WO2021149780A1 - 半導体装置及びその駆動方法 - Google Patents

半導体装置及びその駆動方法 Download PDF

Info

Publication number
WO2021149780A1
WO2021149780A1 PCT/JP2021/002106 JP2021002106W WO2021149780A1 WO 2021149780 A1 WO2021149780 A1 WO 2021149780A1 JP 2021002106 W JP2021002106 W JP 2021002106W WO 2021149780 A1 WO2021149780 A1 WO 2021149780A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
semiconductor device
filament
electrode
resistance changing
Prior art date
Application number
PCT/JP2021/002106
Other languages
English (en)
French (fr)
Inventor
三河 巧
幸治 片山
隆太郎 安原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2021572801A priority Critical patent/JPWO2021149780A1/ja
Publication of WO2021149780A1 publication Critical patent/WO2021149780A1/ja
Priority to US17/691,733 priority patent/US20220198251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0035Evaluating degradation, retention or wearout, e.g. by counting writing cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0045Read using current through the cell

Definitions

  • the present disclosure relates to a semiconductor device and a method for driving the semiconductor device.
  • IoT Internet of Things
  • Edge AI Artificial Intelligence
  • Resistance-change memory ReRAM Resistive Random Access Memory
  • Non-Patent Document 1 discloses an example of a neural network arithmetic circuit using a resistance change type non-volatile memory.
  • the neural network calculation circuit is configured by using a resistance change type non-volatile memory in which the analog resistance value can be set, and the analog resistance value corresponding to the coupling weight coefficient is stored in the non-volatile memory element.
  • the resistance changing element that stores the weight that takes an analog continuous value as the resistance value has a problem that the reliability is lowered due to the "variation" of the analog resistance value.
  • the present disclosure addresses the above-mentioned problems, reduces variations in the resistance value of the resistance changing element that stores weights, and provides a more reliable semiconductor device and a driving method thereof.
  • the semiconductor device includes a plurality of resistance changing elements on a semiconductor substrate, and the resistance changing elements include a first electrode, a second electrode, and the first electrode.
  • the resistance change layer is sandwiched between the electrode and the second electrode and continuously stores a variable resistance value, and the resistance change layer has a different shape corresponding to the weight of the neural network. It has a filament and stores a variable resistance value as an analog continuous value.
  • the method for manufacturing a semiconductor device is a method for driving a semiconductor device having a plurality of resistance changing elements on a semiconductor substrate, and the resistance changing elements include a first electrode and a second resistance changing element.
  • the semiconductor device is driven by having a plurality of resistance changing elements including the above-mentioned electrode and a resistance changing layer sandwiched between the first electrode and the second electrode and storing a continuously changing resistance value.
  • the stress of the electric pulse corresponding to the weight of the neural network is determined, and in the forming step of forming the filament in the resistance change layer, the determined electric pulse is applied to the resistance change layer as stress. Filaments having different shapes corresponding to the weights are formed.
  • FIG. 1A is a diagram showing a configuration example of a semiconductor device that performs memory computing by utilizing the resistance changing element according to the embodiment.
  • FIG. 1B is a diagram showing resistance value-voltage characteristics of the resistance changing element.
  • FIG. 2 is a cross-sectional view of a resistance changing element whose resistance value changes due to oxidation / reduction due to the movement of oxygen.
  • FIG. 3 is a diagram showing a distribution of a read current obtained by reading the analog resistance value of the resistance changing element of the semiconductor device as a current.
  • FIG. 4 is a correlation diagram showing the relationship between the filament characteristics and the data retention characteristics of the resistance changing element.
  • FIG. 5 is a cross-sectional view showing a first configuration example of the semiconductor device according to the embodiment.
  • FIG. 6 is a cross-sectional view showing a second configuration example of the semiconductor device according to the embodiment.
  • FIG. 7A is a cross-sectional view showing an example of a resistance changing layer of the semiconductor device according to the first configuration example.
  • FIG. 7B is a cross-sectional view showing another example of the resistance changing layer of the semiconductor device according to the second configuration example.
  • FIG. 8 is an explanatory diagram showing a network path due to oxygen defects formed in the filament of the semiconductor device according to the embodiment.
  • FIG. 9 is a distribution diagram of neural network weights (analog resistance values) set in the semiconductor device according to the embodiment.
  • FIG. 10A is a cross-sectional view showing an example of a first driving method of the semiconductor device according to the first configuration example.
  • FIG. 10A is a cross-sectional view showing an example of a first driving method of the semiconductor device according to the first configuration example.
  • FIG. 10B is a flowchart showing a specific example of the first driving method shown in FIG. 10A.
  • FIG. 10C is a diagram showing an example of a reference table in which the weight of the neural network and the electrical pulse are associated with each other.
  • FIG. 11 is a diagram showing the relationship between the filament size of the semiconductor device according to the first configuration example and the density of oxygen defects.
  • FIG. 12 is a diagram showing (a) the size of the filament with respect to the forming current and (b) the density of oxygen defects with respect to the forming current in the first driving method of the semiconductor device according to the first configuration example.
  • FIG. 13A is a cross-sectional view showing an example of a second driving method of the semiconductor device according to the first configuration example.
  • FIG. 13B is a flowchart showing a specific example of the second driving method shown in FIG. 13A.
  • FIG. 14 is a diagram showing a state in which an analog resistance value with respect to an additional forming current is observed by a read current in the second driving method of the semiconductor device according to the first configuration example.
  • FIG. 15 is a diagram showing the relationship between the read current corresponding to the analog resistance value with respect to the additional current and its variation in the second driving method of the semiconductor device according to the first configuration example.
  • a neural network using a resistance changing element that stores a weight that takes an analog continuous value as a resistance value is disclosed.
  • the resistance changing element as a digital memory stores two values corresponding to high resistance and low resistance, if the worst bit exceeds the threshold value due to the variation of the element with respect to the set threshold value, it becomes defective. Therefore, the "error rate" with respect to the threshold determines the performance of the device.
  • the resistance changing element that stores the analog weight is used as it is for the calculation of the neural network.
  • the "variation" of the resistance value with respect to one weight value itself, not the “error rate” becomes an issue of the reliability of the resistance value and thus the reliability of the memory computing of the semiconductor device.
  • the "variation" is large, the reliability of the resistance value deteriorates to the reliability of the neural network.
  • the present disclosure addresses the above-mentioned problems, reduces variations in the resistance value of the resistance changing element that stores weights, and provides a more reliable semiconductor device and a driving method thereof.
  • the semiconductor device includes a plurality of resistance changing elements on a semiconductor substrate, and the resistance changing elements include a first electrode, a second electrode, the first electrode, and the above. It has a resistance change layer sandwiched between the second electrodes and continuously stores a variable resistance value, and the resistance change layer has filaments having different shapes corresponding to the weights of the neural network. , Save the variable resistance value as an analog continuous value.
  • the area of the filament in the plan view of the semiconductor substrate may be different according to the weight of the neural network.
  • the length of the filament in the direction in which the first electrode and the second electrode face each other may differ depending on the weight of the neural network.
  • the weight and the length as the shape of the filament are made to correspond without depending on the area of the resistance changing element, so that the resistance changing element more suitable for miniaturization can be formed. Can be done.
  • the resistance changing layer may include a first resistance layer and a second resistance layer having a resistance value higher than that of the first resistance layer and having the filament.
  • the resistance changing layer has a resistance value that increases continuously or stepwise from the second electrode to the first electrode.
  • the resistance value per unit volume of the resistance changing layer may increase continuously or stepwise from the second electrode to the first electrode.
  • the area of the filament is approximately S, and it is easy to set various analog resistance values in correspondence with the length L of the filament and the weight of the neural network.
  • the resistance value of the resistance change layer may change with the movement of oxygen due to the application of an electric pulse.
  • the resistance value corresponding to the desired weight can be set by controlling the stress application amount of the electric pulse, and the neural network calculation can be executed more accurately. can.
  • the resistance change layer may contain a transition metal oxide.
  • the transition metal oxide corresponds to tantalum oxide, hafnium oxide, and the like. Oxygen moves in the transition metal oxide by the oxidation / reduction reaction, and the oxygen defect density in the filament changes, so that a desired resistance value corresponding to the weight can be designed.
  • the filament has a current path through which a current flows through a plurality of oxygen defects, and is redundant in connecting the end portion of the filament on the first electrode side and the end portion on the second electrode side of the filament. It may have a plurality of current paths.
  • the oxygen defect density of the filament may not depend on the weight of the neural network.
  • the oxygen defect density is a constant value that can have a redundant current path and does not depend on the weight, the variation in the resistance value can be suppressed more easily.
  • the resistance value of the resistance change layer may change with the movement of metal ions due to the application of an electric pulse.
  • the resistance value corresponding to the desired weight can be set by controlling the stress application amount of the electric pulse, and the neural network calculation can be executed more accurately. can.
  • the resistance value of half or more of the plurality of resistance changing elements may be larger than the median of the analog continuous values that the resistance value can take.
  • the resistance value of half or more of the plurality of resistance changing elements may be smaller than the median of the analog continuous values that the resistance value can take.
  • the method for driving a semiconductor device is a method for driving a semiconductor device including a plurality of resistance changing elements on a semiconductor substrate, wherein the resistance changing elements include a first electrode and a second electrode.
  • a method of driving a semiconductor device which comprises a plurality of resistance changing elements including a resistance changing layer sandwiched between the first electrode and the second electrode and storing a continuously changing resistance value.
  • the determined electrical pulse is applied to the resistance change layer as stress to obtain the weight.
  • differently shaped filaments are formed.
  • At least one of the voltage value, the current value, and the application time of the electric pulse may be different depending on the weight of the neural network.
  • the stress of the electric pulse includes a first electric pulse common to the plurality of resistance changing elements and a second electric pulse corresponding to the weight not common to the plurality of resistance changing elements.
  • the first electric pulse may be applied to the resistance change layer, and further, the second electric pulse may be applied to the resistance change layer.
  • the weight can be set and corrected by the customer after the chip is shipped, and the network weight of various applications can be updated.
  • At least one of the voltage value, the current value, and the application time of the second electric pulse may be different depending on the weight.
  • FIG. 1A is a diagram showing a schematic configuration example of a semiconductor device that performs in-memory computing by utilizing the resistance changing element according to the embodiment.
  • the semiconductor device shown in the figure shows a circuit example of a neural network using a resistance changing element that stores the weight of the neural network as a resistance value that takes an analog continuous value.
  • the resistance changing element is a memory element that stores an analog value instead of a digital value.
  • the semiconductor device shown in the figure includes an input layer 21, an arithmetic processing layer 22, and an output layer 23.
  • the analog continuous value means a physical quantity in which the value changes continuously and can be arbitrarily set within a desired range.
  • the configuration of the neural network including the input layer 21, the arithmetic processing layer 22, and the output layer 23 has an extremely high affinity with the configuration of the memory array of ReRAM, which is a resistance change type memory.
  • This semiconductor device is configured by using a resistance changing element in which an analog resistance value can be set in a neural network calculation circuit.
  • the input layer 21 has a plurality of input nodes 24.
  • voltages V1 to V5 are input to the five input nodes 24.
  • Each input node is connected to a word line 17 as an input line of the arithmetic processing layer 22.
  • the output layer 23 has a plurality of output nodes 25. Each output node 25 is connected to a bit line 18 as an output line of the arithmetic processing layer 22.
  • the arithmetic processing layer 22 is configured as, for example, one or more hidden layers, and is formed at each of the intersections of the plurality of word lines 17, the plurality of bit lines 18, and the plurality of word lines 17 and the plurality of bit lines 18. It is provided with a resistance changing element 19.
  • the plurality of word lines 17 and the plurality of bit lines 18 are arranged in a grid pattern. That is, the resistance changing element 19 is arranged at each intersection of the lattice.
  • a diode D for preventing backflow is connected in series to the resistance changing element 19. In this cross-point structure, a diode is adopted as a selection element of the resistance changing element 19, but it may be electrically replaced with a transistor of a generally used 3-terminal element.
  • the resistance changing element 19 has a continuously variable resistance value corresponding to the weight W of the neural network.
