WO2021149354A1 - スイッチングアンプ - Google Patents

スイッチングアンプ Download PDF

Info

Publication number
WO2021149354A1
WO2021149354A1 PCT/JP2020/044209 JP2020044209W WO2021149354A1 WO 2021149354 A1 WO2021149354 A1 WO 2021149354A1 JP 2020044209 W JP2020044209 W JP 2020044209W WO 2021149354 A1 WO2021149354 A1 WO 2021149354A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching amplifier
capacitance
switches
amplifier according
output
Prior art date
Application number
PCT/JP2020/044209
Other languages
English (en)
French (fr)
Inventor
宜克 神宮
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202080093105.XA priority Critical patent/CN114982127A/zh
Priority to DE112020006587.1T priority patent/DE112020006587T5/de
Priority to JP2021572985A priority patent/JPWO2021149354A1/ja
Priority to US17/758,874 priority patent/US20230179158A1/en
Publication of WO2021149354A1 publication Critical patent/WO2021149354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Definitions

  • This technology is related to switching amplifiers. More specifically, the present invention relates to a switching amplifier that steps up or down.
  • switching amplifiers There are generally two known types of switching amplifiers, class D amplifiers and class E amplifiers. Since switching amplifiers are highly efficient in principle, they are often used in communication amplifiers for mobile devices in recent years. However, the communication situation is deteriorating due to the increase in mobile devices. Therefore, the output power of the power amplifier is required to be high. However, there is an upper limit to the battery voltage of lithium-ion batteries and the like used in mobile devices. When the power supply voltage supplied to the amplifier is fixed, it is necessary to lower the impedance of the amplifier and the load and increase the output current of the amplifier in order to increase the output power of the amplifier. Increasing the output current by lowering the circuit impedance to increase the output power is often disadvantageous in terms of efficiency.
  • the loss due to the parasitic resistance of the wiring increases in proportion to the increase in output current.
  • the load impedance is lowered, the number of parts of the matching element increases, and the signal passing loss generally increases. That is, the class D amplifier that outputs the power supply voltage as it is has a side effect of an increase in loss due to an increase in output current when the output power is increased.
  • the class E amplifier even if the power supply voltage is limited, the output voltage can be boosted by designing the resonance impedance of the matching circuit to be high, and the output power can be increased without increasing the output current.
  • the class E amplifier can be said to be an excellent amplifier with low loss in realizing a high output power amplifier.
  • the boosting or adjusting of the output voltage of the class E amplifier is greatly influenced by the resonance impedance of the matching circuit.
  • the impedance of the antenna can deviate significantly from the standard 50 ohms. If the impedance of the antenna changes, the resonant impedance of the matching circuit of the class E amplifier changes. Due to the change in resonance impedance, the output voltage of the class E amplifier is unexpectedly boosted, which may cause the amplifier to fail.
  • the boost amount can be controlled to be constant by charging a constant charge to the capacitance by using the rectifying effect of the diode or the switching element.
  • power loss occurs in the diode and the switching element during charging.
  • power consumption related to the control of the switching element is generated. That is, in the boosting of a general charge pump, the boosting amount is controlled to be constant, but the area increase, the power loss, and the power consumption for control occur due to the circuit elements other than the amplifier.
  • a class D amplifier that uses a negative power supply and a positive power supply is also common, which is equivalent to controlling the boost amount to a constant level, but requires a power supply circuit to create a negative voltage and has an area. , Both power consumption will increase. As described above, there is a problem that the power consumption is increased in order to increase the output power of the amplifier in the situation where the power supply voltage is limited, or the reliability of the amplifier is sacrificed.
  • This technology was created in view of this situation, and aims to increase the output voltage of the switching amplifier in a situation where the power supply voltage is limited.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is the first and second switches that open and close in a complementary manner, and the outputs of the first and second switches. It is a switching amplifier having a capacity for receiving power supply by connecting both ends to the ends.
  • a first impedance element connected between one end of the capacitance and the power supply terminal, and a second impedance element connected between the other end of the capacitance and the ground terminal. And may be further provided. This has the effect of supplying power to the capacitance via the first and second impedance elements to charge the capacitance.
  • the first switch has a power supply terminal connected to its input end, its output end is connected to the other end of the capacitance, and the second switch has its input.
  • a ground terminal may be connected to the end and its output end may be connected to the end of the capacitance.
  • a power synthesizer that performs power synthesis on the signals supplied from both ends of the above capacitance and supplies the signals to the load from the output terminal may be further provided.
  • the power synthesizer includes first and second capacitors in which both ends of the capacitance are connected to the respective input ends and the terminals to which the output ends are connected are used as the output terminals. You may. This has the effect of realizing the power synthesizer with the first and second capacitors.
  • the power synthesizer may include the first and second capacitors in place of the capacitance. This has the effect of giving the first and second capacitors of the power synthesizer the role of the above capacitance.
  • the power synthesizer may include a transformer instead of the first and second impedance elements. This has the effect of realizing a power synthesizer with a transformer.
  • the first and second gate grounded transistors in which both ends of the capacitance are connected to the respective sources and the terminals to which the drains are coupled are used as the output terminals. May be provided.
  • the grounded gate transistor functions as a switch, and the combined voltage becomes the same as the source voltage.
