WO2021152759A1 - 評価方法、評価装置、およびプログラム - Google Patents

評価方法、評価装置、およびプログラム Download PDF

Info

Publication number
WO2021152759A1
WO2021152759A1 PCT/JP2020/003338 JP2020003338W WO2021152759A1 WO 2021152759 A1 WO2021152759 A1 WO 2021152759A1 JP 2020003338 W JP2020003338 W JP 2020003338W WO 2021152759 A1 WO2021152759 A1 WO 2021152759A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
evaluation value
acoustic
speaker
seat
Prior art date
Application number
PCT/JP2020/003338
Other languages
English (en)
French (fr)
Inventor
祥子 栗原
登 原田
勝宏 福井
中川 朗
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021574356A priority Critical patent/JP7310939B2/ja
Priority to US17/795,851 priority patent/US20230076338A1/en
Priority to PCT/JP2020/003338 priority patent/WO2021152759A1/ja
Publication of WO2021152759A1 publication Critical patent/WO2021152759A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/60Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/69Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for evaluating synthetic or decoded voice signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments

Definitions

  • the present invention relates to a technique for evaluating the acoustic quality of conversation in an automobile.
  • AEC Acoustic Echo Canceller
  • Acoustic echo is a phenomenon that occurs when voice transmitted from the near end is output from a speaker at the far end and picked up by a microphone at the far end. If the effect of the acoustic echo canceller is weak, the acoustic echo remains unerased, and if it is too strong, even the transmitted voice from the far end is removed, and it becomes distorted or disappears, making it difficult to hear. Since the performance of the acoustic echo canceller depends on how accurately the acoustic echo is erased, the performance evaluation of the conventional acoustic echo canceller has mainly been an objective evaluation focusing on the amount of elimination of the acoustic echo. Objective evaluation is easy because it can be evaluated by computer processing, but there is a problem that it does not always match the quality experienced by the user in an actual call (also called "user experience quality").
  • Non-Patent Document 1 In order to evaluate the acoustic echo and the processed sound by the acoustic echo canceller in the subjective evaluation, it is necessary to perceive the acoustic echo, and the evaluation can be performed only when the evaluator himself talks. Therefore, in loudspeaker communication systems such as hands-free loudspeaker calls, quality evaluation by a two-way conversation test has been recommended (see Non-Patent Document 1). On the other hand, the implementation of the conversation test requires know-how, which is troublesome and costly, and has a problem of low reproducibility. Therefore, a method has been proposed in which the conversation test is simplified and the subjective evaluation is performed by the listening test for one-way telephone calls. In addition, objective evaluation methods such as PESQ (Perceptual Evaluation of Speech Quality), which estimates the subjective evaluation value by the listening test from the acoustic signal obtained by recording the voice of conversation, have also been established (see Non-Patent Document 2).
  • PESQ Personal Evaluation of Speech Quality
  • ICC is a technology that supports conversation in a car, so it is necessary to evaluate the quality by a conversation test.
  • various usage situations such as speed difference during running and stopping are assumed if the vehicle is running or running.
  • all combinations of seats in the car must be tested. For example, assuming use in an automobile 90 in which seats are arranged in three rows as shown in FIG. 1, if the driver's seat 91 and the rear seat 97 are combined, the sound signal emitted from the driver's seat 91 is emitted. The sound emitted from the microphone 1F installed in the first row and emitted from the speaker 2R installed in the third row is heard in the rear seat 97, and the audio signal emitted from the rear seat 97 is 3.
  • a conversation test is conducted assuming that the driver's seat 91 listens to the sound emitted from the speaker 2F installed in the first row, which is picked up by the microphone 1R installed in the first row.
  • This conversation test should be performed on all seat combinations that are expected to have conversations using the ICC. This is because the signal that must be erased (that is, echo-cancelled) from the picked-up acoustic signal differs depending on the combination of seats in which the conversation takes place. Therefore, the number of conversation tests required for ICC quality evaluation is enormous.
  • An object of the present invention is to provide a technique capable of reducing the number of conversation tests required for quality evaluation of ICC in view of the above technical problems.
  • the evaluation method of one aspect of the present invention is an evaluation method for evaluating the quality of conversation between seats in a vehicle having at least three seats belonging to any of a plurality of acoustic regions. Therefore, at least one speaker and one microphone are arranged in each acoustic region, and the audio signal picked up by the first microphone arranged in the first acoustic region is placed in the second acoustic region. Sound is emitted from the arranged second speaker, and the first evaluation value acquisition unit collects the first audio signal emitted from the sound source of the first seat belonging to the first acoustic region by the first microphone.
  • the first evaluation value which is the evaluation value of the conversation between the first seat and the second seat, is acquired, and the second evaluation value acquisition unit obtains the first evaluation value.
  • the first evaluation value as an evaluation value of a conversation performed between any seat belonging to the first acoustic region and any seat belonging to the second acoustic region except between the first seat and the second seat. To get.
  • the quality of ICC can be evaluated with a small number of conversation tests or without performing a conversation test.
  • FIG. 1 is a diagram for explaining an example of an ICC usage environment.
  • FIG. 2 is a diagram illustrating a functional configuration of an acoustic quality evaluation system.
  • FIG. 3 is a diagram illustrating a processing procedure of the acoustic quality evaluation method.
  • FIG. 4 is a diagram illustrating the display contents of the evaluation input screen.
  • FIG. 5 is a diagram illustrating the relationship between the subjective evaluation value and the objective evaluation value.
  • FIG. 6 is a diagram for explaining the experimental results.
  • FIG. 7 is a diagram illustrating a processing procedure of the acoustic quality evaluation method.
  • FIG. 8 is a diagram illustrating the functional configuration of the acoustic quality evaluation system of the first modification.
  • FIG. 1 is a diagram for explaining an example of an ICC usage environment.
  • FIG. 2 is a diagram illustrating a functional configuration of an acoustic quality evaluation system.
  • FIG. 3 is a diagram illustrating a processing procedure of the acoustic quality evaluation
  • FIG. 9 is a diagram for explaining an example of acoustic quality evaluation of ICC.
  • FIG. 10 is a diagram for explaining an example of acoustic quality evaluation of ICC.
  • FIG. 11 is a diagram illustrating the functional configuration of the acoustic quality evaluation system of the modified example 3.
  • FIG. 12 is a diagram illustrating the functional configuration of the acoustic quality evaluation system of the modified example 4.
  • FIG. 13 is a diagram for explaining the arrangement of the speaker and the microphone of the modified example 4.
  • 14A and 14B are diagrams for explaining the arrangement of the speaker and the microphone of the modified example 4.
  • the loudspeaker communication system is a communication system for transmitting and receiving acoustic signals between a terminal device including a microphone and a speaker, and at least a part of the sound output from the speaker of the terminal device is the microphone of the terminal device.
  • the sound received by (the sound wraps around).
  • Examples of loudspeaker communication systems are voice conferencing systems, video conferencing systems, and in-car communication.
  • the voice of the near-end speaker is received by the microphone of the near-end speaker, and the acoustic signal obtained based on the sound is transmitted to the far-end speaker via the network, and the acoustic signal is transmitted.
  • the represented sound is output from the speaker on the far-end speaker side.
  • the sound of the far-end speaker is received by the microphone of the far-end speaker, and the acoustic signal obtained based on the sound is transmitted to the near-end speaker via the network, and the sound represented by the acoustic signal is transmitted. It is output from the speaker on the near-end speaker side. However, at least a part of the sound output from the far-end speaker side speaker is also received by the far-end speaker side microphone.
  • the sound on the far-end speaker side received by the microphone on the far-end speaker side is a sound obtained by superimposing the wraparound (acoustic echo) of the voice of the near-end speaker on the voice of the far-end speaker. That is, the sound on the far-end speaker side received by the microphone on the far-end speaker side is a signal based on the voice of the far-end speaker and a signal based on the voice of the near-end speaker is the space on the far-end speaker side. Based on the signal deteriorated and superimposed in. When the near-end speaker is not speaking, the signal based on the near-end speaker's voice is not superimposed, so that the far-end speaker's voice is not deteriorated. Further, the deterioration of the sound on the far-end speaker side may be caused by the superposition of ambient noise on the far-end speaker side.
  • the signal processing may be any processing.
  • An example of signal processing is a process that includes at least one of an echo cancel process and a noise cancel process.
  • the echo cancellation process means a process by an echo canceller in a broad sense for reducing echo.
  • the processing by the echo canceller in a broad sense means the whole processing for reducing the echo.
  • the processing by the echo canceller in the broad sense may be realized only by the echo canceller in the narrow sense using the adaptive filter, may be realized by the voice switch, may be realized by the echo reduction, or these.
  • the noise canceling process means a process of suppressing or removing a noise component caused by any environmental noise other than the voice of a far-end speaker, which is generated around the microphone of the far-end terminal.
  • Environmental noise refers to, for example, the sound of air conditioning in an office, the sound of a car running, the sound of a car passing at an intersection, the sound of insects, the touch sound of a keyboard, the voice of multiple people (rattle sound), etc. It does not matter whether it is large / small or indoor / outdoor (see Reference 2 below).
  • Conversation test> Subjective evaluation by conversation test is performed as follows. The evaluator listens to the acoustic signal output from the speaker on the near-end speaker side, and selects the most suitable evaluation category based on the subjectivity of the near-end speaker from the evaluation categories classified into a predetermined number of stages in advance. select. For example, in ITU-T Recommendation P.800 listed in Non-Patent Document 1, it is classified into 5 evaluation categories of "Excellent”, “Good”, “Fair”, “Poor”, and “Bad”, and each evaluation category is classified. It is proposed to assign evaluation values of 5, 4, 3, 2, 1 in order. This subjective evaluation is performed a plurality of times by a plurality of evaluators while exchanging the other party, and the collected evaluation values are aggregated to evaluate the acoustic quality.
  • Subjective evaluation by listening test is performed as follows.
  • the evaluator uses a binaural sound reproduction device such as headphones or earphones, and assumes that there is no wraparound of the sound on the far-end speaker side, the sound output from the near-end speaker side speaker (that is, that is). , Reference sound) and the sound output from the near-end speaker side speaker (that is, the sound to be evaluated) when there is a wraparound of the sound on the far-end speaker side.
  • the call quality is subjectively evaluated (opinion evaluation) by listening to and comparing them alternately.
  • This subjective evaluation is performed multiple times by a plurality of evaluators on a plurality of sets of an acoustic signal representing a reference sound and an acoustic signal representing an evaluation target sound, and the collected evaluation values are aggregated to evaluate the acoustic quality. Will be.
  • ICC is an application of a loudspeaker communication system, and is a technology that supports conversations between occupants sitting in each seat in a car through a microphone and a speaker. Terminals equipped with at least one microphone and one speaker are arranged in the vicinity of each seat, and conversation is performed by transmitting and receiving voice signals through the voice communication network constructed in the vehicle. That is, the audio signal picked up by the microphone placed near the first seat is emitted from the speaker placed near the second seat and picked up by the microphone placed near the second seat. The sounded audio signal is emitted from a speaker located near the first seat, so that a conversation between the occupant of the first seat and the occupant of the second seat is performed.
  • a space in which at least one microphone and one speaker are arranged and at least one sound source (for example, an automobile occupant) can exist is referred to as an "acoustic region". That is, in the ICC, a plurality of acoustic regions are preset in the target vehicle, and at least one seat is arranged in each acoustic region.
  • the acoustic quality evaluation system of the embodiment is an information communication system for converting an objective evaluation value by PESQ into a subjective evaluation value by a conversation test.
  • the acoustic quality evaluation system 10 of the embodiment includes a near-end terminal 1 used by a near-end speaker, a far-end terminal 2 used by a far-end speaker, and an evaluation value conversion device 3.
  • a near-end acoustic region 100 in which the near-end speaker and the near-end terminal 1 exist, and a far-end acoustic region 200 in which the far-end speaker and the far-end terminal 2 exist are predetermined. Has been done.
  • the near-end terminal 1 includes at least a transmitting unit 11, a receiving unit 12, a recording unit 13, a display unit 15, and an input unit 16, and may further include a signal processing unit 14.
  • the far-end terminal 2 may include at least a transmitting unit 21, a receiving unit 22, and a recording unit 23, and may further include a signal processing unit 24.
  • the evaluation value conversion device 3 includes a subjective evaluation value presentation unit 31, a subjective evaluation value acquisition unit 32, an objective evaluation value acquisition unit 33, an analysis unit 34, and a conversion unit 35.
  • the acoustic quality evaluation method of the embodiment is realized by the acoustic quality evaluation system 10 performing the processing of each step illustrated in FIGS. 3 and 7.
  • the near-end speaker who uses the near-end terminal 1 is an evaluator who gives a sample of the subjective evaluation value
  • the far-end speaker who uses the far-end terminal 2 is a conversational call whose subjective evaluation is the target.
  • the near-end speaker and the far-end speaker may evaluate the same call at the same time.
  • both the near-end speaker and the far-end speaker are evaluators and call partners.
  • the near-end terminal 1 and the far-end terminal 2 have the same functional configuration, and the far-end terminal 2 further includes a display unit and an input unit.
  • the evaluation target may be a conference call of three or more parties made with a plurality of far-end terminals 2.
  • the near-end terminal 1 and the far-end terminal 2 are connected via the voice communication network 4.
  • the evaluation value conversion device 3 is connected to the near-end terminal 1 and the far-end terminal 2 via a network (not shown). However, if the voice communication network 4 can logically divide the voice communication path and the data communication path by band control or the like, the near-end terminal 1 and the far-end terminal 2 can be connected via the voice communication network 4.
  • the evaluation value conversion device 3 may be connected.
  • the voice communication network 4 is a circuit-switched or packet-switched communication network configured so that each connected device can communicate with each other, and is configured assuming voice communication in particular.
  • the voice communication network 4 can be composed of the Internet, WAN (Wide Area Network), LAN (Local Area Network), a dedicated line, a public switched telephone network, a mobile phone communication network, and the like.
  • a special program is read into a known or dedicated computer having a central processing unit (CPU: Central Processing Unit), a main storage device (RAM: Random Access Memory), and the like. It is a special device configured in.
  • the near-end terminal 1 and the far-end terminal 2 execute each process under the control of the central processing unit, for example.
  • the data input to the near-end terminal 1 and the far-end terminal 2 and the data obtained by each processing are stored in, for example, the main storage device, and the data stored in the main storage device is stored in the main storage device as needed. It is read out to and used for other processing.
  • At least a part of the near-end terminal 1 and the far-end terminal 2 may be configured by hardware such as an integrated circuit.
  • the near-end terminal 1 and the far-end terminal 2 are information processing devices having a voice transmission / reception function and a data communication function such as a mobile terminal such as a smartphone or a tablet, or a desktop type or laptop type personal computer. Is.
