WO2021161440A1 - 音声品質推定装置、音声品質推定方法及びプログラム - Google Patents

音声品質推定装置、音声品質推定方法及びプログラム Download PDF

Info

Publication number
WO2021161440A1
WO2021161440A1 PCT/JP2020/005492 JP2020005492W WO2021161440A1 WO 2021161440 A1 WO2021161440 A1 WO 2021161440A1 JP 2020005492 W JP2020005492 W JP 2020005492W WO 2021161440 A1 WO2021161440 A1 WO 2021161440A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
voice quality
voice
deterioration
created
Prior art date
Application number
PCT/JP2020/005492
Other languages
English (en)
French (fr)
Inventor
仁志 青木
敦子 倉島
川口 銀河
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/005492 priority Critical patent/WO2021161440A1/ja
Priority to US17/798,669 priority patent/US11749297B2/en
Priority to JP2021577781A priority patent/JP7298719B2/ja
Publication of WO2021161440A1 publication Critical patent/WO2021161440A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/60Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/69Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for evaluating synthetic or decoded voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2236Quality of speech transmission monitoring

Definitions

  • the present invention relates to a voice quality estimation device, a voice quality estimation method, and a program.
  • Non-Patent Document 1 An E-model that estimates voice quality in voice calls using network and terminal performance parameters has been known conventionally (Non-Patent Document 1).
  • the E-model makes it possible to evaluate the effect of packet loss on a packet network on voice quality by using the packet loss rate and BurstR, which are network performance indicators.
  • Non-Patent Document 2 a method of estimating voice quality by defining a gap state with high loss randomness and a burst state with high burst property with respect to the loss pattern of packets during a call is also known (Non-Patent Document 3). ..
  • Non-Patent Document 4 The voice quality estimation by the E-model described in Non-Patent Document 1, the voice quality estimation by the E-model to which the evaluation scale described in Non-Patent Document 2 is applied, and the voice quality estimation by Non-Patent Document 3 are described. Comparison with voice quality estimation is also performed (Non-Patent Document 4). Further, regarding the voice quality over a certain period, it is known that in the case of sudden quality deterioration, the same level of voice quality is perceived by the user even if the burst property of the loss occurrence period is different (). Non-Patent Document 5).
  • Non-Patent Document 1 the average length of the observed burst loss is used as BurstR. Therefore, if the distribution information of the burst loss is missing and the average length of the burst loss is the same over a certain period, the same Burst R is calculated. Therefore, in the voice quality estimation by the E-model described in Non-Patent Document 1, even if the distribution of burst loss is different, the same quality is calculated if the average length is the same, and it is described in Non-Patent Document 5. It is not possible to capture the characteristics of voice quality.
  • the amount of deterioration of the voice quality monotonically increases as the packets are continuously lost according to the evaluation scale. Therefore, although packets are not necessarily continuously lost, it is not possible to accurately grasp the influence of packet loss that suddenly occurs in a certain range on voice quality.
  • Non-Patent Document 4 the performance of voice quality estimation described in Non-Patent Document 3 is described in the performance of voice quality estimation by E-model described in Non-Patent Document 1 and in Non-Patent Document 2. It has been shown to be lower than the performance of voice quality estimation by the E-model to which the evaluation scale is applied. Therefore, even in the voice quality estimation described in Non-Patent Document 3, the burst property of packet loss is not accurately captured.
  • One embodiment of the present invention has been made in view of the above points, and an object of the present invention is to estimate voice quality in a voice call via a communication network with high accuracy.
  • the quality deterioration due to the packet loss is collected for the series composed of each element indicating whether or not each packet of the voice call is lost.
  • the first series creation means for creating the first series reflecting the first feature indicating that the user perceives the image
  • the first series created by the first series creation means It was created by the second series creation means for creating a second series reflecting the second feature indicating that the larger the quality deterioration is, the easier it is for the user to perceive the quality deterioration, and the second series creation means.
  • a third series creation means for creating a third series that reflects the third feature indicating that the perception of quality deterioration is alleviated by packet loss compensation with respect to the second series, and the third series.
  • a calculation means that calculates the amount of deterioration per unit time from the third series created by the creation means, and a mapping function that shows the relationship between the amount of deterioration of voice quality and the evaluation value of voice quality by the user's subjectivity. It is characterized by having an estimation means for estimating the voice quality experienced by the user from the deterioration amount calculated by the calculation means.
  • the voice quality estimation system 1 capable of estimating the voice quality (more accurately, the voice quality experienced by the user) in the voice call via the communication network with high accuracy will be described.
  • FIG. 1 is a diagram showing an example of the overall configuration of the voice quality estimation system 1 according to the first embodiment.
  • the voice quality estimation system 1 includes a voice quality estimation device 10, a packet capture device 20, a transmission terminal 30, and a reception terminal 40.
  • the transmission terminal 30 is a terminal that transmits a voice call packet (hereinafter, also simply referred to as a "packet") via the communication network N.
  • the receiving terminal 40 is a terminal that receives a packet via the communication network N.
  • any terminal, device or device capable of transmitting and receiving voice call packets can be used.
  • a PC personal computer
  • smartphone a smartphone
  • tablet terminal a wearable device
  • IoT Internet of Things
  • game device or the like in which an application program for making a voice call is installed
  • the communication network N is, for example, an arbitrary network such as the Internet.
  • the packet capture device 20 is a device that captures packets transmitted from the transmitting terminal 30 to the receiving terminal 40.
  • the packet captured by the packet capture device 20 is also referred to as a “capture packet”.
  • the packet capture device 20 any terminal, device, or device capable of capturing packets can be used.
  • the packet capture device 20 can use a PC, a router, or the like in which an application program for capturing packets is installed.
  • the voice quality estimation device 10 is a device that estimates the voice quality experienced by the user of the voice call service (that is, the user of the receiving terminal 40) using the capture packet.
  • the voice quality estimation device 10 has the following three features (a) to (c) when quantifying non-stationary quality deterioration (that is, quality deterioration due to packet loss that occurs in bursts). By reflecting it, it becomes possible to estimate the voice quality that the user perceives (perceives) with high accuracy.
  • the configuration of the voice quality estimation system 1 shown in FIG. 1 is an example, and may be another configuration.
  • the packet capture device 20 may be integrated with the receiving terminal 40, or may be integrated with the voice quality estimation device 10. That is, the receiving terminal 40 may have a function of capturing a packet, or the voice quality estimation device 10 may have a function of capturing a packet.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the voice quality estimation device 10 according to the first embodiment.
  • the voice quality estimation device 10 is a general computer or computer system, and includes an input device 11, a display device 12, an external I / F 13, and a communication I / F 14. And a processor 15 and a memory device 16. Each of these hardware is connected so as to be able to communicate with each other via the bus 17.
  • the input device 11 is, for example, a keyboard, a mouse, a touch panel, or the like.
  • the display device 12 is, for example, a display or the like.
  • the voice quality estimation device 10 does not have to have at least one of the input device 11 and the display device 12.
  • the external I / F13 is an interface with an external device.
  • the external device includes a recording medium 13a and the like.
  • the voice quality estimation device 10 can read or write the recording medium 13a via the external I / F 13.
  • the recording medium 13a includes, for example, a CD (Compact Disc), a DVD (Digital Versatile Disc), an SD memory card (Secure Digital memory card), a USB (Universal Serial Bus) memory card, and the like.
  • the communication I / F 14 is an interface for the voice quality estimation device 10 to perform data communication with another device (for example, a packet capture device 20 or the like).
  • the processor 15 is various arithmetic units such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the memory device 16 is, for example, various storage devices such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
  • the voice quality estimation device 10 By having the hardware configuration shown in FIG. 2, the voice quality estimation device 10 according to the first embodiment can realize the voice quality estimation process described later.
  • the hardware configuration shown in FIG. 2 is an example, and the voice quality estimation device 10 may have another hardware configuration.
  • the voice quality estimation device 10 may have a plurality of processors 15 or a plurality of memory devices 16.
  • FIG. 3 is a diagram showing an example of the functional configuration of the voice quality estimation device 10 according to the first embodiment.
  • the voice quality estimation device 10 includes a packet sequence creation unit 101, a quality deterioration amount calculation unit 102, and a listening quality estimation unit 103. Each of these parts is realized, for example, by a process in which one or more programs installed in the voice quality estimation device 10 are executed by the processor 15.
  • the voice quality estimation device 10 has a parameter DB 104.
  • the parameter DB 104 is realized by, for example, the memory device 16.
