WO2021148045A1 - 心电波形的数据测量方法、心电图机和可读存储介质 - Google Patents

心电波形的数据测量方法、心电图机和可读存储介质 Download PDF

Info

Publication number
WO2021148045A1
WO2021148045A1 PCT/CN2021/075369 CN2021075369W WO2021148045A1 WO 2021148045 A1 WO2021148045 A1 WO 2021148045A1 CN 2021075369 W CN2021075369 W CN 2021075369W WO 2021148045 A1 WO2021148045 A1 WO 2021148045A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
average template
reference line
ecg
user
Prior art date
Application number
PCT/CN2021/075369
Other languages
English (en)
French (fr)
Inventor
邱四海
严彬彬
周丹
张在阳
戴志龙
肖文聪
Original Assignee
深圳市理邦精密仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市理邦精密仪器股份有限公司 filed Critical 深圳市理邦精密仪器股份有限公司
Publication of WO2021148045A1 publication Critical patent/WO2021148045A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing

Definitions

  • This application relates to the field of electrocardiogram technology, and in particular to an electrocardiograph waveform data measurement method, an electrocardiograph and a readable storage medium.
  • the electrocardiogram records the physiological and electrical activities of the human heart, which contains rich physiological and pathological information that reflects the heart rhythm and its electrical conductivity. It is one of the important basis for diagnosing heart disease and evaluating heart function. Therefore, when performing clinical diagnosis, doctors usually need to view the average template of the ECG waveform, and then perform diagnosis based on the parameters of the average template.
  • the computer terminal calculates an average template based on the ECG waveform collected by the obtained electrocardiograph, and displays the average template waveform on the computer terminal.
  • the user needs to measure, calibrate and modify the relevant parameters of the average template waveform through the computer after collecting the ECG waveform. It can be seen that the above operation is more complicated. In addition, inaccurate positioning of the reference line sometimes occurs, resulting in inaccurate values of related parameters measured based on the reference line.
  • the main technical problem to be solved by this application is to provide an ECG waveform data measurement method, an ECG machine and a readable storage medium, which can realize the calibration of the relevant parameters of the average template waveform, and the operation is simple.
  • a technical solution adopted in this application is to provide an ECG waveform data measurement method, including: the ECG machine displays the average template waveform corresponding to the ECG waveform, and displays at least at the corresponding position of the average template waveform A reference line; in response to the user's movement operation on the reference line, move the position of the reference line on the average template waveform; perform data measurement on the average template waveform based on the moved reference line to obtain at least one characteristic parameter value of the ECG waveform.
  • the position of the moving reference line on the average template waveform includes: according to the user's moving track, the position of the moving reference line on the average template waveform.
  • the at least one reference line includes at least one of the P reference line, the Q reference line, the S reference line, and the T reference line; data measurement is performed on the average template waveform based on the moved reference line to obtain at least one characteristic of the ECG waveform
  • the parameter value includes at least one of the following steps: obtain the PR interval corresponding to the ECG waveform based on the position of the moved P reference line on the average template waveform; obtain the position of the Q reference line after the movement on the average template waveform Corresponding to at least one of the PR interval, QRS time limit, QT interval, and QTc interval of the ECG waveform; Based on the position of the moved S baseline on the average template waveform, the QRS time limit corresponding to the ECG waveform is obtained; based on the post-movement The position of the T reference line on the average template waveform to obtain the QT interval and/or QTc interval corresponding to the ECG waveform.
  • the method further includes: displaying at least one characteristic parameter value of the ECG waveform.
  • the method further includes: detecting a trigger signal of the user on the analysis icon on the display interface, and checking the at least one The characteristic parameter value is analyzed, and the initial ECG analysis result is obtained.
  • the method further includes: detecting the trigger signal of the user modifying the result icon on the display interface, and displaying the modification input area containing the initial ECG analysis result ;According to the user's input information in the modification input area, update the content in the modification input area; detect the user's trigger signal to confirm the modification icon on the display interface, obtain the current content in the modification input area, and take the current content as the final ECG analysis results.
  • the method further includes: displaying the signature input area on the display interface; obtaining the trace of the user's touch point movement in the signature input area as the signature to be verified; obtaining the current login account Whether the pre-stored signature matches the signature to be verified; if it matches, the current content will be used as the final ECG analysis result; if it does not match, the current content will not be used as the final ECG analysis result.
  • the method before displaying the average template waveform corresponding to the ECG waveform, the method further includes: obtaining multiple valid QRS waveforms on the ECG waveform; obtaining the average template waveform of the ECG waveform based on the amplitudes of the corresponding points of the multiple valid QRS waveforms .
  • an electrocardiograph including: a processor and a memory coupled to each other, and the processor is used to execute program instructions stored in the memory to implement any of the above methods. A step of.
  • Another technical solution adopted in this application is to provide a computer-readable storage medium with program instructions stored on the computer-readable storage medium. Steps in the method.
  • this application uses an electrocardiograph to display the average template waveform corresponding to the ECG waveform, and displays at least one reference line at the corresponding position of the average template waveform. Move operation, move the position of the reference line on the average template waveform. Among them, the user can adjust the position of the reference line according to the actual situation, and the operation is simple. Based on the moved reference line, the average template waveform is measured to obtain the ECG waveform At least one characteristic parameter value of, so that the characteristic parameter value is closer to the correct characteristic parameter value.
  • Fig. 1a is a schematic flowchart of a first embodiment of a method for measuring data of an electrocardiogram waveform according to the present application
  • FIG. 1b is a schematic flowchart of step S101 of the first embodiment of the method for measuring ECG waveform data according to the present application;
  • FIG. 2 is a schematic diagram of the display interface of the average template waveform of lead II of the present application.
  • Fig. 3 is a schematic diagram of the display interface of the average template waveform of all leads of the present application.
  • FIG. 4 is a schematic flowchart of a second embodiment of a method for measuring ECG waveform data according to the present application
  • FIG. 5 is a schematic diagram of the display interface after the average template waveform of the second lead of the present application is enlarged;
  • Fig. 6a is a schematic flow chart of a third embodiment of a method for measuring ECG waveform data according to the present application.
  • FIG. 6b is a schematic partial flowchart of the fourth embodiment of the method for measuring ECG waveform data according to the present application.
  • FIG. 7 is a schematic diagram of the display interface of the ECG analysis result of the present application.
  • FIG. 8 is a schematic flowchart of a fifth embodiment of a method for measuring ECG waveform data according to the present application.
  • FIG. 9 is a schematic flowchart of a sixth embodiment of a method for measuring ECG waveform data according to the present application.
  • Fig. 10a is another schematic diagram of the display interface after the average template waveform of the second lead of the present application is enlarged;
  • Fig. 10b is another schematic diagram of the display interface after the average template waveform of lead II of the present application is enlarged;
  • FIG. 11 is a schematic diagram of the framework of an embodiment of the electrocardiograph of the present application.
  • FIG. 12 is an exploded schematic diagram of another embodiment of the electrocardiograph of the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • Figure 1a shows a schematic flow chart of the first embodiment of the ECG waveform data measurement method of the present application
  • Figure 1b shows the step S101 of the first embodiment of the ECG waveform data measurement method of the present application
  • Figure 2 shows a schematic diagram of the display interface of the average template waveform of lead II of this application
  • Figure 3 shows a schematic diagram of the display interface of the average template waveform of all leads of this application.
  • the method of this implementation may include the following steps:
  • Step S101 The electrocardiograph processes the electrocardiogram waveform to obtain an average template waveform corresponding to the electrocardiogram waveform.
