WO2021152761A1 - 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法 - Google Patents

通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法 Download PDF

Info

Publication number
WO2021152761A1
WO2021152761A1 PCT/JP2020/003357 JP2020003357W WO2021152761A1 WO 2021152761 A1 WO2021152761 A1 WO 2021152761A1 JP 2020003357 W JP2020003357 W JP 2020003357W WO 2021152761 A1 WO2021152761 A1 WO 2021152761A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
baud rate
speed
slave
resistor
Prior art date
Application number
PCT/JP2020/003357
Other languages
English (en)
French (fr)
Inventor
就哉 駒崎
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN202080095137.3A priority Critical patent/CN115023903B/zh
Priority to PCT/JP2020/003357 priority patent/WO2021152761A1/ja
Priority to EP20916606.5A priority patent/EP4099576A4/en
Priority to JP2021574357A priority patent/JP7389145B2/ja
Publication of WO2021152761A1 publication Critical patent/WO2021152761A1/ja
Priority to US17/814,302 priority patent/US11954054B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/36Handling requests for interconnection or transfer for access to common bus or bus system
    • G06F13/362Handling requests for interconnection or transfer for access to common bus or bus system with centralised access control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/4013Management of data rate on the bus

Definitions

  • An embodiment of the present invention relates to a communication system, a master machine used for a communication system, a slave machine, and a communication method.
  • a communication system in which a plurality of slave machines are connected to one master machine by a bus via a communication line.
  • a plurality of indoor units are usually slave units, and one outdoor unit or a central management device is a master unit.
  • the master unit information on the operation of each connected indoor unit (for example, set temperature information, sensor information, etc.) is sequentially acquired and collectively managed. Further, in the air conditioning system, the operation of a plurality of indoor units can be collectively controlled by the master unit.
  • the signal waveform may be disturbed due to the reflection of the communication signal at the end of the communication line.
  • the effect is particularly large when the length of the communication line is long.
  • by setting a terminating resistor in the communication line signal reflection is suppressed, and communication can be performed while suppressing disturbance of the signal waveform.
  • the master machine at one end of the communication line automatically searches for the slave machine that is presumed to be the farthest, and the master machine sends a terminating resistance setting instruction to the slave machine, so that the corresponding slave machine can be obtained. It is conceivable to set the terminating resistor automatically. Note that such communication between the master machine and the slave machine before setting the terminating resistor is performed by low-speed communication that enables communication without the terminating resistor.
  • a relay or the like connected to the communication line is required in order for the resistor in the slave machine to function as the terminating resistor. Since a normally open relay is used for this relay, if the power of the slave unit for which the terminating resistance should be set is cut off, there will be no terminating resistance on the slave unit side on the communication line, and the master unit and all slave units will be in a state. It is expected that there will be a problem that high-speed communication will be interrupted between them.
  • the present invention has been made in view of the above circumstances, and in a communication system in which a plurality of slave machines are connected to a master machine by a communication line and a terminal resistance is set for one slave machine, the master machine and the master machine are used.
  • the purpose is to provide a machine and a communication method.
  • a master machine and a plurality of slave machines including a slave machine having a terminating resistor set are connected via a communication line, and the master machine is described as described above.
  • the communication speed for communication with multiple slave units is normally set to a high baud rate, and when it is detected that communication with the slave unit for which the terminating resistor is set becomes impossible, the speed is switched to a low baud rate and the termination is performed.
  • it detects that communication with the slave unit for which resistance has been set has been restored it has a master communication control unit that sends a switching instruction to the high-speed baud rate to the multiple slave units and switches the setting of its own device to the high-speed baud rate.
  • each of the plurality of slave machines sets the communication speed of communication with the master machine to a high speed baud rate at normal times, and switches to a low speed baud rate when it detects that communication with the master machine becomes impossible. It is characterized by having a slave communication control unit that switches to a high-speed baud rate when receiving a switching instruction to the high-speed baud rate from the master machine.
  • the master machine used for the communication system of the present invention normally communicates at a high speed baud rate via a communication line, and when it detects that communication becomes impossible, it switches to a low speed baud rate.
  • a terminating resistor is set for one of the plurality of slave machines, and the communication speed for communication with the plurality of slave machines is normally set to a high-speed baud rate.
  • it detects that communication with a slave unit with a terminating resistor is disabled, it switches to a low-speed baud rate, and when it detects that communication with the slave unit has been restored, it switches to a high-speed baud rate for the multiple slave units.
  • It has a master communication control unit that transmits a switching instruction and switches the setting of its own device to a high-speed baud rate.
  • the communication speed with a plurality of slave machines including the slave machine in which the terminating resistance is set is normally set to a high baud rate, and the slave in which the terminating resistance is set is set.
  • the slave in which the terminating resistance is set is set.
  • it detects that communication with the machine has become impossible it switches to a low-speed baud rate, and when it detects that communication with the slave machine has been restored, it sends an instruction to switch to the high-speed baud rate to the multiple slave machines, and itself Switching the device setting to a high-speed baud rate Connected to the master machine by a communication line, the communication speed of communication with the master machine is normally set to a high-speed baud rate, and communication with the master machine becomes impossible.
  • a master machine and a plurality of slave machines including a slave machine having a terminating resistor set communicate with the master machine at a high speed baud rate in a normal state via a communication line.
  • the master machine switches to a low speed baud rate, and the master machine switches to a low speed baud rate, so that communication with the master machine becomes impossible.
  • the master machine transmits an instruction to switch to the high speed baud rate to the plurality of slave machines.
  • the setting of the own device is switched to the high-speed baud rate, and the slave machine that receives the switching instruction from the master machine to the high-speed baud rate switches to the high-speed baud rate.
  • FIG. 1 is an overall view showing an air conditioning system as a communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a master control device used in an air conditioning system as a communication system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a slave control device used in an air conditioning system as a communication system according to an embodiment of the present invention.
  • FIG. 4 is a sequence diagram showing an operation executed when an air conditioning system as a communication system according to an embodiment of the present invention is activated.
  • FIG. 5 is a sequence diagram showing an operation when communication between an indoor unit and an indoor unit for which a terminating resistor is set becomes impossible in an air conditioning system as a communication system according to an embodiment of the present invention. be.
  • FIG. 1 is an overall view showing an air conditioning system as a communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a master control device used in an air conditioning system as
