WO2021152253A1 - Structure multicouche pour le transport ou le stockage de l'hydrogene - Google Patents

Structure multicouche pour le transport ou le stockage de l'hydrogene Download PDF

Info

Publication number
WO2021152253A1
WO2021152253A1 PCT/FR2021/050139 FR2021050139W WO2021152253A1 WO 2021152253 A1 WO2021152253 A1 WO 2021152253A1 FR 2021050139 W FR2021050139 W FR 2021050139W WO 2021152253 A1 WO2021152253 A1 WO 2021152253A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer
polyamide
composition
multilayer structure
Prior art date
Application number
PCT/FR2021/050139
Other languages
English (en)
Inventor
Nicolas Dufaure
Patrick Dang
Antoine GOUPIL
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to EP21708054.8A priority Critical patent/EP4096922A1/fr
Priority to KR1020227029676A priority patent/KR20220133959A/ko
Priority to MX2022008891A priority patent/MX2022008891A/es
Priority to US17/792,540 priority patent/US20230075842A1/en
Priority to CA3163652A priority patent/CA3163652A1/fr
Priority to CN202180011518.3A priority patent/CN115023344A/zh
Priority to JP2022545078A priority patent/JP2023511976A/ja
Publication of WO2021152253A1 publication Critical patent/WO2021152253A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • B29C53/582Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material comprising reinforcements, e.g. wires, threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0017Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
    • B29C63/0021Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material with coherent impregnated reinforcing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/24Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • B32B2262/148Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • B32B5/263Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer next to one or more woven fabric layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0609Straps, bands or ribbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • TITLE MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
  • the present patent application relates to composite multilayer structures for the transport, distribution or storage of hydrogen, in particular for the distribution or storage of hydrogen, and their manufacturing process.
  • Hydrogen tanks are a subject that is currently attracting a lot of interest from many manufacturers, especially in the automotive field.
  • One of the goals is to offer vehicles that pollute less and less.
  • electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles.
  • thermal vehicles such as gasoline or diesel vehicles.
  • the battery is a relatively complex component of the vehicle.
  • the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible, recharging times much longer than the durations. tank filling, as well as a problem of electricity production in the different countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Hydrogen tanks generally consist of a metal casing (liner or sealing layer) which must prevent the permeation of hydrogen.
  • liner or sealing layer One of the types of tanks being considered, called Type IV, is based on a thermoplastic liner around which a composite is wrapped.
  • thermoplastic resin liner or sealing sheath
  • a reinforcing structure made up of fibers (glass, aramid, carbon). called sheath or reinforcing layer which allow to work at much higher pressures while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks.
  • the permeability of the liner is indeed a key factor in limiting hydrogen losses from the tank;
  • the first generation of type IV tanks used a liner based on high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • HDPE has the drawback of having too low a melting temperature and high hydrogen permeability, which is a problem with the new thermal withstand requirements and does not allow the filling speed of the tank to be increased. tank.
  • PA6 polyamide
  • Application EP3112421 describes a polyamide resin composition for a molded article intended for high pressure hydrogen, the composition comprising: a polyamide 6 resin (A); and a polyamide resin (B) having a melting point, as determined by DSC, which is not higher than the melting point of the polyamide 6 resin (A) + 20 ° C and a cooling crystallization temperature, such as determined by DSC, which is higher than the cooling crystallization temperature of the polyamide 6 resin (A).
  • French application FR2923575 describes a reservoir for storing fluid under high pressure comprising at each of its ends along its axis a nozzle metal end, a liner enveloping said end caps and a structural layer of fiber impregnated with thermosetting resin enveloping said liner.
  • Application EP3222668 describes a polyamide resin composition for a molded article intended for high pressure hydrogen, the composition comprising a polyamide resin (A) comprising a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid of 8 to 12 carbon atoms and an ethylene / ⁇ -olefin copolymer (B) modified with an unsaturated carboxylic acid and / or a derivative thereof.
  • A polyamide resin
  • B ethylene / ⁇ -olefin copolymer
  • Application US2014 / 008373 describes a lightweight storage cylinder for a high pressure compressed gas, the cylinder having a liner wrapped in a stress layer, the liner comprising: a first inner layer of impact modified polyamide (PA) in contact with gas, an outer thermoplastic layer in contact with the stress layer; and an adhesive tie layer between the first impact modified inner PA layer and the outer thermoplastic layer.
  • PA impact modified polyamide
  • WO1 8155491 describes a hydrogen transport component having a three-layer structure, the inner layer of which is a composition consisting of PA11, 15 to 50% of an impact modifier and 1 to 3% of plasticizer or without plasticizer which exhibits hydrogen barrier properties, good flexibility and durability at low temperature.
  • this structure is suitable for pipes for transporting hydrogen but not for storing hydrogen.
  • the matrix of the composite in order to optimize its mechanical resistance at high temperature and on the other hand the material composing the sealing sheath, in order to optimize its processing temperature.
  • the possible modification of the composition of the material composing the sealing sheath, which will be made, must not result in a significant increase in the manufacturing temperature (extrusion-blow molding, injection, rotomoulding, etc.) of this liner, compared to what is practiced today.
  • thermoplastic polyamide polymer with a long semi-crystalline chain comprising a proportion of impact modifier and of limited plasticizer, for the sealing layer, with a different polymer for the matrix.
  • composite and in particular an epoxy resin or epoxy-based, said composite being wound on the waterproofing layer made it possible to obtain a structure suitable for the transport, distribution or storage of hydrogen and in particular a increase in the maximum temperature of use up to 120 ° C, thus making it possible to increase the speed of filling the tanks.
  • multilayer structure is meant a tank comprising or consisting of several layers, namely several sealing layers and several reinforcing layers, or one sealing layer and several reinforcing layers, or several sealing layers and a backing layer or a waterproofing layer and a backing layer.
  • the multilayer structure is therefore meant to the exclusion of a pipe or tube.
  • Poly ether block amide are copolymers with amide units (Ba1) and polyether units (Ba2), said amide unit (Ba1) corresponding to an aliphatic repeating unit chosen from a unit obtained from at least one amino acid or a unit obtained from at least one lactam, or an XY unit obtained from polycondensation: - at least one diamine, said diamine being preferably chosen from a linear or branched aliphatic diamine or a mixture thereof, and
  • dicarboxylic acid being preferably chosen from: a linear or branched aliphatic dicacid, or a mixture of these, said diamine and said dicacid comprising from 4 to 36 carbon atoms, advantageously from 6 to 18 carbon atoms; said polyether units (Ba2) being in particular derived from at least one polyalkylene ether polyol, in particular a polyalkylene ether diol.
  • Nucleating agents are known to those skilled in the art and refer to a substance which, when incorporated into a polymer, forms nuclei for crystal growth in the molten polymer.
  • They can be chosen, for example, from micro talc, carbon black, silica, titanium dioxide and nanoclays.
  • PA6 and PA610 are excluded from said composition.
  • said structure being devoid of an outermost layer and adjacent to the outermost layer of composite reinforcement of polyamide polymer means that the structure is devoid of a layer of polyamide polymer situated above the layer. outermost composite reinforcement.
  • said multilayer structure consists of two layers, a waterproofing layer and a reinforcing layer.
  • the waterproofing layer or layers are the innermost layers compared to the composite reinforcing layers which are the outermost layers.
  • the tank can be a tank for the mobile storage of hydrogen, i.e. on a truck for the transport of hydrogen, on a car for the transport of hydrogen and the supply of hydrogen d '' a fuel cell for example, on a train for the supply of hydrogen or on a drone for the supply of hydrogen, but it can also be a stationary storage tank for hydrogen in a station for the distribution of hydrogen to vehicles.
  • the sealing layer (1) is impermeable to hydrogen at 23 ° C, that is to say that the permeability to hydrogen at 23 ° C is less than 500 cc.mm/m2. 24h. .atm at 23 ° C under 0% relative humidity (RH).
  • the composite reinforcing layer (s) is (are) wound (s) around the sealing layer by means of tapes (or tapes or rovings) of fibers impregnated with polymer which are deposited, for example, by filament winding.
  • the polymers are different.
  • the polymers of the reinforcing layers are identical, there may be several layers present, but advantageously, only one reinforcing layer is present and which then has at least one complete winding around the waterproofing layer.
  • the other composite reinforcement layers may or may not also adhere to each other.
  • the other waterproofing layers may or may not adhere to each other.
  • only a waterproofing layer and a reinforcing layer are present and do not adhere to each other.
  • the reinforcing layer consists of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising at least one polymer P2j , in particular an epoxy resin or based on epoxy.
  • a waterproofing layer and a reinforcing layer are present and do not adhere to each other and the reinforcing layer consists of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising a P2j polymer which is an epoxy or epoxy-based resin.
  • epoxy-based throughout the description means that the epoxy represents at least 50% by weight of the matrix.
  • sealing layer (s) and the thermoplastic polymer P1i One or more sealing layers may or may be present.
  • the term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
  • said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight 90% by weight, relative to the total weight of the composition.
  • Said composition can also comprise up to 50% by weight relative to the total weight of the composition of impact modifiers and / or a plasticizer and / or additives.
  • the additives can be selected from another polymer, an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a colorant, carbon black and carbonaceous nanofillers, with the exception of a nucleating agent, in particular the additives are chosen from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a colorant, carbon black and carbonaceous nanofillers, except for a nucleating agent.
  • Said other polymer can be another semi-crystalline thermoplastic polymer or a different polymer and in particular an EVOH (Ethylene vinyl alcohol).
  • EVOH Ethylene vinyl alcohol
  • said composition comprises said thermoplastic polymer P1i predominantly, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1, 5% plasticizer and 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition consists of said thermoplastic polymer P1i predominantly, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1 , 5% plasticizer and 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • Said at least one majority polymer of each layer may be identical or different.