  • the first and second switches may include first and second transistors that open and close in a complementary manner. This has the effect of realizing the first and second switches with the first and second transistors.
  • the first and second switches are a first gate grounded transistor cascoded to the first transistor and a second cascoded to the second transistor. It may further include a grounded gate transistor. This has the effect of dividing the voltage applied to each transistor.
  • the first and second switches may include first and second grounded gate transistors that open and close in a complementary manner. This has the effect of dividing the voltage applied to each transistor.
  • the first and second switches may be further connected to both ends of the capacity, and the first and second switches and the capacity may be connected in a plurality of stages. This has the effect of increasing the voltage that is finally output.
  • FIG. 1 is a diagram showing an example of a basic configuration of a switching amplifier according to an embodiment of the present technology.
  • the switching amplifier includes switches 110 and 120, inductors 210 and 220, and a capacitance 230.
  • Switches 110 and 120 are switches that open and close in a complementary manner.
  • the output end of the switch 110 is connected to one end on the negative side of the capacitance 230. Further, a power supply terminal is connected to the input end of the switch 110 as described later.
  • the output end of the switch 120 is connected to one end on the positive side of the capacitance 230. Further, a ground terminal is connected to the input end of the switch 120 as described later.
  • the inductors 210 and 220 are examples of impedance elements that pass direct current for charging the capacity 230.
  • the inductor 210 is connected between one end on the positive side of the capacitance 230 and the power supply terminal.
  • the inductor 220 is connected between one end on the negative side of the capacitance 230 and the ground terminal.
  • inductors 210 and 220 are shown as examples of impedance elements, but other elements may be used. In that case, it is necessary to have a high impedance for a high frequency signal and a low impedance for a low frequency signal (direct current). It is also necessary that it is not affected by the voltage range of the power supply potential and the ground potential, that is, it has no voltage dependence.
  • the capacity 230 is an element that charges an electric charge via the inductors 210 and 220 and functions as a charge pump. That is, in this switching amplifier, the charge charge to the capacity 230 is used to control the step-up amount and the step-down amount of the output voltage.
  • FIG. 2 is a diagram showing an example of the overall configuration of the switching amplifier according to the embodiment of the present technology.
  • This switching amplifier is equipped with a power synthesizer 300 after the above-mentioned basic configuration. Further, a power supply terminal is connected to the input terminal of the switch 110, and a ground terminal is connected to the input terminal of the switch 120.
  • the power synthesizer 300 performs power synthesis on the signals supplied from both ends of the capacity 230, and supplies the combined power to the load 400 from the output terminal.
  • the amount of steady-state charge charged to the capacity 230 is determined by the voltage applied to the capacity 230 and the capacitance value. Therefore, the step-up amount and the step-down amount of the output voltage with respect to the power synthesizer 300 are controlled to constant values.
  • the electric charge charged in the capacity 230 is used as a charge pump, and is alternately used for stepping up or down the output voltage at the operating frequency of the switching amplifier.
  • FIG. 3 is a diagram showing an example of an output waveform of a switching amplifier according to an embodiment of the present technology.
  • V_N the voltage at one end on the positive side of the capacity 230
  • I_N the current flowing through the positive end of the capacity 230
  • V_P the voltage at one end on the negative side of the capacity 230
  • I_P the current flowing through the negative end of the capacity 230
  • a indicates the voltage V_P at one end on the negative side of the capacity 230.
  • b indicates the voltage V_N at one end on the positive side of the capacitance 230.
  • c indicates the current I_P flowing through the switch 110.
  • d indicates the current I_N flowing through the switch 120.
  • the switch 110 is turned on and the switch 120 is turned off.
  • the voltage V_P at one end on the negative side of the capacity 230 is the power supply voltage VDD.
  • the voltage V_N at one end on the positive side of the capacity 230 has a potential twice that of VDD.
  • the switch 110 is turned off and the switch 120 is turned on.
  • the voltage V_N at one end on the positive side of the capacitance 230 becomes the ground potential.
  • the voltage V_P at one end on the negative side of the capacity 230 becomes ⁇ VDD.
  • the peak value is controlled like a class D amplifier by repeating the state (1) and the state (2). Generates a square wave voltage. That is, a step-up is performed at one end on the positive side of the capacitance 230 and a step-down is performed at one end on the negative side of the capacitance 230, so that each node becomes a square wave voltage having a common mode of 2 VDD amplitude.
  • the currents I_P and I_N flowing through the switches 110 and 120 have a push-pull relationship.
  • the power synthesizer 300 synthesizes the electric power generated in this way. Therefore, the current flowing through the load 400 is a sine wave obtained by combining c and d in the figure.
  • FIG. 4 is a diagram showing a modified example of the switching amplifier according to the embodiment of the present technology.
  • the above-mentioned basic configuration of the switching amplifier may be connected in a plurality of cascades as in this modification. That is, switches 110 and 120 may be further connected to both ends of the capacity 230, and the switches 110 and 120 and the capacity 230 may be connected in a plurality of stages. This makes it possible to increase the voltage that is finally output.
  • FIG. 5 is a diagram showing a first embodiment of a switching amplifier according to an embodiment of the present technology.
  • the power synthesizer 300 includes capacities 310 and 320. That is, in this first embodiment, the power synthesizer 300 is realized by capacitive coupling. In this case, no direct current flows to the load 400, and only the alternating current component is transmitted.
  • FIG. 6 is a diagram showing a second embodiment of the switching amplifier according to the embodiment of the present technology.
  • the capacity 230 is deleted from the first embodiment.
