d(図14参照)は、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることが更に好ましく、40~200nmであることが更に一層好ましく、50~100nmであることが最も好ましい。貫通孔12の平均径dが、1μm以下であり、上述の範囲であると、得られる導通路16に電気信号を流した際に十分な応答が得ることができるため、電子部品の検査用コネクタとして、より好適に用いることができる。
 貫通孔12の平均径dは、走査型電子顕微鏡を用いて陽極酸化膜14の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を貫通孔の平均径として算出する。
 なお、倍率は、貫通孔を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、貫通孔部分の端部間の距離の最大値を測定した。すなわち、貫通孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、貫通孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の貫通孔が一体化したような形状の貫通孔の場合にも、これを1つの貫通孔とみなし、貫通孔部分の端部間の距離の最大値を開口径とする。
<Average diameter of pores>
The average diameter of the pores, that is, the average diameter d of the through holes 12 (see FIG. 14) is preferably 1 μm or less, more preferably 5 to 500 nm, still more preferably 20 to 400 nm. It is even more preferably 40 to 200 nm, and most preferably 50 to 100 nm. When the average diameter d of the through hole 12 is 1 μm or less and is within the above range, a sufficient response can be obtained when an electric signal is passed through the obtained conduction path 16, so that a connector for inspection of electronic components can be obtained. It can be used more preferably.
The average diameter d of the through holes 12 is obtained by photographing the surface of the anodic oxide film 14 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 through holes having an annular shape around them are extracted, the diameters thereof are measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the through holes.
As the magnification, the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more through holes can be obtained. For the opening diameter, the maximum value of the distance between the ends of the through hole portion was measured. That is, since the shape of the opening of the through hole is not limited to a substantially circular shape, when the shape of the opening is a non-circular shape, the maximum value of the distance between the ends of the through hole portion is set as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portion is set as the opening diameter. ..
 〔導通路〕
 導通路は金属で構成される。金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、及びニッケル(Ni)等が好適に例示される。電気伝導性の観点から、銅、金、アルミニウム、及びニッケルが好ましく、銅及び金がより好ましい。
[Conduction path]
The conduction path is made of metal. Specific examples of the metal are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, and copper and gold are more preferable.
 <突出部分>
 異方導電性部材と電極とを圧着等の手法により電気的接続、又は物理的に接合する際に、突出部分が潰れた場合の面方向の絶縁性を十分に確保できる理由から、導通路の突出部分のアスペクト比(突出部分の高さ/突出部分の直径)が0.5以上50未満であることが好ましく、0.8~20であることがより好ましく、1~10であることが更に好ましい。
<Protruding part>
When the anisotropic conductive member and the electrode are electrically connected or physically joined by a method such as crimping, the conduction path can be provided with sufficient insulation in the surface direction when the protruding portion is crushed. The aspect ratio of the protruding portion (height of the protruding portion / diameter of the protruding portion) is preferably 0.5 or more and less than 50, more preferably 0.8 to 20, and further preferably 1 to 10. preferable.
 また、接続対象の半導体部材の表面形状に追従する観点から、導通路の突出部分の高さは、上述のように20nm以上であることが好ましく、より好ましくは100nm~500nmである。
 導通路の突出部分の高さは、金属充填微細構造体の断面を電解放出形走査型電子顕微鏡により2万倍の倍率で観察し、導通路の突出部分の高さを10点で測定した平均値をいう。
 導通路の突出部分の直径は、金属充填微細構造体の断面を電解放出形走査型電子顕微鏡により観察し、導通路の突出部分の直径を10点で測定した平均値をいう。
Further, from the viewpoint of following the surface shape of the semiconductor member to be connected, the height of the protruding portion of the conduction path is preferably 20 nm or more, more preferably 100 nm to 500 nm, as described above.
The height of the protruding portion of the conduction path is the average obtained by observing the cross section of the metal-filled microstructure with a field emission scanning electron microscope at a magnification of 20,000 times and measuring the height of the protruding portion of the conduction path at 10 points. The value.
The diameter of the protruding portion of the conduction path is an average value obtained by observing the cross section of the metal-filled microstructure with a field emission scanning electron microscope and measuring the diameter of the protruding portion of the conduction path at 10 points.
 上述のように導通路16は絶縁性基材40によって互いに電気的に絶縁された状態で存在するものであるが、その密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることが更に好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。
 更に、隣接する各導通路16の中心間距離p(図13参照)は、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。
As described above, the conduction paths 16 exist in a state of being electrically insulated from each other by the insulating base material 40, but the density thereof is preferably 20,000 / mm 2 or more, and 2 million. more preferably / mm 2 or more, still more preferably 10,000,000 / mm 2 or more, particularly preferably at 50 million / mm 2 or more, 100 million / mm 2 or more Most preferred.
Further, the distance p between the centers of the adjacent conduction paths 16 (see FIG. 13) is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
 〔樹脂層〕
 上述のように、樹脂層は、絶縁性基材の表面と裏面に設けられ、上述のように導通路の突出部を埋設するものである。すなわち、樹脂層は絶縁性基材から突出した導通路の端部を被覆し、突出部を保護する。
 樹脂層は、上述の樹脂層形成工程により形成されるものである。樹脂層は、例えば、50℃~200℃の温度範囲で流動性を示し、200℃以上で硬化するものであることが好ましい。
 樹脂層は、上述の樹脂層形成工程により形成されるものであるが、以下に示す、樹脂剤の組成を用いることもできる。以下、樹脂層の組成について説明する。樹脂層は、高分子材料を含有するものである。樹脂層は酸化防止材料を含有してもよい。
[Resin layer]
As described above, the resin layer is provided on the front surface and the back surface of the insulating base material, and the protruding portion of the conduction path is embedded as described above. That is, the resin layer covers the end of the conduction path protruding from the insulating base material and protects the protruding portion.
The resin layer is formed by the above-mentioned resin layer forming step. The resin layer preferably exhibits fluidity in the temperature range of 50 ° C. to 200 ° C. and cures at 200 ° C. or higher.
The resin layer is formed by the above-mentioned resin layer forming step, but the composition of the resin agent shown below can also be used. Hereinafter, the composition of the resin layer will be described. The resin layer contains a polymer material. The resin layer may contain an antioxidant material.
 <高分子材料>
 樹脂層に含まれる高分子材料としては特に限定されないが、半導体チップ又は半導体ウエハと異方導電性部材との隙間を効率よく埋めることができ、半導体チップ又は半導体ウエハとの密着性がより高くなる理由から、熱硬化性樹脂であることが好ましい。
 熱硬化性樹脂としては、具体的には、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、メラミン樹脂、イソシアネート系樹脂等が挙げられる。
 なかでも、絶縁信頼性がより向上し、耐薬品性に優れる理由から、ポリイミド樹脂及び/又はエポキシ樹脂を用いるのが好ましい。
<Polymer material>
The polymer material contained in the resin layer is not particularly limited, but the gap between the semiconductor chip or the semiconductor wafer and the anisotropic conductive member can be efficiently filled, and the adhesion to the semiconductor chip or the semiconductor wafer is further improved. For this reason, it is preferably a thermosetting resin.
Specific examples of the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, polyurethane resin, bismaleimide resin, melamine resin, isocyanate resin and the like.
Of these, a polyimide resin and / or an epoxy resin is preferably used because the insulation reliability is further improved and the chemical resistance is excellent.
 <酸化防止材料>
 樹脂層に含まれる酸化防止材料としては、具体的には、例えば、1,2,3,4-テトラゾール、5-アミノ-1,2,3,4-テトラゾール、5-メチル-1,2,3,4-テトラゾール、1H-テトラゾール-5-酢酸、1H-テトラゾール-5-コハク酸、1,2,3-トリアゾール、4-アミノ-1,2,3-トリアゾール、4,5-ジアミノ-1,2,3-トリアゾール、4-カルボキシ-1H-1,2,3-トリアゾール、4,5-ジカルボキシ-1H-1,2,3-トリアゾール、1H-1,2,3-トリアゾール-4-酢酸、4-カルボキシ-5-カルボキシメチル-1H-1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-カルボキシ-1,2,4-トリアゾール、3,5-ジカルボキシ-1,2,4-トリアゾール、1,2,4-トリアゾール-3-酢酸、1H-ベンゾトリアゾール、1H-ベンゾトリアゾール-5-カルボン酸、ベンゾフロキサン、2,1,3-ベンゾチアゾール、o-フェニレンジアミン、m-フェニレンジアミン、カテコール、o-アミノフェノール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、メラミン、及びこれらの誘導体が挙げられる。
 これらのうち、ベンゾトリアゾール及びその誘導体が好ましい。
 ベンゾトリアゾール誘導体としては、ベンゾトリアゾールのベンゼン環に、ヒドロキシル基、アルコキシ基(例えば、メトキシ基、エトキシ基等)、アミノ基、ニトロ基、アルキル基(例えば、メチル基、エチル基、ブチル基等)、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)等を有する置換ベンゾトリアゾールが挙げられる。また、ナフタレントリアゾール、ナフタレンビストリアゾール、と同様に置換された置換ナフタレントリアゾール、置換ナフタレンビストリアゾール等も挙げることができる。
<Antioxidant material>
Specific examples of the antioxidant material contained in the resin layer include 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2, 3,4-tetrazole, 1H-tetrazol-5-acetic acid, 1H-tetrazole-5-succinic acid, 1,2,3-triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1 , 2,3-Triazole, 4-carboxy-1H-1,2,3-Triazole, 4,5-Dicarboxy-1H-1,2,3-Triazole, 1H-1,2,3-Triazole-4- Acetic acid, 4-carboxy-5-carboxymethyl-1H-1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2 , 4-Triazole, 3-carboxy-1,2,4-Triazole, 3,5-dicarboxy-1,2,4-Triazole, 1,2,4-Triazole-3-acetic acid, 1H-benzotriazole, 1H -Benzotriazole-5-carboxylic acid, benzofloxane, 2,1,3-benzothiazole, o-phenylenediamine, m-phenylenediamine, catechol, o-aminophenol, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole , 2-Mercaptobenzoxazole, melamine, and derivatives thereof.
Of these, benzotriazole and its derivatives are preferable.
Examples of the benzotriazole derivative include a hydroxyl group, an alkoxy group (for example, methoxy group, ethoxy group, etc.), an amino group, a nitro group, and an alkyl group (for example, a methyl group, an ethyl group, a butyl group, etc.) on the benzene ring of benzotriazole. , Substituted benzotriazole having a halogen atom (for example, fluorine, chlorine, bromine, iodine, etc.) and the like. Moreover, the substituted naphthalene triazole, the substituted naphthalene bistriazole and the like which have been substituted in the same manner as naphthalene triazole and naphthalene bistriazole can also be mentioned.
 また、樹脂層に含まれる酸化防止材料の他の例としては、一般的な酸化防止剤である、高級脂肪酸、高級脂肪酸銅、フェノール化合物、アルカノールアミン、ハイドロキノン類、銅キレート剤、有機アミン、有機アンモニウム塩等が挙げられる。 In addition, as another example of the antioxidant material contained in the resin layer, general antioxidants such as higher fatty acids, higher fatty acid copper, phenol compounds, alkanolamines, hydroquinones, copper chelating agents, organic amines, and organic substances are used. Examples include ammonium salts.
 樹脂層に含まれる酸化防止材料の含有量は特に限定されないが、防食効果の観点から、樹脂層の全質量に対して0.0001質量%以上が好ましく、0.001質量%以上がより好ましい。また、本接合プロセスにおいて適切な電気抵抗を得る理由から、5.0質量%以下が好ましく、2.5質量%以下がより好ましい。 The content of the antioxidant material contained in the resin layer is not particularly limited, but from the viewpoint of the anticorrosion effect, 0.0001% by mass or more is preferable, and 0.001% by mass or more is more preferable with respect to the total mass of the resin layer. Further, for the reason of obtaining an appropriate electric resistance in this joining process, 5.0% by mass or less is preferable, and 2.5% by mass or less is more preferable.
 <マイグレーション防止材料>
 樹脂層は、樹脂層に含有し得る金属イオン、ハロゲンイオン、ならびに半導体チップ及び半導体ウエハに由来する金属イオンをトラップすることによって絶縁信頼性がより向上する理由から、マイグレーション防止材料を含有しているのが好ましい。
<Migration prevention material>
The resin layer contains a migration prevention material for the reason that the insulation reliability is further improved by trapping the metal ions and halogen ions that can be contained in the resin layer and the metal ions derived from the semiconductor chip and the semiconductor wafer. Is preferable.
 マイグレーション防止材料としては、例えば、イオン交換体、具体的には、陽イオン交換体と陰イオン交換体との混合物、又は、陽イオン交換体のみを使用することができる。
 ここで、陽イオン交換体及び陰イオン交換体は、それぞれ、例えば、後述する無機イオン交換体及び有機イオン交換体の中から適宜選択することができる。
As the migration prevention material, for example, an ion exchanger, specifically, a mixture of a cation exchanger and an anion exchanger, or only a cation exchanger can be used.
Here, the cation exchanger and the anion exchanger can be appropriately selected from, for example, the inorganic ion exchanger and the organic ion exchanger described later, respectively.
 (無機イオン交換体)
 無機イオン交換体としては、例えば、含水酸化ジルコニウムに代表される金属の含水酸化物が挙げられる。
 金属の種類としては、例えば、ジルコニウムのほか、鉄、アルミニウム、錫、チタン、アンチモン、マグネシウム、ベリリウム、インジウム、クロム、ビスマス等が知られている。
 これらの中でジルコニウム系のものは、陽イオンのCu2+、Al3+について交換能を有している。また、鉄系のものについても、Ag+、Cu2+について交換能を有している。同様に、錫系、チタン系、アンチモン系のものは、陽イオン交換体である。
 一方、ビスマス系のものは、陰イオンのCl-について交換能を有している。
 また、ジルコニウム系のものは条件に製造条件によっては陰イオンの交換能を示す。アルミニウム系、錫系のものも同様である。
 これら以外の無機イオン交換体としては、リン酸ジルコニウムに代表される多価金属の酸性塩、モリブドリン酸アンモニウムに代表されるヘテロポリ酸塩、不溶性フェロシアン化物等の合成物が知られている。
 これらの無機イオン交換体の一部は既に市販されており、例えば、東亞合成株式会社の商品名イグゼ「IXE」における各種のグレードが知られている。
 なお、合成品のほか、天然物のゼオライト、又はモンモリロン石のような無機イオン交換体の粉末も使用可能である。
(Inorganic ion exchanger)
Examples of the inorganic ion exchanger include hydrous oxides of metals typified by zirconium hydroxide.
As the type of metal, for example, in addition to zirconium, iron, aluminum, tin, titanium, antimony, magnesium, beryllium, indium, chromium, bismuth and the like are known.
Of these, the zirconium-based one has the ability to exchange the cations Cu 2+ and Al 3+. In addition, iron-based products also have exchangeability for Ag + and Cu 2+. Similarly, tin-based, titanium-based, and antimony-based ones are cation exchangers.
On the other hand, those of bismuth-based, anion Cl - has exchange capacity for.
In addition, zirconium-based products show anion exchange ability depending on the manufacturing conditions. The same applies to aluminum-based and tin-based ones.
As other inorganic ion exchangers, compounds such as acid salts of polyvalent metals typified by zirconium phosphate, heteropolylates typified by ammonium molybdrinate, and insoluble ferrocyanides are known.
Some of these inorganic ion exchangers are already on the market, and for example, various grades under the trade name IXE of Toagosei Co., Ltd. are known.
In addition to synthetic products, natural zeolite or powder of an inorganic ion exchanger such as montmorillonite can also be used.
 (有機イオン交換体)
 有機イオン交換体には、陽イオン交換体としてスルホン酸基を有する架橋ポリスチレンが挙げられ、そのほかカルボン酸基、ホスホン酸基又はホスフィン酸基を有するものも挙げられる。
 また、陰イオン交換体として四級アンモニウム基、四級ホスホニウム基又は三級スルホニウム基を有する架橋ポリスチレンが挙げられる。
(Organic ion exchanger)
Examples of the organic ion exchanger include crosslinked polystyrene having a sulfonic acid group as a cation exchanger, and those having a carboxylic acid group, a phosphonic acid group or a phosphinic acid group.
Further, examples of the anion exchanger include crosslinked polystyrene having a quaternary ammonium group, a quaternary phosphonium group or a tertiary sulfonium group.
 これらの無機イオン交換体及び有機イオン交換体は、捕捉したい陽イオン、陰イオンの種類、そのイオンについての交換容量を考慮して適宜選択すればよい。勿論、無機イオン交換体と有機イオン交換体とを混合して使用してもよいことはいうまでもない。
 電子素子の製造工程では加熱するプロセスを含むため、無機イオン交換体が好ましい。
These inorganic ion exchangers and organic ion exchangers may be appropriately selected in consideration of the types of cations and anions to be captured and the exchange capacity for the ions. Of course, it goes without saying that the inorganic ion exchanger and the organic ion exchanger may be mixed and used.
Since the manufacturing process of the electronic device includes a heating process, an inorganic ion exchanger is preferable.
 また、マイグレーション防止材料と上述の高分子材料との混合比は、例えば、機械的強度の観点から、マイグレーション防止材料を10質量%以下とすることが好ましく、マイグレーション防止材料を5質量%以下とすることがより好ましく、更にマイグレーション防止材料を2.5質量%以下とすることが更に好ましい。また、半導体チップ又は半導体ウエハと異方導電性部材とを接合した際のマイグレーションを抑制する観点から、マイグレーション防止材料を0.01質量%以上とすることが好ましい。 Further, the mixing ratio of the migration prevention material and the above-mentioned polymer material is preferably 10% by mass or less for the migration prevention material and 5% by mass or less for the migration prevention material, for example, from the viewpoint of mechanical strength. It is more preferable, and it is further preferable that the migration prevention material is 2.5% by mass or less. Further, from the viewpoint of suppressing migration when the semiconductor chip or semiconductor wafer is bonded to the anisotropic conductive member, the migration prevention material is preferably 0.01% by mass or more.
 <無機充填剤>
 樹脂層は、無機充填剤を含有しているのが好ましい。
 無機充填剤としては特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカ、窒化アルミニウム、酸化ジルコニウム、酸化イットリウム、炭化ケイ素、窒化ケイ素等が挙げられる。
<Inorganic filler>
The resin layer preferably contains an inorganic filler.
The inorganic filler is not particularly limited and may be appropriately selected from known ones. For example, kaolin, barium sulfate, barium titanate, silicon oxide powder, finely powdered silicon oxide, vapor phase silica, amorphous silica. , Crystalline silica, molten silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica, aluminum nitride, zirconium oxide, yttrium oxide, silicon carbide, silicon nitride and the like.
 導通路間に無機充填剤が入ることを防ぎ、導通信頼性がより向上する理由から、無機充填剤の平均粒子径が、各導通路の間隔よりも大きいことが好ましい。
 無機充填剤の平均粒子径は、30nm~10μmであることが好ましく、80nm~1μmであることがより好ましい。
 ここで、平均粒子径は、レーザー回折散乱式粒子径測定装置(日機装株式会社製マイクロトラックMT3300)で測定される、一次粒子径を平均粒子径とする。
It is preferable that the average particle size of the inorganic filler is larger than the distance between the conduction paths in order to prevent the inorganic filler from entering between the conduction paths and further improve the conduction reliability.
The average particle size of the inorganic filler is preferably 30 nm to 10 μm, more preferably 80 nm to 1 μm.