  • a single major polymer is present at least in the sealing layer which does not adhere to the composite reinforcing layer.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 12% by weight of impact modifier by relative to the total weight of the composition.
  • said composition is devoid of plasticizer.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 12% by weight of impact modifier and said composition is devoid of plasticizer relative to the total weight of the composition.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 12% by weight of modifier. impact and from 0.1 to 1.5% by weight of plasticizer relative to the total weight of the composition.
  • said composition is devoid of impact modifier.
  • said composition comprises from 0.1 to 1.5% by weight of plasticizer relative to the total weight of the composition and said composition is devoid of impact modifier.
  • said composition is devoid of impact modifier and plasticizer.
  • said composition comprises said thermoplastic polymer P1i predominantly and from 0 to 5% by weight of additives, in particular from 0.1 to 5% of additives, the sum of the constituents of the composition being equal to 100%.
  • said majority thermoplastic polymer P1i is mixed with another polyamide.
  • said composition comprises said thermoplastic polymer P1i and from 0 to 5% by weight of additives, in particular from 0.1 to 5% of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition consists of said thermoplastic polymer P1i predominantly and from 0 to 5% by weight of additives, in particular from 0.1 to 5% of additives, the sum of the constituents of the composition being equal to 100%.
  • said majority thermoplastic polymer P1i is mixed with another polyamide.
  • said composition consists of said thermoplastic polymer P1i and from 0 to 5% by weight of additives, in particular from 0.1 to 5% of additives, the sum of the constituents of the composition being equal to 100%.
  • thermoplastic or semi-crystalline thermoplastic polymer
  • Tg glass transition temperature
  • Tf melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number-average molecular mass Mn of said semi-crystalline polyamide thermoplastic polymer is preferably in a range from 10,000 to 85,000, in particular from 10,000 to 60,000, preferably from 10,000 to 50,000, even more preferably from 12,000 to 50,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in m-cresol according to ISO 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • said thermoplastic polymer is a long chain aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9, in particular greater than 10.
  • the long-chain aliphatic polyamide is chosen from: polyamide 11 (PA11), polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture thereof or a copolyamide thereof, in particular PA11 and PA12.
  • polyamide 11 PA11
  • PA12 polyamide 12
  • PA1012 polyamide 1012
  • PA1012 polyamide 1212
  • PA1012 polyamide 1212
  • PA1012 polyamide 1212
  • the long chain aliphatic polyamide is chosen from: polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture of these- ci or a copolyamide thereof, in particular PA12.
  • the long chain aliphatic polyamide is selected from: polyamide 12 (PA12), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture of these or a copolyamide of those here, in particular PA12.
  • said semi-crystalline polyamide thermoplastic polymer is a long-chain semi-crystalline semi-aromatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom. greater than 8.5, preferably greater than 9, in particular greater than 10, and a melting temperature of between 240 ° C to less than 280 ° C.
  • the long-chain semi-crystalline semi-aromatic polyamide is chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • each waterproofing layer consists of a composition comprising the same type of polyamide.
  • soldering elements made of thermoplastic polyamide polymer.
  • thermoplastic polyamide polymer it can be used heated blades with or without contact, ultrasound, infrared, application of vibrations, a rotation of one element to be welded against the other or even laser welding.
  • the impact modifier can be any impact modifier from the moment when a polymer of lower modulus than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously constituted by a polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178 standard and of Tg less than 0 ° C (measured according to the 11357-2 standard at the inflection point of the DSC thermogram ), in particular a polyolefin.
  • PEBAs are excluded from the definition of impact modifiers.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and / or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and unfunctionalized polyolefins (B2) have been described below.
  • An unfunctionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functions.
  • polyolefins (B2) grafted or co- or ter polymerized with unsaturated epoxides such as glycidyl (meth) acrylate, or with carboxylic acids or the corresponding salts or esters such as (meth) acrylic acid (the latter being able to be totally or partially neutralized by metals such as Zn, etc.) or alternatively by carboxylic acid anhydrides such as maleic anhydride.
  • a functionalized polyolefin is for example a PE / EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting, for example from 0.01 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co) polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • alkyl (meth) acrylate copolymers containing up to 40% by weight of alkyl (meth) acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene / propylene copolymers predominantly in propylene grafted with maleic anhydride then condensed with mono-amine polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter polymer of at least the following units: (1) ethylene, (2) alkyl (meth) acrylate or vinyl ester of saturated carboxylic acid and (3) anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate.
  • (meth) acrylic acid can be salified with Zn or Li.
  • alkyl (meth) acrylate in (B1) or (B2) denotes methacrylates and acrylates of C1 to C8 alkyl, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any suitable process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the abovementioned polyolefins with a difunctional reagent such as diacid, dianhydride, diepoxy, and the like. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as diacid, dianhydride, diepoxy, and the like.
  • copolymers mentioned above, (B1) and (B2) can be copolymerized in a random or block fashion and have a linear or branched structure.
  • the molecular weight, the MFI number, the density of these polyolefins can also vary to a large extent, which will be appreciated by those skilled in the art.
  • MFI short for Melt Flow Index, is the melt flow index. It is measured according to standard ASTM 1238.
  • the unfunctionalized polyolefins (B2) are chosen from homopolymers or copolymers of polypropylene and any homopolymer of ethylene or copolymer of ethylene and of a comonomer of higher alpha olefinic type. such as butene, hexene, octene or 4-methyl 1-Pentene.
  • PPs high density PE, medium density PE, linear low density PE, low density PE, very low density PE.
  • polyethylenes are known to those skilled in the art as being produced according to a “radical” process, according to a “Ziegler” type catalysis or, more recently, according to a so-called “metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha olefinic units and units bearing polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of the ter polymers of ethylene, of alkyl acrylate and of maleic anhydride or of glycidyl methacrylate, such as Lotader® from the Applicant or polyolefins grafted with l.
  • maleic anhydride such as Orevac® from the Applicant as well as ter polymers of ethylene, of alkyl acrylate and of (meth) acrylic acid.
  • Mention may also be made of homopolymers or copolymers of polypropylene grafted with a carboxylic acid anhydride and then condensed with polyamides or mono-amino polyamide oligomers.
  • said constituent composition of said sealant layer or layers is devoid of polyether block amide (PEBA).
  • PEBAs are therefore excluded from the impact modifiers.
  • said transparent composition is devoid of core-shell particles or “core-shell” core-shell polymers.
  • core-shell particle it is necessary to understand a particle of which the first layer forms the core and the second or all of the following layers form the respective shell.
  • the core-shell particle can be obtained by a multi-step process comprising at least two steps. Such a method is described for example in documents US2009 / 0149600 or EP0722961.
  • the plasticizer can be a plasticizer commonly used in compositions based on polyamide (s).
  • a plasticizer which has good thermal stability so that no fumes are formed during the stages of mixing the various polymers and of processing the composition obtained.
  • this plasticizer can be chosen from: benzene sulfonamide derivatives such as n-butyl benzene sulfonamide (BBSA), ortho and para isomers of ethyl toluene sulfonamide (ETSA), N-cyclohexyl toluene sulfonamide and N- (2-hydroxypropyl) benzene sulfonamide (HP-BSA), esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate (EHPB) and 2-decylhexyl para-hydroxybenzoate (HDPB), esters or ethers of tetrahydrofurfuryl alcohol such as oligoethyleneoxy-tetrahydrofurfurylalcohol, and esters of citric acid or of hydroxymalonic acid, such as oligoethylene oxymalonate.
  • BBSA n-butyl benzene sulfonamide
  • a preferred plasticizer is n-butyl benzene sulfonamide (BBSA).
  • Another more particularly preferred plasticizer is N- (2-hydroxy-propyl) benzene sulfonamide (HP-BSA).
  • HP-BSA N- (2-hydroxy-propyl) benzene sulfonamide
  • the polymer P2j can be a thermoplastic polymer or a thermosetting polymer.
  • One or more composite reinforcement layers may or may be present.
  • said at least one polymer is present in more than 50% by weight relative to the total weight of the composition and of the matrix of the composite.
  • said at least one major polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight total composition,
  • Said composition can also comprise impact modifiers and / or additives.
  • the additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a plasticizer and a colorant, except for a nucleating agent.
  • said composition consists of said thermoplastic polymer P2j predominantly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of constituents of the composition being equal to 100% by weight.
  • Said at least one majority polymer of each layer may be identical or different.
  • a single major polymer is present at least in the composite reinforcing layer and which does not adhere to the sealing layer.
  • each reinforcing layer comprises the same type of polymer, in particular an epoxy or epoxy-based resin.
  • thermoplastic or thermoplastic polymer
  • Tg temperature of glass transition
  • Tf melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number average molecular weight Mn of said thermoplastic polymer is preferably in a range of 10,000 to 40,000, preferably 10,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to ISO 307: 2007 but changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
  • polyamides in particular comprising an aromatic and / or cycloaliphatic structure, including copolymers, for example polyamide-polyether copolymers, polyesters, polyaryletherketones (PAEKs ), polyetherether ketones (PEEK), polyetherketone ketones (PEKK), polyetherketoneetherketone ketones (PEKEKK), polyimides in particular polyetherimides (PEI) or polyamide-imides, polylsulfones (PSU) in particular polyarylsulfones (PSU) polyphenyl sulfones
  • PPSU polyethersulfones
  • semi-crystalline polymers are more particularly preferred, and in particular polyamides and their semi-crystalline copolymers.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • the semi-crystalline polyamides are semi-aromatic polyamides, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • (Cb diacid) with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, the unit (Ca diamine) being chosen from aliphatic, linear or branched diamines, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids ;
  • XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 11 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T, one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 6T, PA 11 /
  • T is terephthalic acid
  • MXD is m-xylylenediamine
  • MPMD is methylpentamethylene diamine
  • BAC is bis (aminomethyl) cyclohexane.
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80 ° C.