  • the evaluation value conversion device 3 is configured by loading a special program into, for example, a publicly known or dedicated computer having a central processing unit (CPU: Central Processing Unit), a main storage device (RAM: Random Access Memory), and the like. It is a special device.
  • the evaluation value conversion device 3 executes each process under the control of the central processing unit, for example.
  • the data input to the evaluation value conversion device 3 and the data obtained by each process are stored in the main storage device, for example, and the data stored in the main storage device is read out to the central processing unit as needed. It is used for other processing.
  • the evaluation value conversion device 3 may be at least partially configured by hardware such as an integrated circuit.
  • Each storage unit included in the evaluation value conversion device 3 is, for example, a main storage device such as RAM (RandomAccessMemory), an auxiliary storage device composed of a hard disk, an optical disk, or a semiconductor memory element such as a flash memory (FlashMemory). Alternatively, it can be configured with middleware such as a relational database or key-value store.
  • the evaluation value conversion device 3 is an information processing device having a data communication function and a data processing function such as a desktop type or rack mount type server computer.
  • the acoustic quality evaluation method of the embodiment consists of two stages of processing.
  • the first stage is a process of analyzing the relationship between the objective evaluation value and the subjective evaluation value in order to convert the objective evaluation value into the subjective evaluation value.
  • the second stage is a process of converting the objective evaluation value calculated from the acoustic signal obtained by recording the conversation into the subjective evaluation value based on the relationship between the objective evaluation value and the subjective evaluation value obtained in the first stage.
  • FIG. 3 is a diagram showing an example of the relationship analysis process of the first stage
  • FIG. 7 is a diagram showing an example of the evaluation value conversion process of the second stage.
  • step S1 the near-end terminal 1 and the far-end terminal 2 start a call for which the acoustic quality is evaluated.
  • the near-end terminal 1 makes a call to the far-end terminal 2 according to the operation of the near-end speaker.
  • the far-end terminal 2 answers an incoming call from the near-end terminal 1 according to the operation of the far-end speaker.
  • a call is established between the near-end terminal 1 and the far-end terminal 2.
  • an example of making a call from the near-end terminal 1 to the far-end terminal 2 is shown, but a call may be established by making a call from the far-end terminal 2 to the far-end terminal 1.
  • the voice spoken by the near-end speaker is converted into an acoustic signal by the microphone M1 of the near-end terminal 1, and the transmitting unit 11 transmits the acoustic signal to the receiving unit 22 of the far-end terminal 2.
  • the signal processing unit 14 performs signal processing including at least one of echo canceling processing and noise canceling processing on the acoustic signal transmitted to the far-end terminal 2.
  • the receiving unit 22 of the far-end terminal 2 outputs an acoustic signal received from the transmitting unit 11 of the near-end terminal 1 from the speaker S2 of the far-end terminal 2.
  • the voice spoken by the far-end speaker is converted into an acoustic signal by the microphone M2 of the far-end terminal 2, and at this time, the wraparound of the voice of the near-end speaker output from the speaker S2 of the far-end terminal 2 is the far-end talk. It is superimposed on the voice of the person and converted into an acoustic signal.
  • the transmitting unit 21 of the far-end terminal 2 transmits an acoustic signal to the receiving unit 12 of the near-end terminal 1.
  • the signal processing unit 24 performs signal processing including at least one of echo canceling processing and noise canceling processing on the acoustic signal transmitted to the near-end terminal 1.
  • the receiving unit 12 of the near-end terminal 1 outputs an acoustic signal received from the transmitting unit 21 of the far-end terminal 2 from the speaker S1 of the near-end terminal 1. In this way, the near-end speaker and the far-end speaker have a conversation via the established call between the near-end terminal 1 and the far-end terminal 2.
  • step S13 the recording unit 13 of the near-end terminal 1 records an acoustic signal output from the speaker S1 by the receiving unit 12 of the near-end terminal 1, and an acoustic signal representing the evaluation target sound (hereinafter, “evaluation target acoustic signal””. It is transmitted to the evaluation value conversion device 3 as (called).
  • the evaluation value conversion device 3 inputs the evaluation target acoustic signal received from the recording unit 13 of the near-end terminal 1 to the objective evaluation value acquisition unit 33.
  • step S23 the recording unit 23 of the far-end terminal 2 converts the sound input to the microphone M3 of the far-end terminal 2 into an acoustic signal, and an acoustic signal representing a reference sound (hereinafter, referred to as “reference acoustic signal”). Is transmitted to the evaluation value conversion device 3.
  • the evaluation value conversion device 3 inputs the reference acoustic signal received from the recording unit 23 of the far-end terminal 2 to the objective evaluation value acquisition unit 33.
  • the recording unit 23 may be provided by the near-end terminal 1.
  • the microphone M3 and the near-end terminal 1 are provided by arranging the microphone M3 in the acoustic region where the far-end terminal 2 exists and using an audio cable laid from the microphone M3 to the acoustic region where the near-end terminal 1 exists.
  • the recording unit 23 is connected. As a result, the voice spoken by the far-end speaker can be directly recorded by the recording unit 23 included in the near-end terminal 1.
  • step S15 the subjective evaluation value presenting unit 31 of the evaluation value conversion device 3 transmits a control signal for displaying an evaluation input screen for the near-end speaker to input an evaluation of acoustic quality to the display unit 15 of the near-end terminal 1.
  • the display unit 15 of the near-end terminal 1 displays the evaluation input screen according to the received control signal.
  • evaluation categories classified into a plurality of stages for each of a plurality of predetermined evaluation viewpoints are displayed. Evaluation values are assigned to these evaluation categories according to the high quality of each evaluation viewpoint.
  • the evaluation input screen shall be set so that only one evaluation category can be selected for each evaluation viewpoint.
  • the evaluation viewpoints include, for example, three viewpoints of "easiness to hear the other party's voice", “noise feeling", and "return of one's own voice".
  • Regarding the evaluation viewpoint of "easy to hear the other party's voice for example, there are five stages of "very easy to hear”, “no problem in hearing”, “a little difficult to hear”, “difficult to hear”, and “very difficult to hear”. Evaluation categories are provided, and evaluation values of 5, 4, 3, 2, and 1 are assigned to each evaluation category in order. From the viewpoint of evaluation of "noise”, for example, “no noise”, “a little noise”, “noisy”, “a lot of noise is superimposed”, and "a lot of noise is superimposed".
  • Evaluation categories of 5 levels are provided, and evaluation values of 5, 4, 3, 2, and 1 are assigned to each evaluation category in order.
  • evaluation viewpoint of "return of my voice” for example, "there is no return of my voice", “there is a little return of my voice”, “there is a return of my voice”, and “there is a return of my voice”.
  • Five evaluation categories of "large return” and “very large return of one's voice” are provided, and evaluation values of 5, 4, 3, 2, and 1 are assigned to each evaluation category in order.
  • the table below summarizes the relationship between the evaluation viewpoint, evaluation category, and evaluation value shown in the above example.
  • FIG. 4 shows an example of an evaluation input screen for inputting an evaluation based on the evaluation category of the above example.
  • an area 131-1 corresponding to the evaluation viewpoint of "easiness to hear the other party's voice”, an area 131-2 corresponding to the evaluation viewpoint of "noise feeling", and "return of one's own voice” are displayed.
  • Area 131-3 corresponding to the evaluation viewpoint of is provided.
  • a label 132-1 indicating an evaluation category in which "easiness to hear the other party's voice" is classified into five stages is displayed, and five buttons 133-1 are provided on a one-to-one basis for each evaluation category. Be done.
  • Button 133-1 has a function of switching the selection state, and is set so that only one can be selected in the area 131-1.
  • button 133-1 is an option button in which a group is set in area 131-1.
  • Labels 132-2, 132-3 and buttons 133-2, 133-3 are similarly provided for areas 131-2 and 131-3.
  • FIG. 4 is an example of the design of the evaluation input screen, and different designs may be used in consideration of convenience of operation and the like.
  • step S16 the near-end speaker listens to the voice output from the speaker S1 of the near-end terminal 1 and evaluates its acoustic quality.
  • the evaluation of the acoustic quality is performed by selecting the evaluation category that is most applicable to each evaluation viewpoint based on its own subjectivity on the evaluation input screen displayed on the display unit 15.
  • the evaluation category most applicable to "easiness to hear the voice of the other party” is selected, and the button 133-1 corresponding to the label 132-1 is selected.
  • select the buttons 133-2 and 133-3 corresponding to the most applicable evaluation category for "noise” and the most applicable evaluation category for "return of one's voice", respectively.
  • the near-end speaker presses the confirm button 134 after selecting the evaluation category for all evaluation viewpoints.
  • the input unit 16 of the near-end terminal 1 transmits the evaluation value assigned to each selected evaluation category to the evaluation value conversion device 3 according to the selection state in the evaluation input screen 130.
  • the evaluation value conversion device 3 inputs the evaluation value for each evaluation viewpoint received from the input unit 16 of the near-end terminal 1 to the subjective evaluation value acquisition unit 32.
  • step S32 the subjective evaluation value acquisition unit 32 of the evaluation value conversion device 3 determines one subjective evaluation value related to acoustic quality based on the evaluation value for each evaluation viewpoint received from the input unit 16 of the near-end terminal 1. do. Specifically, the lowest evaluation value among the evaluation values for each evaluation viewpoint is determined as the subjective evaluation value related to acoustic quality.
  • the evaluator is "very easy to hear” about “easy to hear the other party's voice" (evaluation value is 5) and “noisy” about “noise feeling” (evaluation value is 3).
  • the subjective evaluation value acquisition unit 32 outputs the determined subjective evaluation value to the analysis unit 34.
  • step S33 the objective evaluation value acquisition unit 33 of the evaluation value conversion device 3 acquires the objective evaluation value corresponding to the evaluation target acoustic signal received from the recording unit 13 and the reference acoustic signal received from the recording unit 23.
  • the objective evaluation value is, for example, the PESQ value described in Non-Patent Document 2.
  • the calculation process of the PESQ value includes a process of correcting the time lag between the evaluation target acoustic signal and the reference acoustic signal.
  • the objective evaluation value acquisition unit 33 outputs the calculated objective evaluation value to the analysis unit 34.
  • step S34 the analysis unit 34 of the evaluation value conversion device 3 analyzes the linear relationship between the subjective evaluation value received from the subjective evaluation value acquisition unit 32 and the objective evaluation value received from the objective evaluation value acquisition unit 33.
  • the analysis unit 34 sets the information representing the linear relationship obtained by the analysis in the conversion unit 35.
  • the information representing the linear relationship is a linear function F representing a straight line having a predetermined slope a, a parameter for specifying the linear function F, and the like.
  • FIG. 5 is a graph showing the relationship between the subjective evaluation value and the objective evaluation value obtained by the above method.
  • the vertical axis represents the subjective evaluation value (MOS: Mean Opinion Score) by the conversation test, and the horizontal axis represents the objective evaluation value (PESQ).
  • the diamond-shaped mark represents the measured value by the conversation test, and the square mark on the broken line represents the estimated value (value estimated by the regression analysis) based on their linear relationship. As shown in this figure, it can be seen that the MOS value and the PESQ value can be approximated by a linear relationship.
  • x represents the PESQ value and y represents the MOS value.
  • a is near 1.3 or 1.3 and b is near -0.45 or -0.45.
  • the neighborhood of ⁇ means a value belonging to the range of ⁇ - ⁇ 1 or more and ⁇ - ⁇ 2 or less.
  • Examples of ⁇ 1 and ⁇ 2 are values of 20% of
  • the subjective evaluation value and the objective evaluation value In order to obtain a linear relationship between the subjective evaluation value and the objective evaluation value, the subjective evaluation value and the objective evaluation value must be for the same conversation. At this time, if the target conversation is too long, the subjective evaluation value and the objective evaluation value may not match, and an appropriate linear relationship may not be obtained. In order to avoid this, it is advisable to set the conversation to be evaluated to an appropriate length.
  • the appropriate length may be, for example, about 20 seconds, or may be a length according to a desired standard.
  • the subjective evaluation value was determined in five evaluation categories, but in the present embodiment, the evaluation category classified into multiple stages for each of the plurality of evaluation viewpoints is used, and the lowest evaluation value is subjectively evaluated. Determined as a value.
  • call environments with low acoustic quality such as smartphones and mobile phones have become widespread, and evaluators who are accustomed to call environments with low acoustic quality have lower standards for acoustic quality, so for example, they can hear the other party's voice. For example, there is a strong tendency to give high evaluation values such as good acoustic quality.
  • the inventor of the present invention introduces a plurality of evaluation viewpoints as in the acoustic quality evaluation system of the embodiment, and sets the lowest evaluation value among the evaluation values selected from each evaluation viewpoint as the subjective evaluation value. I found that I could avoid the problem.
  • the evaluation of ICC it is assumed that there is little noise when the vehicle is stopped, and there is a lot of running noise and environmental noise when the vehicle is running. In other words, high call quality may be expected or low call quality may be expected. Therefore, it is necessary to obtain an appropriate evaluation value regardless of the quality of the call.
  • by configuring the evaluation values as described above it is expected that an appropriate subjective evaluation value can be obtained.
  • FIG. 6 shows the experimental results of the evaluation test by the acoustic quality evaluation system of the embodiment.
  • four experimental conditions I to IV were set, and four evaluators conducted conversation tests three times over a four-day period while exchanging communication partners under each experimental condition.
  • Experimental condition I is clearly a good sound and is expected to have an evaluation value of 4 to 5 (in other words, no one will give an evaluation value of 1 to 2).
  • Experimental condition II is obviously a bad sound, and it is assumed that an evaluation value of 1 to 2 is given (in other words, no one will give an evaluation value of 4 to 5).
  • Experimental condition III is a relatively good sound among the sounds that many people judge to be normal, and it is assumed that an evaluation value of 3 to 4 is given (in other words, no one gives an evaluation value of 1). Deaf) condition.
  • Experimental condition IV is a relatively bad sound among the sounds that many people judge to be normal, and it is assumed that an evaluation value of 2 to 3 is given (in other words, no one gives an evaluation value of 5). Deaf) condition. Under each of these experimental conditions, the conventional general evaluation categories ("very good”, “good”, “somewhat bad”, “bad”, “very bad") and the evaluation categories of the embodiments (5 for each of the three evaluation viewpoints). A conversation test was conducted using (set evaluation categories for each stage), and the average of each evaluation value was tabulated. As shown in FIG.
  • FIG. 8 shows a modification 1 of the acoustic quality evaluation system of the embodiment.
  • the acoustic quality evaluation system of the first modification is characterized in that the acoustic region in which the far-end speaker exists and the acoustic region in which the far-end terminal 2 exists are separated.
  • the far-end terminal 2 exists in the far-end acoustic region 200 as in the embodiment, but the far-end speaker exists in the third acoustic region 300 different from the far-end acoustic region 200.
  • the speaker S2 and the microphone M2 included in the far-end terminal 2 are arranged in the far-end acoustic region 200 as in the embodiment, but the microphone M3 for recording the voice spoken by the far-end speaker is arranged in the third acoustic region 300.
  • the far-end speaker wears a closed speaker S3 such as headphones.
  • a speaker S4 connected to the microphone M3 by an audio cable or the like, and a microphone M4 connected to the sealed speaker S3 by an audio cable or the like are arranged.