  • the capacities 310 and 320 of the power synthesizer 300 play the same role as the capacities 230. That is, the capacitives 310 and 320 connected in series function as the capacitive 230 and realize capacitive coupling with respect to the load 400. Therefore, the capacitance 390 between the power synthesizer 300 and the load 400 may not be present.
  • FIG. 7 is a diagram showing a third embodiment of the switching amplifier according to the embodiment of the present technology.
  • the power synthesizer 300 includes transformers 311 and 321. That is, in this third embodiment, the power combiner 300 is configured to incorporate inductors 210 and 220 and magnetically couple (transform) with the load 400.
  • FIG. 8 is a diagram showing a fourth embodiment of the switching amplifier according to the embodiment of the present technology.
  • the power synthesizer 300 includes MOS transistors 312 and 322.
  • the source is connected to one end on the positive side of the capacitance 230, and the base is connected to the power supply terminal.
  • the source is connected to one end on the negative side of the capacitance 230, and the base is connected to the ground terminal.
  • the drains of the transistors 312 and 322 are connected to each other and are connected to the load 400 via a capacitance 390.
  • the MOS transistors 312 and 322 can function as switches, and the maximum and minimum values of the combined destination voltage can be set to the same voltage as the input.
  • FIG. 9 is a diagram showing a fifth embodiment of the switching amplifier according to the embodiment of the present technology.
  • the switches 110 and 120 include source ground transistors 111 and 121.
  • An AC signal is input to the gates of the transistors 111 and 121 via a buffer 130, and the transistors 111 and 121 complementarily open and close according to the AC signal.
  • FIG. 10 is a diagram showing a sixth embodiment of the switching amplifier according to the embodiment of the present technology.
  • the switches 110 and 120 include transistors 111, 112, 121 and 122.
  • the transistors 111 and 112 are cascode connected. That is, it has a configuration in which the source grounded transistor 111 and the gate grounded transistor 112 are connected. Further, the transistors 121 and 122 are also cascode-connected in the same manner. As a result, the voltage applied to each transistor can be divided, and each transistor can be protected.
  • FIG. 11 is a diagram showing a seventh embodiment of a switching amplifier according to an embodiment of the present technology.
  • the switches 110 and 120 include inverters 131 and 132 in place of the transistors 111 and 121 in the sixth embodiment described above. This makes it possible to more accurately divide the voltage applied to each transistor as compared with the sixth embodiment described above.
  • FIG. 12 is a diagram showing an eighth embodiment of a switching amplifier according to an embodiment of the present technology.
  • the eighth embodiment includes an inverter 133 that combines the inverters 131 and 132 of the seventh embodiment described above into one. However, they are logically equivalent.
  • the capacitance 230 functions as a charge pump by charging the capacitance 230 via the inductors 210 and 220 and opening and closing the switches 110 and 120 in a complementary manner. Can be made to. As a result, it is possible to generate a rectangular wave voltage whose wave height is controlled and increase the output voltage of the switching amplifier in a situation where the power supply voltage is limited.
  • the output current and output voltage waveform of the switching amplifier according to the embodiment of this technology are the same as those of the class D amplifier. However, as compared with a normal class D amplifier, the output power is increased because the output voltage is boosted. If the voltage charged in the capacity 230 is VDD as in the above example, the output voltage amplitude is doubled, so that the output power is quadrupled. Even though the output power is quadrupled, the switch size of the amplifier does not change, so the input power for driving the amplifier does not change. That is, the power addition efficiency (power efficiency obtained by dividing the ratio of the output power to the input power by the power consumption), which is a performance index of the power amplifier, increases dramatically. Moreover, since the switch size of the amplifier does not change, it contributes to the reduction of the chip area.
  • the present technology can have the following configurations. (1) Complementary opening and closing of the first and second switches and A switching amplifier having a capacity for receiving power supply by connecting both ends to the output ends of the first and second switches. (2) A first impedance element connected between one end of the capacitance and the power supply terminal, The switching amplifier according to (1) above, further comprising a second impedance element connected between the other end of the capacitance and the ground terminal. (3) The first switch has a power supply terminal connected to its input end, and its output end connected to the other end of the capacitance. The switching amplifier according to (2), wherein the second switch has a ground terminal connected to its input end and its output end connected to the one end of the capacitance.
  • the switching amplifier according to (3) above further comprising a power synthesizer that synthesizes power with respect to signals supplied from both ends of the capacitance and supplies the signals to a load from an output terminal.
  • the power synthesizer includes first and second capacitors in which both ends of the capacitance are connected to their respective input ends and the terminals to which the output ends are coupled are used as the output terminals.
  • Switching amplifier (6)
  • the power synthesizer includes a transformer instead of the first and second impedance elements.
  • the power synthesizer includes first and second grounded gate transistors in which both ends of the capacitance are connected to their respective sources and the terminals to which the drains are coupled are used as the output terminals (4).
  • the switching amplifier described in. (9) The switching amplifier according to any one of (1) to (8) above, wherein the first and second switches include first and second transistors that open and close in a complementary manner. (10) The first and second switches further include a first gate grounded transistor cascoded to the first transistor and a second gate grounded transistor cascoded to the second transistor.
  • (11) The switching amplifier according to any one of (1) to (10) above, wherein the first and second switches include first and second grounded gate transistors that open and close in a complementary manner.
  • the first and second switches are further connected to both ends of the capacity, and the first and second switches and the capacity are connected in a plurality of stages to any of the above (1) to (11).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

