WO2021150071A1 - Polymeric composition having excellent storage stability, encapsulant, and display device - Google Patents

Polymeric composition having excellent storage stability, encapsulant, and display device Download PDF

Info

Publication number
WO2021150071A1
WO2021150071A1 PCT/KR2021/000933 KR2021000933W WO2021150071A1 WO 2021150071 A1 WO2021150071 A1 WO 2021150071A1 KR 2021000933 W KR2021000933 W KR 2021000933W WO 2021150071 A1 WO2021150071 A1 WO 2021150071A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable composition
monomer
viscosity
curing
measured
Prior art date
Application number
PCT/KR2021/000933
Other languages
French (fr)
Korean (ko)
Inventor
김경종
남시욱
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN202180010478.0A priority Critical patent/CN115003705A/en
Publication of WO2021150071A1 publication Critical patent/WO2021150071A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to a polymerizable composition having excellent storage stability, an encapsulant including an organic film formed by the polymerizable composition, and a display device including the encapsulant.
  • the light emitting element is an element capable of emitting light.
  • an organic light emitting device OLED
  • advantages such as a wide viewing angle, excellent contrast characteristics, fast response time, and low power consumption, and thus is used in various fields.
  • the organic light emitting diode may be deteriorated by contact with oxygen or moisture, and thus the lifespan may be shortened. Accordingly, in order to prevent deterioration of the organic light emitting device, an encapsulation material for protecting the organic light emitting device may be used.
  • the encapsulant for protecting the organic light emitting device may include an organic layer, and the organic layer may be made of a polymerizable composition.
  • the polymerizable composition is easily altered, the performance of the organic film formed by the polymerizable composition and the encapsulant including the same cannot be guaranteed.
  • the polymerizable composition serving as a raw material of the organic film constituting the encapsulant needs to have excellent stability.
  • An embodiment of the present invention is to provide a polymerizable composition that can be used in the manufacture of the encapsulant.
  • Another embodiment of the present invention is to provide a polymerizable composition that has excellent stability and does not deteriorate even when stored for a long time.
  • Another embodiment of the present invention is to provide an encapsulant having an organic film formed of a polymerizable composition having excellent storage stability and a display device including the encapsulant.
  • an embodiment of the present invention includes a first monomer having an acryl group, a second monomer having an acryl group and a viscosity different from that of the first monomer, and a polymerization initiator, and before the storage test, the first It has flexibility (Aa), first viscosity (Ab), first degree of curing (Ac), first shrinkage (Ad) and first surface tension (Ae), and is sealed at room temperature (25°C ⁇ 10°C) for 1 year After storage, it has a second flexibility (Ba), a second viscosity (Bb), a second degree of curing (Bc), a second shrinkage rate (Bd), and a second surface tension (Be), and is sealed and stored at 50°C for 1 year Afterwards, it has a third flexibility (Ca), a third viscosity (Cb), a third degree of hardening (Cc), a third shrinkage (Cd), and a third surface tension (Ce), and a storage change index (
  • ISV (
  • Another embodiment of the present invention provides an encapsulant including an organic film formed by the polymerizable composition.
  • Another embodiment of the present invention provides a display device including the encapsulant.
  • the polymerizable composition according to an embodiment of the present invention has a low storage change index, so that physical properties do not change even when stored for a long time, and can have excellent storage stability. Accordingly, when the polymerizable composition according to an embodiment of the present invention is used, an encapsulant having excellent moisture and oxygen barrier properties can be manufactured regardless of the storage time of the polymerizable composition.
  • a display device including an encapsulant including an organic film prepared by the polymerizable composition according to an embodiment of the present invention has excellent resistance to moisture and oxygen, and can maintain excellent display quality over a long period of time.
  • FIG. 1 is a cross-sectional view of a portion of a display device according to an exemplary embodiment of the present invention.
  • 2 is an absorbance graph of a polymerization initiator according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a portion of a display device 100 according to an exemplary embodiment.
  • a display device 100 includes a substrate 510 , a thin film transistor (TFT) on the substrate 510 , and an organic light emitting device 570 connected to the thin film transistor (TFT). ) is included.
  • the organic light emitting diode 570 includes a first electrode 571 , an organic emission layer 572 on the first electrode 571 , and a second electrode 573 on the organic emission layer 572 .
  • the display device 100 illustrated in FIG. 1 is an organic light emitting display device including an organic light emitting device 570 .
  • the substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of a plastic such as a polyimide-based resin or a polyimide-based film. Although not shown, a buffer layer may be disposed on the substrate 510 .
  • a thin film transistor is disposed on the substrate 510 .
  • the thin film transistor TFT includes a semiconductor layer 520 , a gate electrode 530 spaced apart from the semiconductor layer 520 and overlapping at least a portion of the semiconductor layer 520 , a source electrode 541 connected to the semiconductor layer 520 , and A drain electrode 542 is spaced apart from the source electrode 541 and connected to the semiconductor layer 520 .
  • a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 .
  • An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a source electrode 541 may be disposed on the interlayer insulating layer 551 .
  • the planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
  • the first electrode 571 may be disposed on the planarization layer 552 .
  • the first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
  • the bank layer 580 is disposed on a portion of the first electrode 571 and on the planarization layer 552 to define a pixel area or a light emitting area. For example, since the bank layer 580 is disposed in a matrix structure in a boundary region between a plurality of pixels, a pixel region may be defined by the bank layer 580 .
  • the organic emission layer 572 is disposed on the first electrode 571 .
  • the organic emission layer 572 may also be disposed on the bank layer 580 .
  • the organic light emitting layer 572 may include one light emitting layer or two or more light emitting layers stacked vertically. Light having any one of red, green, and blue may be emitted from the organic emission layer 572 , and white light may be emitted.
  • the second electrode 573 is disposed on the organic emission layer 572 .
  • a first electrode 571 , an organic light emitting layer 572 , and a second electrode 573 may be stacked to form an organic light emitting device 570 .
  • each pixel may include a color filter for filtering the white light emitted from the organic emission layer 572 for each wavelength.
  • a color filter is formed on the path of light.
  • An encapsulant 590 may be disposed on the second electrode 573 .
  • the encapsulant 590 may be formed of a multi-layered thin film.
  • the encapsulant 590 made of a multi-layered thin film is also referred to as a thin film encapsulation layer.
  • the encapsulant 590 may include at least one organic layer 592 and at least one inorganic layer 591 and 593 . At least one organic layer 592 and at least one inorganic layer 591 and 593 may be alternately disposed.
  • the encapsulant 590 covers the display area of the display device 100 and may extend to the outside of the display area.
  • the encapsulant 590 may include a first inorganic layer 591 , an organic layer 592 , and a second inorganic layer 593 .
  • the first inorganic layer 591 covers the second electrode 573 .
  • the first inorganic layer 591 may include at least one of ceramic, metal oxide, metal nitride, metal carbide, metal oxynitride, silicon oxide, silicon nitride, and silicon oxynitride.
  • the organic layer 592 is disposed on the first inorganic layer 591 .
  • the top surface of the organic layer 592 may be a flat surface.
  • the organic layer 592 may have a substantially flat top surface of a portion corresponding to the display area.
  • the organic film 592 may include acrylic, methacrylic, polyester, polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, It may include one or more materials selected from the group consisting of polyarylate and hexamethyldisiloxane.
  • the organic layer 592 may be made of a polymerizable composition. More specifically, the organic layer 592 may be formed by polymerization and curing of the polymerizable composition.
  • the second inorganic layer 593 covers the organic layer 592 .
  • the second inorganic layer 593 may include at least one of ceramic, metal oxide, metal nitride, metal carbide, metal oxynitride, silicon oxide, silicon nitride, and silicon oxynitride.
  • the encapsulant 590 since the encapsulant 590 has a multilayer structure including the first inorganic layer 591 , the organic layer 592 and the second inorganic layer 593 , the encapsulant 590 . Even if cracks occur in the inside, such cracks may not be connected between the first inorganic layer 591 and the organic layer 592 or between the organic layer 592 and the second inorganic layer 593 . Through this, it is possible to prevent or minimize the formation of a path through which moisture or oxygen from the outside penetrates into the organic light emitting device 570 .
  • the touch panel 110 may be disposed on the encapsulant 590 .
  • One embodiment of the present invention provides a polymerizable composition.
  • the polymerizable composition according to an embodiment of the present invention may be used to prepare the organic layer 592 included in the encapsulant 590 of the display device 100 .
  • the polymerizable composition according to an embodiment of the present invention includes a first monomer, a second monomer, and a polymerization initiator.
  • the first monomer and the second monomer may have polymerization properties.
  • the first monomer and the second monomer may be photopolymerizable. By irradiation with light, the first monomer and the second monomer may be polymerized.
  • first monomer and the second monomer may have photocurability. By irradiation with light, the first monomer and the second monomer may be cured.
  • the first monomer includes an acryl group and may be represented by Chemical Formula 1.
  • i is an integer from 10 to 28
  • j is an integer from 10 to 54
  • k is an integer from 1 to 10
  • i/k is 2 or more.
  • i may be an integer from 10 to 25
  • j may be an integer from 10 to 40
  • k may be an integer from 1 to 8.
  • i/k may be 2 to 8, or 2 to 5.5.
  • i and k in Formula 1 may satisfy the relation of 2 ⁇ i/k, 2 ⁇ i/k ⁇ 8, or 2 ⁇ i/k ⁇ 5.5.
  • the first monomer has a viscosity of 1 to 100 cPs at 25°C. Since the first monomer has a low viscosity, it has excellent fluidity. Accordingly, the workability of the polymerizable composition including the first monomer is improved.
  • the viscosity of the first monomer at 25° C. is less than 1 cPs, it is difficult to prepare and store the monomer, and when it exceeds 100 cPs, there is a problem in that the preparation of the polymerizable composition for inkjet is not easy.
  • the viscosity may be measured by setting the torque to 50% using a Brookfield Model DV2T analysis equipment at 25° C. according to the method specified in ASTM D 2196. Same as below.
  • the viscosity of the first monomer may be 1 to 100 cPs, 1 to 50 cPs, 5 to 20 cPs, 1 to 30 cPs at 25°C, and may be , 23 cPs or less.
  • the viscosity of the first monomer is within the above range, smooth curing of the polymerizable composition may be achieved.
  • the second monomer includes an acryl group and has a viscosity different from that of the first monomer.
  • the second monomer may be represented by Formula 2 below.
  • p is an integer from 10 to 25
  • q is an integer from 10 to 40
  • r is an integer from 1 to 6
  • p/r is 2 or more.
  • p may be an integer of 10 to 20
  • q may be an integer of 15 to 30
  • r may be an integer of 1 to 5.
  • p/r may be 2 to 8, or 2 to 6.
  • p and r in Formula 1 may satisfy the relation of 2 ⁇ p/r, 2 ⁇ p/r ⁇ 8, or 2 ⁇ p/r ⁇ 6.
  • At least one of "2 ⁇ i/k ⁇ 8" and “2 ⁇ p/r ⁇ 8" may be satisfied.
  • the second monomer has a viscosity of greater than 100 cPs and less than or equal to 500 cPs at 25°C.
  • the viscosity of the second monomer at 25° C. is 100 cPs or less, the moisture or oxygen blocking efficiency of the organic film prepared using the polymerizable composition may be reduced.
  • the viscosity of the second monomer exceeds 500 cPs at 25° C., there is a problem in that it is difficult to prepare the polymerizable composition, and the inkjet process using the polymerizable composition is not easy.
  • the second monomer having a high viscosity can improve the stability of the polymerizable composition, particularly storage stability, improve the stability of the organic film formed by the polymerizable composition, and improve the moisture or oxygen barrier efficiency of the organic film.
  • the viscosity of the second monomer may be greater than 100 cPs and less than or equal to 200 cPs, may be 120 cPs to 200 cPs, may be greater than 100 cPs to 150 cPs or less, and may be 110 cPs to 140 cPs at 25°C.
  • the workability and polymerizability of the polymerizable composition are improved by the first monomer having a low viscosity, and the stability of the polymerizable composition is improved by the second monomer having a high viscosity, and an organic film is formed.
  • the moisture and oxygen barrier properties are improved.
  • the content of the first monomer may be 50 to 80 parts by weight, and the content of the second monomer may be 20 to 50 parts by weight.
  • the content of the first monomer is less than 50 parts by weight based on 100 parts by weight of the total of the first monomer and the second monomer, the polymerization rate of the polymerizable monomer may be reduced due to the influence of the second monomer having a high viscosity, and Viscosity control can be difficult.
  • the storage stability of the polymerizable monomer may decrease, and it may be difficult to control the viscosity of the polymerizable composition.
  • a first monomer having a viscosity of 1 to 100 cPs at 25° C. and a second monomer having a viscosity of more than 100 cPs and 500 cPs or less at 25° C. are mixed in a range of 5:5 to 8:2.
  • a cured film may be formed through a smooth photocuring.
  • each of the first monomer and the second monomer may have an acryl group represented by Chemical Formula 4 below.
  • Examples of the first monomer and the second monomer having an acryl group include an acrylate-based compound. According to an embodiment of the present invention, each of the first monomer and the second monomer may include an acrylate-based compound.
  • the acrylate-based compound may have a moiety represented by the following Chemical Formula 5.
  • each of the first monomer and the second monomer may have an acrylate group represented by Chemical Formula 6 below.
  • the first monomer and the second monomer may be, respectively, a monofunctional (meth)acrylate of a monoalcohol or a polyhydric alcohol, or a polyfunctional (meth)acrylate of a monoalcohol or a polyhydric alcohol.
  • the mono-alcohol or polyhydric alcohol may include an aliphatic group and an aromatic group.
  • the aliphatic group may include a branched, branched or cyclic hydrocarbon compound group.
  • each of the first monomer and the second monomer may be a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer.
  • the first monomer may include, for example, at least one of dodecanediol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and benzyl(meth)acrylate.
  • dodecanediol di(meth)acrylate tetraethylene glycol di(meth)acrylate
  • benzyl(meth)acrylate benzyl(meth)acrylate.
  • one embodiment of the present invention is not limited thereto, and other monomers satisfying the condition of Formula 1 may be used as the first monomer.
  • the second monomer may include, for example, at least one of phenylphenoxyethyl (meth)acrylate and tricyclodecane dimethanol di(meth)acrylate.
  • phenylphenoxyethyl (meth)acrylate and tricyclodecane dimethanol di(meth)acrylate.
  • an embodiment of the present invention is not limited thereto, and other monomers satisfying the condition of Formula 2 may be used as the second monomer.
  • 2-decyl-1-tetradecane (meth)acrylate stearyl (meth)acrylate, 2-octyl-dodecyl (meth)acrylate, 2-hexyl-decyl (meth)acrylate, iso-ste Aryl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, etc. may be used as needed.
  • At least one of the first monomer and the second monomer is liquid. According to an embodiment of the present invention, both the first monomer and the second monomer may be in a liquid phase, and depending on the temperature, any one of the first monomer and the second monomer may be in a solid phase.
  • the polymerization initiator may be used in an amount of 5 parts by weight or less based on 100 parts by weight of the total of the first monomer and the second monomer. More specifically, the polymerization initiator may be used in an amount of 1 to 5 parts by weight, or 3 to 5 parts by weight, based on 100 parts by weight of the total of the first monomer and the second monomer.
  • a photoinitiator may be used as the polymerization initiator according to an embodiment of the present invention.
  • the polymerization initiator according to an embodiment of the present invention may generate radicals by absorbing light.
  • the polymerization initiator may generate radicals by absorbing light energy to provide radicals to acryl groups included in the first and second monomers.
  • polymerization and curing of the polymerizable composition may be performed by radical polymerization by light irradiation.
  • the polymerization initiator may contain, for example, a hetero atom in the molecule, and may also contain an aryl group.
  • the polymerization initiator has at least one light absorption peak at a wavelength of 500 nm or less. More specifically, the polymerization initiator may have a light absorption peak in a wavelength range of 380 to 410 nm. As such a polymerization initiator is used, according to an embodiment of the present invention, polymerization of the polymerizable composition may be achieved by irradiation of light having a wavelength in the visible ray region.
  • a hydroxyketone-based photoinitiator such as 1-hydroxy cyclohexylphenyl ketone (Irgacure 184), 2-benzyl-2-(dimethylamino )-1-[4-(4-morpholinyl)phenyl]-1-butanone, Irgacure 369), alpha-aminoacetophenone (Irgacure 907), such as aminoketone-based photoinitiators, benzyldimethylketal (Irgacure-651) ), such as benzyldimethyl ketal-based photoinitiators, bis-acyl phosphine-based photoinitiators such as phenyl bis(2,4,6,-trimethylbenzoyl) (Irgacure 819), 2,4, A mono-acyl phosphine-based photoinitiator such as 6-trimethylbenzoyl-diphen
  • the polymerization initiator is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide [2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO], bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide [bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide] and 2,4,6-trimethylbenzoylepoxyphenyl phosphine oxide [2 ,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide].
  • FIG. 2 is an absorbance graph of a polymerization initiator according to an embodiment of the present invention. Specifically, FIG. 2 is an absorbance graph for 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO), which is a polymerization initiator.
  • TPO 2,4,6-trimethylbenzoyl-diphenylphosphine oxide
  • the polymerizable composition may further include one or more additives selected from the group consisting of a heat stabilizer, a UV stabilizer, and an antioxidant.
  • the polymerizable composition further contains additives such as surfactants, adhesion aids, stabilizers, adhesion promoters, curing accelerators, thermal polymerization inhibitors, dispersants, plasticizers, fillers, and defoamers within the range that does not adversely affect the polymerizable composition. You may.
  • the additive may be used in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the total of the first monomer and the second monomer.
  • the polymerizable composition according to an embodiment of the present invention does not include a silicone-based monomer.
  • a silicone-based monomer When a silicone-based monomer is included, it is not easy to control the viscosity of the polymerizable composition, and when stored for a long time about one year or stored under severe conditions, deterioration or deterioration of physical properties may occur. Therefore, the stability of the organic layer prepared by the polymerizable composition including the silicone-based monomer may be reduced.
  • siloxane-based outgas may be generated under high-temperature conditions. Therefore, when the polymerizable composition including the silicone-based monomer is used as an encapsulant of the organic light emitting device, damage may occur to the organic light emitting device.
  • the polymerizable composition may be prepared as a solvent-free composition.
  • solvent-free composition means that the composition does not contain a solvent, for example, an organic solvent or an aqueous solvent.
  • the solvent drying process can be omitted, so that the process efficiency can be improved.
  • bubbles due to the solvent are not generated, thereby preventing deterioration of the function of the encapsulant.
  • the polymerizable composition according to an embodiment of the present invention may be applied to inkjet printing.
  • inkjet printing multihead equipment containing several nozzles may be used.
  • the viscosity and surface tension of the polymerizable composition can be adjusted.
  • the polymerizable composition may have a viscosity of 1 to 30 cPs.
  • the polymerizable composition in order to allow the polymerizable composition to be easily discharged from the inkjet head, may have a surface tension in the range of 20 to 45 mN/m.
  • the polymerizable composition according to an embodiment of the present invention has excellent storage stability.
  • the polymerizable composition according to an embodiment of the present invention has a first flexibility (Aa), a first viscosity (Ab), a first degree of curing (Ac), a first shrinkage ratio (Ad), and a first surface tension. (Ae).
  • first flexibility Aa
  • Ab first viscosity
  • Ac first degree of curing
  • Ad first shrinkage ratio
  • Ae first surface tension
  • the polymerizable composition according to an embodiment of the present invention in the initial storage test, first flexibility (Aa), first viscosity (Ab), first degree of curing (Ac), first shrinkage (Ad) and a first surface tension (Ae).
  • the polymerizable composition according to an embodiment of the present invention After sealed storage for one year at room temperature (25°C ⁇ 10°C), the polymerizable composition according to an embodiment of the present invention has a second flexibility (Ba), a second viscosity (Bb), a second degree of curing (Bc), It has a second shrinkage ratio (Bd) and a second surface tension (Be).
  • the polymerizable composition may be sealed in an 18L canister container and stored at a constant temperature.
  • the storage vessel may be made of a stable material that does not react with the polymerizable composition.
  • the polymerizable composition may be stored in a storage container made of glass or stainless steel.
  • the polymerizable composition according to an embodiment of the present invention has a third flexibility (Ca), a third viscosity (Cb), a third degree of curing (Cc), and a third shrinkage ( Cd) and a third surface tension (Ce).
  • the polymerizable composition according to an embodiment of the present invention has an Index of Storage Variation (ISV) of 18 or less.
  • ISV Index of Storage Variation
  • the storage change index (ISV) according to an embodiment of the present invention is obtained by Equation 1 below.
  • ISV (
  • the first flexibility (Aa) is measured by a nanoindenter (model name: PICODENTOR HM500) that measures physical properties according to DIN EN ISO 14577-1 and ASTM E 2546 standards.
  • the first flexibility (Aa) was measured using a PICODENTOR HM500, a nanoindenter.
  • the polymerizable composition is spin-coated to a thickness of 8 ⁇ m on a 50 mm * 50 mm glass substrate before the storage test, and cured using ultraviolet rays under N 2 atmosphere.
  • the polymerizable composition coated on the glass substrate is cured to prepare an organic film.
  • a 2.0 mN load is applied to the organic film (cured film) formed of the polymerizable composition for 5 seconds to measure the modulus (MPa).
  • the measured modulus (MPa) value corresponds to the flexibility.
  • the second flexibility (Ba) is measured using a sample of the polymerizable composition after the polymerizable composition is sealed and stored at room temperature (25°C ⁇ 10°C) for one year.
  • the method of measuring the second flexibility (Ba) is the same as the method of measuring the first flexibility (Aa).
  • the third flexibility (Ca) is measured using a sample of the polymerizable composition after sealed storage of the polymerizable composition at 50°C for one year.
  • the method for measuring the third flexibility (Ca) is the same as the method for measuring the first flexibility (Aa).
  • the first flexibility (Aa) is 1985 to 2416 MPa
  • the second flexibility (Ba) is 1947 to 2390 MPa
  • the third flexibility (Ca) is 1935 to 2375 MPa.
  • An organic film prepared using the polymerizable composition having a flexibility within this range has an excellent modulus and can effectively block oxygen, moisture, and the like.
  • the first viscosity (Ab) is measured at 25° C. using a Brookfield DV2T analysis instrument for the polymerizable composition before storage test according to the method specified in ASTM D 2196. Specifically, 0.5 ml of the polymerizable composition is loaded into Brookfield's DV2T analysis equipment, and the first viscosity (Ab) is measured by setting the torque to 50%.
  • the second viscosity (Bb) is measured by collecting a sample of the polymerizable composition after sealing and storing the polymerizable composition at room temperature (25°C ⁇ 10°C) for one year.
  • the second viscosity (Bb) measuring method is the same as the first viscosity (Ab) measuring method.
  • a 3rd viscosity (Cb) collects and measures the sample of a polymeric composition, after sealingly storing a polymeric composition at 50 degreeC for 1 year.
  • the third viscosity (Cb) measuring method is the same as the first viscosity (Ab) measuring method.
  • the first viscosity (Ab) is 19.5 to 22.0 cPs
  • the second viscosity (Bb) is 19.8 to 22.2 cPs
  • the third viscosity (Cb) is 19.8 to 23.0 cPs
  • the degree of curing may be calculated by the following Reference Equation 1.
  • the first degree of curing (Ac) is measured using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer for the polymerizable composition before the storage test.
  • the polymerizable composition is spin-coated to a thickness of 8 ⁇ m on a 50 mm*50 mm glass substrate, and cured using ultraviolet rays under N 2 atmosphere. Specifically, by irradiating 1,500 mJ/cm 2 of light with a wavelength of 395 nm using an LED lamp, the polymerizable composition coated on the glass substrate is cured to prepare an organic film. Using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer, an infrared spectrum was measured in a range of 0 to 2000 cm -1 with a wave number in a reflection mode (ATR) for the organic film.
  • ATR reflection mode
  • the degree of curing is calculated according to Reference Equation 1.
  • the result value corresponds to the first degree of hardening (Ac).
  • the second degree of curing (Bc) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at room temperature (25°C ⁇ 10°C) for one year and storing it.
  • the method for measuring the second degree of curing (Bc) is the same as the method for measuring the first degree of curing (Ac).
  • a 3rd degree of hardening (Cc) collects and measures the sample of a polymeric composition, after sealing and storing a polymeric composition at 50 degreeC for 1 year.
  • the method for measuring the third degree of curing (Cc) is the same as the method for measuring the first degree of curing (Ac).
  • the first degree of curing (Ac) is 93 to 95%
  • the second degree of curing (Bc) is 92 to 94%
  • the third degree of curing (Cc) is 92 to 94%.
  • the shrinkage rate is calculated from the change in diameter before and after curing when the polymerizable composition is cured in a container having a specific size.
  • the first shrinkage rate (Ad) is calculated from the change in diameter before and after curing of the polymerizable composition before the storage test filled in a glass tube having an inner diameter of 11.5 mm.
  • 2 g of the polymerizable composition is filled in a glass tube having an inner diameter of 11.5 mm and a height of 100 mm.
  • the diameter of the polymerizable composition before curing is 11.5 mm.
  • the polymerizable composition filled in the glass tube is cured by irradiating ultraviolet rays. Specifically, the polymerizable composition is cured by irradiating light with a wavelength of 395 nm using an LED lamp at an amount of 5,000 mJ/cm 2 . After curing, the glass tube is broken to obtain a rod-shaped cured product formed by the polymerizable composition. The obtained rod-shaped cured product is aged at room temperature for 30 minutes. Next, measure the diameter of the 10 mm point under the rod-shaped cured product. The diameter at a point 10 mm below the rod-shaped cured product corresponds to the “diameter after curing”. Next, using the "diameter before curing" of 11.5 mm and the diameter after curing, the shrinkage rate is calculated according to Reference Equation 4.
  • the second shrinkage ratio (Bd) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at room temperature (25°C ⁇ 10°C) for one year.
  • the second shrinkage ratio (Bd) measuring method is the same as the first shrinkage ratio (Ad) measuring method.
  • the third shrinkage rate (Cd) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at 50°C for 1 year.
  • the third method for measuring the shrinkage rate (Cd) is the same as the method for measuring the first shrinkage rate (Ad).
  • the first shrinkage rate (Ad) may be 2.5 to 3.0%
  • the second shrinkage rate (Bd) may be 2.5 to 3.1%
  • the third shrinkage rate (Cd) may be 2.5 to 3.1%.
  • the first surface tension (Ae) is measured by using an O-Ring with KRUSS Tension Meter K9 for the polymerizable composition before storage test according to the method specified in ISO 304. Specifically, using KRUSS Tension Meter K9, 20 g of the polymerizable composition is put into the O-Ring, and the first surface tension (Ae) is measured in the Max mode.
  • the second surface tension (Be) is measured by collecting a sample of the polymerizable composition after sealing and storing the polymerizable composition at room temperature (25°C ⁇ 10°C) for one year.
  • the second surface tension (Be) measurement method is the same as the first surface tension (Ae) measurement method.
  • the third surface tension (Ce) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at 50° C. for one year.
  • the third surface tension (Ce) measuring method is the same as the first surface tension (Ae) measuring method.
  • the first surface tension (Ae) is 35.0 to 35.9 mN/m
  • the second surface tension (Be) is 35.2 to 36.1 mN/m
  • the third surface tension (Ce) is 35.2 to 36.1 mN/m.
  • the polymerizable composition having such surface tension characteristics has sufficient surface tension and can be easily discharged from the inkjet head. Accordingly, the polymerizable composition can be smoothly jetted by the inkjet equipment.
  • the first surface tension (Ae), the second surface tension (Be), and the third surface tension (Ce) are adjusted as described above.
  • the polymerizable composition when the polymerizable composition has a storage change index (ISV) of 18 or less, the polymerizable composition has excellent storage stability, so that there is little or little variation in quality during the use period, the polymerizable composition
  • ISV storage change index
  • the reliability of the organic film produced by the method can be guaranteed. Accordingly, stability and reliability of the encapsulant 590 including the organic layer and the display device 100 may be improved.
  • a first monomer having a low viscosity of 100 cPs or less and a second monomer having a high viscosity exceeding 100 cPs are mixed in a predetermined ratio, whereby flexibility, viscosity, degree of curing, shrinkage, surface tension
  • a polymerizable composition in which stability can be ensured in terms of can be prepared.
  • the storage change index (ISV) of the polymerizable composition may be 1 to 18, may be 3 to 17, may be 5 to 16 may be.
  • the first monomer may have an acrylic index (MH1) of 0.5 to 5.0
  • the second monomer may have an acrylic index (MH1) of 0.1 to 3.0.
  • the acrylic index (MH1) may be obtained by Equation 2 below.
  • MH1 (molecular weight of monomer * X) / ⁇ total number of atoms in monomer * (total number of carbon atoms in monomer - total number of oxygen atoms in monomer) ⁇
  • X is the number of acrylic groups.
  • the ratio of acryl groups is high, so that the acrylic index (MH1) is high. Since the acrylic group is involved in polymerization, it can be said that the higher the acrylic index (MH1), the better the polymerizable composition.
  • the acrylic index (MH1) of the first monomer is less than 0.5, a problem in which the polymerization properties of the polymerizable composition are lowered may occur, and when it exceeds 5.0, a problem in which the polymerization properties of the polymerizable composition are excessively increased may occur.
  • the acrylic index (MH1) of the second monomer is less than 0.1, a problem in which polymerization properties of the polymerizable composition are lowered may occur, and when it exceeds 3.0, a problem in which polymerization properties of the polymerizable composition are excessively increased may occur.
  • the acrylic index (MH1) of the first monomer may be 0.5 to 5.0, 0.5 to 4.0, or 0.7 to 3.0.
  • Curing when the acrylic index (MH1) of the first monomer is 0.5 to 5.0, the acrylic index (MH1) of the second monomer is 0.1 to 3.0, and the polymerizable monomer has a viscosity of 30 cPs or less or a viscosity of 23 cPs or less may be performed smoothly, and process efficiency may be improved.
  • the polymerizable composition according to an embodiment of the present invention has a low moisture concentration.
  • the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 40 ppm or less. More specifically, the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 20 ppm or less. Accordingly, when the organic layer 592 of the encapsulant 590 is formed by the polymerizable composition according to an embodiment of the present invention, the organic light emitting device 570 is formed by moisture contained in the organic layer 592 . damage can be prevented.
  • Another embodiment of the present invention provides an organic film prepared by the polymerizable composition according to an embodiment of the present invention.
  • the organic film according to another embodiment of the present invention may be formed by polymerization and curing of the polymerizable composition according to an embodiment of the present invention.
  • polymerization and curing of the polymerizable composition may be performed by irradiation with light.
  • the light applied to light irradiation includes, for example, electromagnetic waves such as microwaves, infrared rays, ultraviolet rays, and gamma rays, or electron beams such as alpha-particle beams, proton beams, and Neutron beams.
  • polymerization of the polymerizable composition may be achieved by irradiation of light having a wavelength of 500 nm or less.
  • polymerization of the polymerizable composition may be performed by visible light or ultraviolet light.
  • light having a wavelength of 290 to 450 nm may be irradiated, and light having a central wavelength of 380 to 410 nm may be irradiated.
  • the intensity of the light for example, may be 400 mW / cm 2 or less can be 100 to 400 mW / cm 2 range.
  • the amount of light may be 300 to 2500 mJ/cm 2 , and may be in the range of 500 to 1500 mJ/cm 2 .
  • the organic layer may have a thickness of 0.5 to 100 ⁇ m. More specifically, the organic layer may have a thickness of 1 to 90 ⁇ m, and may have a thickness of 5 to 70 ⁇ m.
  • the organic layer according to another embodiment of the present invention may have a transmittance of 97.0% or more with respect to light having a wavelength of 400 nm based on a thickness of 8 ⁇ m.
  • FIG. 1 Another embodiment of the present invention provides an encapsulant 590 including an organic film formed by the polymerizable composition according to an embodiment of the present invention.
  • the encapsulant 590 is as shown in FIG. 1 .
  • the encapsulant 590 may include a first inorganic film 591 , an organic film 592 , and a second inorganic film 593 , and the organic film 592 of FIG. 1 is polymerized according to an embodiment of the present invention. It can be made by a sex composition.
  • an organic film 592 having excellent physical properties and lifespan characteristics can be manufactured, and accordingly , an encapsulant 590 having excellent moisture and oxygen barrier properties can be manufactured.
  • the organic layer 592 formed of the polymerizable composition according to an embodiment of the present invention has excellent light transmittance, visibility of the display device 100 to which the encapsulant 590 is applied may be improved.
  • the display device 100 may have, for example, the configuration shown in FIG. 1 .
  • a detailed description of the display device 100 will be omitted.
  • Another embodiment of the present invention provides a method for preparing a polymerizable composition.
  • a method for preparing a polymerizable composition according to another embodiment of the present invention includes mixing a first monomer, a second monomer, and a polymerization initiator.
  • the first monomer is represented by the following Chemical Formula 1, includes an acryl group, and has a viscosity of 1 to 100 cPs at 25°C.
  • i is an integer from 10 to 25
  • j is an integer from 10 to 40
  • k is an integer from 1 to 6
  • i/k is 2 or more.
  • the second monomer is represented by the following Chemical Formula 2, includes an acryl group, and has a viscosity of more than 100 cPs and 500 cPs or less at 25°C.
  • p is an integer from 10 to 28
  • q is an integer from 10 to 54
  • r is an integer from 1 to 6
  • p/r is 2 or more.
  • a tank used for preparing the polymerizable composition is first cleaned.
  • acetone can be used for tank cleaning.
  • acetone can be used to clean tanks and piping.
  • the raw materials are put into a tank and mixed to prepare a mixed solution.
  • a first monomer, a second monomer and a polymerization initiator are used as raw materials for producing the polymerizable composition.
  • the first monomer, the second monomer and the polymerization initiator are charged into the tank and mixed.
  • 50 to 80 parts by weight of the first monomer, 20 to 50 parts by weight of the second monomer, and 5 parts by weight or less of the polymerization initiator may be used.
  • the polymerization initiator may be used in an amount of 1 to 5 parts by weight, or 3 to 5 parts by weight, based on 100 parts by weight of the total of the first monomer and the second monomer.
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide 2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO
  • bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide]
  • 2,4,6-trimethylbenzoylepoxyphenyl phosphine oxide 2 ,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide
  • the polymerization initiator When the polymerization initiator is a solid, the polymerization initiator is dissolved in the monomer.
  • the polymerization initiator may be dissolved in the first monomer, may be dissolved in the second monomer, or may be dissolved in a monomer solution in which the first monomer and the second monomer are mixed.
  • a small amount of monomer may be used separately.
  • a solution of the polymerization initiator dissolved in the first monomer may be added to the mixed solution of the first monomer and the second monomer.
  • the polymerization initiator solution dissolved in the second monomer may be added to the mixed solution of the first monomer and the second monomer.
  • the polymerization initiator in a solid state When the polymerization initiator in a solid state is not completely dissolved, the polymerization initiator may precipitate during long-term storage of the polymerizable composition, and haze of the polymerizable composition may increase. As a result, polymerization and curing may not be performed smoothly in the process of forming the organic film using the polymerizable composition, and optical properties of the organic film formed by the polymerizable composition may be deteriorated. Therefore, it is important to completely dissolve the polymerization initiator in the monomer.
  • the mixture of the polymerization initiator and the monomer is stirred at 40° C. at a stirring rate of 100 RPM for 4 hours. Accordingly, a liquid mixture containing the first monomer, the second monomer and the polymerization initiator is prepared.
  • the mixed solution including the first monomer, the second monomer and the polymerization initiator is filtered through circulation.
  • a 0.05 ⁇ m filter is installed between the bottom of the tank and the packaging line, and the temperature of the tank is maintained at 23°C ⁇ 5°C, nitrogen gas of 99.999% purity (N 2 ) while spraying the tank at a pressure of 1.2 kgf/cm 2 , circulation filtration is performed at a stirring speed of 50 rpm.
  • Nitrogen gas (N 2 ) is used as a purge gas, and moisture contained in the mixed solution is removed by nitrogen gas (N 2 ).
  • the circulation filtration is carried out for 20 hours or more, and moisture contained in the mixed solution is removed during the circulation filtration to complete the polymerizable composition.
  • the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 40 ppm or less.
  • the polymerizable composition contains no or few particles.
  • the polymerizable composition does not include particles having a particle diameter of 0.5 ⁇ m or more, and may include 22 particles/L or less of particles having a particle diameter of less than 0.5 ⁇ m.
  • it is necessary to minimize the particles in the polymerizable composition since a problem such as pinholes may occur in the organic film formed by the polymerizable composition.
  • the polymerizable composition thus completed is stored in a canister container.
  • a canister container For storage stability, after the polymerizable composition is put into a canister container, it may be sealed after being filled with nitrogen gas.
  • the monomers in Table 1 below were used to prepare the polymerizable composition.
  • C/O ratio means the i/k value of the first monomer represented by the following formula (1) or the p/r value of the second monomer represented by the following formula (2).
  • MH1 in Table 1 means the acrylic index, and is calculated by the following formula 2.
  • MH1 (molecular weight of monomer * X) / ⁇ total number of atoms in monomer * (total number of carbon atoms in monomer - total number of oxygen atoms in monomer) ⁇
  • Equation 2 X is the number of acrylic groups.
  • 1,12-Dodecanediol Dimethacrylate (first monomer A1) may be represented by the following Chemical Formula 7
  • the tetraethylene glycol diacrylate [Tetra(ethylene glycol) diacrylate] (the first monomer A2) may be represented by the following Chemical Formula 8.
  • Benzyl acrylate (first monomer A3) may be represented by the following Chemical Formula 9.
  • 2-Phenylphenoxyethyl acrylate (second monomer B1) may be represented by the following Chemical Formula 10.
  • Tricyclodecane dimethanol diacrylate (second monomer B2) may be represented by the following Chemical Formula 11.
  • 3-(trimethoxysilyl)propyl methacrylate [3-(trimethoxysilyl)propyl methacrylate] (comparative monomer) may be represented by the following Chemical Formula 12.
  • the tank and the pipe were cleaned using acetone.
  • the mixture formed by the first monomer, the second monomer and the polymerization initiator was filtered through circulation.
  • a filter of 0.05 ⁇ m standard is mounted on the tank, and while the temperature of the tank is maintained at 23°C ⁇ 5°C, nitrogen gas (N 2 ) having a purity of 99.999% is sprayed into the tank at a pressure of 1.2kgf/cm 2 Circulation filtration was performed at a stirring speed of 50 rpm.
  • Nitrogen gas (N 2 ) is used as a purge gas, and moisture was removed by nitrogen gas (N 2 ).
  • Cyclic filtration was run for 20 hours. Moisture contained in the mixed solution is removed during circulation filtration to complete the polymerizable composition. After circulation filtration, the water (H 2 O) concentration of the polymerizable composition according to Example 1 was 35 ppm.
  • the polymerizable composition according to Example 1 does not contain particles having a particle diameter of 0.5 ⁇ m or more, and includes 5 particles/L having a particle diameter of less than 0.5 ⁇ m.
  • the polymerizable composition according to Example 1 thus completed was stored in a nitrogen-filled canister container, and then packaged and sealed.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the second monomer B2, and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A1, 70 g of the second monomer B2, and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the second monomer B1 and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A1, 70 g of the comparative monomer C1, and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the comparative monomer C1, and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that 200 g of the first monomer A1 and 6 g of the polymerization initiator (TPO) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that the process of injecting nitrogen gas (N 2 ) into the pressure tank was omitted during the circulation filtration process.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that the tank was not equipped with a filter during the circulation filtration process.
  • Measuring device Model 831KF Coulomter from METROHM
  • Measurement method 0.5 g of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 was collected with a die and injected into a moisture meter to measure the moisture content.
  • Measuring device Model SLS-1200 from NanoVision Technology
  • Measurement method Using a clean bottle, 200 g of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 was collected and injected into a measuring device at a suction rate of 5 ml to measure the number of particles per L.
  • Measurement standard Measured according to the method specified in ASTM E 2546
  • Measuring device Nanointenter. PICODENTOR HM500 model from Helmut Fischer
  • Measurement method Spin-coating a polymerizable composition to a thickness of 8 ⁇ m on a 50 mm * 50 mm glass substrate, and irradiating 1,500 mJ/cm 2 of ultraviolet rays with a wavelength of 395 nm using an LED lamp under N 2 atmosphere, the polymerizable composition coated on the glass substrate An organic film is prepared by curing the composition. Next, a 2.0 mN load is applied to the organic film (cured film) formed of the polymerizable composition for 5 seconds to measure the modulus (MPa). The measured modulus (MPa) value corresponds to the flexibility.
  • Second flexibility (Ba) the polymerizable composition measured after sealed storage of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 in a canister container at room temperature (25° C. ⁇ 10° C.) for 1 year.
  • the flexibility is referred to as a second flexibility (Ba).
  • the flexibility index is calculated as the sum of "(
  • the polymerizable compositions according to Examples 1 to 6 have a low flexibility index, have little change in flexibility after long-term storage, and are very stable compositions in terms of flexibility.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high flexibility index, have a large change in flexibility after long-term storage, and are not stable compositions in terms of flexibility.
  • Measurement standard Measured according to the method specified in ASTM D 2196
  • Measurement method 0.5 ml of a polymerizable composition is loaded, and a torque is set to 50% and measured.
  • First viscosity (Ab) Before the storage test, the viscosity measured for the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as a first viscosity (Ab).
  • Second viscosity (Bb) The viscosity of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C. ⁇ 10° C.) for 1 year was obtained as a second value. It is called the viscosity (Bb).
  • Third viscosity (Cb) The viscosity of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is referred to as the third viscosity (Cb). .
  • the viscosity index is calculated as the sum of "(
  • Viscosity Index (
  • the polymerizable compositions according to Examples 1 to 6 have a low viscosity index, have a small change in viscosity after long-term storage, and are very stable compositions in terms of viscosity.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high viscosity index, a large change in viscosity after long-term storage, and unstable composition in terms of viscosity.
  • Measuring device Spectrum 100 FTIR Spectrometer from PerkinElmer
  • UV LED 395nm light source (Phoseon FE300 3W)
  • the polymerizable composition is spin-coated to a thickness of 8 ⁇ m on a 50 mm*50 mm glass substrate, and cured using ultraviolet rays under N 2 atmosphere. Specifically, by irradiating 1,500 mJ/cm 2 of light with a wavelength of 395 nm using an LED lamp, the polymerizable composition coated on the glass substrate is cured to prepare an organic film. Using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer, an infrared spectrum was measured in a range of 0 to 2000 cm -1 with a wave number in a reflection mode (ATR) for the organic film.
  • ATR reflection mode
  • Second degree of curing (Bc) The degree of curing of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C. ⁇ 10° C.) for 1 year 2 It is called the degree of hardening (Bc).
  • Third degree of curing (Cc) The third degree of curing (Cc) of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year say
  • Example 1 94.00 93.60 93.80 0.4 0.2 0.6
  • Example 2 93.80 93.33 93.52 0.5 0.3 0.8
  • Example 3 94.10 93.72 93.54 0.4 0.6
  • Example 4 93.60 93.13 92.94 0.5 0.7 1.2
  • Example 5 93.60 92.76 92.94 0.9 0.7 1.6
  • Example 6 93.20 92.73 92.73 0.5 0.5 1.0 Comparative Example 1 92.10 86.48 85.65 6.1 7.0 13.1 Comparative Example 2 93.10 88.54 86.86 4.9 6.7 11.6 Comparative Example 3 93.80 93.42 93.33 0.4
  • the curing index is calculated as the sum of "(
  • Curing index (
  • the polymerizable compositions according to Examples 1 to 6 have a low degree of curing index, have a small change in degree of curing after long-term storage, and are very stable compositions in terms of degree of curing.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high degree of curing index, a large change in curing degree after long-term storage, and unstable composition in terms of curing degree.
  • Vernier calipers CD-20CPX from Mitutoyo
  • UV LED 395nm light source (Phoseon FE300 3W)
  • 2 g of the polymerizable composition is filled in a glass tube having an inner diameter of 11.5 mm and a height of 100 mm. Therefore, it can be said that the diameter of the polymerizable composition before curing is 11.5 mm.
  • the polymerizable composition filled in the glass tube is cured by irradiating ultraviolet rays. Specifically, the polymerizable composition is cured by irradiating light with a wavelength of 395 nm using an LED lamp at an amount of 5,000 mJ/cm 2 . After curing, the glass tube is broken to obtain a rod-shaped cured product formed by the polymerizable composition. The obtained rod-shaped cured product is aged at room temperature for 30 minutes. Next, measure the diameter of the 10 mm point under the rod-shaped cured product. The diameter at a point 10 mm below the rod-shaped cured product corresponds to the “diameter after curing”. Next, using the "diameter before curing" of 11.5 mm and the diameter after curing, the shrinkage rate is calculated according to Reference Equation 4.
  • Second shrinkage (Bd) the shrinkage of the polymerizable composition measured after sealed storage of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 respectively at room temperature (25°C ⁇ 10°C) for 1 year was the second It is called shrinkage (Bd).
  • Third shrinkage ratio (Cd) The shrinkage ratio of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is referred to as the third shrinkage ratio (Cd). .
  • the shrinkage index is calculated as the sum of "(
  • Shrinkage index (
  • the polymerizable compositions according to Examples 1 to 6 have a low shrinkage index, have little change in shrinkage after long-term storage, and are very stable compositions in terms of shrinkage.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high shrinkage index, a large change in shrinkage after long-term storage, and an unstable composition in terms of shrinkage.
  • Measurement standard measured according to the method specified in ISO 304
  • Measurement mode O-Ring, Max Mode
  • Measurement method Using KRUSS Tension Meter K9, 20 g of the polymerizable composition is applied to the O-Ring, and the surface tension (Ae) is measured in the Max measurement mode.
  • Second surface tension (Be) the surface tension of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C. ⁇ 10° C.) for 1 year It is called the second surface tension (Be).
  • Third surface tension (Ce) The surface tension of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is the third surface tension (Ce). ) is called
  • the surface tension index is calculated as the sum of "(
  • the polymerizable compositions according to Examples 1 to 6 have a low surface tension index, have small changes in surface tension after long-term storage, and are very stable compositions in terms of surface tension.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high surface tension index, a large change in surface tension after long-term storage, and an unstable composition in terms of surface tension.
  • the Index of Storage Variation (ISV) of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 is calculated by the following Equation 1.
  • ISV (
  • the polymerizable compositions according to Examples 1 to 6 have a low storage change index, and are stable compositions having excellent long-term storage performance.
  • the polymerizable compositions according to Comparative Examples 1 to 6 have a high storage change index, and thus have poor long-term storage performance and are not stable compositions.
  • gate electrode 541 source electrode
  • drain electrode 570 organic light emitting device
  • first electrode 572 organic light emitting layer