  • the parameter DB 104 may be realized by, for example, a storage device (for example, NAS (Network-Attached Storage), a database server, etc.) connected to the voice quality estimation device 10 via a communication network.
  • NAS Network-Attached Storage
  • the packet sequence creation unit 101 receives the captured packet in the predetermined period for estimating the voice quality as an input, and whether the packet transmitted from the transmitting terminal 30 arrives at the receiving terminal 40 or is lost without arriving at the receiving terminal 40. Is determined, and a packet sequence showing the determination result is created. For example, the packet sequence creation unit 101 creates a packet sequence composed of elements of 0 or 1 with 0 when the packet arrives at the receiving terminal 40 and 1 when the packet is lost. In this case, an example of the packet series is shown in the following equation (1).
  • the quality deterioration amount calculation unit 102 calculates the deterioration amount reflecting the above-mentioned characteristics (a) to (c) for the packet series created by the packet series creation unit 101.
  • the quality deterioration amount calculation unit 102 includes a smoothing unit 111, a deterioration amount emphasis unit 112, a packet loss tolerance characteristic reflection unit 113, and a deterioration amount calculation unit 114.
  • the smoothing unit 111 creates x 1 (i) in which the above-mentioned feature (a) is reflected in each x (i).
  • x 1 (i) is created.
  • the window length M is a parameter that depends on the codec type and PLC of the voice call, and is stored in the parameter DB 104 for each combination of the voice codec type and the PLC type.
  • the total number of x 1 (i) obtained by the smoothing unit 111 is N, and the time width of the packet series composed of these x 1 (1), ..., X 1 (N) is T. And.
  • the deterioration amount emphasizing unit 112 creates x 2 (i) in which the above-mentioned feature (b) is reflected in x 1 (i), respectively.
  • the deterioration amount emphasizing unit 112 creates x 2 (i) by the following equation (4).
  • ⁇ and ⁇ are parameters depending on the codec type and PLC of the voice call, and are stored in the parameter DB 104 for each combination of the voice codec type and the PLC type.
  • the above equation (4) is also called a deterioration enhancement function.
  • Packet loss resistance properties reflecting unit 113 the characteristics of (c) to create a x 3 (i) that reflects the respective x 2 (i). Packet loss resistance properties reflecting unit 113 creates x 3: (i) by the following equation (5).
  • is a parameter that depends on the codec type and PLC of the voice call, and is stored in the parameter DB 104 for each combination of the voice codec type and the PLC type.
  • Degradation amount calculation unit 114 calculates a deterioration amount per unit time by dividing the sum of x 3 (i) in the time width T of the packet sequence. That is, the deterioration amount calculation unit 114 calculates the deterioration amount y by the following formula (6).
  • the unit of the time width T may be, for example, seconds.
  • the listening quality estimation unit 103 estimates the listening voice quality (that is, the voice quality experienced by the user) by a mapping function indicating the relationship between the deterioration amount y calculated by the deterioration amount calculation unit 114 and the subjective quality evaluation value. (Hereinafter, referred to as "listened voice quality estimate”) is calculated.
  • the listening quality estimation unit 103 calculates the listening voice quality estimation value by, for example, the following formula (7).
  • a, b, and c are parameters that depend on the codec type and PLC of the voice call, and are stored in the parameter DB 104 for each combination of the voice codec type and the PLC type.
  • mapping function shown in the above equation (7) is an example, and if it is a monotonous decrease function in which the subjective quality evaluation value decreases as the amount of deterioration y increases, a function other than the above equation (7) is used. May be done.
  • FIG. 4 is a diagram showing an example of the parameters stored in the parameter DB 104.
  • the parameter DB 104 stores the parameters M, ⁇ , ⁇ , ⁇ , a, b, and c corresponding to each combination of the codec type and the PLC type. Therefore, when calculating the above equations (2) to (6), the quality deterioration amount calculation unit 102 uses the parameters M, ⁇ , ⁇ , and ⁇ corresponding to the combination of the codec type and the PLC type of the voice call. Similarly, when calculating the above equation (7), the listening quality estimation unit 103 uses the parameters a, b, and c corresponding to the combination of the codec type and the PLC type of the voice call.
  • these parameters M, ⁇ , ⁇ , ⁇ , a, b, and c depend on the codec type and PLC of the voice call. Therefore, the values of these parameters are determined in advance so that the difference between the subjective listening quality and its estimated value is minimized by acquiring the voice quality in the case of various packet sequences by a prior subjective quality evaluation experiment. back.
  • the subjective listening quality is the subjective quality that the user feels when listening to the audio signal.
  • ACR Absolute
  • MOS Mean Opinion Score
  • the quality deterioration amount calculation unit 102 and the listening quality estimation unit 103 may use the corresponding parameter values.
  • FIG. 5 is a flowchart showing an example of the voice quality estimation process according to the first embodiment.
  • the packet sequence creation unit 101 receives the captured packet in a predetermined period for estimating the voice quality as an input, and each packet transmitted from the transmitting terminal 30 arrives at the receiving terminal 40 or is lost without arriving at the receiving terminal 40. Each of these is determined, and a packet sequence composed of x (i) indicating each of these determination results is created (step S101).
  • sequence composed of x 1 where features have been reflected in the above (a) (i) is obtained.
  • the deterioration amount emphasizing unit 112 of the quality deterioration amount calculation unit 102 creates x 1 (i) to x 2 (i) by the above formula (4) (step S103). As a result, a sequence composed of x 2 (i) reflecting the above-mentioned feature (b) can be obtained.
  • the packet loss tolerance characteristic reflection unit 113 of the quality deterioration amount calculation unit 102 creates x 2 (i) to x 3 (i) by the above equation (5), respectively (step S104). Thereby, characteristics of the above (c) (i.e., packet loss tolerance characteristics) sequence formed at x 3 that is reflected (i) is obtained.
  • the deterioration amount calculation unit 114 of the quality deterioration amount calculation unit 102 calculates the deterioration amount y by the above formula (6) (step S105).
  • the listening quality estimation unit 103 calculates the listening voice quality estimation value by the above formula (7), for example (step S106). As a result, an estimated value of the voice quality experienced by the user can be obtained.
  • the heard voice quality estimate is output to, for example, an arbitrary output destination (for example, a memory device 16, a display device 12, another device or device connected via a communication network, or the like).
  • the voice quality estimation device 10 estimates the voice quality experienced by the user with high accuracy by reflecting the above-mentioned features (a) to (c) in the packet sequence. can do. Therefore, the voice quality estimation device 10 according to the first embodiment can estimate the voice quality experienced by the user with high accuracy, for example, while providing the voice call service.
  • the voice quality estimation device 10 creates a packet sequence by inputting the capture packet, but in the second embodiment, a case where the packet sequence is input to the voice quality estimation device 10 will be described. Thereby, in the second embodiment, it is possible to estimate the voice quality experienced by the user by using, for example, a packet sequence prepared in advance or a packet sequence created by simulation or the like.
  • FIG. 6 is a diagram showing an example of the overall configuration of the voice quality estimation system 1 according to the second embodiment.
  • the voice quality estimation system 1 includes a voice quality estimation device 10 and a packet sequence management device 50.
  • the packet sequence management device 50 is a device that manages a packet sequence composed of x (i). Note that this packet sequence may be created from an actual voice call, or may be created by simulation or the like.
  • the voice quality estimation device 10 is a device that estimates the voice quality experienced by the user of the voice call service by using the packet sequence managed by the packet sequence management device 50.
  • FIG. 7 is a diagram showing an example of the functional configuration of the voice quality estimation device 10 according to the second embodiment.
  • the voice quality estimation device 10 according to the second embodiment does not have the packet sequence creation unit 101 unlike the first embodiment. That is, the quality deterioration amount calculation unit 102 of the voice quality estimation device 10 according to the second embodiment takes the packet sequence managed by the packet sequence management device 50 as an input, and receives the packet sequences from the above (a) to (a). The amount of deterioration reflecting the characteristics of c) is calculated.
  • FIG. 8 is a flowchart showing an example of the voice quality estimation process according to the second embodiment.
  • the voice quality estimation device 10 according to the second embodiment reflects the above-mentioned features (a) to (c) in the packet sequence so that the user can use the voice quality estimation device 10 as in the first embodiment. It is possible to estimate the perceived voice quality with high accuracy. Further, since the voice quality estimation device 10 according to the second embodiment uses the packet sequence managed by the packet sequence management device 50, the voice quality experienced by the user is highly accurate even before the start of the voice quality service, for example. It is possible to estimate with.
  • Voice quality estimation system 10
  • Voice quality estimation device 11
  • Input device 12
  • Display device 13
  • External I / F 13a Recording medium 14
  • Communication I / F 15
  • Processor 16
  • Memory device 17
  • Packet capture device 30
  • Reception terminal 101
  • Packet sequence creation unit 102
  • Quality deterioration amount calculation unit 103
  • Hearing quality estimation unit 104
  • Parameter DB 111
  • Smoothing part 112
  • Deterioration amount emphasis part 112
  • Packet loss tolerance characteristic reflection part 114 Deterioration amount calculation part N Communication network