  • the voice of the near-end speaker output from the speaker S2 of the far-end terminal 2 is picked up by the microphone M4 in the far-end acoustic region 200 and emitted from the closed speaker S3 in the third acoustic region 300. Listened to by a far-speaker.
  • the voice uttered by the far-end speaker is picked up by the microphone M3 in the third acoustic region 300 and emitted from the speaker S4 in the far-end acoustic region 200.
  • the voice of the far-end speaker emitted from the speaker S4 is converted into an acoustic signal by the microphone M2 of the far-end terminal 2, and is emitted from the speaker S1 of the near-end terminal 1 by the near-end speaker. Be heard.
  • the evaluation target sound used for the objective evaluation is recorded when it is output from the speaker S1 of the near-end terminal 1, and the reference sound is recorded when it is input to the microphone M3.
  • the wraparound of the sound of the near-end speaker output from the speaker S2 is the reference sound. It may be recorded by superimposing it on the reference sound, or the ambient noise on the far-end speaker side may be superimposed on the reference sound and recorded. Extra acoustic signals that are not based on the far-end speaker's voice signal, such as the wraparound of the near-end speaker's voice and ambient noise, are also called disturbing sounds, and the objective evaluation value is accurate if the reference sound contains the disturbing sound. It becomes a factor that cannot be calculated.
  • the speaker for the far-end speaker to listen to the near-end speaker is a closed type, and the reference sound is recorded in an acoustic region different from that of the far-end terminal, so that the reference sound is superimposed on the reference sound. It is possible to reduce the disturbing sound. As a result, it becomes possible to obtain a more accurate objective evaluation value, and a more appropriate linear relationship can be obtained.
  • the ICC uses the microphones 1F and 1R and the speakers 2F and 2R mounted on the automobile 90 to support conversations between humans seated in each seat.
  • the audio signal picked up by the microphone 1F (1R) is emitted from the speaker 2R (2F) after being subjected to signal processing such as echo cancellation and gain control.
  • the microphone 1 may be installed for each seat row in the vehicle, or may be installed for each seat. As illustrated in FIG. 9, in front of the first row (eg on the dashboard or around the front mirror) and between the second and third rows (eg the floor or ceiling between the middle and rear seats). It may be installed only in.
  • the microphone 3F and the speaker 4F are installed in the driver's seat 91, and the microphone 3R and the speaker 4R are installed in the rear seat 97.
  • Each speaker is placed at a position corresponding to the position of the mouth when a person is seated in the seat. That is, it is installed in the center of the left and right of the seat and in front of it.
  • Each microphone is placed in a position corresponding to the position of the ear when a human is seated in the seat.
  • the speaker 4F is installed so as to emit sound in the forward direction at a position corresponding to the evaluator's mouth when it is assumed that the evaluator is seated in the driver's seat
  • the microphone 3F is installed so that the evaluator is seated in the driver's seat. It is desirable to install it in a position corresponding to the evaluator's left ear or right ear when assuming that it has been done.
  • Two or more microphones may be installed in each seat, for example, two microphones corresponding to the evaluator's left ear and right ear.
  • the pre-recorded audio signal is emitted from the speaker 4R installed in the rear seat 97.
  • the audio signal emitted from the speaker 4R is picked up by the microphone 1R, and after signal processing such as echo cancellation and gain control, the sound is emitted from the speaker 2F.
  • the audio signal emitted from the speaker 2F is picked up by the microphone 3F installed in the driver's seat 91.
  • An objective evaluation value is obtained by using a pre-recorded audio signal as a reference acoustic signal and an audio signal picked up by the microphone 3F as an evaluation target audio signal.
  • the subjective evaluation value can be estimated by converting the objective evaluation value thus obtained based on the linear function F obtained in advance.
  • an example between the driver's seat 91 and the rear seat 97 has been described, but the seats and rows may be combined in any way.
  • the state of the car is the microphone installed in the car, such as the difference in speed, the open / closed state of the window, the noise level in the car represented by music, etc. when the car is stopped, running, or running. It is intended as a factor that causes fluctuations in the sound picked up by the car.
  • ⁇ Modification example 3> In the second modification, a method of evaluating the acoustic quality of the ICC using the acoustic quality evaluation system 10 shown in FIG. 2 has been described. Here, it was assumed that the acoustic signal to be evaluated arrived via the ICC. However, in the ICC, since a plurality of acoustic regions are set in the same automobile, the audio signal emitted from the speaker installed in one acoustic region is directly installed in the other acoustic region without passing through the ICC. It may arrive at the microphone. Therefore, in the quality evaluation of ICC, it is necessary to assume that the acoustic signal to be evaluated includes an audio signal arriving in another acoustic path.
  • FIG. 10 shows the acoustic path assumed in the modified example 3.
  • the near-end speaker evaluationator
  • the far-end speaker calling party
  • the dotted line shown in FIG. 10 is the acoustic path assumed in the second modification, and is the acoustic path in which the reference acoustic signal emitted from the speaker 4R arrives at the microphone 3F via the ICC.
  • the alternate long and short dash line shown in FIG. 10 is an acoustic path of direct sound, and is an acoustic path in which the reference acoustic signal emitted from the speaker 4R directly reaches the microphone 3F without passing through the ICC.
  • the broken line shown in FIG. 10 is an acoustic path assuming double talk, and is an acoustic path in which the audio signal emitted from the speaker 4F is emitted from the speaker 2R via the ICC and reaches the microphone 3F.
  • the acoustic path assuming double talk it is also assumed that the component that erases and leaks the echo generated by collecting the audio signal emitted from the speaker 2F by the microphone 1F is emitted from the speaker 2R.
  • the far-end terminal 2 is further provided with two simulation units 25 and 26, and the evaluation value conversion device 3 is provided.
  • the addition unit 36 is further provided.
  • the simulation unit 25 receives the acoustic signal output by the recording unit 23 as an input, and transmits the simulated acoustic signal subjected to predetermined signal processing for reflecting the transmission characteristic of the acoustic path of the direct sound to the evaluation value conversion device 3.
  • the simulating unit 26 receives the acoustic signal output by the receiving unit 22 as an input, and transmits the simulated acoustic signal subjected to predetermined signal processing to reflect the transmission characteristics of the acoustic path assuming double talk to the evaluation value conversion device 3. do.
  • the evaluation value conversion device 3 inputs the acoustic signal received from the recording unit 23, the simulated acoustic signal received from the simulated unit 25, and the simulated acoustic signal received from the simulated unit 26 to the adding unit 36.
  • the addition unit 36 inputs an acoustic signal obtained by adding the three input acoustic signals to the objective evaluation value acquisition unit 33 as an evaluation target acoustic signal.
  • the objective evaluation value acquired by the objective evaluation value acquisition unit 33 may be directly used as the output of the evaluation value conversion device 3, or the conversion unit 35 may perform the above-mentioned linear conversion to acquire the estimated value of the subjective evaluation value. good.
  • the simulation units 25 and 26 When an acoustic signal or an audio signal is input, the simulation units 25 and 26 output a conversion signal that has undergone conversion processing that reflects the transmission characteristics of the corresponding acoustic paths.
  • This conversion process may be signal processing that reflects the transmission characteristics between the seats acquired in advance, or may be hardware such as a signal attenuator (attenuator) that takes into consideration the distance between the seats and the noise in the vehicle.
  • the simulation units 25 and 26 may be combined with a delayer that delays the signal in consideration of the propagation speed of the sound in the space. If the distance between the seats of the automobile is such that the delay difference can be ignored, the delay device may not be used and only the conversion process reflecting the transmission characteristics as described above may be performed.
  • the simulated unit 25 and the simulated unit 26 have a common function in that they reflect the transmission characteristics of the acoustic path. Therefore, if the transmission characteristics of the corresponding acoustic paths are the same (or similar), even if only one simulation unit is provided and the same conversion processing is performed for each input signal. good.
  • the acoustic quality evaluation system 20 of the modified example 3 evaluates the acoustic quality by including a component simulating an acoustic path generated when the near-end acoustic region and the far-end acoustic region exist in the same space in the evaluation target acoustic signal. I do. With such a configuration, for example, the quality evaluation of the ICC that supports conversation in the same automobile can be performed with high accuracy.
  • ⁇ Modification example 4> When evaluating the acoustic quality of the ICC using the acoustic quality evaluation system 10 shown in FIG. 2 and the acoustic quality evaluation system 20 shown in FIG. 9, it is necessary to evaluate all the seat combinations in the automobile. However, since it is assumed that the acoustic conditions are similar between the seats in the same row, the evaluation value obtained in one seat may be used as the evaluation value of another seat in the same row as that seat. .. For example, assuming the evaluation in the automobile 90 in which the seats are arranged in the three rows illustrated in FIG. 1, the evaluation values acquired between the driver's seat 91 and the rear seat 97 are the evaluation values obtained between the driver's seat 91 and the rear seat 95.
  • the evaluation value conversion device 3 further includes an evaluation value reuse unit 37.
  • the configuration of the modified example 4 can also be applied to the modified example 3. That is, in the acoustic quality evaluation system 20 of the modification 3 shown in FIG. 11, the evaluation value conversion device 3 may further include the evaluation value reuse unit 37 in the same manner as in FIG.
  • the evaluation value reuse unit 37 receives an estimated value of the subjective evaluation value acquired between the first seat and the second seat belonging to different acoustic regions from the conversion unit 35. At this time, it is assumed that the acoustic region is set for each row of seats in the automobile. For example, when used for evaluation in the automobile 90 illustrated in FIG. 1, the driver's seat 91 and the passenger seat 92 belong to the first acoustic region, the middle seats 93 and 94 belong to the second acoustic region, and the rear seat 95 , 96, 97 are set to belong to the third acoustic region.
  • the evaluation value reuse unit 37 transfers the estimated value of the subjective evaluation value between one of the seats belonging to the same acoustic region as the first seat and one of the seats belonging to the same acoustic region as the second seat ( However, it is acquired as an evaluation value of conversations that take place between the first seat and the second seat). For example, in the automobile 90 illustrated in FIG. 1, if the estimated value of the subjective evaluation value has already been acquired between the driver's seat 91 and the rear seat 97, the estimated value of the subjective evaluation value is set to the driver's seat 91. It is acquired as an estimated value of the subjective evaluation value between any of the rear seats 95 and 96, or between the passenger seat 92 and any of the rear seats 95, 96, 97.
  • the combination of seats for which the evaluation value is actually obtained is between the seats that are the farthest from each other.
  • the configuration of the modified example 4 is not limited to the case where the evaluation is actually performed with the combination of the seats at the farthest distance (that is, the worst condition), and the distance is short (that is, the condition is relatively close). Good) It is effective even when the actual evaluation is performed between the seats.
  • the configuration of the modified example 4 is particularly effective when the speakers and microphones arranged in the automobile are arranged symmetrically with respect to the straight direction of the automobile.
  • microphones 1A, 1B, 1C and speakers 2A, 2B, 2C may be arranged at the center of each row along the center line in the straight-ahead direction of the automobile 90.
  • FIG. 14A microphones 1A, 1B, and 1C are arranged in the center of each row along the center line in the straight-ahead direction of the automobile 90, and two speakers for each seat are placed behind the left and right ends.
  • the speaker 2A1 is arranged on the rear right side and the speaker 2A2 is arranged on the rear side on the left side).
  • the speakers 1A, 1B, and 1C are arranged in the center of each row along the center line in the straight-ahead direction of the automobile 90, and one microphone is arranged in front of each of the left and right ends of each row.
  • Speakers may be arranged (for example, in the first row, the speaker 2A1 is arranged in front of the right window and the speaker 2A2 is arranged in front of the left window).
  • the configuration of the modified example 4 is not limited to the case where the speaker and the microphone are arranged symmetrically, and is effective even when the arrangement is not symmetrical.
  • the acoustic signal emitted from the 4R is collected by the microphone 1R, subjected to signal processing such as echo cancellation and howling suppression as described above, and is emitted from the speaker 2F (hereinafter, "far-end speaker signal").
  • the acoustic path through which (described as described) and the acoustic signal emitted from the speaker 4F arranged in the driver's seat 91 are collected by the microphone 1F, and signal processing such as echo cancellation and howling suppression as described above is performed.
  • the far-end speaker signal When double talk is performed, for example, the far-end speaker signal emitted from the speaker 2F may be picked up by the microphone 1F to generate an echo.
  • the acoustic quality evaluation system also evaluates the accuracy of echo cancellation performed at this time, but in order to evaluate more appropriately, the sound pressure of the far-end speaker signal emitted from the speaker 2F is also evaluated. Should be considered.
  • a sound pressure measuring unit and an appropriateness determination unit are added, the sound pressure is measured by the sound pressure measuring unit, and the evaluation obtained when the sound pressure emitted from the speaker 2F is equal to or higher than a predetermined threshold value. Only the value may be judged to be an appropriate evaluation.
  • a sound pressure control unit for controlling the sound pressure to be equal to or higher than a predetermined threshold value may be further provided.
  • this threshold value for example, a value of 64 to 70dbspl used when evaluating a telephone conference device may be used, or for each vehicle to be evaluated, for example, the distance between the speaker 2F, the microphone 1F, and the driver's seat 91, or It may be designed based on the transmission characteristics.
  • the appropriateness of the far-end speaker signal itself may be determined. That is, an objective evaluation is performed between the acoustic signal emitted from the speaker 4R and picked up by the microphone 1R and the acoustic signal before being emitted from the speaker 2F, and only the evaluation when the value is equal to or higher than a predetermined value. It may be determined that it is appropriate. Instead of the objective evaluation, an index value such as a square error may be used.
  • the audio signals emitted from the arranged human beings are used instead of the acoustic signals emitted from the speakers 4R and 4F as in the modification 3. You may. In this case, since the subjective evaluation value can be acquired, it goes without saying that conversion based on the subjective evaluation value and the objective evaluation value is unnecessary.
  • the minimum number of conversation tests required to obtain a linear relationship for converting the objective evaluation value into the subjective evaluation value is sufficient, and the number of conversation tests is small.
  • quality evaluation can be performed without performing a conversation test.
  • the number of test cases will be enormous in loudspeaker communication systems such as ICC, where usage conditions and communication routes are diverse, but quality evaluation should be performed without conducting a small number of conversation tests or conversation tests. It can be expected that the cost required for quality evaluation will be reduced.
  • the program that describes this processing content can be recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
  • the distribution of this program is carried out, for example, by selling, transferring, or renting a portable recording medium such as a DVD or CD-ROM on which the program is recorded.
  • the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be.
  • the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
  • the present device is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized by hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Quality & Reliability (AREA)
  • Telephone Function (AREA)