  • the electrocardiograph in this embodiment has computing capabilities, and can directly process the collected electrocardiogram waveform to obtain the average template waveform corresponding to the electrocardiogram waveform.
  • step S101 may include the following sub-steps S1011 and S1012:
  • Step S1011 Obtain multiple valid QRS waveforms on the ECG waveform.
  • the ECG machine obtains multiple effective QRS waveforms on the ECG waveform.
  • the ECG machine can directly filter out the complete and normal QRS waveforms according to the preset algorithm.
  • the complete QRS waveform can include P wave, Q wave, and R wave.
  • the normal QRS waveform can be a continuous waveform or a waveform whose characteristic value is within a preset range.
  • the invalid QRS waveforms can be determined by the preset algorithm, and they can be eliminated, so that the remaining QRS waveforms are regarded as valid QRS waveforms. Waveform. Among them, the invalidity of the QRS waveform can be judged by judging whether the QRS waveform is complete.
  • the time point at which the ECG machine starts and ends collecting the ECG waveform is not necessarily the effective starting point and end point of the QRS waveform
  • the first QRS waveform and the last QRS waveform in the collected ECG waveform may be incomplete Therefore, the incomplete QRS waveform can be judged as an invalid QRS waveform and excluded, and other valid QRS waveforms can be retained.
  • the QRS waveform initially collected is an abnormal QRS waveform and will last for a period of time. Therefore, the emotionally stressed QRS waveform can be judged by the preset algorithm, and Exclude it; or directly judge the QRS waveform at the beginning of the preset time period as an invalid QRS waveform and exclude it.
  • Step S1012 Obtain the average template waveform of the ECG waveform based on the amplitudes of the corresponding points of the multiple valid QRS waveforms.
  • the amplitudes of the corresponding points of the multiple valid QRS waveforms are obtained, and the amplitudes of the corresponding points of the multiple valid QRS waveforms are averaged or taken as the median value.
  • the amplitude of the corresponding point of the average template waveform of the ECG waveform For example, the amplitude of the peak points of multiple valid QRS waveforms is averaged as the amplitude of the peak point corresponding to the average template waveform of the ECG waveform.
  • the amplitude of the valley points of multiple valid QRS waveforms can be calculated. The average value is taken as the amplitude of the corresponding trough point of the average template waveform of the ECG waveform.
  • the amplitude of other corresponding points of the average template waveform of the ECG waveform can also be obtained by averaging or taking the median value of the amplitudes of multiple valid QRS waveform corresponding points. Do repeat.
  • step S1012 may specifically include: obtaining an average value of the amplitudes of corresponding points on a plurality of valid QRS waveforms as the average value of the amplitudes of corresponding points on the template waveform.
  • the ECG waveform can include a start point, an end point, a peak, and a trough.
  • the multiple obtained effective QRS waveforms can be aligned, that is, the multiple effective QRS waveforms have the same starting point and end point, and the amplitudes of multiple effective QRS waveforms corresponding to the same time point are obtained, and the time point is calculated
  • the average value of the amplitudes of the corresponding multiple valid QRS waveforms is used as the amplitude of the average template waveform corresponding to the time point.
  • the amplitude of the average template waveform corresponding to all time points is correspondingly calculated to obtain the average template waveform of the ECG waveform.
  • step S1012 may specifically include: sorting a plurality of effective QRS waveforms according to their amplitudes, and taking the effective QRS waveform in the middle position as the average template waveform corresponding to the ECG waveform.
  • the multiple obtained effective QRS waveforms may be aligned, that is, the start and end points of the multiple effective QRS waveforms are the same, and the amplitudes of the multiple effective QRS waveforms corresponding to a point in time are based on the order of magnitude or Sort from small to large, and take the effective QRS waveform in the middle position as the average template waveform corresponding to the ECG waveform.
  • the time point can be randomly selected or preset.
  • the above sorting method includes two cases, one case: if multiple valid QRS waveforms are an odd number of valid QRS waveforms, at this time there is only one valid QRS waveform in the middle position, that is, the valid QRS waveform can be directly selected as the heart The average template waveform corresponding to the electrical waveform; another case: if multiple valid QRS waveforms are an even number of valid QRS waveforms, there are two valid QRS waveforms in the middle position at this time.
  • One implementation is to select one of the valid QRS waveforms. The waveform is used as the average template waveform corresponding to the ECG waveform.
  • Another embodiment is to use the average value of the amplitudes of the corresponding points on the two effective QRS waveforms as the amplitude of the corresponding points on the average template waveform to obtain the ECG waveform.
  • Average template waveform It should be noted that there are many methods for obtaining the average template waveform, which are not limited to the method described in step S1012 above.
  • the electrocardiograph can acquire a multi-lead electrocardiogram waveform.
  • the multi-leads may include 3-leads, 5-leads, 12-leads, 15-leads, and 18-leads, which are not limited here.
  • this step S101 may specifically include: processing the ECG waveform of each lead in the multi-lead ECG waveform to obtain the average template waveform corresponding to the ECG waveform of each lead.
  • the above steps S1011 and S1012 may be performed on the ECG waveform of each lead to obtain the average template waveform corresponding to the ECG waveform of each lead, which will not be repeated here.
  • Step S102 Display the average template waveform on the display interface.
  • the electrocardiograph may include at least one display interface, and the display interface is used to display the average template waveform.
  • the display interface is used to display the average template waveform.
  • an electrocardiograph is equipped with a touch screen, and the interface displayed through the touch screen is the display interface.
  • the multi-lead ECG waveform can correspond to multiple average template waveforms.
  • the electrocardiograph can provide the waveform selection area for the user to select the average template waveform to be displayed, and then display the average template waveform selected by the user.
  • the electrocardiograph may include at least one display interface. As shown in FIGS. 2 and 3, the display interface may include a waveform selection area 201 and a waveform display area 202.
  • the area ratio and relative position of the waveform selection area 201 and the waveform display area 202 can be adjusted according to actual conditions.
  • the area ratio of the waveform selection area 201 and the waveform display area 202 may be 1:4.
  • the multiple waveform thumbnails may include the average template waveform thumbnails of the ECG waveforms of each lead (as shown in the waveform selection area in Figure 2).
  • a thumbnail image obtained by superimposing template waveforms as shown in FIG. 2 the thumbnail image of the average template waveform superimposed on the lead ALL in the waveform selection area 201).
  • the waveform thumbnail includes the name of the lead and the average template waveform corresponding to the lead.
  • the user's selection signal for a waveform thumbnail in the waveform selection area 201 is detected, and the average template waveform corresponding to the selected waveform thumbnail is displayed in the waveform display area 202.
  • the user can intuitively view the waveform through the waveform thumbnail, so that the user can quickly and accurately select the average template waveform that they need to view.
  • the average template waveform of the ECG waveform displayed in the waveform display area 202 is hidden to prevent private information from being Give way.
  • the waveform displayed in the waveform display area 202 can be hidden to prevent private information from being leaked.
  • the aforementioned selection signal may be a sliding signal, and when the user's sliding signal is detected, different average template waveforms are switched and displayed.
  • the waveform can be switched and displayed according to the movement track of the touch point generated by the user in the waveform display area 202.
  • the waveform currently displayed in the waveform display area 202 is the average template waveform of the second lead.
  • the average template waveform corresponding to the waveform thumbnail at the touch point is sequentially displayed. That is, the average template waveform of lead III, the average template waveform of lead AVR, etc.
  • the movement trajectory can be an unclosed trajectory and a closed trajectory.