  • FIG. 6 is a sequence diagram showing an operation when communication between an indoor unit and an indoor unit in which a terminating resistor is set is restored in an air conditioning system as a communication system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of the master control device of the outdoor unit used in the air conditioning system as the communication system according to the embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the slave control device of each indoor unit used in the air conditioning system as the communication system according to the embodiment of the present invention.
  • the air-conditioning system 1 is an air-conditioning system installed in a large building such as an office building or a commercial facility, and is connected to an outdoor unit 10 as a master machine and a communication line 30 or a refrigerant pipe (not shown) in the outdoor unit 10. It includes a plurality of indoor units 20-1, 20-2, and 20-3 as slave units connected to the bus.
  • the air conditioning system 1 is a so-called multi-type air conditioning system.
  • the communication line 30 is a two-wire bus communication line.
  • Remote controllers 7-1 to 7-3 are connected to the indoor units 20-1 to 20-3 by wire, and the indoor units 20-1 to 20-3 are connected by the remote controllers 7-1 to 7-3. Operation / stop, air-conditioning operation mode, set temperature, etc. are set.
  • the outdoor unit 10 is connected to the three-phase power supply 2 via the breaker 3, and the indoor units 20-1 to 20-3 are connected to the single-phase power supply 4-1 to 4 via the breakers 5-1 to 5-3, respectively. It is connected to 3. That is, the outdoor unit 10 and the indoor units 20-1 to 20-3 are independently connected to the power supply.
  • the power supply is not cut off after the air conditioning system 1 is installed, but in some cases, the indoor units 20-1 to 20-3 are individually powered by the breakers 5-1 to 5-3. Blocking may occur.
  • FIG. 1 shows a case where three indoor units are connected to the outdoor unit 10, but the number is not limited to this, and a large number of four or more indoor units may be connected.
  • the indoor unit 20 when it is not necessary to specify which indoor unit it is, it is described as the indoor unit 20.
  • the outdoor unit 10 has a master control device 11 that controls the operation of the plurality of indoor units 20.
  • the master control device 11 includes a communication circuit 111, a microcomputer 112 as a master communication control unit, and a resistor 113 for functioning as a terminating resistor.
  • the communication circuit 111 is connected to the communication line 30 and has a function of communicating at a high speed baud rate via the communication line 30 and a function of communicating at a low speed baud rate that is relatively low with respect to the high speed baud rate.
  • the high-speed baud rate is, for example, 20 kHz
  • the low-speed baud rate is 10 kHz, which is half of that.
  • communication at a high speed baud rate is referred to as high speed communication
  • communication at a low speed baud rate is referred to as low speed communication.
  • the communication circuit 111 transmits an operation status information request and an operation control information to the indoor unit 20 under the control of the microcomputer 112, and also transmits information on the operation status such as set temperature information and sensor information transmitted from the indoor unit 20. Acquire, process and store data.
  • the microcomputer 112 sets the communication speed of the communication circuit 111 with the indoor unit 20 to a high-speed baud rate at normal times, and sets a terminating resistor as described later, that is, the indoor unit in which the resistor 212 is connected to the communication line 30. When it detects that communication with 20 has become impossible, it switches to a low speed baud rate. When the microcomputer 112 detects that the communication with the indoor unit 20 for which the terminating resistor is set is restored, the microcomputer 112 transmits an instruction to switch to the high-speed baud rate to each indoor unit 20 and communicates with each indoor unit 20 by the communication circuit 111. Switch the communication speed to a high-speed baud rate.
  • the resistor 113 in the master control device 11 is installed so as to function as a terminating resistor while being connected to the communication line 30 at all times, suppresses the reflection of the signal transmitted by the communication line 30, and is inside the air conditioning system 1 at a high baud rate. To ensure proper communication.
  • the indoor unit 20 has a slave control device 21 that controls the operation of the own indoor unit 20 based on instructions from the outdoor unit 10 and the remote controller 7.
  • the slave control device 21 includes a communication circuit 211 connected to the communication line 30, a resistor 212, a switching circuit 213, a microcomputer 214 as a slave communication control unit, and a non-volatile memory 215. Have.
  • the communication circuit 211 has a function of performing high-speed communication and a function of performing low-speed communication, similarly to the communication circuit 111. Under the control of the microcomputer 214, the communication circuit 211 transmits information on the operating status such as the set temperature information and the sensor information of the own indoor unit 20 to the master control device 11, that is, the outdoor unit 10 in response to the request from the outdoor unit 10. do.
  • the switching circuit 213 is composed of a relay, a semiconductor switch, or the like that operates by an electric signal, and by switching the conduction / non-conduction of the resistor 212 to the communication line 30, the resistor 212 can be connected / disconnected in parallel to the communication line 30. Switch electrically.
  • the resistor 212 When the resistor 212 is connected in parallel to the communication line 30 by the switching circuit 213, the resistor 212 functions as a terminating resistor.
  • the terminating resistor suppresses the reflection of the signal transmitted by the communication line 30 so that the communication of the air conditioning system 1 can be properly performed at a high baud rate.
  • the microcomputer 214 controls the switching operation of the switching circuit 213 by supplying an electric signal to the switching circuit 213 based on the information stored in the non-volatile memory 215 described later. Further, the microcomputer 214 sets the communication speed with the outdoor unit 10 by the communication circuit 211 via the communication line 30 to a high speed baud rate at normal times, and when it detects that the communication with the outdoor unit 10 becomes impossible, the low speed baud rate. Switch to. Further, when the microcomputer 214 receives the instruction to switch from the outdoor unit 10 to the high-speed baud rate, the microcomputer 214 switches the communication speed with the outdoor unit 10 by the communication circuit 211 to the high-speed baud rate.
  • the non-volatile memory 215 stores the terminating resistance setting information when the indoor unit 20 is the terminating resistance setting target. This information is obtained by the master control device 11 of the outdoor unit 10 automatically discriminating the indoor unit 20 as far away as possible by communication at the time of constructing the equipment, and setting the terminating resistance from the master control device 11 for the discriminated indoor unit 20. By transmitting the command, when the microcomputer 214 of the indoor unit 20 that receives this command operates the switching circuit 213 by itself and puts the resistor 212 into the communication line 30, the setting information is transmitted to its own non-volatile memory 215. You may memorize it in.
  • the installation worker selects the indoor unit 20 that is far away at the time of installing each device from the wiring state of the communication line 30, and sets and operates the selected indoor unit 20 from the remote controller 7 to perform the corresponding indoor unit. You may input the terminating resistance setting information directly to 20. In this case, the indoor unit 20 that has not been set by the remote controller 7 does not store the terminating resistance setting information and becomes the indoor unit 20 that is not subject to the terminating resistance setting.
  • FIGS. 4 to 8 ⁇ Operation of air conditioning system according to one embodiment> The operation of the air conditioning system 1 according to the present embodiment will be described with reference to FIGS. 4 to 8.
  • the thick arrow indicates high-speed communication
  • the thin arrow indicates low-speed communication.
  • the communication speed of the outdoor unit 10 and each indoor unit 20 is normally set to a high-speed baud rate, and communication is performed between these devices at a high-speed baud rate.
  • the influence of reflection of the communication signal at the end of the communication line 30 becomes large, and the signal waveform may be disturbed.