Abstract

Provided in one embodiment of the present invention is a polymeric composition, which comprises a first monomer having an acryl group, a second monomer having an acryl group and having a viscosity different from that of the first monomer, and a polymerization initiator, and which has an index of storage variation (ISV) of 18 or less.

Description

저장 안정성이 우수한 중합성 조성물, 봉지재 및 표시 장치Polymeric composition with excellent storage stability, encapsulant and display device
본 발명은 저장 안정성이 우수한 중합성 조성물, 이러한 중합성 조성물에 의해 형성된 유기막을 포함하는 봉지재 및 이러한 봉지재를 포함하는 표시장치에 대한 것이다. The present invention relates to a polymerizable composition having excellent storage stability, an encapsulant including an organic film formed by the polymerizable composition, and a display device including the encapsulant.
발광 소자는 빛을 발광할 수 있는 소자이다. 이러한 발광 소자들 중 유기 발광 소자(Organic Light Emitting Device; OLED)는 넓은 시야각, 우수한 콘트라스트(contrast) 특성, 빠른 응답시간 및 낮은 전력 소모 등의 장점을 가지고 있어, 다양한 분야에서 사용되고 있다.The light emitting element is an element capable of emitting light. Among these light emitting devices, an organic light emitting device (OLED) has advantages such as a wide viewing angle, excellent contrast characteristics, fast response time, and low power consumption, and thus is used in various fields.
유기 발광 소자는 산소 또는 수분과의 접촉에 열화되어 수명이 단축될 수 있다. 따라서, 유기 발광 소자의 열화를 방지하기 위해, 유기 발광 소자를 보호하는 봉지재(encapsulation material)가 사용될 수 있다. 유기 발광 소자를 보호용 봉지재는 유기막을 포함할 수 있으며, 이러한 유기막은 중합성 조성물에 의하여 만들어질 수 있다. 그런데, 중합성 조성물이 쉽게 변질되는 경우, 중합성 조성물에 의하여 형성된 유기막 및 이를 포함하는 봉지재의 성능이 보장될 수 없다. 봉지재가 안정적인 산소 또는 수분 차단 특성을 가지기 위해, 봉지재를 구성하는 유기막의 원료가 되는 중합성 조성물이 우수한 안정성을 가질 필요가 있다.The organic light emitting diode may be deteriorated by contact with oxygen or moisture, and thus the lifespan may be shortened. Accordingly, in order to prevent deterioration of the organic light emitting device, an encapsulation material for protecting the organic light emitting device may be used. The encapsulant for protecting the organic light emitting device may include an organic layer, and the organic layer may be made of a polymerizable composition. However, when the polymerizable composition is easily altered, the performance of the organic film formed by the polymerizable composition and the encapsulant including the same cannot be guaranteed. In order for the encapsulant to have stable oxygen or moisture barrier properties, the polymerizable composition serving as a raw material of the organic film constituting the encapsulant needs to have excellent stability.
본 발명의 일 실시예는 봉지재의 제조에 사용될 수 있는 중합성 조성물을 제공하고자 한다.An embodiment of the present invention is to provide a polymerizable composition that can be used in the manufacture of the encapsulant.
본 발명의 다른 일 실시예는, 우수한 안정성을 가지며, 장시간에 걸쳐 저장되더라도 변질되지 않는, 중합성 조성물을 제공하고자 한다.Another embodiment of the present invention is to provide a polymerizable composition that has excellent stability and does not deteriorate even when stored for a long time.
본 발명의 또 다른 일 실시예는, 우수한 저장 안정성을 갖는 중합성 조성물에 의하여 형성된 유기막을 갖는 봉지재 및 이러한 봉지재를 포함하는 표시장치를 제공하고자 한다.Another embodiment of the present invention is to provide an encapsulant having an organic film formed of a polymerizable composition having excellent storage stability and a display device including the encapsulant.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예는, 아크릴기를 갖는 제1 모노머, 아크릴기를 가지며 상기 제1 모노머와 다른 점도를 갖는 제2 모노머 및 중합 개시제를 포함하며, 저장 시험 전, 제1 가요성(Aa), 제1 점도(Ab), 제1 경화도(Ac), 제1 수축율(Ad) 및 제1 표면장력(Ae)을 가지며, 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 제2 가요성(Ba), 제2 점도(Bb), 제2 경화도(Bc), 제2 수축율(Bd) 및 제2 표면장력(Be)을 가지며, 50℃에서 1년간 밀봉 저장 후, 제3 가요성(Ca), 제3 점도(Cb), 제3 경화도(Cc), 제3 수축율(Cd) 및 제3 표면장력(Ce)을 가지며, 18 이하의 저장 변경 지수(Index of Storage Variation; ISV)를 갖는, 중합성 조성물을 제공한다. 여기서, 상기 저장 변경 지수(ISV)는 하기 식 1로 구해진다. In order to achieve the above object, an embodiment of the present invention includes a first monomer having an acryl group, a second monomer having an acryl group and a viscosity different from that of the first monomer, and a polymerization initiator, and before the storage test, the first It has flexibility (Aa), first viscosity (Ab), first degree of curing (Ac), first shrinkage (Ad) and first surface tension (Ae), and is sealed at room temperature (25℃±10℃) for 1 year After storage, it has a second flexibility (Ba), a second viscosity (Bb), a second degree of curing (Bc), a second shrinkage rate (Bd), and a second surface tension (Be), and is sealed and stored at 50°C for 1 year Afterwards, it has a third flexibility (Ca), a third viscosity (Cb), a third degree of hardening (Cc), a third shrinkage (Cd), and a third surface tension (Ce), and a storage change index (Index) of 18 or less of Storage Variation (ISV). Here, the storage change index (ISV) is obtained by Equation 1 below.
[식 1] [Equation 1]
ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (| Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100
본 발명의 다른 일 실시예는, 상기 중합성 조성물에 의하여 형성된 유기막을 포함하는 봉지재를 제공한다. Another embodiment of the present invention provides an encapsulant including an organic film formed by the polymerizable composition.
본 발명의 또 다른 일 실시예는, 상기 봉지재를 포함하는 표시장치를 제공한다.Another embodiment of the present invention provides a display device including the encapsulant.
본 발명의 일 실시예에 따른 중합성 조성물은 낮은 저장 변경 지수를 가져, 장시간에 걸쳐 저장되더라도 물성이 변하지 않는, 우수한 저장 안정성을 가질 수 있다. 그에 따라, 본 발명의 일 실시예에 따른 중합성 조성물이 사용되는 경우, 중합성 조성물의 저장 시간에 상관없이, 우수한 수분 및 산소 차단 특성을 갖는 봉지재가 제조될 수 있다.The polymerizable composition according to an embodiment of the present invention has a low storage change index, so that physical properties do not change even when stored for a long time, and can have excellent storage stability. Accordingly, when the polymerizable composition according to an embodiment of the present invention is used, an encapsulant having excellent moisture and oxygen barrier properties can be manufactured regardless of the storage time of the polymerizable composition.
또한, 본 발명의 일 실시예에 따른 중합성 조성물에 의하여 제조된 유기막을 포함하는 봉지재를 포함하는 표시장치는 수분 및 산소에 대한 우수한 내성을 가지며, 장시간에 걸쳐 우수한 표시 품질을 유지할 수 있다. In addition, a display device including an encapsulant including an organic film prepared by the polymerizable composition according to an embodiment of the present invention has excellent resistance to moisture and oxygen, and can maintain excellent display quality over a long period of time.
도 1은 본 발명의 일 실시예에 따른 표시장치의 일부에 대한 단면도이다.1 is a cross-sectional view of a portion of a display device according to an exemplary embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 중합 개시제의 흡광도 그래프이다.2 is an absorbance graph of a polymerization initiator according to an embodiment of the present invention.
본 명세서에 사용된 용어는 특정의 실시예들을 설명하기 위한 것일 뿐, 발명의 범위를 한정하는 것은 아니다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다. The terminology used herein is for the purpose of describing specific embodiments only, and does not limit the scope of the invention. All technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, unless otherwise stated.
본 명세서 및 청구범위에 사용된 용어나 단어를 해석함에 있어서는, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 반드시 통상적이거나 사전적인 의미로만 한정해서 해석할 것이 아니며, 본 명세서에서 기재하는 바에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석하여야 한다. In interpreting terms or words used in this specification and claims, it must be conventional or dictionary based on the principle that the inventor can appropriately define the concept of a term in order to best describe his invention. It should not be construed as being limited only to the literal meaning, and should be interpreted as meanings and concepts consistent with the technical idea of the present invention as described in the present specification.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 의해 한정되는 것은 아니다.Since the shapes, sizes, proportions, angles, numbers, etc. disclosed in the drawings for explaining the embodiments of the present invention are exemplary, the present invention is not limited by the matters shown in the drawings.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략될 수 있다.In describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description may be omitted.
도 1은 본 발명의 일 실시예에 따른 표시장치(100)의 일부에 대한 단면도이다.1 is a cross-sectional view of a portion of a display device 100 according to an exemplary embodiment.
도 1을 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(100)는, 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 1에 개시된 표시장치(100)는 유기 발광 소자(570)를 포함하는 유기발광 표시장치이다.Referring to FIG. 1 , a display device 100 according to another exemplary embodiment of the present invention includes a substrate 510 , a thin film transistor (TFT) on the substrate 510 , and an organic light emitting device 570 connected to the thin film transistor (TFT). ) is included. The organic light emitting diode 570 includes a first electrode 571 , an organic emission layer 572 on the first electrode 571 , and a second electrode 573 on the organic emission layer 572 . The display device 100 illustrated in FIG. 1 is an organic light emitting display device including an organic light emitting device 570 .
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 폴리이미드계 수지 또는 폴리이미드계 필름과 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다. The substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of a plastic such as a polyimide-based resin or a polyimide-based film. Although not shown, a buffer layer may be disposed on the substrate 510 .
기판(510) 상에 박막 트랜지스터(TFT)가 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 이격되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다. A thin film transistor (TFT) is disposed on the substrate 510 . The thin film transistor TFT includes a semiconductor layer 520 , a gate electrode 530 spaced apart from the semiconductor layer 520 and overlapping at least a portion of the semiconductor layer 520 , a source electrode 541 connected to the semiconductor layer 520 , and A drain electrode 542 is spaced apart from the source electrode 541 and connected to the semiconductor layer 520 .
도 1을 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 소스 전극(541)이 배치될 수 있다.Referring to FIG. 1 , a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 . An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a source electrode 541 may be disposed on the interlayer insulating layer 551 .
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.The planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
제1 전극(571)은 평탄화막(552) 상에 배치될 수 있다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다. The first electrode 571 may be disposed on the planarization layer 552 . The first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다. The bank layer 580 is disposed on a portion of the first electrode 571 and on the planarization layer 552 to define a pixel area or a light emitting area. For example, since the bank layer 580 is disposed in a matrix structure in a boundary region between a plurality of pixels, a pixel region may be defined by the bank layer 580 .
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개 이상의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다. The organic emission layer 572 is disposed on the first electrode 571 . The organic emission layer 572 may also be disposed on the bank layer 580 . The organic light emitting layer 572 may include one light emitting layer or two or more light emitting layers stacked vertically. Light having any one of red, green, and blue may be emitted from the organic emission layer 572 , and white light may be emitted.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.The second electrode 573 is disposed on the organic emission layer 572 .
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(570)가 이루어질 수 있다. A first electrode 571 , an organic light emitting layer 572 , and a second electrode 573 may be stacked to form an organic light emitting device 570 .
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.Although not shown, when the organic emission layer 572 emits white light, each pixel may include a color filter for filtering the white light emitted from the organic emission layer 572 for each wavelength. A color filter is formed on the path of light.
제2 전극(573) 상에 봉지재(590)가 배치될 수 있다. 봉지재(590)는 다층의 박막으로 이루어질 수 있다. 다층의 박막으로 이루어진 봉지재(590)를 박막 봉지층이라고도 한다. 도 1을 참조하면, 봉지재(590)은 적어도 하나의 유기막(592) 및 적어도 하나의 무기막(591, 593)을 포함할 수 있다. 적어도 하나의 유기막(592) 및 적어도 하나의 무기막(591, 593)은 교호적으로 배치될 수 있다.An encapsulant 590 may be disposed on the second electrode 573 . The encapsulant 590 may be formed of a multi-layered thin film. The encapsulant 590 made of a multi-layered thin film is also referred to as a thin film encapsulation layer. Referring to FIG. 1 , the encapsulant 590 may include at least one organic layer 592 and at least one inorganic layer 591 and 593 . At least one organic layer 592 and at least one inorganic layer 591 and 593 may be alternately disposed.
봉지재(590)은 표시장치(100)의 표시 영역을 덮으며 표시 영역 외측까지 연장될 수 있다. 봉지재(590)은 제1 무기막(591), 유기막(592) 및 제2 무기막(593)을 포함할 수 있다.The encapsulant 590 covers the display area of the display device 100 and may extend to the outside of the display area. The encapsulant 590 may include a first inorganic layer 591 , an organic layer 592 , and a second inorganic layer 593 .
제1 무기막(591)은 제2 전극(573)을 덮는다. 제1 무기막(591)은, 세라믹, 금속산화물, 금속질화물, 금속탄화물, 금속산질화물, 실리콘산화물, 실리콘질화물 및 실리콘산질화물 중 적어도 하나를 포함할 수 있다. The first inorganic layer 591 covers the second electrode 573 . The first inorganic layer 591 may include at least one of ceramic, metal oxide, metal nitride, metal carbide, metal oxynitride, silicon oxide, silicon nitride, and silicon oxynitride.
유기막(592)은 제1 무기막(591) 상에 배치된다. 유기막(592)의 상면은 평탄면이 될 수 있다. 구체적으로, 유기막(592)은 표시 영역에 대응하는 부분의 상면이 대략 평탄하도록 할 수 있다. 유기막(592)은 아크릴, 메타아크릴(metacrylic), 폴리에스터, 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리이미드, 폴리에틸렌설포네이트, 폴리옥시메틸렌, 폴리아릴레이트, 헥사메틸디실록산으로 이루어지는 군으로부터 선택된 하나 이상의 재료를 포함할 수 있다. The organic layer 592 is disposed on the first inorganic layer 591 . The top surface of the organic layer 592 may be a flat surface. Specifically, the organic layer 592 may have a substantially flat top surface of a portion corresponding to the display area. The organic film 592 may include acrylic, methacrylic, polyester, polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, It may include one or more materials selected from the group consisting of polyarylate and hexamethyldisiloxane.
본 발명의 일 실시예에 따르면, 유기막(592)은 중합성 조성물에 의하여 만들어질 수 있다. 보다 구체적으로, 유기막(592)은 중합성 조성물의 중합 및 경화에 의하여 만들어질 수 있다.According to an embodiment of the present invention, the organic layer 592 may be made of a polymerizable composition. More specifically, the organic layer 592 may be formed by polymerization and curing of the polymerizable composition.
제2 무기막(593)은 유기막(592)을 덮는다. 제2 무기막(593)은, 세라믹, 금속산화물, 금속질화물, 금속탄화물, 금속산질화물, 실리콘산화물, 실리콘질화물 및 실리콘산질화물 중 적어도 하나를 포함할 수 있다. The second inorganic layer 593 covers the organic layer 592 . The second inorganic layer 593 may include at least one of ceramic, metal oxide, metal nitride, metal carbide, metal oxynitride, silicon oxide, silicon nitride, and silicon oxynitride.
본 발명의 일 실시예에 따르면, 봉지재(590)는 제1 무기막(591), 유기막(592) 및 제2 무기막(593)을 포함하는 다층 구조를 가지기 때문에, 봉지재(590) 내에 크랙이 발생한다고 하더라도, 제1 무기막(591)과 유기막(592) 사이에서 또는 유기막(592)과 제2 무기막(593) 사이에서 그러한 크랙이 연결되지 않도록 할 수 있다. 이를 통해 외부로부터의 수분이나 산소 등이 유기 발광 소자(570)로 침투하게 되는 경로가 형성되는 것을 방지하거나 최소화할 수 있다.According to an embodiment of the present invention, since the encapsulant 590 has a multilayer structure including the first inorganic layer 591 , the organic layer 592 and the second inorganic layer 593 , the encapsulant 590 . Even if cracks occur in the inside, such cracks may not be connected between the first inorganic layer 591 and the organic layer 592 or between the organic layer 592 and the second inorganic layer 593 . Through this, it is possible to prevent or minimize the formation of a path through which moisture or oxygen from the outside penetrates into the organic light emitting device 570 .
도 1을 참조하면, 봉지재(590) 상에 터치 패널(110)이 배치될 수 있다.Referring to FIG. 1 , the touch panel 110 may be disposed on the encapsulant 590 .
본 발명의 일 실시예는 중합성 조성물을 제공한다. 본 발명의 일 실시예에 따른 중합성 조성물은 표시장치(100)의 봉지재(590)에 포함된 유기막(592)의 제조에 사용될 수 있다.One embodiment of the present invention provides a polymerizable composition. The polymerizable composition according to an embodiment of the present invention may be used to prepare the organic layer 592 included in the encapsulant 590 of the display device 100 .
본 발명의 일 실시예에 따른 중합성 조성물은 제1 모노머, 제2 모노머 및 중합 개시제를 포함한다. The polymerizable composition according to an embodiment of the present invention includes a first monomer, a second monomer, and a polymerization initiator.
본 발명의 일 실시예에 따르면, 제1 모노머 및 제2 모노머는 중합 특성을 가질 수 있다. 예를 들어, 제1 모노머 및 제2 모노머는 광중합성을 가질 수 있다. 광 조사에 의하여, 제1 모노머 및 제2 모노머가 중합될 수 있다. According to an embodiment of the present invention, the first monomer and the second monomer may have polymerization properties. For example, the first monomer and the second monomer may be photopolymerizable. By irradiation with light, the first monomer and the second monomer may be polymerized.
또한, 제1 모노머 및 제2 모노머는 광경화성을 가질 수 있다. 광 조사에 의하여, 제1 모노머 및 제2 모노머가 경화될 수 있다.In addition, the first monomer and the second monomer may have photocurability. By irradiation with light, the first monomer and the second monomer may be cured.
본 발명의 일 실시예에 따르면, 제1 모노머는 아크릴기를 포함하며, 화학식 1로 표현될 수 있다. According to an embodiment of the present invention, the first monomer includes an acryl group and may be represented by Chemical Formula 1.
[화학식 1][Formula 1]
CiHjOk C i H j O k
화학식 1에서, i는 10 내지 28의 정수이고, j는 10 내지 54의 정수이고, k는 1 내지 10의 정수이고, i/k는 2 이상이다. In Formula 1, i is an integer from 10 to 28, j is an integer from 10 to 54, k is an integer from 1 to 10, and i/k is 2 or more.
보다 구체적으로, i는 10 내지 25의 정수일 수 있고, j는 10 내지 40의 정수일 수 있고, k는 1 내지 8의 정수일 수 있다.More specifically, i may be an integer from 10 to 25, j may be an integer from 10 to 40, and k may be an integer from 1 to 8.
또한, 본 발명의 일 실시예에 따르면, i/k는 2 내지 8일 수 있고, 2 내지 5.5일 수도 있다. 예를 들어, 화학식 1의 i와 k는, 2≤i/k, 2≤i/k≤8, 또는 2≤i/k≤5.5의 관계를 만족할 수 있다. Further, according to an embodiment of the present invention, i/k may be 2 to 8, or 2 to 5.5. For example, i and k in Formula 1 may satisfy the relation of 2≤i/k, 2≤i/k≤8, or 2≤i/k≤5.5.
제1 모노머는 25℃에서 1 내지 100 cPs의 점도를 갖는다. 제1 모노머는 낮은 점도를 가지기 때문에 우수한 유동성을 갖는다. 그에 따라, 제1 모노머를 포함하는 중합성 조성물의 작업성이 향상된다. 25℃에서 제1 모노머의 점도가 1 cPs 미만인 경우 모노머의 제조 및 보관이 어렵고, 100 cPs를 초과하는 경우 잉크젯용 중합성 조성물의 제조가 용이하지 않다는 문제점이 있다.The first monomer has a viscosity of 1 to 100 cPs at 25°C. Since the first monomer has a low viscosity, it has excellent fluidity. Accordingly, the workability of the polymerizable composition including the first monomer is improved. When the viscosity of the first monomer at 25° C. is less than 1 cPs, it is difficult to prepare and store the monomer, and when it exceeds 100 cPs, there is a problem in that the preparation of the polymerizable composition for inkjet is not easy.
본 발명의 일 실시예에 따르면, 점도는, ASTM D 2196 에 규정된 방법에 따라, 25℃에서 Brookfield사 모델 DV2T 분석 장비를 이용하여, 토크를 50%로 설정하여 측정될 수 있다. 이하 동일하다.According to an embodiment of the present invention, the viscosity may be measured by setting the torque to 50% using a Brookfield Model DV2T analysis equipment at 25° C. according to the method specified in ASTM D 2196. Same as below.
본 발명의 일 실시예에 따르면, 제1 모노머의 점도는, 25℃에서 1 내지 100 cPs일 수 있고, 1 내지 50 cPs일 수도 있고, 5 내지 20 cPs일 수도 있고, 1 내지 30 cPs일 수도 있고, 23 cPs 이하일 수도 있다. 제1 모노머의 점도가 상기와 같은 범위일 때, 중합성 조성물에 대한 원활한 경화가 이루어질 수 있다.According to an embodiment of the present invention, the viscosity of the first monomer may be 1 to 100 cPs, 1 to 50 cPs, 5 to 20 cPs, 1 to 30 cPs at 25°C, and may be , 23 cPs or less. When the viscosity of the first monomer is within the above range, smooth curing of the polymerizable composition may be achieved.
제2 모노머는 아크릴기를 포함하고, 제1 모노머와 다른 점도를 갖는다. 제2 모노머는 하기 화학식 2로 표현될 수 있다.The second monomer includes an acryl group and has a viscosity different from that of the first monomer. The second monomer may be represented by Formula 2 below.
[화학식 2][Formula 2]
CpHqOr C p H q O r
화학식 2에서, p는 10 내지 25의 정수이고, q는 10 내지 40의 정수이고, r은 1 내지 6의 정수이고, p/r은 2 이상이다.In Formula 2, p is an integer from 10 to 25, q is an integer from 10 to 40, r is an integer from 1 to 6, and p/r is 2 or more.
보다 구체적으로, p는 10 내지 20의 정수일 수 있고, q는 15 내지 30의 정수일 수 있고, r은 1 내지 5의 정수일 수 있다.More specifically, p may be an integer of 10 to 20, q may be an integer of 15 to 30, and r may be an integer of 1 to 5.
또한, 본 발명의 일 실시예에 따르면, p/r는 2 내지 8일 수 있고, 2 내지 6일수도 있다. 예를 들어, 화학식 1의 p와 r은, 2≤p/r, 2≤p/r≤8, 또는 2≤p/r≤6의 관계를 만족할 수 있다. Also, according to an embodiment of the present invention, p/r may be 2 to 8, or 2 to 6. For example, p and r in Formula 1 may satisfy the relation of 2≤p/r, 2≤p/r≤8, or 2≤p/r≤6.
본 발명의 일 실시예에 따르면, "2≤i/k≤8" 및 "2≤p/r≤8" 중 적어도 하나를 만족할 수 있다.According to an embodiment of the present invention, at least one of "2≤i/k≤8" and "2≤p/r≤8" may be satisfied.
제2 모노머는 25℃에서 100 cPs 초과 500 cPs 이하의 점도를 갖는다. 25℃에서 제2 모노머의 점도가 100 cPs 이하인 경우, 중합성 조성물을 이용하여 제조된 유기막의 수분 또는 산소 차단 효율이 저하될 수 있다. 반면, 25℃에서 제2 모노머의 점도가 500 cPs를 초과하는 경우 중합성 조성물의 제조에 어려움이 있고, 중합성 조성물을 이용한 잉크젯 공정이 용이하지 않다는 문제점이 있다.The second monomer has a viscosity of greater than 100 cPs and less than or equal to 500 cPs at 25°C. When the viscosity of the second monomer at 25° C. is 100 cPs or less, the moisture or oxygen blocking efficiency of the organic film prepared using the polymerizable composition may be reduced. On the other hand, when the viscosity of the second monomer exceeds 500 cPs at 25° C., there is a problem in that it is difficult to prepare the polymerizable composition, and the inkjet process using the polymerizable composition is not easy.
고점도를 갖는 제2 모노머는 중합성 조성물의 안정성, 특히 저장 안정성을 향상시킬 수 있고, 중합성 조성물에 의하여 형성되는 유기막의 안정성을 향상시키며, 유기막의 수분 또는 산소 차단 효율이 향상되도록 할 수 있다.The second monomer having a high viscosity can improve the stability of the polymerizable composition, particularly storage stability, improve the stability of the organic film formed by the polymerizable composition, and improve the moisture or oxygen barrier efficiency of the organic film.
제2 모노머의 점도는, 25℃에서, 100cPs 초과 200 cPs 이하일 수 있고, 120 cPs 내지 200 cPs일 수도 있고, 100 cPs 초과 150 cPs 이하일 수도 있고, 110 cPs 내지 140 cPs일 수도 있다. The viscosity of the second monomer may be greater than 100 cPs and less than or equal to 200 cPs, may be 120 cPs to 200 cPs, may be greater than 100 cPs to 150 cPs or less, and may be 110 cPs to 140 cPs at 25°C.
본 발명의 실시예에 따르면, 낮은 점도를 갖는 제1 모노머에 의하여 중합성 조성물의 작업성 및 중합성이 향상되고, 높은 점도를 갖는 제2 모노머에 의하여 중합성 조성물의 안정성이 향상되고 유기막 형성 시 수분 및 산소 차단 특성이 향상된다. According to an embodiment of the present invention, the workability and polymerizability of the polymerizable composition are improved by the first monomer having a low viscosity, and the stability of the polymerizable composition is improved by the second monomer having a high viscosity, and an organic film is formed. The moisture and oxygen barrier properties are improved.