  • FIG. 1B shows the resistance-voltage characteristics of the resistance changing element 19 that can store the weight W of the neural network as the reciprocal of the continuous resistance value R.
  • the current from the resistance changing element 19 connected to each bit wire 18 is added in the bit wire 18.
  • the five output nodes 25 output the product-sum operation ( ⁇ i1 to ⁇ i5) results.
  • the output node 25 may output the current value as the product-sum calculation result as it is, or may convert the current value into a voltage value and output it.
  • FIG. 2 is a cross-sectional view of the resistance changing element 19 whose resistance value changes due to oxidation / reduction due to the movement of oxygen.
  • A in the figure shows a low resistance state (LRS: Low Resistance State).
  • B in the figure shows a high resistance state (HRS: High Resistance State).
  • the resistance changing element 19 has a first electrode 11, a second electrode 13, and a resistance changing layer 12 sandwiched between the first electrode 11 and the second electrode 13.
  • forming for example, dielectric breakdown
  • the filament 14 has a large number of oxygen defects 15 and a large number of oxygen ions 16 formed by forming. Oxygen ions 16 move due to the voltage applied between the first electrode 11 and the second electrode 13, and the resistance value changes as the density of oxygen defects 15 in the filament increases or decreases, resulting in hopping via oxygen defects. It is the principle that current flows by conduction.
  • the oxygen ion 16 charged with a negative charge becomes the first electrode 11.
  • Some of the oxygen ions 16 and the like that are attracted to the oxygen defect 15 and are captured by the oxygen defect 15 are released from the oxygen defect 15 and move to the region of the resistance change layer 12 outside the filament 14.
  • the density of the oxygen defects 15 in the filament 14 increases, and the current easily flows. That is, the resistance changing element 19 is in the LRS (low resistance state).
  • the oxygen ion 16 charged with a negative charge becomes the second. It is attracted to the electrode 13 of the above, penetrates into the filament 14, and a part of the filament 14 is captured by the oxygen defect 15. The density of the oxygen defects 15 in the filament 14 is reduced, and the path (that is, the current path) of the filament 14 is divided to improve the insulating property, and the current does not flow much. That is, the resistance changing element 19 is in an HRS (high resistance state).
  • the amount of movement of oxygen ions 16 is determined by the magnitude of the voltage of the applied electrical stress, the application time, and the current flowing at that time.
  • the amount of oxygen transfer can be controlled by adjusting the added electrical energy such as the size of the oxygen. That is, it is possible to set a desired resistance value and store the weight of the neural network as an analog continuous value.
  • the resistance in the region of the resistance change layer on the side where the filament 14 is formed may be higher than that of the filament 14. This is because the current flows around the filament 14. Further, it is assumed that the resistance in the region of the resistance changing layer formed in the lower part of the filament 14 basically has a structure in which a current flows as in the filament.
  • FIG. 3 is a diagram showing a distribution of read current obtained by reading the analog resistance value of the resistance changing element 19 of the semiconductor device as a current.
  • the horizontal axis shows the read current of the analog resistance value corresponding to the weight of the neural network in all the regions from the high resistance state to the low resistance state that the resistance changing element 19 can take.
  • the vertical axis is the standard deviation showing the distribution.
  • the resistance changing element 19 When the resistance changing element 19 is used as a digital memory that stores the binary values of 0 and 1, the leftmost high resistance state and the rightmost low resistance state are used, and the memory window, which is the difference between them, can be sufficiently maintained.
  • the resistance values in all the regions that the resistance changing element 19 can take are used. ..
  • the resistance values in all the regions that the resistance changing element 19 can take are used. ..
  • FIG. 3 in the intermediate region of the read current, a large variation is observed as compared with the low resistance state and the high resistance state. This is because in the rightmost low resistance state, the density of oxygen defects 15 in the filament 14 is high and a robust filament path, that is, a current path is formed, whereas in the intermediate region, the density of oxygen defects 15 is low. , Suggests that the characteristics of the filament path have changed (divided in places). These characteristics strongly depend on the characteristics of the filament 14 described below, and are also closely related to the data retention characteristics.
  • FIG. 4 is a correlation diagram showing the relationship between the filament characteristics and the data retention characteristics of the resistance changing element 19. Quantitative modeling of filament characteristics has been established with parameters such as the area S of the filament 14 and the density N (Vo) of oxygen defects 15 in the filament 14, and it can be seen that there is a deep correlation with the data retention characteristics. It has been issued.
  • FIG. 4 is a correlation diagram showing the relationship between the filament characteristics and the data retention characteristics of the resistance changing element.
  • FIG. 4 shows the correlation between the area of the filament and the density of the oxygen defect 15 as the deterioration rate of the data retention characteristic equivalent to 85 ° C. for 10 years after rewriting 10,000 times.
  • the data retention characteristics are improved as the gradation of points becomes lighter.
  • attention is paid to a low resistance state in which deterioration of data retention characteristics is likely to occur.
  • the drive voltage is adjusted so as to reduce the oxygen defect density in the filament, and the weight of the neural network corresponds to the analog resistance value.
  • the filament characteristics change in the direction of (1).
  • a large weight value that can maintain a high oxygen defect density indicates good data retention characteristics, whereas an oxygen defect with poor data retention characteristics is used for a corresponding small weight with a low oxygen defect density. This causes the read current in FIG. 3 to be more variable near the center of the possible resistance values.
  • the present inventors do not adjust the resistance value by the oxygen defect density, but adjust the resistance value mainly by the shape of the filament such as the area and length of the filament to provide a filament having excellent data retention characteristics.
  • Direction (2) in FIG. 4 provides the semiconductor device of the present disclosure and a driving method thereof.
  • FIG. 5 is a cross-sectional view showing a first configuration example of the semiconductor device according to the embodiment.
  • the semiconductor device of the first configuration example will be described with reference to FIG.
  • the semiconductor device includes a large number of resistance changing elements 19 arranged in a matrix as shown in FIG. 1A, but for simplification of the drawing, only three resistance changing elements 19 are shown as typical examples.
  • the three resistance changing elements 19 are referred to as a first resistance changing element 101, a second resistance changing element 102, and a third resistance changing element 103.
  • the semiconductor device also has a wiring connected to the electrode of the resistance changing element 19 for extracting the electric signal of the resistance changing element 19 and a transistor for a circuit for giving an electric signal to be applied to the resistance changing element 19.
  • it since it is not directly related to this disclosure, it is omitted. The same applies to the subsequent drawings.
  • the semiconductor device of the first configuration example includes a plurality of resistance changing elements 19 formed on the semiconductor substrate 10.
  • the plurality of resistance changing elements 19 are typically shown.
  • Each of the first resistance changing element 101, the second resistance changing element 102, and the third resistance changing element 103 has a first electrode 11, a resistance changing layer 12, and a second electrode 13.
  • the resistance changing layer 12 is sandwiched between the first electrode 11 and the second electrode 13 and continuously stores a variable resistance value.
  • a part of the resistance change layer 12 is changed by an electric treatment called forming (for example, dielectric breakdown), and filaments 14a, 14b, and 14c through which a current mainly flows, which determines the resistance change characteristics, are formed, respectively.
  • forming for example, dielectric breakdown
  • the area of the filament 14a of the first resistance changing element 101 is S1
  • the area of the filament 14b of the second resistance changing element 102 is S2
  • the area of the filament 14c of the third resistance changing element 103 is S3.
  • the area S of the filament 14 differs depending on the weight W of the neural network.
  • the shape of the filament 14 formed by forming is not actually a neat cylindrical shape, but can be schematically regarded as a cylindrical shape.
  • the area S of the filament 14 may be defined as, for example, the average of the cross-sectional areas of the filament 14 cut along a plane parallel to the semiconductor substrate 10, or the area of the contact portion between the second electrode 13 and the filament 14. good.
  • the areas S1, S2, and S3 in the figure are different according to the weight of the neural network.
  • the filament length is L in any of the first resistance changing element 101, the second resistance changing element 102, and the third resistance changing element 103.
  • the analog resistance value R of the filament 14 increases as the area S decreases. Since the current flowing through the resistance changing element 19 can be changed depending on the area S of the filament 14, that is, a strong network path can be obtained without significantly changing the oxygen defect density that greatly affects the data retention characteristics.
  • the shape of the maintained filament 14 can be maintained, and various analog resistance values R corresponding to the weights of the neural network can be set. In other words, by keeping the oxygen defect density constant or within a certain range without depending on the weight W of the neural network, the area S is in a state where a large number of current paths are redundantly formed in the filament 14.
  • the dependent analog resistance value R can be set. Therefore, it is possible to provide a semiconductor device for memory computing with little variation in the weight of the analog resistance value R and excellent reliability.
  • the resistance changing element 19 can be used as long as it is a non-volatile memory element whose resistance value is reversibly changed by applying an electric pulse.
  • a CBRAM Conductive Bridge Random Access Memory
  • the resistance value changes with the movement of metal ions due to the application of an electric pulse may be used.
  • the first electrode 11 and the second electrode 13 may be made of, for example, tantalum nitride having a thickness of 5 to 30 nm. In addition, it may be composed of platinum, iridium, ruthenium, tungsten, nickel, tantalum, titanium, aluminum, titanium nitride and the like. Different electrode materials may be used for the first electrode 11 and the second electrode 13 according to the intended use.
  • a transition metal oxide may be used as the metal oxide of the resistance change layer 12.
  • a material that easily changes resistance is used for one of the electrodes, and a material that exhibits a standard electrode potential equal to or higher than that of tantalum or hafnium ( For example, precious metal type) may be selected.
  • a material that does not easily change the resistance may be used, and a material that exhibits a standard electrode potential equal to or lower than that of tantalum or hafnium may be selected.
  • At least one material selected from the group consisting of tantalum, tantalum nitride, titanium, titanium nitride, and titanium-aluminum nitride can be used. With such a configuration, stable resistance change characteristics can be realized.
  • the area S of the filament 14 is, for example, in the range of 5 nm to 30 nm while maintaining the relationship of S1 ⁇ S2 ⁇ S3 while maintaining the size of S1, S2, and S3 while the size of one side of the resistance changing element 19 is about 100 nm. Can be adjusted with. Further, the size of the filament 14 has a relative relationship with the resistance changing element 19, and one side of the size of the resistance changing element 19 can be adjusted to about several nm to 100 nm with respect to 50 nm to 500 nm.
  • FIG. 6 is a cross-sectional view showing a second configuration example of the semiconductor device according to the embodiment.
  • the semiconductor device of the second configuration example will be described with reference to FIG.
  • the semiconductor device according to the second configuration example is different from FIG. 5 in that the length L, not the area S, of the filament 14 mainly corresponds to the weight W of the neural network. The differences will be mainly described below.
  • the fourth resistance changing element 104 and the fifth resistance changing element 104 are used.
  • the element 105 and the sixth resistance changing element 106 are shown in the figure.
  • forming for example, Dielectric breakdown
  • filaments 14d, 14e, 14f which mainly carry currents, which determine resistance change characteristics, are formed, respectively.
  • the filament length 14d of the fourth resistance changing element 104 is L1
  • the length of the filament 14e of the fifth resistance changing element 105 is L2
  • the length of the filament 14f of the sixth resistance changing element 106 is L3.
  • the lengths L1, L2, and L3 are different depending on the weight of the neural network.
  • the area of the filament 14 formed in any of the fourth resistance changing element 104, the fifth resistance changing element 105, and the sixth resistance changing element 106 is S.
  • the analog resistance value R of the filament 14 increases as the length L increases. Since the current flowing through the resistance changing element can be changed depending on the length of the filament 14, that is, a strong network path is maintained without significantly changing the oxygen defect density which greatly affects the data retention characteristics. It is possible to set various analog resistance values R corresponding to the weights of the neural network while maintaining the filament shape. In other words, by keeping the oxygen defect density constant or within a certain range without depending on the weight of the neural network, a large number of current paths are redundantly formed in the filament 14 and the length is L.
  • the dependent analog resistance value R can be set. Therefore, it is possible to provide a semiconductor device for memory computing with little variation in the weight of the analog resistance value R and excellent reliability.
  • the length L of the filament 14 is adjusted in the range of 5 nm to 20 nm while maintaining the relationship of L1 ⁇ L2 ⁇ L3, for example, while the film thickness of the resistance change layer is about 20 nm. can. Further, the length L of the filament has a relative relationship with the film thickness of the resistance change layer 12, and the resistance change film thickness can be adjusted from 10 nm to 100 nm to about several nm to 100 nm.
  • the types of memory that can be used for memory computing, the materials of the first electrode 11, the second electrode 13, and the resistance change layer 12 may be the same as in the first configuration example.