  • terminating resistors are set for the devices at both ends of the communication line 30, that is, the outdoor unit 10 and the indoor unit 20 far from the outdoor unit 10, so that signal reflection is suppressed and signal waveform disturbance is suppressed. Can be prevented.
  • the indoor unit 20 to which the terminating resistor is set (the resistor 212 is connected to the communication line 30) is the indoor unit 20 farthest from the outdoor unit 10.
  • the meaning of "far" between the outdoor unit 10 and the indoor unit 20 is based on the length of the communication line 30 connecting the two, not the distance between the installation positions of the two.
  • the non-volatile memory 215 of the indoor unit 20 to which the terminating resistor is set stores terminating resistance setting information indicating that the own indoor unit 20 is the terminating resistance setting target.
  • the terminating resistance setting information indicating that the indoor unit 20-3 is the target for setting the terminating resistor in the non-volatile memory 215-3 of the indoor unit 20-3 located at the position farthest from the outdoor unit 10. Is remembered.
  • the air conditioning system 1 When the air conditioning system 1 is activated, that is, when the power is turned on to the equipment in the air conditioning system 1, the information in the non-volatile memory 215 is acquired by the microcomputer 214 in each indoor unit 20 as shown in the control flow of FIG. NS. Then, when the terminating resistance setting information is acquired (“YES” in S21), the switching circuit 213 is switched to closed by the microcomputer 214 (S22).
  • the microcomputer 214-3 of the indoor unit 20-3 acquires the terminating resistance setting information from the non-volatile memory 215-3, the switching circuit 213-3 is switched to closed, and the resistor 212-3 is connected to the communication line 30. (S1 in FIG. 4). That is, the indoor unit 20-3 is an indoor unit with a terminating resistor set. Further, in the indoor units 20-1 and 20-2, since the terminating resistance setting information is not stored in the non-volatile memories 215-1 and 215-2, the switching circuits 213-1 and 213-2 are maintained open. Resistors 212-1 and 212-2 remain disconnected. That is, the indoor units 20-1 and 20-2 are indoor units in which a terminating resistor is not set.
  • the microcomputer 112 of the outdoor unit 10 transmits inquiry information as to whether or not a terminating resistor is set for each indoor unit 20 (S2, S4, and S6).
  • the communication speeds of the outdoor unit 10 and each indoor unit 20 are set to a high-speed baud rate, and communication between these devices is performed at a high speed.
  • each indoor unit 20 When each indoor unit 20 receives an inquiry from the outdoor unit 10, it transmits information indicating the setting state of the terminating resistor to the outdoor unit 10 as a response to the inquiry (S3, S5, and S7).
  • the outdoor unit 10 recognizes the indoor unit 20 for which the terminating resistor is set based on the information transmitted from each indoor unit 20 (S8).
  • the outdoor unit 10 recognizes that the indoor unit 20-3 is an indoor unit in which a terminating resistor is set.
  • communication related to air conditioning is performed between the outdoor unit 10 and each indoor unit 20 at predetermined time intervals (time t0, t1, t2 in FIG. 5). 7) is executed sequentially.
  • communication related to air conditioning for example, an operation status information request or an operation command is transmitted from the outdoor unit 10 to each indoor unit 20, and in response to this, each indoor unit 20 sends operation / stop information and set temperature information to the outdoor unit 10. , And the detection data information of various sensors is transmitted.
  • high-speed communication is executed (thick lines in S101 to S110 in FIG. 5). Arrows, S12 in FIG. 7, S24 in FIG. 8).
  • the switching circuit 213 of the indoor unit 20-3 that has been electrically operated is 213. 3 is automatically opened, and the resistor 212-3 functioning as a terminating resistor is disconnected from the communication line 30.
  • the information transmitted from the outdoor unit 10 to the indoor unit 20-3 at time t5 is not received by the indoor unit 20-3 (S111 in FIG. 5).
  • the microcomputer 112 of the outdoor unit 10 cannot communicate with the indoor unit 20-3 in which the terminating resistor is set (“YES” in S13 of FIG. 7).
  • the communication speed of the communication circuit 111 is switched to the low speed baud rate (S14 in FIG. 7).
  • the indoor unit 20-1 is set to the high-speed baud rate, so the baud rate settings do not match and the information is transmitted. Information cannot be received by the indoor unit 20-1 (S112 in FIG. 5).
  • a predetermined time from the time t3 when the information from the outdoor unit 10 was received last time specifically, a period set between the time t3 and the time t9 which is the reception timing two cycles later. Since the information from the outdoor unit 10 is not received when the time has elapsed, it is recognized that the microcomputer 214-1 cannot communicate with the outdoor unit 10 (“YES” in S25 of FIG. 8). .. Upon recognizing that communication with the outdoor unit 10 has become impossible, the microcomputer 214-1 switches the communication speed of the communication circuit 211-1 to a low baud rate (S26 in FIG. 8).
  • the outdoor unit 10 and the indoor units 20-1 and 20-2 can communicate with each other at a low speed, and information exchange regarding air conditioning can be exchanged at a predetermined time interval (time t9, time t9,) by low speed communication.
  • time t9 time t9
  • t10 Is sequentially executed (thin arrows in S115 to S123 in FIGS. 5 and 6, S15 in FIG. 7, and S27 in FIG. 8). Since the baud rate is low in low-speed communication, communication between devices is possible regardless of whether or not a terminating resistor is connected.
  • the outdoor unit 10 performs low-speed communication to the indoor unit 20-3, but the indoor unit 20-3 is not received by the indoor unit 20-3 because the power cutoff state continues (S119 in FIG. 6). ).
  • the indoor unit 20-3 acquires the terminating resistance setting information from the non-volatile memory 215-3 by the microcomputer 214-3, switches the switching circuit 213-3 to closed, and connects the resistor 212-3 to the communication line 30. , Set as a terminating resistor (“YES” in S21 of FIG. 8, S22).
  • the indoor unit 20-3 is set to the high-speed baud rate, so the baud rate settings do not match and the information is transmitted.
  • the information is not received by the indoor unit 20-3 (S124 in FIG. 6).
  • the microcomputer 214-3 Since the information from the outdoor unit 10 is not received in the indoor unit 20-3 when a predetermined time (until time t17) has elapsed from the start-up, the microcomputer 214-3 communicates with the outdoor unit 10. Is recognized as impossible (“YES” in S25 of FIG. 8). When the microcomputer 214-3 recognizes that the communication with the outdoor unit 10 is impossible, the microcomputer 214-3 switches the communication speed of the communication circuit 211-3 to the low speed baud rate (S26 in FIG. 8).
  • the baud rate setting matches at a low speed between the outdoor unit 10 and the indoor unit 20-3, and communication between the outdoor unit 10 and the indoor unit 20-3 becomes possible.
  • the information transmitted at low speed from the outdoor unit 10 to the indoor unit 20-3 is received by the indoor unit 20-3 (S129 in FIG. 6), and the response to this is received from the indoor unit 20-3 to the outdoor unit 10 Is transmitted to (S130 in FIG. 6).
  • the outdoor unit 10 When the outdoor unit 10 receives the response from the indoor unit 20-3, it is recognized that the communication with the indoor unit 20-3 is restored (“YES” in S16 in FIG. 7), and the microcomputer of the outdoor unit 10 is at time t18.
  • the 112 causes a low-speed broadcast transmission of an instruction to switch to the high-speed baud rate to each indoor unit 20 (S131 in FIG. 6). Subsequently, the communication speed of the communication circuit 111 is switched to the high-speed baud rate by the microcomputer 112 (S17 in FIG. 7).
  • the communication circuits 211 are operated by the microcomputers 214-1 to 214-3.
  • the communication speeds of -1 to 211-3 can be switched to a high-speed baud rate (S29 in FIG. 8).
  • the baud rate settings are matched at high speed between the outdoor unit 10 and the indoor units 20-1 to 20-3, and thereafter, information exchange regarding air conditioning is performed at predetermined time intervals (time t19, t20 %) by high-speed communication. (S12 in FIG. 7, S24 in FIG. 8).
  • the outdoor unit is a master unit and the terminating resistor to be provided at one end of the communication line is set in advance.
  • the centralized management device or the like is more than the outdoor unit on the communication line. If it is installed far away, the terminating resistor may be set in the centralized management device without setting the terminating resistor in the outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