電源電圧が制限された状況でスイッチングアンプの出力電圧を増加させる。 スイッチングアンプは、相補的に開閉する第1および第2のスイッチと、両端を電力合成器への入力とする容量とを備える。容量の両端は、第1および第2のスイッチの出力端に接続される。容量は、第1および第2のスイッチの動作に伴い、電源の供給を受ける。これにより、容量の電荷は、チャージポンプとして利用され、スイッチングアンプの動作周波数により出力電圧の昇圧または降圧に交互に使用され、波高が制御された矩形波電圧を発生させる。

Description

スイッチングアンプ
 本技術は、スイッチングアンプに関する。詳しくは、昇圧または降圧を行うスイッチングアンプに関する。
 スイッチングアンプは、一般的にD級アンプとE級アンプの2種類が知られている。スイッチングアンプは原理的に高効率であるために、近年モバイル機器向けの通信アンプに採用されることが多くなっている。しかし、モバイル機器の増加により通信状況は悪化している。このため、パワーアンプの出力電力は高出力化を要求されている。しかし、モバイル機器に使用されるリチウムイオン電池等のバッテリ電圧には上限がある。アンプに供給される電源電圧が固定の場合、アンプの出力電力を上げるにはアンプと負荷のインピーダンスを下げ、アンプの出力電流を増加させる必要がある。出力電力増加のために回路インピーダンスを下げて出力電流を増加させると、効率の観点で不利になることが多い。例えば、配線の寄生抵抗による損失は出力電流増加に比例して増える。また、負荷インピーダンスを下げる際に整合素子の部品点数が増え、信号の通過損失が増加するのが一般的である。つまり、電源電圧をそのまま出力するD級アンプは、出力電力増加を行う際、出力電流増加に伴う損失増加の副作用を有する。これに比べてE級アンプは、電源電圧が制限されていても、整合回路の共振インピーダンスを高く設計することで出力電圧を昇圧し、出力電流を増加させずに出力電力を高めることができる。
 この点において、E級アンプは高出力パワーアンプの実現において低損失の優れたアンプと言える。しかし、E級アンプの出力電圧の昇圧加減は整合回路の共振インピーダンスに大きく左右される。ここで、E級アンプを使用した送信機のアンテナが金属に近づいた場合を考える。アンテナと金属の近接により、アンテナのインピーダンスは標準的な50オームから大きくずれてしまう場合がある。アンテナのインピーダンスが変わればE級アンプの整合回路の共振インピーダンスは変化する。共振インピーダンスの変化によりE級アンプの出力電圧が想定外に昇圧され、アンプが故障するおそれもある。つまり、低損失の高出力アンプを実現するには、出力電流を増加させないために出力電圧の昇圧作用は有効であるが、その昇圧量は外部環境に左右されず一定量に制御されなければならない。そこで、制御された電圧昇圧を得るための代表的な技術としてチャージポンプ回路が提案されている(例えば、特許文献1参照。)。
特開2015-164386号公報
 上述のチャージポンプ回路によれば、ダイオードの整流効果またはスイッチング素子を用いて容量に一定の電荷を充電することにより、昇圧量を一定に制御することができる。しかし、充電の際にダイオードやスイッチング素子での電力損失が発生する。さらに、スイッチング素子の制御に関する電力消費が発生する。つまり、一般的なチャージポンプの昇圧では、昇圧量は一定に制御されるがアンプ以外の回路素子による面積増加、電力損失および制御のための電力消費が発生する。また、負電源と正電源を利用したD級アンプも一般的であり、これは昇圧量を一定に制御しているのと等価であるが、負電圧を作るための電源回路が必要であり面積、消費電力ともに増加する。このように、電源電圧が制限された状況でアンプの出力電力を増加させるために消費電力が増加し、または、アンプの信頼性が犠牲になるという問題がある。
 本技術はこのような状況に鑑みて生み出されたものであり、電源電圧が制限された状況でスイッチングアンプの出力電圧を増加させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、相補的に開閉する第1および第2のスイッチと、上記第1および第2のスイッチの出力端に両端が接続されて電源の供給を受ける容量とを具備するスイッチングアンプである。
 また、この第1の側面において、上記容量の一端と電源端子との間に接続された第1のインピーダンス素子と、上記容量の他端と接地端子との間に接続された第2のインピーダンス素子とをさらに具備するようにしてもよい。これにより、第1および第2のインピーダンス素子を介して容量に電源を供給して充電させるという作用をもたらす。
 また、この第1の側面において、上記第1のスイッチは、その入力端に電源端子が接続されて、その出力端は上記容量の上記他端に接続され、上記第2のスイッチは、その入力端に接地端子が接続されて、その出力端は上記容量の上記一端に接続されてもよい。
 また、この第1の側面において、上記容量の両端から供給された信号について電力合成を行って出力端子から負荷に対して供給する電力合成器をさらに具備してもよい。
 また、この第1の側面において、上記電力合成器は、上記容量の両端をそれぞれの入力端に接続してその出力端を結合した端子を上記出力端子とする第1および第2のコンデンサを備えてもよい。これにより、電力合成器を第1および第2のコンデンサにより実現するという作用をもたらす。
 また、この第1の側面において、上記電力合成器は、上記容量に代えて上記第1および第2のコンデンサを備えてもよい。これにより、電力合成器の第1および第2のコンデンサに上記容量の役割を与えるという作用をもたらす。
 また、この第1の側面において、上記電力合成器は、上記第1および第2のインピーダンス素子に代えてトランスを備えてもよい。これにより、電力合成器をトランスにより実現するという作用をもたらす。
 また、この第1の側面において、上記電力合成器は、上記容量の両端をそれぞれのソースに接続して、それらのドレインを結合した端子を上記出力端子とする第1および第2のゲート接地トランジスタを備えてもよい。これにより、ゲート接地トランジスタをスイッチとして機能させて、合成先電圧をソース電圧と同じ電圧にするという作用をもたらす。
 また、この第1の側面において、上記第1および第2のスイッチは、相補的に開閉する第1および第2のトランジスタを備えてもよい。これにより、第1および第2のスイッチを第1および第2のトランジスタにより実現するという作用をもたらす。
 また、この第1の側面において、上記第1および第2のスイッチは、上記第1のトランジスタにカスコード接続された第1のゲート接地トランジスタと、上記第2のトランジスタにカスコード接続された第2のゲート接地トランジスタとをさらに備えてもよい。これにより、各トランジスタに印加される電圧を分圧させるという作用をもたらす。
 また、この第1の側面において、上記第1および第2のスイッチは、相補的に開閉する第1および第2のゲート接地トランジスタを備えてもよい。これにより、各トランジスタに印加される電圧を分圧させるという作用をもたらす。
 また、この第1の側面において、上記容量の両端にさらに上記第1および第2のスイッチを接続して、上記第1および第2のスイッチおよび上記容量を複数段接続してもよい。これにより、最終的に出力される電圧を増加させるという作用をもたらす。