  • FIG. 7A is a cross-sectional view showing an example of the resistance changing layer 12 of the semiconductor device according to the first configuration example
  • FIG. 7B is another example of the resistance changing layer 12 of the semiconductor device according to the second configuration example. It is sectional drawing which shows. Hereinafter, a configuration example of the resistance change layer 12 will be described with reference to the drawings.
  • the resistance change layer 12 has a first resistance change layer 12a having a lower resistance value and a second resistance change layer 12b having a higher resistance value. There is a clear boundary between the first resistance changing layer 12a and the second resistance changing layer 12b.
  • the resistance changing layer 12 has a boundary of resistance values (in the case of a transition metal oxide, it has two layers having different oxygen concentrations)
  • the second resistance changing layer 12b is subjected to an electric treatment called forming.
  • a filament 14 through which a current mainly flows, which determines the resistance change characteristic, is formed. This is because the electrical stress is distributed and the electrical stress is preferentially applied to the second resistance changing layer 12b having a higher resistance value.
  • the length of the filament is determined to be approximately L, which is approximately the same as the vertical height of the second resistance changing layer 12b.
  • the area S of the filament 14 can be adjusted with S1, S2, S3, etc. and set as various analog resistance values corresponding to the weight of the neural network.
  • the vertical direction refers to the direction in which the first electrode 11 and the second electrode 13 face each other.
  • the resistance change layer 12 is composed of a third resistance change layer 12c whose resistance value changes continuously or stepwise from the second electrode 13 to the first electrode 11. ..
  • the region of the third resistance changing layer 12c near the second electrode 13 has a high resistance value such as being composed of a transition metal oxide having a high oxygen concentration
  • the first electrode of the third resistance changing layer 12c has a high resistance value.
  • the region close to 11 has a profile in which the resistance value is continuously or stepwise changed so that the resistance value is low, such as being composed of a transition metal oxide having a low oxygen concentration.
  • a third resistance change is performed by an electric treatment called forming.
  • Filaments are formed on the layer 12c, but the length of the filaments formed varies depending on the magnitude of the electrical stress during forming. This is because the electrical stress is distributed to change the length of the filament and the optimum point of load resistance on which the third resistance change layer 12c in the region below the filament is formed.
  • the swing width of the resistance value determined by the length of the filament becomes significantly larger than the swing width of the resistance value due to the change in the area of the filament, and the area of the filament 14 is roughly determined to be S.
  • the length L of the filament 14 can be adjusted to L1, L2, L3, etc. and set as various analog resistance values corresponding to the weight of the neural network.
  • FIG. 8 is an explanatory diagram showing a network path, that is, a current path, due to oxygen defects 15 formed in the filament 14 of the semiconductor device according to the first and second configuration examples.
  • the oxygen defect 15 schematically shows the network path in which the current flows from the upper part to the lower part in the vertical cross section of the filament 14 or in the opposite direction.
  • the thick line shows the current paths between oxygen defects that are within a hopping distance of electrons, that is, close enough to allow current to flow.
  • the current paths between oxygen defects that are not within the current flow distance are schematically shown by thin lines.
  • the network path of the current path due to the oxygen defect 15 has at least a plurality of current paths that can be redundant in all regions of the connecting current path from the top to the bottom of the filament 14. That is, even if oxygen diffuses and is captured by an oxygen defect during the data retention period and the network path of that part is cut off, the current can flow by having a plurality of current paths, and the resistance value changes. Can be kept to a minimum.
  • FIG. 8B if there is a non-redundant bottleneck (x mark in the figure) in the network path in the filament 14, and oxygen diffuses into the oxygen defect related to this network path, it is replaced. There is no current path that can be created, no current flows, and the resistance value changes significantly.
  • the semiconductor device in the first configuration example shown in FIG. 5 and the second configuration example shown in FIG. 6 has a plurality of current paths that can be redundant over the entire region of the filament 14 as shown in FIG. 8A. .. That is, the filament 14 has a current path through which a current flows through a plurality of oxygen defects, and is redundant in connecting the end portion of the filament 14 on the first electrode 11 side and the end portion on the second electrode 13 side. Has a plurality of current paths. As a result, it is possible to reduce the possibility of interrupting the current path due to the diffusion of oxygen, which is one of the causes of deterioration of the data retention characteristics, and it is possible to provide a more reliable semiconductor device.
  • FIG. 9 is a distribution diagram of neural network weights (analog resistance values) set in the semiconductor devices according to the first and second configuration examples.
  • the vertical axis of the figure shows the distribution of analog resistance values.
  • the horizontal axis of the figure shows the analog resistance value R of the resistance changing element 19 and the weight W of the neural network.
  • the horizontal axis corresponds to the range of W1 to W2 (W1> W2) of the weight W of the neural network, and the analog resistance value R stored as the reciprocal of the weight is set in the range of R1 to R2 (R1 ⁇ R2). It shall be possible.
  • the median weight WM corresponds to the analog resistance RM.
  • the resistance value R of more than half of the plurality of resistance changing elements 19 is the center of the analog continuous value that the resistance value R can take.
  • An example in which the value is set to a value larger than the value RM is shown.
  • the resistance value R of more than half of the plurality of resistance changing elements is the median analog continuous value that the resistance value R can take.
  • An example in which the value is set to a value smaller than RM is shown.
  • FIG. 10A is a cross-sectional view showing an example of a first driving method for forming the semiconductor device according to the first configuration example.
  • the semiconductor device according to the first configuration example has a resistance changing layer 12 sandwiched between the first electrode 11 and the second electrode 13 on the semiconductor substrate 10, and is the first.
  • a resistance changing element 101, a second resistance changing element 102, and a third resistance changing element 103 are formed.
  • filaments 14a, 14b, and 14c are formed in the resistance change layer 12 by an electric treatment called forming, respectively.
  • An electrical stress for example, voltage V1 is applied to the first resistance changing element 101 to form a filament 14a having a filament area of S1 and a length L.
  • An electrical stress for example, voltage V2, V2> V1 is applied to the second resistance changing element 102 to form a filament 14b having a filament area of S2 and a length L.
  • An electrical stress (for example, voltage V3, V3> V2) is applied to the third resistance changing element 103 to form a filament 14c having a filament area of S3 and a length L. Thereby, the current flowing through the resistance changing element can be changed depending on the area of the filament.
  • FIG. 10B is a flowchart showing a specific example of the first driving method shown in FIG. 10A.
  • N indicates the number of resistance changing elements 19.
  • i indicates a control variable for counting from 1 to N.
  • Wi indicates the weight corresponding to the i-th resistance changing element 19.
  • Vi indicates the stress of the electrical pulse corresponding to the i-th resistance changing element 19.
  • N resistance changing elements 19 are sequentially formed.
  • the electrical pulse Vi corresponding to the weight Wi is determined as stress (S62).
  • the electrical pulse Vi is determined, for example, by reading the reference table shown in FIG. 10C.
  • FIG. 10C is a diagram showing an example of a reference table in which the weight W of the neural network, the filament shape (here, the area), and the stress of the electric pulse are associated with each other.
  • the determined electrical pulse Vi is applied as stress to the i-th resistance changing element 19 (S63).
  • the analog resistance value R corresponding to the weight W is set for the N resistance changing elements 19.
  • the magnitude relationship (V1 ⁇ V2 ⁇ V3) of the voltage is used for the electrical stress, but the method of changing the pulse width applied at a constant voltage and the current flowing when the voltage is applied are controlled and applied. It may be an aspect of changing the electric energy to be generated.
  • FIG. 11 is a diagram showing the relationship between the size of the filament 14 of the semiconductor device according to the first configuration example and the density of the oxygen defects 15.
  • the horizontal axis represents the area of the relative filament 14 and the vertical axis represents the relative density of oxygen defects 15.
  • FIG. 12 is a diagram showing (a) the size of the filament 14 with respect to the forming current and (b) the density of the oxygen defect 15 with respect to the forming current in the first driving method of the semiconductor device according to the first configuration example. be.
  • the filament characteristics can be changed mainly in the direction of changing the area of the filament 14 (direction (2) shown in FIG. 4) without significantly changing the density of the oxygen defects 15.
  • FIG. 13A is a cross-sectional view showing an example of a second driving method for forming the semiconductor device according to the first configuration example.
  • the semiconductor device according to the first configuration example has a resistance changing layer 12 sandwiched between the first electrode 11 and the second electrode 13 on the semiconductor substrate 10, and is the first.
  • a resistance changing element 101, a second resistance changing element 102, and a third resistance changing element 103 are formed.
  • the filament 14 has not yet been formed on the first resistance changing element 101, the second resistance changing element 102, and the third resistance changing element 103.
  • a part of the resistance change layer 12 is changed (for example, dielectric breakdown) by an electric treatment called forming in the resistance change layer 12, and a filament through which a main current flows mainly determines the resistance change characteristics.
  • the same electrical stress for example, a pulse of voltage V0
  • V0 a pulse of voltage
  • FIG. 13A (c) additional electrical treatment is applied to the filaments 14s in the resistance change layer 12, and filaments 14a, 14b, and 14c through which a main current flows, which determines the resistance change characteristics, are formed, respectively.
  • An electrical stress for example, voltage V01
  • An electrical stress for example, voltage V02, V02> V01
  • An electrical stress (for example, voltage V03, V03> V02) is applied to the third resistance changing element 103 to form a filament 14c having a filament area of S3 and a length L.
  • the current flowing through the resistance changing element can be changed depending on the area of the filament. That is, it is possible to maintain a filament shape that maintains a strong network path and set various analog resistance values corresponding to the weight of the neural network without significantly changing the oxygen defect density that greatly affects the data retention characteristics. can. Therefore, it is possible to provide a semiconductor device for memory computing, which has little variation in the weight of the analog resistance value and has excellent reliability.
  • the weight after the chip is shipped in the state of FIG. 13A (b), the weight can be set and corrected by the customer as shown in FIG. 13A (c), and the network of various applications can be used. Weights can be updated.
  • FIG. 13B is a flowchart showing a specific example of the second driving method shown in FIG. 13A.
  • N, i, and Wi are the same as in FIG. 10B.
  • V0i indicates the stress of the electrical pulse corresponding to the i-th resistance changing element 19.
  • the first stage of forming is executed. That is, an electric pulse V0 common to all resistance changing elements 19 is applied as stress (S91). As a result, the filament 14s shown in FIG. 13A (b) is formed in all the resistance changing elements 19 as a seed or an initial type of the filament 14.
  • loop 1 the second stage of forming is executed. That is, N resistance changing elements 19 are sequentially formed.
  • the electrical pulse V0i corresponding to the weight Wi is determined as stress (S93).
  • the electrical pulse V0i may be determined, for example, by reading a reference table as shown in FIG. 10C.
  • the determined electrical pulse V0i is applied as stress to the i-th resistance changing element 19 (S94).
  • the stress in the forming step of FIG. 13B includes an electric pulse V0 common to the plurality of resistance changing elements 19 and an electric pulse V0i not common to the plurality of resistance changing elements 19.
  • the electrical pulse V0i depends on the weight W of the neural network.
  • the electric pulse V0 common to the plurality of resistance changing elements 19 is applied, and further, the electric pulse V0i is sequentially applied to the resistance changing elements 19.
  • the magnitude relationship (V01 ⁇ V02 ⁇ V03) of the voltage is used for the electrical stress, but a method of changing the pulse width applied at a constant voltage or a method of limiting the current flowing when the voltage is applied is applied. It does not matter if the electric energy to be changed is changed.
  • FIG. 14 is a diagram showing a state in which an analog resistance value with respect to an additional forming current is observed by a read current in the second driving method of the semiconductor device according to the first configuration example. Specifically, FIG. 14 shows the result of forming by controlling the current value instead of controlling the voltage value as the stress of the electric pulse.
  • uniform filaments 14s were formed with a common forming current of 100 ⁇ A in the first step (see (b) in FIG. 13A). Further, after that, in the second step, (a) 150 ⁇ A, (b) 180 ⁇ A, (c) 210 ⁇ A, and (d) 240 ⁇ A are added as additional forming currents I to the four resistance changing elements 19 to form a filament. (See (c) in FIG. 13A).
  • the read current corresponding to the analog resistance value increases monotonically with respect to the additional forming current, and it can be seen that the filament characteristics can be controlled by the additional forming current.
  • FIG. 15 is a diagram showing the relationship between (a) read current and (b) variation corresponding to the analog resistance value for the additional forming current in the second driving method of the semiconductor device according to the first configuration example. be.
  • One aspect of the present disclosure is useful for semiconductor devices that utilize resistance changing elements for memory computing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