Abstract

一実施形態に係る音声品質推定装置は、音声通話の各パケットが損失したか否かをそれぞれ示す各要素で構成される系列に対して、パケット損失による品質劣化がまとまってユーザに知覚されることを表す第1の特徴を反映した第1の系列を作成する第1の系列作成手段と、前記第1の系列作成手段により作成された第1の系列に対して、品質劣化が大きいほどユーザがより品質劣化を知覚しやすいことを表す第2の特徴を反映した第2の系列を作成する第2の系列作成手段と、前記第2の系列作成手段により作成された第2の系列に対して、パケット損失補償によって品質劣化の知覚が緩和されることを表す第3の特徴を反映した第3の系列を作成する第3の系列作成手段と、前記第3の系列作成手段により作成された第3の系列から単位時間あたりの劣化量を算出する算出手段と、音声品質の劣化量とユーザの主観による音声品質の評価値との間の関係性を示すマッピング関数を用いて、前記算出手段により算出された劣化量から、ユーザが体感する音声品質を推定する推定手段と、を有することを特徴とする。

Description

音声品質推定装置、音声品質推定方法及びプログラム
 本発明は、音声品質推定装置、音声品質推定方法及びプログラムに関する。
 ネットワークや端末性能パラメータを用いて、音声通話における音声品質を推定するE-modelが従来から知られている(非特許文献1)。E-modelでは、ネットワークの性能指標であるパケット損失率とBurstRを用いることで、パケットネットワークのパケット損失が音声品質に与える影響の評価を可能にしている。
 ここで、E-modelで音声品質を推定する際におけるパケット損失のバースト性の評価尺度として、或るパケットの損失が発見された場合、この損失パケットよりも1つ前のパケットから所定の長さ分遡ったパケット系列のパタンに対して、当該損失パケットに近いパケットが損失しているほど損失への重みを大きくすることが提案されている(非特許文献2)。また、通話中のパケットの損失パタンに対して損失のランダム性の高いgap状態とバースト性の高いburst状態とを定義することで音声品質を推定する手法も知られている(非特許文献3)。
 非特許文献1に記載されているE-modelによる音声品質推定と、非特許文献2に記載されている評価尺度を適用したE-modelによる音声品質推定と、非特許文献3に記載されている音声品質推定との比較も行なわれている(非特許文献4)。また、或る期間に亘った音声品質について、突発的に発生した品質劣化では、損失発生期間のバースト性が異なってもユーザにとっては同程度の音声品質が知覚されることが知られている(非特許文献5)。
ITU-T G.107 The E-model: a computational model for use in transmission planning H. Zhang, L. Xie, J. Byun, P. Flynn, C. Shim, "Packet Loss Burstiness and Enhancement to the E-Model" A. D. Clark, "Modeling the Effects of Burst Packet Loss and Recency on Subjective Voice" S. Jelassi, G. Rubino, "A Comparison Study of Automatic Speech Quality Assessors Sensitive of Packet Loss Burstiness" 「IP電話サービスにおけるバースト損失の影響の主観品質評価」信学技報IEICE Technical Report CQ2019-3(2019.4)
 ところで、非特許文献1では、観測されたバースト損失の平均長をBurstRとして用いている。このため、バースト損失の分布情報が欠落し、或る期間に亘ってバースト損失の平均長が同じであれば同一のBurstRが算出される。したがって、非特許文献1に記載されているE-modelによる音声品質推定ではバースト損失の分布が異なってもその平均長が同じであれば同じ品質が算出され、非特許文献5に記載されている音声品質の特徴を捉えることができない。
 また、非特許文献2に記載されている評価尺度を適用したE-modelによる音声品質推定では、当該評価尺度により、連続してパケットが損失するほど音声品質の劣化量が単調増加する。したがって、必ずしも連続してパケットが損失してないが、或る範囲にまとまって突発的に発生するパケット損失が音声品質に与える影響を的確にとらえることができない。
 更に、非特許文献4では、非特許文献3に記載されている音声品質推定の性能は、非特許文献1に記載されているE-modelによる音声品質推定の性能や非特許文献2に記載されている評価尺度を適用したE-modelによる音声品質推定の性能よりも低いことが示されている。したがって、非特許文献3に記載されている音声品質推定でもパケット損失のバースト性を的確に捉えられていない。
 以上のように従来の音声品質推定では、定常的なパケット損失による品質劣化(つまり、ランダム的に発生するパケット損失による品質劣化)以外の突発的な品質劣化(つまり、バースト的に発生するパケット損失による品質劣化)を的確に捉えることができなかった。
 本発明の一実施形態は、上記の点に鑑みてなされたもので、通信ネットワークを介した音声通話における音声品質を高い精度で推定することを目的とする。
 上記目的を達成するため、一実施形態に係る音声品質推定装置は、音声通話の各パケットが損失したか否かをそれぞれ示す各要素で構成される系列に対して、パケット損失による品質劣化がまとまってユーザに知覚されることを表す第1の特徴を反映した第1の系列を作成する第1の系列作成手段と、前記第1の系列作成手段により作成された第1の系列に対して、品質劣化が大きいほどユーザがより品質劣化を知覚しやすいことを表す第2の特徴を反映した第2の系列を作成する第2の系列作成手段と、前記第2の系列作成手段により作成された第2の系列に対して、パケット損失補償によって品質劣化の知覚が緩和されることを表す第3の特徴を反映した第3の系列を作成する第3の系列作成手段と、前記第3の系列作成手段により作成された第3の系列から単位時間あたりの劣化量を算出する算出手段と、音声品質の劣化量とユーザの主観による音声品質の評価値との間の関係性を示すマッピング関数を用いて、前記算出手段により算出された劣化量から、ユーザが体感する音声品質を推定する推定手段と、を有することを特徴とする。
 通信ネットワークを介した音声通話における音声品質を高い精度で推定することができる。