Here, the average particle size is the primary particle size measured by a laser diffraction / scattering type particle size measuring device (Microtrac MT3300 manufactured by Nikkiso Co., Ltd.) as the average particle size.
 <硬化剤>
 樹脂層は、硬化剤を含有していてもよい。
 硬化剤を含有する場合、接続対象の半導体チップ又は半導体ウエハの表面形状との接合不良を抑制する観点から、常温で固体の硬化剤を用いず、常温で液体の硬化剤を含有しているのがより好ましい。
 ここで、「常温で固体」とは、25℃で固体であることをいい、例えば、融点が25℃より高い温度である物質をいう。
<Hardener>
The resin layer may contain a curing agent.
When a curing agent is contained, a solid curing agent is not used at room temperature, but a liquid curing agent at room temperature is contained from the viewpoint of suppressing poor bonding with the surface shape of the semiconductor chip or semiconductor wafer to be connected. Is more preferable.
Here, "solid at room temperature" means a solid at 25 ° C., for example, a substance having a melting point higher than 25 ° C.
 硬化剤としては、具体的には、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホンのような芳香族アミン、脂肪族アミン、4-メチルイミダゾール等のイミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物等のカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、ポリメルカプタン等が挙げられ、これらの硬化剤から、25℃で液体のものを適宜選択して用いることができる。なお、硬化剤は1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the curing agent include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives such as 4-methylimidazole, dicyandiamide, tetramethylguanidine, thiourea-added amines, and methyl. Examples thereof include carboxylic acid anhydrides such as hexahydrophthalic anhydride, carboxylic acid hydrazide, carboxylic acid amides, polyphenol compounds, novolak resins, and polymercaptans. From these curing agents, liquid ones at 25 ° C. are appropriately selected. Can be used. The curing agent may be used alone or in combination of two or more.
 樹脂層には、その特性を損なわない範囲内で、広く一般に半導体パッケージの樹脂絶縁膜に添加されている分散剤、緩衝剤、粘度調整剤等の種々の添加剤を含有させてもよい。 The resin layer may contain various additives such as a dispersant, a buffer, and a viscosity regulator, which are generally added to the resin insulating film of a semiconductor package, as long as the characteristics are not impaired.
 <形状>
 導通路を保護する理由から、樹脂層の厚みは、導通路の突出部の高さより大きく、1μm~5μmであることが好ましい。
<Shape>
For the reason of protecting the conduction path, the thickness of the resin layer is preferably larger than the height of the protruding portion of the conduction path and is preferably 1 μm to 5 μm.
 以下、金属充填微細構造体20の適用例として、金属充填微細構造体20を異方導電性部材22(図16等参照)に用いた例について説明する。
 図16は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第1の例を示す模式図であり、図17は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第2の例を示す模式図であり、図18は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第3の例を示す模式図であり、図19は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの第4の例を示す模式図である。
Hereinafter, as an application example of the metal-filled microstructure 20, an example in which the metal-filled microstructure 20 is used for the anisotropic conductive member 22 (see FIG. 16 and the like) will be described.
FIG. 16 is a schematic view showing a first example of a laminated device using the metal-filled microstructure of the embodiment of the present invention, and FIG. 17 is a laminated device using the metal-filled microstructure of the embodiment of the present invention. FIG. 18 is a schematic view showing a second example of the above, FIG. 18 is a schematic view showing a third example of a laminated device using the metal-filled microstructure of the embodiment of the present invention, and FIG. 19 is an embodiment of the present invention. It is a schematic diagram which shows the 4th example of the laminated device which used the metal-filled microstructure of the form.
 また、図16に示す積層デバイス60のように、異方導電性を示す異方導電性部材22を介して半導体素子62と半導体素子64とを積層方向Dsに接合して、半導体素子62と半導体素子64とを電気的に接続してもよい。異方導電性部材22は、上述の金属充填微細構造体20と同じ構成であり、積層方向Dsに導通する導通路16(図5参照)を有し、TSV(Through Silicon Via)の機能を果たす。なお、異方導電性部材22はインターポーザーとしても利用することができる。 Further, as in the laminated device 60 shown in FIG. 16, the semiconductor element 62 and the semiconductor element 64 are joined in the stacking direction Ds via the anisotropic conductive member 22 exhibiting anisotropic conductivity, and the semiconductor element 62 and the semiconductor are joined. The element 64 may be electrically connected. The anisotropic conductive member 22 has the same configuration as the metal-filled microstructure 20 described above, has a conduction path 16 (see FIG. 5) conducting in the stacking direction Ds, and fulfills the function of a TSV (Through Silicon Via). .. The anisotropic conductive member 22 can also be used as an interposer.
 図16に示す構成以外に、例えば、図17に示す積層デバイス60のように、異方導電性部材22を介して半導体素子62と半導体素子64と半導体素子66を積層方向Dsに積層して接合し、かつ電気的に接続した構成としてもよい。
 また、図18に示す積層デバイス60のように、インターポーザー23と異方導電性部材22を用いて、半導体素子62と半導体素子64と半導体素子66を積層方向Dsに積層して接合し、かつ電気的に接続した構成としてもよい。
In addition to the configuration shown in FIG. 16, for example, as in the laminated device 60 shown in FIG. 17, the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are laminated and joined in the lamination direction Ds via the anisotropic conductive member 22. However, the configuration may be electrically connected.
Further, as in the laminated device 60 shown in FIG. 18, the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are laminated and joined in the lamination direction Ds by using the interposer 23 and the anisotropic conductive member 22. It may be electrically connected.
 また、図19に示す積層デバイス60のように光学センサーとして機能するものでもよい。図19に示す積層デバイス60は、半導体素子72とセンサチップ74とが異方導電性部材22を介して積層方向Dsに積層されている。また、センサチップ74にはレンズ76が設けられている。
 半導体素子72は、ロジック回路が形成されたものであり、センサチップ74で得られる信号を処理することができれば、その構成は特に限定されるものではない。
 センサチップ74は、光を検出する光センサーを有するものである。光センサーは、光を検出することができれば、特に限定されるものではなく、例えば、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが用いられる。
 なお、図19に示す積層デバイス60では、半導体素子72とセンサチップ74とを異方導電性部材22を介して接続したが、これに限定されるものではなく、半導体素子72とセンサチップ74とを直接接合する構成でもよい。
 レンズ76は、センサチップ74に光を集光することができれば、その構成は特に限定されるものではなく、例えば、マイクロレンズと呼ばれるものが用いられる。
Further, it may function as an optical sensor as in the laminated device 60 shown in FIG. In the laminated device 60 shown in FIG. 19, the semiconductor element 72 and the sensor chip 74 are laminated in the lamination direction Ds via the anisotropic conductive member 22. Further, the sensor chip 74 is provided with a lens 76.
The semiconductor element 72 has a logic circuit formed therein, and its configuration is not particularly limited as long as it can process the signal obtained by the sensor chip 74.
The sensor chip 74 has an optical sensor that detects light. The optical sensor is not particularly limited as long as it can detect light, and for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
In the laminated device 60 shown in FIG. 19, the semiconductor element 72 and the sensor chip 74 are connected via the anisotropic conductive member 22, but the present invention is not limited to this, and the semiconductor element 72 and the sensor chip 74 are connected to each other. May be directly joined.
The configuration of the lens 76 is not particularly limited as long as it can condense light on the sensor chip 74, and for example, a lens called a microlens is used.
 なお、上述の半導体素子62、半導体素子64及び半導体素子66は、素子領域(図示せず)を有する。
 素子領域とは、電子素子として機能するための、コンデンサ、抵抗及びコイル等の各種の素子構成回路等が形成された領域である。素子領域には、例えば、フラッシュメモリ等のようなメモリ回路、マイクロプロセッサ及びFPGA(field-programmable gate array)等のような論理回路が形成された領域、無線タグ等の通信モジュールならびに配線が形成された領域がある。素子領域には、これ以外に、発信回路、又はMEMS(Micro Electro Mechanical Systems)が形成されてもよい。MEMSとは、例えば、センサー、アクチュエーター及びアンテナ等である。センサーには、例えば、加速度、音及び光等の各種のセンサーが含まれる。
The semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 described above have an element region (not shown).
The element region is an region in which various element constituent circuits such as a capacitor, a resistor, and a coil for functioning as an electronic element are formed. In the element area, for example, a memory circuit such as a flash memory, an area in which a logic circuit such as a microprocessor and an FPGA (field-programmable gate array) is formed, a communication module such as a wireless tag, and wiring are formed. There is an area. In addition to this, a transmission circuit or a MEMS (Micro Electro Mechanical Systems) may be formed in the element region. MEMS is, for example, a sensor, an actuator, an antenna, or the like. Sensors include, for example, various sensors such as acceleration, sound and light.
 上述のように、素子領域は素子構成回路等が形成されており、半導体素子には、例えば、再配線層(図示せず)が設けられている。
 積層デバイスでは、例えば、論理回路を有する半導体素子と、メモリ回路を有する半導体素子の組合せとすることができる。また、半導体素子を全てメモリ回路を有するものとしてもよく、また、全て論理回路を有するものとしてもよい。また、積層デバイス60における半導体素子の組合せとしては、センサー、アクチュエーター及びアンテナ等と、メモリ回路と論理回路との組み合わせでもよく、積層デバイス60の用途等に応じて適宜決定されるものである。
As described above, an element constituent circuit or the like is formed in the element region, and the semiconductor element is provided with, for example, a rewiring layer (not shown).
In the laminated device, for example, a combination of a semiconductor element having a logic circuit and a semiconductor element having a memory circuit can be used. Further, all the semiconductor elements may have a memory circuit, or all the semiconductor elements may have a logic circuit. Further, the combination of the semiconductor elements in the laminated device 60 may be a combination of a sensor, an actuator, an antenna or the like, a memory circuit and a logic circuit, and is appropriately determined according to the application of the laminated device 60 and the like.
 上述の半導体素子62、半導体素子64及び半導体素子66は、上述のもの以外に、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ASSP(Application Specific Standard Product)等のロジック集積回路が挙げられる。また、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のマイクロプロセッサが挙げられる。また、例えば、DRAM(Dynamic Random Access Memory)、HMC(Hybrid Memory Cube)、MRAM(Magnetoresistive Random Access Memory)、PCM(Phase-Change Memory)、ReRAM(Resistance Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、フラッシュメモリ等のメモリが挙げられる。また、例えば、LED(Light Emitting Diode)、パワーデバイス、DC(Direct Current)-DC(Direct Current)コンバータ、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)等のアナログ集積回路が挙げられる。
 更に、半導体素子としては、例えば、GPS(Global Positioning System)、FM(Frequency Modulation)、NFC(Near Field Communication)、RFEM(RF Expansion Module)、MMIC(Monolithic Microwave Integrated Circuit)、WLAN(Wireless Local Area Network)等のワイヤレス素子、ディスクリート素子、Passiveデバイス、SAW(Surface Acoustic Wave)フィルタ、RF(Radio Frequency)フィルタ、IPD(Integrated Passive Devices)等が挙げられる。
In addition to the above, the above-mentioned semiconductor element 62, semiconductor element 64, and semiconductor element 66 include, for example, logic integration of ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific Standard Product), and the like. The circuit can be mentioned. Further, for example, a microprocessor such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit) can be mentioned. Further, for example, DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (Magnetoresistive Random Access Memory), PCM (Phase-Change Memory), ReRAM (Resistance Random Access Memory), FeRAM (Ferroelectric Random Access Memory) , Flash memory and other memories. Further, for example, analog integrated circuits such as LEDs (Light Emitting Diodes), power devices, DC (Direct Current) -DC (Direct Current) converters, and insulated gate bipolar transistors (IGBTs) can be mentioned.
Further, as semiconductor elements, for example, GPS (Global Positioning System), FM (Frequency Modulation), NFC (Near Field Communication), RFEM (RF Expansion Module), MMIC (Monolithic Microwave Integrated Circuit), WLAN (Wireless Local Area Network). ) Etc., discrete elements, Passive devices, SAW (Surface Acoustic Wave) filters, RF (Radio Frequency) filters, IPDs (Integrated Passive Devices) and the like.
 次に、金属充填微細構造体を用いた積層デバイスの製造方法の第1の例について説明する。
 金属充填微細構造体を用いた積層デバイスの製造方法の第1の例は、チップオンウエハに関するものであり、図16に示す積層デバイス60の製造方法を示す。
 図20~図22は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第1の例を工程順に示す模式図である。
 金属充填微細構造体を用いた積層デバイスの製造方法の第1の例では、まず、異方導電性部材22が表面64aに設けられた半導体素子64を用意する。
 次に、異方導電性部材22を、第1の半導体ウエハ80に向けて半導体素子64を配置する。次に、半導体素子64のアライメントマークと、第1の半導体ウエハ80のアライメントマークとを用いて、第1の半導体ウエハ80に対して、半導体素子64の位置合せを行う。
 なお、位置合せについては、第1の半導体ウエハ80のアライメントマークの画像又は反射像と、半導体素子64のアライメントマークの画像又は反射像について、デジタル画像データを得ることができれば、その構成は特に限定されるものではなく、公知の撮像装置を適宜利用可能である。
Next, a first example of a method for manufacturing a laminated device using a metal-filled microstructure will be described.
The first example of a method for manufacturing a laminated device using a metal-filled microstructure relates to a chip-on-wafer, and shows a method for manufacturing the laminated device 60 shown in FIG.
20 to 22 are schematic views showing a first example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
In the first example of the method for manufacturing a laminated device using a metal-filled microstructure, first, a semiconductor element 64 in which the anisotropic conductive member 22 is provided on the surface 64a is prepared.
Next, the semiconductor element 64 is arranged so that the anisotropic conductive member 22 is directed toward the first semiconductor wafer 80. Next, the alignment mark of the semiconductor element 64 and the alignment mark of the first semiconductor wafer 80 are used to align the semiconductor element 64 with respect to the first semiconductor wafer 80.
Regarding the alignment, the configuration is particularly limited as long as digital image data can be obtained for the image or reflection image of the alignment mark of the first semiconductor wafer 80 and the image or reflection image of the alignment mark of the semiconductor element 64. A known imaging device can be used as appropriate.
 次に、半導体素子64を異方導電性部材22を介して第1の半導体ウエハ80の素子領域に載置し、例えば、予め定められた圧力を加え、予め定められた温度に加熱し、予め定められた時間保持して、樹脂層44(図14参照)を用いて仮接合する。これを全ての半導体素子64について行い、図21に示すように、全ての半導体素子64を第1の半導体ウエハ80の素子領域に仮接合する。
 仮接合に樹脂層44を使うことは方法の1つであり、以下に示す方法でもよい。例えば,封止樹脂等をディスペンサー等で第1の半導体ウエハ80上に供給して、半導体素子64を第1の半導体ウエハ80の素子領域に仮接合してもよいし、第1の半導体ウエハ80上に、事前に供給した絶縁性樹脂フイルム(NCF(Non-conductive Film))を使って半導体素子64を素子領域に仮接合してもよい。
Next, the semiconductor element 64 is placed in the element region of the first semiconductor wafer 80 via the anisotropic conductive member 22, and for example, a predetermined pressure is applied to heat the semiconductor element 64 to a predetermined temperature in advance. It is held for a predetermined time and temporarily joined using the resin layer 44 (see FIG. 14). This is performed for all the semiconductor elements 64, and as shown in FIG. 21, all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80.
Using the resin layer 44 for temporary bonding is one of the methods, and the method shown below may also be used. For example, a sealing resin or the like may be supplied onto the first semiconductor wafer 80 by a dispenser or the like to temporarily bond the semiconductor element 64 to the element region of the first semiconductor wafer 80, or the first semiconductor wafer 80 may be temporarily bonded. Above, the semiconductor element 64 may be temporarily bonded to the element region by using an insulating resin film (NCF (Non-conductive Film)) supplied in advance.
 次に、全ての半導体素子64を第1の半導体ウエハ80の素子領域に仮接合した状態で、半導体素子64に対して、予め定められた圧力を加え、予め定められた温度に加熱し、予め定められた時間保持して、複数の半導体素子64を全て一括して、第1の半導体ウエハ80の素子領域に接合する。この接合は本接合と呼ばれるものである。これにより、半導体素子64の端子(図示せず)が異方導電性部材22に接合され、第1の半導体ウエハ80の端子(図示せず)が異方導電性部材22に接合される。
 次に、図22に示すように、異方導電性部材22を介して半導体素子64が接合された第1の半導体ウエハ80を、素子領域毎に、ダイシング又はレーザースクライビング等により個片化する。これにより、半導体素子62と異方導電性部材22と半導体素子64とが接合された積層デバイス60を得ることができる。
Next, in a state where all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80, a predetermined pressure is applied to the semiconductor element 64, and the semiconductor element 64 is heated to a predetermined temperature in advance. While holding for a predetermined time, all of the plurality of semiconductor elements 64 are collectively bonded to the element region of the first semiconductor wafer 80. This joint is called a main joint. As a result, the terminal (not shown) of the semiconductor element 64 is bonded to the anisotropic conductive member 22, and the terminal (not shown) of the first semiconductor wafer 80 is bonded to the anisotropic conductive member 22.
Next, as shown in FIG. 22, the first semiconductor wafer 80 to which the semiconductor element 64 is bonded via the anisotropic conductive member 22 is separated into individual pieces by dicing, laser scribing, or the like for each element region. As a result, it is possible to obtain a laminated device 60 in which the semiconductor element 62, the anisotropic conductive member 22, and the semiconductor element 64 are bonded.
 なお、仮接合する際に、仮接合強度が弱いと、搬送工程等及び接合する迄の工程で位置ズレが生じてしまうため、仮接合強度は重要となる。
 また、仮接合プロセスにおける温度条件は特に限定されないが、0℃~300℃であることが好ましく、10℃~200℃であることがより好ましく、常温(23℃)~100℃であることが特に好ましい。
 同様に、仮接合プロセスにおける加圧条件は特に限定されないが、10MPa以下であることが好ましく、5MPa以下であることがより好ましく、1MPa以下であることが特に好ましい。
If the temporary joining strength is weak at the time of temporary joining, the temporary joining strength is important because the position shift occurs in the transfer step and the steps until joining.
The temperature conditions in the temporary joining process are not particularly limited, but are preferably 0 ° C. to 300 ° C., more preferably 10 ° C. to 200 ° C., and particularly preferably room temperature (23 ° C.) to 100 ° C. preferable.
Similarly, the pressurizing conditions in the temporary joining process are not particularly limited, but are preferably 10 MPa or less, more preferably 5 MPa or less, and particularly preferably 1 MPa or less.
 本接合における温度条件は特に限定されないが、仮接合の温度よりも高い温度であることが好ましく、具体的には、150℃~350℃であることがより好ましく、200℃~300℃であることが特に好ましい。
 また、本接合における加圧条件は特に限定されないが、30MPa以下であることが好ましく、0.1MPa~20MPaであることがより好ましい。
 また、本接合の時間は特に限定されないが、1秒~60分であることが好ましく、5秒~10分であることがより好ましい。
 上述の条件で本接合を行うことにより、樹脂層が、半導体素子64の電極間に流動し、接合部に残存し難くなる。
 上述のように本接合では、複数の半導体素子64の接合を一括して行うことにより、タクトタイムを低減でき、生産性を高くできる。
The temperature condition in the main bonding is not particularly limited, but it is preferably a temperature higher than the temperature of the temporary bonding, specifically, 150 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C. Is particularly preferable.
The pressurizing conditions in this joining are not particularly limited, but are preferably 30 MPa or less, and more preferably 0.1 MPa to 20 MPa.