半導体装置は、半導体基板(10)上に複数の抵抗変化素子(19)を備え、抵抗変化素子(19)は、第1の電極(11)と、第2の電極(13)と、第1の電極(11)および第2の電極(13)の間に挟持され連続的に可変の抵抗値を保存する抵抗変化層(12)とを有し、抵抗変化層(12)、ニューラルネットワークの重みに対応して、異なる形状をもつフィラメント(14)を有し、アナログ的な連続値として可変の抵抗値を保存する。

Description

半導体装置及びその駆動方法
 本開示は、半導体装置およびその駆動方法に関する。
 情報通信技術の進展に伴い、あらゆるものがインターネットに繋がるIoT(Internet of Things)技術の到来が注目されている。特に、IoT機器からデータを収集するビッグデータ時代においては、データセンター側のデータ処理の爆発的な増加、個人のデータ情報の保護、リアルタイムフィードバックの観点から、エッジでの情報処理、即ち、ユーザーインターフェースを知能化するエッジAI(Artificial Intelligence)への期待が高まっている。
 これを実現するのが、抵抗変化型メモリReRAM(Resistive Random Access Memory)を活用したメモリーコンピューティング技術であり、ニューラルネットワークの構成を脳のニューロンの動作を模式的に再現したニューロモルフィックデバイスへの応用である。
 非特許文献1に、抵抗変化型不揮発性メモリを用いたニューラルネットワーク演算回路の例が開示されている。ニューラルネットワーク演算回路をアナログ抵抗値が設定可能な抵抗変化型不揮発メモリを用いて構成するものであり、不揮発性メモリ素子に結合重み係数に相当するアナログ抵抗値を格納するものである。
M. Prezioso, et al., "Training and operation of an integrated neuromorphic network based on metal-oxide memristors", Nature, no. 521, pp. 61-64, 2015.
 しかしながら、アナログ的な連続値をとる重みを抵抗値として保存する抵抗変化素子では、アナログ抵抗値の“ばらつき”によって信頼性を低下させるという課題がある。
 そこで、本開示は、上記の課題に対応するもので、重みを保存する抵抗変化素子の抵抗値のばらつきを低減し、より信頼性の高い半導体装置及びその駆動方法を提供する。
 上記課題を解決するため本開示の一態様に係る半導体装置は、半導体基板上に複数の抵抗変化素子を備え、前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され連続的に可変の抵抗値を保存する抵抗変化層とを有し、前記抵抗変化層は、ニューラルネットワークの重みに対応して、異なる形状をもつフィラメントを有し、アナログ的な連続値として可変の抵抗値を保存する。
 また、本開示の一態様に係る半導体装置の製造方法は、半導体基板上に複数の抵抗変化素子を備える半導体装置の駆動方法であって、前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され連続的に変化する抵抗値を保存する抵抗変化層とを備える複数の抵抗変化素子を有し、前記半導体装置の駆動方法では、ニューラルネットワークの重みに対応した電気的パルスのストレスを決定し、前記抵抗変化層にフィラメントを形成するフォーミング工程において、決定した電気的パルスをストレスとして前記抵抗変化層に印加することにより、前記重みに対応して異なる形状のフィラメントを形成する。
 本開示の一態様によれば、抵抗変化素子のとりうる抵抗値のばらつきを低減し、信頼性を高めることができるという効果を奏する。
 なお、開示される実施の形態のさらなる利益および利点は、明細書および図面から明らかにされる。利益および/または利点は、明細書および図面が開示する様々な実施の形態および特徴によって個別に提供されてもよく、一または複数の利益および/または利点を得るためにすべてを備える必要はない。
図1Aは、実施の形態に係る抵抗変化素子を活用してメモリーコンピューティングを行う半導体装置の構成例を示す図である。 図1Bは、抵抗変化素子の抵抗値-電圧特性を示す図である。 図2は、酸素の移動による酸化・還元により抵抗値が変化する抵抗変化素子の断面図である。 図3は、半導体装置の抵抗変化素子のアナログ抵抗値を電流として読み取った読出電流の分布を示す図である。 図4は、抵抗変化素子のフィラメント特性とデータ保持特性の関係を示す相関図である。 図5は、実施の形態に係る半導体装置の第1の構成例を示す断面図である。 図6は、実施の形態に係る半導体装置の第2の構成例を示す断面図である。 図7Aは、第1の構成例に係る半導体装置の抵抗変化層の一例を示す断面図である。 図7Bは、第2の構成例に係る半導体装置の抵抗変化層の他の例を示す断面図である。 図8は、実施の形態に係る半導体装置のフィラメントに形成される酸素欠陥によるネットワークパスを示す説明図である。 図9は、実施の形態に係る半導体装置に設定した、ニューラルネットワークの重み(アナログ抵抗値)の分布図である。 図10Aは、第1の構成例に係る半導体装置の第1の駆動方法の一例を示す断面図である。 図10Bは、図10Aに示す第1の駆動方法の具体例を示すフローチャートである。 図10Cは、ニューラルネットワークの重みと電気的パルスとを対応させた参照テーブルの一例を示す図である。 図11は、第1の構成例に係る半導体装置のフィラメントのサイズと酸素欠陥の密度との関係を示す図である。 図12は、第1の構成例に係る半導体装置の第1の駆動方法において、(a)フォーミング電流に対するフィラメントのサイズと(b)フォーミング電流に対する酸素欠陥の密度とを示す図である。 図13Aは、第1の構成例に係る半導体装置の第2の駆動方法の一例を示す断面図である。 図13Bは、図13Aに示す第2の駆動方法の具体例を示すフローチャートである。 図14は、第1の構成例に係る半導体装置の第2の駆動方法において、追加のフォーミング電流に対するアナログ抵抗値を読出電流で観察した様子を示した図である。 図15は、第1の構成例に係る半導体装置の第2の駆動方法において、追加電流に対するアナログ抵抗値に対応した読出電流とそのばらつきの関係をした図である。
 (本開示の基礎となった知見)
 本発明者らは、「背景技術」の欄において記載した、抵抗変化型不揮発性メモリを用いたニューラルネットワーク演算回路を有する半導体装置に関し、以下の問題が生じることを見出した。
 背景技術では、アナログ的な連続値をとる重みを抵抗値として保存する抵抗変化素子を用いるニューラルネットワークが開示されている。
 しかしながら、重みとして保持される連続的な値を有する抵抗値をどのように制御するか、特に抵抗値ばらつきをどのように抑制するか、長期間使用することを考えて重みを保持していく信頼性などの課題がある。
 デジタルメモリとしての抵抗変化素子は、高抵抗と低抵抗に対応する2値を保存するので、設定した閾値に対して、素子のばらつきによりワーストビットが閾値を越えると不良になる。したがって、閾値に対する“エラー率”が素子の性能を決定する。
 一方で、アナログな重みを保存する抵抗変化素子は、抵抗値をそのままニューラルネットの演算に活用される。この場合は“エラー率”ではなく、1つの重み値に対する抵抗値の“ばらつき”そのものが抵抗値の信頼性ひいては半導体装置のメモリーコンピューテャイングの信頼性の課題となることが想定される。つまり、”ばらつき”が大きければ抵抗値の信頼性からニューラルネットワークの信頼性まで劣化させる。
 そこで、本開示は、上記の課題に対応するもので、重みを保存する抵抗変化素子の抵抗値のばらつきを低減し、より信頼性の高い半導体装置及びその駆動方法を提供する。
 そのために、本開示の一態様における半導体装置は、半導体基板上に複数の抵抗変化素子を備え、前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され連続的に可変の抵抗値を保存する抵抗変化層とを有し、前記抵抗変化層は、ニューラルネットワークの重みに対応して、異なる形状をもつフィラメントを有し、アナログ的な連続値として可変の抵抗値を保存する。
 これにより、ニューラルネットワークの重みとフィラメントの形状とを対応付けることによって、1つの重みの値に対応して取りうる抵抗変化素子の抵抗値のばらつきを抑制し、データ保持特性を良化し、半導体装置の信頼性を高めることができる。
 ここで、前記半導体基板の平面視における前記フィラメントの面積は、前記ニューラルネットワークの重みに対応して異なっていてもよい。
 これによれば、上記効果に加えて、抵抗変化層のフィラメントの形状としてフィラメントの面積を電気的パルスの印加で制御することが容易である。
 ここで、前記第1の電極と前記第2の電極とが対向する方向における前記フィラメントの長さは、前記ニューラルネットワークの重みに対応して異なっていてもよい。
 これによれば、上記効果に加えて、抵抗変化素子の面積に依存することなく、前記重みとフィラメントの形状としての長さとを対応させるので、より微細化に適した抵抗変化素子を形成することができる。
 ここで、前記抵抗変化層は、第1の抵抗層と、前記第1の抵抗層より高い抵抗値を有し前記フィラメントを有する第2の抵抗層と、を含んでいてもよい。
 これによれば、フォーミング工程においてフィラメントの長さをおおむねLとして、フィラメントの面積とニューラルネットワークの重みと対応させて様々なアナログ抵抗値を設定することを容易にする。
 ここで、前記第1電極は、前記半導体基板上に形成され、前記抵抗変化層は、第2の電極から第1の電極にかけて連続的にまたは段階的に大きくなる抵抗値を有していてもよい。例えば、前記抵抗変化層の単位体積当たりの抵抗値は、第2の電極から第1の電極にかけて連続的にまたは段階的に大きくなってもよい。
 これによれば、フォーミング工程においてフィラメントの面積をおおむねSとして、フィラメントの長さLとニューラルネットワークの重みと対応させて様々なアナログ抵抗値を設定することを容易にする。
 ここで、前記抵抗変化層は、電気的パルスが印加されることによる酸素の移動に伴い、抵抗値が変化してもよい。
 これによれば、上記効果に加えて、電気的パルスのストレス印加量を制御することによって、所望の重みに対応した抵抗値を設定することができ、ニューラルネットワーク演算をより正確に実行することができる。
 ここで、前記抵抗変化層は、遷移金属酸化物を含んでもよい。
 例えば、遷移金属酸化物は、タンタル酸化物、ハフニウム酸化物などが相当する。遷移金属酸化物は酸化・還元反応により、酸素が移動し、フィラメント内の酸素欠陥密度が変わることで、重みに対応した所望の抵抗値を設計することができる。
 ここで、前記フィラメントは、複数の酸素欠陥を介して電流が流れる電流経路を有し、前記フィラメントの前記第1の電極側の端部と前記第2の電極側の端部とを接続する冗長な複数の電流経路を有してもよい。
 これによれば、データ保持特性の劣化原因の一つである酸素の拡散による電流経路の遮断の可能性を低減することができ、より信頼性の高い半導体装置を提供することができる。
 ここで、前記フィラメントの酸素欠陥密度は、前記ニューラルネットワークの重みに依存しないようにしてもよい。
 これによれば、酸素欠陥密度が、冗長な電流経路を有することが可能で重みに依存しない一定値とすれば、抵抗値のばらつきをさらに容易に抑制することができる。
 ここで、前記抵抗変化層は、電気的パルスの印加による金属イオンの移動に伴い、抵抗値が変化してもよい。
 これによれば、上記効果に加えて、電気的パルスのストレス印加量を制御することによって、所望の重みに対応した抵抗値を設定することができ、ニューラルネットワーク演算をより正確に実行することができる。
 ここで、前記複数の抵抗変化素子の半分以上の抵抗値は、前記抵抗値が取りうるアナログ的な連続値の中央値より大きくてもよい。
 これによれば、出力層に流れる積和電流を抑制することで、モバイル機器に適した低消費電力に優れた半導体装置を提供することができる。
 ここで、前記複数の抵抗変化素子の半分以上の抵抗値は、前記抵抗値が取りうるアナログ的な連続値の中央値より小さくてもよい。
 これによれば、比較的ばらつきの少ない抵抗値の小さい重みを活用することで、出力層に流れる積和電流のばらつきを抑制することで、最終のアプリケーションの精度に優れた半導体装置を提供することができる。