Abstract

ICCの品質評価で必要となる会話試験の回数を低減する。評価値変換装置3は、複数の音響領域が予め定められた自動車内において近端音響領域100と遠端音響領域200の間で行われる会話の品質を評価する。遠端音響領域200に配置されたマイクロホンM2により収音された音声信号は近端音響領域100に配置されたスピーカS1から放音される。客観評価値取得部33は、遠端音響領域200に属する座席の音源から発せられた第一音声信号がマイクロホンM2により収音されスピーカS1から放音された音声信号と、第一音声信号が自動車内の空間を伝達して近端音響領域100に属する座席に到来した音声信号とを加算した音声信号を評価対象音とし、第一音声信号を基準音として、第一評価値を取得する。評価値再利用部37は、近端音響領域100に属する座席と遠端音響領域200に属する座席の間で行われる会話の評価値として第一評価値を取得する。

Description

評価方法、評価装置、およびプログラム
 本発明は、自動車内での会話の音響品質を評価するための技術に関する。
 通信技術の発達とともに、機器を持たずに通話できる手軽さから、会議システムやスマートフォンによるハンズフリー拡声通話などの拡声系通信システムを利用する機会が増えている。拡声系通信システムで問題となる音響エコーや周辺雑音を除去し、快適な通話環境を提供するために、音響エコーキャンセラ(AEC: Acoustic Echo Canceller)が利用されている。
 音響エコーとは、近端から送信された音声が遠端のスピーカから出力され、遠端のマイクロホンが拾うことで発生する現象である。音響エコーキャンセラの効果が弱ければ音響エコーが消し残り、強すぎれば遠端からの送話音声までもが除去されてしまい、歪んだり消えたりして聞き取りにくくなる。音響エコーキャンセラの性能は音響エコーがどれだけ的確に消去されているかに依存することから、従来の音響エコーキャンセラの性能評価は、音響エコーの消去量に着目した客観評価が主流であった。客観評価は計算機処理で評価できるため手軽であるが、必ずしも実際の通話でユーザが体感する品質(「ユーザ体感品質」とも呼ぶ)とは一致しないという問題があった。
 主観評価で音響エコーや音響エコーキャンセラによる処理音を評価するためには、音響エコーを知覚する必要があり、評価者本人が通話することで初めて評価可能となる。そのため、ハンズフリー拡声通話などの拡声系通信システムでは、双方向の会話試験による品質評価が推奨されてきた(非特許文献1参照)。一方、会話試験の実施にはノウハウが必要であり、手間やコストがかかる上、再現性が低いという問題がある。そのため、会話試験を簡略化し、片方向通話を対象とした受聴試験により主観評価を行う手法も提案されている。また、会話の音声を録音した音響信号から受聴試験による主観評価値を推定するPESQ(Perceptual Evaluation of Speech Quality)などの客観評価法も確立されている(非特許文献2参照)。
 拡声系通信システムの一つの応用として、自動車内における乗員同士の会話をサポートするインカーコミュニケーション(ICC: In Car Communication)が利用され始めている(非特許文献3参照)。しかしながら、ICCの品質を適切に評価する規格はまだ策定されていない。
 ICCは自動車内での会話をサポートする技術であるため、会話試験により品質を評価する必要がある。しかしながら、ICCでは走行中・走行中であれば走行中の速度の差・停止中など様々な利用状況が想定される。また、自動車内の座席のすべての組み合わせで試験を行わなければならない。例えば、図1に示すように3列に座席が配置された自動車90内での利用を想定した場合、運転席91と後部座席97の組み合わせであれば、運転席91から発せられた音声信号が1列目に設置されたマイクロホン1Fで収音され、3列目に設置されたスピーカ2Rから放音された放音信号を後部座席97で受聴し、後部座席97から発せられた音声信号が3列目に設置されたマイクロホン1Rで収音され、1列目に設置されたスピーカ2Fから放音された放音信号を運転席91で受聴する場合を想定した会話試験を行う。この会話試験を、ICCを用いた会話を行うことが想定されるすべての座席の組合せで行う必要がある。会話を行う座席の組合せごとに、収音された音響信号から消去しなければ(すなわち、エコーキャンセルしなければ)ならない信号が異なるためである。したがって、ICCの品質評価では、必要となる会話試験の回数が膨大となる。
 この発明の目的は、上記のような技術的課題に鑑みて、ICCの品質評価で必要となる会話試験の回数を低減することができる技術を提供することである。
 上記の課題を解決するために、この発明の一態様の評価方法は、複数の音響領域のいずれかに属する少なくとも3つの座席を有する自動車内において座席間で行われる会話の品質を評価する評価方法であって、音響領域ごとに少なくとも1個のスピーカと1個のマイクロホンとが配置され、第一の音響領域に配置された第一のマイクロホンにより収音された音声信号が第二の音響領域に配置された第二のスピーカから放音され、第一評価値取得部が、第一の音響領域に属する第一の座席の音源から発せられた第一音声信号が第一のマイクロホンにより収音され第二のスピーカから放音された音声信号と、第一音声信号が自動車内の空間を伝達して第二の音響領域に属する第二の座席に到来した音声信号とを加算した音声信号を評価対象音とし、第一音声信号を基準音として、第一の座席と第二の座席の間で行われる会話の評価値である第一評価値を取得し、第二評価値取得部が、第一の座席と第二の座席の間を除く第一の音響領域に属するいずれかの座席と第二の音響領域に属するいずれかの座席の間で行われる会話の評価値として前記第一評価値を取得する。
 この発明によれば、少ない回数の会話試験で、もしくは、会話試験を行うことなく、ICCの品質評価を行うことができる。
図1は、ICCの利用環境の例を説明するための図である。 図2は、音響品質評価システムの機能構成を例示する図である。 図3は、音響品質評価方法の処理手順を例示する図である。 図4は、評価入力画面の表示内容を例示する図である。 図5は、主観評価値と客観評価値との関係を例示する図である。 図6は、実験結果を説明するための図である。 図7は、音響品質評価方法の処理手順を例示する図である。 図8は、変形例1の音響品質評価システムの機能構成を例示する図である。 図9は、ICCの音響品質評価の例を説明するための図である。 図10は、ICCの音響品質評価の例を説明するための図である。 図11は、変形例3の音響品質評価システムの機能構成を例示する図である。 図12は、変形例4の音響品質評価システムの機能構成を例示する図である。 図13は、変形例4のスピーカとマイクロホンの配置を説明するための図である。 図14A,14Bは、変形例4のスピーカとマイクロホンの配置を説明するための図である。
 以下、この発明の実施の形態について詳細に説明する。なお、図面中において同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。
 <拡声系通信システムでの音響品質評価試験>
 まず、拡声系通信システムでの音響品質評価試験を概念的に説明する。この音響品質評価試験では、近端話者と遠端話者とが拡声系通信システムを通じて会話を行い、近端話者側に位置する評価者が当該拡声系通信システムの品質評価を行う。なお、拡声系通信システムとは、マイクロホンとスピーカとを備えた端末装置間で音響信号を送受信する通信システムであって、端末装置のスピーカから出力された音の少なくとも一部がその端末装置のマイクロホンで受音されるもの(音の回り込みが生じるもの)をいう。拡声系通信システムの一例は、音声会議システムやテレビ会議システム、そしてインカーコミュニケーションである。
 拡声系通信システムでは、近端話者の音声が近端話者側のマイクロホンで受音され、それに基づいて得られた音響信号がネットワーク経由で遠端話者側に伝送され、当該音響信号が表す音が遠端話者側のスピーカから出力される。また、遠端話者側の音が遠端話者側のマイクロホンで受音され、それに基づいて得られた音響信号がネットワーク経由で近端話者側に伝送され、当該音響信号が表す音が近端話者側のスピーカから出力される。ただし、遠端話者側のスピーカから出力された音の少なくとも一部は遠端話者側のマイクロホンでも受音される。すなわち、遠端話者側のマイクロホンで受音される遠端話者側の音は、遠端話者の音声に近端話者の音声の回り込み(音響エコー)が重畳されたものである。すなわち、遠端話者側のマイクロホンで受音される遠端話者側の音は、遠端話者の音声に基づく信号に近端話者の音声に基づく信号が遠端話者側の空間で劣化して重畳した信号に基づく。なお、近端話者が発話していないときは、近端話者の音声に基づく信号が重畳しないため遠端話者の音声が劣化することはない。また、遠端話者側の音の劣化は、遠端話者側の周囲騒音の重畳も要因となり得る。
 近端話者側に伝送される音響信号は、遠端話者側のマイクロホンで受音された音を表す信号に所定の信号処理を行って得られた処理信号に由来するものであってもよいし、このような信号処理を行うことなく得られたものであってもよい。信号処理は、どのような処理であってもよい。信号処理の例は、エコーキャンセル処理およびノイズキャンセル処理の少なくとも一方を含む処理である。なお、エコーキャンセル処理とは、エコーを低減させるための広義のエコーキャンセラによる処理を意味する。広義のエコーキャンセラによる処理とは、エコーを低減させるための処理全般を意味する。広義のエコーキャンセラによる処理は、例えば、適応フィルタを用いた狭義のエコーキャンセラのみによって実現されてもよいし、音声スイッチによって実現されてもよいし、エコーリダクションによって実現されてもよいし、これらの少なくとも一部の技術の組み合わせによって実現されてもよいし、さらにその他の技術との組み合わせによって実現されてもよい(下記参考文献1参照)。またノイズキャンセル処理とは、遠端端末のマイクロホンの周囲で発生する、遠端話者の音声以外のあらゆる環境雑音に起因する雑音成分を抑圧または除去する処理を意味する。環境雑音とは、例えば、オフィスの空調音、走行中の車内音、交差点での車の通行音、虫の音、キーボードのタッチ音、複数の人の声(ガヤガヤ音)などを指し、音の大/小、屋内/屋外は問わない(下記参考文献2参照)。
 〔参考文献1〕知識ベース 知識の森、2群-6編-5章、“音響エコーキャンセラ”、電子情報通信学会、[online]、[平成31年3月5日検索]、インターネット<URL:http://www.ieice-hbkb.org/files/02/02gun_06hen_05.pdf>
 〔参考文献2〕阪内澄宇,羽田陽一,田中雅史,佐々木潤子,片岡章俊,“雑音抑圧及びエコー抑圧機能を備えた音響エコーキャンセラ”,電子情報通信学会論文誌,Vol.J87-A,No.4,pp.448-457,2004年4月
 <主観評価値:会話試験>
 会話試験による主観評価は以下のように行う。評価者は、近端話者側のスピーカから出力される音響信号を受聴し、予め定めた所定数の段階に分類された評価カテゴリーから近端話者の主観に基づいて最も適合する評価カテゴリーを選択する。例えば、非特許文献1に挙げたITU-T Recommendation P.800では"Excellent", "Good", "Fair", "Poor", "Bad"の5段階の評価カテゴリーに分類し、各評価カテゴリーに順に5,4,3,2,1の評価値を割り当てることが提案されている。この主観評価を、複数の評価者が通話相手を入れ替えながらそれぞれ複数回行い、収集した評価値を集計することで音響品質の評価が行われる。
 <主観評価値:受聴試験>
 受聴試験による主観評価は以下のように行う。評価者は、ヘッドフォンやイヤホン等の両耳装着型音響再生装置を用い、遠端話者側での音の回り込みがないと仮定した場合の近端話者側のスピーカから出力される音(すなわち、基準音)を表す音響信号と、遠端話者側での音の回り込みがある場合の近端話者側のスピーカから出力される音(すなわち、評価対象音)を表す音響信号と、を交互に聴き比べ、通話品質を主観評価(オピニオン評価)する。この主観評価を、複数の評価者が基準音を表す音響信号と評価対象音を表す音響信号の複数の組に対して複数回行い、収集した評価値を集計することで音響品質の評価が行われる。
 <客観評価値:PESQ>
 PESQによる客観評価では、上述のように取得した基準音を表す音響信号と評価対象音を表す音響信号の組を入力とし、例えば非特許文献2に記載された算出方法に従ってPESQ値を算出する。非特許文献2に記載された“original signal X(t)”が基準音を表す音響信号に、“degraded signal Y(t)”が評価対象音を表す音響信号に、それぞれ該当する。
 <インカーコミュニケーション:ICC>
 ICCは拡声系通信システムの一つの応用であって、自動車内で各座席に座る乗員同士がマイクロホンとスピーカを通じて行う会話をサポートする技術である。各座席の近傍には少なくとも1個のマイクロホンと1個のスピーカを備える端末が配置され、各端末が自動車内に構築された音声通信網を通じて音声信号を送受信することで会話が行われる。すなわち、第一の座席の近傍に配置されたマイクロホンにより収音された音声信号が第二の座席の近傍に配置されたスピーカから放音され、第二の座席の近傍に配置されたマイクロホンにより収音された音声信号が第一の座席の近傍に配置されたスピーカから放音されることで、第一の座席の乗員と第二の座席の乗員との間の会話が行われる。なお、少なくとも1個のマイクロホンと1個のスピーカが配置され、少なくとも1個の音源(例えば自動車の乗員)が存在し得る空間を「音響領域」と呼ぶものとする。すなわち、ICCでは対象とする自動車内に、複数の音響領域が予め設定されており、各音響領域には少なくとも1個の座席が配置されている。
 <音響品質評価システム>
 実施形態の音響品質評価システムは、PESQによる客観評価値を会話試験による主観評価値に変換するための情報通信システムである。実施形態の音響品質評価システム10は、図2に示すように、近端話者が用いる近端端末1と、遠端話者が用いる遠端端末2と、評価値変換装置3とを含む。音響品質評価システム10には、近端話者と近端端末1とが存在する近端音響領域100と、遠端話者と遠端端末2とが存在する遠端音響領域200とが予め定められている。近端端末1は、少なくとも送話部11、受話部12、録音部13、表示部15、および入力部16を備え、さらに信号処理部14を備えてもよい。遠端端末2は、少なくとも送話部21、受話部22、および録音部23を備え、さらに信号処理部24を備えてもよい。評価値変換装置3は、主観評価値提示部31、主観評価値取得部32、客観評価値取得部33、分析部34、および変換部35を備える。この音響品質評価システム10が図3および図7に例示する各ステップの処理を行うことにより実施形態の音響品質評価方法が実現される。
 以下の説明では、近端端末1を使用する近端話者が主観評価値のサンプルを与える評価者であり、遠端端末2を使用する遠端話者が主観評価の対象となる会話の通話相手とするが、同一の通話を近端話者と遠端話者とが同時に評価してもよい。この場合、近端話者と遠端話者はいずれも評価者であり、かつ、通話相手となる。このとき、近端端末1と遠端端末2とは同一の機能構成となり、遠端端末2が表示部および入力部をさらに備えることになる。また、以下の説明では、近端端末1と遠端端末2との二者間の通話の音響品質を評価することを前提とするが、遠端端末2が複数存在し、近端端末1と複数の遠端端末2との間で行われる三者以上の会議通話を評価対象としてもよい。
 近端端末1と遠端端末2とは音声通信網4を介して接続される。評価値変換装置3は、近端端末1および遠端端末2と図示していないネットワークを介して接続される。ただし、音声通信網4が帯域制御等により音声用の通信経路とデータ用の通信経路とを論理的に分割可能であれば、音声通信網4を介して近端端末1および遠端端末2と評価値変換装置3とが接続されてもよい。音声通信網4は、接続される各装置が相互に通信可能なように構成された回線交換方式もしくはパケット交換方式の通信網であり、特に音声通信を想定して構成されたものである。音声通信網4は、具体的には、インターネットやWAN(Wide Area Network)、LAN(Local Area Network)、専用線、公衆交換電話網、携帯電話通信網などで構成することができる。
 近端端末1および遠端端末2は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。近端端末1および遠端端末2は、例えば、中央演算処理装置の制御のもとで各処理を実行する。近端端末1および遠端端末2に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。近端端末1および遠端端末2は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。近端端末1および遠端端末2は、具体的には、スマートフォンやタブレットのようなモバイル端末、もしくはデスクトップ型やラップトップ型のパーソナルコンピュータなどの音声送受信機能およびデータ通信機能を備えた情報処理装置である。