マスター機(10)と、終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機(20)とが、通信線を介して接続された通信システム(1)において、マスター機は、複数台のスレーブ機との通信の通信速度を、通常時は高速ボーレートに設定し、終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該終端抵抗が設定されたスレーブ機との通信が復旧したことを検知すると、複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器を高速ボーレートに切り替えるマスター通信制御部(112)を有する。複数台のスレーブ機は、マスター機との通信の通信速度を、通常時は高速ボーレートに設定し、マスター機との通信が不能になったことを検知すると低速ボーレートに切り替え、マスター機から高速ボーレートへの切替指示を受信すると高速ボーレートに切り替えるスレーブ通信制御部(214)を有する。

Description

通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法
 本発明の実施形態は、通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法に関する。
 従来、1台のマスター機に対して複数台のスレーブ機が通信線によってバス接続された通信システムがある。例えば、大型の建物に設置される空調システムの場合、通常複数の室内機がスレーブ機となり、1台の室外機又は中央の管理装置がマスター機となる。
 このような空調システムでは、マスター機において、接続された各室内機の稼働に関する情報(例えば、設定温度情報やセンサ情報等)が逐次取得されて一括管理される。また、当該空調システムでは、複数の室内機の動作をマスター機で一括制御することも可能である。
 このような通信システムにおいて通信が高速化された場合、通信線の末端における通信信号の反射により信号波形に乱れが生じることがある。通信線の長さが長い場合には、特にその影響が大きくなる。これに対応するため、通信線内に終端抵抗を設定することで信号の反射が抑えられ、信号波形の乱れを抑えて通信を行うことができる。
特開2000-165568号公報
 このような通信システムでは、通信線の両端にある機器に終端抵抗を設定することが望まれる。そこで、通信線の一端にあるマスター機が最も遠方にあると推定されるスレーブ機を自動で探索し、マスター機がそのスレーブ機に終端抵抗の設定指示を送信することで、該当するスレーブ機が自動的に終端抵抗を設定することが考えられる。なお、このような終端抵抗の設定前のマスター機とスレーブ機とのやり取りは、終端抵抗無しでも通信可能な低速の通信で行われる。
 ところが、このような終端抵抗の自動設定を行う場合、スレーブ機内の抵抗を終端抵抗として機能させるために通信線に接続させるリレー等が必要となる。このリレーは常開リレーが用いられるため、終端抵抗を設定すべきスレーブ機の電源が断たれた場合には、通信線上にスレーブ機側の終端抵抗がない状態となり、マスター機とすべてのスレーブ機間で高速化された通信が不通になるという問題が生じることが想定される。
 本発明は上記事情に鑑みてなされたものであり、マスター機に対して複数台のスレーブ機が通信線で接続され、1台のスレーブ機に終端抵抗が設定される通信システムにおいて、マスター機と終端抵抗が設定されたスレーブ機との通信が不能になった場合にも、マスター機と他のスレーブ機との適正な通信を可能にするための、通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法を提供することを目的とする。
 上記目的を達成するために、本発明の通信システムは、マスター機と、終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機とが通信線を介して接続され、前記マスター機は、前記複数台のスレーブ機との通信の通信速度を、通常時は高速ボーレートに設定し、前記終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該終端抵抗が設定されたスレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター通信制御部を有し、前記複数台のスレーブ機はそれぞれ、前記マスター機との通信の通信速度を、通常時は高速ボーレートに設定し、前記マスター機との通信が不能になったことを検知すると低速ボーレートに切り替え、前記マスター機から高速ボーレートへの切替指示を受信すると、高速ボーレートに切り替えるスレーブ通信制御部を有することを特徴とする。
 また、本発明の通信システムに用いるマスター機は、通常時は通信線を介して高速ボーレートで通信を行い、通信が不能になったことを検知すると低速ボーレートに切り替える複数台のスレーブ機に通信線を介して接続され、前記複数台のスレーブ機の中の1台に終端抵抗が設定されており、前記複数台のスレーブ機との通信の通信速度を、通常時は高速ボーレートに設定し、前記終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該スレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター通信制御部とを有する。
 また、本発明の通信システムに用いるスレーブ機は、終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機との通信速度を、通常時は高速ボーレートに設定し、終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該スレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター機に通信線によって接続され、前記マスター機との通信の通信速度を、通常時は高速ボーレートに設定し、前記マスター機との通信が不能になったことを検知すると低速ボーレートに切り替え、前記マスター機から高速ボーレートへの切替指示を受信すると、高速ボーレートに切り替えるスレーブ通信制御部を有することを特徴とする。
 また、本発明の通信方法は、マスター機と、終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機とが、通信線を介して通常時は高速ボーレートで通信を行い、前記マスター機と前記終端抵抗が設定されたスレーブ機との通信が不能になると、前記マスター機が低速ボーレートに切り替え、前記マスター機が低速ボーレートに切り替えたことにより前記マスター機との通信が不能になったスレーブ機が、通信速度を低速ボーレートに切り替え、前記マスター機と前記終端抵抗が設定されたスレーブ機との通信が復旧すると、前記マスター機が前記複数台のスレーブ機に高速ボーレートへの切替指示を送信するとともに、自機器の設定を高速ボーレートに切り替え、前記マスター機から高速ボーレートへの切替指示を受信したスレーブ機が、高速ボーレートに切り替えることを特徴とする。
図1は、本発明の一実施形態に係る通信システムとしての空調システムを示す全体図である。 図2は、本発明の一実施形態に係る通信システムとしての空調システムに用いるマスター制御装置の構成を示すブロック図である。 図3は、本発明の一実施形態に係る通信システムとしての空調システムに用いるスレーブ制御装置の構成を示すブロック図である。 図4は、本発明の一実施形態に係る通信システムとしての空調システムが起動されたときに実行される動作を示すシーケンス図である。 図5は、本発明の一実施形態に係る通信システムとしての空調システムにおいて、室内機と、終端抵抗が設定された室内機との間の通信が不能になったときの動作を示すシーケンス図である。 図6は、本発明の一実施形態に係る通信システムとしての空調システムにおいて、室内機と、終端抵抗が設定された室内機との間の通信が復旧したときの動作を示すシーケンス図である。 図7は、本発明の一実施形態に係る通信システムとしての空調システムに用いる室外機のマスター制御装置の動作を示すフローチャートである。 図8は、本発明の一実施形態に係る通信システムとしての空調システムに用いる各室内機のスレーブ制御装置の動作を示すフローチャートである。