  • thermosetting polymers are chosen from epoxy or epoxy-based resins, polyesters, vinyl esters and polyurethanes, or a mixture of these, in particular epoxy or epoxy-based resins.
  • each composite reinforcing layer consists of a composition comprising the same type of polymer, in particular an epoxy resin or an epoxy-based resin.
  • Said composition comprising said polymer P2j may be transparent to radiation suitable for welding.
  • the winding of the composite reinforcing layer around the waterproofing layer is carried out in the absence of any subsequent welding.
  • Said multilayer structure therefore comprises at least one waterproofing layer and at least one composite reinforcing layer which is wrapped around the waterproofing layer and which may or may not adhere to each other.
  • sealing and reinforcing layers do not adhere to each other and consist of compositions which respectively comprise different polymers.
  • said different polymers can be of the same type.
  • one of the two composite sealing and reinforcing layers consists of a composition comprising an aliphatic polyamide
  • the other layer consists of a composition comprising a polyamide which is not aliphatic and which is for example a semi-aromatic polyamide so as to have a high tg polymer as the matrix of the composite reinforcement.
  • Said multilayer structure can include up to 10 waterproofing layers and up to
  • said structure is devoid of any binder or adhesive layer, whether between the sealing layers, or between the composite reinforcing layers, or between the outermost sealing layer and the innermost composite reinforcing layer. .
  • said multilayer structure is not necessarily symmetrical and that it can therefore include more waterproofing layers than composite layers or vice versa, but there cannot be alternation of layers and of reinforcing layer.
  • said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten layers composite reinforcement.
  • said multilayer structure comprises one, two, three, four or five waterproofing layers and one, two, three, four or five composite reinforcement layers.
  • said multilayer structure comprises one, two or three waterproofing layers and one two or three composite reinforcement layers.
  • compositions which respectively comprise different polymers consist of compositions which respectively comprise polyamides corresponding to polyamides P1i and an epoxy resin or based on epoxy P2j.
  • said multilayer structure comprises a single waterproofing layer and several reinforcing layers, said adjacent reinforcing layer being wrapped around said waterproofing layer and the other reinforcing layers being wrapped around the reinforcing layer. directly adjacent.
  • said multilayer structure comprises a single reinforcing layer and several sealing layers, said reinforcing layer being wrapped around said adjacent sealing layer.
  • said multilayer structure comprises a single waterproofing layer and a single composite reinforcing layer, said reinforcing layer being wrapped around said waterproofing layer.
  • each sealing layer consists of a composition comprising the same type of polymer P1i, in particular a polyamide.
  • polystyrene resin By the same type of polymer is meant, for example, a polyamide which can be an identical or different polyamide depending on the layers.
  • said polymer P1i is a polyamide and said polymer P2j is an epoxy or epoxy-based resin.
  • the polyamide P1i is identical for all the waterproofing layers.
  • said polymer P1i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12.
  • the polyamide P1i is a long-chain semi-aromatic polyamide, in particular PA 11 / 5T, PA 11 / 6T or PA 11 / 10T.
  • the level of 11 must be chosen judiciously so that the Tm of said polymers is less than 280 ° C, preferably 265 ° C.
  • each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular an epoxy or epoxy-based resin.
  • each sealing layer consists of a composition comprising the same type of polymer P1i, in particular a polyamide and each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular an epoxy resin or an epoxy-based resin.
  • said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, one PA11 / 10T, one PA 11 / BACT, one PA 5T / 10T, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T, one PA and 11 / MXDT / 10T.
  • PA MPMDT / 6T one PA11 / 10T, one PA 11 / BACT,
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212 , PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA11 / 10T, a PA 11 / BACT, a PA 5T / 10T, a PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T,
  • PA 11 / MP M DT / 10T PA 11 / BACT / 10T and a PA 11 / MXDT / 10T.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA12, in particular PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA PA11 / 10T, a PA 11 / BACT, a PA 5T / 10T and a PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T and a PA 11 / MXDT / 10T.
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T, in particular PA 11 or PA12 and said polymer P2j is an epoxy or epoxy-based resin.
  • said polymer P1i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T, in particular PA 11 or PA12 and said polymer P2j is an epoxy or epoxy-
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T, in particular PA12 and said polymer P2j is an epoxy or epoxy resin.
  • said multilayer structure further comprises at least one outer layer made of a continuous fiberglass fibrous material impregnated with a transparent amorphous polymer, said layer being the outermost layer of said multilayer structure.
  • Said outer layer is a second but transparent reinforcing layer which makes it possible to put an inscription on the structure.
  • Said outer layer in no way corresponds to the layer located above the outermost composite reinforcing layer of polyamide polymer, the structure of which is not mentioned above.
  • constituent fibers of said fibrous material they are in particular fibers of mineral, organic or plant origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material can therefore comprise up to 3.5% by weight of an organic material (thermosetting or thermoplastic resin type) called sizing.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers, for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers, for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • they are based on a semi-crystalline thermoplastic polymer and have a melting point Tm greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is amorphous, or greater than the Tm. of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • the organic fibers constituting the fibrous material during impregnation with the thermoplastic matrix of the final composite.
  • the fibers of plant origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, in particular spider silk, sisal, and other cellulose fibers, in particular viscose. These fibers of plant origin can be used pure, treated or coated with a coating layer, in order to facilitate the adhesion and the impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be fabric, braided or woven with fibers.
  • organic fibers can be mixed with mineral fibers to be pre-impregnated with thermoplastic polymer powder and to form the pre-impregnated fibrous material.
  • the rovings of organic fibers can have several grammages. They can also have several geometries.
  • the fibers constituting the fibrous material can also be in the form of a mixture of these reinforcing fibers of different geometries. Fibers are continuous fibers.
  • the fibrous material is chosen from glass fibers, carbon fibers, basalt or basalt-based fibers, or a mixture of these, in particular carbon fibers.
  • It is used as a wick or several wicks.
  • the present invention relates to a method of manufacturing a multilayer structure as defined above, characterized in that it comprises a step of preparing the sealing layer by extrusion blow molding, by rotational molding, by injection and / or extrusion.
  • said method of manufacturing a multilayer structure comprises a step of filament winding of the reinforcing layer as defined above around the sealing layer as defined above.
  • Figure 1 shows the notched Charpy impact at -40 ° C according to ISO 179-1: 2010 of four liners: from left to right PA11, PA12, PA6 and PA66.
  • Figure 2 shows the hydrogen permeability at 23 ° C of PA12 and HDPE liners.
  • the permeability must then be multiplied by 101325.
  • Figure 3 shows the notched Charpy shock at -40 ° C according to ISO 179-1: 2010 for PA11 and PA12 liners: for each group of histograms, PA11 is on the left and PA12 is on the right.
  • the first group corresponds to 0% plasticizer, the second group to 7% plasticizer and the last group to 12% plasticizer.
  • the tanks are obtained by rotational molding of the sealing layer (liner) at a temperature suited to the nature of the thermoplastic resin used.
  • a wet filament winding process is then used which consists in winding fibers around the liner, which fibers are pre-impregnated in an epoxy bath. liquid or a liquid epoxy-based bath.
  • the reservoir is then polymerized in an oven for 2 hours.
  • thermoplastic resin a fibrous material impregnated with the thermoplastic resin (tape) is used.
  • This tape is deposited by filament winding using a robot comprising a 1500W power laser heater at a speed of 12m / min and there is no polymerization step.
  • Example 1 Notched Charpy shock at -40 ° C according to ISO 179-1: 2010
  • Two long chain liners of PA11 and PA12 and two short chain liners were prepared by rotational molding as above.
  • the cold resistance of long-chain liners is much better than that of short-chain liners PA6 and PA66.
  • Two long chain liners one in PA11 (Arkema) and the second in PA12 (Arkema) and one liner in HDPE were prepared by rotational molding and the hydrogen permeability at 23 ° C was tested.
  • Two liners PA11 and PA12 without plasticizer or comprising 7 or 12% plasticizer (BBSA) relative to the total weight of the composition were prepared by rotational molding.
  • the plasticizer has a deleterious cold effect, it weakens the structure and increases the permeability, in particular by 50% with 7% BBSA.
  • LT cocktail having the following composition: lotader® 4700 (50%) + lotader® AX8900 (25%) + lucalene® 3110 (25%)) on the permeability to hydrogen of the liner PA12.
  • the permeability can also be expressed in (cc.25p / m 2 .24h.Pa).
  • the permeability must then be multiplied by 101325.
  • Example 5 Type IV hydrogen storage tank, composed of an epoxy composite reinforcement (Tg 120 ° C) T700SC31E carbon fibers (produced by Toray) and a waterproofing layer of PA11.
  • the operating temperature is sufficient for rapid filling of the tank, especially in 3 to 5 minutes.
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 120 ° C) T700SC31E carbon fibers (produced by Toray) and an HDPE waterproofing layer.
  • the operating temperature is too low for rapid filling of the tank, especially in 3 to 5 minutes.
  • Example 7 Type IV hydrogen storage tank, composed of a reinforcement of BACT / 10T carbon fiber T700SC31 E composite (produced by Toray) and a waterproofing layer of PA12.
  • the BACT / 10T type composition chosen has a melting point, Tm, of 283 ° C, a crystallization temperature, Te, of 250 ° C and a glass transition temperature of 164 ° C.
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • a PA BACT / 10T-based composite exhibits a high Tg matrix, but without having long crosslinking, of the 8h type at 140 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Structure multicouche, destinée au transport, à la distribution et au stockage de l'hydrogène, comprenant, de l'intérieur vers l'extérieur, au moins une couche d'étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d'étanchéité (1) adjacente la plus externe, lesdites couches d'étanchéité étant constituées d'une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide à longue chaine P1i, i=1 à n, n étant le nombre de couches d'étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 160°C, à l'exclusion d'un polyéther block amide (PEBA), jusqu'à 50% en poids de modifiant choc par rapport au poids total de la composition, jusqu'à 1,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d'agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d'étanchéité pouvant être identique ou différent, et au moins l'une des dites couches de renfort composite étant constituée d'un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, j=1 à m, m étant le nombre de couches de renfort, en particulier une résine époxyde ou à base d'époxyde, ladite structure étant dépourvue d'une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.