 評価値変換装置3は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。評価値変換装置3は、例えば、中央演算処理装置の制御のもとで各処理を実行する。評価値変換装置3に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。評価値変換装置3は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。評価値変換装置3が備える各記憶部は、例えば、RAM(Random Access Memory)などの主記憶装置、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。評価値変換装置3は、具体的には、デスクトップ型やラックマウント型のサーバコンピュータなどのデータ通信機能およびデータ処理機能を備えた情報処理装置である。
 実施形態の音響品質評価方法は、2段階の処理からなる。第1段階は、客観評価値を主観評価値に変換するために、客観評価値と主観評価値との関係を分析する処理である。第2段階は、第1段階で得た客観評価値と主観評価値との関係に基づいて、会話を録音した音響信号から算出した客観評価値を主観評価値へ変換する処理である。図3は、第1段階の関係分析処理の例を示す図であり、図7は、第2段階の評価値変換処理の例を示す図である。
 <関係分析処理>
 以下、図3を参照して、実施形態の音響品質評価方法のうち客観評価値と主観評価値の関係を分析する処理を説明する。
 ステップS1において、近端端末1と遠端端末2とが音響品質の評価対象とする通話を開始する。まず、近端端末1が近端話者の操作に従って遠端端末2へ発信を行う。遠端端末2は遠端話者の操作に従って近端端末1からの着信に応答する。これにより、近端端末1と遠端端末2との間で通話が確立する。ここでは近端端末1から遠端端末2へ発信する例を示したが、遠端端末2から近端端末1へ発信することで通話を確立しても構わない。
 通話が確立すると、近端話者の発話した音声が近端端末1のマイクロホンM1により音響信号に変換され、送話部11がその音響信号を遠端端末2の受話部22へ送信する。近端端末1が信号処理部14を備える場合、信号処理部14が遠端端末2へ送信される音響信号に対してエコーキャンセル処理およびノイズキャンセル処理の少なくとも一方を含む信号処理を行う。遠端端末2の受話部22は、近端端末1の送話部11から受信した音響信号を遠端端末2のスピーカS2から出力する。遠端話者の発話した音声は遠端端末2のマイクロホンM2により音響信号に変換されるが、このとき遠端端末2のスピーカS2から出力された近端話者の音声の回り込みが遠端話者の音声に重畳して音響信号に変換される。遠端端末2の送話部21は、音響信号を近端端末1の受話部12へ送信する。遠端端末2が信号処理部24を備える場合、信号処理部24が近端端末1へ送信される音響信号に対してエコーキャンセル処理およびノイズキャンセル処理の少なくとも一方を含む信号処理を行う。近端端末1の受話部12は、遠端端末2の送話部21から受信した音響信号を近端端末1のスピーカS1から出力する。このようにして、近端話者と遠端話者とは近端端末1と遠端端末2との間で確立した通話を介して会話を行う。
 ステップS13において、近端端末1の録音部13は、近端端末1の受話部12がスピーカS1から出力する音響信号を録音し、評価対象音を表す音響信号(以下、「評価対象音響信号」と呼ぶ)として評価値変換装置3へ送信する。評価値変換装置3は、近端端末1の録音部13から受信した評価対象音響信号を客観評価値取得部33へ入力する。
 ステップS23において、遠端端末2の録音部23は、遠端端末2のマイクロホンM3に入力された音を音響信号へ変換し、基準音を表す音響信号(以下、「基準音響信号」と呼ぶ)として評価値変換装置3へ送信する。評価値変換装置3は、遠端端末2の録音部23から受信した基準音響信号を客観評価値取得部33へ入力する。
 録音部23は、近端端末1が備えてもよい。この場合、遠端端末2が存在する音響領域内にマイクロホンM3を配置し、マイクロホンM3から近端端末1が存在する音響領域へ敷設したオーディオケーブルを用いて、マイクロホンM3と近端端末1が備える録音部23を接続する。これにより、遠端話者が発話した音声を近端端末1が備える録音部23で直接録音することが可能となる。
 ステップS15において、評価値変換装置3の主観評価値提示部31は、近端端末1の表示部15へ近端話者が音響品質の評価を入力する評価入力画面を表示させるための制御信号を送信する。近端端末1の表示部15は、受信した制御信号に従って評価入力画面を表示する。評価入力画面には、予め定めた複数の評価観点それぞれについて複数の段階に分類した評価カテゴリーが表示される。これらの評価カテゴリーには各評価観点での品質の高さに応じた評価値が割り当てられている。評価入力画面は、各評価観点について1つの評価カテゴリーのみが選択できるように設定されるものとする。
 評価観点は、例えば、「相手の声の聞き取り易さ」「雑音感」「自分の声の戻り」の3つの観点を含む。「相手の声の聞き取り易さ」の評価観点に対しては、例えば「非常に聞き取りやすい」「聞き取りには問題がない」「少し聞き取りにくい」「聞き取りにくい」「非常に聞き取りにくい」の5段階の評価カテゴリーが設けられ、各評価カテゴリーには順に5,4,3,2,1の評価値が割り当てられる。「雑音感」の評価観点に対しては、例えば「雑音が全くない」「雑音が少しある」「雑音がある」「雑音がかなり重畳している」「雑音が非常に多く重畳している」の5段階の評価カテゴリーが設けられ、各評価カテゴリーには順に5,4,3,2,1の評価値が割り当てられる。「自分の声の戻り」の評価観点に対しては、例えば「自分の声の戻りが全くない」「自分の声の戻りが少しある」「自分の声の戻りがある」「自分の声の戻りが大きい」「自分の声の戻りが非常に大きい」の5段階の評価カテゴリーが設けられ、各評価カテゴリーには順に5,4,3,2,1の評価値が割り当てられる。上記の例で示した評価観点と評価カテゴリーと評価値の関係をまとめると、下記表のようになる。
Figure JPOXMLDOC01-appb-T000001
 図4に、上記の例の評価カテゴリーに基づいて評価を入力するための評価入力画面の例を示す。評価入力画面130には、「相手の声の聞き取り易さ」の評価観点に対応するエリア131-1、「雑音感」の評価観点に対応するエリア131-2、および「自分の声の戻り」の評価観点に対応するエリア131-3が設けられる。エリア131-1には「相手の声の聞き取り易さ」を5段階に分類した評価カテゴリーを表すラベル132-1が表示され、各評価カテゴリーに対して一対一で5つのボタン133-1が設けられる。ボタン133-1は選択状態が切り替えられる機能を持ち、エリア131-1内で1つのみが選択できるように設定される。例えば、ボタン133-1はエリア131-1内でグループが設定されたオプションボタンである。エリア131-2およびエリア131-3についても同様にラベル132-2,132-3およびボタン133-2,133-3が設けられる。図4は評価入力画面のデザインの一例であり、操作の利便性等を鑑みて異なるデザインとしても構わない。
 ステップS16において、近端話者は近端端末1のスピーカS1から出力される音声を受聴し、その音響品質を評価する。音響品質の評価は、表示部15に表示された評価入力画面において、各評価観点について、自らの主観に基づいて最も当てはまると考える評価カテゴリーを選択することで行う。図4の評価入力画面130の例であれば、「相手の声の聞き取り易さ」について最も当てはまる評価カテゴリーを選択し、そのラベル132-1に対応するボタン133-1を選択する。同様に、「雑音感」について最も当てはまる評価カテゴリーおよび「自分の声の戻り」について最も当てはまる評価カテゴリーにそれぞれ対応するボタン133-2,133-3を選択する。近端話者はすべての評価観点について評価カテゴリーを選択した後、確定ボタン134を押下する。近端端末1の入力部16は、評価入力画面130中の選択状態に従って、選択された各評価カテゴリーに割り当てられた評価値を評価値変換装置3へ送信する。評価値変換装置3は、近端端末1の入力部16から受信した各評価観点についての評価値を主観評価値取得部32へ入力する。
 ステップS32において、評価値変換装置3の主観評価値取得部32は、近端端末1の入力部16から受信した各評価観点についての評価値に基づいて、音響品質に関する1つの主観評価値を決定する。具体的には、各評価観点についての評価値のうち最も低い評価値を音響品質に関する主観評価値として決定する。図4の例であれば、評価者は、「相手の声の聞き取り易さ」について「非常に聞き取りやすい」(評価値は5)、「雑音感」について「雑音がある」(評価値は3)、「自分の声の戻り」について「自分の声の戻りが少しある」(評価値は4)をそれぞれ選択しているため、主観評価値は最も低い評価値である“3”に決定する。主観評価値取得部32は、決定した主観評価値を分析部34へ出力する。
 ステップS33において、評価値変換装置3の客観評価値取得部33は、録音部13から受信した評価対象音響信号と、録音部23から受信した基準音響信号とに対応する客観評価値を取得する。客観評価値は、例えば、非特許文献2に記載されたPESQ値である。PESQ値の算出処理は、評価対象音響信号と基準音響信号との時間ずれを補正する処理を含む。客観評価値取得部33は、算出した客観評価値を分析部34へ出力する。
 ステップS34において、評価値変換装置3の分析部34は、主観評価値取得部32から受け取った主観評価値と、客観評価値取得部33から受け取った客観評価値との線形関係を分析する。このとき、分析に用いる主観評価値と客観評価値とを複数の評価者と複数の通話相手の様々な組み合わせによる会話から得ることで、基準音響信号や評価対象音響信号への依存性や評価者個人差への依存性を軽減するかたちで統計的に解析する。分析部34は、分析して得た線形関係を表す情報を変換部35へ設定する。ここで、線形関係を表す情報とは、所定の傾きaの直線を表す線形関数Fや、この線形関数Fを特定するパラメータ等である。
 図5は、上述の方法により得た主観評価値と客観評価値との関係を表したグラフである。縦軸は会話試験による主観評価値(MOS: Mean Opinion Score)を表し、横軸は客観評価値(PESQ)を表す。ダイヤ型のマークは会話試験による測定値を表し、破線直線上の正方形のマークはそれらの線形関係に基づいた推定値(回帰分析で推定した値)を表す。この図に表すようにMOS値とPESQ値とは線形関係で近似できることがわかる。図5に示した回帰直線が表す線形関数Fは、所定の傾きaと切片bをもつ一次関数y=ax+bである。ただし、xはPESQ値を表し、yはMOS値を表す。aは1.3または1.3の近傍であり、bは-0.45または-0.45の近傍である。なお、αの近傍とは、α-δ1以上α-δ2以下の範囲に属する値を意味する。ただし、δ1, δ2は正値であり、δ12であってもよいし、δ1≠δ2であってもよい。δ1およびδ2の例は|α|の20%の値である。すなわち、aは1.04から1.56の範囲の値であり、bは-0.36から-0.54の範囲の値である。
 主観評価値と客観評価値の線形関係を得るためには、主観評価値と客観評価値が同じ会話に対するものである必要がある。このとき、対象とする会話が長過ぎると主観評価値と客観評価値とが整合せず、適切な線形関係が得られない場合がある。これを回避するために、評価の対象とする会話を適切な長さに設定するとよい。適切な長さとは、例えば20秒程度としてもよいし、所望の規格に応じた長さとしてもよい。
 従来の会話試験では5段階の評価カテゴリーで主観評価値を決定していたが、本実施形態では複数の評価観点それぞれについて複数の段階に分類した評価カテゴリーを用い、その最も低い評価値を主観評価値として決定した。近年ではスマートフォンや携帯電話など音響品質が低い通話環境が普及しており、音響品質が低い通話環境に慣れている評価者は音響品質に対する基準が低くなっているため、例えば相手の音声が聞き取れれば音響品質が良いなど、高い評価値を与える傾向が強い。そのため、従来の会話試験で主観評価を行った場合、高い評価値に偏り、適切な評価値が得られないという問題があった。本発明の発明者は、実施形態の音響品質評価システムのように、複数の評価観点を導入し、各評価観点で選択した評価値のうち最も低い評価値を主観評価値とすることで、この問題を回避できることを発見した。特に、ICCに係る評価は、自動車が停止している場合には雑音が少なく、走行している場合には走行音や環境雑音が多いと想定される。言い換えると、高い通話品質が想定される場合も低い通話品質が想定される場合もある。したがって、通話品質の高低によらず適切な評価値を取得する必要がある。特に上記のように評価値を構成することで、適切な主観評価値を取得できるという効果を奏することが想定される。
 図6に、実施形態の音響品質評価システムによる評価試験の実験結果を示す。この試験では、4つの実験条件I~IVを設定し、各実験条件下で4名の評価者が通信相手を入れ替えながら4日間にわたって3回ずつの会話試験を行った。実験条件Iは、明らかに良い音であり、4~5の評価値が付くことが想定される(言い換えると、評価値1~2を付ける人はいないであろう)条件である。実験条件IIは、明らかに悪い音であり、1~2の評価値が付くことが想定される(言い換えると、評価値4~5を付ける人はいないであろう)条件である。実験条件IIIは、多くの人が普通と判断する音のうち比較的良い音であり、3~4の評価値が付くことが想定される(言い換えると、評価値1を付ける人はいないであろう)条件である。実験条件IVは、多くの人が普通と判断する音のうち比較的悪い音であり、2~3の評価値が付くことが想定される(言い換えると、評価値5を付ける人はいないであろう)条件である。このような実験条件それぞれで、従来の一般的な評価カテゴリー(「大変良い」「良い」「やや悪い」「悪い」「大変悪い」)と、実施形態の評価カテゴリー(3つの評価観点それぞれで5段階の評価カテゴリーを設定)とを用いて会話試験を行い、それぞれの評価値の平均を集計した。図6に示すように、実施形態の評価カテゴリーでは想定評価値の範囲内の評価値を得ることができたが、従来の評価カテゴリーでは、特に低い評価値が付くことが想定される実験条件IIやIVで、想定よりも高い評価値が付いていることがわかる。すなわち、従来の評価カテゴリーでは高い評価値を与える傾向がある評価者であっても、実施形態の評価カテゴリーを用いれば適切な評価値を得られることが、本実験により実証されたと言える。
 <評価値変換処理>
 以下、図7を参照して、実施形態の音響品質評価方法のうち客観評価値を主観評価値に変換する処理を説明する。なお、ステップS1からステップS33までの処理は、上述した関係分析処理と同様であるため、ここでは説明を省略する。
 ステップS35において、評価値変換装置3の変換部35は、分析部34から予め設定された線形関係に基づいて、客観評価値取得部33から受け取った客観評価値を主観評価値に線形変換して主観評価値の推定値を得る。例えば、変換部35は、分析部34から予め設定された線形関数y=ax+bのxに客観評価値を代入して得られた結果を主観評価値の推定値として得る。変換部35は、得た主観評価値の推定値を評価値変換装置3の出力とする。
 <変形例1>
 図8に、実施形態の音響品質評価システムの変形例1を示す。変形例1の音響品質評価システムは、遠端話者が存在する音響領域と遠端端末2が存在する音響領域とが分離されていることを特徴とする。以下、実施形態の音響品質評価システムとの相違点を中心に説明する。遠端音響領域200には実施形態と同様に遠端端末2が存在するが、遠端話者は遠端音響領域200とは異なる第三音響領域300に存在する。遠端端末2が備えるスピーカS2とマイクロホンM2は実施形態と同様に遠端音響領域200に配置されるが、遠端話者の発話した音声を録音するマイクロホンM3は第三音響領域300に配置される。遠端話者はヘッドフォン等の密閉型スピーカS3を装着する。遠端音響領域200には、マイクロホンM3とオーディオケーブル等で接続されたスピーカS4と、密閉型スピーカS3とオーディオケーブル等で接続されたマイクロホンM4とが配置される。遠端端末2のスピーカS2から出力された近端話者の音声は、遠端音響領域200のマイクロホンM4により収音され、第三音響領域300の密閉型スピーカS3から放音されることで、遠端話者により聴取される。遠端話者が発話した音声は、第三音響領域300のマイクロホンM3により収音され、遠端音響領域200のスピーカS4から放音される。さらに、スピーカS4から放音された遠端話者の音声は遠端端末2のマイクロホンM2により音響信号に変換され、近端端末1のスピーカS1から放音されることで、近端話者により聴取される。このとき、客観評価に用いる評価対象音は近端端末1のスピーカS1から出力される際に録音され、基準音はマイクロホンM3に入力されたときに録音される。