  • the unclosed trajectory is, for example, a line segment of a preset length
  • the closed trajectory is, for example, a circle, a rectangle, a triangle, and the like.
  • the touch points in all the embodiments of the present application may be generated by touching the display interface with a user's finger or an operating tool with a pointing function.
  • the user here may include the collector or the collected person of the ECG waveform or other personnel.
  • the operation tool with the instruction function here may include a mouse, a laser pen, or a stylus.
  • the average template waveform of at least one lead ECG waveform is displayed in the waveform display area 202 of the display interface.
  • the average template waveform of each lead to be displayed has the same baseline position in the display interface, that is, when the average template waveform of each lead to be displayed is displayed on the display interface, the position of the starting point of the corresponding Q wave in the display interface same.
  • the electrocardiograph can also measure the average template waveform to obtain a measurement value, and can perform analysis based on the measurement value to obtain an analysis result, and display the measurement value and/or analysis result on the display interface.
  • the electrocardiograph can directly process the electrocardiograph waveform to obtain the average template waveform corresponding to the electrocardiograph waveform, and display the average template waveform on the electrocardiograph display interface, so that the user can collect the electrocardiograph waveform through the electrocardiograph. Then you can view the average template waveform directly on the electrocardiograph; secondly, since it is no longer necessary to transmit the ECG waveform to the computer, you can avoid problems in the transmission process, such as poor network signals, and users can’t view the average template waveform. The occurrence of the situation; again, the average template waveform of all leads is displayed in the waveform selection area in the form of thumbnails, so that the user can more intuitively select the average template waveform that needs to be viewed.
  • the electrocardiograph provides functions such as zooming and repositioning of the displayed average template waveform.
  • functions such as zooming and repositioning of the displayed average template waveform.
  • Figure 4 shows a schematic flow chart of the second embodiment of the ECG waveform data measurement method of the present application
  • Figure 5 shows the enlarged display interface of the average template waveform of lead II of the present application Schematic.
  • the method of this embodiment may include the following steps:
  • Step S201 the electrocardiograph processes the electrocardiogram waveform to obtain an average template waveform corresponding to the electrocardiogram waveform.
  • Step S202 Display the average template waveform on the display interface.
  • steps S201 and S202 please refer to steps S101 and S102 of the foregoing embodiment, which will not be repeated here.
  • Step S203 in response to the user's preset operation on the display interface, perform corresponding scaling processing on the average template waveform displayed on the display interface.
  • the electrocardiograph may include a touch display screen, and the display interface is a display interface of the touch display screen.
  • the average template waveform displayed on the display interface can be correspondingly zoomed.
  • the zoom-in or zoom-out multiples can be displayed on the display interface in real time.
  • the preset operation may be at least one of the following: click the preset icon on the display interface, click the average template waveform displayed on the display interface, double-click the average template waveform displayed on the display interface, touch the display interface to display the Two touch points that move closer or farther are formed on the upper surface.
  • the preset icons may include a zoom-in icon and a zoom-out icon.
  • the zoom in icon is used to zoom in and display the average template waveform
  • the zoom out icon is to zoom in and display the average template waveform.
  • the electrocardiograph magnifies the average template waveform displayed on the display interface, and responds to the user clicking the zoom-out icon on the display interface to zoom out the average template waveform displayed on the display interface. handle.
  • the zooming of the waveform may be within a certain preset range.
  • the average template waveform displayed on the display interface is magnified.
  • the magnification threshold is reached, the corresponding single-click or double-clicking the average template waveform displayed on the display interface is continued.
  • Template waveform the average template waveform displayed on the display interface can be stopped zooming in or zooming out.
  • the average template waveform of the preset zoom size can be directly displayed by clicking or double-clicking the average template waveform displayed on the display interface.
  • the average template waveform can be zoomed out and displayed in correspondence with the proximity and distance of the two touch points.
  • the user touches the display interface to form two touch points on the display interface.
  • the average template waveform displayed on the display interface can be reduced accordingly; in response to the user’s display If the two touch points on the interface are moved away, the average template waveform displayed on the display interface can be enlarged accordingly. It is understandable that there are multiple combinations of zoom processing corresponding to the preset operation, which will not be repeated here.
  • the waveform display area for zooming in and displaying the average template waveform can occupy the entire display interface to display the amplified average template waveform through the entire waveform display area, so that users can view the average template waveform or average Template waveform for other operations.
  • the measuring ruler icon can be set on the display interface. The user clicks the measuring ruler icon to display the measuring ruler in the corresponding position of the average template waveform to measure the amplified average template waveform to obtain the characteristic parameter value.
  • the characteristic parameter value may be time limit, amplitude, heart rate, and so on.
  • the electrocardiograph may also include a recovery icon.
  • the recovery icon can be set on the display interface.
  • the user can directly restore the average template waveform in the zoomed-in or zoomed-out state to the original display size by clicking the restore icon.
  • the average template waveform of the ECG waveform in the zoomed-in or zoomed-out state can be directly restored to the original display size.
  • the original display size is the size of the waveform displayed when the thumbnail of the waveform is initially clicked.
  • the aforementioned preset operations can be implemented through touch screen operations, cursor control operations, voice control operations, and the like.
  • the touch screen operation refers to the touch operation on the display screen, such as one-finger touching the preset icon on the display screen, the average template waveform on the display interface, or two-finger touching the display screen and two fingers moving away or away from the display screen. Move closer and so on.
  • the cursor control operation can be realized by one or more of a keyboard, a remote control lever, and a mouse. For example, you can set two buttons on the keyboard as the buttons for zooming in and zooming out the average template waveform.
  • the voice control operation can be to detect keywords in the voice data and execute related zoom control instructions based on the keywords. For example, when the keyword "zoom in” is detected, the average template is zoomed in and displayed, and when the keyword "zoom out” is detected ”, the average template will be displayed in a reduced size.
  • the average template waveform displayed on the display interface is correspondingly zoomed, which is convenient for the user to view the average template waveform.
  • the method can quickly zoom in and out of the waveform, and the operation method is simple.
  • FIG. 6a shows a schematic flowchart of a third embodiment of an ECG waveform data measurement method according to the present application
  • FIG. 6b shows a part of a fourth embodiment of an ECG waveform data measurement method according to the present application.
  • Figure 7 shows a schematic diagram of the display interface of the ECG analysis result of the present application. The method of this embodiment may include the following steps:
  • Step S301 The electrocardiograph displays the average template waveform corresponding to the ECG waveform, and displays at least one reference line at the corresponding position of the average template waveform.
  • the average template waveform corresponding to the electrocardiograph displayed by the electrocardiograph and how to obtain the average template waveform can be referred to steps S101 and S102 of the foregoing embodiment, which will not be repeated here.
  • the electrocardiograph displays an average template waveform corresponding to the ECG waveform, and displays at least one reference line at a corresponding position of the average template waveform.
  • the at least one reference line includes at least one of a P reference line, a Q reference line, an S reference line, and a T reference line.
  • the P reference line further includes the P1 reference line and the P2 reference line.
  • the T reference line further includes the T1 reference line and the T2 reference line.
  • the baseline can be automatically displayed at the corresponding position of the average template waveform after being analyzed by a preset algorithm.
  • Step S302 In response to the user's movement operation on the reference line, move the position of the reference line on the average template waveform.
  • the electrocardiograph obtains the corresponding measurement value according to the position of the reference line on the average template waveform, and then conducts the electrocardiogram analysis based on the measurement value. Therefore, whether the position of the baseline is accurate is the key to subsequent ECG data measurement and analysis. The position determined by the default of the electrocardiograph alone may be inaccurate. Therefore, this embodiment proposes that the reference line displayed can be moved according to the user's operation, so that the user can calibrate the position of the reference line to ensure subsequent ECG data measurement and The accuracy of the analysis.