본 발명의 일 실시예에 따르면, 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여, 제1 모노머의 함량은 50 내지 80 중량부이고, 제2 모노머의 함량은 20 내지 50 중량부일 수 있다. 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여 제1 모노머의 함량이 50 중량부 미만인 경우, 고점도인 제2 모노머의 영향으로 중합성 모노머의 중합 속도가 저하될 수 있고, 중합성 조성물의 점도 조절이 어려울 수 있다. 반면, 제1 모노머의 함량이 80중량부를 초과하고 제2 모노머의 함량이 20 중량부 미만인 경우, 중합성 모노머의 저장 안정성이 저하될 수 있고, 중합성 조성물의 점도 조절이 어려울 수 있다. According to an embodiment of the present invention, based on 100 parts by weight of the total of the first monomer and the second monomer, the content of the first monomer may be 50 to 80 parts by weight, and the content of the second monomer may be 20 to 50 parts by weight. . When the content of the first monomer is less than 50 parts by weight based on 100 parts by weight of the total of the first monomer and the second monomer, the polymerization rate of the polymerizable monomer may be reduced due to the influence of the second monomer having a high viscosity, and Viscosity control can be difficult. On the other hand, when the content of the first monomer exceeds 80 parts by weight and the content of the second monomer is less than 20 parts by weight, the storage stability of the polymerizable monomer may decrease, and it may be difficult to control the viscosity of the polymerizable composition.
본 발명의 일 실시예에 따르면, 25℃에서의 점도가 1 내지 100 cPs인 제1 모노머와 25℃에서 점도가 100 cPs 초과 500 cPs 이하인 제2 모노머를 5:5 내지 8:2의 범위로 혼합하는 경우, 원활한 광경화가 이루어져 경화막이 형성될 수 있다.According to an embodiment of the present invention, a first monomer having a viscosity of 1 to 100 cPs at 25° C. and a second monomer having a viscosity of more than 100 cPs and 500 cPs or less at 25° C. are mixed in a range of 5:5 to 8:2. In this case, a cured film may be formed through a smooth photocuring.
본 발명의 일 실시예에 따르면, 아크릴기는 "-C=O"기와 "-C=C-"기를 가질 수 있다. 본 발명의 일 실시예에 따르면, 아크릴기는 하기 화학식 3으로 표현되는 부분을 지칭할 수 있다.According to an embodiment of the present invention, the acryl group may have a "-C=O" group and a "-C=C-" group. According to an embodiment of the present invention, the acryl group may refer to a portion represented by the following Chemical Formula 3.
[화학식 3][Formula 3]
Figure PCTKR2021000933-appb-I000001
Figure PCTKR2021000933-appb-I000001
본 발명의 일 실시예 따르면, 제1 모노머와 제2 모노머는 각각 하기 화학식 4로 표현되는 아크릴기를 가질 수 있다.According to an embodiment of the present invention, each of the first monomer and the second monomer may have an acryl group represented by Chemical Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2021000933-appb-I000002
Figure PCTKR2021000933-appb-I000002
아크릴기를 갖는 제1 모노머와 제2 모노머로, 예를 들어, 아크릴레이트계 화합물이 있다. 본 발명의 일 실시예에 따르면, 제1 모노머와 제2 모노머는 각각 아크릴레이트계 화합물을 포함할 수 있다.Examples of the first monomer and the second monomer having an acryl group include an acrylate-based compound. According to an embodiment of the present invention, each of the first monomer and the second monomer may include an acrylate-based compound.
본 발명의 일 실시예에 따르면, 아크릴레이트계 화합물은 하기 화학식 5로 표현되는 부분을 가질 수 있다.According to an embodiment of the present invention, the acrylate-based compound may have a moiety represented by the following Chemical Formula 5.
[화학식 5][Formula 5]
Figure PCTKR2021000933-appb-I000003
Figure PCTKR2021000933-appb-I000003
본 발명의 일 실시예 따르면, 제1 모노머와 제2 모노머는 각각 하기 화학식 6으로 표현되는 아크릴레이트기를 가질 수 있다.According to an embodiment of the present invention, each of the first monomer and the second monomer may have an acrylate group represented by Chemical Formula 6 below.
[화학식 6][Formula 6]
Figure PCTKR2021000933-appb-I000004
Figure PCTKR2021000933-appb-I000004
본 발명의 일 실시예 따르면, 제1 모노머와 제2 모노머는 각각, 모노 알코올이나 다가 알코올의 단관능 (메트)아크릴레이트, 또는 모노 알코올이나 다가 알코올의 다관능 (메트)아크릴레이트일 수 있다. 여기서, 모노 알코올 또는 다가 알코올은 지방족기 및 방향족기 포함할 수 있다. 지방족기는 측쇄형, 분지형 또는 고리형 탄화수소 화합물기를 포함할 수 있다.According to an embodiment of the present invention, the first monomer and the second monomer may be, respectively, a monofunctional (meth)acrylate of a monoalcohol or a polyhydric alcohol, or a polyfunctional (meth)acrylate of a monoalcohol or a polyhydric alcohol. Here, the mono-alcohol or polyhydric alcohol may include an aliphatic group and an aromatic group. The aliphatic group may include a branched, branched or cyclic hydrocarbon compound group.
또한, 제1 모노머와 제2 모노머는 각각, 단관능 중합성 모노머 또는 다관능 중합성 모노머일 수 있다.In addition, each of the first monomer and the second monomer may be a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer.
제1 모노머는, 예를 들어, 도데칸디올 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트 및 벤질(메트)아크릴레이트 중 적어도 하나를 포함할 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 화학식 1의 조건을 만족하는 다른 모노머가 제1 모노머로 사용될 수도 있다. The first monomer may include, for example, at least one of dodecanediol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and benzyl(meth)acrylate. However, one embodiment of the present invention is not limited thereto, and other monomers satisfying the condition of Formula 1 may be used as the first monomer.
제2 모노머는, 예를 들어, 페닐페녹시에틸 (메트)아크릴레이트 및 트리시클로데칸 디메탄올 디(메트)아크릴레이트 중 적어도 하나를 포함할 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 화학식 2의 조건을 만족하는 다른 모노머가 제2 모노머로 사용될 수도 있다. The second monomer may include, for example, at least one of phenylphenoxyethyl (meth)acrylate and tricyclodecane dimethanol di(meth)acrylate. However, an embodiment of the present invention is not limited thereto, and other monomers satisfying the condition of Formula 2 may be used as the second monomer.
이외에도, 2-데실-1-테트라데칸 (메트)아크릴레이트, 스테아릴 (메트)아크릴레이트, 2-옥틸-도데실 (메트)아크릴레이트, 2-헥실-데실 (메트)아크릴레이트, 이소-스테아릴 (메트)아크릴레이트, 라우릴 (메트)아크릴레이트, 트리데실 (메트)아크릴레이트 등이 필요에 따라 사용될 수 있다. In addition, 2-decyl-1-tetradecane (meth)acrylate, stearyl (meth)acrylate, 2-octyl-dodecyl (meth)acrylate, 2-hexyl-decyl (meth)acrylate, iso-ste Aryl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, etc. may be used as needed.
본 발명의 일 실시예에 따르면, 제1 모노머 및 제2 모노머 중 적어도 하나는 액상이다. 본 발명의 일 실시예에 따르면, 제1 모노머 및 제2 모노머 모두 액상일 수도 있고, 온도에 따라, 제1 모노머 및 제2 모노머 중 어느 하나가 고상이 될 수도 있다.According to an embodiment of the present invention, at least one of the first monomer and the second monomer is liquid. According to an embodiment of the present invention, both the first monomer and the second monomer may be in a liquid phase, and depending on the temperature, any one of the first monomer and the second monomer may be in a solid phase.
본 발명의 일 실시예에 따르면, 중합 개시제는 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여 5 중량부 이하로 사용될 수 있다. 보다 구체적으로, 중합 개시제는, 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여, 1 내지 5 중량부로 사용될 수 있고, 3 내지 5 중량부로 사용될 수도 있다. According to an embodiment of the present invention, the polymerization initiator may be used in an amount of 5 parts by weight or less based on 100 parts by weight of the total of the first monomer and the second monomer. More specifically, the polymerization initiator may be used in an amount of 1 to 5 parts by weight, or 3 to 5 parts by weight, based on 100 parts by weight of the total of the first monomer and the second monomer.
본 발명의 일 실시예에 따른 중합 개시제로, 예를 들어, 광개시제가 사용될 수 있다. 본 발명의 일 실시예에 따른 중합 개시제는 광을 흡수하여 라디칼을 생성할 수 있다.As the polymerization initiator according to an embodiment of the present invention, for example, a photoinitiator may be used. The polymerization initiator according to an embodiment of the present invention may generate radicals by absorbing light.
구체적으로, 중합 개시제는 광 에너지를 흡수하여 라디칼을 발생시켜, 제1 모노머 및 제2 모노머에 포함된 아크릴기에 라디칼을 제공할 수 있다. 본 발명의 일 실시예에 따르면, 광 조사에 의한 라디칼 중합에 의해 중합성 조성물에 대한 중합 및 경화가 이루어질 수 있다.Specifically, the polymerization initiator may generate radicals by absorbing light energy to provide radicals to acryl groups included in the first and second monomers. According to an embodiment of the present invention, polymerization and curing of the polymerizable composition may be performed by radical polymerization by light irradiation.
중합 개시제는, 예를 들어, 분자 내에 헤테로 원자를 함유할 수 있고, 또한 아릴기를 포함할 수 있다.The polymerization initiator may contain, for example, a hetero atom in the molecule, and may also contain an aryl group.
본 발명의 일 실시예에 따르면, 중합 개시제는 500nm 이하에서 파장에서 적어도 하나의 광 흡수 피크를 갖는다. 보다 구체적으로, 중합 개시제는 380~410nm 파장 범위에서 광 흡수 피크를 가질 수 있다. 이러한 중합 개시제가 사용됨에 따라, 본 발명의 일 실시예에 따르면, 가시광선 영역의 파장을 갖는 광의 조사에 의하여, 중합성 조성물의 중합이 이루어질 수 있다.According to an embodiment of the present invention, the polymerization initiator has at least one light absorption peak at a wavelength of 500 nm or less. More specifically, the polymerization initiator may have a light absorption peak in a wavelength range of 380 to 410 nm. As such a polymerization initiator is used, according to an embodiment of the present invention, polymerization of the polymerizable composition may be achieved by irradiation of light having a wavelength in the visible ray region.
본 발명의 일 실시예에 따르면, 중합 개시제로, 1-하이드록시사이클로헥실페닐케톤(1-hydroxy cyclrohexylphenyl ketone, Irgacure 184)과 같은 하이드록시케톤 계열의 광 개시제, 2-벤질-2-(디메틸아미노)-1-[4-(4-모포리닐)페닐]-1-부타논, Irgacure 369), 알파-아미노아세토페논(Irgacure 907) 등의 아미노케톤 계열의 광 개시제, 벤질디메틸케탈(Irgacure-651) 등의 벤질디메틸케탈 계열의 광 개시제, 페닐 비스(2,4,6,-트리메틸 벤조일)(Irgacure 819) 등의 비스-아실 포스파인(bis-acyl phosphine) 계열의 광 개시제, 2,4,6-트리메틸벤조일-디페닐포스핀 옥사이드(TPO) 등의 모노-아실 포스파인(mono-acyl phosphine) 계열의 계열의 광 개시제가 사용될 수 있다. According to an embodiment of the present invention, as a polymerization initiator, a hydroxyketone-based photoinitiator such as 1-hydroxy cyclohexylphenyl ketone (Irgacure 184), 2-benzyl-2-(dimethylamino )-1-[4-(4-morpholinyl)phenyl]-1-butanone, Irgacure 369), alpha-aminoacetophenone (Irgacure 907), such as aminoketone-based photoinitiators, benzyldimethylketal (Irgacure-651) ), such as benzyldimethyl ketal-based photoinitiators, bis-acyl phosphine-based photoinitiators such as phenyl bis(2,4,6,-trimethylbenzoyl) (Irgacure 819), 2,4, A mono-acyl phosphine-based photoinitiator such as 6-trimethylbenzoyl-diphenylphosphine oxide (TPO) may be used.
구체적으로, 본 발명의 일 실시예에 따르면, 중합 개시제는, 2,4,6-트리메틸벤조일-디페닐포스핀 옥사이드[2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO], 비스(2,4,6-트리메틸벤조일)-페닐포스핀 옥사이드[bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide] 및 2,4,6-트리메틸벤조일에폭시페닐 포스핀 옥사이드[2,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide] 중 적어도 하나를 포함할 수 있다.Specifically, according to an embodiment of the present invention, the polymerization initiator is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide [2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO], bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide [bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide] and 2,4,6-trimethylbenzoylepoxyphenyl phosphine oxide [2 ,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide].
도 2는 본 발명의 일 실시예에 따른 중합 개시제의 흡광도 그래프이다. 구체적으로, 도 2는 중합 개시제인 2,4,6-트리메틸벤조일-디페닐포스핀 옥사이드(TPO)에 대한 흡광도 그래프이다.2 is an absorbance graph of a polymerization initiator according to an embodiment of the present invention. Specifically, FIG. 2 is an absorbance graph for 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO), which is a polymerization initiator.
본 발명의 일 실시예에 따르면, 중합성 조성물은, 열안정제, 자외선 안정제 및 산화방지제로 이루어지는 그룹에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있다. 또한, 중합성 조성물은, 중합성 조성물에 악영향을 미치지 않는 범위 내에서, 계면활성제, 접착 보조제, 안정제, 접착 촉진제, 경화 촉진제, 열중합 억제제, 분산제, 가소제, 충전제, 소포제 등의 첨가제를 더 포함할 수도 있다. According to an embodiment of the present invention, the polymerizable composition may further include one or more additives selected from the group consisting of a heat stabilizer, a UV stabilizer, and an antioxidant. In addition, the polymerizable composition further contains additives such as surfactants, adhesion aids, stabilizers, adhesion promoters, curing accelerators, thermal polymerization inhibitors, dispersants, plasticizers, fillers, and defoamers within the range that does not adversely affect the polymerizable composition. You may.
첨가제가 사용되는 경우, 첨가제는 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여 0.001 내지 10 중량부의 함량으로 사용될 수 있다. When an additive is used, the additive may be used in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the total of the first monomer and the second monomer.
본 발명의 일 실시예에 따른 중합성 조성물은 실리콘계 모노머를 포함하지 않는다. 실리콘계 모노머를 포함하는 경우, 중합성 조성물의 점도 조절이 용이하지 않으며, 1년 정도 장시간 저장되거나 가혹한 조건 하에 저장되는 경우, 변질 도는 물성 저하가 발생될 수 있다. 따라서, 실리콘계 모노머를 포함하는 중합성 조성물에 의하여 제조된 유기막은 안정성이 저하될 수 있다. The polymerizable composition according to an embodiment of the present invention does not include a silicone-based monomer. When a silicone-based monomer is included, it is not easy to control the viscosity of the polymerizable composition, and when stored for a long time about one year or stored under severe conditions, deterioration or deterioration of physical properties may occur. Therefore, the stability of the organic layer prepared by the polymerizable composition including the silicone-based monomer may be reduced.
또한, 실리콘계 모노머가 사용되는 경우, 고온 조건하에 실록산계 아웃가스가 발생할 수 있다. 따라서, 실리콘계 모노머를 포함하는 중합성 조성물의 유기 발광 소자의 봉지재로 사용되는 경우, 유기 발광 소자에 손상이 발생될 수 있다.In addition, when a silicone-based monomer is used, siloxane-based outgas may be generated under high-temperature conditions. Therefore, when the polymerizable composition including the silicone-based monomer is used as an encapsulant of the organic light emitting device, damage may occur to the organic light emitting device.
본 발명의 일 실시예에 따르면, 중합성 조성물은 무용제형 조성물로 제조될 수 있다. 본 발명의 일 실시예에 있어서, 무용제형 조성물"은 조성물이 용매, 예를 들어, 유기 용매 또는 수성 용매 등을 포함하지 않는 것을 의미한다. According to an embodiment of the present invention, the polymerizable composition may be prepared as a solvent-free composition. In one embodiment of the present invention, "solvent-free composition" means that the composition does not contain a solvent, for example, an organic solvent or an aqueous solvent.
용제형 조성물과 비교하여, 무용제형 조성물이 사용되는 경우 용매 건조공정이 생략될 수 있어 공정 효율이 향상될 수 있다. 또한, 무용제형 조성물이 사용되는 경우 용제로 인한 기포가 발생되지 않아, 봉지재의 기능 저하가 방지될 수 있다. Compared with the solvent-type composition, when the solvent-free composition is used, the solvent drying process can be omitted, so that the process efficiency can be improved. In addition, when the solvent-free composition is used, bubbles due to the solvent are not generated, thereby preventing deterioration of the function of the encapsulant.
본 발명의 일 실시예에 따른 중합성 조성물은 잉크젯 프린팅에 적용될 수 있다. 잉크젯 프린팅을 위해 여러 개의 노즐을 포함하는 멀티헤드 장비가 사용될 수 있다. 잉크젯 프린팅에 적용될 수 있도록 하기 위해, 중합성 조성물의 점도 및 표면장력이 조정될 수 있다. The polymerizable composition according to an embodiment of the present invention may be applied to inkjet printing. For inkjet printing, multihead equipment containing several nozzles may be used. In order to be applicable to inkjet printing, the viscosity and surface tension of the polymerizable composition can be adjusted.
중합성 조성물의 점도가 30cPs를 초과하면 잉크젯 노즐에서 토출되기 어렵고, 1cPs 미만이면 과도한 흐름성으로 인하여 적절한 두께의 유기막을 형성하기 어렵다. 따라서, 본 발명의 일 실시예에 따른 중합성 조성물은 1 내지 30cPs의 점도를 가질 수 있다.If the viscosity of the polymerizable composition exceeds 30 cPs, it is difficult to discharge from the inkjet nozzle, and if it is less than 1 cPs, it is difficult to form an organic film of an appropriate thickness due to excessive flowability. Accordingly, the polymerizable composition according to an embodiment of the present invention may have a viscosity of 1 to 30 cPs.
본 발명의 일 실시예 따르면, 중합성 조성물이 잉크젯 헤드로부터 용이하게 토출되도록 하기 위해, 중합성 조성물은 20 내지 45 mN/m 범위의 표면장력을 가질 수 있다. According to an embodiment of the present invention, in order to allow the polymerizable composition to be easily discharged from the inkjet head, the polymerizable composition may have a surface tension in the range of 20 to 45 mN/m.
본 발명의 일 실시예에 따른 중합성 조성물은 우수한 저장 안정성을 갖는다.The polymerizable composition according to an embodiment of the present invention has excellent storage stability.
본 발명의 일 실시예에 따른 중합성 조성물은 저장 시험 전, 제1 가요성(Aa), 제1 점도(Ab), 제1 경화도(Ac), 제1 수축율(Ad) 및 제1 표면장력(Ae)을 갖는다. 여기서, "저장 시험 전"이라는 것은, 저장 안정성 시험을 위해 중합성 조성물을 저장하기 전 상태를 의미한다. "저장 시험 전"을 "초기"라고 할 수도 있다.Before the storage test, the polymerizable composition according to an embodiment of the present invention has a first flexibility (Aa), a first viscosity (Ab), a first degree of curing (Ac), a first shrinkage ratio (Ad), and a first surface tension. (Ae). Here, "before the storage test" means a state before storing the polymerizable composition for the storage stability test. "Before the storage test" may be referred to as "initial".
따라서, 본 발명의 일 실시예에 따른 따른 중합성 조성물은, 저장 시험 초기에, 제1 가요성(Aa), 제1 점도(Ab), 제1 경화도(Ac), 제1 수축율(Ad) 및 제1 표면장력(Ae)을 가질 수 있다. Therefore, the polymerizable composition according to an embodiment of the present invention, in the initial storage test, first flexibility (Aa), first viscosity (Ab), first degree of curing (Ac), first shrinkage (Ad) and a first surface tension (Ae).
상온(25℃±10℃)에서 1년간 밀봉 저장 후, 본 발명의 일 실시예에 따른 중합성 조성물은 제2 가요성(Ba), 제2 점도(Bb), 제2 경화도(Bc), 제2 수축율(Bd) 및 제2 표면장력(Be)을 갖는다. After sealed storage for one year at room temperature (25°C±10°C), the polymerizable composition according to an embodiment of the present invention has a second flexibility (Ba), a second viscosity (Bb), a second degree of curing (Bc), It has a second shrinkage ratio (Bd) and a second surface tension (Be).
본 발명의 일 실시예에 따르면, 중합성 조성물은 18L 캐니스터(Canister) 용기 내에 밀봉되어 항온 상태로 저장될 수 있다. 저장 용기는 중합성 조성물과 반응하지 않는 안정적인 물질로 만들어질 수 있다. 예를 들어, 유리 또는 스테인리스 재질의 저장 용기에 중합성 조성물이 저장될 수 있다. 또한, 50℃에서 1년간 밀봉 저장 후, 본 발명의 일 실시예에 따른 중합성 조성물은 제3 가요성(Ca), 제3 점도(Cb), 제3 경화도(Cc), 제3 수축율(Cd) 및 제3 표면장력(Ce)을 갖는다. According to an embodiment of the present invention, the polymerizable composition may be sealed in an 18L canister container and stored at a constant temperature. The storage vessel may be made of a stable material that does not react with the polymerizable composition. For example, the polymerizable composition may be stored in a storage container made of glass or stainless steel. In addition, after sealed storage at 50° C. for 1 year, the polymerizable composition according to an embodiment of the present invention has a third flexibility (Ca), a third viscosity (Cb), a third degree of curing (Cc), and a third shrinkage ( Cd) and a third surface tension (Ce).
본 발명의 일 실시예에 따른 중합성 조성물은 18 이하의 저장 변경 지수(Index of Storage Variation; ISV)를 갖는다.The polymerizable composition according to an embodiment of the present invention has an Index of Storage Variation (ISV) of 18 or less.
본 발명의 일 실시예에 따른 저장 변경 지수(ISV)는 하기 식 1로 구해진다.The storage change index (ISV) according to an embodiment of the present invention is obtained by Equation 1 below.
[식 1] [Equation 1]
ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (| Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100
제1 가요성(Aa)은, DIN EN ISO 14577-1 및 ASTM E 2546 규격에 따라 물성을 측정하는 나노인덴터(모델명: PICODENTOR HM500)에 의하여 측정된다. 저장 시험 전 중합성 조성물에 대하여, 나노인덴터인 PICODENTOR HM500을 사용하여 제1 가요성(Aa)이 측정된다. 구체적으로, ASTM E 2546 규격에 따라, 저장 시험 전 중합성 조성물을 50mm*50mm 유리 기판에 8㎛ 두께로 스핀코팅하고, N2 분위기 하에서 자외선을 이용하여 경화시킨다. 구체적으로, LED 램프를 이용하여 395nm 파장의 빛을 1,500mJ/cm2 조사하여, 유리 기판에 코팅된 중합성 조성물을 경화시켜 유기막을 제조한다. 다음, 중합성 조성물에 의하여 형성된 유기막(경화막)에 2.0mN 하중을 5초간 가하여 모듈러스(MPa)를 측정한다. 측정된 모듈러스(MPa) 값이 가요성에 해당된다.The first flexibility (Aa) is measured by a nanoindenter (model name: PICODENTOR HM500) that measures physical properties according to DIN EN ISO 14577-1 and ASTM E 2546 standards. For the polymerizable composition before the storage test, the first flexibility (Aa) was measured using a PICODENTOR HM500, a nanoindenter. Specifically, according to ASTM E 2546 standard, the polymerizable composition is spin-coated to a thickness of 8 μm on a 50 mm * 50 mm glass substrate before the storage test, and cured using ultraviolet rays under N 2 atmosphere. Specifically, by irradiating 1,500 mJ/cm 2 of light with a wavelength of 395 nm using an LED lamp, the polymerizable composition coated on the glass substrate is cured to prepare an organic film. Next, a 2.0 mN load is applied to the organic film (cured film) formed of the polymerizable composition for 5 seconds to measure the modulus (MPa). The measured modulus (MPa) value corresponds to the flexibility.
제2 가요성(Ba)은, 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 이용하여 측정된다. 제2 가요성(Ba) 측정 방법은 제1 가요성(Aa)의 측정 방법과 동일하다. The second flexibility (Ba) is measured using a sample of the polymerizable composition after the polymerizable composition is sealed and stored at room temperature (25°C±10°C) for one year. The method of measuring the second flexibility (Ba) is the same as the method of measuring the first flexibility (Aa).
제3 가요성(Ca)은, 중합성 조성물을 50℃에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 이용하여 측정된다. 제3 가요성(Ca) 측정 방법은 제1 가요성(Aa)의 측정 방법과 동일하다.The third flexibility (Ca) is measured using a sample of the polymerizable composition after sealed storage of the polymerizable composition at 50°C for one year. The method for measuring the third flexibility (Ca) is the same as the method for measuring the first flexibility (Aa).
본 발명의 일 실시예에 따르면, 제1 가요성(Aa)은 1985 내지 2416 MPa이고, 제2 가요성(Ba)은 1947 내지 2390 MPa이고, 제3 가요성(Ca)은 1935 내지 2375 MPa일 수 있다. 이러한 범위의 가요성을 갖는 중합성 조성물을 이용하여 제조된 유기막은 우수한 모듈러스를 가지며 산소, 수분 등을 효과적으로 차단할 수 있다.According to an embodiment of the present invention, the first flexibility (Aa) is 1985 to 2416 MPa, the second flexibility (Ba) is 1947 to 2390 MPa, and the third flexibility (Ca) is 1935 to 2375 MPa. can An organic film prepared using the polymerizable composition having a flexibility within this range has an excellent modulus and can effectively block oxygen, moisture, and the like.
제1 점도(Ab)는 ASTM D 2196 에 규정된 방법에 따라, 저장 시험 전 중합성 조성물에 대하여, Brookfield 사의 DV2T 분석 장비를 이용하여, 25℃에서 측정된다. 구체적으로, Brookfield 사의 DV2T 분석 장비에 중합성 조성물을 0.5ml 로딩하고, 토크를 50%로 설정하여 제1 점도(Ab)를 측정한다.The first viscosity (Ab) is measured at 25° C. using a Brookfield DV2T analysis instrument for the polymerizable composition before storage test according to the method specified in ASTM D 2196. Specifically, 0.5 ml of the polymerizable composition is loaded into Brookfield's DV2T analysis equipment, and the first viscosity (Ab) is measured by setting the torque to 50%.
제2 점도(Bb)는, 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제2 점도(Bb) 측정 방법은 제1 점도(Ab) 측정 방법과 동일하다.The second viscosity (Bb) is measured by collecting a sample of the polymerizable composition after sealing and storing the polymerizable composition at room temperature (25°C±10°C) for one year. The second viscosity (Bb) measuring method is the same as the first viscosity (Ab) measuring method.
제3 점도(Cb)는, 중합성 조성물을 50℃에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제3 점도(Cb) 측정 방법은 제1 점도(Ab) 측정 방법과 동일하다.A 3rd viscosity (Cb) collects and measures the sample of a polymeric composition, after sealingly storing a polymeric composition at 50 degreeC for 1 year. The third viscosity (Cb) measuring method is the same as the first viscosity (Ab) measuring method.
본 발명의 일 실시예에 따르면, 25℃에서, 제1 점도(Ab)는 19.5 내지 22.0 cPs이고, 제2 점도(Bb)는 19.8 내지 22.2 cPs이고, 제3 점도(Cb)는 19.8 내지 23.0 cPs일 수 있다. 이러한 범위의 점도를 갖는 중합성 조성물을 이용하는 경우, 유기막이 효율적으로 제조될 수 있고, 그에 따라, 유기막의 산소, 수분 차단 효율이 향상될 수 있다.According to an embodiment of the present invention, at 25° C., the first viscosity (Ab) is 19.5 to 22.0 cPs, the second viscosity (Bb) is 19.8 to 22.2 cPs, and the third viscosity (Cb) is 19.8 to 23.0 cPs can be When a polymerizable composition having a viscosity in this range is used, an organic film can be efficiently manufactured, and thus, the oxygen and moisture barrier efficiency of the organic film can be improved.
본 발명의 일 실시예에 따르면, 경화도는 경화 전과 후의 C=C 이중 결합 비율의 변화로부터 계산될 수 있다. 예를 들어, 경화 전 상태인 중합성 조성물의 C=C 이중 결합 비율과 경화 후 상태인 유기막의 C=C 이중 결합 비율로부터 경화도가 계산될 수 있다.According to an embodiment of the present invention, the degree of curing may be calculated from the change in the C=C double bond ratio before and after curing. For example, the degree of curing may be calculated from the C=C double bond ratio of the polymerizable composition before curing and the C=C double bond ratio of the organic film after curing.
본 발명의 일 실시예에 따르면, 경화도는 다음 참고식 1로 계산될 수 있다.According to an embodiment of the present invention, the degree of curing may be calculated by the following Reference Equation 1.
[참고식 1][Reference Formula 1]
Figure PCTKR2021000933-appb-I000005
Figure PCTKR2021000933-appb-I000005