 実施形態のように、遠端話者側のスピーカS2と基準音を録音するためのマイクロホンM3が同じ音響領域に存在する場合、スピーカS2から出力された近端話者の音声の回り込みが基準音に重畳して録音されてしまうことや、遠端話者側の周囲騒音が基準音に重畳して録音されてしまうことがある。近端話者の音声の回り込みや周囲騒音のように遠端話者の音声信号に基づかない余計な音響信号は妨害音とも呼ばれ、基準音に妨害音が入り込んでいると客観評価値が正確に算出できない要因となる。変形例1のように、遠端話者が近端話者の音声を聴取するためのスピーカを密閉型とし、遠端端末とは異なる音響領域で基準音を録音することで、基準音に重畳する妨害音を低減することができる。これにより、より正確な客観評価値を取得することが可能となり、より適切な線形関係を得ることができる。
 <変形例2>
 ICCの音響品質を評価する方法について、図9を参照しながら説明する。ICCは自動車90に搭載されたマイクロホン1F,1Rとスピーカ2F,2Rを利用して、各座席に着席している人間の間で行われる会話をサポートする。例えば、マイクロホン1F(1R)で収音された音声信号は、エコーキャンセルやゲインコントロール等の信号処理をされた後、スピーカ2R(2F)から放音される。マイクロホン1は車内の座席列ごとに設置されてもよいし、座席ごとに設置されてもよい。図9に例示したように、1列目の前(例えばダッシュボード上やフロントミラー周辺)と、2列目と3列目の間(例えば中部座席と後部座席の間の床面もしくは天井面)にのみ設置されてもよい。
 ICCの音響品質を評価する際には、座席間や列間で評価を行う。以下、座席間で評価を行う例として、運転席91と後部座席97との間で、評価者を用いることなく主観評価値を推定する方法を記載する。運転席91にマイクロホン3Fとスピーカ4Fを設置し、後部座席97にマイクロホン3Rとスピーカ4Rを設置する。各スピーカは座席に人間が着席した状態で口の位置に相当する位置に配置する。すなわち座席の左右中央かつ前よりに設置する。各マイクロホンは座席に人間が着席した状態で耳の位置に相当する位置に配置する。すなわち座席の前後中央かつ左よりもしくは右よりに設置する。例えば、スピーカ4Fは、評価者が運転席に着席したと想定したときに評価者の口に対応する位置に前方向へ放音する向きに設置され、マイクロホン3Fは、評価者が運転席に着席したと想定したときに評価者の左耳もしくは右耳に対応する位置に設置されることが望ましい。マイクロホンは各座席に2個以上が設置されてもよく、例えば評価者の左耳および右耳に対応する2か所に設置してもよい。
 上述のようにマイクロホンとスピーカが配置された自動車90内において、予め録音された音声信号を後部座席97に設置されたスピーカ4Rから放音する。スピーカ4Rから放音された音声信号はマイクロホン1Rで収音され、エコーキャンセルやゲインコントロール等の信号処理がされた後、スピーカ2Fから放音される。スピーカ2Fから放音された音声信号は運転席91に設置されたマイクロホン3Fで収音される。予め録音された音声信号を基準音響信号とし、マイクロホン3Fで収音された音声信号を評価対象音響信号として、客観評価値を得る。こうして得られた客観評価値を予め求めた線形関数Fに基づいて変換することで、主観評価値を推定することができる。ここでは、運転席91と後部座席97の間における例を説明したが、座席や列をどのように組み合わせてもよい。
 このように本発明を利用することで、ICCの品質評価を行う必要がある自動車の状況ごとに、評価者を用いることなく主観評価値を得ることができる。ここで、自動車の状況とは、自動車が停止中・走行中・走行中であれば速度の差や、窓の開閉状態、音楽等に代表される車内の雑音レベルなど、自動車に設置されたマイクロホンに収音される音に変動を与える要因を意図している。
 <変形例3>
 変形例2では、図2に示した音響品質評価システム10を用いてICCの音響品質を評価する方法を説明した。ここでは、評価対象音響信号が、ICCを経由して到来したものであることを想定していた。しかしながら、ICCでは、複数の音響領域が同一の自動車内に設定されるため、一方の音響領域に設置したスピーカから放音した音声信号が、ICCを経由せずに直接、他方の音響領域に設置したマイクロホンへ到来することがある。したがって、ICCの品質評価では、評価対象音響信号に他の音響経路で到来する音声信号が含まれることも想定する必要がある。また、変形例2では、第一の座席に着席した乗員から第二の座席に着席した乗員へ話しかける一方向のシングルトークを想定していた。しかしながら、ICCは自動車内における乗員同士の会話をサポートすることが目的であるため、第二の座席に着席した乗員から第一の座席に着席した乗員へも同時に話しかける双方向のダブルトークも想定する必要がある。すなわち、変形例3の音響品質評価システムでは、ICCを用いて行われる会話の一方向もしくは双方向の音声の品質を評価する。
 図10に、変形例3で想定する音響経路を示す。ここでは、運転席91に近端話者(評価者)が着席し、後部座席97に遠端話者(通話相手)が着席することを想定する。図10に示す点線は、変形例2で想定した音響経路であり、スピーカ4Rから放音された基準音響信号が、ICCを経由してマイクロホン3Fに到来する音響経路である。図10に示す一点鎖線は、直接音の音響経路であり、スピーカ4Rから放音された基準音響信号が、ICCを経由せずに直接、マイクロホン3Fに到来する音響経路である。図10に示す破線は、ダブルトークを想定した音響経路であり、スピーカ4Fから放音された音声信号が、ICCを経由してスピーカ2Rから放音され、マイクロホン3Fに到来する音響経路である。ダブルトークを想定した音響経路では、スピーカ2Fから放音された音声信号がマイクロホン1Fで収音されることで発生するエコーを消し漏らした成分がスピーカ2Rから放音されることも想定する。
 変形例3の音響品質評価システム20は、図11に示すように、実施形態の音響品質評価システム10において、遠端端末2が2つの模擬部25,26をさらに備え、評価値変換装置3が加算部36をさらに備える。模擬部25は、録音部23の出力する音響信号を入力とし、直接音の音響経路の伝達特性を反映するための所定の信号処理を施した模擬音響信号を評価値変換装置3へ送信する。模擬部26は、受話部22の出力する音響信号を入力とし、ダブルトークを想定した音響経路の伝達特性を反映するための所定の信号処理を施した模擬音響信号を評価値変換装置3へ送信する。評価値変換装置3は、録音部23から受信した音響信号と、模擬部25から受信した模擬音響信号と、模擬部26から受信した模擬音響信号とを加算部36へ入力する。加算部36は、入力された3つの音響信号を加算した音響信号を、評価対象音響信号として客観評価値取得部33へ入力する。客観評価値取得部33により取得された客観評価値は、そのまま評価値変換装置3の出力としてもよいし、変換部35により前述した線形変換を施して主観評価値の推定値を取得してもよい。
 模擬部25,26は、音響信号や音声信号が入力されると、それぞれが対応する音響経路の伝達特性を反映する変換処理が行われた変換信号を出力する。この変換処理は、あらかじめ取得された座席間の伝達特性を反映させる信号処理でもよいし、座席間の距離や車内の雑音を考慮した信号減衰器(アッテネータ)のようなハードウェアでもよい。また、模擬部25,26は、空間中の音の伝搬速度を考慮して信号を遅延させる遅延器と組み合わせてもよい。自動車の座席間の距離が遅延差を無視できる程度であれば遅延器を用いず、前述したような伝達特性を反映する変換処理のみを行ってもよい。模擬部25と模擬部26は音響経路の伝達特性を反映するという点で共通の機能を持つ。そのため、それぞれが対応する音響経路の伝達特性が等しい(もしくは類似している)場合は、1個の模擬部のみを備えてそれぞれの入力信号に対して同じ変換処理を行うように構成してもよい。
 変形例3の音響品質評価システム20は、近端音響領域と遠端音響領域とが同一の空間に存在することで発生する音響経路を模擬した成分を評価対象音響信号に含めて音響品質の評価を行う。このように構成することにより、例えば、同一の自動車内での会話をサポートするICCの品質評価を、高精度に行うことができる。
 <変形例4>
 図2に示した音響品質評価システム10や図9に示した音響品質評価システム20を用いてICCの音響品質を評価する場合、自動車内のすべての座席の組み合わせで評価を行う必要がある。しかしながら、同じ列にある座席間では音響的な条件が類似することが想定されるため、ある座席で取得した評価値を、その座席と同じ列の他の座席の評価値として利用してもよい。例えば、図1に例示した3列に座席が配置された自動車90内での評価を想定した場合、運転席91と後部座席97との間で取得した評価値を、運転席91と後部座席95との間、運転席91と後部座席96との間、助手席92と後部座席95との間、助手席92と後部座席96との間、および助手席92と後部座席97との間、それぞれの評価値として用いることができる。これにより、実際に評価値を取得する座席の組み合わせが少なくなり、音響品質評価試験に必要なコストを低減することができる。
 変形例4の音響品質評価システム30は、図12に示すように、実施形態の音響品質評価システム10において、評価値変換装置3が評価値再利用部37をさらに備える。変形例4の構成は変形例3へ適用することも可能である。すなわち、図11に示す変形例3の音響品質評価システム20において、図12と同様にして、評価値変換装置3が評価値再利用部37をさらに備えてもよい。
 評価値再利用部37は、異なる音響領域に属する第一の座席と第二の座席との間で取得した主観評価値の推定値を、変換部35から受け取る。このとき、音響領域は自動車内の座席の列ごとに設定されていることを想定する。例えば、図1に例示した自動車90内での評価に用いる場合、運転席91と助手席92は第一の音響領域に属し、中部座席93,94は第二の音響領域に属し、後部座席95,96,97は第三の音響領域に属するように設定する。評価値再利用部37は、その主観評価値の推定値を、第一の座席と同じ音響領域に属するいずれかの座席と第二の座席と同じ音響領域に属するいずれかの座席との間(ただし、第一の座席と第二の座席との間を除く)で行われる会話の評価値として取得する。例えば、図1に例示した自動車90内で、すでに運転席91と後部座席97との間で主観評価値の推定値を取得済みであれば、その主観評価値の推定値を、運転席91と後部座席95,96のいずれかとの間、または、助手席92と後部座席95,96,97のいずれかとの間の主観評価値の推定値として取得する。
 変形例4において、実際に評価値を取得する座席の組み合わせは、最も距離が離れた座席間であることが望ましい。例えば、図1に例示した自動車90であれば、運転席91と後部座席97との間、もしくは、助手席92と後部座席95との間で実際に評価を行うとよい。ただし、変形例4の構成は、最も距離が離れた(すなわち、最も条件が悪い)座席の組み合わせで実際に評価を行う場合に限定されるものではなく、距離が近い(すなわち、比較的条件が良い)座席間で実際の評価を行った場合でも有効である。
 変形例4の構成は、自動車内に配置されるスピーカおよびマイクロホンが、自動車の直進方向を軸として左右対称に配置される場合に、特に有効である。例えば、図13に示すように、自動車90の直進方向の中心線に沿って、各列の中央にマイクロホン1A,1B,1Cとスピーカ2A,2B,2Cを配置すればよい。また、例えば、図14Aに示すように、自動車90の直進方向の中心線に沿って、各列の中央にマイクロホン1A,1B,1Cを配置し、各座席につき2個のスピーカを左右両端後ろ寄りに配置すればよい(例えば、運転席91なら右側後方にスピーカ2A1を、左側後方にスピーカ2A2を配置している)。また、例えば、図14Bに示すように、自動車90の直進方向の中心線に沿って、各列の中央にマイクロホン1A,1B,1Cを配置し、各列の左右両端前寄りに1個ずつのスピーカを配置すればよい(例えば、1列目なら右側窓際前方にスピーカ2A1を、左側窓際前方にスピーカ2A2を配置している)。ただし、変形例4の構成は、スピーカとマイクロホンを左右対称に配置した場合に限定されるものではなく、左右対称ではない配置とした場合でも有効である。
 <変形例5>
 変形例3で示したような、ダブルトークが行われた際の評価の適切性を判定する手法について説明する。
 運転席91に近端話者が着席し、後部座席97に遠端話者が着席することを想定した際に、ダブルトークを行った時における音響経路のうち、後部座席97に配置されたスピーカ4Rから放音された音響信号がマイクロホン1Rに集音され、前述したようなエコーキャンセルやハウリング抑圧のような信号処理を施し、スピーカ2Fから放音される信号(以下、「遠端話者信号」と記載する)が通る音響経路と、運転席91に配置されたスピーカ4Fから放音された音響信号がマイクロホン1Fに収音され、前述したようなエコーキャンセルやハウリング抑圧のような信号処理を施し、スピーカ2Rから放音される信号(以下、「近端話者信号」と記載する)が通る音響経路について注目する。ダブルトークが行われる際、例えばスピーカ2Fから放音された遠端話者信号がマイクロホン1Fに収音され、エコーが発生する場合がある。前述するように音響品質評価システムはこの際に行われるエコーキャンセルの精度も評価の対象とするが、より適切に評価するためにはスピーカ2Fから放音された遠端話者信号の音圧も考慮されるべきである。例えば、スピーカ2Fから発せられた音響信号がマイクロホン1Fに到来するまでに減衰することを考慮すると、スピーカ2Fから弱い音圧で遠端話者信号が放音された方が高く評価されてしまう。つまり、音圧が不適切であった場合に得られた評価値は適切とは言えない。
 そこで、図示しない音圧測定部と適切性判定部を追加し、音圧測定部で音圧を測定し、スピーカ2Fから放音される音圧が所定の閾値以上である場合に得られた評価値のみ適切な評価であると判定してもよい。音圧が所定の閾値以下である場合、音圧が所定の閾値以上になるように制御する音圧制御部をさらに備えてもよい。この閾値は、例えば電話会議装置の評価を行う際に用いられる64~70dbsplの値を用いてもよいし、評価対象とする自動車毎に、例えばスピーカ2Fとマイクロホン1Fと運転席91それぞれの距離若しくは伝達特性に基づいて設計してもよい。
 なお、遠端話者信号がエコーの要因となる例を説明したが、近端話者信号がエコーの要因となる場合にも本変形例を用いてもよい。
 さらに、遠端話者信号自体の適切性を判定するようにしてもよい。すなわち、スピーカ4Rから放音されマイクロホン1Rに収音された音響信号と、スピーカ2Fから放音される前の音響信号2つの間で客観評価を行い、所定の値以上であった場合の評価のみ適切であると判定してもよい。客観評価にかえ、単に二乗誤差のような指標値を用いてもよい。
 なお、本変形例の実装においては、変形例3のようにスピーカ4Rや4Fから放音された音響信号にかえて、配置された人間(話者と評価者)から発せられた音声信号を用いてもよい。この場合、主観評価値を取得することができるため、主観評価値と客観評価値に基づいた変換は不要であることは言うまでもない。
 上述の実施形態および変形例の音響品質評価システムによれば、客観評価値を主観評価値へ変換するための線形関係を得られるだけの最低限の会話試験を行えばよく、少ない回数の会話試験により拡声系通信システムの品質評価を行うことが可能となる。また、線形関係が既知であれば会話試験を行うことなく品質評価を行うことができる。特に、ICCのように利用状況や通信経路が多様となる拡声系通信システムではテストケースが膨大になることが想定されるが、少ない回数の会話試験もしくは会話試験を行うことなく品質評価を行うことができ、品質評価に要するコストが低減することが期待できる。
 以上、この発明の実施の形態について説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、この発明の趣旨を逸脱しない範囲で適宜設計の変更等があっても、この発明に含まれることはいうまでもない。実施の形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。
 [プログラム、記録媒体]
 上記実施形態で説明した各装置における各種の処理機能をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記憶装置に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (5)