  • the movement range of the reference line at the feature points in different regions can be as follows:
  • P1 baseline the baseline of the P wave starting point
  • the adjustment range is from the QRS wave starting point to the P wave end point.
  • P2 baseline the baseline for the end of the P wave, ranging from the start of the P wave to the Q baseline.
  • Q base line the range is from the end point of P wave to the base line of S point.
  • S base line the range is from the Q base line to the T wave end base line.
  • T1 baseline the baseline of the T wave starting point, ranging from the S baseline to the end of the QRS waveform.
  • T2 baseline the baseline of the end of the T wave, ranging from the start of the T wave to the end of the QRS waveform.
  • the position of the reference line on the average template waveform is moved according to the user's movement trajectory.
  • the electrocardiograph includes a touch display screen, and the display interface is a display interface of the touch display screen.
  • the user touches a certain reference line, and moves the position of the reference line on the average template waveform along with the movement track of the touch point on the display interface.
  • voice control can be used to control the movement of the baseline.
  • the electrocardiograph can detect that the user clicks on the movement icon on the display interface, and then obtain the target position of the baseline of the user input (such as input on the display interface or voice input) Information, or you can directly input a movement instruction by voice to control the movement of the reference line and move the reference line to the target position.
  • the target position of the baseline of the user input such as input on the display interface or voice input
  • the user can select multiple reference lines at the same time, and move the positions of the multiple reference lines on the average template waveform at the same time in response to the user's moving operation of the reference line.
  • it is possible to avoid moving a certain reference line to change the spacing between multiple reference lines, simplify user operations, and improve the efficiency of relocation of the reference line.
  • the user can move multiple reference lines respectively, for example, after the user moves the P reference line to the target position, the user can further move the Q reference line, the S reference line, or the T reference line.
  • Step S303 Perform data measurement on the average template waveform based on the moved reference line to obtain at least one characteristic parameter value of the ECG waveform.
  • the electrocardiograph in this embodiment can automatically calculate the corresponding characteristic parameter value based on the position of the reference line on the average template waveform.
  • the PR interval corresponding to the ECG waveform can be obtained.
  • the PR interval, QRS time limit, QT interval, and QTc interval corresponding to the ECG waveform can be obtained.
  • the QRS time limit of the corresponding ECG waveform can be obtained.
  • the QT interval and/or QTc interval corresponding to the ECG waveform can be obtained.
  • the PR interval, QRS time limit, QT interval, and QTc interval are all characteristic parameter values of the ECG waveform, and they are also an important basis for doctors to make clinical diagnosis.
  • the position of the reference line can be adjusted by moving the reference line to obtain the correct characteristic parameter value.
  • the average template waveform corresponding to the ECG waveform is displayed by the electrocardiograph, and at least one reference line is displayed at the corresponding position of the average template waveform, and the position of the reference line on the average template waveform is moved by the user's movement operation on the reference line Among them, the user can adjust the position of the reference line according to the actual situation.
  • the operation is simple.
  • the average template waveform is measured and calibrated based on the moved reference line to obtain at least one characteristic parameter value of the ECG waveform to make the characteristic parameter The value is closer to the correct characteristic parameter value.
  • the method may further include:
  • Step S304 Display at least one characteristic parameter value of the ECG waveform.
  • At least one characteristic parameter value can be displayed in the parameter display area 203 of the display interface, and at least one characteristic parameter value can also be displayed in the waveform display area 201 of the display interface.
  • the parameter display area 203 can be set according to actual conditions.
  • the position of the baseline on the average template waveform can be acquired in real time, and based on the position, at least one characteristic parameter value of the obtained ECG waveform can be displayed in real time, that is, the characteristic parameter value follows the baseline. Move and respond to changes.
  • the PR interval, QRS time limit, QT interval, QTc interval and other characteristic parameter values can be displayed in the parameter display area 203 of the display interface, and the time limit (T), amplitude ( V), and heart rate (bpm) and other characteristic parameter values. If the characteristic parameter value displayed on the display interface is not within the corresponding normal characteristic parameter range, the characteristic parameter value can be marked. For example, when an adult’s heart rate is 60-100 times, the normal range of QT interval is 0.44s ⁇ 0.36s. If the QT interval of an adult’s average template waveform displayed on the display interface is 0.56s, it is not within the normal range. , The characteristic parameter value is displayed in red to remind the user that the characteristic parameter value is not within the normal value range.
  • Step S305 The trigger signal of the user on the analysis icon on the display interface is detected, the characteristic parameter value is analyzed, and the initial electrocardiogram analysis result is obtained.
  • the electrocardiograph can automatically analyze the characteristic parameter values to obtain the initial electrocardiogram analysis result.
  • the initial ECG analysis result can be displayed on other display interfaces.
  • Step S306 The trigger signal of the user modifying the result icon on the display interface is detected, and the modification input area containing the initial ECG analysis result is displayed.
  • Step S307 According to the user's input information in the modification input area, the content in the modification input area is updated.
  • Step S308 The trigger signal of the user confirming the modification icon on the display interface is detected, the current content in the modification input area is acquired, and the current content is used as the final ECG analysis result.
  • the user can judge the correctness of the initial electrocardiograph analysis result automatically generated by the electrocardiograph based on the average template waveform, the reference line and the corresponding characteristic parameter values displayed in the display interface.
  • the initial ECG analysis result can be modified directly on the ECG machine to obtain the correct ECG analysis result.
  • the electrocardiograph can store the initial electrocardiogram analysis result and the electrocardiogram analysis result modified by the user for subsequent inspection, retrieval or modification. Further, the electrocardiograph can also store information such as the person who modified, the time of modification, and the place of modification in a certain order to facilitate subsequent inspection, retrieval or modification.
  • the current content Before taking the current content as the final ECG analysis result, it also includes: displaying the signature input area on the display interface; obtaining the user's touch point movement trace in the signature input area as the signature to be verified; obtaining the pre-stored signature and signature of the currently logged-in account Whether the signature to be verified matches; if it matches, the current content will be used as the final ECG analysis result; if it does not match, the current content will not be used as the final ECG analysis result.
  • a prompt message can be sent to the user of the currently logged-in account to remind the user that there is an abnormal modification of the ECG analysis result on the ECG machine.
  • the signature input area can be locked to prevent others from constantly changing the signature to be verified to obtain the pre-stored signature of the currently logged-in account, and then modify the ECG analysis result.
  • the electrocardiograph can remind the user who is currently logged in to the account through a short message, a phone call, or the prompt sound of an electrocardiograph accessory device carried by the user.
  • the signature to be verified and the pre-stored signature may be different, so even if the signature to be verified is the signature of the user of the currently logged-in account, it may exist and the pre-stored signature.
  • the signature does not match. Therefore, in order to solve the situation that the signature to be verified of the user currently logged in to the account does not match the pre-stored signature, and the final ECG analysis result cannot be modified, the ECG machine can also include a camera module.
  • the pre-stored signature of the currently logged-in account is different from the signature to be verified.
  • the ECG machine When matching, the ECG machine automatically starts the camera module to obtain the characteristic information of the user who is currently modifying the ECG analysis result, and matches the characteristic information of the user who is currently modifying the ECG analysis result with the pre-stored characteristic information of the current login account. If it matches If successful, the current content will be used as the final ECG analysis result; if the match is unsuccessful, the current content will not be used as the final ECG analysis result. Further, the acquired characteristic information of the user who is currently modifying the ECG analysis result can be sent To the user who is currently logged in to the account, and save it in the electrocardiograph for later inspection.