본 발명의 일 실시예에 따르면, 제1 경화도(Ac)는 저장 시험 전 중합성 조성물에 대하여, PerkinElmer사의 Spectrum 100 FTIR Spectrometer를 이용하여 측정된다. According to an embodiment of the present invention, the first degree of curing (Ac) is measured using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer for the polymerizable composition before the storage test.
먼저, PerkinElmer사의 Spectrum 100 FTIR Spectrometer를 이용하여, 반사모드에서 저장 시험 전 중합성 조성물의 적외선 스펙트럼을 얻은 후, 파수 810cm-1의 피크 면적 및 파수 1720cm-1의 피크 면적을 계산한다.First, using a PerkinElmer Inc. Spectrum 100 FTIR Spectrometer, after obtaining the infrared spectrum of the store before the test polymerizable composition in a reflection mode, and calculates the peak area of the 810cm -1 wave number peak area and the wave number of 1720cm -1.
파수 810cm-1의 피크는 C=C 이중 결합(double bond)의 피크에 해당되고, 파수 810cm-1의 피크 면적은 C=C 이중 결합의 양에 대응된다. 중합성 조성물의 경화가 진행될수록 C=C 이중 결합의 양이 감소되며, 파수 810cm-1의 피크 면적이 감소된다.The peak at wave number 810 cm −1 corresponds to the peak of a C=C double bond, and the peak area at wave number 810 cm −1 corresponds to the amount of C=C double bond. As the curing of the polymerizable composition proceeds, the amount of C=C double bonds decreases, and the peak area at a wave number of 810 cm −1 decreases.
파수 1720cm-1의 피크는 C=O 결합(bond)의 피크에 해당되고, 파수 1720cm-1의 피크 면적은 C=O 결합의 양에 대응된다. 중합성 조성물의 경화가 진행되더라도 C=O 결합의 양에는 변화가 없거나 거의 없다. 따라서, 파수 1720cm-1의 피크 면적은 레퍼런스(reference) 값이 될 수 있다.The peak at wave number 1720 cm −1 corresponds to the peak of C=O bonds, and the peak area at wave number 1720 cm −1 corresponds to the amount of C=O bonds. There is little or no change in the amount of C=O bonds even when curing of the polymerizable composition proceeds. Accordingly, the peak area of the wave number 1720 cm −1 may be a reference value.
참고식 2와 같이, 중합성 조성물에 대하여 측정하여 얻어진 파수 810cm-1의 피크 면적을 파수 1720cm-1의 피크 면적으로 나눈 값이 "중합성 조성물의 C=C 비율"이 될 수 있다. As shown in Reference Formula 2, a value obtained by dividing the peak area at a wave number of 810 cm −1 obtained by measurement with respect to the polymerizable composition by the peak area at a wave number of 1720 cm −1 may be “C=C ratio of the polymerizable composition”.
[참고식 2][Reference 2]
[중합성 조성물의 C=C 비율] = (중합성 조성물의 파수 810cm-1의 피크 면적)/(중합성 조성의 파수 1720cm-1의 피크 면적)[Polymerizable C = C ratio of the composition] = (peak area of the polymerizable composition of the wave number 810cm -1) / (peak area of the wave number of 1720cm -1 polymerizable composition)
다음, 저장 시험 전 중합성 조성물을 50mm*50mm 유리 기판에 8㎛ 두께로 스핀 코팅하고, N2 분위기 하에 자외선을 이용하여 경화시킨다. 구체적으로, LED 램프를 이용하여 395nm 파장의 빛을 1,500mJ/cm2 조사하여, 유리 기판에 코팅된 중합성 조성물을 경화시켜 유기막을 제조한다. PerkinElmer사의 Spectrum 100 FTIR Spectrometer를 사용하여, 유기막에 대하여, 반사모드(ATR)로 파수 0 내지 2000 cm-1의 범위에서 적외선 스텍트럼을 측정한다. 적외선 스펙트럼을 이용하여, 파수 810cm-1의 피크 면적 및 파수 1720cm-1의 피크 면적을 계산한다. 참고식 3과 같이, 유기막에 대하여 측정하여 얻어진 파수 810cm-1의 피크 면적을 파수 1720cm-1의 피크 면적으로 나눈 값이 "유기막의 C=C 비율"이 될 수 있다.Next, before the storage test, the polymerizable composition is spin-coated to a thickness of 8 μm on a 50 mm*50 mm glass substrate, and cured using ultraviolet rays under N 2 atmosphere. Specifically, by irradiating 1,500 mJ/cm 2 of light with a wavelength of 395 nm using an LED lamp, the polymerizable composition coated on the glass substrate is cured to prepare an organic film. Using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer, an infrared spectrum was measured in a range of 0 to 2000 cm -1 with a wave number in a reflection mode (ATR) for the organic film. Using infrared spectrum, and calculates the peak area of the peak area and the wave number of 1720cm -1 wave number 810cm -1. As shown in Reference Equation 3, a value obtained by dividing the peak area of the wave number 810 cm -1 obtained by measuring the organic film by the peak area of the wave number 1720 cm -1 may be the “C=C ratio of the organic film”.
[참고식 3][Reference 3]
[유기막의 C=C 비율] = (유기막의 파수 810cm-1의 피크 면적)/(유기막의 파수 1720cm-1의 피크 면적)[Organic film C = C ratio] = (peak area of the organic film-frequency 810cm -1) / (peak area of the organic film wavenumber 1720cm -1)
다음, 참고식 1에 따라 경화도를 계산한다. 그 결과값이 제1 경화도(Ac)에 해당된다.Next, the degree of curing is calculated according to Reference Equation 1. The result value corresponds to the first degree of hardening (Ac).
제2 경화도(Bc)는, 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제2 경화도(Bc) 측정 방법은 제1 경화도(Ac) 측정 방법과 동일하다.The second degree of curing (Bc) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at room temperature (25°C±10°C) for one year and storing it. The method for measuring the second degree of curing (Bc) is the same as the method for measuring the first degree of curing (Ac).
제3 경화도(Cc)는, 중합성 조성물을 50℃에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제3 경화도(Cc) 측정 방법은 제1 경화도(Ac) 측정 방법과 동일하다.A 3rd degree of hardening (Cc) collects and measures the sample of a polymeric composition, after sealing and storing a polymeric composition at 50 degreeC for 1 year. The method for measuring the third degree of curing (Cc) is the same as the method for measuring the first degree of curing (Ac).
본 발명의 일 실시예에 따르면, 제1 경화도(Ac)는 93 내지 95%이고, 제2 경화도(Bc)는 92 내지 94%이고, 제3 경화도(Cc)는 92 내지 94%일 수 있다. 이러한 경화도 특성을 갖는 중합성 조성물에 의하여 제조된 유기막은 우수한 경화도를 가져, 유기 발광 소자를 효율적으로 보호할 수 있고, 산소, 수분 등을 효율적으로 차단할 수 있다.According to an embodiment of the present invention, the first degree of curing (Ac) is 93 to 95%, the second degree of curing (Bc) is 92 to 94%, and the third degree of curing (Cc) is 92 to 94%. can The organic film prepared by the polymerizable composition having such a degree of curing property has an excellent degree of curing, can effectively protect the organic light emitting device, and can effectively block oxygen, moisture, and the like.
본 발명의 일 실시예에 따르면, 수축율은, 특정 규격의 용기에서 중합성 조성물이 경화될 때, 경화 전과 후의 지름 변화로부터 계산된다. According to an embodiment of the present invention, the shrinkage rate is calculated from the change in diameter before and after curing when the polymerizable composition is cured in a container having a specific size.
본 발명의 일 실시예에 따르면, 제1 수축율(Ad)은 11.5mm의 내경 지름을 갖는 유리관에 채워진 저장 시험 전 중합성 조성물의 경화 전과 경화 후 지름의 변화로부터 계산된다. According to an embodiment of the present invention, the first shrinkage rate (Ad) is calculated from the change in diameter before and after curing of the polymerizable composition before the storage test filled in a glass tube having an inner diameter of 11.5 mm.
먼저, 11.5mm의 내경 지름 및 100mm의 높이를 갖는 유리관에 중합성 조성물 2g을 채운다. 이 경우, 경화 전 중합성 조성물의 직경은 11.5mm라고 할 수 있다. First, 2 g of the polymerizable composition is filled in a glass tube having an inner diameter of 11.5 mm and a height of 100 mm. In this case, it can be said that the diameter of the polymerizable composition before curing is 11.5 mm.
다음, 자외선을 조사하여 유리관에 채워진 중합성 조성물을 경화시킨다. 구체적으로, LED 램프를 이용하여 395nm 파장의 빛을 5,000mJ/cm2의 광량으로 조사하여 중합성 조성물을 경화시킨다. 경화 후 유리관을 파괴하고, 중합성 조성물에 의하여 형성된 막대 형태의 경화물을 획득한다. 획득된 막대 형태의 경화물을 30분 동안 상온에서 에이징(Aging)한다. 다음, 막대 형태의 경화물의 아래에서 10mm 지점의 지름을 측정한다. 막대 형태의 경화물의 아래에서 10mm 지점의 지름이 "경화 후 지름"에 해당된다. 다음, "경화 전 지름"인 11.5mm와, 경화 후 지름을 이용하여, 참고식 4에 따라 수축율을 계산한다. Next, the polymerizable composition filled in the glass tube is cured by irradiating ultraviolet rays. Specifically, the polymerizable composition is cured by irradiating light with a wavelength of 395 nm using an LED lamp at an amount of 5,000 mJ/cm 2 . After curing, the glass tube is broken to obtain a rod-shaped cured product formed by the polymerizable composition. The obtained rod-shaped cured product is aged at room temperature for 30 minutes. Next, measure the diameter of the 10 mm point under the rod-shaped cured product. The diameter at a point 10 mm below the rod-shaped cured product corresponds to the “diameter after curing”. Next, using the "diameter before curing" of 11.5 mm and the diameter after curing, the shrinkage rate is calculated according to Reference Equation 4.
[참고식 4][Reference 4]
Figure PCTKR2021000933-appb-I000006
Figure PCTKR2021000933-appb-I000006
제2 수축율(Bd)은, 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제2 수축율(Bd) 측정 방법은 제1 수축율(Ad) 측정 방법과 동일하다.The second shrinkage ratio (Bd) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at room temperature (25°C±10°C) for one year. The second shrinkage ratio (Bd) measuring method is the same as the first shrinkage ratio (Ad) measuring method.
제3 수축율(Cd)은, 중합성 조성물을 50℃에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제3 수축율(Cd) 측정 방법은 제1 수축율(Ad) 측정 방법과 동일하다.The third shrinkage rate (Cd) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at 50°C for 1 year. The third method for measuring the shrinkage rate (Cd) is the same as the method for measuring the first shrinkage rate (Ad).
본 발명의 일 실시예에 따르면, 제1 수축율(Ad)은 2.5 내지 3.0% 이고, 제2 수축율(Bd)은 2.5 내지 3.1%이고, 제3 수축율(Cd)은 2.5 내지 3.1%일 수 있다. 이러한 수축율 특성을 갖는 중합성 조성물을 이용하여 유기막을 제조하는 경우, 유기막이 적용된 제품에 변형이 발생되는 것이 방지되고, 내구성이 향상되며, 산소, 수분 등이 효율적으로 차단될 수 있다.According to an embodiment of the present invention, the first shrinkage rate (Ad) may be 2.5 to 3.0%, the second shrinkage rate (Bd) may be 2.5 to 3.1%, and the third shrinkage rate (Cd) may be 2.5 to 3.1%. When the organic film is manufactured using the polymerizable composition having such shrinkage characteristics, deformation of the product to which the organic film is applied is prevented, durability is improved, and oxygen, moisture, and the like can be effectively blocked.
제1 표면장력(Ae)은 ISO 304에 규정된 방법에 따라, 저장 시험 전 중합성 조성물에 대하여, KRUSS사 Tension Meter K9으로 O-Ring을 이용하여 측정된다. 구체적으로, KRUSS사 Tension Meter K9을 이용하여, O-Ring에 중합성 조성물 20g을 투입하고, Max 모드에서 제1 표면장력(Ae)을 측정한다.The first surface tension (Ae) is measured by using an O-Ring with KRUSS Tension Meter K9 for the polymerizable composition before storage test according to the method specified in ISO 304. Specifically, using KRUSS Tension Meter K9, 20 g of the polymerizable composition is put into the O-Ring, and the first surface tension (Ae) is measured in the Max mode.
제2 표면장력(Be)은, 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제2 표면장력(Be) 측정 방법은 제1 표면장력(Ae) 측정 방법과 동일하다. The second surface tension (Be) is measured by collecting a sample of the polymerizable composition after sealing and storing the polymerizable composition at room temperature (25°C±10°C) for one year. The second surface tension (Be) measurement method is the same as the first surface tension (Ae) measurement method.
제3 표면장력(Ce)은, 중합성 조성물을 50℃에서 1년간 밀봉 저장 후, 중합성 조성물의 샘플을 채취하여 측정된다. 제3 표면장력(Ce) 측정 방법은 제1 표면장력(Ae) 측정 방법과 동일하다.The third surface tension (Ce) is measured by collecting a sample of the polymerizable composition after sealing the polymerizable composition at 50° C. for one year. The third surface tension (Ce) measuring method is the same as the first surface tension (Ae) measuring method.
본 발명의 일 실시예에 따르면, 제1 표면장력(Ae)은 35.0 내지 35.9 mN/m이고, 제2 표면장력(Be)은 35.2 내지 36.1 mN/m이고, 제3 표면장력(Ce)은 35.2 내지 36.1 mN/m일 수 있다. 이러한 표면장력 특성을 갖는 중합성 조성물은 충분한 표면장력을 가져, 잉크젯 헤드로부터 용이하게 토출될 수 있다. 그에 따라, 중합성 조성물이 잉크젯 장비에 의해 원활히 분사될 수 있다. According to an embodiment of the present invention, the first surface tension (Ae) is 35.0 to 35.9 mN/m, the second surface tension (Be) is 35.2 to 36.1 mN/m, and the third surface tension (Ce) is 35.2 to 36.1 mN/m. The polymerizable composition having such surface tension characteristics has sufficient surface tension and can be easily discharged from the inkjet head. Accordingly, the polymerizable composition can be smoothly jetted by the inkjet equipment.
중합성 조성물의 표면장력이 지나치게 크면 중합성 조성물로 이루어진 잉크 방울이 비산되는 현상이 발생하고, 표면장력이 지나치게 작으면 코팅 대상과의 충돌 시 용액의 퍼짐성 혹은 분산성이 필요이상으로 증가할 수 있다. 따라서, 본 발명의 일 실시예 따르면, 제1 표면장력(Ae), 제2 표면장력(Be) 및 제3 표면장력(Ce)이 상기와 같이 조정된다.If the surface tension of the polymerizable composition is too large, the ink droplets made of the polymerizable composition are scattered. If the surface tension is too small, the spreadability or dispersibility of the solution may increase more than necessary when it collides with the coating object. Accordingly, according to an embodiment of the present invention, the first surface tension (Ae), the second surface tension (Be), and the third surface tension (Ce) are adjusted as described above.
본 발명의 일 실시예에 따르면, 중합성 조성물이 18 이하의 저장 변경 지수(ISV)를 갖는 경우, 중합성 조성물이 우수한 저장 안정성을 가져, 사용 기간 동안 품질 편차가 적거나 거의 없어, 중합성 조성물에 의하여 제조되는 유기막의 신뢰성이 보장될 수 있다. 그에 따라, 유기막을 포함하는 봉지재(590) 및 표시장치(100)의 안정성 및 신뢰성이 향상될 수 있다. According to an embodiment of the present invention, when the polymerizable composition has a storage change index (ISV) of 18 or less, the polymerizable composition has excellent storage stability, so that there is little or little variation in quality during the use period, the polymerizable composition The reliability of the organic film produced by the method can be guaranteed. Accordingly, stability and reliability of the encapsulant 590 including the organic layer and the display device 100 may be improved.
본 발명의 일 실시예에 따르면, 100cPs 이하의 저점도를 갖는 제1 모노머와 100cPs를 초과하는 고점도를 갖는 제2 모노머가 소정의 비율로 혼합됨으로써, 가요성, 점도, 경화도, 수축율, 표면장력 측면에서 안정성이 보장될 수 있는 중합성 조성물이 제조될 수 있다. According to an embodiment of the present invention, a first monomer having a low viscosity of 100 cPs or less and a second monomer having a high viscosity exceeding 100 cPs are mixed in a predetermined ratio, whereby flexibility, viscosity, degree of curing, shrinkage, surface tension A polymerizable composition in which stability can be ensured in terms of can be prepared.
본 발명의 일 실시예에 따르면, 중합성 조성물의 저장 변경 지수(ISV)는 1 내지 18일 수 있으며, 3 내지 17일 수도 있으며, 5 내지 16일 수도 있다. According to an embodiment of the present invention, the storage change index (ISV) of the polymerizable composition may be 1 to 18, may be 3 to 17, may be 5 to 16 may be.
본 발명의 일 실시예에 따르면, 제1 모노머는 0.5 내지 5.0의 아크릴 지수(MH1)를 가질 수 있고, 제2 모노머는 0.1 내지 3.0의 아크릴 지수(MH1)를 가질 수 있다. 아크릴 지수(MH1)는 하기 식 2에 의하여 구해질 수 있다. According to an embodiment of the present invention, the first monomer may have an acrylic index (MH1) of 0.5 to 5.0, and the second monomer may have an acrylic index (MH1) of 0.1 to 3.0. The acrylic index (MH1) may be obtained by Equation 2 below.
[식 2][Equation 2]
MH1 = (모노머의 분자량 * X) / {모노머의 총 원자 수 * (모노머의 총 탄소원자 수 - 모노머의 총 산소원자 수)}MH1 = (molecular weight of monomer * X) / {total number of atoms in monomer * (total number of carbon atoms in monomer - total number of oxygen atoms in monomer)}
식 2에서, X는 아크릴기의 개수이다.In Formula 2, X is the number of acrylic groups.
아크릴 지수(MH1)가 높을수록 아크릴기의 비율이 높다고 할 수 있다. 아크릴기는 중합에 관여하므로, 아크릴 지수(MH1)가 높을수록 중합성 조성물의 중합성이 우수하다고 할 수 있다. It can be said that the ratio of acryl groups is high, so that the acrylic index (MH1) is high. Since the acrylic group is involved in polymerization, it can be said that the higher the acrylic index (MH1), the better the polymerizable composition.
제1 모노머의 아크릴 지수(MH1)가 0.5 미만인 경우 중합성 조성물의 중합 특성이 저하되는 문제가 발생할 수 있고, 5.0을 초과하는 경우 중합성 조성물의 중합 특성이 과도하게 증가하는 문제가 발생할 수 있다. 제2 모노머의 아크릴 지수(MH1)가 0.1 미만인 경우 중합성 조성물의 중합 특성이 저하되는 문제가 발생할 수 있고, 3.0을 초과하는 경우 중합성 조성물의 중합 특성이 과도하게 증가하는 문제가 발생할 수 있다.When the acrylic index (MH1) of the first monomer is less than 0.5, a problem in which the polymerization properties of the polymerizable composition are lowered may occur, and when it exceeds 5.0, a problem in which the polymerization properties of the polymerizable composition are excessively increased may occur. When the acrylic index (MH1) of the second monomer is less than 0.1, a problem in which polymerization properties of the polymerizable composition are lowered may occur, and when it exceeds 3.0, a problem in which polymerization properties of the polymerizable composition are excessively increased may occur.
본 발명의 일 실시예에 따르면, 제1 모노머의 아크릴 지수(MH1)는 0.5 내지 5.0일 수 있고, 0.5 내지 4.0일 수도 있고, 0.7 내지 3.0일 수도 있다. According to an embodiment of the present invention, the acrylic index (MH1) of the first monomer may be 0.5 to 5.0, 0.5 to 4.0, or 0.7 to 3.0.
제1 모노머의 아크릴 지수(MH1)가 0.5 내지 5.0이고, 제2 모노머의 아크릴 지수(MH1)가 0.1 내지 3.0이고, 중합성 모노머가 30 cPs 이하의 점도 또는 23 cPs 이하의 점도를 가지는 경우, 경화가 원활하게 이루어질 수 있어, 공정 효율이 향상될 수 있다. Curing when the acrylic index (MH1) of the first monomer is 0.5 to 5.0, the acrylic index (MH1) of the second monomer is 0.1 to 3.0, and the polymerizable monomer has a viscosity of 30 cPs or less or a viscosity of 23 cPs or less may be performed smoothly, and process efficiency may be improved.
본 발명의 일 실시예에 따른 중합성 조성물은 낮은 수분 농도를 갖는다. 예를 들어, 본 발명의 일 실시예에 따른 중합성 조성물은 40ppm 이하의 수분(H2O) 농도를 가질 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따른 중합성 조성물은 20ppm 이하의 수분(H2O) 농도를 가질 수 있다. 그에 따라, 본 발명의 일 실시예에 따른 중합성 조성물에 의하여 봉지재(590)의 유기막(592)이 형성되는 경우, 유기 발광 소자(570)가 유기막(592)에 포함된 수분에 의하여 손상되는 것이 방지될 수 있다.The polymerizable composition according to an embodiment of the present invention has a low moisture concentration. For example, the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 40 ppm or less. More specifically, the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 20 ppm or less. Accordingly, when the organic layer 592 of the encapsulant 590 is formed by the polymerizable composition according to an embodiment of the present invention, the organic light emitting device 570 is formed by moisture contained in the organic layer 592 . damage can be prevented.
본 발명의 다른 일 실시예는, 본 발명의 일 실시예 따른 중합성 조성물에 의하여 제조된 유기막을 제공한다. Another embodiment of the present invention provides an organic film prepared by the polymerizable composition according to an embodiment of the present invention.
본 발명의 다른 일 실시예에 따른 유기막은, 본 발명의 일 실시예 따른 중합성 조성물의 중합 및 경화에 의하여 형성될 수 있다. The organic film according to another embodiment of the present invention may be formed by polymerization and curing of the polymerizable composition according to an embodiment of the present invention.
본 발명의 다른 일 실시예에 따르면, 광 조사에 의해 중합성 조성물의 중합 및 경화가 이루어질 수 있다. 광 조사에 적용되는 광으로, 예를 들어, 마이크로파, 적외선, 자외선, 감마선과 같은 전자기파, 혹은 알파-입자선, 프로톤빔, 뉴트론빔 등의 전자선과 등이 있다.According to another embodiment of the present invention, polymerization and curing of the polymerizable composition may be performed by irradiation with light. The light applied to light irradiation includes, for example, electromagnetic waves such as microwaves, infrared rays, ultraviolet rays, and gamma rays, or electron beams such as alpha-particle beams, proton beams, and Neutron beams.
본 발명의 다른 일 실시예에 따르면, 500nm 이하의 파장을 갖는 광의 조사에 의하여 중합성 조성물의 중합이 이루어질 수 있다. 예를 들어, 가시광선 또는 자외선에 의해 중합성 조성물의 중합이 이루어질 수 있다. 중합을 위하여, 파장 290 내지 450nm의 광이 조사될 수 있으며, 중심 파장이 380 내지 410nm인 광이 조사될 수도 있다. 광의 세기는, 예를 들어, 400 mW/cm2 이하일 수 있고, 100 내지 400 mW/cm2 범위일 수도 있다. 광 조사에서 광량은 300 내지 2500 mJ/cm2일 수도 있고, 500 내지 1500 mJ/cm2 범위일 수도 있다. According to another embodiment of the present invention, polymerization of the polymerizable composition may be achieved by irradiation of light having a wavelength of 500 nm or less. For example, polymerization of the polymerizable composition may be performed by visible light or ultraviolet light. For polymerization, light having a wavelength of 290 to 450 nm may be irradiated, and light having a central wavelength of 380 to 410 nm may be irradiated. The intensity of the light, for example, may be 400 mW / cm 2 or less can be 100 to 400 mW / cm 2 range. In light irradiation, the amount of light may be 300 to 2500 mJ/cm 2 , and may be in the range of 500 to 1500 mJ/cm 2 .
본 발명의 다른 일 실시예에 따르면, 유기막은 0.5 내지 100㎛의 두께를 가질 수 있다. 보다 구체적으로, 유기막은 1 내지 90㎛의 두께를 가질 수 있고, 5 내지 70㎛의 두께를 가질 수도 있다.According to another embodiment of the present invention, the organic layer may have a thickness of 0.5 to 100㎛. More specifically, the organic layer may have a thickness of 1 to 90 μm, and may have a thickness of 5 to 70 μm.
본 발명의 다른 일 실시예에 따른 유기막은, 8㎛의 두께를 기준으로, 400nm 파장의 광에 대해 97.0% 이상의 투과율을 가질 수 있다. The organic layer according to another embodiment of the present invention may have a transmittance of 97.0% or more with respect to light having a wavelength of 400 nm based on a thickness of 8 μm.
본 발명의 또 다른 일 실시예는, 본 발명의 일 실시예 따른 중합성 조성물에 의하여 형성된 유기막을 포함하는 봉지재(590)를 제공한다. 봉지재(590)는 도 1에 도시된 바와 같다. 봉지재(590)는 제1 무기막(591), 유기막(592) 및 제2 무기막(593)을 포함할 수 있으며, 도 1의 유기막(592)은 본 발명의 일 실시예 따른 중합성 조성물에 의하여 만들어질 수 있다.Another embodiment of the present invention provides an encapsulant 590 including an organic film formed by the polymerizable composition according to an embodiment of the present invention. The encapsulant 590 is as shown in FIG. 1 . The encapsulant 590 may include a first inorganic film 591 , an organic film 592 , and a second inorganic film 593 , and the organic film 592 of FIG. 1 is polymerized according to an embodiment of the present invention. It can be made by a sex composition.
본 발명의 일 실시예에 따른 중합성 조성물이 적용되는 경우, 중합성 조성물은 상온에서 1년 이상 저장된 후 사용되더라도, 우수한 물성 및 수명특성을 갖는 유기막(592)이 제조될 수 있으며, 그에 따라, 우수한 수분 및 산소 차단 특성을 갖는 봉지재(590)가 제조될 수 있다.When the polymerizable composition according to an embodiment of the present invention is applied, even if the polymerizable composition is stored at room temperature for one year or more and then used, an organic film 592 having excellent physical properties and lifespan characteristics can be manufactured, and accordingly , an encapsulant 590 having excellent moisture and oxygen barrier properties can be manufactured.
또한, 본 발명의 일 실시예 따른 중합성 조성물에 의하여 형성된 유기막(592)은 우수한 광투과성을 가지기 때문에, 봉지재(590)가 적용된 표시장치(100)의 시인성을 향상시킬 수 있다. In addition, since the organic layer 592 formed of the polymerizable composition according to an embodiment of the present invention has excellent light transmittance, visibility of the display device 100 to which the encapsulant 590 is applied may be improved.
본 발명의 또 다른 일 실시예는 상기와 같은 봉지재(590)를 포함하는 표시장치(100)를 제공한다. 표시장치(100)는, 예를 들어, 도 1에 도시된 구성을 가질 수 있다. 이하, 중복을 피하기 위하여, 표시장치(100)에 대한 상세한 설명은 생략된다.Another embodiment of the present invention provides a display device 100 including the encapsulant 590 as described above. The display device 100 may have, for example, the configuration shown in FIG. 1 . Hereinafter, in order to avoid duplication, a detailed description of the display device 100 will be omitted.
본 발명의 또 다른 일 실시예는, 중합성 조성물의 제조방법을 제공한다.Another embodiment of the present invention provides a method for preparing a polymerizable composition.
본 발명의 또 다른 일 실시예에 따른 중합성 조성물의 제조방법은, 제1 모노머, 제2 모노머 및 중합 개시제를 혼합하는 단계를 포함한다.A method for preparing a polymerizable composition according to another embodiment of the present invention includes mixing a first monomer, a second monomer, and a polymerization initiator.
상기 제1 모노머는, 하기 화학식 1로 표현되고, 아크릴기를 포함하며, 25℃에서 1 내지 100 cPs의 점도를 갖는다.The first monomer is represented by the following Chemical Formula 1, includes an acryl group, and has a viscosity of 1 to 100 cPs at 25°C.
[화학식 1][Formula 1]
CiHjOk C i H j O k
화학식 1에서, i는 10 내지 25의 정수이고, j는 10 내지 40의 정수이고, k는 1 내지 6의 정수이고, i/k는 2 이상이다. In Formula 1, i is an integer from 10 to 25, j is an integer from 10 to 40, k is an integer from 1 to 6, and i/k is 2 or more.
제2 모노머는, 하기 화학식 2로 표현되고, 아크릴기를 포함하고, 25℃에서 100 cPs 초과 500 cPs 이하의 점도를 갖는다.The second monomer is represented by the following Chemical Formula 2, includes an acryl group, and has a viscosity of more than 100 cPs and 500 cPs or less at 25°C.
[화학식 2][Formula 2]
CpHqOr C p H q O r
상기 화학식 2에서, p는 10 내지 28의 정수이고, q는 10 내지 54의 정수이고, r은 1 내지 6의 정수이고, p/r은 2 이상이다.In Formula 2, p is an integer from 10 to 28, q is an integer from 10 to 54, r is an integer from 1 to 6, and p/r is 2 or more.
제1 모노머, 제2 모노머 및 중합 개시제는 이미 설명되었으므로, 중복을 피하기 위해, 이들에 대한 상세한 설명은 생략된다.Since the first monomer, the second monomer, and the polymerization initiator have already been described, detailed descriptions thereof are omitted to avoid duplication.