  1.  複数の音響領域のいずれかに属する少なくとも3つの座席を有する自動車内において座席間で行われる会話の品質を評価する評価方法であって、
     前記音響領域ごとに少なくとも1個のスピーカと1個のマイクロホンとが配置され、
     第一の音響領域に配置された第一のマイクロホンにより収音された音声信号が第二の音響領域に配置された第二のスピーカから放音され、
     第一評価値取得部が、前記第一の音響領域に属する第一の座席の音源から発せられた第一音声信号が前記第一のマイクロホンにより収音され前記第二のスピーカから放音された音声信号と、前記第一音声信号が前記自動車内の空間を伝達して前記第二の音響領域に属する第二の座席に到来した音声信号とを加算した音声信号を評価対象音とし、前記第一音声信号を基準音として、前記第一の座席と前記第二の座席の間で行われる会話の評価値である第一評価値を取得し、
     第二評価値取得部が、前記第一の座席と前記第二の座席の間を除く前記第一の音響領域に属するいずれかの座席と前記第二の音響領域に属するいずれかの座席の間で行われる会話の評価値として前記第一評価値を取得する、
     評価方法。
  2.  請求項1に記載の評価方法であって、
     前記音響領域は、前記自動車における座席の列ごとに設定されている、
     評価方法。
  3.  請求項2に記載の評価方法であって、
     前記音響領域は、スピーカおよびマイクロホンのいずれかまたは両方が前記自動車の直進方向に対して左右対称に配置されている、
     評価方法。
  4.  複数の音響領域のいずれかに属する少なくとも3つの座席を有する自動車内において座席間で行われる会話の品質を評価する評価装置であって、
     前記音響領域ごとに少なくとも1個のスピーカと1個のマイクロホンとが配置され、
     第一の音響領域に配置された第一のマイクロホンにより収音された音声信号が第二の音響領域に配置された第二のスピーカから放音され、
     前記第一の音響領域に属する第一の座席の音源から発せられた第一音声信号が前記第一のマイクロホンにより収音され前記第二のスピーカから放音された音声信号と、前記第一音声信号が前記自動車内の空間を伝達して前記第二の音響領域に属する第二の座席に到来した音声信号とを加算した音声信号を評価対象音とし、前記第一音声信号を基準音として、前記第一の座席と前記第二の座席の間で行われる会話の評価値である第一評価値を取得する第一評価値取得部と、
     前記第一の座席と前記第二の座席の間を除く前記第一の音響領域に属するいずれかの座席と前記第二の音響領域に属するいずれかの座席の間で行われる会話の評価値として前記第一評価値を取得する第二評価値取得部と、
     を有する評価装置。
  5.  請求項4に記載の評価装置としてコンピュータを機能させるためのプログラム。
PCT/JP2020/003338 2020-01-30 2020-01-30 評価方法、評価装置、およびプログラム WO2021152759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021574356A JP7310939B2 (ja) 2020-01-30 2020-01-30 評価方法、評価装置、およびプログラム
US17/795,851 US20230076338A1 (en) 2020-01-30 2020-01-30 Evaluation method, evaluation apparatus, and program
PCT/JP2020/003338 WO2021152759A1 (ja) 2020-01-30 2020-01-30 評価方法、評価装置、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003338 WO2021152759A1 (ja) 2020-01-30 2020-01-30 評価方法、評価装置、およびプログラム