 以下、本発明の通信システムの一実施形態として構成された空調システムについて、図面を参照して説明する。
 〈一実施形態による空調システムの構成〉
 本実施形態による空調システムの構成について、図1を参照して説明する。空調システム1は、例えばオフィスビルや商業施設等の大型の建物に設置される空調システムであり、マスター機としての室外機10と、室外機10に通信線30や冷媒配管(図示せず)によってバス接続されるスレーブ機としての複数の室内機20-1、20-2、および20-3を備える。空調システム1は、いわゆる、マルチタイプの空調システムである。通信線30は2線式のバス通信線となっている。各室内機20-1~20-3には、有線でリモートコントローラ7-1~7-3が接続され、各リモートコントローラ7-1~7-3によってそれぞれの室内機20-1~20-3の運転/停止や冷暖房の運転モード、設定温度等が設定される。室外機10は、ブレーカ3を介して三相電源2に接続され、室内機20-1~20-3はそれぞれ、ブレーカ5-1~5-3を介して単相電源4-1~4-3に接続されている。つまり、室外機10および室内機20-1~20-3はそれぞれ、独立して電源に接続されている。一般に空調システム1は設置した後、電源を遮断しないことが前提となっているが、場合によっては、室内機20-1~20-3は個別にブレーカ5-1~5-3操作等によって電源遮断が行われる可能性がある。
 図1においては、室外機10に接続された室内機が3台の場合を示したが、この数には限定されず、4台以上の多数の室内機が接続されていてもよい。以下、いずれの室内機であるかを特定する必要がない場合には、室内機20と記載する。
 室外機10は、複数の室内機20の動作を制御するマスター制御装置11を有する。マスター制御装置11は、図2に示すように、通信回路111と、マスター通信制御部としてのマイコン112と、終端抵抗として機能させるための抵抗113とを有する。
 通信回路111は、通信線30に接続され、通信線30を介して高速ボーレートで通信を行う機能と、高速ボーレートに対し相対的に低速の低速ボーレートで通信を行う機能とを有する。高速ボーレートは、例えば、20kHz、低速ボーレートは、その半分の10kHzとなっている。以下、高速ボーレートでの通信を高速通信、低速ボーレートでの通信を低速通信という。通信回路111は、マイコン112の制御により、室内機20に対して稼動状況情報要求や動作制御情報を送信するとともに、室内機20から送信された設定温度情報やセンサ情報等の稼動状況に関する情報を取得し、処理およびデータ記憶を行う。
 マイコン112は、通信回路111による室内機20との通信速度を、通常時は高速ボーレートに設定し、後述するように終端抵抗が設定された、すなわち通信線30へ抵抗212が接続された室内機20との通信が不能になったことを検知すると低速ボーレートに切り替える。またマイコン112は、終端抵抗が設定された室内機20との通信が復旧したことを検知すると、各室内機20に高速ボーレートへの切替指示を送信し、通信回路111による各室内機20との通信速度を高速ボーレートに切り替える。
 マスター制御装置11内の抵抗113は、常時通信線30に接続された状態で終端抵抗として機能するよう設置され、通信線30によって伝達される信号の反射を抑えて、高速ボーレートで空調システム1内の通信が適切に行われるようにする。
 室内機20は、室外機10およびリモートコントローラ7からの指示に基づいて自室内機20の動作を制御するスレーブ制御装置21を有する。スレーブ制御装置21は、図3に示すように、通信線30に接続された通信回路211と、抵抗212と、切替回路213と、スレーブ通信制御部としてのマイコン214と、不揮発性メモリ215とを有する。
 通信回路211は、通信回路111と同様に高速通信を行う機能と、低速通信を行う機能とを有する。通信回路211は、マイコン214の制御により、室外機10からの要求に応答して自室内機20の設定温度情報やセンサ情報等の稼働状況に関する情報をマスター制御装置11、すなわち室外機10に送信する。
 切替回路213は、電気信号によって動作するリレーや半導体スイッチ等で構成され、抵抗212の通信線30への導通/非導通を切り替えることにより、抵抗212の通信線30への並列接続/非接続を電気的に切り替える。切替回路213により抵抗212が通信線30に並列接続されると、この抵抗212は、終端抵抗として機能する。終端抵抗は、通信線30によって伝達される信号の反射を抑えて、高速ボーレートで空調システム1の通信が適切に行われるようにする。
 マイコン214は、後述する不揮発性メモリ215に記憶された情報に基づいて、電気的信号を切替回路213に供給することで切替回路213の切り替え動作を制御する。またマイコン214は、通信線30を介した通信回路211による室外機10との通信速度を、通常時は高速ボーレートに設定し、室外機10との通信が不能になったことを検知すると低速ボーレートに切り替える。またマイコン214は、室外機10から高速ボーレートへの切り替え指示を受信すると、通信回路211による室外機10との通信速度を高速ボーレートに切り替える。
 不揮発性メモリ215は、自室内機20が終端抵抗の設定対象である場合に、終端抵抗設定情報を記憶する。この情報は、設備の構築時に、室外機10のマスター制御装置11が通信によってできるだけ遠方にある室内機20を自動で判別し、判別した室内機20に対してマスター制御装置11から終端抵抗の設定指令を送信したことにより、この指令を受けた室内機20のマイコン214が、自ら切替回路213を動作させて抵抗212を通信線30に投入する際に、その設定情報を自らの不揮発性メモリ215に記憶してもよい。また、設置作業員が各機器の設置時に遠方にある室内機20を通信線30の配線状態から選定し、選定した室内機20に対してリモートコントローラ7から設定操作することで、該当する室内機20に直接、終端抵抗設定情報を入力してもよい。この場合、リモートコントローラ7から設定操作がなかった室内機20は、終端抵抗設定情報が記憶されず、終端抵抗設定対象外の室内機20となる。
 〈一実施形態による空調システムの動作〉
 本実施形態による空調システム1の動作について、図4~図8を参照して説明する。図4~図6のシーケンス図において、太線の矢印は高速通信であることを示し、細線の矢印は低速通信であることを示す。
 空調システム1では、通常時は、室外機10および各室内機20の通信速度が高速ボーレートに設定されており、これらの機器間で高速ボーレートによる通信が行われる。高速ボーレートによる通信が行われる際には、通信線30の末端における通信信号の反射の影響が大きくなり、信号波形が乱れることがある。これに対応するため、通信線30の両端の機器、つまり室外機10と、室外機10から遠い室内機20に終端抵抗が設定されることで、信号の反射が抑えられ、信号波形の乱れを防ぐことができる。終端抵抗が設定(抵抗212が通信線30に接続)される室内機20は、室外機10から最も遠い室内機20であることが望ましい。しかしながら、最遠でなくとも、接続された室内機20の中で遠い方にあれば、ある程度信号の反射が抑えられ、信号波形の乱れが防ぐことができるため、高速ボーレートによる通信は可能となる。なお、ここにおいて、室外機10と室内機20間の「遠い」という意味は、両者の設置位置間の距離ではなく、両者間をつなぐ通信線30の長さを基準とする。