본 발명의 또 다른 일 실시예에 따르면, 중합성 조성물을 제조하기 위해, 먼저 중합성 조성물 제조에 사용되는 탱크를 세정한다.According to another embodiment of the present invention, in order to prepare the polymerizable composition, a tank used for preparing the polymerizable composition is first cleaned.
탱크 세정을 위해, 아세톤이 사용될 수 있다. 예를 들어, 아세톤을 이용하여 탱크 및 배관을 세정할 수 있다.For tank cleaning, acetone can be used. For example, acetone can be used to clean tanks and piping.
다음, 원료를 탱크에 투입하고 혼합하여 혼합액을 제조한다.Next, the raw materials are put into a tank and mixed to prepare a mixed solution.
중합성 조성물을 제조하기 위한 원료로, 제1 모노머, 제2 모노머 및 중합 개시제가 사용된다. 제1 모노머, 제2 모노머 및 중합 개시제가 탱크에 투입되고 혼합된다. 구체적으로, 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여, 50 내지 80 중량부의 제1 모노머, 20 내지 50 중량부의 제2 모노머 및 5 중량부 이하의 중합 개시제가 사용될 수 있다. 보다 구체적으로, 중합 개시제는, 제1 모노머와 제2 모노머의 전체 100 중량부에 대하여, 1 내지 5 중량부로 사용될 수 있고, 3 내지 5 중량부로 사용될 수도 있다.As raw materials for producing the polymerizable composition, a first monomer, a second monomer and a polymerization initiator are used. The first monomer, the second monomer and the polymerization initiator are charged into the tank and mixed. Specifically, based on 100 parts by weight of the total of the first and second monomers, 50 to 80 parts by weight of the first monomer, 20 to 50 parts by weight of the second monomer, and 5 parts by weight or less of the polymerization initiator may be used. More specifically, the polymerization initiator may be used in an amount of 1 to 5 parts by weight, or 3 to 5 parts by weight, based on 100 parts by weight of the total of the first monomer and the second monomer.
본 발명의 일 실시예에 따르면, 중합 개시제로, 2,4,6-트리메틸벤조일-디페닐포스핀 옥사이드[2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO], 비스(2,4,6-트리메틸벤조일)-페닐포스핀 옥사이드[bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide] 및 2,4,6-트리메틸벤조일에폭시페닐 포스핀 옥사이드[2,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide] 중 적어도 하나가 사용될 수 있다.According to an embodiment of the present invention, as a polymerization initiator, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide [2,4,6-trimethylbenzoyl-diphenylphosphine oxide; TPO], bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide [bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide] and 2,4,6-trimethylbenzoylepoxyphenyl phosphine oxide [2 ,4,6-trimethylbenzoyl ethoxyphenyl phosphine oxide] may be used.
중합 개시제가 고체인 경우, 중합 개시제는 모노머에 용해된다. 중합 개시제는 제1 모노머에 용해될 수도 있고, 제2 모노머에 용해될 수도 있고, 제1 모노머와 제2 모노머가 혼합된 모노머 용액에 용해될 수도 있다. When the polymerization initiator is a solid, the polymerization initiator is dissolved in the monomer. The polymerization initiator may be dissolved in the first monomer, may be dissolved in the second monomer, or may be dissolved in a monomer solution in which the first monomer and the second monomer are mixed.
중합 개시제 용해를 위해, 소량의 모노머 별도로 사용될 수도 있다. 예를 들어, 제1 모노머의 일부를 이용하여 중합 개시제를 용해한 후, 제1 모노머에 용해된 중합 개시제 용액을 제1 모노머와 제2 모노머의 혼합액에 첨가할 수 있다. 또는, 제2 모노머의 일부를 이용하여 중합 개시제를 용해한 후, 제2 모노머에 용해된 중합 개시제 용액을 제1 모노머와 제2 모노머의 혼합액에 첨가할 수 있다. For dissolving the polymerization initiator, a small amount of monomer may be used separately. For example, after dissolving the polymerization initiator using a portion of the first monomer, a solution of the polymerization initiator dissolved in the first monomer may be added to the mixed solution of the first monomer and the second monomer. Alternatively, after the polymerization initiator is dissolved using a part of the second monomer, the polymerization initiator solution dissolved in the second monomer may be added to the mixed solution of the first monomer and the second monomer.
고체 상태인 중합 개시제가 완전히 용해되지 않은 상태로 존재하는 경우, 중합성 조성물의 장기 보관 중 중합 개시제가 석출될 수 있고, 중합성 조성물의 헤이즈(Haze)가 증가할 수 있다. 그 결과, 중합성 조성물을 이용하여 유기막을 형성하는 과정에서 중합 및 경화가 원활하게 이루어지지 않을 수 있고, 중합성 조성물에 의하여 형성된 유기막의 광학 특성이 저하될 수 있다. 따라서, 중합 개시제를 모노머에 완전히 용해 시키는 것이 중요하다.When the polymerization initiator in a solid state is not completely dissolved, the polymerization initiator may precipitate during long-term storage of the polymerizable composition, and haze of the polymerizable composition may increase. As a result, polymerization and curing may not be performed smoothly in the process of forming the organic film using the polymerizable composition, and optical properties of the organic film formed by the polymerizable composition may be deteriorated. Therefore, it is important to completely dissolve the polymerization initiator in the monomer.
본 발명의 일 실시예에 따르면, 중합 개시제가 완전히 용해되도록 하기 위해, 중합 개시제와 모노머의 혼합액을 40℃에서 교반 속도 100RPM으로 4시간 교반한다. 그에 따라, 제1 모노머, 제2 모노머 및 중합 개시제를 포함하는 혼합액이 만들어진다.According to an embodiment of the present invention, in order to completely dissolve the polymerization initiator, the mixture of the polymerization initiator and the monomer is stirred at 40° C. at a stirring rate of 100 RPM for 4 hours. Accordingly, a liquid mixture containing the first monomer, the second monomer and the polymerization initiator is prepared.
다음, 제1 모노머, 제2 모노머 및 중합 개시제를 포함하는 혼합액을 순환 여과한다. Next, the mixed solution including the first monomer, the second monomer and the polymerization initiator is filtered through circulation.
구체적으로, 혼합액 내의 이물질과 미세 파티클을 제거하기 위하여 탱크하단과 포장라인 사이에 0.05㎛ 필터를 장착하고, 탱크의 온도를 23℃±5℃로 유지한 상태에서, 순도 99.999%의 질소 가스(N2)를 1.2kgf/cm2 압력으로 탱크에 분사하면서, 교반 속도 50rpm으로 순환 여과를 실시한다. 질소 가스(N2)는 퍼지(purge) 가스로 사용되며, 질소 가스(N2)에 의해 혼합액에 포함된 수분이 제거된다.Specifically, in order to remove foreign substances and fine particles in the mixed solution, a 0.05㎛ filter is installed between the bottom of the tank and the packaging line, and the temperature of the tank is maintained at 23℃±5℃, nitrogen gas of 99.999% purity (N 2 ) while spraying the tank at a pressure of 1.2 kgf/cm 2 , circulation filtration is performed at a stirring speed of 50 rpm. Nitrogen gas (N 2 ) is used as a purge gas, and moisture contained in the mixed solution is removed by nitrogen gas (N 2 ).
순환 여과는 20 시간 이상 진행되며, 순환 여과 동안 혼합액에 포함된 수분이 제거되어, 중합성 조성물이 완성된다. 이러한 순환 여과의 결과, 본 발명의 일 실시예에 따른 중합성 조성물은 40ppm 이하의 수분(H2O) 농도를 가질 수 있다. The circulation filtration is carried out for 20 hours or more, and moisture contained in the mixed solution is removed during the circulation filtration to complete the polymerizable composition. As a result of this circulation filtration, the polymerizable composition according to an embodiment of the present invention may have a moisture (H 2 O) concentration of 40 ppm or less.
또한, 본 발명의 또 다른 일 실시예에 따르면, 중합성 조성물은 입자를 포함하지 않거나 거의 포함하지 않는다. 구체적으로, 중합성 조성물은 입경 0.5㎛ 이상의 입자를 포함하지 않으며, 입경 0.5㎛ 미만의 입자를 22개/L 이하로 포함할 수 있다. 중합성 조성물에 입자들이 존재하는 경우, 중합성 조성물에 의하여 형성되는 유기막에 핀 홀 등이 생기는 문제가 발생할 수 있으므로, 중합성 조성물 내의 입자를 최소화 하는 필요하다.Further, according to another embodiment of the present invention, the polymerizable composition contains no or few particles. Specifically, the polymerizable composition does not include particles having a particle diameter of 0.5 μm or more, and may include 22 particles/L or less of particles having a particle diameter of less than 0.5 μm. When particles are present in the polymerizable composition, it is necessary to minimize the particles in the polymerizable composition, since a problem such as pinholes may occur in the organic film formed by the polymerizable composition.
이와 같이 완성된 중합성 조성물은 캐니스터(Canister) 용기에 보관된다. 저장 안정성을 위해, 캐니스터(Canister) 용기에 중합성 조성물을 투입한 후, 질소 가스가 충진된 후 밀봉될 수 있다. The polymerizable composition thus completed is stored in a canister container. For storage stability, after the polymerizable composition is put into a canister container, it may be sealed after being filled with nitrogen gas.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 이하에서 설명되는 실시예 및 비교예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예 또는 비교예에 의하여 한정하는 것은 아니다. Hereinafter, the present invention will be described in more detail through specific examples and comparative examples. The Examples and Comparative Examples described below are for illustrating the present invention, and the scope of the present invention is not limited by these Examples or Comparative Examples.
<실시예 및 비교예><Examples and Comparative Examples>
<모노머><monomer>
중합성 조성물 제조를 위해 하기 표 1의 모노머들이 사용되었다. The monomers in Table 1 below were used to prepare the polymerizable composition.
모노머monomer 화합물compound C/0
비율
C/0
ratio
MH1MH1 점도 (cPs)Viscosity (cPs)
제1
모노머
first
monomer
A1A1 1,12-도데칸디올 디메타크릴레이트1,12-Dodecanediol Dimethacrylate 5.05.0 0.730.73 11.711.7
A2A2 테트라에틸렌글리콜 디아크릴레이트Tetraethylene glycol diacrylate 2.02.0 2.012.01 2020
A3A3 벤질 아크릴레이트benzyl acrylate 55 0.780.78 2.22.2
제2
모노머
second
monomer
B1B1 2-페닐페녹시에틸 아크릴레이트2-phenylphenoxyethyl acrylate 5.75.7 0.530.53 138138
B2B2 트리시클로데칸 디메탄올 디아크릴레이트Tricyclodecane dimethanol diacrylate 4.54.5 0.950.95 135135
비교
모노머
compare
monomer
C1C1 3-(트리메톡시실릴)프로필 메타크릴레이트
[3-(trimethoxysilyl)propyl methacrylate]
3-(trimethoxysilyl)propyl methacrylate
[3-(trimethoxysilyl)propyl methacrylate]
2.02.0 1.381.38 200200
표 1에서, "C/O 비율"은 하기 화학식 1로 표현되는 제1 모노머 i/k 값 또는 하기 화학식 2로 표현되는 제2 모노머의 p/r 값을 의미한다.In Table 1, "C/O ratio" means the i/k value of the first monomer represented by the following formula (1) or the p/r value of the second monomer represented by the following formula (2).
[화학식 1][Formula 1]
CiHjOk C i H j O k
[화학식 2][Formula 2]
CpHqOr C p H q O r
표 1의 MH1은 아크릴 지수를 의미하며, 하기 식 2에 의해 계산된다. MH1 in Table 1 means the acrylic index, and is calculated by the following formula 2.
[식 2] [Equation 2]
MH1 = (모노머의 분자량 * X) / {모노머의 총 원자 수 * (모노머의 총 탄소원자 수 - 모노머의 총 산소원자 수)}MH1 = (molecular weight of monomer * X) / {total number of atoms in monomer * (total number of carbon atoms in monomer - total number of oxygen atoms in monomer)}
식 2에서 X는 아크릴기의 개수이다.In Equation 2, X is the number of acrylic groups.
1,12-도데칸디올 디메타크릴레이트(1,12-Dodecanediol Dimethacrylate)(제1 모노머 A1)은 하기 화학식 7로 표현될 수 있다.1,12-Dodecanediol Dimethacrylate (first monomer A1) may be represented by the following Chemical Formula 7
[화학식 7][Formula 7]
Figure PCTKR2021000933-appb-I000007
Figure PCTKR2021000933-appb-I000007
테트라에틸렌글리콜 디아크릴레이트[Tetra(ethylene glycol) diacrylate](제1 모노머 A2)는 하기 화학식 8로 표현될 수 있다.The tetraethylene glycol diacrylate [Tetra(ethylene glycol) diacrylate] (the first monomer A2) may be represented by the following Chemical Formula 8.
[화학식 8][Formula 8]
Figure PCTKR2021000933-appb-I000008
Figure PCTKR2021000933-appb-I000008
벤질 아크릴레이트(Benzyl acrylate)(제1 모노머 A3)는 하기 화학식 9로 표현될 수 있다.Benzyl acrylate (first monomer A3) may be represented by the following Chemical Formula 9.
[화학식 9][Formula 9]
Figure PCTKR2021000933-appb-I000009
Figure PCTKR2021000933-appb-I000009
2-페닐페녹시에틸 아크릴레이트(2-Phenylphenoxyethyl acrylate)(제2 모노머 B1)는 하기 화학식 10으로 표현될 수 있다.2-Phenylphenoxyethyl acrylate (second monomer B1) may be represented by the following Chemical Formula 10.
[화학식 10][Formula 10]
Figure PCTKR2021000933-appb-I000010
Figure PCTKR2021000933-appb-I000010
트리시클로데칸 디메탄올 디아크릴레이트(Tricyclodecane dimethanol diacrylate)(제2 모노머 B2)는 하기 화학식 11로 표현될 수 있다.Tricyclodecane dimethanol diacrylate (second monomer B2) may be represented by the following Chemical Formula 11.
[화학식 11][Formula 11]
Figure PCTKR2021000933-appb-I000011
Figure PCTKR2021000933-appb-I000011
3-(트리메톡시실릴)프로필 메타크릴레이트[3-(trimethoxysilyl)propyl methacrylate] (비교 모노머)는 하기 화학식 12로 표현될 수 있다.3-(trimethoxysilyl)propyl methacrylate [3-(trimethoxysilyl)propyl methacrylate] (comparative monomer) may be represented by the following Chemical Formula 12.
[화학식 12][Formula 12]
Figure PCTKR2021000933-appb-I000012
Figure PCTKR2021000933-appb-I000012
<중합성 조성물의 제조><Preparation of polymerizable composition>
제1 모노머(A1, A2, A3), 제2 모노머(B1, B2) 및 비교 모노머(C1)을 하기 표2의 중량부로 사용하여, 실시예 1 내지 6 및 비교예 1 내지 6에 따른 중합성 조성물을 제조하였다. 표 2에서 각 성분의 함량은 중량부이다. 중합 개시제로서 2,4,6-트리메틸벤조일-디페닐포스핀 옥사이드(TPO)가 사용되었다. 중합 개시제는, 모노머 전체 100 중량부에 대하여 3 중량부로 사용되었다.Polymerizable according to Examples 1 to 6 and Comparative Examples 1 to 6 using the first monomer (A1, A2, A3), the second monomer (B1, B2) and the comparative monomer (C1) in parts by weight of Table 2 below A composition was prepared. In Table 2, the contents of each component are parts by weight. 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) was used as a polymerization initiator. The polymerization initiator was used in an amount of 3 parts by weight based on 100 parts by weight of the total monomer.
구분division 제1 모노머first monomer 제2 모노머second monomer 비교 모노머comparative monomer
A1A1 A2A2 A3A3 B1B1 B2B2 C1C1
실시예 1Example 1 6565 -- -- 3535 -- --
실시예 2Example 2 -- 6565 -- -- 3535 --
실시예 3Example 3 6565 -- -- -- 3535 --
실시예 4Example 4 -- 6565 -- 3535 -- --
실시예 5Example 5 5050 -- 1515 3535 -- --
실시예 6Example 6 -- 5050 1515 -- 3535 --
비교예 1Comparative Example 1 6565 -- -- -- -- 3535
비교예 2Comparative Example 2 -- 6565 -- -- -- 3535
비교예 3Comparative Example 3 100100 -- -- -- -- --
비교예 4Comparative Example 4 5050 5050
비교예 5Comparative Example 5 5050 5050
비교예 6Comparative Example 6 5050 5050
<실시예 1><Example 1>
먼저, 아세톤을 이용하여 탱크 및 배관을 세정하였다.First, the tank and the pipe were cleaned using acetone.
표 2에 개시된 함량비에 따라 130g의 제1 모노머 A1, 70g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 탱크에 투여하였다. According to the content ratio disclosed in Table 2, 130 g of the first monomer A1, 70 g of the second monomer B1 and 6 g of the polymerization initiator (TPO) were administered to the tank.
중합 개시제가 완전히 용해되도록 하기 위해, 중합 개시제와 제1 모노머 및 제2 모노머의 혼합액을, 40℃에서 교반 속도 100RPM으로 4시간 교반하였다. 그 결과, 제1 모노머, 제2 모노머 및 중합 개시제를 포함하는 혼합액이 만들어졌다.In order to completely dissolve the polymerization initiator, a mixture of the polymerization initiator, the first monomer, and the second monomer was stirred at 40° C. at a stirring rate of 100 RPM for 4 hours. As a result, a liquid mixture containing the first monomer, the second monomer and the polymerization initiator was prepared.
다음, 제1 모노머, 제2 모노머 및 중합 개시제에 의해 형성된 혼합액을 순환 여과하였다. 구체적으로, 탱크에 0.05㎛ 규격의 필터를 장착하고, 탱크의 온도를 23℃±5℃로 유지한 상태에서, 순도 99.999%의 질소 가스(N2)를 1.2kgf/cm2 압력으로 탱크에 분사하면서, 교반 속도 50rpm으로 순환 여과를 실시하였다. 질소 가스(N2)는 퍼지(purge) 가스로 사용되며, 질소 가스(N2)에 의해 수분이 제거되었다.Next, the mixture formed by the first monomer, the second monomer and the polymerization initiator was filtered through circulation. Specifically, a filter of 0.05㎛ standard is mounted on the tank, and while the temperature of the tank is maintained at 23℃±5℃, nitrogen gas (N 2 ) having a purity of 99.999% is sprayed into the tank at a pressure of 1.2kgf/cm 2 Circulation filtration was performed at a stirring speed of 50 rpm. Nitrogen gas (N 2 ) is used as a purge gas, and moisture was removed by nitrogen gas (N 2 ).
순환 여과는 20 시간 진행되었다. 순환 여과 동안 혼합액에 포함된 수분이 제거되어, 중합성 조성물이 완성된다. 순환 여과 후, 실시예 1에 따른 중합성 조성물의 수분(H2O) 농도는 35ppm이 되었다. Cyclic filtration was run for 20 hours. Moisture contained in the mixed solution is removed during circulation filtration to complete the polymerizable composition. After circulation filtration, the water (H 2 O) concentration of the polymerizable composition according to Example 1 was 35 ppm.
또한, 실시예 1에 따른 중합성 조성물은 입경 0.5㎛ 이상의 입자를 포함하지 않으며, 입경 0.5㎛ 미만의 입자를 5개/L 포함한다. In addition, the polymerizable composition according to Example 1 does not contain particles having a particle diameter of 0.5 μm or more, and includes 5 particles/L having a particle diameter of less than 0.5 μm.
이와 같이 완성된 실시예 1에 따른 중합성 조성물은 질소가 충진된 캐니스터(Canister) 용기에 저장된 후 포장 밀봉된다. The polymerizable composition according to Example 1 thus completed was stored in a nitrogen-filled canister container, and then packaged and sealed.
<실시예 2><Example 2>
표 2에 개시된 함량비에 따라, 130g의 제1 모노머 A2, 70g의 제2 모노머 B2 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the second monomer B2, and 6 g of the polymerization initiator (TPO) were used.
<실시예 3><Example 3>
표 2에 개시된 함량비에 따라, 130g의 제1 모노머 A1, 70g의 제2 모노머 B2 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A1, 70 g of the second monomer B2, and 6 g of the polymerization initiator (TPO) were used.
<실시예 4><Example 4>
표 2에 개시된 함량비에 따라, 130g의 제1 모노머 A2, 70g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the second monomer B1 and 6 g of the polymerization initiator (TPO) were used.
<실시예 5><Example 5>
표 2에 개시된 함량비에 따라, 100g의 제1 모노머 A1, 30g의 제1 모노머 A3, 70g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, 100 g of the first monomer A1, 30 g of the first monomer A3, 70 g of the second monomer B1, and 6 g of the polymerization initiator (TPO), except that 6 g of the polymerization initiator (TPO) was used in the same manner as in Example 1 A polymerizable composition was prepared.
<실시예 6><Example 6>
표 2에 개시된 함량비에 따라, 100g의 제1 모노머 A2, 30g의 제1 모노머 A3, 70g의 제2 모노머 B2 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, 100 g of the first monomer A2, 30 g of the first monomer A3, 70 g of the second monomer B2, and 6 g of the polymerization initiator (TPO), except that 6 g of the polymerization initiator (TPO) was used in the same manner as in Example 1 A polymerizable composition was prepared.
<비교예 1><Comparative Example 1>
표 2에 개시된 함량비에 따라, 130g의 제1 모노머 A1, 70g의 비교 모노머 C1 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A1, 70 g of the comparative monomer C1, and 6 g of the polymerization initiator (TPO) were used.
<비교예 2><Comparative Example 2>
표 2에 개시된 함량비에 따라, 130g의 제1 모노머 A2, 70g의 비교 모노머 C1 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 130 g of the first monomer A2, 70 g of the comparative monomer C1, and 6 g of the polymerization initiator (TPO) were used.
<비교예 3><Comparative Example 3>
표 2에 개시된 함량비에 따라, 200g의 제1 모노머 A1 및 6g의 중합 개시제(TPO)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, a polymerizable composition was prepared in the same manner as in Example 1, except that 200 g of the first monomer A1 and 6 g of the polymerization initiator (TPO) were used.
<비교예 4> <Comparative Example 4>
표 2에 개시된 함량비에 따라, 100g의 제1 모노머 A2, 100g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 사용하였다. 순환 여과 과정을 생략한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratios disclosed in Table 2, 100 g of the first monomer A2, 100 g of the second monomer B1 and 6 g of a polymerization initiator (TPO) were used. A polymerizable composition was prepared in the same manner as in Example 1, except that the cycle filtration process was omitted.
<비교예 5> <Comparative Example 5>
표 2에 개시된 함량비에 따라, 100g의 제1 모노머 A2, 100g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 사용하였다. 순환 여과 과정에서 질소 가스(N2)를 압력 탱크에 분사하는 공정을 생략한 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratio disclosed in Table 2, 100 g of the first monomer A2, 100 g of the second monomer B1 and 6 g of the polymerization initiator (TPO) were used. A polymerizable composition was prepared in the same manner as in Example 1, except that the process of injecting nitrogen gas (N 2 ) into the pressure tank was omitted during the circulation filtration process.
<비교예 6> <Comparative Example 6>
표 2에 개시된 함량비에 따라, 100g의 제1 모노머 A2, 100g의 제2 모노머 B1 및 6g의 중합 개시제(TPO)를 사용하였다. 순환 여과 과정에서 탱크에 필터를 장착하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 중합성 조성물을 제조하였다.According to the content ratios disclosed in Table 2, 100 g of the first monomer A2, 100 g of the second monomer B1 and 6 g of a polymerization initiator (TPO) were used. A polymerizable composition was prepared in the same manner as in Example 1, except that the tank was not equipped with a filter during the circulation filtration process.
<시험예><Test Example>
(1) 수분 함량 측정(1) Determination of moisture content
측정 규격: 칼피셔(Karl Fisher)법으로 측정Measurement standard: measured by Karl Fisher method
측정 장치: METROHM사의 831KF Coulomter 모델Measuring device: Model 831KF Coulomter from METROHM
측정 조건: 칼피셔 적정 모드Measurement conditions: Karl Fischer titration mode
측정 방법: 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물 0.5g을 주사위로 채취하고 수분측정기에 주입하여 수분 함량을 측정하였다.Measurement method: 0.5 g of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 was collected with a die and injected into a moisture meter to measure the moisture content.
측정 결과는 하기 표 3에 기재되어 있다.The measurement results are shown in Table 3 below.
(2) 입자 수 측정(2) Particle count measurement
측정 장치: NanoVision Technology사의 SLS-1200 모델Measuring device: Model SLS-1200 from NanoVision Technology
측정 조건: 크린룸에서 Sample Mode Measurement conditions: Sample Mode in a clean room
측정 방법: Clean Bottle을 이용하여 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물 200g을 채취하여, 5ml의 흡입 속도로 측정 장치에 주입하여 L당 입자 수를 측정하였다.Measurement method: Using a clean bottle, 200 g of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 was collected and injected into a measuring device at a suction rate of 5 ml to measure the number of particles per L.
측정 결과는 하기 표 3에 기재되어 있다.The measurement results are shown in Table 3 below.
구분division 수분 농도 (ppm)Moisture Concentration (ppm) 입자 수 (개/L)Number of particles (pieces/L)
실시예 1Example 1 3535 55
실시예 2Example 2 3737 66
실시예 3Example 3 3434 44
실시예 4Example 4 3636 66
실시예 5Example 5 3838 33
실시예 6Example 6 3737 55
비교예 1Comparative Example 1 3535 77
비교예 2Comparative Example 2 3939 88
비교예 3Comparative Example 3 4141 88
비교예 4Comparative Example 4 250250 2,5002,500
비교예 5Comparative Example 5 250250 77
비교예 6Comparative Example 6 4141 2,6002,600
(3) 가요성 측정(3) Flexibility measurement
측정 규격: ASTM E 2546 에 규정된 방법에 따라 측정Measurement standard: Measured according to the method specified in ASTM E 2546
측정 장치: 나노인텐터. Helmut Fischer사의 PICODENTOR HM500 모델Measuring device: Nanointenter. PICODENTOR HM500 model from Helmut Fischer
측정 조건: F: 2.0mN/5s, C=5.0SMeasurement conditions: F: 2.0mN/5s, C=5.0S
측정 방법: 중합성 조성물을 50mm*50mm 유리 기판에 8㎛ 두께로 스핀코팅하고, N2 분위기 하에서 LED 램프를 이용하여 395nm 파장의 자외선을 1,500mJ/cm2 조사하여, 유리 기판에 코팅된 중합성 조성물을 경화시켜 유기막을 제조한다. 다음, 중합성 조성물에 의하여 형성된 유기막(경화막)에 2.0mN 하중을 5초간 가하여 모듈러스(MPa)를 측정한다. 측정된 모듈러스(MPa) 값이 가요성에 해당된다.Measurement method: Spin-coating a polymerizable composition to a thickness of 8 μm on a 50 mm * 50 mm glass substrate, and irradiating 1,500 mJ/cm 2 of ultraviolet rays with a wavelength of 395 nm using an LED lamp under N 2 atmosphere, the polymerizable composition coated on the glass substrate An organic film is prepared by curing the composition. Next, a 2.0 mN load is applied to the organic film (cured film) formed of the polymerizable composition for 5 seconds to measure the modulus (MPa). The measured modulus (MPa) value corresponds to the flexibility.
제1 가요성(Aa): 저장 시험 전, 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물에 대하여 측정된 가요성을 제1 가요성(Aa)이라 한다.First flexibility (Aa): Before the storage test, the flexibility measured for the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as first flexibility (Aa).
제2 가요성(Ba): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 상온(25℃±10℃)에서 1년간 캐니스터 용기에 밀봉 저장 후 측정된 중합성 조성물의 가요성을 제2 가요성(Ba)이라 한다.Second flexibility (Ba): the polymerizable composition measured after sealed storage of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 in a canister container at room temperature (25° C.±10° C.) for 1 year. The flexibility is referred to as a second flexibility (Ba).
제3 가요성(Ca): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 50℃에서 1년간 캐니스터 용기에 밀봉 저장 후 측정된 중합성 조성물의 가요성을 제3 가요성(Ca)이라 한다.Third flexibility (Ca): The third flexibility measured after sealing the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 respectively in a canister container at 50° C. for 1 year It is called surname (Ca).
그 결과는 하기 표 4와 같다.The results are shown in Table 4 below.
구분division 제1 가요성
(Aa)(MPa)
first flexibility
(Aa)(MPa)
제2 가요성
(Ba)(MPa)
second flexibility
(Ba) (MPa)
제3 가요성
(Ca)(MPa)
third flexibility
(Ca) (MPa)
(|Aa-Ba|/Aa) *100(|Aa-Ba|/Aa) *100 (|Aa-Ca|/Aa) *100(|Aa-Ca|/Aa) *100 가요성 지수Flexibility Index
실시예 1Example 1 24162416 23892389 23742374 1.11.1 1.71.7 2.82.8
실시예 2Example 2 23002300 22652265 22522252 1.51.5 2.12.1 3.63.6
실시예 3Example 3 23422342 22812281 22742274 2.62.6 2.92.9 5.55.5