  • the feature information can be face image information or iris information.
  • FIG. 8 shows a schematic flowchart of a fifth embodiment of a method for measuring ECG waveform data according to the present application.
  • Step S401 The electrocardiograph displays the average template waveform corresponding to the ECG waveform, and displays at least one reference line at the corresponding position of the average template waveform.
  • the electrocardiograph displays the average template waveform corresponding to the ECG waveform and how to obtain the average template waveform, please refer to steps S101 and S102 of the above embodiment, and at least one reference line is displayed at the corresponding position of the average template waveform, please refer to step S301 of the above embodiment , I won’t repeat it here.
  • Step S402 In response to the user's first preset operation on the average template waveform, the average template waveform is enlarged and displayed, and the reference line is correspondingly displayed on the corresponding position of the enlarged average template waveform.
  • the electrocardiograph may include a touch screen, which can amplify the average template waveform in response to a user's operation on the display interface of the touch screen.
  • the first preset operation may include clicking a preset icon on the display interface or clicking an average template waveform displayed on the display interface, and touching the display interface to form two distant touch points on the display interface.
  • the display may include: if it is detected that the preset icon or the average template waveform is clicked, the average template waveform will be enlarged and displayed according to the preset unit magnification.
  • the preset icon can be set on the display interface of the electrocardiograph or other devices connected to the electrocardiograph.
  • the preset icon is set on the display interface of the electrocardiograph.
  • the preset unit magnification can be set according to actual needs, and the preset unit magnification is, for example, but not limited to, 1x, 3x, 10x, etc.
  • the average template waveform is enlarged and displayed according to the preset 3 times magnification.
  • the preset icon is clicked again, Continue to enlarge and display the average template waveform that has been magnified 3 times according to the preset 3 times magnification.
  • the average template waveform displayed on the display interface is 9 times the size of the original average template waveform. It is understandable that the amplification of the waveform can be within a certain preset range.
  • the average template waveform displayed on the display interface is magnified to the magnification threshold, and then the detection is continued.
  • the average template waveform is enlarged and displayed, which may include: obtaining the average template waveform of two clicks Based on the time difference, determine the magnification; according to the magnification, the average template waveform is magnified and displayed.
  • the larger the time difference the smaller the corresponding magnification.
  • it before determining the magnification based on the time difference, it also includes establishing the correspondence relationship between the time difference and the magnification or the time difference range and the magnification or.
  • the time difference is 0.1s, 0.5s, 1s, and the corresponding magnifications are 10 times, 5 times, and 1 times, respectively. If it is detected that the time difference between two clicks of the average template waveform is 0.5s, the average template waveform is correspondingly magnified by 5 times.
  • the time difference range is 100ms ⁇ 0.1s, 0.1s ⁇ 0.5s, 0.5s ⁇ 1s, and the corresponding magnifications are 8 times, 4 times, 2 times, and each time difference range does not include the right end value of the range .
  • the average template waveform will be enlarged by 2 times. It is understandable that the amplification of the waveform can be within a certain preset range.
  • the average template waveform displayed on the display interface is enlarged to the magnification threshold, and the average template waveform displayed on the double-click display interface is continuously detected. Enlarge the average template waveform displayed on the display interface, or restore the average template waveform displayed on the display interface to its original size.
  • enlarging and displaying the average template waveform may include: obtaining The speed when the two touch points move away and/or the distance when they stop moving away; determine the magnification based on the speed and/or distance; zoom in and display the average template waveform according to the magnification.
  • the electrocardiograph can obtain the speed when the two touch points move away and the distance when they stop moving away.
  • the faster the speed and/or the greater the distance the greater the magnification.
  • the magnification before determining the magnification based on the speed and/or distance, it also includes establishing the correspondence between the speed and the magnification, and the correspondence between the distance and the magnification.
  • the corresponding relationship can be established in advance according to needs, including: the speed is 10cm/s, 1cm/s, 1mm/s, the corresponding magnification is 9 times, 6 times, and 3 times; the distance is 0.1cm, 1cm, 2cm, corresponding The magnification is 1 times, 2 times, and 3 times.
  • the magnification is determined only based on the speed, based on the above-mentioned speed correspondence, when it is determined that the speed when the two touch points move away from each other is 1 cm/s, the corresponding magnification is 6 times.
  • the magnification is determined only based on the distance, based on the above-mentioned corresponding relationship of the distance, when it is determined that the distance between the two touch points when they stop moving away is 2 cm, the corresponding magnification is 3 times.
  • the waveform display area for zooming in and displaying the average template waveform can occupy the entire display interface to display the amplified average template waveform through the entire waveform display area, so that users can view the average template waveform or average Template waveform for other operations.
  • the measuring ruler icon can be set on the display interface. The user clicks the measuring ruler icon to display the measuring ruler in the corresponding position of the average template waveform to measure the amplified average template waveform to obtain the characteristic parameter value.
  • the characteristic parameter value may be time limit, amplitude, heart rate, and so on.
  • the electrocardiograph may also include a recovery icon.
  • the recovery icon can be set on the display interface.
  • the user can directly restore the average template waveform in the zoomed state to the original display size by clicking the restore icon.
  • the average template waveform of the electrocardiogram waveform in the enlarged state can be directly restored to the original display size.
  • the original display size is the size of the waveform displayed when the thumbnail of the waveform is initially clicked.
  • the aforementioned preset operations can be implemented through touch screen operations, cursor control operations, voice control operations, and the like.
  • touch screen operations cursor control operations
  • voice control operations and the like.
  • the electrocardiograph When the electrocardiograph magnifies and displays the average template waveform, it can also display the reference line on the corresponding position of the amplified average template waveform.
  • the original position information of the reference line on the average template waveform before magnification can be obtained, and the product of the original position information and the current magnification of the average template waveform can be used as the latest position of the reference line on the amplified average template waveform, and The baseline is displayed at the latest position.
  • the average template waveform is magnified and displayed, since the magnified waveform may not be able to display the magnified complete waveform in the original waveform display area, the partially magnified waveform can be displayed in the waveform display area.
  • Band when the user's sliding operation on the displayed waveform is detected, such as a right sliding operation, the wave band located on the right side of the previously displayed amplified band will be displayed on the waveform display area. If the sliding operation to the left is displayed, the waveform will be displayed. The band to the left of the previously displayed zoomed band is displayed on the area. Or, it is not limited to only display the amplified band in the waveform display area, but displays the amplified waveform on the complete display interface (as shown in Figure 5).
  • Step S403 In response to the user's second preset operation on the reference line, adjust the position of the reference line in the amplified average template waveform.
  • the second preset operation can be the mobile operation in the above-mentioned embodiment, or the user's click operation on the mobile icon on the display interface, or the user's voice control, etc., for example, the electrocardiograph detects that the user clicks the mobile icon on the display interface, and obtains The user inputs (such as input on the display interface or voice input) the target position information of the reference line, then the reference line is moved to the target position.
  • the electrocardiograph detects that the user clicks the mobile icon on the display interface, and obtains The user inputs (such as input on the display interface or voice input) the target position information of the reference line, then the reference line is moved to the target position.
  • the waveform of the average template can be automatically enlarged, and the user adjusts the position of the reference line in the amplified average template waveform according to the waveform of the amplified average template. .
  • the average template waveform can be enlarged while the reference line is moved. The process is fast and does not require the user to manually amplify the waveform.
  • the user can also be determined according to the user's choice whether to lock the current display interface.