 本開示の一態様における半導体装置の駆動方法は、半導体基板上に複数の抵抗変化素子を備える半導体装置の駆動方法であって、前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され連続的に変化する抵抗値を保存する抵抗変化層とを備える複数の抵抗変化素子を有し、前記半導体装置の駆動方法において、ニューラルネットワークの重みに対応した電気的パルスのストレスを決定し、前記抵抗変化層にフィラメントを形成するフォーミング工程において、決定した電気的パルスをストレスとして前記抵抗変化層に印加することにより、前記重みに対応して異なる形状のフィラメントを形成する。
 これにより、重みに対応して取りうる抵抗変化素子の抵抗値のばらつきを抑制し、データ保持特性を良化することができる半導体装置を提供することができる。
 ここで、前記電気的パルスは、前記ニューラルネットワークの重みに応じて電圧値、電流値および印加時間の少なくとも1つが異なっていてよい。
 これによれば、電気的パルスにより酸素イオンや金属イオンなどを移動させることで、重みに対応した所望の抵抗値を設定することができる。
 ここで、前記電気的パルスのストレスは、前記複数の抵抗変化素子に共通の第1の電気的パルスと、前記複数の抵抗変化素子に共通でない前記重みに対応した第2の電気的パルスとを含み、前記フォーミング工程において、前記抵抗変化層に前記第1の電気的パルスを印加し、さらに、前記抵抗変化層に前記第2の電気的パルスを印加してもよい。
 これによれば、チップ出荷後の客先で重みを設定及び修正することができ、様々なアプリケーションのネットワークの重みにアップデートを行うことができる。
 ここで、前記第2の電気的パルスは、前記重みに応じて、電圧値、電流値および印加時間の少なくとも1つが異なっていてもよい。
 これによれば、第2の電気的パルスにより酸素イオンや金属イオンなどを移動させることで、重みに対応した所望の抵抗値を設定することができる。
 (実施の形態)
 [1 半導体装置の概略構成]
 図1Aは、実施の形態に係る抵抗変化素子を活用してイン・メモリー・コンピューティングを行う半導体装置の概略構成例を示す図である。同図の半導体装置は、イン・メモリー・コンピューティングの一例として、ニューラルネットワークの重みをアナログ的な連続値をとる抵抗値として保存する抵抗変化素子を用いたニューラルネットワークの回路例を示す。ここでは、抵抗変化素子は、デジタル値ではなくアナログ値を記憶するメモリ素子である。同図の半導体装置は、入力層21、演算処理層22および出力層23を備える。なお、アナログ的な連続値とは、値が連続的に変化し、所望の範囲で任意に設定できる物理量をいう。
 入力層21、演算処理層22、出力層23を含むニューラルネットワークの構成は、抵抗変化型メモリであるReRAMのメモリアレイの構成との親和性が極めて高い。この半導体装置は、ニューラルネットワーク演算回路をアナログ抵抗値が設定可能な抵抗変化素子を用いて構成される。
 入力層21は、複数の入力ノード24を有する。同図の例では5つの入力ノード24に電圧V1~V5が入力される。各入力ノードは、演算処理層22の入力線としてのワード線17に接続されている。
 出力層23は、複数の出力ノード25を有する。各出力ノード25は、演算処理層22の出力線としてのビット線18に接続されている。
 演算処理層22は、例えば1層以上の隠れ層として構成され、複数のワード線17と、複数のビット線18と、複数のワード線17と複数のビット線18との交点のそれぞれに形成された抵抗変化素子19とを備える。複数のワード線17と複数のビット線18とは格子状に配置される。すなわち、格子の各交点には抵抗変化素子19が配置される。抵抗変化素子19には逆流防止用のダイオードDが直列に接続されている。このクロスポイント構造では、抵抗変化素子19の選択素子としてダイオードを採用したが、一般的に用いられる3端子素子のトランジスタにて電気的に置き換えてもよい。
 抵抗変化素子19は、ニューラルネットワークの重みWに対応して連続的に可変の抵抗値を持つ。図1Bには、ニューラルネットワークの重みWを連続的な抵抗値Rの逆数として保存できる抵抗変化素子19の抵抗-電圧特性を示したものである。
 入力層21の5つの入力ノード24にデータとして電圧V1~V5が印加されると、オームの法則に基づいて、対応する抵抗変化素子19に電流(i=V/R=W×V)が流れる。例えば、重みW11の抵抗変化素子19には、i=V1/R1=W11×V1の電流が流れる。各ビット線18に接続された抵抗変化素子19からの電流がビット線18において加算される。5つの出力ノード25は、積和演算(Σi1~Σi5)結果を出力する。抵抗変化素子19を階層化または大容量化することで、大規模な計算規模にも十分対応することができる。
 以上により、複数のデータを同時に積和演算することで、圧倒的な情報の集約を実現、回路を大幅に削減することが可能になり、超低消費で超小型のエッジAIを実現できる。
 なお、出力ノード25は、積和演算結果としての電流値をそのまま出力してもよいし、電流値を電圧値に変換して出力してもよい。
 図2は、酸素の移動による酸化・還元により抵抗値が変化する抵抗変化素子19の断面図である。同図の(a)は、低抵抗状態(LRS:Low Resistance State)を示す。同図の(b)は、高抵抗状態(HRS:High Resistance State)を示す。抵抗変化素子19は、第1の電極11と、第2の電極13と、第1の電極11と第2の電極13との間に挟持されて抵抗変化層12とを有する。抵抗変化層12中には、フォーミングと呼ばれる電気処理によって抵抗変化層12の一部が変化し(例えば、絶縁破壊)、主に電流が流れるフィラメント14が形成されている。フィラメント14には、フォーミングで形成された多数の酸素欠陥15と多数の酸素イオン16が存在する。第1の電極11と第2の電極13との間に印加された電圧により酸素イオン16が移動し、フィラメント内の酸素欠陥15の密度の増減によって抵抗値が変化し、酸素欠陥を介したホッピング伝導により電流が流れる原理である。
 図2の(a)にあるように、第1の電極11に正の電圧、第2の電極13に負の電圧を印加すると、負の電荷を帯電した酸素イオン16は、第1の電極11に引き寄せられ、酸素欠陥15に捕獲されている一部の酸素イオン16などが酸素欠陥15から放出され、フィラメント14の外部の抵抗変化層12の領域に移動する。このときに、フィラメント14内の酸素欠陥15の密度は増加し、電流が流れやすくなる。つまり、抵抗変化素子19はLRS(低抵抗状態)である。
 一方で、図2の(b)にあるように、第1の電極11に負の電圧、第2の電極13に正の電圧を印加すると、負の電荷を帯電した酸素イオン16は、第2の電極13に引き寄せられて、フィラメント14に侵入し、その一部が酸素欠陥15に捕獲される。フィラメント14内の酸素欠陥15の密度は減少し、フィラメント14のパス(つまり電流経路)は分断されることで絶縁性が高まり、電流があまり流れない。つまり、抵抗変化素子19は、HRS(高抵抗状態)である。
 このように、酸素の移動による酸化・還元により抵抗値が変化する抵抗変化素子19においては、酸素イオン16の移動量を、印加する電気ストレスの電圧の大きさ、印加時間、その際に流れる電流の大きさなど、付加する電気エネルギーを調整することによって、酸素の移動量を制御することができる。即ち、所望の抵抗値に設定して、ニューラルネットワークの重みをアナログ的な連続値として保存することが可能である。
 なお、フィラメント14が形成されている側部の抵抗変化層の領域の抵抗はフィラメント14より高くてもよい。フィラメント14を中心に電流が流れるからである。またフィラメント14の下部に構成されている抵抗変化層の領域の抵抗は、フィラメント内と同様に基本的に電流が流れる構成であることを想定している。
 図3は、半導体装置の抵抗変化素子19のアナログ抵抗値を電流として読み取った読出電流の分布を示す図である。横軸に抵抗変化素子19が取りうる高抵抗状態から低抵抗状態にいたるすべての領域について、ニューラルネットワークの重みに対応したアナログ抵抗値の読出電流を示している。縦軸はその分布を示す標準偏差である。
 0と1の二値を記憶するデジタルメモリとして抵抗変化素子19を使用する場合は、最も左の高抵抗状態と最も右の低抵抗状態を使用し、その差であるメモリウィンドウを十分維持できる。
 一方、ニューラルネットワークの重みを抵抗変化素子19のアナログ抵抗値に割り付けて抵抗変化素子19をメモリーコンピューティングに使用する場合、基本的には抵抗変化素子19が取りうるすべての領域の抵抗値を用いる。図3から分かるように、読出電流の中間領域で、低抵抗状態や高抵抗状態に比べて大きなばらつきが観察されている。これは、最も右の低抵抗状態においては、フィラメント14内の酸素欠陥15の密度が高く、ロバストなフィラメントパスつまり電流経路が形成されているのに対し、中間領域では酸素欠陥15の密度が低く、フィラメントパスの特徴が変わっている(所々で分断)ということを示唆している。これらの特徴は、以下に説明するフィラメント14の特性に強く依存しており、またデータ保持特性とも深い関係がある。
 図4は、抵抗変化素子19のフィラメント特性とデータ保持特性の関係を示す相関図である。フィラメントの特性は、フィラメント14の面積S、フィラメント14内の酸素欠陥15の密度N(Vo)等のパラメータで定量的なモデル化が確立されていて、データ保持特性と深い相関があることが見出されている。
 そこで、本発明者らは、ReRAMというメモリを構成する抵抗変化素子19のフィラメント特性とデータ保持特性との実験結果から、アナログ抵抗値に適したフィラメント特性を考察した。図4は、抵抗変化素子のフィラメント特性とデータ保持特性の関係を示す相関図である。図4は、1万回書き換え後の85℃10年相当のデータ保持特性の劣化率として、フィラメントの面積と酸素欠陥15の密度との相関を示す。同図において、点の階調が薄くなるに従いデータ保持特性が良化していることを示している。ここでは、データ保持特性の劣化が発生しやすい低抵抗状態に注目している。これは、データ保持中に酸素イオンが熱により拡散し、酸素欠陥に捕獲されることで、フィラメントパスの一部が分断され読出電流が減少し、メモリウィンドウを小さくすることに起因する。この現象は、高抵抗状態では問題にならない。この結果から、この劣化を抑制し、抵抗変化素子19の微細化、すなわちフィラメントを微細化するためには、フィラメント内の酸素欠陥の密度N(Vo)を基本的に高くしなければならないことがわかる。つまり、酸素欠陥密度N(Vo)を高めることで、網の目のように張り巡らされた酸素欠陥V0による多数のフィラメントパスの集合体を形成し、拡散してきた酸素イオンが一部の酸素欠陥V0に捕獲されても、ロバストなフィラメントパスを形成することが重要である。
 一方で、このメモリ用途として完成したフィラメントをメモリーコンピューティングにそのまま利用する場合には、フィラメント内の酸素欠陥密度を減少させるように、駆動電圧を調整し、ニューラルネットワークの重みをアナログ抵抗値に相当するように設定する。図4では(1)の方向にフィラメント特性が変化することになる。高い酸素欠陥密度を維持できる大きな重みの値は良好なデータ保持特性を示すが、逆に低い酸素欠陥密度で対応する小さな重みについては、データ保持特性の悪い酸素欠陥を使用することになる。これが、図3の読出電流が、取りうる抵抗値の中央付近でよりばらつく原因となっている。
 そこで本発明者らは、酸素欠陥密度で抵抗値を調整するのではなく、主にフィラメントの面積や長さなどのフィラメントの形状で抵抗値を調整し、データ保持特性の優れたフィラメントを提供し(図4では(2)の方向)、本開示の半導体装置とその駆動方法を提供するものである。
 [1.1 半導体装置の第1の構成例]
 図5は、実施の形態に係る半導体装置の第1の構成例を示す断面図である。以下、図5を参照しつつ、第1の構成例の半導体装置について説明する。
 なお、半導体装置は、図1Aのようにマトリクス状に配置された多数の抵抗変化素子19を備えるが、図面の簡略化のため、抵抗変化素子19を3個のみ代表例として示している。3個の抵抗変化素子19を、第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103と記す。また、抵抗変化素子19の電気的信号を取り出すための抵抗変化素子19の電極に接続する配線や、抵抗変化素子19に印加する電気的信号を与える回路のためのトランジスタなども半導体装置には存在するが、本開示とは直接関係のないために、省略している。以降の図面においても同様である。