The time of the main joining is not particularly limited, but is preferably 1 second to 60 minutes, and more preferably 5 seconds to 10 minutes.
By performing the main bonding under the above conditions, the resin layer flows between the electrodes of the semiconductor element 64, and it becomes difficult for the resin layer to remain in the bonding portion.
As described above, in the main bonding, the tact time can be reduced and the productivity can be increased by collectively bonding the plurality of semiconductor elements 64.
 金属充填微細構造体を用いた積層デバイスの製造方法の第2の例について説明する。
 図23~図25は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第2の例を工程順に示す模式図である。
 金属充填微細構造体を用いた積層デバイスの製造方法の第2の例は、金属充填微細構造体を用いた積層デバイスの製造方法の第1の例に比して、3つの半導体素子62、64、66が異方導電性部材22を介して積層されて接合される点以外は、金属充填微細構造体を用いた積層デバイスの製造方法の第1の例と同じである。このため、積層デバイスの製造方法の第2の例と共通する製造方法についての詳細な説明は省略する。
 半導体素子64は、裏面64bにアライメントマーク(図示せず)が設けられており、かつ端子(図示せず)が設けられている。更に、半導体素子64には表面64aに異方導電性部材22が設けられている。また、半導体素子66でも表面66aに異方導電性部材22が設けられている。
A second example of a method for manufacturing a laminated device using a metal-filled microstructure will be described.
23 to 25 are schematic views showing a second example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
The second example of the method for manufacturing a laminated device using a metal-filled microstructure has three semiconductor elements 62, 64 as compared with the first example of the method for manufacturing a laminated device using a metal-filled microstructure. , 66 is the same as the first example of the method for manufacturing a laminated device using a metal-filled microstructure, except that 66 is laminated and joined via an anisotropic conductive member 22. Therefore, a detailed description of the manufacturing method common to the second example of the manufacturing method of the laminated device will be omitted.
The semiconductor element 64 is provided with an alignment mark (not shown) on the back surface 64b and a terminal (not shown). Further, the semiconductor element 64 is provided with an anisotropic conductive member 22 on the surface 64a. Further, the semiconductor element 66 is also provided with the anisotropic conductive member 22 on the surface 66a.
 図23に示すように、全ての半導体素子64が異方導電性部材22を介して第1の半導体ウエハ80の素子領域に仮接合された状態で、半導体素子64の裏面64bのアライメントマークと、半導体素子66のアライメントマークとを用いて、半導体素子64に対して半導体素子66の位置合せを行う。 As shown in FIG. 23, in a state where all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80 via the anisotropic conductive member 22, the alignment marks on the back surface 64b of the semiconductor element 64 and the alignment marks. The alignment mark of the semiconductor element 66 is used to align the semiconductor element 66 with respect to the semiconductor element 64.
 次に、図24に示すように、半導体素子64の裏面64bに、異方導電性部材22を介して半導体素子66を仮接合する。次に、全ての半導体素子64を異方導電性部材22を介して第1の半導体ウエハ80の素子領域に仮接合し、全ての半導体素子64に、異方導電性部材22を介して半導体素子66を仮接合した状態で、予め定めた条件にて本接合を行う。これにより、半導体素子64と半導体素子66とが異方導電性部材22を介して接合され、半導体素子64と第1の半導体ウエハ80とが異方導電性部材22を介して接合される。半導体素子64、半導体素子66及び第1の半導体ウエハ80の端子(図示せず)は異方導電性部材22に接合される。
 次に、図25に示すように、半導体素子64及び半導体素子66が異方導電性部材22を介して接合された第1の半導体ウエハ80を、素子領域毎に、例えば、ダイシング又はレーザースクライビング等により個片化する。これにより、半導体素子62と半導体素子64と半導体素子66とが異方導電性部材22を介して接合された積層デバイス60を得ることができる。
Next, as shown in FIG. 24, the semiconductor element 66 is temporarily joined to the back surface 64b of the semiconductor element 64 via the anisotropic conductive member 22. Next, all the semiconductor elements 64 are temporarily bonded to the element region of the first semiconductor wafer 80 via the anisotropic conductive member 22, and all the semiconductor elements 64 are temporarily bonded to the semiconductor elements via the anisotropic conductive member 22. With the 66 temporarily joined, the main joining is performed under predetermined conditions. As a result, the semiconductor element 64 and the semiconductor element 66 are joined via the anisotropic conductive member 22, and the semiconductor element 64 and the first semiconductor wafer 80 are joined via the anisotropic conductive member 22. The semiconductor element 64, the semiconductor element 66, and the terminals (not shown) of the first semiconductor wafer 80 are joined to the anisotropic conductive member 22.
Next, as shown in FIG. 25, the first semiconductor wafer 80 in which the semiconductor element 64 and the semiconductor element 66 are joined via the anisotropic conductive member 22 is placed in each element region, for example, by dicing or laser scribing. Individualized by. Thereby, the laminated device 60 in which the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are bonded via the anisotropic conductive member 22 can be obtained.
 金属充填微細構造体を用いた積層デバイスの製造方法の第3の例について説明する。
 金属充填微細構造体を用いた積層デバイスの製造方法の第3の例は、ウエハオンウエハに関するものであり、図16に示す積層デバイス60の製造方法を示す。
 図26及び図27は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第3の例を工程順に示す模式図である。
 金属充填微細構造体を用いた積層デバイスの製造方法の第3の例は、積層デバイスの製造方法の第1の例に比して、異方導電性部材22を介して第1の半導体ウエハ80と第2の半導体ウエハ82とを接合する点以外は、積層デバイスの製造方法の第3の例と同じである。このため、積層デバイスの製造方法の第1の例と共通する製造方法についての詳細な説明は省略する。また、異方導電性部材22についても、上述の説明のとおりであるため、その詳細な説明は省略する。
A third example of a method for manufacturing a laminated device using a metal-filled microstructure will be described.
A third example of a method for manufacturing a laminated device using a metal-filled microstructure relates to a wafer-on-wafer, and shows a method for manufacturing the laminated device 60 shown in FIG.
26 and 27 are schematic views showing a third example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
A third example of a method for manufacturing a laminated device using a metal-filled microstructure is a first semiconductor wafer 80 via an anisotropic conductive member 22 as compared with the first example of a method for manufacturing a laminated device. It is the same as the third example of the manufacturing method of the laminated device except that the second semiconductor wafer 82 is bonded to the second semiconductor wafer 82. Therefore, detailed description of the manufacturing method common to the first example of the manufacturing method of the laminated device will be omitted. Further, since the anisotropic conductive member 22 is also as described above, detailed description thereof will be omitted.
 まず、第1の半導体ウエハ80と、第2の半導体ウエハ82とを用意する。第1の半導体ウエハ80の表面80a、又は第2の半導体ウエハ82の表面82aのいずれかに異方導電性部材22を設ける。
 次に、第1の半導体ウエハ80の表面80aと第2の半導体ウエハ82の表面82aを対向させる。そして、第1の半導体ウエハ80のアライメントマークと、第2の半導体ウエハ82のアライメントマークとを用いて、第1の半導体ウエハ80に対して、第2の半導体ウエハ82の位置合せを行う。
 次に、第1の半導体ウエハ80の表面80aと第2の半導体ウエハ82の表面82aを対向させて、上述の方法を用いて、図26に示すように第1の半導体ウエハ80と第2の半導体ウエハ82とを異方導電性部材22を介して接合する。この場合、仮接合した後に、本接合をしてもよく、本接合だけでもよい。
First, the first semiconductor wafer 80 and the second semiconductor wafer 82 are prepared. The anisotropic conductive member 22 is provided on either the surface 80a of the first semiconductor wafer 80 or the surface 82a of the second semiconductor wafer 82.
Next, the surface 80a of the first semiconductor wafer 80 and the surface 82a of the second semiconductor wafer 82 are opposed to each other. Then, the alignment mark of the first semiconductor wafer 80 and the alignment mark of the second semiconductor wafer 82 are used to align the second semiconductor wafer 82 with respect to the first semiconductor wafer 80.
Next, the surface 80a of the first semiconductor wafer 80 and the surface 82a of the second semiconductor wafer 82 are opposed to each other, and the first semiconductor wafer 80 and the second semiconductor wafer 80 and the second semiconductor wafer 80 are used as shown in FIG. The semiconductor wafer 82 is joined via the anisotropic conductive member 22. In this case, after the temporary joining, the main joining may be performed, or only the main joining may be performed.
 次に、図27に示すように、第1の半導体ウエハ80と第2の半導体ウエハ82が異方導電性部材22を介して接合された状態で、素子領域毎に、例えば、ダイシング又はレーザースクライビング等により個片化する。これにより、異方導電性部材22を介して半導体素子62と半導体素子64とが接合された積層デバイス60を得ることができる。このように、ウエハオンウエハを用いても積層デバイス60を得ることができる。
 なお、個片化については、上述のとおりであるため、詳細な説明は省略する。
 また、図27に示すように、第1の半導体ウエハ80と第2の半導体ウエハ82が接合された状態で、第1の半導体ウエハ80及び第2の半導体ウエハ82のうち、薄くする必要がある半導体ウエハがあれば、化学的機械的研磨(CMP)等により、薄くすることができる。
Next, as shown in FIG. 27, in a state where the first semiconductor wafer 80 and the second semiconductor wafer 82 are joined via the anisotropic conductive member 22, for each element region, for example, dicing or laser scribing. Individualize by etc. Thereby, the laminated device 60 in which the semiconductor element 62 and the semiconductor element 64 are bonded to each other via the anisotropic conductive member 22 can be obtained. In this way, the laminated device 60 can be obtained even by using the wafer-on-wafer.
Since the individualization is as described above, detailed description thereof will be omitted.
Further, as shown in FIG. 27, in a state where the first semiconductor wafer 80 and the second semiconductor wafer 82 are joined, it is necessary to make the first semiconductor wafer 80 and the second semiconductor wafer 82 thinner. If there is a semiconductor wafer, it can be thinned by chemical mechanical polishing (CMP) or the like.
 金属充填微細構造体を用いた積層デバイスの製造方法の第3の例では、半導体素子62と半導体素子64を積層した2層構造を例にして説明したが、これに限定されるものではなく、上述のように3層以上でもよいことはもちろんである。この場合、上述の積層デバイス60の製造方法の第2の例と同じく、第2の半導体ウエハ82の裏面82bに、アライメントマーク(図示せず)と、端子(図示せず)を設けることにより3層以上の積層デバイス60を得ることができる。 In the third example of the method for manufacturing a laminated device using a metal-filled microstructure, a two-layer structure in which a semiconductor element 62 and a semiconductor element 64 are laminated has been described as an example, but the present invention is not limited to this. Of course, as described above, three or more layers may be used. In this case, as in the second example of the method for manufacturing the laminated device 60 described above, the alignment mark (not shown) and the terminal (not shown) are provided on the back surface 82b of the second semiconductor wafer 82. It is possible to obtain a laminated device 60 having more than one layer.
 上述のように、積層デバイス60において異方導電性部材22を設ける構成とすることにより、半導体素子に凹凸があっても、凹凸を突出部分16a及び突出部分16bを緩衝層として利用することで吸収することができる。突出部分16a及び突出部分16bが緩衝層として機能するため、半導体素子において素子領域がある面については、高い表面品質を不要とすることができる。このため、研磨等の平滑化処理が不要であり、生産コストが抑えることができ、また生産時間も短くすることができる。
 また、チップオンウエハを用いて積層デバイス60を製造することができるため、半導体チップの良品のみを、半導体ウエハ内の良品部分に接合することで、得率を維持し、製造ロスを低減することができる。
 更には、上述のように樹脂層44は粘着性を備え、仮接合の際に仮接合剤として用いることができ、一括で本接合できる。
As described above, by providing the anisotropic conductive member 22 in the laminated device 60, even if the semiconductor element has irregularities, the irregularities are absorbed by using the protruding portion 16a and the protruding portion 16b as a buffer layer. can do. Since the protruding portion 16a and the protruding portion 16b function as a buffer layer, high surface quality can not be required for the surface of the semiconductor element having the element region. Therefore, smoothing treatment such as polishing is not required, production cost can be suppressed, and production time can be shortened.
Further, since the laminated device 60 can be manufactured using the chip-on-wafer, by joining only the non-defective product of the semiconductor chip to the non-defective product portion in the semiconductor wafer, the profitability can be maintained and the manufacturing loss can be reduced. Can be done.
Further, as described above, the resin layer 44 has adhesiveness and can be used as a temporary bonding agent at the time of temporary bonding, and can be collectively main-bonded.
 上述の異方導電性部材22が設けられた半導体素子64は、異方導電性部材22と、複数の素子領域(図示せず)を備える半導体ウエハとを用いて形成することができる。素子領域には、上述のように位置合せのためのアライメントマーク(図示せず)と、端子(図示せず)とが設けられている。異方導電材50(図15参照)では、異方導電性部材22が、素子領域に合わせたパターンに形成されている。 The semiconductor element 64 provided with the above-mentioned anisotropic conductive member 22 can be formed by using the anisotropic conductive member 22 and a semiconductor wafer having a plurality of element regions (not shown). As described above, the element region is provided with an alignment mark (not shown) and a terminal (not shown) for alignment. In the anisotropic conductive material 50 (see FIG. 15), the anisotropic conductive member 22 is formed in a pattern that matches the element region.
 まず、予め定められた圧力を加え、予め定められた温度に加熱し、予め定められた時間保持して、異方導電材50の異方導電性部材22を、半導体ウエハの素子領域に接合する。
 次に、異方導電材50の支持体46を取り除き、異方導電性部材22だけを半導体ウエハに接合させる。この場合、異方導電材50に、予め定められた温度に加熱し、剥離層47の剥離剤49の接着力を低下させて、異方導電材50の剥離層47を起点にして支持体46を取り除く。次に、半導体ウエハについて、素子領域毎に個片化し、複数の半導体素子64を得る。
 なお、異方導電性部材22が設けられた半導体素子64を例にして説明したが、異方導電性部材22が設けられた半導体素子66も、異方導電性部材22が設けられた第2の半導体ウエハ82についても、異方導電性部材22が設けられた半導体素子64と同様にして、異方導電性部材22を設けることができる。
First, a predetermined pressure is applied, the temperature is heated to a predetermined temperature, and the temperature is held for a predetermined time to join the anisotropic conductive member 22 of the anisotropic conductive material 50 to the element region of the semiconductor wafer. ..
Next, the support 46 of the anisotropic conductive material 50 is removed, and only the anisotropic conductive member 22 is bonded to the semiconductor wafer. In this case, the anisotropic conductive material 50 is heated to a predetermined temperature to reduce the adhesive force of the release agent 49 of the release layer 47, and the support 46 starts from the release layer 47 of the anisotropic conductive material 50. Get rid of. Next, the semiconductor wafer is fragmented for each element region to obtain a plurality of semiconductor elements 64.
Although the semiconductor element 64 provided with the anisotropic conductive member 22 has been described as an example, the semiconductor element 66 provided with the anisotropic conductive member 22 also has a second semiconductor element 22 provided with the anisotropic conductive member 22. In the same way as the semiconductor element 64 in which the anisotropic conductive member 22 is provided, the anisotropic conductive member 22 can be provided in the semiconductor wafer 82.
 半導体デバイスの接合に関しては、半導体素子に対して、別の半導体素子を接合する形態で説明したが、これに限定されるものではなく、1つの半導体素子に複数の半導体素子を接合する形態である1対複数の形態でもよい。また、複数の半導体素子と複数の半導体素子とを接合する形態である複数対複数の形態でもよい。
 図28は本発明の実施形態の積層デバイスの第5の例を示す模式図であり、図29は本発明の実施形態の積層デバイスの第6の例を示す模式図であり、図30は本発明の実施形態の積層デバイスの第7の例を示す模式図であり、図31は本発明の実施形態の積層デバイスの第8の例を示す模式図であり、図32は本発明の実施形態の積層デバイスの第9の例を示す模式図である。
The joining of semiconductor devices has been described in the form of joining another semiconductor element to the semiconductor element, but the present invention is not limited to this, and is a form of joining a plurality of semiconductor elements to one semiconductor element. It may be in a one-to-many form. Further, a plurality of to a plurality of forms in which a plurality of semiconductor elements and a plurality of semiconductor elements are joined may be used.
FIG. 28 is a schematic view showing a fifth example of the laminated device according to the embodiment of the present invention, FIG. 29 is a schematic view showing a sixth example of the laminated device according to the embodiment of the present invention, and FIG. 30 is a schematic view showing the sixth example. FIG. 31 is a schematic view showing a seventh example of a laminated device according to an embodiment of the present invention, FIG. 31 is a schematic view showing an eighth example of a laminated device according to an embodiment of the present invention, and FIG. 32 is a schematic view showing an eighth example of the laminated device according to the embodiment of the present invention. It is a schematic diagram which shows the 9th example of the laminated device of.
 1対複数の形態としては、例えば、図28に示すように、半導体素子62と半導体素子64と半導体素子66とが、それぞれ異方導電性部材22を用いて接合され、かつ電気的に接続された形態の積層デバイス83が例示される。なお、半導体素子62は、インターポーザー機能を有するものであってもよい。積層デバイス83では、半導体素子62、半導体素子64及び半導体素子66に代えて、半導体素子ウエハであってもよい。
 また、複数対複数の形態としては、例えば、図29に示すように、1つの半導体素子62に対して、異方導電性部材22を用いて半導体素子64と半導体素子66とが接合され、かつ電気的に接続された形態の積層デバイス84が例示される。半導体素子62は、インターポーザー機能を有するものであってもよい。
As a one-to-many form, for example, as shown in FIG. 28, the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66 are joined to each other by using an anisotropic conductive member 22, and are electrically connected to each other. A laminated device 83 in a different form is exemplified. The semiconductor element 62 may have an interposer function. In the laminated device 83, a semiconductor element wafer may be used instead of the semiconductor element 62, the semiconductor element 64, and the semiconductor element 66.
Further, as a plurality of to a plurality of forms, for example, as shown in FIG. 29, the semiconductor element 64 and the semiconductor element 66 are bonded to one semiconductor element 62 by using the anisotropic conductive member 22. An example is an electrically connected laminated device 84. The semiconductor element 62 may have an interposer function.
 また、例えば、インターポーザー機能を有するデバイス上に、論理回路を有する論理チップ、及びメモリーチップ等の複数のデバイスを積層することも可能である。また、この場合、それぞれのデバイスごとに電極サイズが異なっていても接合することができる。
 図30に示す積層デバイス85では、電極88の大きさは同じではなく、大きさが異なるものが混在しているが、1つの半導体素子62に対して、異方導電性部材22を用いて半導体素子64と半導体素子66とが接合され、かつ電気的に接続されている。更に半導体素子64に半導体素子86が異方導電性部材22を用いて接合され、かつ電気的に接続されている。半導体素子64と半導体素子66とに跨って半導体素子87が異方導電性部材22を用いて接合され、かつ電気的に接続されている。
Further, for example, it is possible to stack a plurality of devices such as a logic chip having a logic circuit and a memory chip on a device having an interposer function. Further, in this case, even if the electrode size is different for each device, the bonding can be performed.
In the laminated device 85 shown in FIG. 30, the size of the electrodes 88 is not the same, and some of them have different sizes. However, a semiconductor using an anisotropic conductive member 22 is used for one semiconductor element 62. The element 64 and the semiconductor element 66 are joined and electrically connected. Further, the semiconductor element 86 is joined to the semiconductor element 64 by using the anisotropic conductive member 22, and is electrically connected. The semiconductor element 87 is joined and electrically connected by using the anisotropic conductive member 22 across the semiconductor element 64 and the semiconductor element 66.