Description

DESCRIPTION
TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE
L’HYDROGENE
[Domaine technique]
La présente demande de brevet concerne des structures multicouches composites pour le transport, la distribution ou le stockage de l’hydrogène, en particulier pour la distribution ou le stockage de l’hydrogène, et leur procédé de fabrication.
[Technique antérieure]
Les réservoirs d’hydrogène représentent un sujet qui attire actuellement beaucoup d’intérêt de la part de nombreux industriels, notamment dans le domaine automobile. L’un des buts recherché est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.
De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables, des temps de recharge beaucoup plus long que les durées de remplissage de réservoir, ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.
L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.
Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (liner ou couche d’étanchéité) métallique qui doit empêcher la perméation de l'hydrogène. L’un des types de réservoirs envisagés, appelé Type IV, est basé sur un liner thermoplastique autour duquel est enroulé un composite.
Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une indépendamment de l'autre. Dans ce type de réservoir on associe liner (ou gaine d’étanchéité) en résine thermoplastique à une structure de renforcement constituée de fibres (verre, aramide, carbone) encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères.
Les liners doivent présenter certaines caractéristiques de base :
La possibilité d’être transformé par extrusion soufflage, rotomoulage, injection, ou extrusion
Une faible perméabilité à l’hydrogène, la perméabilité du liner est en effet un facteur clé pour limiter les pertes d’hydrogène du réservoir ;
De bonnes propriétés mécaniques (fatigue) à basses températures (-40 à -70°C) ;
Une tenue thermique à 120°C.
En effet, il est nécessaire d’augmenter la vitesse de remplissage du réservoir d’hydrogène qui doit être environ équivalente à celle d’un réservoir à essence pour moteur thermique (environ 3 à 5 minutes) mais cette augmentation de vitesse provoque un échauffement du réservoir plus importante qui atteint alors une température d’environ 100°C.
L’évaluation des performances et de la sécurité des réservoirs d’hydrogène peut être déterminée dans un laboratoire de référence Européen (GasTeF : installation de test des réservoirs d’hydrogène) tel que décrit dans Galassi et al. (Word hydrogen energy conférence 2012, Onboard compressed hydrogen storage : fast filing experiments and simulations, Energy Procedia 29, (2012) 192-200).
La première génération de réservoirs de type IV utilisait un liner sur base polyéthylène haute densité (HDPE).
Cependant, HDPE présente le défaut d’avoir une température de fusion trop basse et une perméabilité à l’hydrogène élevée, ce qui représente un problème avec les nouvelles exigences en matière de tenue thermique et ne permet pas d’augmenter la vitesse de remplissage du réservoir.
Depuis plusieurs années, des liners sur base polyamide PA6 se sont développés. Néanmoins, le PA6 présente le désavantage d’avoir une faible tenue à froid.
La demande EP3112421 décrit une composition de résine polyamide pour un article moulé destiné à de l'hydrogène haute pression, la composition comprenant: une résine polyamide 6 (A); et une résine polyamide (B) ayant un point de fusion, tel que déterminé par DSC, qui n'est pas supérieur au point de fusion de la résine polyamide 6 (A) + 20 ° C et une température de cristallisation de refroidissement, telle que déterminée par DSC, qui est plus élevée que la température de cristallisation de refroidissement de la résine polyamide 6 (A).
La demande française FR2923575 décrit un réservoir pour le stockage de fluide sous haute pression comportant à chacune de ses extrémités le long de son axe un embout métallique d'extrémité, un liner enveloppant lesdits embouts et une couche structurelle en fibre imprégnée de résine thermodurcissable enveloppant ledit liner.
La demande EP3222668 décrit une composition de résine polyamide pour un article moulé destiné à de l'hydrogène haute pression, la composition comprenant une résine polyamide (A) comprenant un motif dérivé de l'hexaméthylènediamine et un motif dérivé d'un acide dicarboxylique aliphatique de 8 à 12 atomes de carbone et un copolymère éthylène / a -oléfine (B) modifié avec un acide carboxylique insaturé et / ou un de ses dérivés.
La demande US2014/008373 décrit un cylindre de stockage léger pour un gaz comprimé à haute pression, le cylindre ayant un liner enveloppé d'une couche de contrainte, le liner comprenant: une première couche intérieure de polyamide (PA) modifié choc en contact avec le gaz, une couche thermoplastique externe en contact avec la couche de contrainte; et une couche de liaison adhésive entre la première couche de PA interne modifiée aux chocs et la couche thermoplastique externe.
W01 8155491 décrit un composant de transport d’hydrogène présentant une structure tricouche dont la couche interne est une composition constituée de PA11 , de 15 à 50% d’un modifiant choc et de 1 à 3% de plastifiant ou dépourvue de plastifiant qui présente des propriétés barrière à l’hydrogène, une bonne flexibilité et durabilité à faible température. Cependant, cette structure est adaptée à des tuyaux pour le transport de l’hydrogène mais pas pour le stockage de l’hydrogène.
Ainsi, il reste à optimiser d’une part, la matrice du composite de façon à optimiser sa résistance mécanique à haute température et d’autre part le matériau composant la gaine d’étanchéité, de façon à optimiser sa température de mise en oeuvre. Ainsi, la modification éventuelle de la composition du matériau composant la gaine d’étanchéité, qui sera faite ne doit pas se traduire par une augmentation significative de la température de fabrication (extrusion-soufflage, injection, rotomoulage...) de ce liner, par rapport à ce qui se pratique aujourd’hui.
Ces problèmes sont résolus par la fourniture d’une structure multicouche de la présente invention destinée au transport, à la distribution ou au stockage de l’hydrogène Dans toute cette description, les termes « liner » et « gaine d’étanchéité » ont la même signification.
La présente invention concerne donc une structure multicouche, destinée au transport, à la distribution ou au stockage de l’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d’étanchéité (1) adjacente la plus externe, la ou lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 160°C, en particulier supérieure à 170°C, à l’exclusion d’un polyéther block amide (PEBA), jusqu’à 50% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 12% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d’agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, j=1 à m, m étant le nombre de couches de renfort, en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.
Les Inventeurs ont donc trouvé de manière inattendue que l’utilisation d’un polymère thermoplastique polyamide à longue chaîne semi-cristallin, comprenant une proportion de modifiant choc et de plastifiant limitée, pour la couche d’étanchéité, avec un polymère différent pour la matrice du composite et notamment une résine époxyde ou à base d’époxyde, ledit composite étant enroulé sur la couche d’étanchéité, permettait l’obtention d’une structure adaptée au transport, à la distribution ou au stockage de l’hydrogène et notamment une augmentation de la température maximale d’utilisation pouvant aller jusqu’à 120°C, permettant ainsi d’augmenter la vitesse de remplissage des réservoirs.
Par « structure multicouche » il faut entendre un réservoir comprenant ou constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches de renfort, ou une couche d’étanchéité et plusieurs couches de renfort, ou plusieurs couches d’étanchéité et une couche de renfort ou une couche d’étanchéité et une couche de renfort.
La structure multicouche s’entend donc à l’exclusion d’un tuyau ou d’un tube.
Les poly ether block amide (PEBA) sont des copolymères à motifs amides (Ba1) et motifs polyéthers (Ba2) ledit motif amide (Ba1 ) correspondant à un motif répétitif aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide ou un motif obtenu à partir d'au moins un lactame, ou un motif X.Y obtenu à partir de la polycondensation : - d'au moins une diamine, ladite diamine étant choisie préférentiellement parmi une diamine aliphatique linéaire ou ramifiée ou un mélange de celles-ci, et
- d'au moins un diacide carboxylique, ledit diacide étant choisi préférentiellement parmi : un diacide aliphatique linéaire ou ramifié, ou un mélange de ceux-ci, ladite diamine et ledit diacide comprenant de 4 à 36 atomes de carbone, avantageusement de 6 à 18 atomes de carbone ; lesdits motifs polyéthers (Ba2) étant notamment issus d’au moins un polyalkylène éther polyol, notamment un polyalkylène éther diol.
Les agents nucléants sont connus de l'homme du métier et se réfère à une substance qui, lorsqu'elle est incorporée dans un polymère, forme des noyaux pour la croissance de cristaux dans le polymère fondu.
Ils peuvent être choisis par exemple parmi le micro talc, le noir de carbone, la silice, le dioxyde de titane et les nano-argiles.