第一の実施形態に係る音声品質推定システムの全体構成の一例を示す図である。 第一の実施形態に係る音声品質推定装置のハードウェア構成の一例を示す図である。 第一の実施形態に係る音声品質推定装置の機能構成の一例を示す図である。 パラメータDBに格納されているパラメータの一例を示す図である。 第一の実施形態に係る音声品質推定処理の一例を示すフローチャートである。 第二の実施形態に係る音声品質推定システムの全体構成の一例を示す図である。 第二の実施形態に係る音声品質推定装置の機能構成の一例を示す図である。 第二の実施形態に係る音声品質推定処理の一例を示すフローチャートである。
 以下、本発明の一実施形態について説明する。以降の各実施形態では、通信ネットワークを介した音声通話における音声品質(より正確には、ユーザが体感する音声品質)を高い精度で推定することが可能な音声品質推定システム1について説明する。
 [第一の実施形態]
 まず、第一の実施形態について説明する。
 <音声品質推定システム1の全体構成>
 第一の実施形態に係る音声品質推定システム1の全体構成について、図1を参照しながら説明する。図1は、第一の実施形態に係る音声品質推定システム1の全体構成の一例を示す図である。
 図1に示すように、第一の実施形態に係る音声品質推定システム1には、音声品質推定装置10と、パケットキャプチャ装置20と、送信端末30と、受信端末40とが含まれる。
 送信端末30は、通信ネットワークNを介して音声通話パケット(以下、単に「パケット」ともいう。)を送信する端末である。受信端末40は、通信ネットワークNを介してパケットを受信する端末である。送信端末30及び受信端末40としては、音声通話パケットを送受信可能な任意の端末、装置又は機器を用いることが可能である。例えば、送信端末30及び受信端末40として、音声通話を行うためのアプリケーションプログラムがインストールされたPC(パーソナルコンピュータ)、スマートフォン、タブレット端末、ウェアラブルデバイス、IoT(Internet of Things)機器、ゲーム機器等を用いることが可能である。なお、通信ネットワークNは、例えば、インターネット等の任意のネットワークである。
 パケットキャプチャ装置20は、送信端末30から受信端末40に送信されたパケットをキャプチャする装置である。以降では、パケットキャプチャ装置20によりキャプチャされたパケットを「キャプチャパケット」とも表す。パケットキャプチャ装置20としては、パケットをキャプチャ可能な任意の端末、装置又は機器を用いることが可能である。例えば、パケットキャプチャ装置20は、パケットをキャプチャするためのアプリケーションプログラムがインストールされたPCやルータ等を用いることが可能である。
 音声品質推定装置10は、キャプチャパケットを用いて、音声通話サービスのユーザ(つまり、受信端末40のユーザ)が体感する音声品質を推定する装置である。ここで、音声品質推定装置10は、定常的でない品質劣化(つまり、バースト的に発生するパケット損失による品質劣化)を定量化する際に、以下の(a)~(c)の3つの特徴を反映させることで、ユーザが体感(知覚)する音声品質を高い精度で推定することが可能になる。
 (a)パケット損失による品質劣化がまとまってユーザに知覚されるという特徴
 (b)品質劣化が大きいほど、ユーザがより品質劣化を知覚しやすいという特徴
 (c)パケット損失補償(PLC:Packet Loss Concealment)によって品質劣化の知覚が緩和されるという特徴
 ただし、上記の(a)~(c)は、バースト的に発生するパケット損失(以下、「バースト損失」ともいう。)だけでなく、従来のランダム的に発生するパケット損失(以下、「ランダム損失」ともいう。)による品質劣化を定量化する際にも有効な特徴である。したがって、上記の(a)~(c)の特徴を反映することで、音声通話サービスのパケット損失(バースト損失・ランダム損失を問わないパケット損失)による音声品質の劣化量を的確に定量化することが可能となる。
 なお、図1に示す音声品質推定システム1の構成は一例であって、他の構成であってもよい。例えば、パケットキャプチャ装置20は受信端末40と一体となっていてもよいし、又は音声品質推定装置10と一体となっていてもよい。すなわち、受信端末40がパケットをキャプチャする機能を備えていてもよいし、音声品質推定装置10がパケットをキャプチャする機能を備えていてもよい。
 <音声品質推定装置10のハードウェア構成>
 次に、第一の実施形態に係る音声品質推定装置10のハードウェア構成について、図2を参照しながら説明する。図2は、第一の実施形態に係る音声品質推定装置10のハードウェア構成の一例を示す図である。
 図2に示すように、第一の実施形態に係る音声品質推定装置10は一般的なコンピュータ又はコンピュータシステムであり、入力装置11と、表示装置12と、外部I/F13と、通信I/F14と、プロセッサ15と、メモリ装置16とを有する。これら各ハードウェアは、それぞれがバス17を介して通信可能に接続されている。
 入力装置11は、例えば、キーボードやマウス、タッチパネル等である。表示装置12は、例えば、ディスプレイ等である。なお、音声品質推定装置10は、入力装置11及び表示装置12のうちの少なくとも一方を有していなくてもよい。
 外部I/F13は、外部装置とのインタフェースである。外部装置には、記録媒体13a等がある。音声品質推定装置10は、外部I/F13を介して、記録媒体13aの読み取りや書き込み等を行うことができる。なお、記録媒体13aには、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、SDメモリカード(Secure Digital memory card)、USB(Universal Serial Bus)メモリカード等がある。
 通信I/F14は、音声品質推定装置10が他の装置(例えば、パケットキャプチャ装置20等)とデータ通信を行うためのインタフェースである。プロセッサ15は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の各種演算装置である。メモリ装置16は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の各種記憶装置である。
 第一の実施形態に係る音声品質推定装置10は、図2に示すハードウェア構成を有することにより、後述する音声品質推定処理を実現することができる。なお、図2に示すハードウェア構成は一例であって、音声品質推定装置10は、他のハードウェア構成を有していてもよい。例えば、音声品質推定装置10は、複数のプロセッサ15を有していてもよいし、複数のメモリ装置16を有していてもよい。
 <音声品質推定装置10の機能構成>