 また、図31に示す積層デバイス89のように、1つの半導体素子62に対して、異方導電性部材22を用いて半導体素子64と半導体素子66とが接合され、かつ電気的に接続されている。更に半導体素子64に半導体素子86と半導体素子87とが異方導電性部材22を用いて接合され、半導体素子66に半導体素子91が異方導電性部材22を用いて接合され、かつ電気的に接続されている構成とすることもできる。 Further, as in the laminated device 89 shown in FIG. 31, the semiconductor element 64 and the semiconductor element 66 are joined and electrically connected to one semiconductor element 62 by using the anisotropic conductive member 22. There is. Further, the semiconductor element 86 and the semiconductor element 87 are joined to the semiconductor element 64 by using the heterogeneous conductive member 22, and the semiconductor element 91 is joined to the semiconductor element 66 by using the heterogeneous conductive member 22 and electrically. It can also be a connected configuration.
 上述のような構成の場合に、光導波路を含むようなデバイス表面にVCSEL(Vertical Cavity Surface Emitting Laser)のような発光素子、及びCMOS(Complementary Metal Oxide Semiconductor)イメージセンサのような受光素子を積層することで高周波を想定したシリコンフォトニクスへの対応も可能となる。
 例えば、図32に示す積層デバイス89aのように、1つの半導体素子62に対して、異方導電性部材22を用いて半導体素子64と半導体素子66とが接合され、かつ電気的に接続されている。更に半導体素子64に半導体素子86と半導体素子87とが異方導電性部材22を用いて接合され、半導体素子66に半導体素子91が異方導電性部材22を用いて接合され、かつ電気的に接続されている。半導体素子62には光導波路81が設けられている。半導体素子66には発光素子95が設けられ、半導体素子64には受光素子96が設けられている。半導体素子66の発光素子95から出力された光Loは、半導体素子62の光導波路81を通過し、半導体素子64の受光素子96に出射光Ldとして出射される。これにより、上述のシリコンフォトニクスに対応することができる。
 なお、異方導電性部材22には、光Lo及び出射光Ldの光路に相当する箇所に穴27が形成されている。
In the case of the above configuration, a light emitting element such as a VCSEL (Vertical Cavity Surface Emitting Laser) and a light receiving element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor are laminated on a device surface including an optical waveguide. This makes it possible to support silicon photonics assuming high frequencies.
For example, as in the laminated device 89a shown in FIG. 32, the semiconductor element 64 and the semiconductor element 66 are joined to one semiconductor element 62 by using an anisotropic conductive member 22, and are electrically connected to each other. There is. Further, the semiconductor element 86 and the semiconductor element 87 are joined to the semiconductor element 64 by using the heterogeneous conductive member 22, and the semiconductor element 91 is joined to the semiconductor element 66 by using the heterogeneous conductive member 22 and electrically. It is connected. The semiconductor element 62 is provided with an optical waveguide 81. The semiconductor element 66 is provided with a light emitting element 95, and the semiconductor element 64 is provided with a light receiving element 96. The light Lo output from the light emitting element 95 of the semiconductor element 66 passes through the optical waveguide 81 of the semiconductor element 62 and is emitted as the emitted light Ld to the light receiving element 96 of the semiconductor element 64. This makes it possible to deal with the above-mentioned silicon photonics.
The anisotropic conductive member 22 is formed with holes 27 at locations corresponding to the optical paths of the light Lo and the emitted light Ld.
 積層体を用いた3次元積層における具体的なアセンブリ工程について説明する。
 3次元積層を実現するためには積層するデバイスにおいて積層方向の電気的な接続を担う配線が形成されていることが必要であり、この積層方向の接続を担う配線はTSV(Through Silicon Via)と呼ばれる。TSVを有するデバイスは、TSVをどの段階で形成するかによりビアファースト、ビアミドル、及びビアラストの3種類に分類される。デバイスのトランジスタを形成する前にTSVを形成するものがビアファーストと呼ばれる。トランジスタの形成後、かつ再配線層の形成前に形成するものがビアミドルと呼ばれる。再配線層形成後に形成するものがビアラストと呼ばれる。いずれの方法によるTSV形成も貫通処理を行なうためにシリコン基板の薄化を必要とする。
A specific assembly process in three-dimensional lamination using a laminate will be described.
In order to realize three-dimensional stacking, it is necessary that the wiring responsible for the electrical connection in the stacking direction is formed in the device to be stacked, and the wiring responsible for the connection in the stacking direction is TSV (Through Silicon Via). be called. Devices with TSVs are classified into three types, via first, viamidol, and vialast, depending on the stage at which the TSV is formed. The one that forms the TSV before forming the transistor of the device is called via first. What is formed after the formation of the transistor and before the formation of the rewiring layer is called viamidol. What is formed after the rewiring layer is formed is called a via last. TSV formation by either method requires thinning of the silicon substrate in order to perform the penetration process.
 TSVを適用した半導体チップ又はウエハの接合方法を、積層体の使用形態の例とともに説明する。
 ビアファースト又はビアミドルの代表的な例として、HBM(High Bandwidth Memory)、又はHMC(Hybrid Memory Cube)と呼ばれる積層型のメモリーチップが挙げられる。これらの例では、同一ダイ状にメモリ領域の形成とともにTSV領域を形成し、基材ウエハを薄化し、TSVを形成し、ビアの表面にマイクロバンプと呼ばれる電極を形成し、積層して接合を行っている。
 ビアラストの例としては、メタルバンプを有しない半導体チップ又はウエハを絶縁性接着剤又は絶縁性酸化物によって接合し、その後にTSVを形成する工程が挙げられる。
A method of joining a semiconductor chip or wafer to which TSV is applied will be described together with an example of a usage pattern of the laminate.
A typical example of via-first or viamidol is a stacked memory chip called HBM (High Bandwidth Memory) or HMC (Hybrid Memory Cube). In these examples, the memory area is formed and the TSV area is formed in the same die shape, the base wafer is thinned, the TSV is formed, an electrode called a micro bump is formed on the surface of the via, and the electrodes are laminated and bonded. Is going.
An example of a vialast is a step of joining a semiconductor chip or wafer having no metal bump with an insulating adhesive or an insulating oxide, and then forming a TSV.
 従来は、層間の接合を形成した後に、ボッシュ(BOSCH)法又はレーザードリル法等の方法で穴を形成し、スパッタ等によって壁面にめっき核を形成し、めっきによって金属を充填して各層の配線部分と電気的に接合するものである。
 しかし、金属充填がめっき核の成長によって形成されたものであるため、充填金属と配線部分との接合は必ずしも担保されていない。これに対し、異方導電性部材を用いてバンプ同士を接続する場合には、異方導電性部材の導通路がバンプとの結合を直接形成するため電気的接続が強化され、信号接続が一層良好となる。この際、半導体チップ表面又はウエハ表面に信号伝送に寄与しない電極を設けておくことで接合部の面積が増加し、せん断応力あたりの耐性を向上させることができる。また、層間での熱伝導が良好となるため、熱が積層体全体に拡散しやすくなる。これらの機構により接続強度と放熱性が一層向上する。
Conventionally, after forming a bond between layers, holes are formed by a method such as the BOSCH method or a laser drill method, plating nuclei are formed on the wall surface by sputtering or the like, and metal is filled by plating to wire each layer. It is electrically joined to the part.
However, since the metal filling is formed by the growth of the plating nucleus, the bonding between the filling metal and the wiring portion is not always guaranteed. On the other hand, when the bumps are connected to each other using the anisotropic conductive member, the electrical connection is strengthened because the conduction path of the anisotropic conductive member directly forms a bond with the bump, and the signal connection is further enhanced. It will be good. At this time, by providing electrodes that do not contribute to signal transmission on the surface of the semiconductor chip or the surface of the wafer, the area of the joint portion can be increased and the resistance per shear stress can be improved. Further, since the heat conduction between the layers is good, the heat is easily diffused to the entire laminated body. These mechanisms further improve connection strength and heat dissipation.
 ビアファースト、ビアミドル、及びビアラストのいずれにおいても適用可能な接合方法の例としては、金属拡散接合、酸化膜ダイレクト接合、金属バンプ接合及び共晶接合が挙げられる。
 金属拡散接合又は酸化膜ダイレクト接合は低圧低温条件での接合性が良好である。一方、接合面に対して高い清浄度として、例えば、Arエッチングによる表面清浄化直後と同等のレベルが要求される。また、平坦性として、例えば、算術平均粗さRaが1nm以下が要求されるため、接合時には厳密な雰囲気制御、及び平行度制御が必要である。また、異なる会社、又は会社が同一であっても異なる工場で製造された半導体デバイスの製品群は、半導体デバイスの種類又は配線ルールが異なることがあり、そのような半導体デバイスの製品群を3次元積層する場合、その中で最も厳しい精度又は制御が要求される。
Examples of bonding methods applicable to any of ViaFirst, Viamidol, and Vialast include metal diffusion bonding, oxide film direct bonding, metal bump bonding, and eutectic bonding.
Metal diffusion bonding or oxide film direct bonding has good bondability under low pressure and low temperature conditions. On the other hand, as a high degree of cleanliness for the joint surface, for example, a level equivalent to that immediately after surface cleaning by Ar etching is required. Further, as the flatness, for example, since the arithmetic mean roughness Ra is required to be 1 nm or less, strict atmosphere control and parallelism control are required at the time of joining. In addition, different companies, or semiconductor device product groups manufactured in different factories even if the companies are the same, may have different types of semiconductor devices or wiring rules, and such semiconductor device product groups are three-dimensional. When stacking, the strictest precision or control is required.
 一方、金属バンプ接合又は共晶接合は多少の欠陥がある場合又はプロセスが冗長である場合でも接合性が良好である。また、バンプ又ははんだの変形又は流動により、金属拡散接合又は酸化膜ダイレクト接合に比べて異種デバイスを接合する際のデバイス表面の清浄度又は平坦度が低くてもよい場合がある。
 これらの接合方式においては、接合強度が金属拡散接合及び酸化膜ダイレクト接合に比べて低い点、積層を繰り返す毎に既に接合した部分が再加熱されてデバイス不良を引き起こす可能性がある点が課題として挙げられる。文献(産総研研究成果報告2013年3月8日:「多機能高密度三次元集積化技術(2)次世代三次元集積化の評価解析技術の研究開発<(2)-B熱・積層接合技術の研究開発>」)には、有機樹脂によって積層時の一時固定を行ない、全層積層後に一括で加熱して接合することで温度履歴の影響を回避する方法が提案されている。信号伝送に寄与しない電極を形成することで放熱性を向上させられるため、熱伝導性の低い有機樹脂層を用いる態様に対して、積層体を適用することは特に有用である。
On the other hand, metal bump bonding or eutectic bonding has good bondability even when there are some defects or the process is redundant. Further, due to deformation or flow of bumps or solder, the cleanliness or flatness of the device surface when joining dissimilar devices may be lower than that of metal diffusion bonding or oxide film direct bonding.
The problems with these bonding methods are that the bonding strength is lower than that of metal diffusion bonding and oxide film direct bonding, and that the already bonded portion may be reheated each time the lamination is repeated, causing device failure. Can be mentioned. Literature (AIST Research Results Report March 8, 2013: "Multifunctional High Density Three-Dimensional Integration Technology (2) Research and Development of Evaluation and Analysis Technology for Next-Generation Three-Dimensional Integration <(2) -B Thermal / Laminated Bonding Technology research and development> ”) proposes a method of avoiding the influence of temperature history by temporarily fixing at the time of lamination with an organic resin and heating and joining all layers at once after lamination. Since heat dissipation can be improved by forming electrodes that do not contribute to signal transmission, it is particularly useful to apply the laminate to an embodiment in which an organic resin layer having low thermal conductivity is used.
 次に、積層体を構成する異方導電性部材を上述の接合に利用する場合について説明する。
 積層体に用いられる異方導電性部材は、少なくとも1つの表面に樹脂層が形成されていることが好ましく、両面に形成されていることがより好ましい。
 また、上述の異方導電性部材の樹脂層44は熱硬化性樹脂を含むことが好ましい。形成された上述の樹脂層は、仮接合層として積層後の位置ずれを抑制する。仮接合は低温かつ短時間で行なうことが可能であるため、デバイスへの悪影響を低減することができる。プロセス中の熱による位置ずれを抑制する観点で、上述の樹脂層の厚さは100nm~1000nmであることが好ましく、異方導電性部材の熱伝導率は厚み方向で20~100W/(m・K)であることが好ましく、異方導電性部材の熱膨張係数(CTE)は5ppm~10ppmであることが好ましい。
Next, a case where the anisotropic conductive member constituting the laminated body is used for the above-mentioned joining will be described.
The anisotropic conductive member used in the laminate preferably has a resin layer formed on at least one surface, and more preferably formed on both sides.
Further, the resin layer 44 of the above-mentioned anisotropic conductive member preferably contains a thermosetting resin. The formed resin layer is used as a temporary bonding layer to suppress misalignment after lamination. Since the temporary joining can be performed at a low temperature and in a short time, the adverse effect on the device can be reduced. From the viewpoint of suppressing misalignment due to heat during the process, the thickness of the above-mentioned resin layer is preferably 100 nm to 1000 nm, and the thermal conductivity of the anisotropic conductive member is 20 to 100 W / (m. K) is preferable, and the coefficient of thermal expansion (CTE) of the anisotropic conductive member is preferably 5 ppm to 10 ppm.
 異方導電性部材は、剥離可能な接着層を介して支持体に保持された形で供給されることが好ましい。支持体の材質としては、特に限定されるものではないが、曲がりにくく、一定の平坦度が確保できる点でシリコン又はガラス等の材質が好ましい。
 剥離可能な接着層としては、接着性が低い接着層であってもよいが、加熱又は光照射により接着性が低下する接着層が好ましい。加熱により接着性が低下する接着層の例としては、日東電工社製リバアルファ(登録商標)又はソマール株式会社製ソマタック(登録商標)が挙げられる。光照射により接着性が低下する接着層としては一般的なダイシングテープとして用いられているような材料を使うことができる他、3M社製の光剥離層も例として挙げられる。
The anisotropic conductive member is preferably supplied in a form held by the support via a peelable adhesive layer. The material of the support is not particularly limited, but a material such as silicon or glass is preferable because it is difficult to bend and a certain flatness can be secured.
The peelable adhesive layer may be an adhesive layer having low adhesiveness, but an adhesive layer whose adhesiveness is lowered by heating or light irradiation is preferable. Examples of the adhesive layer whose adhesiveness is lowered by heating include Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation or Somatac (registered trademark) manufactured by SOMAR Corporation. As the adhesive layer whose adhesiveness is lowered by light irradiation, a material such as that used as a general dicing tape can be used, and a light release layer manufactured by 3M Co., Ltd. is also mentioned as an example.
 異方導電性部材には、支持体に保持されている段階でパターンが形成されていてもよい。パターン形成の例としては、例えば、凹凸パターン形成、個片化、及び親疎水性パターン形成が挙げられ、親疎水性パターンが形成されていることが好ましく、親疎水性パターンが個片化されていることがより好ましい。
 異方導電性部材は導電材を含んでいるため、接合を行なうためには接合対象の表面に電極が形成されていればよく、微細円錐金バンプ等の特殊な金属バンプ又は、コネクテックジャパン株式会社、東北マイクロテック社及び産総研青柳昌宏研究グループによるモンスターパックコア技術等の特殊な技術を必要としない。特に、接合対象の表面平坦性が低い場合においても接合を可能とするために、異方導電性部材は突起を表面に有することが好ましく、上述のように、突出部分16a、すなわち、突起が導電材からなる突起を含むことがより好ましい。
 また、本発明の面積率を有する端子を有する積層体は層間の熱伝導が良好であることから熱が積層体全体に拡散しやすくなるため、放熱性が特に良好である。
The anisotropic conductive member may have a pattern formed at the stage of being held by the support. Examples of pattern formation include, for example, uneven pattern formation, individualization, and prohydrophobic pattern formation, and it is preferable that a prohydrophobic pattern is formed, and that the prohydrophobic pattern is individualized. More preferred.
Since the anisotropic conductive member contains a conductive material, it is sufficient that an electrode is formed on the surface of the object to be joined in order to perform the joining, and a special metal bump such as a fine conical gold bump or Connectec Japan Corporation is used. No special technology such as monster pack core technology by the company, Tohoku Microtech Co., Ltd. and Masahiro Aoyagi Research Group of AIST is required. In particular, in order to enable joining even when the surface flatness of the object to be joined is low, the anisotropic conductive member preferably has protrusions on the surface, and as described above, the protruding portion 16a, that is, the protrusions are conductive. It is more preferable to include protrusions made of wood.
Further, since the laminated body having the terminals having the area ratio of the present invention has good heat conduction between the layers, heat is easily diffused to the entire laminated body, so that the heat dissipation property is particularly good.
 次に、積層デバイスの積層方法について説明する。
 異なる半導体チップを積層する態様には、COC(Chip on Chip)法、COW(Chip on Wafer)法、WOW(Wafer on Wafer)法が挙げられる。COC法は基板に固定した半導体チップの上に半導体チップを積層していくという方法であり、異なるサイズの半導体チップの積層が可能である、接合前に良品半導体チップを選別することが可能である等のメリットを有するが、多数の半導体チップを積層する場合は都度アライメントを要するため高コストである。COW法は基板ウエハ上に半導体チップを積層するという方法であり、多数の半導体チップを積層する場合はCOC法と同様に都度アライメントを要するため高コストである。WOW法はウエハ同士を接合するという方法であり、接合時間の短縮が可能である、アライメントが容易等のメリットを有するが、良品半導体チップの選別ができないため多層積層体の得率が低下しやすい。
Next, a laminating method of the laminating device will be described.
Examples of laminating different semiconductor chips include a COC (Chip on Chip) method, a COW (Chip on Wafer) method, and a WOW (Wafer on Wafer) method. The COC method is a method in which semiconductor chips are laminated on a semiconductor chip fixed on a substrate, and it is possible to laminate semiconductor chips of different sizes, and it is possible to select non-defective semiconductor chips before joining. However, when a large number of semiconductor chips are laminated, alignment is required each time, which is expensive. The COW method is a method in which semiconductor chips are laminated on a substrate wafer, and when a large number of semiconductor chips are laminated, alignment is required each time as in the COC method, which is costly. The WOW method is a method of joining wafers to each other, and has advantages such as shortening of joining time and easy alignment. However, since good semiconductor chips cannot be selected, the yield of multilayer laminates tends to decrease. ..
 アライメントの時間短縮を目的として、ウエハ上で一括アライメントを行なうセルフアライメントと呼ばれる方法が検討されており、例えば、特開2005-150385号公報又は特開2014-57019号公報に技術が開示されている。しかし、これらの文献には固定された半導体チップ同士の位置を合わせる技術が開示されているにすぎず、層同士を電気的に接合するためには更に上述の接合方法のいずれかを行なう必要があった。金属拡散接合又は酸化膜ダイレクト接合を適用するためには配列した半導体チップ全ての高さを精密に制御する必要があり、高コストであった。一方で金属バンプ接合又は共晶接合を適用する場合、都度加熱して接合する方式では既接合部分の再加熱への対策が必要であり、全層積層後に一括で加熱して接合する方式では積層時に半導体チップがずれない工夫及び放熱対策が必要であった。 For the purpose of shortening the alignment time, a method called self-alignment in which batch alignment is performed on a wafer has been studied, and for example, the technique is disclosed in Japanese Patent Application Laid-Open No. 2005-150385 or Japanese Patent Application Laid-Open No. 2014-57019. .. However, these documents only disclose a technique for aligning the positions of fixed semiconductor chips, and it is necessary to further perform any of the above-mentioned joining methods in order to electrically join the layers. there were. In order to apply the metal diffusion bonding or the oxide film direct bonding, it is necessary to precisely control the heights of all the arranged semiconductor chips, which is costly. On the other hand, when applying metal bump bonding or eutectic bonding, it is necessary to take measures against reheating of the existing bonded part in the method of heating and joining each time, and in the method of heating and joining all layers at once, stacking is performed. Occasionally, it was necessary to devise ways to prevent the semiconductor chips from shifting and to take measures to dissipate heat.