실시예 4Example 4 23122312 22542254 22572257 2.52.5 2.42.4 4.94.9
실시예 5Example 5 21002100 20732073 20682068 1.31.3 1.51.5 2.82.8
실시예 6Example 6 19851985 19471947 19351935 1.91.9 2.52.5 4.44.4
비교예 1Comparative Example 1 18241824 17051705 16711671 6.56.5 8.48.4 14.914.9
비교예 2Comparative Example 2 17251725 16541654 16341634 4.14.1 5.35.3 9.49.4
비교예 3Comparative Example 3 15891589 15681568 15671567 1.31.3 1.41.4 2.72.7
비교예 4Comparative Example 4 25122512 24492449 24322432 2.52.5 3.23.2 5.75.7
비교예 5Comparative Example 5 25142514 24512451 24312431 2.52.5 3.33.3 5.85.8
비교예 6Comparative Example 6 25072507 24462446 24192419 2.42.4 3.53.5 5.95.9
표 4에서, 가요성 지수는 "(|Aa-Ba|/Aa)*100"와 "(|Aa-Ca|/Aa)*100"의 합으로 계산된다.In Table 4, the flexibility index is calculated as the sum of "(|Aa-Ba|/Aa)*100" and "(|Aa-Ca|/Aa)*100".
가요성 지수 = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100Flexibility Index = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100
표 4를 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 가요성 지수를 가져, 장기간 저장 후 가요성의 변화가 작으며, 가요성 측면에서 매우 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 가요성 지수를 가져, 장기간 저장 후 가요성의 변화가 크며, 가요성 측면에서 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 4, it can be seen that the polymerizable compositions according to Examples 1 to 6 have a low flexibility index, have little change in flexibility after long-term storage, and are very stable compositions in terms of flexibility. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high flexibility index, have a large change in flexibility after long-term storage, and are not stable compositions in terms of flexibility.
(4) 점도 측정(4) Viscosity measurement
측정 규격: ASTM D 2196에 규정된 방법에 따라 측정Measurement standard: Measured according to the method specified in ASTM D 2196
측정 장치: Brookfield 사의 DV2T 모델Measuring device: Brookfield DV2T model
측정 조건: Cone Plate ModeMeasurement conditions: Cone Plate Mode
측정 온도: 25℃Measuring temperature: 25℃
측정 방법: 중합성 조성물을 0.5ml 로딩하여, 토크 50%로 설정하여 측정한다.Measurement method: 0.5 ml of a polymerizable composition is loaded, and a torque is set to 50% and measured.
제1 점도(Ab): 저장 시험 전, 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물에 대하여 측정된 점도를 제1 점도(Ab)라 한다.First viscosity (Ab): Before the storage test, the viscosity measured for the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as a first viscosity (Ab).
제2 점도(Bb): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 점도를 제2 점도(Bb)라 한다.Second viscosity (Bb): The viscosity of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C.±10° C.) for 1 year was obtained as a second value. It is called the viscosity (Bb).
제3 점도(Cb): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 점도를 제3 점도(Cb)라 한다.Third viscosity (Cb): The viscosity of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is referred to as the third viscosity (Cb). .
그 결과는 하기 표 5와 같다.The results are shown in Table 5 below.
제1 점도
(Ab)(cPs)
first viscosity
(Ab)(cPs)
제2 점도
(Bb)( cPs)
second viscosity
(Bb) ( cPs)
제3 점도
(Cb)( cPs)
third viscosity
(Cb) ( cPs)
(|Ab-Bb|/Ab) *100(|Ab-Bb|/Ab) *100 (|Ab-Cb|/Ab) *100(|Ab-Cb|/Ab) *100 점도 지수viscosity index
실시예 1Example 1 20.0 20.0 20.1 20.1 20.1 20.1 0.30.3 0.40.4 0.70.7
실시예 2Example 2 21.5 21.5 21.8 21.8 22.0 22.0 1.11.1 2.02.0 3.13.1
실시예 3Example 3 19.6 19.6 19.8 19.8 19.8 19.8 1.01.0 1.01.0 2.02.0
실시예 4Example 4 21.9 21.9 22.1 22.1 22.6 22.6 1.01.0 3.03.0 3.93.9
실시예 5Example 5 19.6 19.6 20.0 20.0 19.8 19.8 2.02.0 1.11.1 3.13.1
실시예 6Example 6 20.7 20.7 21.0 21.0 21.2 21.2 1.11.1 2.02.0 3.13.1
비교예 1Comparative Example 1 27.8 27.8 29.6 29.6 30.1 30.1 6.46.4 8.28.2 14.714.7
비교예 2Comparative Example 2 29.7 29.7 31.8 31.8 32.3 32.3 7.07.0 8.78.7 15.815.8
비교예 3Comparative Example 3 12.5 12.5 12.7 12.7 12.8 12.8 1.81.8 2.12.1 3.93.9
비교예 4Comparative Example 4 28.2 28.2 28.6 28.6 28.8 28.8 1.51.5 2.12.1 3.53.5
비교예 5Comparative Example 5 28.2 28.2 28.6 28.6 28.7 28.7 1.31.3 1.81.8 3.03.0
비교예 6Comparative Example 6 27.8 27.8 28.2 28.2 28.3 28.3 1.41.4 1.81.8 3.13.1
표 5에서, 점도 지수는 "(|Ab-Bb|/Ab)*100"와 "(|Ab-Cb|/Ab)*100"의 합으로 계산된다.In Table 5, the viscosity index is calculated as the sum of "(|Ab-Bb|/Ab)*100" and "(|Ab-Cb|/Ab)*100".
점도 지수 = (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100Viscosity Index = (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100
표 5를 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 점도 지수를 가져, 장기간 저장 후 점도의 변화가 작으며, 점도 측면에서 매우 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 점도 지수를 가져, 장기간 저장 후 점도의 변화가 크며, 점도 측면에서 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 5, it can be confirmed that the polymerizable compositions according to Examples 1 to 6 have a low viscosity index, have a small change in viscosity after long-term storage, and are very stable compositions in terms of viscosity. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high viscosity index, a large change in viscosity after long-term storage, and unstable composition in terms of viscosity.
(5) 경화도 측정(5) Hardening degree measurement
측정 장치: PerkinElmer사의 Spectrum 100 FTIR SpectrometerMeasuring device: Spectrum 100 FTIR Spectrometer from PerkinElmer
측정 조건: 반사 모드Measurement conditions: reflection mode
광원: UV LED 395nm광원(Phoseon사 FE300 3W)Light source: UV LED 395nm light source (Phoseon FE300 3W)
광량: 1,500mJ/cm2 Light intensity: 1,500 mJ/cm 2
경화도는 경화 전과 후의 C=C 이중 결합 비율의 변화로부터 계산된다. 구체적으로, 경화 전 상태인 "중합성 조성물의 C=C 이중 결합 비율"과 경화 후 상태인 "유기막의 C=C 이중 결합 비율"로부터, 다음 참고식 1에 따라 계산된다.The degree of curing is calculated from the change in the C=C double bond ratio before and after curing. Specifically, from the "C=C double bond ratio of the polymerizable composition" in the state before curing and the "C=C double bond ratio in the organic film" in the state after curing, it is calculated according to the following Reference Formula 1.
[참고식 1][Reference Formula 1]
Figure PCTKR2021000933-appb-I000013
Figure PCTKR2021000933-appb-I000013
먼저, PerkinElmer사의 Spectrum 100 FTIR Spectrometer를 이용하여, 반사모드에서 중합성 조성물의 적외선 스펙트럼을 얻은 후, 파수 810cm-1의 피크 면적 및 파수 1720cm-1의 피크 면적을 계산한다.First, using a PerkinElmer Inc. Spectrum 100 FTIR Spectrometer, after obtained in the reflective mode the infrared spectrum of the polymerizable composition, and calculates the wave number of 810cm -1 and a wavenumber peak area peak area of 1720cm -1.
파수 810cm-1의 피크는 C=C 이중 결합(double bond)의 피크에 해당되고, 파수 810cm-1의 피크 면적은 C=C 이중 결합의 양에 대응된다. 중합성 조성물의 경화가 진행될수록 C=C 이중 결합의 양이 감소되며, 파수 810cm-1의 피크 면적이 감소된다.The peak at wave number 810 cm −1 corresponds to the peak of a C=C double bond, and the peak area at wave number 810 cm −1 corresponds to the amount of C=C double bond. As the curing of the polymerizable composition proceeds, the amount of C=C double bonds decreases, and the peak area at a wave number of 810 cm −1 decreases.
파수 1720cm-1의 피크는 C=O 결합(bond)의 피크에 해당되고, 파수 1720cm-1의 피크 면적은 C=O 결합의 양에 대응된다. 중합성 조성물의 경화가 진행되더라도 C=O 결합의 양에는 변화가 없거나 거의 없다. 따라서, 파수 1720cm-1의 피크 면적은 레퍼런스(reference) 값이 될 수 있다.The peak at wave number 1720 cm −1 corresponds to the peak of C=O bonds, and the peak area at wave number 1720 cm −1 corresponds to the amount of C=O bonds. There is little or no change in the amount of C=O bonds even when curing of the polymerizable composition proceeds. Accordingly, the peak area of the wave number 1720 cm −1 may be a reference value.
참고식 2와 같이, 중합성 조성물에 대하여 측정하여 얻어진 파수 810cm-1의 피크 면적을 파수 1720cm-1의 피크 면적으로 나눈 값이 "중합성 조성물의 C=C 비율"이 될 수 있다. As shown in Reference Formula 2, a value obtained by dividing the peak area at a wave number of 810 cm −1 obtained by measurement with respect to the polymerizable composition by the peak area at a wave number of 1720 cm −1 may be “C=C ratio of the polymerizable composition”.
[참고식 2][Reference 2]
[중합성 조성물의 C=C 비율] = (중합성 조성물의 파수 810cm-1의 피크 면적)/(중합성 조성의 파수 1720cm-1의 피크 면적)[Polymerizable C = C ratio of the composition] = (peak area of the polymerizable composition of the wave number 810cm -1) / (peak area of the wave number of 1720cm -1 polymerizable composition)
다음, 중합성 조성물을 50mm*50mm 유리 기판에 8㎛ 두께로 스핀 코팅하고, N2 분위기 하에 자외선을 이용하여 경화시킨다. 구체적으로, LED 램프를 이용하여 395nm 파장의 빛을 1,500mJ/cm2 조사하여, 유리 기판에 코팅된 중합성 조성물을 경화시켜 유기막을 제조한다. PerkinElmer사의 Spectrum 100 FTIR Spectrometer를 사용하여, 유기막에 대하여, 반사모드(ATR)로 파수 0 내지 2000 cm-1의 범위에서 적외선 스텍트럼을 측정한다. 적외선 스펙트럼을 이용하여, 파수 810cm-1의 피크 면적 및 파수 1720cm-1의 피크 면적을 계산한다. 참고식 3과 같이, 유기막에 대하여 측정하여 얻어진 파수 810cm-1의 피크 면적을 파수 1720cm-1의 피크 면적으로 나눈 값이 "유기막의 C=C 비율"이 될 수 있다.Next, the polymerizable composition is spin-coated to a thickness of 8 μm on a 50 mm*50 mm glass substrate, and cured using ultraviolet rays under N 2 atmosphere. Specifically, by irradiating 1,500 mJ/cm 2 of light with a wavelength of 395 nm using an LED lamp, the polymerizable composition coated on the glass substrate is cured to prepare an organic film. Using a Spectrum 100 FTIR Spectrometer manufactured by PerkinElmer, an infrared spectrum was measured in a range of 0 to 2000 cm -1 with a wave number in a reflection mode (ATR) for the organic film. Using infrared spectrum, and calculates the peak area of the peak area and the wave number of 1720cm -1 wave number 810cm -1. As shown in Reference Equation 3, a value obtained by dividing the peak area of the wave number 810 cm -1 obtained by measuring the organic film by the peak area of the wave number 1720 cm -1 may be the “C=C ratio of the organic film”.
[참고식 3][Reference 3]
[유기막의 C=C 비율] = (유기막의 파수 810cm-1의 피크 면적)/(유기막의 파수 1720cm-1의 피크 면적)[Organic film C = C ratio] = (peak area of the organic film-frequency 810cm -1) / (peak area of the organic film wavenumber 1720cm -1)
다음, 참고식 1에 따라 경화도를 계산한다.Next, the degree of curing is calculated according to Reference Equation 1.
제1 경화도(Ac): 저장 시험 전, 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물에 대하여 측정된 경화도를 제1 경화도(Ac)라 한다.First degree of curing (Ac): Before the storage test, the degree of curing measured for the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as a first degree of curing (Ac).
제2 경화도(Bc): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 경화도를 제2 경화도(Bc)라 한다.Second degree of curing (Bc): The degree of curing of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C.±10° C.) for 1 year 2 It is called the degree of hardening (Bc).
제3 경화도(Cc): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 경화를 제3 경화도(Cc)라 한다.Third degree of curing (Cc): The third degree of curing (Cc) of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year say
그 결과는 하기 표 6과 같다.The results are shown in Table 6 below.
구분division 제1 경화도
(Ac)(%)
1st degree of hardening
(Ac) (%)
제2 경화도
(Bc)(%)
2nd degree of hardening
(Bc)(%)
제3 경화도
(Cc)(%)
3rd degree of hardening
(Cc)(%)
(|Ac-Bc|/Ac) *100(|Ac-Bc|/Ac) *100 (|Ac-Cc|/Ac) *100(|Ac-Cc|/Ac) *100 경화도 지수Hardening index
실시예 1Example 1 94.0094.00 93.6093.60 93.8093.80 0.40.4 0.20.2 0.60.6
실시예 2Example 2 93.8093.80 93.3393.33 93.5293.52 0.50.5 0.30.3 0.80.8
실시예 3Example 3 94.1094.10 93.7293.72 93.5493.54 0.40.4 0.60.6 1.01.0
실시예 4Example 4 93.6093.60 93.1393.13 92.9492.94 0.50.5 0.70.7 1.21.2
실시예 5Example 5 93.6093.60 92.7692.76 92.9492.94 0.90.9 0.70.7 1.61.6
실시예 6Example 6 93.2093.20 92.7392.73 92.7392.73 0.50.5 0.50.5 1.01.0
비교예 1Comparative Example 1 92.1092.10 86.4886.48 85.6585.65 6.16.1 7.07.0 13.113.1
비교예 2Comparative Example 2 93.1093.10 88.5488.54 86.8686.86 4.94.9 6.76.7 11.611.6
비교예 3Comparative Example 3 93.8093.80 93.4293.42 93.3393.33 0.40.4 0.50.5 0.90.9
비교예 4Comparative Example 4 93.4093.40 92.93 92.93 92.84 92.84 0.50.5 0.60.6 1.11.1
비교예 5Comparative Example 5 93.6093.60 93.23 93.23 93.13 93.13 0.40.4 0.50.5 0.90.9
비교예 6Comparative Example 6 93.8093.80 93.42 93.42 93.33 93.33 0.40.4 0.50.5 0.90.9
표 6에서, 경화도 지수는 "(|Ac-Bc|/Ac)*100"와 "(|Ac-Cc|/Ac)*100"의 합으로 계산된다.In Table 6, the curing index is calculated as the sum of "(|Ac-Bc|/Ac)*100" and "(|Ac-Cc|/Ac)*100".
경화도 지수 = (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Ac)*100Curing index = (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Ac)*100
표 6을 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 경화도 지수를 가져, 장기간 저장 후 경화도의 변화가 작으며, 경화도 측면에서 매우 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 경화도 지수를 가져, 장기간 저장 후 경화도의 변화가 크며, 경화도 측면에서 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 6, it can be seen that the polymerizable compositions according to Examples 1 to 6 have a low degree of curing index, have a small change in degree of curing after long-term storage, and are very stable compositions in terms of degree of curing. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high degree of curing index, a large change in curing degree after long-term storage, and unstable composition in terms of curing degree.
(6) 수축율 측정(6) Measurement of shrinkage
측정 장치: 버니어 캘리퍼스 (Mitutoyo사 CD-20CPX)Measuring device: Vernier calipers (CD-20CPX from Mitutoyo)
광원: UV LED 395nm 광원(Phoseon사 FE300 3W)Light source: UV LED 395nm light source (Phoseon FE300 3W)
광량: 1,500mJ/cm2 Light intensity: 1,500 mJ/cm 2
먼저, 11.5mm의 내경 지름 및 100mm의 높이를 갖는 유리관에 중합성 조성물 2g을 채운다. 따라서, 경화 전 중합성 조성물의 직경은 11.5mm라고 할 수 있다.First, 2 g of the polymerizable composition is filled in a glass tube having an inner diameter of 11.5 mm and a height of 100 mm. Therefore, it can be said that the diameter of the polymerizable composition before curing is 11.5 mm.
다음, 자외선을 조사하여 유리관에 채워진 중합성 조성물을 경화시킨다. 구체적으로, LED 램프를 이용하여 395nm 파장의 빛을 5,000mJ/cm2의 광량으로 조사하여 중합성 조성물을 경화시킨다. 경화 후 유리관을 파괴하고, 중합성 조성물에 의하여 형성된 막대 형태의 경화물을 획득한다. 획득된 막대 형태의 경화물을 30분 동안 상온에서 에이징(Aging)한다. 다음, 막대 형태의 경화물의 아래에서 10mm 지점의 지름을 측정한다. 막대 형태의 경화물의 아래에서 10mm 지점의 지름이 "경화 후 지름"에 해당된다. 다음, "경화 전 지름"인 11.5mm와, 경화 후 지름을 이용하여, 참고식 4에 따라 수축율을 계산한다. Next, the polymerizable composition filled in the glass tube is cured by irradiating ultraviolet rays. Specifically, the polymerizable composition is cured by irradiating light with a wavelength of 395 nm using an LED lamp at an amount of 5,000 mJ/cm 2 . After curing, the glass tube is broken to obtain a rod-shaped cured product formed by the polymerizable composition. The obtained rod-shaped cured product is aged at room temperature for 30 minutes. Next, measure the diameter of the 10 mm point under the rod-shaped cured product. The diameter at a point 10 mm below the rod-shaped cured product corresponds to the “diameter after curing”. Next, using the "diameter before curing" of 11.5 mm and the diameter after curing, the shrinkage rate is calculated according to Reference Equation 4.
[참고식 4][Reference 4]
Figure PCTKR2021000933-appb-I000014
Figure PCTKR2021000933-appb-I000014
제1 수축율(Ad): 저장 시험 전, 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물에 대하여 측정된 수축율을 제1 수축율(Ad)이라 한다.First shrinkage (Ad): Before the storage test, the measured shrinkage of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as a first shrinkage (Ad).
제2 수축율(Bd): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 수축율을 제2 수축율(Bd)이라 한다.Second shrinkage (Bd): the shrinkage of the polymerizable composition measured after sealed storage of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 respectively at room temperature (25°C±10°C) for 1 year was the second It is called shrinkage (Bd).
제3 수축율(Cd): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 수축율을 제3 수축율(Cd)이라 한다.Third shrinkage ratio (Cd): The shrinkage ratio of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is referred to as the third shrinkage ratio (Cd). .
그 결과는 하기 표 7과 같다.The results are shown in Table 7 below.
구분division 제1 수축율
(Ad)(%)
first shrinkage
(Ad)(%)
제2 수축율
(Bd)(%)
second shrinkage
(Bd) (%)
제3 수축율
(Cd)(%)
third shrinkage
(CD)(%)
(|Ad-Bd|/Ad) *100(|Ad-Bd|/Ad) *100 (|Ad-Cd|/Ad) *100(|Ad-Cd|/Ad) *100 수축율 지수Shrinkage Index
실시예 1Example 1 2.512.51 2.562.56 2.592.59 2.02.0 3.23.2 5.25.2
실시예 2Example 2 2.822.82 2.922.92 2.942.94 3.53.5 4.34.3 7.87.8
실시예 3Example 3 2.752.75 2.832.83 2.842.84 2.92.9 3.33.3 6.26.2
실시예 4Example 4 2.952.95 3.023.02 3.043.04 2.42.4 2.92.9 5.35.3
실시예 5Example 5 2.962.96 3.053.05 3.073.07 3.03.0 3.73.7 6.86.8
실시예 6Example 6 2.932.93 3.023.02 3.043.04 3.13.1 3.83.8 6.86.8
비교예 1Comparative Example 1 2.922.92 3.223.22 3.253.25 10.310.3 11.311.3 21.621.6
비교예 2Comparative Example 2 2.932.93 3.213.21 3.243.24 9.69.6 10.610.6 20.120.1
비교예 3Comparative Example 3 2.92.9 3.023.02 3.073.07 4.14.1 5.95.9 10.010.0
비교예 4Comparative Example 4 2.872.87 2.982.98 2.992.99 3.83.8 4.14.1 7.97.9
비교예 5Comparative Example 5 2.862.86 2.972.97 2.972.97 3.93.9 3.83.8 7.77.7
비교예 6Comparative Example 6 2.832.83 2.932.93 2.932.93 3.53.5 3.73.7 7.27.2
표 7에서, 수축율 지수는 "(|Ad-Bd|/Ad)*100"와 "(|Ad-Cd|/Ad)*100"의 합으로 계산된다.In Table 7, the shrinkage index is calculated as the sum of "(|Ad-Bd|/Ad)*100" and "(|Ad-Cd|/Ad)*100".
수축율 지수 = (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100Shrinkage index = (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100
표 7을 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 수축율 지수를 가져, 장기간 저장 후 수축율의 변화가 작으며, 수축율 측면에서 매우 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 수축율 지수를 가져, 장기간 저장 후 수축율의 변화가 크며, 수축율 측면에서 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 7, it can be seen that the polymerizable compositions according to Examples 1 to 6 have a low shrinkage index, have little change in shrinkage after long-term storage, and are very stable compositions in terms of shrinkage. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high shrinkage index, a large change in shrinkage after long-term storage, and an unstable composition in terms of shrinkage.
(7) 표면장력 측정(7) Measurement of surface tension
측정 규격: ISO 304에 규정된 방법에 따라 측정Measurement standard: measured according to the method specified in ISO 304
측정 장치: KRUSS사 Tension Meter K9Measuring device: KRUSS Tension Meter K9
측정 모드: O-Ring, Max ModeMeasurement mode: O-Ring, Max Mode
측정 방법: KRUSS사 Tension Meter K9을 이용하여, O-Ring에 중합성 조성물을 20g을 인가하고, Max 측정 모드에서 표면장력(Ae)을 측정한다.Measurement method: Using KRUSS Tension Meter K9, 20 g of the polymerizable composition is applied to the O-Ring, and the surface tension (Ae) is measured in the Max measurement mode.
제1 표면장력(Ae): 저장 시험 전, 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물에 대하여 측정된 표면장력을 제1 표면장력(Ae)이라 한다.First surface tension (Ae): Before the storage test, the surface tension measured for the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6, respectively, is referred to as a first surface tension (Ae).
제2 표면장력(Be): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 표면장력을 제2 표면장력(Be)이라 한다.Second surface tension (Be): the surface tension of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at room temperature (25° C.±10° C.) for 1 year It is called the second surface tension (Be).
제3 표면장력(Ce): 실시예 1 내지 6 및 비교예 1 내지 6에서 각각 제조된 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 측정된 중합성 조성물의 표면장력을 제3 표면장력(Ce)이라 한다.Third surface tension (Ce): The surface tension of the polymerizable composition measured after sealed storage of each of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 at 50° C. for 1 year is the third surface tension (Ce). ) is called
그 결과는 하기 표 8과 같다.The results are shown in Table 8 below.
구분division 제1표면장력
(Ae)(mN/m)
first surface tension
(Ae) (mN/m)
제2표면장력
(Be)(mN/m)
second surface tension
(Be) (mN/m)
제3표면장력
(Ce)(mN/m)
Third surface tension
(Ce) (mN/m)
(|Ae-Be|/Ae) *100(|Ae-Be|/Ae) *100 (|Ae-Ce|/Ae) *100(|Ae-Ce|/Ae) *100 표면장력 지수surface tension index
실시예 1Example 1 35.835.8 35.935.9 36.036.0 0.30.3 0.50.5 0.80.8
실시예 2Example 2 35.635.6 35.835.8 35.735.7 0.50.5 0.30.3 0.80.8
실시예 3Example 3 35.935.9 36.036.0 36.136.1 0.40.4 0.50.5 0.90.9
실시예 4Example 4 35.435.4 35.635.6 35.535.5 0.50.5 0.40.4 0.90.9
실시예 5Example 5 35.235.2 35.435.4 35.435.4 0.50.5 0.50.5 1.01.0
실시예 6Example 6 35.135.1 35.335.3 35.335.3 0.50.5 0.50.5 1.01.0
비교예 1Comparative Example 1 34.134.1 33.533.5 33.533.5 1.81.8 1.71.7 3.43.4
비교예 2Comparative Example 2 34.234.2 33.633.6 33.633.6 1.81.8 1.71.7 3.43.4
비교예 3Comparative Example 3 34.834.8 34.934.9 35.035.0 0.40.4 0.50.5 0.90.9
비교예 4Comparative Example 4 35.635.6 35.835.8 35.835.8 0.60.6 0.60.6 1.21.2
비교예 5Comparative Example 5 35.535.5 35.735.7 35.735.7 0.50.5 0.50.5 1.01.0
비교예 6Comparative Example 6 35.535.5 35.735.7 35.735.7 0.50.5 0.50.5 1.01.0
표 8에서, 표면장력 지수는 "(|Ae-Be|/Ae)*100"와 "(|Ae-Ce|/Ae)*100"의 합으로 계산된다.In Table 8, the surface tension index is calculated as the sum of "(|Ae-Be|/Ae)*100" and "(|Ae-Ce|/Ae)*100".
표면장력 지수 = (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100Surface tension index = (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100
표 8을 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 표면장력 지수를 가져, 장기간 저장 후 표면장력의 변화가 작으며, 표면장력 측면에서 매우 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 표면장력 지수를 가져, 장기간 저장 후 표면장력의 변화가 크며, 표면장력 측면에서 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 8, it can be seen that the polymerizable compositions according to Examples 1 to 6 have a low surface tension index, have small changes in surface tension after long-term storage, and are very stable compositions in terms of surface tension. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high surface tension index, a large change in surface tension after long-term storage, and an unstable composition in terms of surface tension.
<저장 변경 지수><Storage Change Index>
실시예 1 내지 6 및 비교예 1 내지 6에서 제조된 중합성 조성물의 저장 변경 지수(Index of Storage Variation; ISV)는 하기 식 1로 계산된다.The Index of Storage Variation (ISV) of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 is calculated by the following Equation 1.
[식 1] [Equation 1]
ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (| Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100
실시예 1 내지 6 및 비교예 1 내지 6에서 제조된 중합성 조성물의 저장 변경 지수(ISV)는 하기 표 9와 같다.Storage change index (ISV) of the polymerizable compositions prepared in Examples 1 to 6 and Comparative Examples 1 to 6 are shown in Table 9 below.
구분division 저장 변경 지수save change index
실시예 1Example 1 10.110.1
실시예 2Example 2 16.116.1
실시예 3Example 3 15.615.6
실시예 4Example 4 16.216.2
실시예 5Example 5 15.315.3
실시예 6Example 6 16.316.3
비교예 1Comparative Example 1 67.767.7
비교예 2Comparative Example 2 60.360.3
비교예 3Comparative Example 3 18.418.4
비교예 4Comparative Example 4 19.419.4
비교예 5Comparative Example 5 18.418.4
비교예 6Comparative Example 6 18.118.1
표 9를 참조하면, 실시예 1 내지 6에 따른 중합성 조성물은 낮은 저장 변경 지수를 가져, 장기간 저장 성능이 우수한 안정적인 조성물임을 확인할 수 있다. 반면, 비교예 1 내지 6에 따른 중합성 조성물은 높은 저장 변경 지수를 가져, 장기간 저장 성능이 좋지 않으며, 안정적이지 못한 조성물임을 확인할 수 있다.Referring to Table 9, it can be confirmed that the polymerizable compositions according to Examples 1 to 6 have a low storage change index, and are stable compositions having excellent long-term storage performance. On the other hand, it can be seen that the polymerizable compositions according to Comparative Examples 1 to 6 have a high storage change index, and thus have poor long-term storage performance and are not stable compositions.
이상 설명된 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 조합 또는 변형되어 실시될 수 있다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Features, structures, effects, etc. exemplified in each of the embodiments described above may be combined or modified by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
100: 표시장치 110: 터치 패널100: display device 110: touch panel
510: 기판 520: 반도체층510: substrate 520: semiconductor layer
530: 게이트 전극 541: 소스 전극530: gate electrode 541: source electrode
542: 드레인 전극 570: 유기 발광 소자542: drain electrode 570: organic light emitting device
571: 제1 전극 572: 유기 발광층571: first electrode 572: organic light emitting layer
573: 제2 전극 590: 봉지재573: second electrode 590: encapsulant
591: 제1 무기막 592: 유기막591: first inorganic film 592: organic film
593: 제2 무기막593: second inorganic membrane