 次に、第一の実施形態に係る音声品質推定装置10の機能構成について、図3を参照しながら説明する。図3は、第一の実施形態に係る音声品質推定装置10の機能構成の一例を示す図である。
 図3に示すように、第一の実施形態に係る音声品質推定装置10は、パケット系列作成部101と、品質劣化量算出部102と、受聴品質推定部103とを有する。これら各部は、例えば、音声品質推定装置10にインストールされた1以上のプログラムがプロセッサ15に実行させる処理により実現される。
 また、第一の実施形態に係る音声品質推定装置10は、パラメータDB104を有する。パラメータDB104は、例えば、メモリ装置16により実現される。なお、パラメータDB104は、例えば、音声品質推定装置10と通信ネットワークを介して接続される記憶装置(例えば、NAS(Network-Attached Storage)やデータベースサーバ等)により実現されてもよい。
 パケット系列作成部101は、音声品質を推定する所定の期間におけるキャプチャパケットを入力として、送信端末30から送信されたパケットが受信端末40に到着したか又は受信端末40に到着せずに損失したかを判定し、この判定結果を示すパケット系列を作成する。例えば、パケット系列作成部101は、パケットが受信端末40に到着した場合は0、損失した場合は1として、0又は1の要素で構成されるパケット系列を作成する。この場合、パケット系列の一例を以下の式(1)に示す。
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)は、x(1)=0,・・・,x(10)=0,x(11)=1,x(12)=0,x(13)=1,x(14)=1,x(15)=0,x(16)=1,x(17)=0,x(18)=1,x(19)=0,x(20)=1,x(21)=0,・・・,x(30)=0であるパケット系列を表している。つまり、上記の式(1)は、0又は1を取る、30個の要素x(1),・・・,x(30)で構成されるパケット系列を表している。
 品質劣化量算出部102は、パケット系列作成部101により作成されたパケット系列に対して上記の(a)~(c)の特徴を反映した劣化量を算出する。ここで、品質劣化量算出部102には、平滑化部111と、劣化量強調部112と、パケット損失耐性特性反映部113と、劣化量算出部114とが含まれる。
 平滑化部111は、上記の(a)の特徴を各x(i)にそれぞれ反映したx(i)を作成する。平滑化部111は、平滑化する窓長をMとして、M=2k+1の場合は以下の式(2)によりx(i)を作成し、M=2kの場合は以下の式(3)によりx(i)を作成する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、窓長Mは音声通話のコーデック種別やPLCに依存するパラメータであり、音声コーデックの種別及びPLCの種別の組み合わせ毎にパラメータDB104に格納されている。
 なお、以降では、平滑化部111により得られたx(i)の総数をN、これらx(1),・・・,x(N)で構成されるパケット系列の時間幅をTとする。
 劣化量強調部112は、上記の(b)の特徴をx(i)にそれぞれ反映したx(i)を作成する。劣化量強調部112は、以下の式(4)によりx(i)を作成する。
Figure JPOXMLDOC01-appb-M000004
 ここで、α及びγは音声通話のコーデック種別やPLCに依存するパラメータであり、音声コーデックの種別及びPLCの種別の組み合わせ毎にパラメータDB104に格納されている。なお、上記の式(4)は劣化強調関数とも呼ばれる。
 パケット損失耐性特性反映部113は、上記の(c)の特徴を各x(i)にそれぞれ反映したx(i)を作成する。パケット損失耐性特性反映部113は、以下の式(5)によりx(i)を作成する。
Figure JPOXMLDOC01-appb-M000005
 ここで、βは音声通話のコーデック種別やPLCに依存するパラメータであり、音声コーデックの種別及びPLCの種別の組み合わせ毎にパラメータDB104に格納されている。
 劣化量算出部114は、パケット系列の時間幅Tでx(i)の総和を除することで単位時間あたりの劣化量を算出する。すなわち、劣化量算出部114は、以下の式(6)により劣化量yを算出する。
Figure JPOXMLDOC01-appb-M000006
 なお、時間幅Tの単位は、例えば、秒とすればよい。
 受聴品質推定部103は、劣化量算出部114により算出された劣化量yと主観品質評価値との間の関係を示すマッピング関数により受聴音声品質(つまり、ユーザが体感する音声品質)の推定値(以下、「受聴音声品質推定値」という。)を算出する。受聴品質推定部103は、例えば、以下の式(7)により受聴音声品質推定値を算出する。
Figure JPOXMLDOC01-appb-M000007
 ここで、a,b及びcは音声通話のコーデック種別やPLCに依存するパラメータであり、音声コーデックの種別及びPLCの種別の組み合わせ毎にパラメータDB104に格納されている。
 なお、上記の式(7)に示すマッピング関数は一例であって、劣化量yが増加するに従って主観品質評価値が減少する単調減少関数であれば、上記の式(7)以外の関数が用いられてもよい。
 ここで、パラメータDB104に格納されているパラメータについて、図4を参照しながら説明する。図4は、パラメータDB104に格納されているパラメータの一例を示す図である。
 図4に示すように、パラメータDB104には、コーデック種別及びPLC種別の組み合わせ毎に、当該組み合わせに対応するパラメータM,α,β,γ,a,b,cが格納されている。したがって、品質劣化量算出部102は、上記の式(2)~式(6)を計算する際、音声通話のコーデック種別及びPLC種別の組み合わせに対応するパラメータM,α,β,γを用いる。同様に、受聴品質推定部103は、上記の式(7)を計算する際、音声通話のコーデック種別及びPLC種別の組み合わせに対応するパラメータa,b,cを用いる。
 これらのパラメータM,α,β,γ,a,b,cは、上述したように、音声通話のコーデック種別やPLCに依存するものである。このため、これらのパラメータの値は、事前の主観品質評価実験により様々なパケット系列の場合の音声品質を取得し、主観受聴品質とその推定値との誤差が最も小さくなるように事前に決定しおく。ここで、主観受聴品質とはユーザが音声信号を聴取したときに感じる主観的な品質であり、例えば、ITU-T P.800に記載されているような5段階の絶対カテゴリ尺度(ACR:Absolute Category Rating)によって得られた評点に対する平均オピニオン評点(MOS:Mean Opinion Score)として主観品質評価実験によって求められるものである。