 上述の課題に対し、異方導電性部材を用いた3次元積層が有用である。
 従って、積層体の各接合には異方導電性部材を用いることが好ましいが、積層体は従来法による接合を含んでもよい。従来法による接合を含む例として、異方導電性部材による接合を有する積層体が光半導体とASIC(Application Specific Integrated Circuit)との間にハイブリッドボンディングを有する態様、及びメモリとASICとの間に表面活性化接合を有する態様が挙げられる。従来法による接合は、異なるルールで製造されたデバイス同士の積層が容易になるという利点を有する。
Three-dimensional lamination using an anisotropic conductive member is useful for the above-mentioned problems.
Therefore, it is preferable to use an anisotropic conductive member for each joining of the laminated body, but the laminated body may include joining by a conventional method. Examples of including bonding by the conventional method include a mode in which a laminate having bonding by an anisotropic conductive member has hybrid bonding between an optical semiconductor and an ASIC (Application Specific Integrated Circuit), and a surface between a memory and an ASIC. Examples include an embodiment having an activated junction. Joining by the conventional method has an advantage that devices manufactured according to different rules can be easily laminated.
 異方導電性部材を用いた3次元積層の例として、以下の態様が挙げられる。
 まず、第1の半導体チップ群を検査、個片化し、第1の良品半導体チップ群を選別する。
 第1の異方導電性部材を介して第1の基体に第1の良品半導体チップ群を配列し、仮接合を行なう。仮接合は、フリップチップボンダー等の装置により行なうことができる。第1の基体としては、特に限定されるものではないが、トランジスタを有するデバイス又は、配線層と貫通電極を有する基体が例として挙げられる。
 被積層半導体チップ群を検査した後、個片化し、被積層良品半導体チップ群を選別する。被積層半導体チップ群としては、特に限定されるものではないが、貫通電極を有する態様又は埋設されたビアを有する半導体チップの裏面を除去する態様が例として挙げられる。裏面の除去方法は、バックグラインド、CMP、及びケミカルエッチング等の方法が挙げられる。特に、横方向の応力の少ないケミカルエッチング等の除去方法が好ましい。
The following aspects can be mentioned as an example of three-dimensional lamination using an anisotropic conductive member.
First, the first semiconductor chip group is inspected and individualized, and the first non-defective semiconductor chip group is selected.
The first non-defective semiconductor chip group is arranged on the first substrate via the first anisotropic conductive member, and temporary bonding is performed. Temporary joining can be performed by a device such as a flip chip bonder. The first substrate is not particularly limited, and examples thereof include a device having a transistor or a substrate having a wiring layer and a through electrode.
After inspecting the semiconductor chip group to be laminated, the semiconductor chips to be laminated are separated into individual pieces and the good semiconductor chip group to be laminated is selected. The group of semiconductor chips to be laminated is not particularly limited, and examples thereof include a mode having a through electrode or a mode in which the back surface of the semiconductor chip having an embedded via is removed. Examples of the method for removing the back surface include back grind, CMP, and chemical etching. In particular, a removal method such as chemical etching with less lateral stress is preferable.
 第2の基体の、第1の基体上における第1の良品半導体チップ群の配列に対応する位置に、被積層良品半導体チップ群を配列する。
 第1の基体と第2の基体との位置合わせを行なった後、第1の基体と第2の基体の間に第2の異方導電性部材を挟み、この第2の異方導電性部材を介して第1の良品半導体チップ群と被積層良品半導体チップ群との仮接合を行なう。次に、被積層良品半導体チップ群から第2の基体を剥して除去する。
 第1の良品半導体チップ群、第2の異方導電性部材、及び被積層良品半導体チップ群からなる構造を新たな第1の良品半導体チップ群とし、予め定められた階層の構造が形成されるまで第2の異方導電性部材と被積層半導体チップ群の積層を繰り返す。
 予め定められた階層の構造が形成された後、一括で加熱及び加圧を行なうことで階層間を本接合し、3次元接合構造を得る。
 得られた3次元接合構造をコンプレッションボンディング等の手法で封止し、個片化を行なうことで目的とする素子を得る。なお、個片化を行なう前に、薄化、再配線、電極形成等の処理を行なってもよい。
The group of non-defective semiconductor chips to be laminated is arranged at a position corresponding to the arrangement of the first group of non-defective semiconductor chips on the first substrate of the second substrate.
After aligning the first substrate and the second substrate, a second anisotropic conductive member is sandwiched between the first substrate and the second substrate, and the second anisotropic conductive member is sandwiched between the first substrate and the second substrate. Temporarily joins the first non-defective semiconductor chip group and the laminated non-defective semiconductor chip group through the above. Next, the second substrate is peeled off from the group of good semiconductor chips to be laminated and removed.
The structure consisting of the first non-defective semiconductor chip group, the second anisotropic conductive member, and the laminated non-defective semiconductor chip group is designated as a new first non-defective semiconductor chip group, and a predetermined hierarchical structure is formed. The stacking of the second anisotropic conductive member and the semiconductor chip group to be laminated is repeated until.
After the structure of the predetermined layer is formed, the layers are mainly joined by heating and pressurizing all at once to obtain a three-dimensional bonded structure.
The obtained three-dimensional bonding structure is sealed by a method such as compression bonding and individualized to obtain a target device. In addition, you may perform processing such as thinning, rewiring, electrode formation, etc. before performing individualization.
 他の例としては、第2の異方導電性部材を介して第1の良品半導体チップ群と接合した後に被積層半導体チップ群の個片化を行なう態様、パターンが形成された異方導電性部材を第1又は第2の異方導電性部材として用いる態様、及びパターンが形成された異方導電性部材を第2の基体上に被積層半導体チップ群を配列するための接着剤として用い、第2の基体と異方導電性部材との界面で剥離を行なう態様等が挙げられる。 As another example, an embodiment in which the semiconductor chip group to be laminated is individualized after being bonded to the first non-defective semiconductor chip group via the second anisotropic conductive member, and the anisotropic conductivity in which a pattern is formed. An embodiment in which the member is used as the first or second anisotropic conductive member, and the anisotropic conductive member in which the pattern is formed are used as an adhesive for arranging the group of semiconductor chips to be laminated on the second substrate. Examples thereof include a mode in which peeling is performed at the interface between the second substrate and the anisotropic conductive member.
 また、他の例として、以下の態様も挙げられる。
 まず、第1の基体の表面に第1の異方導電性部材を設ける。第1の基体としては、MOS(Metal Oxide Semiconductor)が存在する態様であってもよく、MOSが存在しない態様であってもよい。
 第1の半導体チップ群を検査し、個片化し、第1の良品半導体チップ群を選別する。
 処理により接着性が低下する仮接合層を介して支持体の表面に第2の異方導電性部材を設ける。支持体の材質としては、特に限定されるものではないが、シリコン又はガラスが好ましい。処理により接着性が低下する仮接合層としては、加熱により接着性が低下する仮接合層又は光照射により接着性が低下する仮接合層が好ましい。
In addition, as another example, the following aspects can be mentioned.
First, the first anisotropic conductive member is provided on the surface of the first substrate. As the first substrate, a mode in which MOS (Metal Oxide Semiconductor) is present may be used, or a mode in which MOS (Metal Oxide Semiconductor) is not present may be used.
The first semiconductor chip group is inspected, individualized, and the first non-defective semiconductor chip group is selected.
A second anisotropic conductive member is provided on the surface of the support via a temporary bonding layer whose adhesiveness is reduced by the treatment. The material of the support is not particularly limited, but silicon or glass is preferable. As the temporary bonding layer whose adhesiveness is lowered by the treatment, a temporary bonding layer whose adhesiveness is lowered by heating or a temporary bonding layer whose adhesiveness is lowered by light irradiation is preferable.
 第2の異方導電性部材にパターンを設ける。パターンとしては個片化された親疎水性パターンがより好ましい。親疎水性パターンが個片化されている場合、後の工程において異方導電性部材を第1の良品半導体チップ群に転写することが容易になる。個片化の方法としては、特に限定されるものではないが、ダイシング法、レーザー照射法、ステルスダイシング法、ウェットエッチング法、及びドライエッチング法等が挙げられる。 Provide a pattern on the second anisotropic conductive member. As the pattern, an individualized prohydrophobic pattern is more preferable. When the hydrophobic pattern is fragmented, it becomes easy to transfer the anisotropic conductive member to the first non-defective semiconductor chip group in a later step. The individualizing method is not particularly limited, and examples thereof include a dicing method, a laser irradiation method, a stealth dicing method, a wet etching method, and a dry etching method.
 パターンを用いたセルフアセンブリ技術により、第2の異方導電性部材を介して支持体に第1の良品半導体チップ群を配列し、仮接合を行なう。セルフアセンブリ技術としては、例えば、基板の実装領域上に活性剤を含む液滴を形成し、液滴上に半導体チップ群を載置し、素子を実装領域に位置決めし、液滴を乾燥させ、素子と実装基板とを硬化性樹脂層を介して接合し、活性剤を洗い流す方法が挙げられる。これらの技術は特開2005-150385号公報又は特開2014-57019号公報に開示されている。セルフアセンブリに際して、電極をアライメントマークとして用いてもよい。 By self-assembly technology using a pattern, the first non-defective semiconductor chip group is arranged on the support via the second anisotropic conductive member, and temporary joining is performed. As a self-assembly technique, for example, a droplet containing an activator is formed on a mounting region of a substrate, a group of semiconductor chips is placed on the droplet, a device is positioned in the mounting region, and the droplet is dried. Examples thereof include a method in which the element and the mounting substrate are joined via a curable resin layer to wash away the activator. These techniques are disclosed in Japanese Patent Application Laid-Open No. 2005-150385 or Japanese Patent Application Laid-Open No. 2014-57019. Electrodes may be used as alignment marks during self-assembly.
 第1の異方導電性部材を介して第1の基体と第1の良品半導体チップ群とを仮接合する。次に、仮接合層の接着性を低下させる処理を行ない、第2の異方導電性部材と支持体との界面で剥離を行なう。
 第1の基体、第1の異方導電性部材、及び第1の良品半導体チップ群からなる構造を新たな第1の基体とし、第2の異方導電性部材を新たな第1の異方導電性部材とし、予め定められた階層の構造が形成されるまで第1の良品半導体チップ群と第2の異方導電性部材の積層を繰り返す。
The first substrate and the first non-defective semiconductor chip group are temporarily joined via the first anisotropic conductive member. Next, a treatment for lowering the adhesiveness of the temporary bonding layer is performed, and peeling is performed at the interface between the second anisotropic conductive member and the support.
The structure consisting of the first substrate, the first anisotropic conductive member, and the first non-defective semiconductor chip group is used as the new first substrate, and the second anisotropic conductive member is used as the new first anisotropic member. The conductive member is formed, and the first non-defective semiconductor chip group and the second anisotropic conductive member are repeatedly laminated until a predetermined hierarchical structure is formed.
 予め定められた階層の構造が形成された後、仮接合で用いた条件より高圧、かつ高温の条件で一括処理を行なうことで階層間を本接合し、3次元接合構造を得る。仮接合層が積層体に残存するため、仮接合層としては本接合条件において硬化反応が進行する材料を用いることが好ましい。
 得られた3次元接合構造をコンプレッションボンディング等の手法で封止し、個片化を行なうことで目的とする積層デバイスを得る。なお、個片化を行なう前に、薄化、再配線及び電極形成等の処理を行なってもよい。
 上述のように、異方導電性部材を用いることで仮接合と本接合とを分離できるため、はんだリフロー等の高温プロセスを複数回かける必要がなく、デバイス不良発生リスクを低減することができる。また、上述のように、樹脂層を表面に有する異方導電性部材を用いる態様では、プロセス条件による接合部への影響を樹脂層が緩和することができる。また、突起を表面に有する異方導電性部材を用いる態様では、接合対象の表面平坦性が低い場合においても接合が可能となるため、平坦化プロセスを簡略化することができる。
After the structure of the predetermined hierarchy is formed, the layers are mainly joined by performing batch processing under the conditions of higher pressure and higher temperature than the conditions used for the temporary joining to obtain a three-dimensional joining structure. Since the temporary bonding layer remains in the laminated body, it is preferable to use a material for which the curing reaction proceeds under the main bonding conditions as the temporary bonding layer.
The obtained three-dimensional bonded structure is sealed by a method such as compression bonding and individualized to obtain the desired laminated device. It should be noted that treatments such as thinning, rewiring, and electrode formation may be performed before the individualization.
As described above, since the temporary bonding and the main bonding can be separated by using the anisotropic conductive member, it is not necessary to perform a high temperature process such as solder reflow a plurality of times, and the risk of device failure can be reduced. Further, as described above, in the embodiment in which the anisotropic conductive member having the resin layer on the surface is used, the influence of the process conditions on the joint portion can be alleviated by the resin layer. Further, in the embodiment using the anisotropic conductive member having protrusions on the surface, joining is possible even when the surface flatness of the object to be joined is low, so that the flattening process can be simplified.
 以下、積層体を用いた3次元積層について、図33~図48を用いて、より具体的に説明する。
 図33~図43は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例を工程順に示す模式図である。
 図44~図46は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法を工程順に示す模式図である。
 図47及び図48は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第4の例に用いられる積層体の製造方法を工程順に示す模式図である。
 金属充填微細構造体を用いた積層デバイスの製造方法の第4の例は、3次元積層に関するものであり、金属充填微細構造体を用いた積層デバイスの製造方法の第2の例と同様に異方導電性部材を用いるものである。このため、金属充填微細構造体を用いた積層デバイスの製造方法の第2の例と共通する製造方法についての詳細な説明は省略する。
Hereinafter, the three-dimensional lamination using the laminate will be described more specifically with reference to FIGS. 33 to 48.
33 to 43 are schematic views showing a fourth example of a method for manufacturing a laminated device using the metal-filled microstructure according to the embodiment of the present invention in order of steps.
FIGS. 44 to 46 are schematic views showing the manufacturing method of the laminated body used in the fourth example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of the present invention in the order of steps.
47 and 48 are schematic views showing the manufacturing method of the laminated body used in the fourth example of the manufacturing method of the laminated device using the metal-filled microstructure of the embodiment of the present invention in the order of processes.
The fourth example of the method for manufacturing a laminated device using a metal-filled microstructure relates to three-dimensional lamination, and is different from the second example of the method for manufacturing a laminated device using a metal-filled microstructure. A direction conductive member is used. Therefore, a detailed description of the manufacturing method common to the second example of the manufacturing method of the laminated device using the metal-filled microstructure will be omitted.
 まず、図33に示すように、半導体ウエハ92の表面92a全面に異方導電性部材22を設けられた第1の積層基体90を用意する。半導体ウエハ92は、例えば、複数の素子領域(図示せず)を備える第1の半導体ウエハ80と同じ構成とすることができる。なお、半導体ウエハ92は、上述のインターポーザー23とすることもできる。
 また、図34に示すように、複数の半導体素子64が設けられた第2の積層基体100を用意する。第2の積層基体100は、第2の基体102の表面102a上に剥離機能層104と異方導電性部材22とが積層されている。異方導電性部材22上に、複数の半導体素子64が設けられている。異方導電性部材22上には、半導体素子64が設けられていない領域に親疎水性膜105が設けられている。
 第2の積層基体100において、半導体素子64の裏面64bは第2の基体102側の面であり、表面64aはその反対側の面である。半導体素子64は、例えば、検査して選別された良品半導体素子が用いられる。
First, as shown in FIG. 33, a first laminated substrate 90 provided with an anisotropic conductive member 22 on the entire surface 92a of the semiconductor wafer 92 is prepared. The semiconductor wafer 92 can have, for example, the same configuration as the first semiconductor wafer 80 having a plurality of element regions (not shown). The semiconductor wafer 92 can also be the above-mentioned interposer 23.
Further, as shown in FIG. 34, a second laminated substrate 100 provided with a plurality of semiconductor elements 64 is prepared. In the second laminated substrate 100, the peeling functional layer 104 and the anisotropic conductive member 22 are laminated on the surface 102a of the second substrate 102. A plurality of semiconductor elements 64 are provided on the anisotropic conductive member 22. A hydrophobic film 105 is provided on the anisotropic conductive member 22 in a region where the semiconductor element 64 is not provided.
In the second laminated substrate 100, the back surface 64b of the semiconductor element 64 is the surface on the second substrate 102 side, and the surface 64a is the surface on the opposite side. As the semiconductor element 64, for example, a non-defective semiconductor element that has been inspected and selected is used.
 剥離機能層104は、例えば、加熱又は光照射により接着性が低下する接着層で構成される。加熱により接着性が低下する接着層の例としては、日東電工社製リバアルファ(登録商標)又はソマール株式会社製ソマタック(登録商標)が挙げられる。光照射により接着性が低下する接着層としては一般的なダイシングテープとして用いられているような材料を使うことができる他、3M社製の光剥離層も例として挙げられる。 The peeling function layer 104 is composed of, for example, an adhesive layer whose adhesiveness is lowered by heating or light irradiation. Examples of the adhesive layer whose adhesiveness is lowered by heating include Riva Alpha (registered trademark) manufactured by Nitto Denko Corporation or Somatac (registered trademark) manufactured by SOMAR Corporation. As the adhesive layer whose adhesiveness is lowered by light irradiation, a material such as that used as a general dicing tape can be used, and a light release layer manufactured by 3M Co., Ltd. is also mentioned as an example.
 次に、図35に示すように、第1の積層基体90と第2の積層基体100とを仮接合する。なお、仮接合の方法は、上述のとおりである。また、仮接合には、フリップチップボンダー等の装置を用いることができる。
 次に、図36に示すように、第2の積層基体100の第2の基体102を除去する。この場合、半導体素子64は半導体ウエハ92の異方導電性部材22と仮接合された状態であり、かつ半導体素子64の表面64aに異方導電性部材22が転載された状態となる。
 第2の基体102は、例えば、加熱又は光照射により剥離機能層104の接着性を低下させて除去する。
Next, as shown in FIG. 35, the first laminated base 90 and the second laminated base 100 are temporarily joined. The method of temporary joining is as described above. Further, a device such as a flip chip bonder can be used for temporary joining.
Next, as shown in FIG. 36, the second substrate 102 of the second laminated substrate 100 is removed. In this case, the semiconductor element 64 is in a state of being temporarily bonded to the anisotropic conductive member 22 of the semiconductor wafer 92, and the anisotropic conductive member 22 is reprinted on the surface 64a of the semiconductor element 64.
The second substrate 102 is removed by, for example, heating or irradiating with light to reduce the adhesiveness of the peeling functional layer 104.