 図5に示す例において、第1の構成例の半導体装置は、半導体基板10上に形成された複数の抵抗変化素子19を備える。同図では、複数の抵抗変化素子19として、第1の抵抗変化素子101、第2の抵抗変化素子102および第3の抵抗変化素子103を代表的に図示してある。第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103のそれぞれは、第1の電極11、抵抗変化層12および第2の電極13を有する。抵抗変化層12は、第1の電極11と第2の電極13との間に挟持され連続的に可変の抵抗値を保存する。
 抵抗変化層12中には、フォーミングと呼ばれる電気処理によって抵抗変化層12の一部が変化し(例えば、絶縁破壊)、抵抗変化特性を決める主に電流が流れるフィラメント14a、14b、14cがそれぞれ形成されている。第1の抵抗変化素子101のフィラメント14aの面積はS1、第2の抵抗変化素子102のフィラメント14bの面積はS2、第3の抵抗変化素子103のフィラメント14cの面積はS3である。フィラメント14の面積Sはニューラルネットワークの重みWに応じて異なっている。ここで、フォーミングによって形成されるフィラメント14の形状は、実際にはきれいな円柱形にはならないが、模式的には円柱形とみなせる。また、フィラメント14の面積Sは、例えば、半導体基板10と平行な面で切ったフィラメント14の断面積の平均、または、第2の電極13とフィラメント14との接触部分の面積と定義してもよい。同図の面積S1、S2、S3は、ニューラルネットワークの重みに対応して異なっている。
 第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103のいずれの抵抗変化素子においてもフィラメントの長さはLである。
 これにより、フィラメント14のアナログ抵抗値Rは、面積Sが小さいほど大きくなる。フィラメント14の面積Sに依存して、抵抗変化素子19に流れる電流を変化させることができるので、すなわち、データ保持特性に影響を大きく与える酸素欠陥密度を大幅に変更することなく、強いネットワークパスを維持したフィラメント14の形状を維持し、ニューラルネットワークの重みに対応した様々なアナログ抵抗値Rを設定することができる。言い換えれば、酸素欠陥密度をニューラルネットワークの重みWに依存させることなく一定に維持または一定の範囲内に維持することにより、フィラメント14内に多数の電流経路を冗長に形成した状態で、面積Sに依存するアナログ抵抗値Rを設定することができる。よって、アナログ抵抗値Rの重みのばらつきが少なく、信頼性に優れたメモリーコンピューティング用途の半導体装置を提供することができる。
 上述した半導体装置として、抵抗変化素子19としては、電気的パルスの印加によって抵抗値が可逆的に変化する不揮発性記憶素子であれば活用できる。上述したReRAMに加えて、電気的パルスの印加による金属イオンの移動に伴い、抵抗値が変化することを利用したCBRAM(Conductive Brige Random Access Memory)等でもよい。
 第1の電極11及び第2の電極13は、例えば、厚さ5~30nmのタンタル窒化物で構成してもよい。その他、プラチナ、イリジウム、ルテニウム、タングステン、ニッケル、タンタル、チタン、アルミニウム、チタン窒化物等で構成されてもよい。第1の電極11と第2の電極13は、その用途に合わせ、異なる電極材料を使用してもよい。
 抵抗変化層12の金属酸化物は遷移金属酸化物を用いてもよい。この場合、遷移金属酸化物に含まれる遷移金属としてタンタルやハフニウムを採用した場合、一方の電極には、抵抗変化が起こりやすい材料を用いてタンタルやハフニウムと同等以上の標準電極電位を示す材料(例えば貴金属系)を選択してもよい。また、一方の電極には、抵抗変化が起こりにくい材料を用いてタンタルやハフニウムと同等以下の標準電極電位を示す材料を選択してもよい。具体的には、タンタル、タンタル窒化物、チタン、チタン窒化物、およびチタン-アルミニウム窒化物からなる群より選ばれる少なくとも1つの材料を用いることができる。かかる構成では、安定な抵抗変化特性を実現できる。
 フィラメント14の面積Sは、例えば、抵抗変化素子19の一辺の大きさが100nm程度なのに対し、S1、S2、S3の大きさをS1<S2<S3の関係を維持しつつ、5nm~30nmの範囲で調整できる。また、フィラメント14の大きさは、抵抗変化素子19と相対的な関係にあり、抵抗変化素子19の大きさの一辺が50nm~500nmに対し、数nm~100nm程度まで調整可能である。
 [1.2 半導体装置の第2の構成例]
 図6は、実施の形態に係る半導体装置の第2の構成例を示す断面図である。以下、図6を参照しつつ、第2の構成例の半導体装置について説明する。
 図6に示す例において、第2の構成例に係る半導体装置は、図5と比べて主にフィラメント14の面積Sではなく長さLがニューラルネットワークの重みWに対応する点が異なっている。以下異なる点を中心に説明する。
 同図の半導体装置は、図5の第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103の代わりに、第4の抵抗変化素子104、第5の抵抗変化素子105、第6の抵抗変化素子106を図示してある。
 第4の抵抗変化素子104、第5の抵抗変化素子105、第6の抵抗変化素子106の抵抗変化層12中には、フォーミングと呼ばれる電気処理によって抵抗変化層12の一部が変化し(例えば、絶縁破壊)、抵抗変化特性を決める主に電流が流れるフィラメント14d、14e、14fがそれぞれ形成されている。
 第4の抵抗変化素子104のフィラメントの長さ14dはL1、第5の抵抗変化素子105のフィラメント14eの長さはL2、第6の抵抗変化素子106のフィラメント14fの長さはL3である。長さL1、L2、L3は、ニューラルネットワークの重みに対応して異なっている。
 第4の抵抗変化素子104、第5の抵抗変化素子105、第6の抵抗変化素子106のいずれの抵抗変化素子に形成されるフィラメント14の面積はSである。これにより、フィラメント14のアナログ抵抗値Rは、長さLが大きいほど大きくなる。フィラメント14の長さに依存して、抵抗変化素子に流れる電流を変化させることができるので、すなわち、データ保持特性に影響を大きく与える酸素欠陥密度を大幅に変更することなく、強いネットワークパスを維持したフィラメント形状を維持し、ニューラルネットワークの重みに対応した様々なアナログ抵抗値Rを設定することができる。言い換えれば、酸素欠陥密度をニューラルネットワークの重みに依存させることなく一定に維持または一定の範囲内に維持することにより、フィラメント14内に多数の電流経路を冗長に形成した状態で、長さLに依存するアナログ抵抗値Rを設定することができる。よって、アナログ抵抗値Rの重みのばらつきが少なく、信頼性に優れたメモリーコンピューティング用途の半導体装置を提供することができる。
 フィラメント14の長さLは、例えば、抵抗変化層の膜厚が20nm程度なのに対し、L1、L2、L3の大きさをL1<L2<L3の関係を維持しつつ、5nm~20nmの範囲で調整できる。また、フィラメントの長さLは、抵抗変化層12の膜厚と相対的な関係にあり、抵抗変化膜厚が10nm~100nmに対し、数nm~100nm程度まで調整可能である。
 なお、第2の構成例においても、メモリーコンピューティングとして利用できるメモリの種類、第1の電極11、第2の電極13や抵抗変化層12の材料は第1の構成例と同様でよい。
 [1.3 抵抗変化層12の構成]
 次に、抵抗変化層12のより具体的な構成例について説明する。
 図7Aは、第1の構成例に係る半導体装置の抵抗変化層12の一例を示す断面図であり、図7Bは、第2の構成例に係る半導体装置の抵抗変化層12の他の例を示す断面図である。以下、図面を参照しつつ、抵抗変化層12の構成例について説明する。
 図7Aに示す例において、抵抗変化層12は、より低い抵抗値を有する第1の抵抗変化層12aと、より高い抵抗値を有する第2の抵抗変化層12bとを有する。第1の抵抗変化層12aと第2の抵抗変化層12bとの間には明確な境界がある。このような抵抗変化層12に抵抗値の境界を有する(遷移金属酸化物の場合は異なる酸素濃度を2つの層を有する)場合には、フォーミングと呼ばれる電気処理によって、第2の抵抗変化層12bに抵抗変化特性を決める主に電流が流れるフィラメント14が形成される。電気的ストレスが分配され、より高い抵抗値を有する第2の抵抗変化層12bに優先的に電気的ストレスが印加されるからである。これにより、フィラメントの長さは第2の抵抗変化層12bの上下方向の高さとほぼ同じおおむねLに決定される。フィラメント14の面積Sは、S1、S2、S3等と調整して、ニューラルネットワークの重みに対応した様々なアナログ抵抗値として設定することができる。なお、上下方向は、第1の電極11と第2の電極13とが対向する方向をいう。
 図7Bに示す例において、抵抗変化層12は、第2の電極13から第1の電極11にかけて、連続的にまたは段階的に抵抗値が変化する第3の抵抗変化層12cより構成されている。具体的には、第3の抵抗変化層12cの第2の電極13に近い領域は酸素濃度の高い遷移金属酸化物からなるなど抵抗値が高く、第3の抵抗変化層12cの第1の電極11に近い領域は酸素濃度の低い遷移金属酸化物からなるなど抵抗値が低い構成になるように、連続的にまたは段階的に抵抗値を変化するプロファイルを有している。
 このような抵抗変化層に抵抗値が連続的に変化する(遷移金属酸化物の場合は連続的に変化する酸素濃度プロファイルを有する)場合には、フォーミングと呼ばれる電気処理によって、第3の抵抗変化層12cにフィラメントが形成されるが、フォーミング時の電気的ストレスの大小により、形成されるフィラメントの長さが異なる。電気的ストレスが分配されて、フィラメントの長さとフィラメント下部の領域の第3の抵抗変化層12cが形成される負荷抵抗の最適なポイントが変化するからである。これにより、フィラメントの面積の変化による抵抗値の振れ幅より、フィラメントの長さで決まる抵抗値の振れ幅が大幅に大きくなり、フィラメント14の面積はおおむねSに決定される。フィラメント14の長さLは、L1、L2、L3等と調整して、ニューラルネットワークの重みに対応した様々なアナログ抵抗値として設定することができる。
 [1.4 高信頼性フィラメントの構成]
 図8は、第1及び第2の構成例に係る半導体装置のフィラメント14に形成される酸素欠陥15によるネットワークパスつまり電流経路を示す説明図である。
 フィラメント14の上下方向の断面における上部から下部に、もしくはその反対方向に電流が流れるネットワークパスを酸素欠陥15で模式的に示す。電子がホッピングできる距離にある、すなわち電流が流れる程度に近くに存在する酸素欠陥どうしの電流経路を太線で示している。電流が流れる距離にない酸素欠陥どうしの電流経路を細線で模式的に示している。
 図8の(a)において、酸素欠陥15による電流経路のネットワークパスは、フィラメント14の上部から下部の接続する電流経路のすべての領域において、少なくとも冗長できる複数の電流経路を有する。即ち、データ保持期間中に酸素が拡散して酸素欠陥に捕獲され、その部分のネットワークパスが遮断されても、複数の電流経路を有することで、電流は流れることができ、抵抗値の変化を最小限に留めることができる。
 一方で、図8の(b)においては、フィラメント14内のネットワークパスに冗長できないボトルネックとなる箇所(図中×印)が存在し、このネットワークパスに係る酸素欠陥に酸素が拡散すると、代替できる電流経路もなく、電流が流れなくなり、抵抗値が大きく変化する。
 図5に示した第1の構成例および図6に示した第2の構成例における半導体装置は、図8の(a)に示すようにフィラメント14の全領域にわたって冗長できる複数の電流経路を有する。すなわち、フィラメント14は、複数の酸素欠陥を介して電流が流れる電流経路を有し、フィラメント14の第1の電極11側の端部と、第2の電極13側の端部とを接続する冗長な複数の電流経路を有する。これにより、データ保持特性の劣化原因の一つである酸素の拡散による電流経路の遮断の可能性を低減することができ、より信頼性の高い半導体装置を提供することができる。
 [1.5 ニューラルネットワークの重みの設定]
 次に、抵抗変化素子19のアナログ抵抗値Rとニューラルネットワークの重みWとを対応付ける設定例について説明する。