Claims (14)

  1. 아크릴기를 갖는 제1 모노머;a first monomer having an acryl group;
    아크릴기를 가지며, 상기 제1 모노머와 다른 점도를 갖는 제2 모노머; 및 a second monomer having an acryl group and having a viscosity different from that of the first monomer; and
    중합 개시제;를 포함하며,a polymerization initiator; and
    저장 시험 전, 제1 가요성(Aa), 제1 점도(Ab), 제1 경화도(Ac), 제1 수축율(Ad) 및 제1 표면장력(Ae)을 가지며, Before the storage test, it has a first flexibility (Aa), a first viscosity (Ab), a first degree of curing (Ac), a first shrinkage ratio (Ad), and a first surface tension (Ae),
    상온(25℃±10℃)에서 1년간 밀봉 저장 후, 제2 가요성(Ba), 제2 점도(Bb), 제2 경화도(Bc), 제2 수축율(Bd) 및 제2 표면장력(Be)을 가지며,After sealed storage for 1 year at room temperature (25℃±10℃), the second flexibility (Ba), the second viscosity (Bb), the second degree of curing (Bc), the second shrinkage rate (Bd) and the second surface tension ( Be) has,
    50℃에서 1년간 밀봉 저장 후, 제3 가요성(Ca), 제3 점도(Cb), 제3 경화도(Cc), 제3 수축율(Cd) 및 제3 표면장력(Ce)을 가지며,After sealed storage at 50° C. for one year, it has a third flexibility (Ca), a third viscosity (Cb), a third degree of curing (Cc), a third shrinkage rate (Cd), and a third surface tension (Ce),
    18 이하의 저장 변경 지수(Index of Storage Variation; ISV)를 갖는, 중합성 조성물:A polymerizable composition having an Index of Storage Variation (ISV) of 18 or less:
    상기 저장 변경 지수(ISV)는 하기 식 1로 구해지며,The storage change index (ISV) is obtained by the following formula 1,
    [식 1] [Equation 1]
    ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (|Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100ISV = (|Aa-Ba|/Aa)*100 + (|Aa-Ca|/Aa)*100 + (|Ab-Bb|/Ab)*100 + (|Ab-Cb|/Ab)*100 + (|Ac-Bc|/Ac)*100 + (|Ac-Cc|/Aa)*100 + (|Ad-Bd|/Ad)*100 + (|Ad-Cd|/Ad)*100 + (| Ae-Be|/Ae)*100 + (|Ae-Ce|/Ae)*100
    상기 제1 가요성(Aa)은, ASTM E 2546 규격에 따라, 상기 저장 시험 전 상기 중합성 조성물을 50mm*50mm 유리 기판에 8㎛ 두께로 스핀코팅하고 경화하여 제조된 유기막에 2.0mN 하중을 5초간 가하여 측정된 모듈러스(MPa) 값으로 측정되고,The first flexibility (Aa) is, according to ASTM E 2546 standard, before the storage test, a 2.0 mN load is applied to an organic film prepared by spin-coating the polymerizable composition to a thickness of 8 μm on a 50 mm * 50 mm glass substrate and curing it. It is measured as a modulus (MPa) value measured by applying for 5 seconds,
    상기 제1 점도(Ab)는 ASTM D 2196 에 규정된 방법에 따라, 25℃에서 Brookfield 사의 DV2T 분석 장비에 상기 저장 시험 전 상기 중합성 조성물을 0.5ml 로딩하고, 토크를 50%로 설정하여 측정되고, The first viscosity (Ab) is measured by loading 0.5 ml of the polymerizable composition before the storage test in a Brookfield DV2T analysis equipment at 25° C., and setting the torque to 50%, according to the method specified in ASTM D 2196, and ,
    상기 제1 경화도(Ac)는 상기 저장 시험 전 상기 중합성 조성물의 C=C 이중 결합 비율과 상기 중합성 조성물을 경화하여 얻어진 유기막의 C=C 이중 결합 비율로부터 따라 계산되고 The first degree of curing (Ac) is calculated according to the C = C double bond ratio of the polymerizable composition before the storage test and the C = C double bond ratio of the organic film obtained by curing the polymerizable composition,
    상기 제1 수축율(Ad)은 11.5mm의 내경 지름을 갖는 유리관에 채워진 저장 시험 전 중합성 조성물의 경화 전과 경화 후 지름의 변화로부터 계산되고,The first shrinkage rate (Ad) is calculated from the change in diameter before and after curing of the polymerizable composition before storage test filled in a glass tube having an inner diameter of 11.5 mm
    상기 제1 표면장력(Ae)은 ISO 304에 규정된 방법에 따라, 상기 저장 시험 전 상기 중합성 조성물에 대하여, KRUSS사 Tension Meter K9으로 O-Ring을 이용하여 Max 모드에서 측정되고,The first surface tension (Ae) is measured in Max mode using O-Ring with KRUSS Tension Meter K9 for the polymerizable composition before the storage test according to the method specified in ISO 304,
    상기 제2 가요성(Ba)은, 상기 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 가요성(Aa) 측정과 동일한 방법으로 측정되며,The second flexibility (Ba) is the same as the measurement of the first flexibility (Aa) for a sample of the polymerizable composition obtained after sealed storage of the polymerizable composition at room temperature (25°C±10°C) for 1 year is measured in a way that
    상기 제2 점도(Bb)는, 상기 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 점도(Ab) 측정과 동일한 방법으로 측정되며,The second viscosity (Bb) is measured in the same manner as in the measurement of the first viscosity (Ab) for a sample of the polymerizable composition obtained after sealing the polymerizable composition at room temperature (25°C±10°C) for 1 year. is measured,
    상기 제2 경화도(Bc)는, 상기 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 경화도(Ac) 측정과 동일한 방법으로 측정되며, The second degree of curing (Bc) is the same as the measurement of the first degree of curing (Ac) for a sample of the polymerizable composition obtained after sealing and storing the polymerizable composition at room temperature (25°C±10°C) for 1 year is measured in a way that
    상기 제2 수축율(Bd)은, 상기 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 수축율(Ad) 측정과 동일한 방법으로 측정되며,The second shrinkage ratio (Bd) is the same as the measurement of the first shrinkage ratio (Ad) for a sample of the polymerizable composition obtained after sealing the polymerizable composition at room temperature (25° C.±10° C.) for 1 year. is measured,
    상기 제2 표면장력(Be)은, 상기 중합성 조성물을 상온(25℃±10℃)에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 표면장력(Ae) 측정과 동일한 방법으로 측정되며,The second surface tension (Be) is the same as the measurement of the first surface tension (Ae) for a sample of the polymerizable composition obtained after sealing and storing the polymerizable composition at room temperature (25°C ± 10°C) for 1 year is measured in a way that
    상기 제3 가요성(Ca)은, 상기 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 가요성(Aa) 측정과 동일한 방법으로 측정되며,The third flexibility (Ca) is measured in the same way as the first flexibility (Aa) measurement for a sample of the polymerizable composition obtained after sealing the polymerizable composition at 50° C. for 1 year,
    상기 제3 점도(Cb)는, 상기 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 점도(Ab) 측정과 동일한 방법으로 측정되며,The third viscosity (Cb) is measured by the same method as the first viscosity (Ab) measurement for a sample of the polymerizable composition obtained after sealed storage of the polymerizable composition at 50° C. for 1 year,
    상기 제3 경화도(Cc)는, 상기 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 경화도(Ac) 측정과 동일한 방법으로 측정되며, The third degree of curing (Cc) is measured by the same method as the measurement of the first degree of curing (Ac) for a sample of the polymerizable composition obtained after sealed storage of the polymerizable composition at 50° C. for one year,
    상기 제3 수축율(Cd)은, 상기 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 수축율(Ad) 측정과 동일한 방법으로 측정되며,The third shrinkage ratio (Cd) is measured by the same method as the first shrinkage ratio (Ad) measurement for a sample of the polymerizable composition obtained after sealing the polymerizable composition at 50° C. for 1 year,
    상기 제3 표면장력(Ce)은, 상기 중합성 조성물을 50℃에서 1년간 밀봉 저장 후 얻어진 상기 중합성 조성물의 샘플에 대해, 상기 제1 표면장력(Ae) 측정과 동일한 방법으로 측정된다. The third surface tension (Ce) is measured by the same method as the first surface tension (Ae) measurement for a sample of the polymerizable composition obtained after sealed storage of the polymerizable composition at 50° C. for one year.
  2. 제1항에 있어서, According to claim 1,
    상기 제1 모노머는 하기 화학식 1로 표현되고, The first monomer is represented by the following formula (1),
    [화학식 1][Formula 1]
    CiHjOk C i H j O k
    상기 화학식 1에서, i는 10 내지 28의 정수이고, j는 10 내지 54의 정수이고, k는 1 내지 10의 정수이고, i/k는 2 이상이고, In Formula 1, i is an integer from 10 to 28, j is an integer from 10 to 54, k is an integer from 1 to 10, i/k is 2 or more,
    상기 제2 모노머는, 하기 화학식 2로 표현되고,The second monomer is represented by the following formula (2),
    [화학식 2][Formula 2]
    CpHqOr C p H q O r
    상기 화학식 2에서, p는 10 내지 25의 정수이고, q는 10 내지 40의 정수이고, r은 1 내지 6의 정수이고, p/r은 2 이상인, 중합성 조성물. In Formula 2, p is an integer from 10 to 25, q is an integer from 10 to 40, r is an integer from 1 to 6, and p/r is 2 or more, the polymerizable composition.
  3. 제2항에 있어서,3. The method of claim 2,
    "2≤i/k≤8" 및 "2≤p/r≤8" 중 적어도 하나를 만족하는, 중합성 조성물.At least one of "2≤i/k≤8" and "2≤p/r≤8" is satisfied.
  4. 제1항에 있어서,According to claim 1,
    상기 제1 모노머는 25℃에서 1 내지 100 cPs의 점도를 가지며,The first monomer has a viscosity of 1 to 100 cPs at 25 ℃,
    제2 모노머는 25℃에서 100 cPs 초과 500 cPs 이하의 점도를 갖는, 중합성 조성물.wherein the second monomer has a viscosity of greater than 100 cPs and less than or equal to 500 cPs at 25°C.
  5. 제1항에 있어서, According to claim 1,
    상기 제1 모노머 및 상기 제2 모노머의 전체 100 중량부에 대하여, Based on 100 parts by weight of the total of the first monomer and the second monomer,
    상기 제1 모노머의 함량은 50 내지 80 중량부이고, 상기 제2 모노머의 함량은 20 내지 50 중량부인, 중합성 조성물.The content of the first monomer is 50 to 80 parts by weight, the content of the second monomer is 20 to 50 parts by weight, the polymerizable composition.
  6. 제1항에 있어서, According to claim 1,
    40ppm 이하의 수분(H2O) 농도를 갖는, 중합성 조성물.A polymerizable composition having a moisture (H 2 O) concentration of 40 ppm or less.
  7. 제1항에 있어서, According to claim 1,
    상기 중합 개시제는 500nm 이하에서 파장에서 적어도 하나의 광 흡수 피크를 갖는, 중합성 조성물.The polymerization initiator has at least one light absorption peak at a wavelength at 500 nm or less, the polymerizable composition.
  8. 제1항에 있어서, According to claim 1,
    상기 제1 가요성(Aa)은 1985 내지 2416 MPa이고, 상기 제2 가요성(Ba)은 1947 내지 2390 MPa이고, 상기 제3 가요성(Ca)은 1935 내지 2375 MPa인 중합성 조성물. The first flexibility (Aa) is 1985 to 2416 MPa, the second flexibility (Ba) is 1947 to 2390 MPa, and the third flexibility (Ca) is 1935 to 2375 MPa.
  9. 제1항에 있어서, According to claim 1,
    25℃에서 상기 제1 점도(Ab)는 19.5 내지 22.0 cPs이고, 상기 제2 점도(Bb)는 19.8 내지 22.2 cPs이고, 상기 제3 점도(Cb)는 19.8 내지 23.0 cPs인 중합성 조성물. At 25° C., the first viscosity (Ab) is 19.5 to 22.0 cPs, the second viscosity (Bb) is 19.8 to 22.2 cPs, and the third viscosity (Cb) is 19.8 to 23.0 cPs.
  10. 제1항에 있어서, According to claim 1,
    상기 제1 경화도(Ac)는 93 내지 95%이고, 상기 제2 경화도(Bc)는 92 내지 94%이고, 상기 제3 경화도(Cc)는 92 내지 94%인 중합성 조성물. The first degree of curing (Ac) is 93 to 95%, the second degree of curing (Bc) is 92 to 94%, and the third degree of curing (Cc) is 92 to 94%.
  11. 제1항에 있어서, According to claim 1,
    상기 제1 수축율(Ad)은 2.5 내지 3.0% 이고, 상기 제2 수축율(Bd)은 2.5 내지 3.1%이고, 상기 제3 수축율(Cd)은 2.5 내지 3.1%인 중합성 조성물. The first shrinkage ratio (Ad) is 2.5 to 3.0%, the second shrinkage ratio (Bd) is 2.5 to 3.1%, the third shrinkage ratio (Cd) is 2.5 to 3.1% of the polymerizable composition.
  12. 제1항에 있어서, According to claim 1,
    상기 제1 표면장력(Ae)은 35.0 내지 35.9 mN/m이고, 상기 제2 표면장력(Be)은 35.2 내지 36.1 mN/m이고, 상기 제3 표면장력(Ce)은 35.2 내지 36.1 mN/m인 중합성 조성물. The first surface tension (Ae) is 35.0 to 35.9 mN/m, the second surface tension (Be) is 35.2 to 36.1 mN/m, and the third surface tension (Ce) is 35.2 to 36.1 mN/m polymerizable composition.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 중합성 조성물에 의하여 형성된 유기막을 포함하는 봉지재. An encapsulant comprising an organic film formed by the polymerizable composition according to any one of claims 1 to 12.
  14. 제13항의 봉지재를 포함하는 표시장치.A display device comprising the encapsulant of claim 13 .
PCT/KR2021/000933 2020-01-22 2021-01-22 Polymeric composition having excellent storage stability, encapsulant, and display device WO2021150071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180010478.0A CN115003705A (en) 2020-01-22 2021-01-22 Polymeric composition having excellent storage stability, encapsulating material and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0008310 2020-01-22
KR20200008310 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021150071A1 true WO2021150071A1 (en) 2021-07-29