  • the current display interface is locked, the user touches the current display interface again, the display interface will not be displayed. The content is changed.
  • the user can also unlock the current display interface as needed.
  • the above steps can be implemented by shortcut keys set by the user, and the shortcut keys can be set on the display interface.
  • Step S404 Perform data measurement on the average template waveform based on the adjusted reference line to obtain at least one characteristic parameter value of the ECG waveform.
  • step S404 the steps of steps S304-S308 in the foregoing embodiment may be included, which will not be repeated here.
  • the electrocardiograph can display the average template waveform corresponding to the ECG waveform, and display at least one reference line at the corresponding position of the average template waveform, the average template waveform is enlarged and displayed through the first preset operation, and the reference line Correspondingly displayed on the corresponding position of the amplified average template waveform, and then through the second preset operation, adjust the position of the reference line in the amplified average template waveform, in which, since the waveform of the average template is enlarged and displayed, it is convenient for the user to find The target position of the baseline adjustment, and then accurately measure the relevant parameters of the average template waveform based on the adjusted baseline to obtain at least one characteristic parameter value of the ECG waveform, so that the characteristic parameter value is closer to the correct characteristic parameter value.
  • Figure 9 shows a schematic flow chart of the sixth embodiment of the ECG waveform data measurement method of the present application.
  • Figure 10a shows the enlarged display interface of the average template waveform of lead II of the present application.
  • Fig. 10b shows another schematic diagram of the display interface after the average template waveform of the second lead of the present application is enlarged.
  • Step S501 The electrocardiograph displays the average template waveform corresponding to the ECG waveform, and displays at least one reference line at the corresponding position of the average template waveform.
  • the electrocardiograph displays the average template waveform corresponding to the ECG waveform and how to obtain the average template waveform, please refer to steps S101 and S102 of the above embodiment, and at least one reference line is displayed at the corresponding position of the average template waveform, please refer to step S301 of the above embodiment , I won’t repeat it here.
  • Step S502 Determine the area to be enlarged on the display interface based on the preset area information or the area information selected by the user.
  • the area to be enlarged on the display interface can be set by default or set by the user.
  • the area to be magnified is used to select the waveform for subsequent magnification and display, that is, the waveform that is not in the area to be magnified will not be magnified and displayed subsequently. Therefore, in this embodiment, the average template waveform displayed on the display interface can be partially enlarged according to the setting of the area to be enlarged.
  • the preset area information may be preset location information of a certain area in the display interface.
  • the area information selected by the user may include the location information of the area selected by the user on the display interface or the location information input by the user.
  • the preset area information or the area information selected by the user may be the entire waveform display area or a part of the waveform display area. After the area to be magnified is determined, the electrocardiograph will only magnify the average template waveform displayed in the area to be magnified.
  • Step S503 In response to the user's first preset operation on the average template waveform, obtain the average template waveform located in the area to be amplified as the waveform to be amplified.
  • Steps S503, S504, S505 and S506 of this embodiment can be used to realize that in response to the user's first preset operation on the average template waveform, the average template waveform is enlarged and displayed, and the reference line is displayed corresponding to the enlarged average template waveform. Positional steps.
  • the user only needs to zoom in and display the T1-T2 segment waveform, then the user can select the area where the T1-T2 segment waveform is located on the display interface as the area to be magnified 204, so that the user can perform the average template waveform
  • the T1-T2 waveforms in the area to be amplified 204 can be acquired as the waveform to be amplified.
  • Step S504 Enlarge and display at least part of the band of the waveform to be enlarged.
  • the amplified band can be displayed in the waveform display area of the display interface, as shown in FIG. 10a, after obtaining the T1-T2 waveform in the area to be amplified 204 as the waveform to be amplified, it can be displayed on the waveform display area 202 Display the enlarged T1-T2 segment waveform.
  • the amplified waveband can also be displayed only in the above-mentioned area to be enlarged 204, for example, at least part of the waveband of the T1-T2 segment waveform can be enlarged and displayed in the area to be enlarged 204.
  • the amplified band can also be displayed on the complete display interface, as shown in Figure 10b. If the user selects the area where the P1-T2 waveform is located in the waveform display area as the area to be magnified, the P1-T2 segment can be displayed The waveform is enlarged and displayed.
  • the magnification when the magnification is large, all the waveforms to be amplified cannot be displayed in the display interface. Considering that the amplified waveforms may not be displayed completely, you can consider selecting part of the waveforms to be amplified for magnification. Specifically, you can select the band of the user-selected baseline in the waveform to be magnified for magnification, or you can select the middle band of the waveform to be magnified for magnification. The specific band selection method can be set according to actual needs. Do restrictions. It should be noted that the reference line pre-selected by the user is the reference line in the waveform to be amplified.
  • this step S501 may further include in response to a user's selection operation on at least one reference line, determining that the at least one reference line is the first target reference line; this step S504 corresponds specifically to: The band of the enlarged waveform containing the first target reference line is enlarged and displayed.
  • the reference line in response to the user's selection operation of selecting a reference line, the reference line is used as the first target reference line, and the band containing the first target reference line in the waveform to be amplified is enlarged and displayed, which includes the first target reference line
  • the band of the line may be a band within a preset time range including the first target reference line.
  • the S reference line in response to the user's selection operation on the S reference line, the S reference line is taken as the first target reference line, and the band within the 10 ms range including the S reference line is enlarged and displayed.
  • the waveband containing the first target reference line may be a waveband between the first and last reference lines or a waveband within a preset time range including the first and last reference lines.
  • the preset time range can be selected according to actual conditions. For example, in response to the user's selection operation on the P1 baseline, the Q baseline, and the S baseline, the P1 baseline, the Q baseline, and the S baseline are used as the first target baseline, and the P1 baseline and the S baseline are the first and last target lines, respectively.
  • the reference line, the band between the P1 reference line and the S reference line, or the band within 20ms including the P1 reference line and the S reference line, is displayed in an enlarged manner.
  • the selection operation can be realized by means of touch screen, cursor or voice input. For example, by touching the Q base line, the Q base line is selected.
  • the selected reference line can be used to determine the current zooming band to be displayed, so that the first target can be targeted in subsequent operations.
  • the reference line is moved, and there is no need to find the reference line that needs to be repositioned after displaying the enlarged waveform, which can simplify the user's operation.
  • Step S505 correspondingly display the reference line on the corresponding position of the enlarged average template waveform.
  • the electrocardiograph can obtain the original position of the reference line on the waveform to be amplified before amplification, determine the corresponding position of the original position on the waveform to be amplified after amplification, and display the reference line on the corresponding position. For example, if the S reference line is at the 5ms position on the waveform to be amplified before zooming in, the original position of the S reference line is also magnified twice after the waveform to be amplified is enlarged by 2 times, so that it can be determined that the S reference line is zooming in.
  • the corresponding position on the subsequent waveform to be amplified is the 10ms position, and the reference line is displayed at the 10ms position.
  • step S501 it may further include: in response to a user's selection operation on at least one reference line, determining at least one reference line as the second target reference line.
  • correspondingly displaying the reference line at the corresponding position of the enlarged average template waveform includes: displaying the second target reference line at the second preset position of the currently displayed enlarged average template waveform.
  • the second preset position may be the middle position or any position.
  • the reference line can be directly displayed at the preset position.
  • the second target reference line includes multiple reference lines, the multiple reference lines may be respectively displayed at different preset positions or the multiple reference lines may be arranged and displayed at a certain preset position at a certain interval.
  • the second target baseline can always be displayed on the currently displayed zoom band.