本技術の実施の形態におけるスイッチングアンプの基本構成の一例を示す図である。 本技術の実施の形態におけるスイッチングアンプの全体構成の一例を示す図である。 本技術の実施の形態におけるスイッチングアンプの出力波形の例を示す図である。 本技術の実施の形態におけるスイッチングアンプの変形例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第1の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第2の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第3の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第4の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第5の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第6の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第7の実施例を示す図である。 本技術の実施の形態におけるスイッチングアンプの第8の実施例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.基本構成
 2.実施例
 <1.基本構成>
 [スイッチングアンプの構成]
 図1は、本技術の実施の形態におけるスイッチングアンプの基本構成の一例を示す図である。このスイッチングアンプは、スイッチ110および120と、インダクタ210および220と、容量230とを備える。
 スイッチ110および120は、相補的に開閉するスイッチである。スイッチ110の出力端は、容量230の負側の一端に接続される。また、スイッチ110の入力端には、後述するように、電源端子が接続される。スイッチ120の出力端は、容量230の正側の一端に接続される。また、スイッチ120の入力端には、後述するように、接地端子が接続される。
 インダクタ210および220は、容量230を充電するための直流を通すインピーダンス素子の一例である。インダクタ210は、容量230の正側の一端と電源端子との間に接続される。インダクタ220は、容量230の負側の一端と接地端子との間に接続される。この例では、インピーダンス素子の一例としてインダクタ210および220を示しているが、他の素子を利用してもよい。その場合、高周波信号に対して高インピーダンス、低周波信号(直流)に対して低インピーダンスであることが必要である。また、電源電位および接地電位の電圧範囲に影響を受けない、すなわち、電圧依存を有しないことが必要である。
 容量230は、インダクタ210および220を介して電荷を充電し、チャージポンプとして機能する素子である。すなわち、このスイッチングアンプでは、出力電圧の昇圧量および降圧量を制御するために容量230への充電電荷を利用する。
 図2は、本技術の実施の形態におけるスイッチングアンプの全体構成の一例を示す図である。
 このスイッチングアンプは、上述の基本構成の後段に電力合成器300を備える。また、スイッチ110の入力端には電源端子が接続され、スイッチ120の入力端には接地端子が接続される。
 電力合成器300は、容量230の両端から供給された信号について電力合成を行って、合成された電力を出力端子から負荷400に対して供給するものである。
 容量230に充電される定常状態電荷量は、容量230への印加電圧および静電容量値で決まる。したがって、電力合成器300に対する出力電圧の昇圧量および降圧量は、一定値に制御される。容量230に充電された電荷をチャージポンプとして利用して、スイッチングアンプの動作周波数で出力電圧の昇圧または降圧に交互に使用する。
 [スイッチングアンプの出力]
 図3は、本技術の実施の形態におけるスイッチングアンプの出力波形の例を示す図である。
 ここでは、容量230の正側の一端の電圧をV_N、容量230の正側の一端に流れる電流をI_Nと称する。また、容量230の負側の一端の電圧をV_P、容量230の負側の一端に流れる電流をI_Pと称する。同図におけるaは、容量230の負側の一端の電圧V_Pを示す。同図におけるbは、容量230の正側の一端の電圧V_Nを示す。同図におけるcは、スイッチ110に流れる電流I_Pを示す。同図におけるdは、スイッチ120に流れる電流I_Nを示す。
 状態(1)では、スイッチ110がオン状態になり、スイッチ120がオフ状態になる。この場合、容量230の負側の一端の電圧V_Pは、電源電圧VDDとなる。また、このとき容量230には充電電荷により両端にVDDの電位差が発生しているため、容量230の正側の一端の電圧V_Nは、VDDの2倍の電位となる。
 状態(2)では、スイッチ110がオフ状態になり、スイッチ120がオン状態になる。この場合、容量230の正側の一端の電圧V_Nは、接地電位となる。また、このとき容量230には充電電荷により両端にVDDの電位差が発生しているため、容量230の負側の一端の電圧V_Pは、-VDDとなる。
 したがって、容量230の両端にスイッチ110および120を接続して、相補的に開閉することにより、状態(1)と状態(2)とを繰り返すことによって、D級アンプのように波高値が制御された矩形波電圧を発生させる。すなわち、容量230の正側の一端では昇圧、容量230の負側の一端では降圧が行われ、各ノードが同相の2VDD振幅の矩形波電圧となる。
 これにより、スイッチ110および120を流れる電流I_PおよびI_Nは、プッシュプルの関係になる。電力合成器300は、このようにして発生した電力を合成する。したがって、負荷400に流れる電流は、同図におけるcおよびdを合成した正弦波となる。
 [変形例]
 図4は、本技術の実施の形態におけるスイッチングアンプの変形例を示す図である。
 上述のスイッチングアンプの基本構成は、この変形例のように複数カスケード接続してもよい。すなわち、容量230の両端にさらにスイッチ110および120を接続して、スイッチ110および120および容量230を複数段接続してもよい。これにより、最終的に出力される電圧を増やすことが可能になる。
 <2.実施の形態>
 [第1の実施例]
 図5は、本技術の実施の形態におけるスイッチングアンプの第1の実施例を示す図である。
 この第1の実施例では、電力合成器300は、容量310および320を備える。すなわち、この第1の実施例では、電力合成器300は、容量結合により実現される。この場合、負荷400に対して、直流電流は流れずに、交流成分のみが伝達される。
 [第2の実施例]
 図6は、本技術の実施の形態におけるスイッチングアンプの第2の実施例を示す図である。
 この第2の実施例では、第1の実施例から容量230を削除した構成になっている。この場合、電力合成器300の容量310および320が容量230と同様の役割を果たす。すなわち、直列接続された容量310および320は、容量230として機能するとともに、負荷400に対する容量結合を実現する。したがって、電力合成器300と負荷400との間の容量390は、なくても構わない。