Family

ID=76992879

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/000933 WO2021150071A1 (en) 2020-01-22 2021-01-22 Polymeric composition having excellent storage stability, encapsulant, and display device
PCT/KR2021/000934 WO2021150072A1 (en) 2020-01-22 2021-01-22 Polymerizable composition, encapsulation material, and display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000934 WO2021150072A1 (en) 2020-01-22 2021-01-22 Polymerizable composition, encapsulation material, and display device

Country Status (3)

Country Link
KR (2) KR102607357B1 (en)
CN (2) CN115003705A (en)
WO (2) WO2021150071A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049953A (en) * 2014-10-28 2016-05-10 삼성에스디아이 주식회사 Photo-curable composition, organic protective layer comprising the same, and apparatus comprising the same
JP2016222755A (en) * 2015-05-27 2016-12-28 日油株式会社 Core particle, and core-shell particle using the same
KR20160150256A (en) * 2015-06-19 2016-12-29 삼성에스디아이 주식회사 Organic light emmiting diode display apparatus
KR20170013227A (en) * 2014-05-22 2017-02-06 제이엑스 에네루기 가부시키가이샤 Polymer microparticle composition and use thereof as light diffusing agent
JP2018131563A (en) * 2017-02-16 2018-08-23 株式会社菱晃 Curable resin composition and cured product thereof, and coating material, sheet and film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701602B2 (en) * 2016-03-02 2020-05-27 株式会社リコー Active energy ray curable composition, cured product, composition container, image forming apparatus, and image forming method
KR102097804B1 (en) * 2017-12-04 2020-04-06 삼성에스디아이 주식회사 Composition for encapsulating organic light emitting diode device and organic light emitting diode display using prepared the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013227A (en) * 2014-05-22 2017-02-06 제이엑스 에네루기 가부시키가이샤 Polymer microparticle composition and use thereof as light diffusing agent
KR20160049953A (en) * 2014-10-28 2016-05-10 삼성에스디아이 주식회사 Photo-curable composition, organic protective layer comprising the same, and apparatus comprising the same
JP2016222755A (en) * 2015-05-27 2016-12-28 日油株式会社 Core particle, and core-shell particle using the same
KR20160150256A (en) * 2015-06-19 2016-12-29 삼성에스디아이 주식회사 Organic light emmiting diode display apparatus
JP2018131563A (en) * 2017-02-16 2018-08-23 株式会社菱晃 Curable resin composition and cured product thereof, and coating material, sheet and film

Also Published As

Publication number Publication date
CN115003706A (en) 2022-09-02
WO2021150072A1 (en) 2021-07-29
KR20210095085A (en) 2021-07-30
KR102607357B1 (en) 2023-11-29
CN115003705A (en) 2022-09-02
KR20210095084A (en) 2021-07-30
KR102602894B1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2017047917A1 (en) Modified polyimide and curable resin composition containing same
WO2014178497A1 (en) Photo-curing composition and encapsulated device comprising same
WO2015016456A1 (en) Retardation film and image display device having same
WO2019235712A1 (en) Siloxane compound and polyimide precursor composition comprising same
WO2018182302A1 (en) Blue photosensitive resin composition, and color filter and image display device manufactured by using same
WO2014193072A1 (en) Optical film with excellent ultraviolet cut-off function and polarizing plate including same
WO2017086567A1 (en) Flexible touchscreen panel module and flexible display device comprising same
WO2021150071A1 (en) Polymeric composition having excellent storage stability, encapsulant, and display device
WO2016085087A2 (en) (meth)acrylic compounds having high refractive index, preparation method therefor, optical sheet comprising same, and optical display device comprising same
WO2011052934A2 (en) Inkjet composition for formation of transparent film, and preparation method thereof
WO2021150073A1 (en) Polymeric composition having excellent storage stability, encapsulation material, and display device
WO2013055015A1 (en) Adhesive composition, adhesive film, production method for same and display member using same
WO2021075740A1 (en) Quantum dots, curable composition comprising same, cured film manufactured using composition, and color filter comprising cured film
WO2020153655A1 (en) Film touch sensor and manufacturing method therefor
WO2022182014A1 (en) Photonic crystal structure and manufacturing method therefor
WO2017171272A1 (en) Color filter and image display device comprising same
WO2023167562A1 (en) Optical film, composition for forming coating layer, and electronic device
WO2021132924A1 (en) Encapsulation composition, encapsulation layer comprising same, and encapsulated apparatus comprising encapsulation layer
WO2021221374A1 (en) Polyamide-based composite film and display device comprising same
WO2022010253A1 (en) Light-transmissive film, manufacturing method therefor, and display device comprising same
WO2020197179A1 (en) Alkali-soluble, photocurable, and thermosetting copolymer, and photosensitive resin composition, photosensitive resin film, and color filter using same
WO2017171271A1 (en) Film touch sensor and touch screen panel comprising same
WO2013027981A2 (en) Polarizing plate
WO2019074262A1 (en) Binder resin and photosensitive resin composition or coating solution including same
WO2021261848A1 (en) Multi-structured film having improved interference fringe, and display device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743677

Country of ref document: EP

Kind code of ref document: A1