 終端抵抗の設定対象である室内機20の不揮発性メモリ215には、自室内機20が終端抵抗の設定対象であることを示す終端抵抗設定情報が記憶される。本実施形態においては、室外機10から最も遠い位置にある室内機20-3の不揮発性メモリ215-3に、当該室内機20-3が終端抵抗の設定対象であることを示す終端抵抗設定情報が記憶されている。
 空調システム1が起動、すなわち空調システム1内の機器に電源が投入されると、各室内機20において、図8の制御フローに示すように、マイコン214により不揮発性メモリ215内の情報が取得される。そして、終端抵抗設定情報が取得された場合(S21の「YES」)には、当該マイコン214により切替回路213が閉に切り替えられる(S22)。
 ここでは、室内機20-3のマイコン214-3により不揮発性メモリ215-3から終端抵抗設定情報が取得され、切替回路213-3が閉に切り替えられて抵抗212-3が通信線30に接続される(図4のS1)。つまり、室内機20-3は、終端抵抗が設定された室内機になる。また、室内機20-1、20-2では、不揮発性メモリ215-1、215-2に終端抵抗設定情報が記憶されていないため、切替回路213-1、213-2の開が維持されて抵抗212-1、212-2は非接続状態のままになる。つまり、室内機20-1および20-2は、終端抵抗が設定されていない室内機になる。
 次に、室外機10のマイコン112により、各室内機20に対して終端抵抗が設定されているか否かの問い合わせ情報が送信される(S2、S4、およびS6)。ここで、空調システム1の起動時は、室外機10および各室内機20の通信速度は高速ボーレートに設定されており、これらの機器間の通信は高速で行われる。
 各室内機20は、室外機10からの問い合わせを受けると、当該問い合せへの応答として、終端抵抗の設定状態を示す情報を室外機10に送信する(S3、S5、およびS7)。室外機10は、各室内機20から送信された情報に基づいて、終端抵抗が設定されている室内機20を認識する(S8)。ここでは室外機10は、室内機20-3が、終端抵抗が設定されている室内機であると認識する。
 空調システム1の各機器への電源投入時にこれらの処理が実行された後、室外機10と各室内機20との間で、空調に関する通信が所定時間間隔(図5の時刻t0、t1、t2・・・)で順次実行される。空調に関する通信では、例えば、室外機10から各室内機20に稼動状況情報要求や動作指令が送信され、これに応答して各室内機20から室外機10に、運転/停止情報、設定温度情報、及び各種センサの検出データ情報等が送信される。このとき、室外機10および各室内機20の通信速度は高速ボーレートに設定されているため(図7のS11、図8のS23)、高速通信で実行される(図5のS101~S110の太線矢印、図7のS12、図8のS24)。
 ここで、時刻t4直後に室内機20-3が電源遮断状態またはマイコン112が動作を停止してしまうような故障状態になると、電気的に動作していた室内機20-3の切替回路213-3が自動的に開となり、終端抵抗として機能している抵抗212-3が通信線30から外れてしまう。この結果、室外機10と各室内機20間では高速通信ができなくなってしまう。このため、時刻t5に室外機10から室内機20-3宛てに送信された情報が室内機20-3で受信されない(図5のS111)。このとき、室外機10のマイコン112において、終端抵抗が設定された室内機20-3との通信が不能になったことが認識される(図7のS13の「YES」)。マイコン112は、室内機20-3との通信が不能になったことを認識すると、通信回路111の通信速度を低速ボーレートに切り替える(図7のS14)。
 そして、時刻t6に、室外機10が室内機20-1宛てに低速通信で情報送信を行うと、室内機20-1は高速ボーレートに設定されているためボーレート設定が一致せず、送信された情報は室内機20-1で受信できない(図5のS112)。
 室内機20-1では、前回室外機10からの情報を受信した時刻t3から所定時間、具体的には、時刻t3から2周期後の受信タイミングである時刻t9までの間に設定された期間、が経過したときに、室外機10からの情報が受信されないことから、マイコン214-1において、室外機10との通信が不能になったことが認識される(図8のS25の「YES」)。マイコン214-1は、室外機10との通信が不能になったことを認識すると、通信回路211-1の通信速度を低速ボーレートに切り替える(図8のS26)。
 同様に、時刻t10までの間に、室内機20-2のマイコン214-2において室外機10との通信が不能になったことが認識され、通信回路211-2の通信速度が低速ボーレートに切り替えられる。
 これにより、室外機10と室内機20-1、20-2との間でボーレート設定が低速で一致して通信可能になり、以降、空調に関する情報交換が低速通信により所定時間間隔(時刻t9、t10・・・)で順次実行される(図5、図6のS115~S123の細線矢印、図7のS15、図8のS27)。なお、低速通信は、ボーレートが低いため、終端抵抗の接続有無にかかわらず、各機器間での通信が可能である。時刻t11に、室外機10が室内機20-3宛てに低速通信を行うが、室内機20-3は電源遮断状態が継続されているため、室内機20-3で受信されない(図6のS119)。
 時刻t11直後に室内機20-3の電源が復帰もしくは故障状態から復旧すると、通信速度が高速ボーレートに設定された状態で起動する。同時に、室内機20-3は、マイコン214-3により不揮発性メモリ215-3から終端抵抗設定情報を取得し、切替回路213-3を閉に切り替え、抵抗212-3を通信線30に接続させ、終端抵抗として設定する(図8のS21の「YES」、S22)。
 そして、時刻t14に、室外機10が室内機20-3宛てに低速通信で情報送信を行うと、室内機20-3は高速ボーレートに設定されているためボーレート設定が一致せず、送信された情報が室内機20-3で受信されない(図6のS124)。
 室内機20-3では、起動してから所定時間(時刻t17までの間)が経過したときに、室外機10からの情報が受信されないことから、マイコン214-3において、室外機10との通信が不能であることが認識される(図8のS25の「YES」)。マイコン214-3は、室外機10との通信が不能であることを認識すると、通信回路211-3の通信速度を低速ボーレートに切り替える(図8のS26)。
 これにより、室外機10と室内機20-3との間でボーレート設定が低速で一致し、室外機10と室内機20-3との間の通信が可能になる。そして、時刻t17に室外機10から室内機20-3宛てに低速で送信した情報が室内機20-3で受信され(図6のS129)、これに対する応答が室内機20-3から室外機10に送信される(図6のS130)。
 室外機10では、室内機20-3からの応答を受信すると室内機20-3との通信が復旧したことが認識され(図7のS16の「YES」)、時刻t18に室外機10のマイコン112により、各室内機20に対して高速ボーレートへの切替指示が低速でブロードキャスト送信される(図6のS131)。続いて、マイコン112により、通信回路111の通信速度が高速ボーレートに切り替えられる(図7のS17)。
 室内機20-1~20-3では、室外機10から高速ボーレートへの切替指示が受信されると(図8のS28の「YES」)、マイコン214-1~214-3により、通信回路211-1~211-3の通信速度が高速ボーレートに切り替えられる(図8のS29)。
 これにより、室外機10と室内機20-1~20-3との間でボーレート設定が高速で一致し、以降、空調に関する情報交換が高速通信により所定時間間隔(時刻t19、t20・・・)で順次実行される(図7のS12、図8のS24)。
 以上の実施形態によれば、バス形式の通信線で接続された室外機と複数の室内機とを備え、1台の室内機の通信線上に終端抵抗が設定された空調システムにおいて、通常時は高速通信を行い、当該室外機と当該室内機との通信が不能になると、高速通信から低速通信に切り替えて通信を継続できるようにすることで、効率良く通信を行いつつ、なるべく空調システム内の通信を遮断させないようにすることができる。また、当該室内機との通信が可能になれば、速やかに高速通信に戻すことで通信効率が向上する。