Dans un mode de réalisation, le PA6 et le PA610 sont exclus de ladite composition. L’expression « ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide » signifie que la structure est dépourvue d’une couche en polymère polyamide située au- dessus de la couche de renfort composite la plus extérieure.
Dans un mode de réalisation, ladite structure multicouche est constituée de deux couches, une couche d’étanchéité et une couche de renfort.
La couche ou les couches d’étanchéité sont les couches les plus internes par rapport aux couches de renfort composites qui sont les couches les plus externes.
Le réservoir peut être un réservoir pour le stockage mobile de l’hydrogène, c’est-à-dire sur un camion pour le transport de l’hydrogène, sur une voiture pour le transport de l’hydrogène et l’alimentation en hydrogène d’une pile à combustible par exemple, sur un train pour l’alimentation en hydrogène ou sur un drone pour l’alimentation en hydrogène, mais il peut être également un réservoir de stockage stationnaire de l’hydrogène en station pour la distribution d’hydrogène à des véhicules.
Avantageusement, la couche d’étanchéité (1) est étanche à l’hydrogène à 23°C, c’est-à- dire que la perméabilité à l’hydrogène à 23°C est inférieure à 500 cc.mm/m2.24h.atm à 23°C sous 0% d’humidité relative (RH).
Dans un mode de réalisation, la ou lesdites couches d’étanchéité sont constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide PU, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 160°C, en particulier supérieure à 170°C, à l’exclusion d’un polyéther block amide (PEBA), et à l’exclusion de PA11. La ou les couches de renfort composite est (sont) enroulée(s) autour de la couche d’étanchéité au moyen de rubans (ou tapes ou rovings) de fibres imprégnés de polymère qui sont déposés par exemple, par enroulement filamentaire.
Lorsque plusieurs couches sont présentes, les polymères sont différents.
Lorsque les polymères des couches de renfort sont identiques, il peut y avoir présence de plusieurs couches mais avantageusement, une seule couche de renfort est présente et qui présente alors au moins un enroulement complet autour de la couche d’étanchéité.
Ce procédé totalement automatisé, bien connu de l’homme du métier permet, couche par couche, de choisir les angles d’enroulement qui vont donner à la structure finale son aptitude à résister au chargement de pression interne.
Lorsque plusieurs couches d’étanchéité sont présentes, seule la couche la plus interne des couches d’étanchéité est en contact direct avec l’hydrogène.
Lorsque seules une couche d’étanchéité et une couche de renfort composite sont présentes, conduisant donc à une structure multicouche à deux couches, alors ces deux couches peuvent adhérer l’une à l’autre, en contact direct l’une avec l’autre, notamment en raison de l’enroulement de la couche de renfort composite sur la couche d’étanchéité. Lorsque plusieurs couches d’étanchéité sont présentes et/ou plusieurs couches de renfort composite, alors la couche la plus externe desdites couches d’étanchéité, et donc à l’opposé de la couche en contact avec l’hydrogène, peut adhérer ou non à la couche la plus interne desdites de renfort composite.
Les autres couches de renfort composite peuvent également adhérer ou non entre elles. Les autres couches d’étanchéité peuvent aussi adhérer ou non entre elles. Avantageusement, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles.
Avantageusement, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles et la couche de renfort est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, en particulier une résine époxyde ou à base d’époxyde.
Dans un mode de réalisation, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles et la couche de renfort est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement un polymère P2j qui est une résine époxyde ou à base d’époxyde.
L’expression à base d’époxyde dans toute la description signifie que l’époxyde représente au moins 50% en poids de la matrice.
S’agissant de la ou des couches d’étanchéité et du polymère thermoplastique P1i Une ou plusieurs couches d’étanchéité peut ou peuvent être présente(s).
Chacune desdites couches est constituée d’une composition comprenant majoritairement au moins un polymère thermoplastique P1i, i correspondant au nombre de couches présentes i est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement i = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition.
Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids 90% en poids, par rapport au poids total de la composition.
Ladite composition peut également comprendre jusqu’à 50% en poids par rapport au poids total de la composition de modifiants choc et/ou un plastifiant et/ou des additifs.
Les additifs peuvent être choisis parmi un autre polymère, un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées, à l’exception d’un agent nucléant, en particulier les additifs sont choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées, à l’exception d’un agent nucléant.
Ledit autre polymère peut être un autre polymère thermoplastique semi-cristallin ou un polymère différent et notamment un EVOH (Ethylène vinyle alcool).
Avantageusement, ladite composition comprend ledit polymère thermoplastique P1i majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche d’étanchéité qui n’adhère pas à la couche de renfort composite. Dans un mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 12% en poids de modifiant choc par rapport au poids total de la composition.
Dans un mode de réalisation, ladite composition est dépourvue de plastifiant.
Dans un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 12% en poids de modifiant choc et ladite composition est dépourvue de plastifiant par rapport au poids total de la composition.
Dans encore un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 12% en poids de modifiant choc et de 0,1 à 1 ,5% en poids de plastifiant par rapport au poids total de la composition.
Dans un autre mode de réalisation, ladite composition est dépourvue de modifiant choc. Avantageusement, ladite composition comprend de 0,1 à 1 ,5% en poids de plastifiant par rapport au poids total de la composition et ladite composition est dépourvue de modifiant choc.
Dans encore un autre mode de réalisation, ladite composition est dépourvue de modifiant choc et de plastifiant.
Dans ce dernier mode de réalisation, ladite composition comprend ledit polymère thermoplastique P1i majoritairement et de 0 à 5% en poids d’additifs, en particulier de 0,1 à 5% d’additifs, la somme des constituants de la composition étant égale à 100%.
Dans ce cas, ledit polymère thermoplastique P1i majoritaire est en mélange avec un autre polyamide.
Avantageusement, ladite composition comprend ledit polymère thermoplastique P1i et de 0 à 5% en poids d’additifs, en particulier de 0,1 à 5% d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i majoritairement et de 0 à 5% en poids d’additifs, en particulier de 0,1 à 5% d’additifs, la somme des constituants de la composition étant égale à 100%.
Dans ce cas, ledit polymère thermoplastique P1i majoritaire est en mélange avec un autre polyamide.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i et de 0 à 5% en poids d’additifs, en particulier de 0,1 à 5% d’additifs, la somme des constituants de la composition étant égale à 100%.
Polymère thermoplastique P1i
On entend par thermoplastique, ou polymère thermoplastique semi-cristallin, un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique polyamide semi-cristallin est de préférence dans une plage allant de de 10000 à 85000, notamment de 10000 à 60000, préférentiellement de 10000 à 50000, encore plus préférentiellement de 12000 à 50000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Dans un mode de réalisation, ledit polymère thermoplastique est un polyamide aliphatique à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8,5, de préférence supérieur à 9, en particulier supérieur à 10.
En particulier, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 11 (PA11), le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA11 et le PA12.
Plus particulièrement, le polyamide 11 (PA11), le polyamide 12 (PA12), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA11 et le PA12.
Dans un mode de réalisation, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA12.
Dans un autre mode de réalisation, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 12 (PA12), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA12. Dans un autre mode de réalisation, ledit polymère thermoplastique polyamide semi- cristallin est un polyamide semi-aromatique semi-cristallin à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8,5, de préférence supérieur à 9, en particulier supérieur à 10, et une température de fusion comprise entre 240°C à moins de 280°C.
En particulier, le polyamide semi-aromatique semi-cristallin à longue chaîne est choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.
Avantageusement, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polyamide.
Dans le cas où une soudure est nécessaire, il existe diverses méthodes permettant de souder des éléments en polymère thermoplastique polyamide. Ainsi, il peut être utilisé des lames chauffantes avec ou sans contact, des ultrasons, des infra-rouges, une application de vibrations, une rotation d’un élément à souder contre l’autre ou encore la soudure laser.
S’agissant du modifiant choc