 図9は、第1及び第2の構成例に係る半導体装置に設定した、ニューラルネットワークの重み(アナログ抵抗値)の分布図である。同図の縦軸は、アナログ抵抗値の分布を示す。同図の横軸は、抵抗変化素子19のアナログ抵抗値R、およびニューラルネットワークの重みWを示す。横軸は、ニューラルネットワークの重みWのW1からW2の範囲(W1>W2)に相当して、その重みの逆数として保存されるアナログ抵抗値RをR1からR2の範囲(R1<R2)で設定できるものとする。重みの中央値WMが、アナログ抵抗値RMに相当する。
 図9の(a)は、第1もしくは第2の構成例に係る半導体装置に、複数の抵抗変化素子19の半分以上の抵抗値Rが、抵抗値Rが取りうるアナログ的な連続値の中央値RMより大きい値に設定された例を示す。ニューラルネットワークの重みWを相対的に高い抵抗値Rに割り付けるように学習させることで、出力層23に流れる積和演算時の電流を抑制することができ、低消費電力に優れた半導体装置を提供することができる。
 図9の(b)は、第1もしくは第2の構成例に係る半導体装置に、複数の抵抗変化素子の半分以上の抵抗値Rが、抵抗値Rが取りうるアナログ的な連続値の中央値RMより小さい値に設定された例を示す。ニューラルネットワークの重みを相対的にばらつきの少ない低い抵抗値に割り付けるように学習させることで、出力層23に流れる積和電流のばらつきを抑制することで、最終のアプリケーションの精度に優れた半導体装置を提供することができる。
 [2.1 第1の構成例に係る半導体装置を形成する第1の駆動方法]
 次に、第1の構成例に係る半導体装置を形成する第1の駆動方法について説明する。
 図10Aは、第1の構成例に係る半導体装置を形成する第1の駆動方法の一例を示す断面図である。
 図10Aの(a)において、第1の構成例に係る半導体装置は、半導体基板10上に、第1の電極11と第2の電極13に挟持されて抵抗変化層12があり、第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103が形成されている。
 図10Aの(b)において、抵抗変化層12中には、フォーミングと呼ばれる電気処理によってフィラメント14a、14b、14cをそれぞれ形成する。第1の抵抗変化素子101に電気的ストレス(例えば電圧V1)を印加し、フィラメントの面積はS1、長さLを有するフィラメント14aを形成する。第2の抵抗変化素子102に電気的ストレス(例えば電圧V2、V2>V1)を印加し、フィラメントの面積はS2、長さLを有するフィラメント14bを形成する。第3の抵抗変化素子103に電気的ストレス(例えば電圧V3、V3>V2)を印加し、フィラメントの面積はS3、長さLを有するフィラメント14cを形成する。これにより、フィラメントの面積に依存して、抵抗変化素子に流れる電流を変化させることができる。すなわち、データ保持特性に影響を大きく与える酸素欠陥密度を大幅に変更することなく、強いネットワークパスを維持したフィラメント形状を維持し、ニューラルネットワークの重みに対応した様々なアナログ抵抗値を設定することができる。よって、アナログ抵抗値の重みのばらつきが少なく、信頼性に優れたメモリーコンピューティング用途の半導体装置を提供することができる。
 次に、第1の駆動方法の具体例について説明する。
 図10Bは、図10Aに示す第1の駆動方法の具体例を示すフローチャートである。同図においてNは抵抗変化素子19の個数を示す。iは、1~Nまでカウントするための制御変数を示す。Wiはi番目の抵抗変化素子19に対応する重みを示す。Viは、i番目の抵抗変化素子19に対応する電気的パルスのストレスを示す。
 ループ1(S61~S64)では、N個の抵抗変化素子19を順次フォーミングする。
 ループ1において、まず、重みWiに対応する電気的パルスViをストレスとして決定する(S62)。電気的パルスViは、例えば、図10Cに示す、参照テーブルを読み出すことにより決定される。図10Cは、ニューラルネットワークの重みWと、フィラメント形状(ここでは面積)と、電気的パルスのストレスとを対応させた参照テーブルの一例を示す図である。
 次に、i番目の抵抗変化素子19に、決定した電気的パルスViをストレスとして印加する(S63)。
 このようにして、図10Bによれば、N個の抵抗変化素子19に対して重みWに対応するアナログ抵抗値Rを設定する。
 なお、図10Aでは、電気的ストレスを電圧での大小関係(V1<V2<V3)を利用したが、電圧一定で印加するパルス幅を変化させる方法や、電圧印加時に流れる電流を制御して付与する電気エネルギーを変更する態様でもよい。
 その一例として、電圧の代わりに電流を制御してフォーミングした抵抗変化素子19のフィラメント特性の例を以下に示す。
 図11は、第1の構成例に係る半導体装置のフィラメント14のサイズと酸素欠陥15の密度との関係を示す図である。横軸は相対的なフィラメント14の面積、縦軸は相対的な酸素欠陥15の密度を示す。また、図12は、第1の構成例に係る半導体装置の第1の駆動方法において、(a)フォーミング電流に対するフィラメント14のサイズと(b)フォーミング電流に対する酸素欠陥15の密度とを示す図である。
 図11からは、酸素欠陥15の密度を大きく変化させることなく、主にフィラメント14の面積を変更する方向により(図4で示した(2)の方向)で、フィラメント特性を変化させることができているのが分かる。図12の(a)からは、フィラメントの面積はフォーミング電流の増加によって単調に増加し、図12の(b)からは、酸素欠陥密度は単調にやや減少することが分かり、フォーミング電流で制御することが可能であることが分かる。
 [2.2 第1の構成例に係る半導体装置を形成する第2の駆動方法]
 図13Aは、第1の構成例に係る半導体装置を形成する第2の駆動方法の一例を示す断面図である。
 図13Aの(a)において、第1の構成例に係る半導体装置は、半導体基板10上に、第1の電極11と第2の電極13に挟持されて抵抗変化層12があり、第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103が形成されている。第1の抵抗変化素子101、第2の抵抗変化素子102および第3の抵抗変化素子103には、まだフィラメント14は形成されていない。
 図13Aの(b)において、抵抗変化層12中には、フォーミングと呼ばれる電気処理によって抵抗変化層12の一部が変化し(例えば、絶縁破壊)、抵抗変化特性を決める主に電流が流れるフィラメントを形成する。この際には、第1の抵抗変化素子101、第2の抵抗変化素子102、第3の抵抗変化素子103に同じ電気的ストレス(例えば電圧V0のパルス)を印加し、フィラメントの面積S0、長さLを有する同じフィラメント14sを形成する。
 図13Aの(c)において、抵抗変化層12中には、追加の電気処理をフィラメント14sに付与し、抵抗変化特性を決める主に電流が流れるフィラメント14a、14b、14cをそれぞれ形成する。第1の抵抗変化素子101に電気的ストレス(例えば電圧V01)を印加し、フィラメントの面積はS1、長さLを有するフィラメント14aを形成する。第2の抵抗変化素子102に電気的ストレス(例えば電圧V02、V02>V01)を印加し、フィラメントの面積はS2、長さLを有するフィラメント14bを形成する。第3の抵抗変化素子103に電気的ストレス(例えば電圧V03、V03>V02)を印加し、フィラメントの面積はS3、長さLを有するフィラメント14cを形成する。これにより、フィラメントの面積に依存して、抵抗変化素子に流れる電流を変化させることができる。すなわち、データ保持特性に影響を大きく与える酸素欠陥密度を大幅に変更することなく、強いネットワークパスを維持したフィラメント形状を維持し、ニューラルネットワークの重みに対応した様々なアナログ抵抗値を設定することができる。よって、アナログ抵抗値の重みのばらつきが少なく、信頼性に優れたメモリーコンピューティング用途の半導体装置を提供することができる。また、第2の駆動方法は、図13Aの(b)の状態でチップ出荷後に、図13Aの(c)のように客先で重みを設定及び修正することができ、様々なアプリケーションのネットワークの重みにアップデートを行うことができる。
 次に、第2の駆動方法の具体例について説明する。
 図13Bは、図13Aに示す第2の駆動方法の具体例を示すフローチャートである。同図においてN、i、Wiは図10Bと同様である。V0iは、i番目の抵抗変化素子19に対応する電気的パルスのストレスを示す。
 同図において、まず、フォーミングの第1段階を実行する。すなわち、全ての抵抗変化素子19に共通の電気的パルスV0をストレスとして印加する(S91)。これにより、全ての抵抗変化素子19に、フィラメント14の種または初期型として、図13Aの(b)に示したフィラメント14sが形成される。
 次に、ループ1(S92~S95)で、フォーミングの第2段階を実行する。すなわち、N個の抵抗変化素子19を順次フォーミングする。ループ1において、まず、重みWiに対応する電気的パルスV0iをストレスとして決定する(S93)。電気的パルスV0iは、例えば、図10Cのような参照テーブルを読み出すことにより決定してもよい。
 さらに、i番目の抵抗変化素子19に、決定した電気的パルスV0iをストレスとして印加する(S94)。
 図13Bのフォーミング工程におけるストレスは、複数の抵抗変化素子19に共通の電気的パルスV0と、複数の抵抗変化素子19に共通でない電気的パルスV0iとを含む。電気的パルスV0iは、ニューラルネットワークの重みWに依存する。このように、第2の駆動方法では、フォーミング工程において、複数の抵抗変化素子19に共通する電気的パルスV0を印加し、さらに、抵抗変化素子19に順次電気的パルスV0iを印加する。
 なお、図13Aでは、電気的ストレスを電圧での大小関係(V01<V02<V03)を利用したが、電圧一定で印加するパルス幅を変化させる方法や、電圧印加時に流れる電流を制限して付与する電気エネルギーを変更する態様でもかまわない。
 図14は、第1の構成例に係る半導体装置の第2の駆動方法において、追加のフォーミング電流に対するアナログ抵抗値を読出電流で観察した様子を示した図である。具体的には図14では、電気的パルスのストレスとして電圧値を制御する代わりに電流値を制御してフォーミングした結果を示している。図14では、第1段階で共通のフォーミング電流100μAで一様なフィラメント14sを形成した(図13Aの(b)参照)。さらに、その後に、第2段階で、4つの抵抗変化素子19に対して追加のフォーミング電流Iとして(a)150μA、(b)180μA、(c)210μA、(d)240μAを加えてフィラメントを形成した(図13Aの(c)参照)。
 図14から分かるように、追加のフォーミング電流に対して、アナログ抵抗値に対応する読出電流は単調に増加しており、追加のフォーミング電流でフィラメント特性を制御することが可能であることがわかる。
 図15は、第1の構成例に係る半導体装置の第2の駆動方法において、追加のフォーミング電流に対するアナログ抵抗値に対応した(a)読出電流と(b)そのばらつきの関係を示した図である。また、240μAを流して作成した低抵抗状態に相当するアナログ抵抗値に対応した読出電流のばらつきと、180μAを流して作成した中間領域に相当するアナログ抵抗値に対応した読出電流のばらつきに大きな差はなく、図3に比べて大幅に改善されていることが分かる。なお、この特性は図13Aの(b)の段階で印加するフォーミング電流を100μAから250μAへ増加させても、その傾向は変わらない。傾向は維持したまま変化量が変わるので、初期に印加するフォーミング電流も調整パラメータとして使用することができることが分かる。
 本開示の一態様は、抵抗変化素子をメモリーコンピューティングに活用する半導体装置に有用である。
10  半導体基板
11  第1の電極
12  抵抗変化層
12a  第1の抵抗変化層(第1の抵抗層)
12b  第2の抵抗変化層(第2の抵抗層)
12c  第3の抵抗変化層
13  第2の電極
14、14a、14b、14c、14d、14e、14f、14s  フィラメント
15  酸素欠陥
16  酸素イオン
17  ワード線
18  ビット線
19  抵抗変化素子
21  入力層
22  演算処理層
23  出力層
24  入力ノード
25  出力ノード
101  第1の抵抗変化素子
102  第2の抵抗変化素子
103  第3の抵抗変化素子
104  第4の抵抗変化素子
105  第5の抵抗変化素子
106  第6の抵抗変化素子