 なお、本実施形態では室外機が、マスター機であってかつ通信線の一端に設けるべき終端抵抗が予め設定されている例で説明したが、集中管理装置等が、通信線上で室外機よりも遠方に設けられる場合には、室外機には終端抵抗を設定せず、集中管理装置に終端抵抗を設定してもよい。
 以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1.  マスター機と、
     終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機とが通信線を介して接続され、
     前記マスター機は、
     前記複数台のスレーブ機との通信の通信速度を、通常時は高速ボーレートに設定し、前記終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該終端抵抗が設定されたスレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター通信制御部を有し、
     前記複数台のスレーブ機はそれぞれ、
     前記マスター機との通信の通信速度を、通常時は高速ボーレートに設定し、前記マスター機との通信が不能になったことを検知すると低速ボーレートに切り替え、前記マスター機から高速ボーレートへの切替指示を受信すると、高速ボーレートに切り替えるスレーブ通信制御部を有する
    ことを特徴とする通信システム。
  2.  前記各スレーブ機は、前記通信線に終端抵抗として接続可能な抵抗と、自スレーブ機が終端抵抗の設定対象であるか否かを示す終端抵抗設定情報を記憶するメモリと、前記終端抵抗の前記通信線への接続/非接続を電気的に切り替える切替回路とを備え、
     前記スレーブ通信制御部は、前記メモリに記憶された終端抵抗設定情報に基づき前記切替回路によって前記抵抗の前記通信線への接続/非接続を切り替える
    ことを特徴とする請求項1記載の通信システム。
  3.  前記マスター機は空調機の室外機で構成され、前記複数のスレーブ機は、前記室外機と接続される室内機で構成される空調システムに用いられる
    ことを特徴とする請求項1または2に記載の通信システム。
  4.  通常時は通信線を介して高速ボーレートで通信を行い、通信が不能になったことを検知すると低速ボーレートに切り替える複数台のスレーブ機に通信線を介して接続され、前記複数台のスレーブ機の中の1台に終端抵抗が設定されており、
     前記複数台のスレーブ機との通信の通信速度を、通常時は高速ボーレートに設定し、前記終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該スレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター通信制御部とを有する
    ことを特徴とする通信システムに用いるマスター機。
  5.  抵抗を備え、この抵抗が終端抵抗として前記通信線に接続されていることを特徴とする請求項4に記載のマスター機。
  6.  終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機との通信速度を、通常時は高速ボーレートに設定し、終端抵抗が設定されたスレーブ機との通信が不能になったことを検知すると低速ボーレートに切り替え、当該スレーブ機との通信が復旧したことを検知すると、前記複数台のスレーブ機に高速ボーレートへの切替指示を送信し、自機器の設定を高速ボーレートに切り替えるマスター機に通信線によって接続され、
     前記マスター機との通信の通信速度を、通常時は高速ボーレートに設定し、前記マスター機との通信が不能になったことを検知すると低速ボーレートに切り替え、前記マスター機から高速ボーレートへの切替指示を受信すると、高速ボーレートに切り替えるスレーブ通信制御部を有する
    ことを特徴とする通信システムに用いるスレーブ機。
  7.  抵抗と、自機が終端抵抗の設定対象であるか否かを示す終端抵抗設定情報を記憶するメモリと、前記抵抗の前記通信線への接続/非接続を電気的に切り替える切替回路とを備え、
     前記スレーブ通信制御部は、前記メモリに記憶された終端抵抗設定情報に基づき前記切替回路によって前記抵抗の前記通信線への接続/非接続を切り替える、
    ことを特徴とする通信システムに用いる請求項6記載のスレーブ機。
  8.  マスター機と、終端抵抗が設定されたスレーブ機を含む複数台のスレーブ機とが、通信線を介して通常時は高速ボーレートで通信を行い、前記マスター機と前記終端抵抗が設定されたスレーブ機との通信が不能になると、前記マスター機が低速ボーレートに切り替え、
     前記マスター機が低速ボーレートに切り替えたことにより前記マスター機との通信が不能になったスレーブ機が、通信速度を低速ボーレートに切り替え、
     前記マスター機と前記終端抵抗が設定されたスレーブ機との通信が復旧すると、前記マスター機が前記複数台のスレーブ機に高速ボーレートへの切替指示を送信するとともに、自機器の設定を高速ボーレートに切り替え、
     前記マスター機から高速ボーレートへの切替指示を受信したスレーブ機が、高速ボーレートに切り替える
    ことを特徴とする通信方法。
PCT/JP2020/003357 2020-01-30 2020-01-30 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法 WO2021152761A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080095137.3A CN115023903B (zh) 2020-01-30 2020-01-30 通信系统
PCT/JP2020/003357 WO2021152761A1 (ja) 2020-01-30 2020-01-30 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法
EP20916606.5A EP4099576A4 (en) 2020-01-30 2020-01-30 COMMUNICATION SYSTEM, MASTER DEVICE USED IN THE COMMUNICATION SYSTEM, SLAVE DEVICE AND COMMUNICATION METHOD
JP2021574357A JP7389145B2 (ja) 2020-01-30 2020-01-30 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法
US17/814,302 US11954054B2 (en) 2020-01-30 2022-07-22 Communication system, slave unit used for communication system, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003357 WO2021152761A1 (ja) 2020-01-30 2020-01-30 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,302 Continuation US11954054B2 (en) 2020-01-30 2022-07-22 Communication system, slave unit used for communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2021152761A1 true WO2021152761A1 (ja) 2021-08-05