 [第3の実施例]
 図7は、本技術の実施の形態におけるスイッチングアンプの第3の実施例を示す図である。
 この第3の実施例では、電力合成器300は、トランス311および321を備える。すなわち、この第3の実施例では、電力合成器300は、インダクタ210および220を内蔵して、負荷400と磁界結合(トランス結合)するように構成される。
 これにより、この第3の実施例では、交流成分のみならず、直流成分について変圧することも可能になる。
 [第4の実施例]
 図8は、本技術の実施の形態におけるスイッチングアンプの第4の実施例を示す図である。
 この第4の実施例では、電力合成器300は、MOSトランジスタ312および322を備える。トランジスタ312は、ソースが容量230の正側の一端に接続され、ベースが電源端子に接続される。また、トランジスタ322は、ソースが容量230の負側の一端に接続され、ベースが接地端子に接続される。トランジスタ312および322のドレインは互いに接続され、容量390を介して負荷400に接続される。
 これにより、この第4の実施例では、MOSトランジスタ312および322をスイッチとして機能させて、合成先電圧の最大値および最小値を入力と同じ電圧にすることができる。
 [第5の実施例]
 図9は、本技術の実施の形態におけるスイッチングアンプの第5の実施例を示す図である。
 この第5の実施例では、スイッチ110および120は、ソース接地トランジスタ111および121を備える。トランジスタ111および121のゲートにはバッファ130を介して交流信号が入力されており、この交流信号に従ってトランジスタ111および121は相補的に開閉するスイッチとして機能する。
 [第6の実施例]
 図10は、本技術の実施の形態におけるスイッチングアンプの第6の実施例を示す図である。
 この第6の実施例では、スイッチ110および120は、トランジスタ111、112、121および122を備える。ここで、トランジスタ111および112はカスコード接続される。すなわち、ソース接地トランジスタ111とゲート接地トランジスタ112とを接続した構成を備える。また、トランジスタ121および122も同様にカスコード接続される。これにより、各トランジスタに印加される電圧を分圧することができ、各トランジスタを保護することができる。
 [第7の実施例]
 図11は、本技術の実施の形態におけるスイッチングアンプの第7の実施例を示す図である。
 この第7の実施例では、スイッチ110および120は、上述の第6の実施例におけるトランジスタ111および121に代えて、インバータ131および132を備える。これにより、上述の第6の実施例に比べて、各トランジスタに印加される電圧をより正確に分圧することが可能になる。
 [第8の実施例]
 図12は、本技術の実施の形態におけるスイッチングアンプの第8の実施例を示す図である。
 この第8の実施例では、上述の第7の実施例におけるインバータ131および132を1つにまとめたインバータ133を備える。ただし、論理的には両者は等価である。
 このように、本技術の実施の形態によれば、インダクタ210および220を介して容量230に電荷を充電して、スイッチ110および120を相補的に開閉することにより、容量230をチャージポンプとして機能させることができる。これにより、波高が制御された矩形波電圧を発生させて、電源電圧が制限された状況でスイッチングアンプの出力電圧を増加させることができる。
 本技術の実施の形態のスイッチングアンプの出力電流と出力電圧波形はD級アンプと同じになる。しかし、通常のD級アンプと比べて、出力電圧が昇圧されるために出力電力は増加する。上述の例のように容量230に充電される電圧がVDDであれば、出力電圧振幅は2倍になるため、出力電力は4倍になる。出力電力が4倍になるにも関わらず、アンプのスイッチサイズは変わらないため、アンプを駆動するための入力電力は変わらない。つまり、パワーアンプの性能指標である電力付加効率(入力電力に対する出力電力の比を消費電力で割った電力効率)が飛躍的に増加する。また、アンプのスイッチサイズが変わらないためチップ面積の小面積化に貢献する。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)相補的に開閉する第1および第2のスイッチと、
 前記第1および第2のスイッチの出力端に両端が接続されて電源の供給を受ける容量と
を具備するスイッチングアンプ。
(2)前記容量の一端と電源端子との間に接続された第1のインピーダンス素子と、
 前記容量の他端と接地端子との間に接続された第2のインピーダンス素子と
をさらに具備する前記(1)に記載のスイッチングアンプ。
(3)前記第1のスイッチは、その入力端に電源端子が接続されて、その出力端は前記容量の前記他端に接続され、
 前記第2のスイッチは、その入力端に接地端子が接続されて、その出力端は前記容量の前記一端に接続された
前記(2)に記載のスイッチングアンプ。
(4)前記容量の両端から供給された信号について電力合成を行って出力端子から負荷に対して供給する電力合成器をさらに具備する
前記(3)に記載のスイッチングアンプ。
(5)前記電力合成器は、前記容量の両端をそれぞれの入力端に接続してその出力端を結合した端子を前記出力端子とする第1および第2のコンデンサを備える
前記(4)に記載のスイッチングアンプ。
(6)前記電力合成器は、前記容量に代えて前記第1および第2のコンデンサを備える
前記(5)に記載のスイッチングアンプ。
(7)前記電力合成器は、前記第1および第2のインピーダンス素子に代えてトランスを備える
前記(4)に記載のスイッチングアンプ。
(8)前記電力合成器は、前記容量の両端をそれぞれのソースに接続して、それらのドレインを結合した端子を前記出力端子とする第1および第2のゲート接地トランジスタを備える
前記(4)に記載のスイッチングアンプ。
(9)前記第1および第2のスイッチは、相補的に開閉する第1および第2のトランジスタを備える
前記(1)から(8)のいずれかに記載のスイッチングアンプ。
(10)前記第1および第2のスイッチは、前記第1のトランジスタにカスコード接続された第1のゲート接地トランジスタと、前記第2のトランジスタにカスコード接続された第2のゲート接地トランジスタとをさらに備える
前記(9)に記載のスイッチングアンプ。
(11)前記第1および第2のスイッチは、相補的に開閉する第1および第2のゲート接地トランジスタを備える
前記(1)から(10)のいずれかに記載のスイッチングアンプ。
(12)前記容量の両端にさらに前記第1および第2のスイッチを接続して、前記第1および第2のスイッチおよび前記容量を複数段接続した
前記(1)から(11)のいずれかに記載のスイッチングアンプ。
 110、120 スイッチ
 111、112、121、122 トランジスタ
 130 バッファ
 131~133 インバータ
 210、220 インダクタ
 230 容量
 300 電力合成器
 310、320 容量
 311、321 トランス
 312、322 トランジスタ
 390 容量
 400 負荷