 次に、図37に示すように、半導体素子64の表面64a側の異方導電性部材22に、別の第2の積層基体100を、半導体素子64同士の位置を合わせて仮接合する。この場合、別の第2の積層基体100の半導体素子64の裏面64bと、半導体ウエハ92に仮接合された半導体素子64の表面64a側の異方導電性部材22とが仮接合される。仮接合の方法は、上述のとおりである。
 次に、図38に示すように、別の第2の積層基体100の第2の基体102を除去する。第2の基体102の除去方法は、上述のとおりである。
 図38に示すように半導体素子64は、半導体ウエハ92の側の半導体素子64の異方導電性部材22と仮接合された状態であり、かつ半導体素子64の表面64aに異方導電性部材22が転載された状態となる。図38は、半導体素子64が2層設けられた構成を示す。このように、第2の積層基体100の仮接合を繰り返すことにより、半導体素子64の積層数を制御することができる。
Next, as shown in FIG. 37, another second laminated substrate 100 is temporarily joined to the anisotropic conductive member 22 on the surface 64a side of the semiconductor element 64 by aligning the positions of the semiconductor elements 64 with each other. In this case, the back surface 64b of the semiconductor element 64 of another second laminated substrate 100 and the anisotropic conductive member 22 on the front surface 64a side of the semiconductor element 64 temporarily bonded to the semiconductor wafer 92 are temporarily bonded. The method of temporary joining is as described above.
Next, as shown in FIG. 38, the second substrate 102 of another second laminated substrate 100 is removed. The method for removing the second substrate 102 is as described above.
As shown in FIG. 38, the semiconductor element 64 is in a state of being temporarily joined to the anisotropic conductive member 22 of the semiconductor element 64 on the side of the semiconductor wafer 92, and the anisotropic conductive member 22 is attached to the surface 64a of the semiconductor element 64. Is reprinted. FIG. 38 shows a configuration in which the semiconductor element 64 is provided in two layers. By repeating the temporary bonding of the second laminated substrate 100 in this way, the number of laminated semiconductor elements 64 can be controlled.
 ここで、図39に示す第3の複合積層体106を用意する。第3の複合積層体106は、第3の基体108を有し、その表面108aに親疎水性膜109が特定のパターンで形成されている。また、半導体素子64が、第3の基体108の表面108a、すなわち、親疎水性膜109が設けられていない領域に設けられている。この場合も、半導体素子64は、例えば、検査して選別された良品半導体素子が用いられる。
 親疎水性膜109は、例えば、撥水性の材料をマスクを介して塗布し、所望のパターンにして、特定のパターンを得る。撥水性材料としては、アルキルシラン、又はフルオロアルキルシランといった化合物を用いることができる。撥水性材料としては、形状による撥水効果を発現する材料、例えば、イソタクチックポリプロピレン(i-PP)の相分離構造等を用いることができる。
Here, the third composite laminate 106 shown in FIG. 39 is prepared. The third composite laminate 106 has a third substrate 108, and a hydrophobic film 109 is formed on the surface 108a thereof in a specific pattern. Further, the semiconductor element 64 is provided on the surface 108a of the third substrate 108, that is, in a region where the hydrophobic film 109 is not provided. In this case as well, as the semiconductor element 64, for example, a non-defective semiconductor element that has been inspected and selected is used.
For the hydrophobic membrane 109, for example, a water-repellent material is applied through a mask to form a desired pattern to obtain a specific pattern. As the water-repellent material, a compound such as alkylsilane or fluoroalkylsilane can be used. As the water-repellent material, a material that exhibits a water-repellent effect depending on the shape, for example, a phase-separated structure of isotactic polypropylene (i-PP) or the like can be used.
 次に、図40に示すように、半導体素子64が2層設けられた第1の積層基体90に対して、半導体素子64の表面64a側の異方導電性部材22に、第3の複合積層体106を、半導体素子64同士の位置を合わせて仮接合する。これにより、半導体素子64が3層設けられた構成となる。
 次に、図41に示すように、第3の複合積層体106の第3の基体108を取り除く。第3の基体108の除去方法は、上述の第2の基体102の除去方法と同じである。
 次に、仮接合で用いた条件より高圧、かつ高温の条件で一括処理を行なうことにより、半導体素子64と異方導電性部材22と半導体ウエハ92とを本接合し、図42に示す3次元接合構造体94を得る。なお、3次元接合構造体94に対して、薄化、再配線及び電極形成等の処理を行なってもよい。
Next, as shown in FIG. 40, with respect to the first laminated substrate 90 provided with two layers of the semiconductor element 64, the third composite laminate is formed on the anisotropic conductive member 22 on the surface 64a side of the semiconductor element 64. The body 106 is temporarily joined by aligning the positions of the semiconductor elements 64 with each other. As a result, the semiconductor element 64 is provided with three layers.
Next, as shown in FIG. 41, the third substrate 108 of the third composite laminate 106 is removed. The method for removing the third substrate 108 is the same as the method for removing the second substrate 102 described above.
Next, the semiconductor element 64, the anisotropic conductive member 22, and the semiconductor wafer 92 are main-bonded by performing batch processing under conditions of higher pressure and higher temperature than those used in the temporary bonding, and the three dimensions shown in FIG. 42 are obtained. A bonded structure 94 is obtained. The three-dimensional bonded structure 94 may be subjected to processing such as thinning, rewiring, and electrode formation.
 次に、3次元接合構造体94の半導体ウエハ92と異方導電性部材22とを切断して、図43に示すように個片化する。これにより、異方導電性部材22を介して3つの半導体素子64が接合された積層デバイス60を得ることができる。個片化の方法は、上述の方法を適宜用いることができる。 Next, the semiconductor wafer 92 of the three-dimensional bonded structure 94 and the anisotropic conductive member 22 are cut into pieces as shown in FIG. 43. As a result, it is possible to obtain a laminated device 60 in which three semiconductor elements 64 are bonded via an anisotropic conductive member 22. As the method of individualization, the above-mentioned method can be appropriately used.
 図34に示す第2の積層基体100は、図44に示すように、第2の基体102の表面102aに剥離機能層104と異方導電性部材22とを積層して形成する。
 次に、図45に示すように、異方導電性部材22上に特定のパターンで親疎水性膜105を形成する。
 親疎水性膜105は、例えば、リソグラフィ法又は自己組織化法等の方法でパターンを異方導電性部材22上に形成される。親疎水性膜105のうち、親水パターンを形成する親水性材料の例としては、ポリビニルアルコール等の親水性高分子が挙げられる。
 また、上述の親疎水性膜109に用いた材料で、親疎水性膜105を形成することもできる。親疎水性膜105は、例えば、フッ素系化合物を含むレジスト材料を使って、露光現像により特定のパターンを形成することもできる。
As shown in FIG. 44, the second laminated substrate 100 shown in FIG. 34 is formed by laminating the peeling functional layer 104 and the anisotropic conductive member 22 on the surface 102a of the second substrate 102.
Next, as shown in FIG. 45, the anisotropic hydrophobic film 105 is formed on the anisotropic conductive member 22 in a specific pattern.
The hydrophobic film 105 is formed with a pattern on the anisotropic conductive member 22 by a method such as a lithography method or a self-assembling method. Among the hydrophilic membrane 105, examples of the hydrophilic material forming the hydrophilic pattern include a hydrophilic polymer such as polyvinyl alcohol.
Further, the material used for the above-mentioned prohydrophobic membrane 109 can also be used to form the prohydrophobic membrane 105. The hydrophilic film 105 can also form a specific pattern by exposure development using, for example, a resist material containing a fluorine-based compound.
 次に、図46に示すように、親疎水性膜105が設けられていない領域に半導体素子64を設ける。これにより、図34に示す第2の積層基体100を得る。
 半導体素子64を設ける方法としては、例えば、親疎水性膜105が設けられていない領域に活性剤を含む液滴を形成し、液滴上に半導体素子64を載置し、位置決めし、液滴を乾燥させ、半導体素子64と第2の基体102とを硬化性樹脂層を介して接合し、活性剤を洗い流す方法が用いられる。
Next, as shown in FIG. 46, the semiconductor element 64 is provided in the region where the hydrophobic film 105 is not provided. As a result, the second laminated substrate 100 shown in FIG. 34 is obtained.
As a method of providing the semiconductor element 64, for example, a droplet containing an activator is formed in a region where the hydrophobic membrane 105 is not provided, the semiconductor element 64 is placed on the droplet, positioned, and the droplet is placed. A method of drying, joining the semiconductor element 64 and the second substrate 102 via a curable resin layer, and washing away the activator is used.
 図39に示す第3の複合積層体106は、図47に示すように、第3の基体108を用意する。次に、図48に示すように、第3の基体108の表面108aに、親疎水性膜109を特定のパターンで形成する。親疎水性膜109は、上述の親疎水性膜105と同じ構成であり、同じ方法で形成することができる。
 次に、親疎水性膜109が設けられていない領域に半導体素子64を設ける。半導体素子64を設ける方法としては、例えば、親疎水性膜109が設けられていない領域に活性剤を含む液滴を形成し、液滴上に半導体素子64を載置し、位置決めし、液滴を乾燥させ、半導体素子64と第3の基体108とを硬化性樹脂層を介して接合し、活性剤を洗い流す方法が用いられる。これにより、図39に示す第3の複合積層体106を得る。
As shown in FIG. 47, the third composite laminate 106 shown in FIG. 39 prepares a third substrate 108. Next, as shown in FIG. 48, the hydrophobic film 109 is formed on the surface 108a of the third substrate 108 in a specific pattern. The hydrophobic membrane 109 has the same structure as the above-mentioned hydrophobic membrane 105 and can be formed by the same method.
Next, the semiconductor element 64 is provided in the region where the hydrophobic film 109 is not provided. As a method of providing the semiconductor element 64, for example, a droplet containing an activator is formed in a region where the hydrophobic membrane 109 is not provided, the semiconductor element 64 is placed on the droplet, positioned, and the droplet is placed. A method is used in which the semiconductor element 64 and the third substrate 108 are joined to each other via a curable resin layer after drying, and the activator is washed away. As a result, the third composite laminate 106 shown in FIG. 39 is obtained.
 また、TSVを用いない新たな手法にも対応可能である。3次元実装においては、上述のように1対複数の形態、又は複数対複数の形態の接合が求められるケースがある。その際には通常いずれかのデバイスに予めインターポーザー機能を付与する必要がある。しかし、ヘテロジニアスな接合環境を考えた場合個々のデバイスを集合させるために予め設計することは好ましくない。
 このような問題を解決する方法として、再配線層(RDL:Re-Distribution Layer)を単独で用いる方法が提案されている。種々デバイスをつなぐインターポーザー機能を有する再配線層を異方導電膜に接合し、内包させることにより個々のデバイス設計にこだわることなく低背化、及びTSVフリーが実現できる。
 同様な仕組みで有機基板内に複数のデバイスを積層したスタックを設置することも可能となる。
 これらのアセンブリの例を図49~図66に示す。なお、もちろん具体的なアセンブリの手法としては、図49~図66に示すものに限定されるものではない。
 図49~図61は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第5の例を工程順に示す模式図であり、図62~図66は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの製造方法の第6の例を工程順に示す模式図である。なお、図49~図66において、図13に示す異方導電材50及び図13に示す積層デバイス60と同一構成物には同一符号を付して、その詳細な説明は省略する。
It is also possible to support a new method that does not use TSV. In three-dimensional mounting, as described above, there are cases where one-to-many forms or multiple-to-many forms are required to be joined. In that case, it is usually necessary to give an interposer function to one of the devices in advance. However, considering a heterogeneous bonding environment, it is not preferable to design in advance to assemble individual devices.
As a method for solving such a problem, a method of using a rewiring layer (RDL: Re-Distribution Layer) alone has been proposed. By joining the rewiring layer having an interposer function that connects various devices to the anisotropic conductive film and including it, it is possible to reduce the height and realize TSV-free without being particular about individual device design.
It is also possible to install a stack in which a plurality of devices are stacked on an organic substrate by the same mechanism.
Examples of these assemblies are shown in FIGS. 49-66. Of course, the specific assembly method is not limited to those shown in FIGS. 49 to 66.
49 to 61 are schematic views showing a fifth example of a method for manufacturing a laminated device using the metal-filled microstructure of the embodiment of the present invention in process order, and FIGS. 62 to 66 are embodiments of the present invention. It is a schematic diagram which shows the 6th example of the manufacturing method of the laminated device using the metal-filled microstructure of the above in the order of steps. In FIGS. 49 to 66, the same components as those of the anisotropic conductive material 50 shown in FIG. 13 and the laminated device 60 shown in FIG. 13 are designated by the same reference numerals, and detailed description thereof will be omitted.
 まず、支持体46と異方導電性部材22とを有する異方導電材50と、再配線層110が設けられたウエハ112とを用意する。なお、再配線層110は、上述のインターポーザー機能を有する。
 図49に示すように、異方導電性部材22に対向して再配線層110を配置し、図50に示すように異方導電性部材22と再配線層110とを接合し、電気的に接続する。
 次に、図51に示すようにウエハ112を再配線層110から分離する。
First, an anisotropic conductive material 50 having a support 46 and an anisotropic conductive member 22, and a wafer 112 provided with a rewiring layer 110 are prepared. The rewiring layer 110 has the above-mentioned interposer function.
As shown in FIG. 49, the rewiring layer 110 is arranged so as to face the anisotropic conductive member 22, and as shown in FIG. 50, the anisotropic conductive member 22 and the rewiring layer 110 are joined and electrically. Connecting.
Next, as shown in FIG. 51, the wafer 112 is separated from the rewiring layer 110.
 次に、図52に示すように再配線層110に、異方導電性部材22を対向させて異方導電材50を配置する。
 次に、図53に示すように再配線層110と異方導電性部材22とを接合し、図54に示すように、一方の支持体46を分離する。
 次に、図55に示すように、一方の支持体46が分離された異方導電性部材22に対向させて、半導体素子62を配置する。次に、図56に示すように、異方導電性部材22と半導体素子62とを接合し、電気的に接続する。次に、図57に示すように、残りの支持体46を分離する。
 次に、図58に示すように半導体素子62が設けられていない側の、残りの支持体46が分離された異方導電性部材22に対向させて、半導体素子64を配置する。
Next, as shown in FIG. 52, the anisotropic conductive material 50 is arranged on the rewiring layer 110 with the anisotropic conductive member 22 facing each other.
Next, the rewiring layer 110 and the anisotropic conductive member 22 are joined as shown in FIG. 53, and one support 46 is separated as shown in FIG. 54.
Next, as shown in FIG. 55, the semiconductor element 62 is arranged so that one of the supports 46 faces the isolated anisotropic conductive member 22. Next, as shown in FIG. 56, the anisotropic conductive member 22 and the semiconductor element 62 are joined and electrically connected. Next, as shown in FIG. 57, the remaining support 46 is separated.
Next, as shown in FIG. 58, the semiconductor element 64 is arranged so that the remaining support 46 on the side where the semiconductor element 62 is not provided faces the anisotropic conductive member 22 from which the semiconductor element 62 is separated.
 次に、図59に示すように異方導電性部材22と半導体素子64とを接合し、電気的に接続する。これにより、TSVを用いることなく、半導体素子62と半導体素子64とを積層することができる。
 なお、図58では半導体素子64を配置したが、これに限定されるものではなく、図60に示すように、1つの半導体素子62に対して、半導体素子64と半導体素子66を配置してもよい。この場合、図61に示すように1つの半導体素子62に、複数の半導体素子64、半導体素子66が配置される構成となる。この場合も、TSVを用いることなく、半導体素子62に、半導体素子64と半導体素子66を積層することができる。
Next, as shown in FIG. 59, the anisotropic conductive member 22 and the semiconductor element 64 are joined and electrically connected. As a result, the semiconductor element 62 and the semiconductor element 64 can be laminated without using the TSV.
Although the semiconductor element 64 is arranged in FIG. 58, the present invention is not limited to this, and as shown in FIG. 60, the semiconductor element 64 and the semiconductor element 66 may be arranged with respect to one semiconductor element 62. good. In this case, as shown in FIG. 61, a plurality of semiconductor elements 64 and semiconductor elements 66 are arranged in one semiconductor element 62. Also in this case, the semiconductor element 64 and the semiconductor element 66 can be laminated on the semiconductor element 62 without using the TSV.
 また、再配線層110は単独で使用することに限定されるものではなく、有機基板に埋め込んで使用することもできる。
 この場合、図62に示すように再配線層110が設けられた異方導電材50に対して、再配線層110に対向させて、有機基板120を配置する。有機基板120は、例えば、インターポーザーとして機能するものである。
 次に、図63に示すように再配線層110に有機基板120を、例えば、半田を用いて電気的に接続する。この場合、再配線層110を有機基板120に埋め込んでもよい。
 次に、図64に示すように支持体46を分離する。次に、図65に示すように半導体素子62を、異方導電性部材22に対向させて配置する。
 次に、図66に示すように半導体素子62を異方導電性部材22に接合し、電気的に接続する。これにより、再配線層110と半導体素子62とが積層されたものを得ることができる。
 なお、上述では、半導体素子を例にして説明したが、これに限定されるものではなく、半導体素子に代えて半導体ウエハでもよい。
 また、半導体素子の構成は、特に限定されるものではなく、上述の例示のものを適宜利用可能である。
Further, the rewiring layer 110 is not limited to being used alone, and can be used by being embedded in an organic substrate.
In this case, as shown in FIG. 62, the organic substrate 120 is arranged so as to face the rewiring layer 110 with respect to the anisotropic conductive material 50 provided with the rewiring layer 110. The organic substrate 120 functions as, for example, an interposer.
Next, as shown in FIG. 63, the organic substrate 120 is electrically connected to the rewiring layer 110 by using, for example, solder. In this case, the rewiring layer 110 may be embedded in the organic substrate 120.
Next, the support 46 is separated as shown in FIG. Next, as shown in FIG. 65, the semiconductor element 62 is arranged so as to face the anisotropic conductive member 22.
Next, as shown in FIG. 66, the semiconductor element 62 is joined to the anisotropic conductive member 22 and electrically connected. As a result, it is possible to obtain a product in which the rewiring layer 110 and the semiconductor element 62 are laminated.
In the above description, the semiconductor element has been described as an example, but the present invention is not limited to this, and a semiconductor wafer may be used instead of the semiconductor element.
Further, the configuration of the semiconductor element is not particularly limited, and the above-exemplified ones can be appropriately used.
 ここで、仮接合とは、半導体素子又は半導体ウエハを、接合する対象物に対して位置合せした状態で、接合する対象物上に固定することをいう。
 本接合は、仮接合した状態で、予め定めた条件にて接合を行い、対象物同士を接合することをいう。本接合は、特別な外力等が作用しない限り、永久に接合状態が解除されない状態のことをいう。
 本接合は、上述のように一括して行うことにより、タクトタイムを低減でき、生産性を高くできる。
Here, temporary bonding means fixing a semiconductor element or a semiconductor wafer on an object to be bonded in a state of being aligned with the object to be bonded.
This joining refers to joining objects under predetermined conditions in a temporarily joined state. This joining refers to a state in which the joining state is not permanently released unless a special external force or the like acts on it.
By performing this joining collectively as described above, the tact time can be reduced and the productivity can be increased.
 接合方法は、上述の方法に特に限定されるものではなく、DBI(Direct Bond Interconnect)及びSAB(Surface Activated Bond)を用いることができる。
 上述のDBIは、例えば、異方導電性部材と半導体ウエハとを接合する場合、異方導電性部材及び半導体ウエハに、シリコン酸化膜を積層し、化学的機械的研磨を施す。その後、プラズマ処理によってシリコン酸化膜界面を活性化させ、異方導電性部材半導体ウエハを接触させることにより両者を接合する。
 上述のSABは、例えば、異方導電性部材と半導体ウエハとを接合する場合、異方導電性部材及び半導体ウエハの各接合面を真空中で表面処理し活性化する。この状態で、異方導電性部材及び半導体ウエハを、常温環境で接触させることにより両者を接合する。表面処理には、アルゴン等の不活性ガスのイオン照射、又は中性原子ビーム照射が用いられる。
The joining method is not particularly limited to the above-mentioned method, and DBI (Direct Bond Interconnect) and SAB (Surface Activated Bond) can be used.