  • the user needs to move the Q base line to the area to be magnified 204, but because the Q base line is far from the area to be magnified, it cannot be displayed on the current display interface after magnification (as shown in Figure 10a). Show), but you can select the Q baseline before performing the first preset operation.
  • the Q baseline can be directly displayed in the zoomed band The middle position or any position of, so that the user can perform follow-up operations on the Q baseline.
  • Step S506 Display the reduced waveform image including the complete average template waveform on the first preset position of the display interface, and display the area frame corresponding to the area to be enlarged in the corresponding position in the reduced waveform image.
  • a reduced waveform image containing the complete average template waveform may be displayed in the first preset position of the display interface.
  • the first preset position can be set as required.
  • the first preset position can be the upper right corner, the upper left corner, the lower right corner, or the lower left corner.
  • a reduced waveform image 901 containing a complete average template waveform is displayed on the upper left corner of the display interface, and an area frame 902 corresponding to the area to be enlarged is displayed at a corresponding position in the reduced waveform image 901.
  • the waveform thumbnail can also be a waveform thumbnail in the waveform selection area 201, and an area frame 903 corresponding to the area to be enlarged is displayed in a corresponding position in the waveform thumbnail, which will not be repeated here.
  • Step S507 Detect the user's moving operation of the area frame in the reduced waveform image, and update the position of the area to be enlarged based on the position of the area frame in the reduced waveform image after the movement.
  • the moving operation can be to hold down the area frame and drag the area frame in the reduced waveform image, that is, move the position of the area frame in the reduced waveform image.
  • the display interface further includes a slider area, and the movement operation can be dragging the slider in the slider area.
  • the slider in the slider area is detected to be dragged, the corresponding moving area frame is located in the zoomed-out waveform.
  • the area enclosed by the above-mentioned area frame is the area to be enlarged.
  • Step S508 Obtain the updated average template waveform in the region to be magnified as the new waveform to be magnified, and re-execute the magnified display of at least part of the band of the waveform to be magnified and subsequent steps.
  • the touch point can also be generated by touching the display interface, and the moving average template waveform corresponding to the moving track of the touch point is used to adjust the average template waveform displayed on the display interface.
  • the average template waveform displayed in the current display interface is a P2-Q segment waveform.
  • Step S509 In response to the user's second preset operation on the reference line, adjust the position of the reference line in the amplified average template waveform.
  • Step S510 Perform data measurement on the average template waveform based on the adjusted reference line to obtain at least one characteristic parameter value of the ECG waveform.
  • steps S509 and S510 For the description of steps S509 and S510, reference may be made to the description of the corresponding positions in step S403 and step S303 in the foregoing embodiment, respectively. Of course, in other embodiments, after step S510, the steps of steps S304-S308 in the foregoing embodiment may be included, which will not be repeated here.
  • the flexibility of zooming in and displaying the average template waveform can be improved, and since only the bands that need to be adjusted can be zoomed in Display can improve the accuracy of the positioning of the reference line; secondly, the selected reference line can quickly determine the current zoom band to be displayed; again, after zooming in and displaying the waveform to be zoomed in the area to be zoomed in, you can zoom out by changing the waveform
  • the position of the area frame in the figure changes the position of the area to be magnified, so that the waveform to be magnified in the area to be magnified can be updated quickly and accurately, and the waveform to be magnified can be enlarged and displayed.
  • FIG. 11 is a schematic diagram of a framework of an embodiment of an electrocardiograph according to the present application.
  • the electrocardiograph 100 includes a processor 101 and a memory 102 that are coupled to each other.
  • the processor 101 is configured to execute the program instructions stored in the memory 102 to implement the steps in any of the above method embodiments or the ECG machine correspondingly executes in any of the above method embodiments. A step of.
  • the electrocardiograph 100 may also include a touch screen, printing components, communication circuits, etc. according to requirements, which are not limited herein.
  • the processor 101 is configured to control itself and the memory 102 to implement the steps in any of the foregoing method embodiments.
  • the processor 101 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 101 may be an integrated circuit chip with signal processing capability.
  • the processor 101 can also be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor 101 may be jointly implemented by multiple integrated circuit chips.
  • FIG. 12 is an exploded schematic diagram of another embodiment of the electrocardiograph according to the present application.
  • the electrocardiograph includes a host computer 10, the host computer 10 includes a housing 11 and a display screen 12 embedded in the housing, the host computer 10 may include the processor and memory shown in FIG. 11, and may also include a communication circuit to Used for communication with external devices, where the communication circuit may include at least one of the following: wifi communication circuit, Bluetooth communication circuit, cellular mobile communication circuit, etc.
  • the display screen 12 is a touch-sensitive display screen, so that the user can interact with the electrocardiograph by touching the display screen 12.
  • a data collection icon is displayed on the touch screen display interface of the electrocardiograph, and the ECG data collection is performed when the user's touch signal on the data collection icon is detected.
  • the electrocardiograph can also use the touch screen to implement interactive operations with the user in any of the above embodiments.
  • the housing 11 includes a first side 111 and a second side 112 disposed opposite to each other.
  • the first side 111 is used to connect with a peripheral device.
  • the peripheral device may include a handle 20 and a printing component 30. Any of them.
  • the second side 112 and the peripheral device abut on the supporting surface at the same time, so that the plane where the display screen 12 is located and the supporting surface are formed.
  • the predetermined angle is convenient for the user to view the interface displayed on the display screen 12 or touch the display screen 12.
  • the predetermined angle can be set to 30 degrees, 35 degrees, etc., which is not specifically limited in this embodiment.
  • the host 10 and the peripheral device may also be provided with matching connectors.
  • the peripheral device including the handle 20 the host 10 is provided with positioning grooves 113 on both sides close to the first side portion 111, and the handle 20 includes two opposite first positioning arms 21, the first positioning arms 21 and the positioning grooves. 113 are matched with each other, so that the first positioning arm 21 can be inserted into the positioning slot 113 to realize the detachable connection between the host 10 and the handle 20.
  • the first side portion 111 may also be provided with a number of clamping holes (not shown), the handle 20 also includes a first mounting portion 22 arranged between the two first positioning arms 21, the first mounting The portion 22 is provided with a first clamping post 221 that matches with the clamping hole.
  • the handle 20 in order to facilitate the user to carry the host 10 through the handle 20, the handle 20 further includes a handle 23.
  • the handle 23, the two first positioning arms 21, and the first mounting portion 22 are enclosed to form a through groove 24 to It can be held by the user so that the user can carry the host 10 conveniently.
  • the printing assembly 30 may include two oppositely disposed second positioning arms 31, and the second positioning arms 31 and the positioning grooves 113 are matched with each other, so that the The second positioning arm 31 is inserted into the positioning slot 113 to realize the detachable connection between the host 10 and the printing assembly 30.
  • the printing assembly 30 further includes a second mounting portion 32 disposed between the two second positioning arms 31, and a second clamping post 321 that matches the clamping hole is provided on the second mounting portion 32. .
  • the host 10 further includes a first collection interface 114, a second collection interface 115, and a switch button 116 arranged on the housing 11.
  • the second side 112 is also provided with a sound hole 1121 and a scanning head for scanning barcodes. 1122.
  • the host 10 may further include a power adapter interface, an Ethernet port, a USB (Universal Serial Bus) interface, an SD (Secure Digital) memory card slot, and a SIM (Subscriber Identification Module). ) At least one of a card slot and an NFC (Near Field Communication) recognizer.