Publications (1)

Publication Number Publication Date
WO2021152759A1 true WO2021152759A1 (ja) 2021-08-05

Family

ID=77078797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003338 WO2021152759A1 (ja) 2020-01-30 2020-01-30 評価方法、評価装置、およびプログラム

Country Status (3)

Country Link
US (1) US20230076338A1 (ja)
JP (1) JP7310939B2 (ja)
WO (1) WO2021152759A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240768A1 (ja) * 2019-05-30 2020-12-03 日本電信電話株式会社 自動車内会話評価値変換装置、自動車内会話評価値変換方法、およびプログラム
WO2021161440A1 (ja) * 2020-02-13 2021-08-19 日本電信電話株式会社 音声品質推定装置、音声品質推定方法及びプログラム
TWI792607B (zh) * 2021-10-12 2023-02-11 台灣立訊精密有限公司 雜音偵測裝置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046695A (ja) * 2014-08-25 2016-04-04 日本電信電話株式会社 音響品質評価装置、音響品質評価方法、およびプログラム
WO2017038727A1 (ja) * 2015-08-28 2017-03-09 旭化成株式会社 伝達装置、伝達システム、伝達方法、およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60208480T2 (de) * 2001-10-05 2006-08-03 Matsushita Electric Industrial Co., Ltd., Kadoma Freisprecheinrichtung zur mobilen Kommunikation im Fahrzeug
KR100774519B1 (ko) * 2006-03-20 2007-11-08 엘지전자 주식회사 통신장치 및 그 통화방법
US9881632B1 (en) * 2017-01-04 2018-01-30 2236008 Ontario Inc. System and method for echo suppression for in-car communications
US10798247B2 (en) * 2017-03-16 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Acoustic echo suppression device and acoustic echo suppression method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046695A (ja) * 2014-08-25 2016-04-04 日本電信電話株式会社 音響品質評価装置、音響品質評価方法、およびプログラム
WO2017038727A1 (ja) * 2015-08-28 2017-03-09 旭化成株式会社 伝達装置、伝達システム、伝達方法、およびプログラム

Also Published As

Publication number Publication date
JPWO2021152759A1 (ja) 2021-08-05
US20230076338A1 (en) 2023-03-09
JP7310939B2 (ja) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2021152759A1 (ja) 評価方法、評価装置、およびプログラム
JP6266849B1 (ja) 共有された音響空間における強められた会話のコミュニケーションに関するフィードバックキャンセレーション
JP6163468B2 (ja) 音響品質評価装置、音響品質評価方法、およびプログラム
JP7238978B2 (ja) 評価装置、評価方法、およびプログラム
US20180048768A1 (en) Nearby Talker Obscuring, Duplicate Dialogue Amelioration and Automatic Muting of Acoustically Proximate Participants
Schmidt et al. Signal processing for in-car communication systems
JP6571623B2 (ja) 音響品質評価装置、音響品質評価方法、およびプログラム
WO2020017284A1 (ja) 集音拡声装置、その方法、およびプログラム
JP6363429B2 (ja) データ構造、データ生成装置、データ生成方法、およびプログラム
US11425517B2 (en) Conversation support system, method and program for the same
JP7184173B2 (ja) 音響品質評価装置、音響品質評価方法、およびプログラム
JP7184174B2 (ja) データ補正装置、データ補正方法、およびプログラム
Shimizu et al. Study on acoustic improvements by sound-absorbing panels and acoustical quality assessment of teleconference systems
JPH09130306A (ja) 拡声通話装置およびエコーキャンセラ
JP6126053B2 (ja) 音響品質評価装置、音響品質評価方法、およびプログラム
WO2024121962A1 (ja) 音響品質評価装置、音響品質評価方法、およびプログラム
JP6594840B2 (ja) 音響品質評価装置、音響品質評価方法、データ構造、およびプログラム
Kurihara et al. Subjective Quality Estimation Using PESQ For Hands-Free Terminals
WO2020027062A1 (ja) 集音拡声装置、その方法、およびプログラム
Every et al. An Acoustic Front-End to Speech Recognition in a Vehicle
Gros et al. The impact of real environments on transmitted speech quality judgments
JP2023047178A (ja) 情報処理装置及び情報処理プログラム
Rumsey Sound field control
Gros et al. A comparison of speech quality judgments in laboratory and in real environment
Gierlich et al. Wideband Hands-Free in Cars–New Challenges for System Design and Testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916583

Country of ref document: EP

Kind code of ref document: A1