In the above-mentioned DBI, for example, when joining an anisotropic conductive member and a semiconductor wafer, a silicon oxide film is laminated on the anisotropic conductive member and the semiconductor wafer, and chemical mechanical polishing is performed. After that, the silicon oxide film interface is activated by plasma treatment, and the anisotropic conductive member semiconductor wafers are brought into contact with each other to bond the two.
In the above-mentioned SAB, for example, when joining an anisotropic conductive member and a semiconductor wafer, each bonding surface of the anisotropic conductive member and the semiconductor wafer is surface-treated and activated in a vacuum. In this state, the anisotropic conductive member and the semiconductor wafer are brought into contact with each other in a room temperature environment to join them. For the surface treatment, ion irradiation of an inert gas such as argon or irradiation with a neutral atom beam is used.
 また、仮接合に際し、異方導電性部材と半導体ウエハとを接合する場合、半導体ウエハと半導体素子とを検査して良品と不良品を予め分かるようにして、半導体素子の良品のみを、異方導電性部材を介して半導体ウエハ内の良品部分に接合することで、製造ロスを低減することができる。品質保証された良品の半導体素子のことをKGD(Known Good Die)という。 Further, in the case of temporarily joining the heterogeneous conductive member and the semiconductor wafer, the semiconductor wafer and the semiconductor element are inspected so that the good product and the defective product can be identified in advance, and only the good product of the semiconductor element is weird. Manufacturing loss can be reduced by joining to a non-defective portion in the semiconductor wafer via a conductive member. A non-defective semiconductor element whose quality is guaranteed is called KGD (Know Good Die).
 また、半導体素子を素子領域に接合する工程では、複数の半導体素子を仮接合した後、全て一括して接合したが、これに限定されるものではない。接合方法によっては、仮接合ができないものもある。この場合、半導体素子の仮接合を省略してもよい。更には、半導体素子を、半導体ウエハの素子領域に1つずつ接合してもよい。
 半導体素子及び半導体ウエハの搬送及びピッキング等、ならびに仮接合及び本接合については、公知の半導体製造装置を用いることにより実現できる。
Further, in the step of joining the semiconductor element to the element region, a plurality of semiconductor elements are temporarily joined and then all are joined together, but the present invention is not limited to this. Depending on the joining method, temporary joining may not be possible. In this case, the temporary bonding of the semiconductor element may be omitted. Further, the semiconductor elements may be bonded to the element region of the semiconductor wafer one by one.
Transport and picking of semiconductor elements and semiconductor wafers, as well as temporary bonding and main bonding, can be realized by using known semiconductor manufacturing equipment.
 上述の仮接合の場合には、東レエンジニアリング、渋谷工業株式会社、株式会社新川、及びヤマハ発動機株式会社等の各社の装置を用いることができる。
 上述の本接合に用いる装置としては、例えば、三菱重工工作機械、ボンドテック、株式会社PMT、アユミ工業、東京エレクトロン(TEL)、EVG、ズースマイクロテック株式会社(SUSS)、ムサシノエンジニアリング等各社のウエハ接合装置を用いることができる。
 仮接合及び本接合のそれぞれの接合に際しては、接合時の雰囲気、加熱温度、加圧力(荷重)、及び処理時間が制御因子として挙げられるが用いる半導体素子等のデバイスに適合した条件を選ぶことができる。
In the case of the above-mentioned temporary joining, the devices of Toray Engineering Co., Ltd., Shibuya Kogyo Co., Ltd., Shinkawa Co., Ltd., Yamaha Motor Co., Ltd., and the like can be used.
Wafers of various companies such as Mitsubishi Heavy Industries Machine Tool, Bond Tech, PMT Co., Ltd., Ayumi Kogyo, Tokyo Electron (TEL), EVG, Sus Microtech Co., Ltd. (SUSS), Musashino Engineering, etc. A joining device can be used.
For each of the temporary joining and the main joining, the atmosphere at the time of joining, the heating temperature, the pressing force (load), and the processing time are listed as control factors, but it is necessary to select the conditions suitable for the device such as the semiconductor element to be used. can.
 接合時の雰囲気としては、大気下を始め、窒素雰囲気等の不活性雰囲気、及び真空状態から選ぶことができる。
 加熱温度は、温度100℃~400℃まで種々選択可能であり、かつ昇温速度に関しても10℃/分~10℃/秒まで加熱ステージの性能、又は加熱方式に従って選択することができる。冷却に関しても同様である。またステップ状に加熱することも可能であり、数段に分け、順次加熱温度を上げて接合することも可能である。
 圧力(荷重)に関しても樹脂封止剤の特性等に応じて急速に加圧したり、ステップ状に加圧することを選択できる。
The atmosphere at the time of joining can be selected from the atmosphere, an inert atmosphere such as a nitrogen atmosphere, and a vacuum state.
The heating temperature can be variously selected from a temperature of 100 ° C. to 400 ° C., and the heating rate can also be selected from 10 ° C./min to 10 ° C./sec according to the performance of the heating stage or the heating method. The same applies to cooling. It is also possible to heat in steps, and it is also possible to divide into several stages and sequentially raise the heating temperature to join.
Regarding the pressure (load), it is possible to select to pressurize rapidly or in steps depending on the characteristics of the resin encapsulant.
 接合時の雰囲気、加熱及び加圧それぞれの保持時間、及び変更時間は適宜設定することができる。また、その順序についても適宜変更することができる。例えば、真空状態になったのち第1段の加圧を行い、その後加熱して昇温したところで第2段の加圧を行って一定時間保持し、除荷すると同時に冷却を行い一定温度以下になった段階で大気下に戻すといった手順を組むことができる。
 このような手順は、様々に組み替えることができ、大気下で加圧後、真空状態にして加熱してもよいし、真空化、加圧、加熱を一気に行ってもよい。これらの組合せの例を図67~図73に示す。
 また、面内の加圧分布、加熱分布を接合時に個別に制御する機構を利用すれば接合の歩留まり向上につなげられる。
 仮接合に関しても同じように変更可能で、例えば、不活性雰囲気化で行うことにより、半導体素子の電極表面の酸化を抑制できる。更に超音波を付加しながら接合を行うことも可能である。
The atmosphere at the time of joining, the holding time for each of heating and pressurization, and the changing time can be appropriately set. In addition, the order can be changed as appropriate. For example, after the vacuum is reached, the first stage is pressurized, and then the temperature is raised by heating, and then the second stage is pressurized to hold it for a certain period of time. It is possible to take steps such as returning to the atmosphere at the stage when it becomes.
Such a procedure can be rearranged in various ways, and may be heated in a vacuum state after being pressurized in the atmosphere, or may be evacuated, pressurized, and heated at once. Examples of these combinations are shown in FIGS. 67 to 73.
Further, if a mechanism for individually controlling the in-plane pressure distribution and heat distribution at the time of joining is used, the yield of joining can be improved.
The temporary bonding can be changed in the same manner. For example, by creating an inert atmosphere, oxidation of the electrode surface of the semiconductor element can be suppressed. It is also possible to perform bonding while adding ultrasonic waves.
 図67~図73は本接合条件の第1の例~第7の例を示すグラフである。図67~図73は、接合時の雰囲気、加熱温度、加圧力(荷重)、及び処理時間を示しており、符号Vは真空度を示し、符号Lは荷重を示し、符号Tは温度を示す。図67~図73において真空度が高いとは、圧力が低くなることを示す。図67~図73においては真空度が低い程、大気圧に近い。
 接合時の雰囲気、加熱温度、及び荷重については、例えば、図67~図69に示すように、圧力を減圧した状態で荷重をかけた後に、温度を上昇させてもよい。また、図70、図72及び図73に示すように、荷重を加えるタイミングと温度を上げるタイミングとを合わせてもよい。図71に示すように温度を上昇させた後、荷重を加えるようにしてもよい。また、図70及び図71に示すように、圧力の減圧のタイミングと温度を上げるタイミングとを合わせてもよい。
 温度の上昇も、図67、図68及び図72に示すように、ステップ状に上昇させてもよいし、図73に示すように2段階で加熱してもよい。荷重も図69及び図72に示すようにステップ状に加えてもよい。
 また、圧力を減圧するタイミングは、図67、図69、図71、図72及び図73に示すように減圧してから荷重を加えてもよく、図68及び図70に示すように減圧のタイミングと荷重を加えるタイミングとを合わせてもよい。この場合、減圧と接合を同時並行する。
67 to 73 are graphs showing the first example to the seventh example of this joining condition. 67 to 73 show the atmosphere at the time of joining, the heating temperature, the pressing force (load), and the processing time, where the reference numeral V indicates the degree of vacuum, the reference numeral L indicates the load, and the reference numeral T indicates the temperature. .. In FIGS. 67 to 73, a high degree of vacuum means a low pressure. In FIGS. 67 to 73, the lower the degree of vacuum, the closer to atmospheric pressure.
Regarding the atmosphere at the time of joining, the heating temperature, and the load, for example, as shown in FIGS. 67 to 69, the temperature may be increased after the load is applied in a state where the pressure is reduced. Further, as shown in FIGS. 70, 72 and 73, the timing of applying the load and the timing of raising the temperature may be matched. As shown in FIG. 71, the load may be applied after the temperature is raised. Further, as shown in FIGS. 70 and 71, the timing of reducing the pressure and the timing of raising the temperature may be matched.
The temperature may be raised in steps as shown in FIGS. 67, 68 and 72, or may be heated in two steps as shown in FIG. 73. The load may also be applied in steps as shown in FIGS. 69 and 72.
Further, the timing of depressurizing the pressure may be the timing of depressurizing as shown in FIGS. 67, 69, 71, 72 and 73, and then applying the load, and the timing of depressurizing as shown in FIGS. 68 and 70. And the timing of applying the load may be matched. In this case, depressurization and joining are performed in parallel.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の金属充填微細構造体の製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the method for producing the metal-filled microstructure of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.
 以下に実施例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、及び、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 本実施例では、実施例1、実施例2の金属充填微細構造体及び比較例1~比較例3の金属充填微細構造体を作製した。実施例1、実施例2の金属充填微細構造体及び比較例1~比較例3の金属充填微細構造体について、マイクロ欠陥数、及びナノ欠陥率を評価した。マイクロ欠陥数、及びナノ欠陥率の評価結果を下記表2に示す。
 以下、マイクロ欠陥数、及びナノ欠陥率について説明する。
The features of the present invention will be described in more detail with reference to Examples below. The materials, reagents, amounts of substances and their ratios, operations, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
In this example, the metal-filled microstructures of Examples 1 and 2 and the metal-filled microstructures of Comparative Examples 1 to 3 were produced. The number of micro defects and the nano-defect rate were evaluated for the metal-filled microstructures of Examples 1 and 2 and the metal-filled microstructures of Comparative Examples 1 to 3. The evaluation results of the number of micro defects and the nano defect rate are shown in Table 2 below.
Hereinafter, the number of micro defects and the nano defect rate will be described.
 マイクロ欠陥数の評価について説明する。
 <マイクロ欠陥数の評価>
 製造した金属充填微細構造体の片面を研磨した後、研磨面を光学顕微鏡にて観察して、欠陥を見つけることを試みた。そして、欠陥数を数え、単位面積当りの欠陥数を求め、下記表1に示す評価基準にて、欠陥数を評価した。評価では、直径20~50μmの評価基準と、直径50μm超の評価基準との両方を満たす必要がある。例えば、評価AAは、直径20~50μmが0.001~0.1を満たし、かつ直径50μm超のものが未検出であるものとした。
 なお、上述の片面研磨は以下のように実施した。まず、4インチウエハに製造した金属充填微細構造体をQ-chuck(登録商標)(丸石産業株式会社製)にて貼付け、MAT社製研磨装置を用いて金属充填微細構造体を算術平均粗さ(JIS(日本工業規格) B0601:2001)が0.02μmになるまで研磨した。研磨には、アルミナを含む砥粒を用いた。
The evaluation of the number of micro defects will be described.
<Evaluation of the number of micro defects>
After polishing one side of the manufactured metal-filled microstructure, the polished surface was observed with an optical microscope to try to find defects. Then, the number of defects was counted, the number of defects per unit area was obtained, and the number of defects was evaluated according to the evaluation criteria shown in Table 1 below. In the evaluation, it is necessary to satisfy both the evaluation criteria of 20 to 50 μm in diameter and the evaluation criteria of more than 50 μm in diameter. For example, in the evaluation AA, those having a diameter of 20 to 50 μm satisfying 0.001 to 0.1 and having a diameter of more than 50 μm were not detected.
The above-mentioned single-sided polishing was carried out as follows. First, the metal-filled microstructure manufactured on a 4-inch wafer is attached with Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.), and the metal-filled microstructure is subjected to arithmetic average roughness using a polishing device manufactured by MAT. (JIS (Japanese Industrial Standards) B0601: 2001) was polished to 0.02 μm. Abrasive grains containing alumina were used for polishing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ナノ欠陥率の評価について説明する。
 <ナノ欠陥率の評価>
 製造した金属充填微細構造体について、10視野の1万倍のFE-SEM(Field Emission Scanning Electron Microscope)画像を撮影して観察し、各視野画像における細孔の総数と、未充填の細孔の数とを数えた。10視野の細孔の総数の平均値と、10視野の未充填の細孔の数の平均値とを用い、
 ナノ欠陥率(%)=((未充填の細孔の数の平均値)/(細孔の総数の平均値))×100(%)とした。その結果を、下記表2に示す。
 なお、断面は、集束イオンビーム(Focused Ion Beam:FIB)を用いて切削加工して得た。
The evaluation of the nano defect rate will be described.
<Evaluation of nano defect rate>
For the manufactured metal-filled microstructure, FE-SEM (Field Emission Scanning Electron Microscope) images of 10,000 times 10 fields of view were taken and observed, and the total number of pores in each field of view image and the unfilled pores I counted the number. Using the average value of the total number of pores in 10 visual fields and the average value of the number of unfilled pores in 10 visual fields,
The nano-defect rate (%) = ((average value of the number of unfilled pores) / (average value of the total number of pores)) × 100 (%). The results are shown in Table 2 below.
The cross section was obtained by cutting using a focused ion beam (FIB).
 以下、実施例1、実施例2及び比較例1~比較例3について説明する。
(実施例1)
 実施例1の金属充填微細構造体について説明する。
[金属充填微細構造体]
 <アルミニウム部材の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理及びろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(日本工業規格) 1050材のアルミニウム部材を得た。
 アルミニウム部材を、直径200mm(8インチ)のウエハ状に形成した後、以下に示す各処理を施した。
Hereinafter, Example 1, Example 2, and Comparative Examples 1 to 3 will be described.
(Example 1)
The metal-filled microstructure of Example 1 will be described.
[Metal-filled microstructure]
<Manufacturing of aluminum members>
Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal is treated and filtered, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
Next, the surface was scraped to an average thickness of 10 mm by a surface milling machine, and then kept at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate.
Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, it was finished by cold rolling to a thickness of 1.0 mm to obtain a JIS (Japanese Industrial Standards) 1050 aluminum member.
After forming the aluminum member into a wafer shape having a diameter of 200 mm (8 inches), each of the following treatments was performed.
 <電解研磨処理>
 上述のアルミニウム部材に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/分の条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
<Electropolishing treatment>
The above-mentioned aluminum member was subjected to electrolytic polishing treatment under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow velocity of 3.0 m / min using an electrolytic polishing liquid having the following composition.
The cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). The flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
(Electropolishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
Ethylene glycol 30 mL
 <陽極酸化処理工程>
 次いで、電解研磨処理後のアルミニウム部材に、特開2007-204802号公報に記載の手順に従って自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム部材に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム部材を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、3時間45分の再陽極酸化処理を施し、膜厚30μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理及び再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Anodizing process>
Next, the aluminum member after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regularization method according to the procedure described in JP-A-2007-204802.
The aluminum member after the electrolytic polishing treatment was subjected to a pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min. ..
Then, the pre-anodized aluminum member was subjected to a film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid (liquid temperature: 50 ° C.) for 12 hours.
Then, the electrolytic solution of 0.50 mol / L oxalic acid was subjected to reanodizing treatment for 3 hours and 45 minutes under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min, and an anodized film having a film thickness of 30 μm. An oxide film was obtained.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless steel electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). A NeoCool BD36 (manufactured by Yamato Scientific Co., Ltd.) was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
 <バリア層除去工程>
 次いで、上述の陽極酸化処理と同様の処理液及び処理条件で、電圧を40Vから0Vまで連続的に電圧降下速度0.2V/secで降下させながら電解処理(電解除去処理)を施した。
 その後、5質量%リン酸水溶液に30℃、30分間浸漬させるエッチング処理(エッチング除去処理)を施し、陽極酸化膜の細孔の底部にあるバリア層を除去し、細孔を介してアルミニウム部材を露出させた。
<Barrier layer removal process>
Then, under the same treatment liquid and treatment conditions as the above-mentioned anodizing treatment, electrolytic treatment (electrolytic removal treatment) was performed while continuously lowering the voltage from 40 V to 0 V at a voltage drop rate of 0.2 V / sec.
After that, an etching treatment (etching removal treatment) is performed in which the aluminum member is immersed in a 5 mass% phosphoric acid aqueous solution at 30 ° C. for 30 minutes to remove the barrier layer at the bottom of the pores of the anodic oxide film, and the aluminum member is formed through the pores. Exposed.
 ここで、バリア層除去工程後の陽極酸化膜に存在する貫通孔である細孔の平均径は60nmであった。なお、平均径は、FE-SEM(Field emission - Scanning Electron Microscope)により表面写真(倍率5万倍)を撮影し、50点測定した平均値として算出した。
 また、バリア層除去工程後の陽極酸化膜の平均厚みは80μmであった。なお、平均厚みは、陽極酸化膜を厚さ方向に対してFIB(Focused Ion Beam)で切削加工し、その断面をFE-SEMにより表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出した。
 また、陽極酸化膜に存在する貫通孔の密度は、約1億個/mm2であった。なお、貫通孔の密度は、特開2008-270158号公報の[0168]及び[0169]段落に記載された方法で測定し、算出した。
 また、陽極酸化膜に存在する貫通孔の規則化度は、92%であった。なお、規則化度は、FE-SEMにより表面写真(倍率20000倍)を撮影し、特開2008-270158号公報の[0024]~[0027]段落に記載された方法で測定し、算出した。
Here, the average diameter of the pores, which are through holes existing in the anodic oxide film after the barrier layer removing step, was 60 nm. The average diameter was calculated as an average value measured at 50 points by taking a surface photograph (magnification of 50,000 times) with an FE-SEM (Field emission-Scanning Electron Microscope).
The average thickness of the anodic oxide film after the barrier layer removing step was 80 μm. The average thickness was measured at 10 points by cutting the anodized film with FIB (Focused Ion Beam) in the thickness direction and taking a surface photograph (magnification of 50,000 times) of the cross section with FE-SEM. Calculated as an average value.