 なお、音声通話のコーデック種別とPLC種別の組み合わせが1つしかない場合は、データベース化されていなくてもよい。この場合、品質劣化量算出部102及び受聴品質推定部103は、該当のパラメータ値を用いればよい。
 <音声品質推定処理>
 次に、第一の実施形態に係る音声品質推定処理について、図5を参照しながら説明する。図5は、第一の実施形態に係る音声品質推定処理の一例を示すフローチャートである。
 パケット系列作成部101は、音声品質を推定する所定の期間におけるキャプチャパケットを入力として、送信端末30から送信された各パケットが受信端末40に到着したか又は受信端末40に到着せずに損失したかをそれぞれ判定し、これらの判定結果をそれぞれ示すx(i)で構成されるパケット系列を作成する(ステップS101)。
 次に、品質劣化量算出部102の平滑化部111は、M=2k+1の場合は上記の式(2)、M=2kの場合は上記の式(3)によりx(i)からx(i)をそれぞれ作成する(ステップS102)。これにより、上記の(a)の特徴が反映されたx(i)で構成される系列が得られる。
 次に、品質劣化量算出部102の劣化量強調部112は、上記の式(4)によりx(i)からx(i)をそれぞれ作成する(ステップS103)。これにより、上記の(b)の特徴が反映されたx(i)で構成される系列が得られる。
 次に、品質劣化量算出部102のパケット損失耐性特性反映部113は、上記の式(5)によりx(i)からx(i)をそれぞれ作成する(ステップS104)。これにより、上記の(c)の特徴(つまり、パケット損失耐性特性)が反映されたx(i)で構成される系列が得られる。
 次に、品質劣化量算出部102の劣化量算出部114は、上記の式(6)により劣化量yを算出する(ステップS105)。
 そして、受聴品質推定部103は、例えば、上記の式(7)により受聴音声品質推定値を算出する(ステップS106)。これにより、ユーザが体感する音声品質の推定値が得られる。なお、この受聴音声品質推定値は、例えば、任意の出力先(例えば、メモリ装置16や表示装置12、通信ネットワークを介して接続される他の装置又は機器等)に出力される。
 以上のように、第一の実施形態に係る音声品質推定装置10は、上記の(a)~(c)の特徴をパケット系列に反映することで、ユーザが体感する音声品質を高い精度で推定することができる。このため、第一の実施形態に係る音声品質推定装置10は、例えば、音声通話サービスの提供中に、ユーザが体感する音声品質を高い精度で推定することが可能となる。
 [第二の実施形態]
 次に、第二の実施形態について説明する。第一の実施形態では、キャプチャパケットを入力として音声品質推定装置10がパケット系列を作成したが、第二の実施形態では、音声品質推定装置10にパケット系列を入力する場合について説明する。これにより、第二の実施形態では、例えば、予め準備されたパケット系列を用いたり、シミュレーション等により作成されたパケット系列を用いたりしてユーザが体感する音声品質を推定することが可能となる。
 なお、第二の実施形態では、主に、第一の実施形態との相違点について説明し、第一の実施形態と同様の構成要素についてはその説明を省略する。
 <音声品質推定システム1の全体構成>
 第二の実施形態に係る音声品質推定システム1の全体構成について、図6を参照しながら説明する。図6は、第二の実施形態に係る音声品質推定システム1の全体構成の一例を示す図である。
 図6に示すように、第二の実施形態に係る音声品質推定システム1には、音声品質推定装置10と、パケット系列管理装置50とが含まれる。
 パケット系列管理装置50は、x(i)で構成されるパケット系列を管理する装置である。なお、このパケット系列は、実際の音声通話から作成されたものであってもよいし、シミュレーション等により作成されたものであってもよい。
 音声品質推定装置10は、パケット系列管理装置50が管理するパケット系列を用いて、音声通話サービスのユーザが体感する音声品質を推定する装置である。
 <音声品質推定装置10の機能構成>
 次に、第二の実施形態に係る音声品質推定装置10の機能構成について、図7を参照しながら説明する。図7は、第二の実施形態に係る音声品質推定装置10の機能構成の一例を示す図である。
 図7に示すように、第二の実施形態に係る音声品質推定装置10は、第一の実施形態と異なり、パケット系列作成部101を有しない。すなわち、第二の実施形態に係る音声品質推定装置10の品質劣化量算出部102は、パケット系列管理装置50が管理するパケット系列を入力として、このパケット系列に対して上記の(a)~(c)の特徴を反映した劣化量を算出する。
 <音声品質推定処理>
 次に、第二の実施形態に係る音声品質推定処理について、図8を参照しながら説明する。図8は、第二の実施形態に係る音声品質推定処理の一例を示すフローチャートである。
 品質劣化量算出部102の平滑化部111は、パケット系列管理装置50が管理するパケット系列を入力して、M=2k+1の場合は上記の式(2)、M=2kの場合は上記の式(3)により当該パケット系列を構成するx(i)からx(i)をそれぞれ作成する(ステップS201)。以降のステップS202~ステップS205は、図5のステップS103~ステップS106とそれぞれ同様であるため、その説明を省略する。
 以上のように、第二の実施形態に係る音声品質推定装置10は、第一の実施形態と同様に、上記の(a)~(c)の特徴をパケット系列に反映することで、ユーザが体感する音声品質を高い精度で推定することができる。また、第二の実施形態に係る音声品質推定装置10は、パケット系列管理装置50が管理するパケット系列を用いるため、例えば、音声品質のサービス開始前等でも、ユーザが体感する音声品質を高い精度で推定することが可能となる。
 本発明は、具体的に開示された上記の各実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。
 1    音声品質推定システム
 10   音声品質推定装置
 11   入力装置
 12   表示装置
 13   外部I/F
 13a  記録媒体
 14   通信I/F
 15   プロセッサ
 16   メモリ装置
 17   バス
 20   パケットキャプチャ装置
 30   送信端末
 40   受信端末
 101  パケット系列作成部
 102  品質劣化量算出部
 103  受聴品質推定部
 104  パラメータDB
 111  平滑化部
 112  劣化量強調部
 113  パケット損失耐性特性反映部
 114  劣化量算出部
 N    通信ネットワーク