Claims (12)

  1.  相補的に開閉する第1および第2のスイッチと、
     前記第1および第2のスイッチの出力端に両端が接続されて電源の供給を受ける容量と
    を具備するスイッチングアンプ。
  2.  前記容量の一端と電源端子との間に接続された第1のインピーダンス素子と、
     前記容量の他端と接地端子との間に接続された第2のインピーダンス素子と
    をさらに具備する請求項1記載のスイッチングアンプ。
  3.  前記第1のスイッチは、その入力端に電源端子が接続されて、その出力端は前記容量の前記他端に接続され、
     前記第2のスイッチは、その入力端に接地端子が接続されて、その出力端は前記容量の前記一端に接続された
    請求項2記載のスイッチングアンプ。
  4.  前記容量の両端から供給された信号について電力合成を行って出力端子から負荷に対して供給する電力合成器をさらに具備する
    請求項3記載のスイッチングアンプ。
  5.  前記電力合成器は、前記容量の両端をそれぞれの入力端に接続してその出力端を結合した端子を前記出力端子とする第1および第2のコンデンサを備える
    請求項4記載のスイッチングアンプ。
  6.  前記電力合成器は、前記容量に代えて前記第1および第2のコンデンサを備える
    請求項5記載のスイッチングアンプ。
  7.  前記電力合成器は、前記第1および第2のインピーダンス素子に代えてトランスを備える
    請求項4記載のスイッチングアンプ。
  8.  前記電力合成器は、前記容量の両端をそれぞれのソースに接続して、それらのドレインを結合した端子を前記出力端子とする第1および第2のゲート接地トランジスタを備える
    請求項4記載のスイッチングアンプ。
  9.  前記第1および第2のスイッチは、相補的に開閉する第1および第2のトランジスタを備える
    請求項1記載のスイッチングアンプ。
  10.  前記第1および第2のスイッチは、前記第1のトランジスタにカスコード接続された第1のゲート接地トランジスタと、前記第2のトランジスタにカスコード接続された第2のゲート接地トランジスタとをさらに備える
    請求項9記載のスイッチングアンプ。
  11.  前記第1および第2のスイッチは、相補的に開閉する第1および第2のゲート接地トランジスタを備える
    請求項1記載のスイッチングアンプ。
  12.  前記容量の両端にさらに前記第1および第2のスイッチを接続して、前記第1および第2のスイッチおよび前記容量を複数段接続した
    請求項1記載のスイッチングアンプ。
PCT/JP2020/044209 2020-01-22 2020-11-27 スイッチングアンプ WO2021149354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080093105.XA CN114982127A (zh) 2020-01-22 2020-11-27 开关放大器
DE112020006587.1T DE112020006587T5 (de) 2020-01-22 2020-11-27 Schaltverstärker
JP2021572985A JPWO2021149354A1 (ja) 2020-01-22 2020-11-27
US17/758,874 US20230179158A1 (en) 2020-01-22 2020-11-27 Switching amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007986 2020-01-22
JP2020-007986 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021149354A1 true WO2021149354A1 (ja) 2021-07-29