The density of through holes present in the anodic oxide film was about 100 million / mm 2 . The density of the through holes was measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
The degree of regularization of the through holes present in the anodic oxide film was 92%. The degree of regularization was calculated by taking a surface photograph (magnification of 20000 times) with an FE-SEM and measuring by the method described in paragraphs [0024] to [0027] of JP-A-2008-270158.
 次に、細孔の底部において、露出されたアルミニウム部材に、Zn(亜鉛)を用いて金属層を形成した、なお、バリア層除去工程において、Znのイオンを含むアルカリ水溶液を用いることにより、バリア層を除去すると同時に、細孔の底部にZnからなる金属層を形成した。実施例1は、Znからなる金属層の面積率、すなわち、細孔の底部のうち面積にして80%以上の領域にバルブ金属以外の金属層が形成されていた。なお、バルブ金属以外の金属層の面積率のことを、表2では「バルブ金属以外の面積率」と記す。
 なお、上述のバルブ金属以外の面積率は、上述のように、陽極酸化膜を厚さ方向に対してFIB(Focused Ion Beam)で切削加工し、その断面をFE-SEMにより表面写真(倍率5万倍)を10視野撮影し、各視野における細孔の露出したアルミニウム部材の表面に形成されたZn層の面積率を測定し、その平均値として算出した。
Next, at the bottom of the pores, a metal layer was formed on the exposed aluminum member using Zn (zinc). In the barrier layer removing step, an alkaline aqueous solution containing Zn ions was used to form a barrier. At the same time as the layer was removed, a metal layer made of Zn was formed at the bottom of the pores. In Example 1, a metal layer other than the valve metal was formed in the area ratio of the metal layer made of Zn, that is, in the region of the bottom of the pores having an area of 80% or more. The area ratio of the metal layer other than the valve metal is referred to as "area ratio other than the valve metal" in Table 2.
As for the area ratio other than the valve metal described above, as described above, the anodized film is cut with FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is surface photographed by FE-SEM (magnification 5). 10 times) was photographed in 10 fields of view, and the area ratio of the Zn layer formed on the surface of the aluminum member with exposed pores in each field of view was measured and calculated as the average value.
 <金属充填工程>
 次いで、陽極酸化膜が形成されたアルミニウム部材に対して、アルミニウム部材を陰極にし、白金(Pt)を正極にして、超臨界状態で金属めっきを実施した。
 金属めっきは、下記に示す銅めっき液を用いた。更に、二酸化炭素を用い、温度35℃、圧力15MPaとすることにより、超臨界状態とした。超臨界状態で金属めっきを実施した。なお、金属めっきには、上述の図12に示す電解めっき装置を用いた。
<Metal filling process>
Next, the aluminum member on which the anodic oxide film was formed was subjected to metal plating in a supercritical state with the aluminum member as the cathode and platinum (Pt) as the positive electrode.
For metal plating, the copper plating solution shown below was used. Further, carbon dioxide was used to bring the temperature to 35 ° C. and the pressure to 15 MPa to bring the state into a supercritical state. Metal plating was performed in a supercritical state. The electrolytic plating apparatus shown in FIG. 12 described above was used for metal plating.
 (銅めっき液組成及び条件)
 ・硫酸銅 100g/L
 ・硫酸 10g/L
 ・塩酸 5g/L
 ・非イオン界面活性剤 1質量%
 ・電流密度3A/dm
 ・めっき液温度35℃
 ・圧力15Mpa
 ・対極(正極)Pt
(Copper plating solution composition and conditions)
・ Copper sulfate 100g / L
・ Sulfuric acid 10g / L
・ Hydrochloric acid 5g / L
Nonionic surfactant 1% by mass
・ Current density 3A / dm 2
-Plating liquid temperature 35 ° C
・ Pressure 15Mpa
・ Counter electrode (positive electrode) Pt
 <基板除去工程>
 次いで、20質量%塩化水銀水溶液(昇汞)に20℃、3時間浸漬させることによりアルミニウム部材を溶解して除去することにより、金属充填微細構造体を作製した。
<Substrate removal process>
Next, a metal-filled microstructure was prepared by dissolving and removing the aluminum member by immersing it in a 20 mass% mercury chloride aqueous solution (rise) at 20 ° C. for 3 hours.
(実施例2)
 実施例2は、実施例1に比して、陽極酸化膜を形成した後に、アルミニウム部材(金属部)を除去した。その後、細孔の拡径とバリア層の除去を実施した。これにより、陽極酸化膜14単体とした(図8参照)。
 細孔の拡径とバリア層の除去は、50g/L、40℃のリン酸水溶液に、15分間浸漬させた。
 次に、陽極酸化膜14の裏面14bに、無電解めっき法を用いてAu(金)の膜を形成し、陽極酸化膜14の裏面14bに金属部材24(図10参照)を設けた。なお、金属部材は、細孔の開口全域を覆っており、細孔の底部にバルブ金属以外の金属部材24(図10参照)が露出する。実施例2では、細孔の底部のうち面積にして100%の領域がバルブ金属以外の金属部材24(図10参照)で構成され、バルブ金属以外の面積率が100%であった。
 次に、金属部材24を設けた陽極酸化膜14に、実施例1と同じ条件で、超臨界状態で金属めっきを実施した。
 金属めっき後、金属部材を研磨して除去することにより、金属充填微細構造体を作製した。
 実施例2は、実施例1と同じく細孔の平均径は60nmであり、かつ細孔の規則化度は92%であった。
(Example 2)
In Example 2, as compared with Example 1, the aluminum member (metal part) was removed after forming the anodic oxide film. Then, the diameter of the pores was expanded and the barrier layer was removed. As a result, the anodic oxide film 14 was made into a simple substance (see FIG. 8).
The pores were enlarged and the barrier layer was removed by immersing in a phosphoric acid aqueous solution at 50 g / L and 40 ° C. for 15 minutes.
Next, an Au (gold) film was formed on the back surface 14b of the anodic oxide film 14 by an electroless plating method, and a metal member 24 (see FIG. 10) was provided on the back surface 14b of the anodic oxide film 14. The metal member covers the entire opening of the pore, and the metal member 24 (see FIG. 10) other than the valve metal is exposed at the bottom of the pore. In Example 2, a region of 100% of the area of the bottom of the pores was composed of a metal member 24 (see FIG. 10) other than the valve metal, and the area ratio other than the valve metal was 100%.
Next, the anodic oxide film 14 provided with the metal member 24 was metal-plated under the same conditions as in Example 1 in a supercritical state.
After metal plating, the metal member was polished and removed to prepare a metal-filled microstructure.
In Example 2, the average diameter of the pores was 60 nm and the degree of regularization of the pores was 92%, as in Example 1.
(比較例1)
 比較例1は、実施例1に比して、めっき工程において、めっき反応場を液相とし、大気圧で金属めっきを実施した点が異なる以外は、実施例1と同じとした。比較例1は、超臨界状態で金属めっきを実施しなかった。
(比較例2)
 比較例2は、実施例2に比して、めっき工程において、めっき反応場を液相とし、大気圧で金属めっきを実施した点が異なる以外は、実施例2と同じとした。比較例2は、超臨界状態で金属めっきを実施しなかった。
(比較例3)
 比較例3は、実施例1に比して、Znからなる金属層の面積率を50%とした点以外は、実施例1と同じとした。比較例3では、上述のバリア層除去工程におけるエッチング処理時間を短くして面積率を調整した。
(Comparative Example 1)
Comparative Example 1 was the same as that of Example 1 except that the plating reaction field was a liquid phase and metal plating was performed at atmospheric pressure in the plating step as compared with Example 1. In Comparative Example 1, metal plating was not performed in a supercritical state.
(Comparative Example 2)
Comparative Example 2 was the same as that of Example 2 except that the plating reaction field was a liquid phase and metal plating was performed at atmospheric pressure in the plating step as compared with Example 2. In Comparative Example 2, metal plating was not performed in a supercritical state.
(Comparative Example 3)
Comparative Example 3 was the same as that of Example 1 except that the area ratio of the metal layer made of Zn was 50% as compared with Example 1. In Comparative Example 3, the area ratio was adjusted by shortening the etching treatment time in the barrier layer removing step described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1、実施例2は、比較例1~比較例3に比して、マイクロ欠陥数が少なく、ナノ欠陥率も小さく良好であった。
 比較例1及び比較例2は、超臨界状態で金属めっきを実施していないため、細孔に金属が十分に充填されず、マイクロ欠陥数が多く、かつナノ欠陥率も大きかった。
 比較例3は、バルブ金属以外のものの面積率が小さく、細孔に金属が十分に充填されず、マイクロ欠陥数が多く、かつナノ欠陥率も大きかった。
As shown in Table 2, in Examples 1 and 2, the number of micro defects was smaller and the nano-defect rate was smaller and better than in Comparative Examples 1 to 3.
In Comparative Example 1 and Comparative Example 2, since the metal plating was not performed in the supercritical state, the pores were not sufficiently filled with metal, the number of micro defects was large, and the nano defect rate was also large.
In Comparative Example 3, the area ratio of the metal other than the valve metal was small, the pores were not sufficiently filled with metal, the number of micro defects was large, and the nano defect ratio was also large.
 10 アルミニウム部材
 10a 表面
 12 貫通孔
 12c 底部
 12d 面
 13 バリア層
 14 陽極酸化膜
 15 金属
 15a 金属層
 15b 金属
 16 導通路
 17 構造体
 20 金属充填微細構造体
 22 異方導電性部材
 23 インターポーザー
 27 穴
 28 めっき装置
 29 めっき槽
 30 オーブン
 31 対向電極
 32 電源部
 33 制御部
 34 供給部
 35 ポンプ
 36 バルブ
 37 供給管
 38 圧力調整部
 39 排出管
 40 絶縁性基材
 40a 表面
 40b 裏面
 16a、16b 突出部分
 44 樹脂層
 46 支持体
 47 剥離層
 48 支持層
 49 剥離剤
 50 異方導電材
 60 積層デバイス
 62 半導体素子
 64 半導体素子
 64a、66a、80a 表面
 64b、82b 裏面
 66、72、86、87 半導体素子
 74 センサチップ
 76 レンズ
 80 第1の半導体ウエハ
 81 光導波路
 82 第2の半導体ウエハ
 83、84、85、89、89a 積層デバイス
 88 電極
 90 第1の積層基体
 91 半導体素子
 92 半導体ウエハ
 92a、102a、108a 表面
 94 3次元接合構造体
 95 発光素子
 96 受光素子
 100 第2の積層基体
 102 第2の基体
 104 剥離機能層
 105 親疎水性膜
 106 第3の複合積層体
 108 第3の基体
 109 親疎水性膜
 110 再配線層
 112 ウエハ
 120 有機基板
 AQ めっき液
 Ds 積層方向
 Dt 厚み方向
 d 平均径
 Ld 出射光
 Lo 光
 h、ht 厚み
 x 方向
10 Aluminum member 10a Surface 12 Through hole 12c Bottom 12d Surface 13 Barrier layer 14 Anodized film 15 Metal 15a Metal layer 15b Metal 16 Conduction path 17 Structure 20 Metal-filled microstructure 22 Heterogeneous conductive member 23 Interposer 27 Hole 28 Plating equipment 29 Plating tank 30 Oven 31 Opposite electrode 32 Power supply unit 33 Control unit 34 Supply unit 35 Pump 36 Valve 37 Supply pipe 38 Pressure adjustment unit 39 Discharge pipe 40 Insulation base material 40a Front surface 40b Back surface 16a, 16b Protruding part 44 Resin layer 46 Support 47 Release layer 48 Support layer 49 Release agent 50 Heterogeneous conductive material 60 Laminated device 62 Semiconductor element 64 Semiconductor element 64a, 66a, 80a Front surface 64b, 82b Back surface 66, 72, 86, 87 Semiconductor element 74 Sensor chip 76 Lens 80 First semiconductor wafer 81 Optical waveguide 82 Second semiconductor wafer 83, 84, 85, 89, 89a Laminated device 88 Electrode 90 First laminated substrate 91 Semiconductor element 92 Semiconductor wafer 92a, 102a, 108a Surface 94 Three-dimensional bonding Structure 95 Light emitting element 96 Light receiving element 100 Second laminated substrate 102 Second substrate 104 Peeling functional layer 105 Hydrophobic film 106 Third composite laminate 108 Third substrate 109 Hydrophobic film 110 Rewiring layer 112 Wafer 120 Organic substrate AQ plating solution Ds Lamination direction Dt Thickness direction d Average diameter Ld Emission light Lo light h, ht Thickness x direction

Claims (8)

  1.  金属部材の表面に複数の細孔を有する絶縁膜を設けて、前記金属部材と前記絶縁膜とを有する構造体を得る工程と、
     前記構造体に対して、少なくとも前記絶縁膜を有する側の面に、超臨界状態又は亜臨界状態で金属めっきを行い、前記複数の細孔に金属を充填するめっき工程とを有し、
     前記めっき工程の開始時において、前記構造体の前記細孔の底部にバルブ金属以外の金属層が存在しており、
     前記細孔の前記底部のうち面積にして80%以上の領域に対して前記バルブ金属以外の前記金属層が形成されている、金属充填微細構造体の製造方法。
    A step of providing an insulating film having a plurality of pores on the surface of the metal member to obtain a structure having the metal member and the insulating film.
    The structure has a plating step of performing metal plating on at least the surface having the insulating film in a supercritical state or a subcritical state and filling the plurality of pores with metal.
    At the start of the plating process, a metal layer other than the valve metal is present at the bottom of the pores of the structure.
    A method for producing a metal-filled microstructure in which a metal layer other than the valve metal is formed on a region of 80% or more of the bottom of the pores in terms of area.
  2.  前記構造体を得る工程と、前記めっき工程との間に、前記細孔の前記底部に前記バルブ金属以外の前記金属層を形成する工程を有し、
     前記めっき工程は、前記めっき工程の開始時において、前記細孔の前記底部のうち面積にして80%以上の領域に対して前記バルブ金属以外の前記金属層が形成された状態で実施される、請求項1に記載の金属充填微細構造体の製造方法。
    Between the step of obtaining the structure and the step of plating, there is a step of forming the metal layer other than the valve metal at the bottom of the pores.
    The plating step is carried out at the start of the plating step in a state where the metal layer other than the valve metal is formed on a region of 80% or more of the area of the bottom of the pores. The method for producing a metal-filled microstructure according to claim 1.
  3.  前記金属部材は前記バルブ金属以外の金属で構成されており、前記細孔の前記底部は、前記金属部材が露出している、請求項1に記載の金属充填微細構造体の製造方法。 The method for manufacturing a metal-filled microstructure according to claim 1, wherein the metal member is made of a metal other than the valve metal, and the metal member is exposed at the bottom of the pores.
  4.  前記複数の細孔は、平均径が1μm以下である、請求項1~3のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 3, wherein the plurality of pores have an average diameter of 1 μm or less.
  5.  前記絶縁膜は、酸化膜である、請求項1~4のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 4, wherein the insulating film is an oxide film.
  6.  前記酸化膜は、アルミニウムの陽極酸化膜である、請求項5に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to claim 5, wherein the oxide film is an anodic oxide film of aluminum.
  7.  前記バルブ金属以外の前記金属層は、アルミニウムよりも貴な金属で構成される、請求項1~6のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 6, wherein the metal layer other than the valve metal is made of a metal nobler than aluminum.
  8.  前記金属部材は、貴金属又はバルブ金属で構成される、請求項1~7のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for manufacturing a metal-filled microstructure according to any one of claims 1 to 7, wherein the metal member is made of a noble metal or a valve metal.
PCT/JP2020/048124 2020-01-31 2020-12-23 Method for manufacturing metal-filled microstructure WO2021153112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021574546A JP7369797B2 (en) 2020-01-31 2020-12-23 Method for manufacturing metal-filled microstructures
CN202080094351.7A CN115003864A (en) 2020-01-31 2020-12-23 Method for producing metal-filled microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014713 2020-01-31
JP2020014713 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153112A1 true WO2021153112A1 (en) 2021-08-05

Family

ID=77078200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048124 WO2021153112A1 (en) 2020-01-31 2020-12-23 Method for manufacturing metal-filled microstructure

Country Status (4)

Country Link
JP (1) JP7369797B2 (en)
CN (1) CN115003864A (en)
TW (1) TW202130861A (en)
WO (1) WO2021153112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214464A (en) * 2006-02-10 2007-08-23 Seizo Miyata Method for forming micropattern
JP4163728B2 (en) * 2006-10-02 2008-10-08 エス・イー・エス株式会社 Electroplating method
JP2008305443A (en) * 2007-06-05 2008-12-18 Yamaguchi Univ Method of manufacturing patterned media
US20100236596A1 (en) * 2008-08-11 2010-09-23 Samsung Electronics Co., Ltd. Anisotropically elongated thermoelectric material, process for preparing the same, and device comprising the material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090785A1 (en) * 2005-02-23 2006-08-31 Daikin Industries, Ltd. Plated member for fuel cell, and method and apparatus for manufacturing same
US7405154B2 (en) * 2006-03-24 2008-07-29 International Business Machines Corporation Structure and method of forming electrodeposited contacts
TWI545233B (en) * 2012-06-04 2016-08-11 Uyemura C & Co Ltd Plating method
KR101745485B1 (en) * 2013-08-30 2017-06-09 후지필름 가부시키가이샤 Method for manufacturing metal-filled microstructure
WO2017057150A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Method for manufacturing metal-filled microstructure device
JP6890668B2 (en) * 2017-09-26 2021-06-18 富士フイルム株式会社 Manufacturing method of metal-filled microstructure and insulating base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214464A (en) * 2006-02-10 2007-08-23 Seizo Miyata Method for forming micropattern
JP4163728B2 (en) * 2006-10-02 2008-10-08 エス・イー・エス株式会社 Electroplating method
JP2008305443A (en) * 2007-06-05 2008-12-18 Yamaguchi Univ Method of manufacturing patterned media
US20100236596A1 (en) * 2008-08-11 2010-09-23 Samsung Electronics Co., Ltd. Anisotropically elongated thermoelectric material, process for preparing the same, and device comprising the material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Also Published As

Publication number Publication date
CN115003864A (en) 2022-09-02
JP7369797B2 (en) 2023-10-26
TW202130861A (en) 2021-08-16
JPWO2021153112A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6808815B2 (en) Laminated device, laminate and manufacturing method of laminated device
JP7100166B2 (en) Anodizing method and manufacturing method of anisotropic conductive member
JP6887396B2 (en) Manufacturing method of anisotropic conductive member
JP6818707B2 (en) Metal film, structure, composite material, method of manufacturing structure, and method of manufacturing composite material
TWI758510B (en) Structure, method for producing structure, laminate, and semiconductor package
JP6976883B2 (en) Anotropically conductive member, manufacturing method of anisotropically conductive member, bonded body and electronic device
JP6890668B2 (en) Manufacturing method of metal-filled microstructure and insulating base material
WO2021153112A1 (en) Method for manufacturing metal-filled microstructure
JP7394956B2 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
CN113423872B (en) Anodic oxidation method and method for producing anisotropic conductive member
JP7220796B2 (en) Structure manufacturing method
JP7305770B2 (en) Method for manufacturing structure and method for manufacturing joined body
WO2022163260A1 (en) Structure, method for producing anisotropic conductive member and composition for forming protective layer
JP7493039B2 (en) STRUCTURE, METHOD FOR MANUFACTURING ... JOINT BODY, AND METHOD FOR MANUFACTURING DEVICE
JP2023013811A (en) Method for manufacturing structure
JPWO2019163575A1 (en) Manufacturing method of joint, temporary fixing member, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916817

Country of ref document: EP

Kind code of ref document: A1