Family

ID=77078105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003357 WO2021152761A1 (ja) 2020-01-30 2020-01-30 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法

Country Status (5)

Country Link
US (1) US11954054B2 (ja)
EP (1) EP4099576A4 (ja)
JP (1) JP7389145B2 (ja)
CN (1) CN115023903B (ja)
WO (1) WO2021152761A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304265A (ja) * 2002-04-10 2003-10-24 Denso Corp 通信システム
JP2004221904A (ja) * 2003-01-14 2004-08-05 Omron Corp フィールドバスシステムの通信速度制御方法及びマスタユニット
JP2006325121A (ja) * 2005-05-20 2006-11-30 Mitsubishi Electric Corp プログラマブルコントロール装置
JP2010247969A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp エレベーターの設定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165568A (ja) * 1998-11-26 2000-06-16 Canon Inc 印刷装置及びその制御方法
DE10051591A1 (de) * 2000-10-18 2002-05-02 Festo Ag & Co Bus-Repeater
EP2800316A1 (en) * 2013-05-01 2014-11-05 Renesas Electronics Europe GmbH Can fd
US9740643B2 (en) * 2013-06-20 2017-08-22 Apple Inc. Systems and methods for recovering higher speed communication between devices
CN105960629B (zh) * 2013-12-30 2020-11-24 施耐德电气It公司 在can网络中自动选择波特率的系统和方法
US10791002B2 (en) * 2017-08-19 2020-09-29 Nxp B.V. Controller area network (CAN) device and method for operating a CAN device
WO2020165937A1 (ja) * 2019-02-12 2020-08-20 東芝キヤリア株式会社 終端抵抗設定装置及び終端抵抗設定システム
US11133957B2 (en) * 2019-05-29 2021-09-28 Trane International Inc. HVAC controller area network hybrid network topology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304265A (ja) * 2002-04-10 2003-10-24 Denso Corp 通信システム
JP2004221904A (ja) * 2003-01-14 2004-08-05 Omron Corp フィールドバスシステムの通信速度制御方法及びマスタユニット
JP2006325121A (ja) * 2005-05-20 2006-11-30 Mitsubishi Electric Corp プログラマブルコントロール装置
JP2010247969A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp エレベーターの設定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099576A4 *

Also Published As

Publication number Publication date
EP4099576A1 (en) 2022-12-07
CN115023903A (zh) 2022-09-06
JPWO2021152761A1 (ja) 2021-08-05
US11954054B2 (en) 2024-04-09
US20240028536A1 (en) 2024-01-25
EP4099576A4 (en) 2023-09-13
JP7389145B2 (ja) 2023-11-29
CN115023903B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2011012041A1 (zh) 串行总线从设备地址设置系统及方法
WO2008001973A1 (en) Auto power controller of external equipment on valid check
JP5056516B2 (ja) 空気調和機用伝送装置
EP2333443A2 (en) Air conditioner and communication method thereof
WO2021152761A1 (ja) 通信システム、通信システムに用いるマスター機、スレーブ機、および通信方法
CN107181654B (zh) 控制局域网络can通讯方法和系统及空调系统
JP5401194B2 (ja) 監視制御装置
JP4950617B2 (ja) 空調管理装置、空調管理方法および空調管理プログラム
JP2001041534A (ja) 空気調和システム
JP2008249269A (ja) 空気調和機
WO2010089810A1 (ja) リセット制御回路、機器制御装置、制御システム
AU2019423037B2 (en) Environment control system and air conditioner or air-conditioning system
KR100490204B1 (ko) 다실형 공기조화기의 통신 제어장치 및 그 방법
JP5505025B2 (ja) 空調機システム
JP2007218453A (ja) 空気調和機制御装置および空気調和機制御方法ならびに空気調和機制御プログラムを記録した記録媒体
EP3297257B1 (en) Automatic addressing of networked nodes
JPH08170851A (ja) 空気調和装置の伝送装置
JP2004112664A (ja) ハウスコード設定装置
JP5518130B2 (ja) 冷凍空調装置
JPH06257836A (ja) 空気調和機の制御装置
JPH1011177A (ja) リモート電源制御システム
JP2007071428A (ja) 空気調和装置における未登録室内機追加装置
JPH1027009A (ja) 制御装置の暴走対策装置
JP2007032858A (ja) 空気調和機における未登録室内機追加装置及び方法
JP5241071B2 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020916606

Country of ref document: EP

Effective date: 20220830