Le modifiant choc peut être tout modifiant choc à partir du moment où un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l’énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d’inflexion du thermogramme DSC), en particulier une polyoléfine.
Dans un mode de réalisation, les PEBA sont exclus de la définition des modifiants choc. La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d'au moins une fonctionnalisée et/ou d'au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (B1) et des polyoléfines non fonctionnalisées (B2).
Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, octène-1 , butadiène. A titre d'exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE(linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE(very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène. - les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids. La polyoléfine fonctionnalisée (B1) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids.
La polyoléfine fonctionnalisée (B1) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères. La polyoléfine fonctionnalisée (B1) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A-0342066).
La polyoléfine fonctionnalisée (B1) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.
A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.
Le terme "(méth)acrylate d'alkyle" dans (B1) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en C1 à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (B1) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (B1) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238. Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l’éthylène ou copolymère de l’éthylène et d’un comonomère de type alpha oléfinique supérieur tel que le butène, l’hexène, l’octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l’Homme de l’Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (B1 ) sont choisies parmi tout polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d’acide carboxylique. A titre d’exemples de tels polymères, on peut citer les ter polymères de l’éthylène, d’acrylate d’alkyle et d’anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfines greffées par de l’anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l’éthylène, d’acrylate d’alkyle et d’acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d'acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide.
Avantageusement, ladite composition constitutive de ladite ou desdites couches d’étanchéité est dépourvue de polyéther block amide (PEBA). Dans ce mode de réalisation, les PEBA sont donc exclus des modifiants choc.
Avantageusement, ladite composition transparente est dépourvue de particules cœur- écorce ou polymères cœur-écorce « core-shell ».
Par particule cœur-écorce, il faut comprendre une particule dont la première couche forme le cœur et la deuxième ou toutes les couches suivantes forment les écorces respectives.
La particule cœur-écorce « core-shell » peut-être obtenu par un procédé à plusieurs étapes comprenant au moins deux étapes. Un tel procédé est décrit par exemple dans les documents US2009/0149600 ou EP0722961.
S’agissant du plastifiant
Le plastifiant peut être un plastifiant couramment utilisé dans les compositions à base de polyamide(s).
Avantageusement, on utilise un plastifiant qui présente une bonne stabilité thermique afin qu'il ne se forme pas de fumées lors des étapes de mélange des différents polymères et de transformation de la composition obtenue.
En particulier, ce plastifiant peut être choisi parmi : les dérivés du benzène sulfonamide tels que le n-butyl benzène sulfonamide (BBSA), les isomères ortho et para de l’éthyl toluène sulfonamide (ETSA), le N-cyclohexyl toluène sulfonamide et le N-(2-hydroxypropyl) benzène sulfonamide (HP-BSA), les esters d’acides hydroxybenzoïques tels que le para-hydroxybenzoate d'éthyl-2 hexyle (EHPB) et le para-hydroxybenzoate de décyl-2 hexyle (HDPB), les esters ou éthers du tétrahydrofurfuryl alcool comme l’oligoéthylèneoxy- tétrahydrofurfurylalcool, et les esters de l’acide citrique ou de l’acide hydroxymalonique, tels que l’oligoéthylèneoxymalonate.
Un plastifiant préféré est le n-butyl benzène sulfonamide (BBSA).
Un autre plastifiant plus particulièrement préféré est le N-(2-hydroxy-propyl) benzène sulfonamide (HP-BSA). Ce dernier présente en effet l'avantage d'éviter la formation de dépôts au niveau de la vis et/ou de la filière d'extrusion ("larmes de filières"), lors d'une étape de transformation par extrusion.
On peut bien évidemment utiliser un mélange de plastifiants.
S’agissant de la couche de renfort composite et du polymère P2j Le polymère P2j peut être un polymère thermoplastique ou un polymère thermodurcissable.
Une ou plusieurs couches de renfort composite peut ou peuvent être présente(s).
Chacune desdites couches est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère thermoplastique P2j, j correspondant au nombre de couches présentes j est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement j = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition et de la matrice du composite. Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition,
Ladite composition peut également comprendre des modifiants choc et/ou des additifs.
Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un plastifiant et un colorant, à l’exception d’un agent nucléant. Avantageusement, ladite composition est constituée dudit polymère thermoplastique P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% en poids.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche de renfort composite et qui n’adhère pas à la couche d’étanchéité.
Dans un mode de réalisation, chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.
Polymère P2j
Polymère thermoplastique P2j
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante, pouvant être semi-cristallin ou amorphe, en particulier semi-cristallin et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg) et s’écoule à plus haute température lorsqu’il est amorphe, ou pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf) lorsqu’il est semi-cristallin, et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation, Te, (pour un semi-cristallin) et en dessous de sa température de transition vitreuse (pour un amorphe).
La Tg, Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 10000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
Comme exemples de polymères thermoplastiques semi-cristallins convenables dans la présente invention, on peut citer : les polyamides, en particulier comprenant une structure aromatique et/ou cycloaliphatique, y compris les copolymères par exemple les copolymères polyamides- polyéthers, polyesters, les polyaryléthercétones (PAEK), les polyétheréther cétones (PEEK), les polyéthercétone cétones (PEKK), les polyéthercétoneéthercétone cétones (PEKEKK), les polyimides en particulier les polyétherimides (PEI) ou les polyamide-imides, les polylsulfones (PSU) en particulier les polyarylsulfones tels que les polyphényl sulfones
(PPSU), les polyéthersulfones (PES). les polymères semi-cristallins sont plus particulièrement préférés, et en particulier les polyamides et leurs copolymères semi-cristallins.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11 /MP M DT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane. Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C.
Polymère thermodurcissable P2j
Les polymères thermodurcissables sont choisis parmi les résines époxydes ou à base d’époxyde, les polyesters, les vinylesters et polyuréthannes, ou un mélange de ceux-ci en particulier les résines époxyde ou à base d’époxyde.
Avantageusement, chaque couche de renfort composite est constituée d’une composition comprenant le même type de polymère, en particulier une résine époxyde ou à base d’époxyde. Ladite composition comprenant ledit polymère P2j peut être transparente à un rayonnement adapté à la soudure.
Dans un autre mode de réalisation, l’enroulement de la couche de renfort composite autour de la couche d’étanchéité est effectué en l’absence de toute soudure ultérieure.
S’agissant de la structure
Ladite structure multicouche comprend donc au moins une couche d’étanchéité et au moins une couche de renfort composite qui est enroulée autour de la couche d’étanchéité et qui peuvent adhérer ou non entre elles.
Avantageusement, lesdites couches d’étanchéité et de renfort n’adhèrent pas entre elles et sont constituées de compositions qui comprennent respectivement des polymères différents.
Néanmoins, lesdits polymères différents peuvent être du même type.
Ainsi, si l’une des deux couches d’étanchéité et de renfort composite est constituée d’une composition comprenant un polyamide aliphatique, alors l’autre couche est constituée d’une composition comprenant un polyamide qui n’est pas aliphatique et qui est par exemple un polyamide semi-aromatique de façon à disposer d’un polymère de haute tg comme matrice du renfort composite.
Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à
10 couches de renfort composite de natures différentes.
Avantageusement, ladite structure est dépourvue de couche de liant ou adhésive que ce soit entre les couches d’étanchéités, ou entre les couches de renfort composites, ou encore entre la couche d’étanchéité la plus extérieure et la couche de renfort composite la plus intérieure.
11 est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa mais il ne peut y avoir alternance de couches et de couche de renfort. Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite.