Claims (8)

  1.  音声通話の各パケットが損失したか否かをそれぞれ示す各要素で構成される系列に対して、パケット損失による品質劣化がまとまってユーザに知覚されることを表す第1の特徴を反映した第1の系列を作成する第1の系列作成手段と、
     前記第1の系列作成手段により作成された第1の系列に対して、品質劣化が大きいほどユーザがより品質劣化を知覚しやすいことを表す第2の特徴を反映した第2の系列を作成する第2の系列作成手段と、
     前記第2の系列作成手段により作成された第2の系列に対して、パケット損失補償によって品質劣化の知覚が緩和されることを表す第3の特徴を反映した第3の系列を作成する第3の系列作成手段と、
     前記第3の系列作成手段により作成された第3の系列から単位時間あたりの劣化量を算出する算出手段と、
     音声品質の劣化量とユーザの主観による音声品質の評価値との間の関係性を示すマッピング関数を用いて、前記算出手段により算出された劣化量から、ユーザが体感する音声品質を推定する推定手段と、
     を有することを特徴とする音声品質推定装置。
  2.  前記第2の系列作成手段は、
     前記音声通話のコーデック種別及び前記パケット損失補償の種別の組み合わせに応じて予め決定されたパラメータMを窓長として、前記系列を平滑化することで前記第1の系列を作成する、ことを特徴とする請求項1に記載の音声品質推定装置。
  3.  前記第2の系列作成手段は、
     前記音声通話のコーデック種別及び前記パケット損失補償の種別の組み合わせに応じて予め決定されたパラメータα及びγが設定された劣化強調関数により前記第1の系列から前記第2の系列を作成する、ことを特徴とする請求項1又は2に記載の音声品質推定装置。
  4.  前記第3の系列作成手段は、
     前記音声通話のコーデック種別及び前記パケット損失補償の種別の組み合わせに応じて予め決定されたパラメータβを用いて、前記第2の系列を構成する各要素から前記パラメータβを減算した値と、0との大小関係により前記第3の系列を作成する、ことを特徴とする請求項1乃至3の何れか一項に記載の音声品質推定装置。
  5.  前記算出手段は、
     前記第3の系列を構成する各要素の総和を、前記第3の系列の時間幅で除することで、前記劣化量を算出する、ことを特徴とする請求項1乃至4の何れか一項に記載の音声品質推定装置。
  6.  前記音声通話のコーデック種別及び前記パケット損失補償の種別の組み合わせに応じて予め決定されたパラメータa,b及びcが設定されたマッピング関数を用いて、前記算出手段により算出された劣化量から、ユーザが体感する音声品質を推定する、ことを特徴とする請求項1乃至5の何れか一項に記載の音声品質推定装置。
  7.  音声通話の各パケットが損失したか否かをそれぞれ示す各要素で構成される系列に対して、パケット損失による品質劣化がまとまってユーザに知覚されることを表す第1の特徴を反映した第1の系列を作成する第1の系列作成手順と、
     前記第1の系列作成手順で作成された第1の系列に対して、品質劣化が大きいほどユーザがより品質劣化を知覚しやすいことを表す第2の特徴を反映した第2の系列を作成する第2の系列作成手順と、
     前記第2の系列作成手順で作成された第2の系列に対して、パケット損失補償によって品質劣化の知覚が緩和されることを表す第3の特徴を反映した第3の系列を作成する第3の系列作成手順と、
     前記第3の系列作成手順で作成された第3の系列から単位時間あたりの劣化量を算出する算出手順と、
     音声品質の劣化量とユーザの主観による音声品質の評価値との間の関係性を示すマッピング関数を用いて、前記算出手順で算出された劣化量から、ユーザが体感する音声品質を推定する推定手順と、
     をコンピュータが実行することを特徴とする音声品質推定方法。
  8.  コンピュータを、請求項1乃至6の何れか一項に記載の音声品質推定装置における各手段として機能させるためのプログラム。
PCT/JP2020/005492 2020-02-13 2020-02-13 音声品質推定装置、音声品質推定方法及びプログラム WO2021161440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/005492 WO2021161440A1 (ja) 2020-02-13 2020-02-13 音声品質推定装置、音声品質推定方法及びプログラム
US17/798,669 US11749297B2 (en) 2020-02-13 2020-02-13 Audio quality estimation apparatus, audio quality estimation method and program
JP2021577781A JP7298719B2 (ja) 2020-02-13 2020-02-13 音声品質推定装置、音声品質推定方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005492 WO2021161440A1 (ja) 2020-02-13 2020-02-13 音声品質推定装置、音声品質推定方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2021161440A1 true WO2021161440A1 (ja) 2021-08-19