Family

ID=76993364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044209 WO2021149354A1 (ja) 2020-01-22 2020-11-27 スイッチングアンプ

Country Status (5)

Country Link
US (1) US20230179158A1 (ja)
JP (1) JPWO2021149354A1 (ja)
CN (1) CN114982127A (ja)
DE (1) DE112020006587T5 (ja)
WO (1) WO2021149354A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635175A (en) * 1982-02-25 1987-01-06 Siemens Aktiengesellschaft Switched DC-DC converter having input and output inductances coupled by switches and storage capacitances
JPH06351229A (ja) * 1993-06-08 1994-12-22 Sony Corp 出力電圧安定化機能付チャージポンプ式昇圧回路
JP2004336904A (ja) * 2003-05-08 2004-11-25 New Japan Radio Co Ltd 昇圧回路
JP2010172050A (ja) * 2009-01-20 2010-08-05 Renesas Electronics Corp Dc/dcコンバータ回路
JP2012170304A (ja) * 2011-02-17 2012-09-06 Mitsubishi Electric Corp Dc/dc電圧変換装置
JP2014045335A (ja) * 2012-08-27 2014-03-13 Renesas Electronics Corp 変調電源回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663820B (zh) 2013-08-21 2019-06-21 日商半導體能源研究所股份有限公司 電荷泵電路以及具備電荷泵電路的半導體裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635175A (en) * 1982-02-25 1987-01-06 Siemens Aktiengesellschaft Switched DC-DC converter having input and output inductances coupled by switches and storage capacitances
JPH06351229A (ja) * 1993-06-08 1994-12-22 Sony Corp 出力電圧安定化機能付チャージポンプ式昇圧回路
JP2004336904A (ja) * 2003-05-08 2004-11-25 New Japan Radio Co Ltd 昇圧回路
JP2010172050A (ja) * 2009-01-20 2010-08-05 Renesas Electronics Corp Dc/dcコンバータ回路
JP2012170304A (ja) * 2011-02-17 2012-09-06 Mitsubishi Electric Corp Dc/dc電圧変換装置
JP2014045335A (ja) * 2012-08-27 2014-03-13 Renesas Electronics Corp 変調電源回路

Also Published As

Publication number Publication date
US20230179158A1 (en) 2023-06-08
JPWO2021149354A1 (ja) 2021-07-29
CN114982127A (zh) 2022-08-30
DE112020006587T5 (de) 2022-12-01

Similar Documents

Publication Publication Date Title
US10608617B2 (en) Low noise charge pump method and apparatus
US7061328B2 (en) Integrated direct drive inductor means enabled headphone amplifier
US10355591B2 (en) Multilevel boost DC to DC converter circuit
KR100451890B1 (ko) 스위칭레귤레이터
EP1771943B1 (en) Single supply direct drive amplifier
CN112954544B (zh) 驱动电路
US11356017B2 (en) Li-ion-compatible fully-integrated hybrid converter
US6972973B2 (en) Voltage booster having noise reducing structure
CN116114158A (zh) 具有低辐射排放的隔离dc-dc功率转换器
US8610492B2 (en) High voltage tolerant inverting charge pump
US20060017490A1 (en) DC voltage converter
WO2021149354A1 (ja) スイッチングアンプ
KR100426606B1 (ko) Dc ―dc 컨버터 및 이를 사용한 전자장치
US6272032B1 (en) Rectifier with midpoint feed
CN113346771B (zh) 升压转换器
RU2260202C2 (ru) Стабилизатор напряжения вторичного источника питания радиоэлектронной аппаратуры
KR20220144648A (ko) 전력 변환 장치
CN117811362A (zh) 电荷泵电路
CN115603587A (zh) 低emi的变换器电路、电子装置、芯片及电力传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572985

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20915813

Country of ref document: EP

Kind code of ref document: A1