Avantageusement, elles sont constituées de compositions qui comprennent respectivement des polymères différents. Avantageusement, elles sont constituées de compositions qui comprennent respectivement des polyamides correspondant aux polyamides P1i et une résine époxyde ou à base d’époxyde P2j.
Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche de renfort adjacente étant enroulée autour de ladite couche d’étanchéité et les autres couches de renfort étant enroulées autour de la couche de renfort directement adjacente.
Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant enroulée à ladite couche d’étanchéité adjacente.
Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite, ladite couche de renfort étant enroulée autour de ladite couche d’étanchéité.
Toutes les combinaisons de ces deux couches sont donc dans la portée de l’invention, à la condition qu’au moins ladite couche de renfort composite la plus interne soit enroulée autour de ladite couche d’étanchéité adjacente la plus externe, les autres couches adhérant ou non entre elles ou non.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1i, en particulier un polyamide.
Par l’expression même type de polymère, il faut entendre par exemple un polyamide qui peut être un polyamide identique ou différent en fonction des couches.
Avantageusement, ledit polymère P1i est un polyamide et ledit polymère P2j est une résine époxyde ou à base d’époxyde.
Avantageusement, le polyamide P1i est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polymère P1i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12. Avantageusement le polyamide P1i est un polyamide semi-aromatique à longue chaîne, en particulier PA 11/5T, PA 11/6T ou PA 11/10T. Bien évidemment dans ce cas, le taux de 11 doit être choisit judicieusement de façon à ce que la Tf desdits polymères soit inférieure à 280°C, de préférence 265°C.
Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde.
Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1i, en particulier un polyamide et chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde. Avantageusement, ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA et 11/MXDT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi- aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T,
PA 11 /MP M DT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.
Dans un autre mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, notamment PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA11/10T, un PA 11/BACT, un PA 5T/10T un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.
Dans un encore autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA 11 ou PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde.
Dans un autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde. Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
Ladite couche externe est une seconde couche de renfort mais transparente qui permet de pouvoir mettre une inscription sur la structure.
Ladite couche externe ne correspond en aucun cas à la couche située au-dessus de la couche de renfort composite la plus extérieure en polymère polyamide dont la structure est dépourvue citée ci-dessus.
S’agissant du matériau fibreux
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.
Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi- cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.
De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
Il est utilisé sous forme d’une mèche ou de plusieurs mèches.
Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape de préparation de la couche d’étanchéité par extrusion soufflage, par rotomoulage, par injection et/ou par extrusion.
Dans un mode de réalisation, ledit procédé de fabrication d’une structure multicouche comprend une étape d’enroulement filamentaire de la couche de renfort telle que définie ci-dessus autour de la couche de d’étanchéité telle que définie ci-dessus.
Toutes les caractéristiques détaillée ci-dessus s’appliquent également au procédé.
Brève description des figures.
La figure 1 présente le choc Charpy entaillé à -40°C selon ISO 179-1 :2010 de quatre liners :de gauche à droite PA11, PA12, PA6 et PA66.
La figure 2 présente la perméabilité à l’hydrogène à 23°C de liners PA12 et HDPE.
Elle est exprimée en cc.mm/m2.24h.atm. Elle peut être exprimée en cc.25p/m2.24h.Pa.
La perméabilité doit alors être multipliée par 101325.
La figure 3 présente le choc Charpy entaillé à -40°C selon ISO 179-1 :2010 de liners PA11 et PA12 : pour chaque groupe d’histogrammes, PA11 est à gauche et PA12 est à droite. Le premier groupe correspond à 0% de plastifiant, le second groupe à 7% de plastifiant et le dernier groupe à 12% de plastifiant.
EXEMPLES
Dans tous les exemples, les réservoirs sont obtenus par rotomoulage de la couche d’étanchéité (liner) à une température adaptée à la nature de la résine thermoplastique utilisée. Dans le cas du renfort composite en résine époxyde ou à base d’époxyde, on utilise ensuite un procédé d’enroulement filamentaire voie humide qui consiste à enrouler des fibres autour du liner, lesquelles fibres étant préalablement pré-imprégnée dans un bain d’époxyde liquide ou un bain à base d’époxyde liquide. Le réservoir est ensuite polymérisé en étuve pendant 2h.
Dans tous les autres cas, on utilise ensuite un matériau fibreux préalablement imprégné par la résine thermoplastique (tape). Cette tape est déposée par enroulement filamentaire au moyen d’un robot comportant un chauffage laser de puissance 1500W à la vitesse de 12m/min et il n’y a pas d’étape de polymérisation.
Exemple 1 : Choc Charpy entaillé à -40°C selon ISO 179-1 :2010
Deux liners à longue chaîne en PA11 et PA12 et deux liners à chaîne courte ont été préparés par rotomoulage comme ci-dessus.
Ces quatre liners ont été testés en choc Charpy entaillé à -40°C et les résultats sont présentés dans la figure 1.
La tenue à froid des liners à longue chaîne est très nettement supérieure à celles des liners à courte chaîne PA6 et PA66.
Exemple 2:
Perméabilité de liners PA 11 et PA12 (Arkema) et HDPE (Marlex® HMN TR-942 (Chevron Phillips))
Deux liners à longue chaîne : un en PA11 (Arkema) et le deuxième en PA12 (Arkema) et un liner en HDPE ont été préparés par rotomoulage et la perméabilité à l’hydrogène à 23°C a été testée.
Cela consiste à balayer la face supérieure du film par le gaz d'essai (Hydrogène) et à mesurer par chromatographie en phase gazeuse le flux qui diffuse à travers le film dans la partie inférieure, balayée par le gaz vecteur : l’Azote Les conditions expérimentales sont présentées dans le tableau 1 :
[Tableaux 1]
Figure imgf000024_0001
Figure imgf000025_0001
Les résultats sont présentés en figure 2 et montrent que le liner en PA11 et le liner en PA12 présentent tous deux une perméabilité très inférieure à celle d’un liner H DPE. Exemple 3 : influence de la proportion de plastifiant (N-butyl benzène sulfonamide :
BBSA) sur le choc Charpy entaillé à -40°C selon ISO 179-1 :2010
Deux liners PA11 et PA12 sans plastifiant ou comprenant 7 ou 12% de plastifiant (BBSA) par rapport au poids total de la composition ont été préparés par rotomoulage.
Ces liners ont été testés en choc Charpy entaillé à -40°C selon ISO 179-1 :2010 et les résultats sont présentés dans la figure 3.
Le plastifiant a un effet délétère à froid, il fragilise la structure et augmente la perméabilité, notamment de 50% avec 7% de BBSA.
Exemple 4
Influence de la proportion de modifiant choc (« cocktail LT » présentant la composition suivante : lotader® 4700 (50%) + lotader® AX8900 (25%) + lucalène® 3110 (25%)) sur la perméabilité à l’hydrogène de liner PA12.
La perméabilité à l’hydrogène de liner en PA12, sans plastifiant et en présence ou non de modifiant choc a été testée et est reporté sur le tableau 2.
[Tableaux 2]
Figure imgf000025_0002
La perméabilité peut également être exprimée en (cc.25p/m2.24h.Pa).
La perméabilité doit alors être multipliée par 101325.
Les résultats montrent que le la proportion de modifiant choc influe sur la perméabilité à l’hydrogène.
Plus la proportion de modifiant choc est importante, plus la perméabilité augmente. Exemple 5 Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 120°C) fibres de carbone T700SC31E (produite parToray) et d’une couche d’étanchéité en PA11.
La température d’utilisation est suffisante pour un remplissage rapide du réservoir, notamment en 3 à 5 minutes.
Exemple 6 (contre exemple) :
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 120°C) fibres de carbone T700SC31E (produite parToray) et d’une couche d’étanchéité en HDPE.
La température d’utilisation est trop faible pour un remplissage rapide du réservoir notamment en 3 à 5 minutes.
Exemple 7 : Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite BACT/10T fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA12.
La composition de type BACT/10T choisie présente une température de fusion, Tf, de 283°C, une température de cristallisation, Te, de 250°C et une température de transition vitreuse de 164°C.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
Un composite à base PA BACT/10T présente une matrice à haute Tg, mais sans avoir de réticulation longue, du type 8h à 140°C.
Par conséquent, après la dépose de fibre, le réservoir est fini, ce qui permet de gagner 8h de temps de process.