Family

ID=77291482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005492 WO2021161440A1 (ja) 2020-02-13 2020-02-13 音声品質推定装置、音声品質推定方法及びプログラム

Country Status (3)

Country Link
US (1) US11749297B2 (ja)
JP (1) JP7298719B2 (ja)
WO (1) WO2021161440A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244609A (ja) * 2004-02-26 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> ネットワーク品質管理目標値算出方法および装置、並びに、ネットワーク品質監視方法および装置
JP2008172365A (ja) * 2007-01-09 2008-07-24 Kddi Corp 受聴品質評価方法および装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975924A1 (en) * 2007-03-29 2008-10-01 Koninklijke KPN N.V. Method and system for speech quality prediction of the impact of time localized distortions of an audio transmission system
EP2410516B1 (en) * 2007-09-11 2013-02-13 Deutsche Telekom AG Method and system for the integral and diagnostic assessment of listening speech quality
US8868222B2 (en) * 2008-06-11 2014-10-21 Nippon Telegraph And Telephone Corporation Audio quality estimation method, audio quality estimation apparatus, and computer readable recording medium recording a program
ES2526126T3 (es) * 2009-08-14 2015-01-07 Koninklijke Kpn N.V. Método, producto de programa informático y sistema para determinar una calidad percibida de un sistema de audio
EP2363852B1 (en) * 2010-03-04 2012-05-16 Deutsche Telekom AG Computer-based method and system of assessing intelligibility of speech represented by a speech signal
US9396738B2 (en) * 2013-05-31 2016-07-19 Sonus Networks, Inc. Methods and apparatus for signal quality analysis
US9031838B1 (en) * 2013-07-15 2015-05-12 Vail Systems, Inc. Method and apparatus for voice clarity and speech intelligibility detection and correction
US10741196B2 (en) * 2016-03-24 2020-08-11 Harman International Industries, Incorporated Signal quality-based enhancement and compensation of compressed audio signals
WO2018028767A1 (en) * 2016-08-09 2018-02-15 Huawei Technologies Co., Ltd. Devices and methods for evaluating speech quality
US11138989B2 (en) * 2019-03-07 2021-10-05 Adobe Inc. Sound quality prediction and interface to facilitate high-quality voice recordings
US20230076338A1 (en) * 2020-01-30 2023-03-09 Nippon Telegraph And Telephone Corporation Evaluation method, evaluation apparatus, and program
JP2021135935A (ja) * 2020-02-28 2021-09-13 株式会社東芝 コミュニケーション管理装置及び方法
US11611664B2 (en) * 2021-03-25 2023-03-21 Agora Lab, Inc Voice quality assessment system
US11545159B1 (en) * 2021-06-10 2023-01-03 Nice Ltd. Computerized monitoring of digital audio signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244609A (ja) * 2004-02-26 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> ネットワーク品質管理目標値算出方法および装置、並びに、ネットワーク品質監視方法および装置
JP2008172365A (ja) * 2007-01-09 2008-07-24 Kddi Corp 受聴品質評価方法および装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIRA TAKAHASHI: "A study on quantifying listening quality in an opinion model for wideband speech communication services", ITE TECHNICAL REPORT, vol. 29, no. 51, 16 September 2005 (2005-09-16), pages 71 - 76 *
HITOSHI AOKI: "Subjective Quality Evaluation of Bursty Packet Loss in IP-Telephony Services", IEICE TECHNICAL REPORT, vol. 119, no. 7, 20 May 2019 (2019-05-20), pages 13 - 18 *
SATOSHI UEMURA: "An Objective speech quality assessment based on payload discrimination of lost packet", IEICE TECHNICAL REPORT, vol. 106, no. 600, 8 March 2007 (2007-03-08), pages 41 - 46 *

Also Published As

Publication number Publication date
JP7298719B2 (ja) 2023-06-27
US20230079632A1 (en) 2023-03-16
JPWO2021161440A1 (ja) 2021-08-19
US11749297B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
EP1924101B1 (en) Video communication quality estimation device, method, and program
EP3055983B1 (en) Predicting call quality
US7965203B2 (en) Video quality estimation apparatus, method, and program
CN109729433B (zh) 一种视频播放评估方法及装置
WO2012018574A1 (en) System and method to measure and track trust
JP4490374B2 (ja) 映像品質評価装置および方法
US20100106489A1 (en) Method and System for Speech Quality Prediction of the Impact of Time Localized Distortions of an Audio Transmission System
JP2013500498A (ja) 音声品質の評価のための方法、コンピュータ、コンピュータプログラム、およびコンピュータプログラム製品
JP5957419B2 (ja) QoE推定装置、QoE推定方法及びプログラム
EP2816518A2 (en) Methods and apparatuses to identify user dissatisfaction from early cancelation
Jelassi et al. A study of artificial speech quality assessors of VoIP calls subject to limited bursty packet losses
WO2021161440A1 (ja) 音声品質推定装置、音声品質推定方法及びプログラム
CN107943678B (zh) 一种评价应用访问过程的方法及评价服务器
WO2019244507A1 (ja) 品質推定装置、品質推定方法及びプログラム
JP3905891B2 (ja) ネットワーク品質管理目標値算出方法および装置、並びに、ネットワーク品質監視方法および装置
WO2017041553A1 (zh) 一种语音质量确定的方法和装置
JP2007006203A (ja) ユーザ体感品質推定モデル生成装置、品質管理装置、およびプログラム
EP3226511B1 (en) Evaluation of perceptual delay impact on conversation in teleconferencing system
JP4733071B2 (ja) 映像品質推定方法および装置
JP5952252B2 (ja) 通話品質推定方法、通話品質推定装置、及びプログラム
JP6114702B2 (ja) ユーザ体感品質推定装置、ユーザ体感品質推定方法及びプログラム
Scott et al. Estimating variance in X-11 seasonal adjustment
CN111597451B (zh) 一种目标用户的确定方法、确定装置及可读存储介质
US9917952B2 (en) Evaluation of perceptual delay impact on conversation in teleconferencing system
JP2003348154A (ja) 通信品質管理閾値決定方法及びその装置並びにプログラム及び情報記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919269

Country of ref document: EP

Kind code of ref document: A1