Claims (16)

  1.  半導体基板上に複数の抵抗変化素子を備え、
     前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され、かつ、連続的に可変の抵抗値を保存する抵抗変化層とを有し、
     前記抵抗変化層は、ニューラルネットワークの重みに対応して、異なる形状をもつフィラメントを有し、アナログ的な連続値として可変の抵抗値を保存する
    半導体装置。
  2.  前記半導体基板の平面視における前記フィラメントの面積は、前記ニューラルネットワークの重みに対応して異なる
    請求項1に記載の半導体装置。
  3.  前記第1の電極と前記第2の電極とが対向する方向における前記フィラメントの長さは、前記ニューラルネットワークの重みに対応して異なる
    請求項1に記載の半導体装置。
  4.  前記抵抗変化層は、
     第1の抵抗層と、
     前記第1の抵抗層より高い抵抗値を有し、前記フィラメントを有する第2の抵抗層と、を含む
    請求項2に記載の半導体装置。
  5.  前記第1の電極は、前記半導体基板上に形成され、
     前記抵抗変化層は、前記第2の電極から前記第1の電極にかけて連続的にまたは段階的に大きくなる抵抗値を有する
    請求項3に記載の半導体装置。
  6.  前記抵抗変化層は、電気的パルスが印加されることによる酸素の移動に伴い、抵抗値が変化する
    請求項1ないし5の何れか1項に記載の半導体装置。
  7.  前記抵抗変化層は、遷移金属酸化物を含む
    請求項6に記載の半導体装置。
  8.  前記フィラメントは、複数の酸素欠陥を介して電流が流れる電流経路を有し、
     前記フィラメントの前記第1の電極側の端部と前記第2の電極側の端部とを接続する冗長な複数の電流経路を有する
    請求項6に記載の半導体装置。
  9.  前記フィラメントの酸素欠陥密度は、前記ニューラルネットワークの重みに依存しない
    請求項8に記載の半導体装置。
  10.  前記抵抗変化層は、電気的パルスの印加による金属イオンの移動に伴い、抵抗値が変化する
    請求項1ないし6の何れか1項に記載の半導体装置。
  11.  前記複数の抵抗変化素子の半分以上の抵抗値は、前記抵抗値が取りうるアナログ的な連続値の中央値より大きい
    請求項1ないし10の何れか1項に記載の半導体装置。
  12.  前記複数の抵抗変化素子の半分以上の抵抗値は、前記抵抗値が取りうるアナログ的な連続値の中央値より小さい
    請求項1ないし10の何れか1項に記載の半導体装置。
  13.  半導体基板上に複数の抵抗変化素子を備える半導体装置の駆動方法であって、
     前記抵抗変化素子は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に挟持され、かつ、連続的に変化する抵抗値を保存する抵抗変化層とを備える複数の抵抗変化素子を有し、
     前記半導体装置の駆動方法では、
     ニューラルネットワークの重みに対応した電気的パルスのストレスを決定し、
     前記抵抗変化層にフィラメントを形成するフォーミング工程において、決定した電気的パルスをストレスとして前記抵抗変化層に印加することにより、前記重みに対応して異なる形状のフィラメントを形成する
    半導体装置の駆動方法。
  14.  前記電気的パルスは、前記ニューラルネットワークの重みに応じて電圧値、電流値および印加時間の少なくとも1つが異なる
    請求項13に記載の半導体装置の駆動方法。
  15.  前記電気的パルスのストレスは、前記複数の抵抗変化素子に共通の第1の電気的パルスと、前記複数の抵抗変化素子に共通でない前記重みに対応した第2の電気的パルスとを含み、
     前記フォーミング工程において、前記抵抗変化層に前記第1の電気的パルスを印加し、さらに、前記抵抗変化層に前記第2の電気的パルスを印加する
    請求項13に記載の半導体装置の駆動方法。
  16.  前記第2の電気的パルスは、前記重みに応じて、電圧値、電流値および印加時間の少なくとも1つが異なる
    請求項15に記載の半導体装置の駆動方法。
PCT/JP2021/002106 2020-01-24 2021-01-21 半導体装置及びその駆動方法 WO2021149780A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021572801A JPWO2021149780A1 (ja) 2020-01-24 2021-01-21
US17/691,733 US20220198251A1 (en) 2020-01-24 2022-03-10 Semiconductor device and method of driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020010097 2020-01-24
JP2020-010097 2020-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/691,733 Continuation US20220198251A1 (en) 2020-01-24 2022-03-10 Semiconductor device and method of driving the same

Publications (1)

Publication Number Publication Date
WO2021149780A1 true WO2021149780A1 (ja) 2021-07-29

Family

ID=76992548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002106 WO2021149780A1 (ja) 2020-01-24 2021-01-21 半導体装置及びその駆動方法

Country Status (3)

Country Link
US (1) US20220198251A1 (ja)
JP (1) JPWO2021149780A1 (ja)
WO (1) WO2021149780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434602B2 (ja) 2020-04-28 2024-02-20 アプライド マテリアルズ インコーポレイテッド 低電力動作のための多状態記憶素子における不均一な状態の間隔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法
WO2019049654A1 (ja) * 2017-09-07 2019-03-14 パナソニック株式会社 半導体記憶素子を用いたニューラルネットワーク演算回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法
WO2019049654A1 (ja) * 2017-09-07 2019-03-14 パナソニック株式会社 半導体記憶素子を用いたニューラルネットワーク演算回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434602B2 (ja) 2020-04-28 2024-02-20 アプライド マテリアルズ インコーポレイテッド 低電力動作のための多状態記憶素子における不均一な状態の間隔

Also Published As

Publication number Publication date
JPWO2021149780A1 (ja) 2021-07-29
US20220198251A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Xia et al. Memristive crossbar arrays for brain-inspired computing
Islam et al. Device and materials requirements for neuromorphic computing
Hu et al. Associative memory realized by a reconfigurable memristive Hopfield neural network
US10635398B2 (en) Voltage sensing type of matrix multiplication method for neuromorphic computing system
Wu et al. Resistive random access memory for future information processing system
Moon et al. Bidirectional non-filamentary RRAM as an analog neuromorphic synapse, Part I: Al/Mo/Pr 0.7 Ca 0.3 MnO 3 material improvements and device measurements
KR101456766B1 (ko) 저항 메모리 및 저항 메모리를 처리하는 방법
Duan et al. Memristor-based RRAM with applications
US20130223131A1 (en) Method for driving variable resistance element, and nonvolatile memory device
CN102568565B (zh) 存储装置
US11849653B2 (en) Controlling positive feedback in filamentary
Sheridan et al. Memristors and memristive devices for neuromorphic computing
WO2021149780A1 (ja) 半導体装置及びその駆動方法
JP5197512B2 (ja) 半導体記憶装置
Zhou et al. Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications
US20210104276A1 (en) Neural network memory
JPWO2019054001A1 (ja) 不揮発性記憶装置、及び駆動方法
WO2023112674A1 (ja) 人工知能処理装置および人工知能処理装置の学習推論方法
CN112750477B (zh) 基于含单向选择器的otp存储阵列的神经网络推理加速器
Vera-Tasama et al. Memristors: A perspective and impact on the electronics industry
CN115527582A (zh) 电阻式记忆体装置及对其进行程序化的方法
US11107981B2 (en) Halide semiconductor memristor and neuromorphic device
Jang et al. Synaptic Device based on Resistive Switching Memory using Single-walled Carbon Nanotubes
WO2016153516A1 (en) Resistance memory devices including cation metal doped volatile selectors and cation metal electrodes
TWI773596B (zh) 無鉛金屬鹵化物憶阻器及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743659

Country of ref document: EP

Kind code of ref document: A1