Claims

REVENDICATIONS
1. Structure multicouche destinée au transport, à la distribution et au stockage de l’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d’étanchéité (1) adjacente la plus externe, lesdites couches d’étanchéité étant constituées d’une composition comprenant: plus de 50% en poids par rapport au poids total de la composition d’au moins un polymère thermoplastique polyamide à longue chaîne P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 160°C, en particulier supérieure à 170°C, ledit polymère thermoplastique polyamide à longue chaîne présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, à l’exclusion d’un polyéther block amide (PEBA), jusqu’à 50% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 12% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1 ,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d’agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant plus de 50% en poids par rapport au poids total de la composition d’au moins un polymère P2j, j=1 à m, m étant le nombre de couches de renfort, en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche en polymère polyamide, ladite couche en polymère polyamide étant la plus extérieure et adjacente à la couche la plus extérieure de renfort composite.
2. Structure multicouche selon la revendication 1 , caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide.
3. Structure multicouche selon l’une des revendications 1 ou 2, caractérisée en ce que chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.
4. Structure multicouche selon la revendication 3, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.
5. Structure multicouche selon l’une des revendications 1 à 4, caractérisée en ce qu’elle présente une seule couche d’étanchéité et une seule couche de renfort.
6. Structure multicouche selon l’une des revendications 1 à 5, caractérisée en ce que ledit polymère PU est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 ou semi- aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.
7. Structure multicouche selon l’une des revendications 1 à 6, caractérisée en ce que ledit polymère P2j est une résine époxyde ou à base d’époxyde.
8. Structure multicouche selon l’une des revendications 6 ou 7, caractérisée en ce que ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère PU est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11, PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA 11 ou PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde.
9. Structure multicouche selon l’une des revendications 1 à 8, caractérisée en ce que le matériau fibreux de la couche de renfort composite est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
10. Structure multicouche selon l’une des revendications 1 à 9, caractérisée en ce que ladite structure comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
11. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 1 à 10, caractérisé en ce qu’il comprend une étape de préparation de la couche d’étanchéité par extrusion soufflage, par rotomoulage, par injection et/ou par extrusion.
12. Procédé de fabrication d’une structure multicouche selon la revendication 11, caractérisé en ce qu’il comprend une étape d’enroulement filamentaire de la couche de renfort telle que définie dans la revendication 1 autour de la couche d’étanchéité telle que définie dans la revendication 1.
PCT/FR2021/050139 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene WO2021152253A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21708054.8A EP4096922A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene
KR1020227029676A KR20220133959A (ko) 2020-01-28 2021-01-26 수소를 수송 또는 저장하기 위한 다층 구조물
MX2022008891A MX2022008891A (es) 2020-01-28 2021-01-26 Estructura multicapa para transporte o almacenamiento de hidrogeno.
US17/792,540 US20230075842A1 (en) 2020-01-28 2021-01-26 Multilayer structure for transporting or storing hydrogen
CA3163652A CA3163652A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene
CN202180011518.3A CN115023344A (zh) 2020-01-28 2021-01-26 用于运输或储存氢气的多层结构体
JP2022545078A JP2023511976A (ja) 2020-01-28 2021-01-26 水素を輸送または貯蔵するための多層構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2000816 2020-01-28
FR2000816A FR3106646B1 (fr) 2020-01-28 2020-01-28 Structure multicouche pour le transport ou le stockage de l’hydrogene

Publications (1)

Publication Number Publication Date
WO2021152253A1 true WO2021152253A1 (fr) 2021-08-05

Family

ID=70154710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050139 WO2021152253A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene

Country Status (9)

Country Link
US (1) US20230075842A1 (fr)
EP (1) EP4096922A1 (fr)
JP (1) JP2023511976A (fr)
KR (1) KR20220133959A (fr)
CN (1) CN115023344A (fr)
CA (1) CA3163652A1 (fr)
FR (1) FR3106646B1 (fr)
MX (1) MX2022008891A (fr)
WO (1) WO2021152253A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115891230A (zh) * 2023-03-01 2023-04-04 西南石油大学 一种玄武岩纤维增强复合材料储氢瓶的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20080241562A1 (en) * 2003-08-19 2008-10-02 Solvay Advanced Polymers, L.L.C. Impact-Modified Polyamide Film
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
US20140008373A1 (en) 2011-04-01 2014-01-09 Luxfer Canada Limited Multilayer liner for a high-pressure gas cylinder
EP3112421A1 (fr) 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
EP3222668A1 (fr) 2014-11-20 2017-09-27 Toray Industries, Inc. Composition de résine polyamide pour produit moulé entrant en contact avec de l'hydrogène sous haute pression et produit moulé l'utilisant
WO2018155491A1 (fr) 2017-02-24 2018-08-30 株式会社ブリヂストン Élément de transport d'hydrogène
WO2021019181A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046826B1 (fr) * 2016-01-15 2018-05-25 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
FR3048973B1 (fr) * 2016-03-18 2019-11-15 Arkema France Compositions rigides et ductiles a froid a base de polyamide pour la preparation d'articles de sport obtenus par injection
FR3053696B1 (fr) * 2016-07-11 2018-07-06 Arkema France Composition de polyamide semi-cristallin de haute temperature de transition vitreuse pour materiau composite, son procede de fabrication et ses utilisations

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20080241562A1 (en) * 2003-08-19 2008-10-02 Solvay Advanced Polymers, L.L.C. Impact-Modified Polyamide Film
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20140008373A1 (en) 2011-04-01 2014-01-09 Luxfer Canada Limited Multilayer liner for a high-pressure gas cylinder
EP3222668A1 (fr) 2014-11-20 2017-09-27 Toray Industries, Inc. Composition de résine polyamide pour produit moulé entrant en contact avec de l'hydrogène sous haute pression et produit moulé l'utilisant
EP3112421A1 (fr) 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
WO2018155491A1 (fr) 2017-02-24 2018-08-30 株式会社ブリヂストン Élément de transport d'hydrogène
WO2021019181A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GALASSI ET AL.: "Word hydrogen energy conférence 2012, Onboard compressed hydrogen storage : fast filing experiments and simulations", ENERGY PROCEDIA, vol. 29, 2012, pages 192 - 200

Also Published As

Publication number Publication date
KR20220133959A (ko) 2022-10-05
FR3106646A1 (fr) 2021-07-30
JP2023511976A (ja) 2023-03-23
US20230075842A1 (en) 2023-03-09
FR3106646B1 (fr) 2022-06-24
CN115023344A (zh) 2022-09-06
EP4096922A1 (fr) 2022-12-07
MX2022008891A (es) 2022-08-15
CA3163652A1 (fr) 2021-08-05

Similar Documents

Publication Publication Date Title
CA3163649C (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021152255A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021209718A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2023275465A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4096922A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021152252A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2022069826A1 (fr) Structure multicouche pour le stockage de l'hydrogene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21708054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163652

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022545078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021708054

Country of ref document: EP

Effective date: 20220829