  • USB Universal Serial Bus
  • SD Secure Digital
  • SIM Subscriber Identification Module
  • the operating system (Operation System, OS) of the host 10 may be based on Linux, Windows, etc., which is not specifically limited in this embodiment.
  • handles 20 and printing components 30 can be additionally configured on the basis of the host 10, and for scenes used in the hospital, can be additionally configured on the basis of the host 10
  • the printing component 30 or the host 10 is connected to an external printing device through a network, the printing component 30 may not be additionally configured, and this embodiment will not give examples one by one here.
  • the above-mentioned electrocardiograph can also optionally be provided with at least one of the following components: a camera component for image or video acquisition and cooperation with a communication circuit to achieve video interaction with the remote end, and a GPS positioning group for acquiring the electrocardiograph’s
  • the location and biometric collection components are used to collect the user's biometrics (such as fingerprint collection components to collect fingerprints, camera components to collect pupils, etc.).
  • FIG. 13 shows a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • the computer-readable storage medium 300 stores program instructions 301.
  • the program instructions 301 are executed by a processor, any of the above Steps of an embodiment.
  • the computer-readable storage medium 300 may specifically be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disk that can store program instructions 301
  • the medium may also be a server storing the program instructions 301, and the server may send the stored program instructions 301 to other devices to run, or it may run the stored program instructions 301 by itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请公开了一种心电波形的数据测量方法、心电图机和可读存储介质,该方法包括:心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线;响应于用户对基准线的移动操作,移动基准线在平均模板波形上的位置;基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值。通过上述方式,本申请能够实现对平均模板波形的相关参数进行校准,且操作简单。

Description

心电波形的数据测量方法、心电图机和可读存储介质 【技术领域】
本申请涉及心电技术领域,特别是涉及一种心电波形的数据测量方法、心电图机和可读存储介质。
【背景技术】
心电图记录着人体心脏的生理电活动,其中蕴含着丰富的反应心脏节律及其电传导性的生理和病理信息,是诊断心脏疾病、评价心脏功能的重要依据之一。故医生在进行临床诊断时,通常需要查看心电波形的平均模板,进而基于该平均模板的参数进行诊断。
目前,电脑端根据获取到的心电图机采集到的心电波形计算出平均模板,并在电脑端显示平均模板波形。根据上述方式,用户需要在采集完心电波形后,再通过电脑端对平均模板波形的相关参数进行测量、校准以及修改,可见,上述操作较为复杂。此外,有时会出现基准线定位不准,从而导致根据基准线测量的相关参数值不准的问题。
【发明内容】
本申请主要解决的技术问题是提供一种心电波形的数据测量方法、心电图机和可读存储介质,能够实现对平均模板波形的相关参数进行校准,且操作简单。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种心电波形的数据测量方法,包括:心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线;响应于用户对基准线的移动操作,移动基准线在平均模板波形上的位置;基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值。
其中,移动基准线在平均模板波形上的位置,包括:按照用户的移动轨迹,移动基准线在平均模板波形上的位置。
其中,至少一条基准线包括P基准线、Q基准线、S基准线和T基准线中的至少一者;基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值,包括以下至少一个步骤:基于移动后的P基准线在平均模板波形上的位置,获得对应心电波形的PR间期;基于移动后的Q基准线在平均模板波形上的位置,获得对应心电波形的PR间期、QRS时限、QT间期、QTc间期中的至少一个;基于移动后的S基准线在平均模板波形上的位置,获得对应心电波形的QRS时限;基于移动后的T基准线在平均模板波形上的位置,获得对应心电波形的QT间期和/或QTc间期。
其中,在基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值之后,方法还包括:显示心电波形的至少一个特征参数值。
其中,在基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值之后,方法还包括:检测到用户对显示界面上的分析图标的触发信号,对至少一个特征参数值进行分析,得到初始心电分析结果。
其中,在对至少一个特征参数值进行分析,得到初始心电分析结果之后,方法还包括:检测到用户对显示界面上的结果修改图标的触发信号,显示包含初始心电分析结果的修改输入区;根据用户在修改输入区中的输入信息,更新修改输入区中的内容;检测到用户对显示界面上的确认修改图标的触发信号,获取修改输入区中的当前内容,并将当前内容作为最终心电分析结果。
其中,在将当前内容作为最终心电分析结果之前,方法还包括:在显示界面上显示签名输入区;获取用户在签名输入区中的触摸点移动痕迹,作为待验证签名;获取当前登录账户的预存签名与待验证签名是否匹配;若匹配,则执行将当前内容作为最终心电分析结果;若不匹配,则不执行将当前内容作为最终心电分析结果。
其中,在显示心电波形对应的平均模板波形之前,方法还包括:获取心电波形上的多个有效QRS波形;基于多个有效QRS波形对应点的幅值,得到心电波形的平均模板波形。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种心电图机,包括:相互耦接的处理器和存储器,处理器用于执行存储器存储的程序指令以实现如上述任一方法中的步骤。
为解决上述技术问题,本申请采用的再一个技术方案是:提供一种计算机可读存储介质,该计算机可读存储介质上存储有程序指令,程序指令被处理器执行时实现如上述中任一方法中的步骤。
本申请的有益效果是:区别于现有技术的情况,本申请通过心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线,通过用户对基准线的移动操作,移动基准线在平均模板波形上的位置,其中,用户可以根据实际情况对基准线位置进行调整,且操作简单,基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值,以使得该特征参数值更加接近于正确的该特征参数值。
【附图说明】
图1a是本申请心电波形的数据测量方法第一实施例的流程示意图;
图1b是本申请心电波形的数据测量方法第一实施例步骤S101的流程示意图;
图2是本申请第Ⅱ导联的平均模板波形的显示界面示意图;
图3是本申请全部导联的平均模板波形的显示界面示意图;
图4是本申请心电波形的数据测量方法第二实施例的流程示意图;
图5是本申请第Ⅱ导联的平均模板波形放大后的显示界面示意图;
图6a是本申请心电波形的数据测量方法第三实施例的流程示意图;
图6b是本申请心电波形的数据测量方法第四实施例的部分流程示意图;
图7是本申请心电分析结果的显示界面示意图;
图8是本申请心电波形的数据测量方法第五实施例的流程示意图;
图9是本申请心电波形的数据测量方法第六实施例的流程示意图;
图10a是本申请第Ⅱ导联的平均模板波形放大后的显示界面的另一示意图;
图10b是本申请第Ⅱ导联的平均模板波形放大后的显示界面的又一示意图;
图11是本申请心电图机一实施例的框架示意图;
图12是本申请心电图机另一实施例的爆炸示意图;
图13是本申请计算机可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1a至图3,图1a示出了本申请心电波形的数据测量方法第一实施例的流程示意图,图1b示出了本申请心电波形的数据测量方法第一实施例步骤S101的流程示意图,图2示出了本申请第Ⅱ导联的平均模板波形的显示界面示意图,图3示出了本申请全部导联的平均模板波形的显示界面示意图。本实施的方法可以包括以下步骤:
步骤S101:心电图机对心电波形进行处理,得到心电波形对应的平均模板波形。
其中,本实施例中的心电图机具有计算能力,可以直接对采集到的心电波形进行处理,得到该心电波形对应的平均模板波形。
具体地,结合参阅图1b,步骤S101可以包括以下子步骤S1011和S1012:
步骤S1011:获取心电波形上的多个有效QRS波形。
例如,心电图机获取心电波形上的多个有效QRS波形,其中心电图机可以根据预设算法直接筛选出完整的、正常的QRS波形,其中完整的QRS波形可以是包含P波、Q波、R波、S波和T波的波形,正常的QRS波形可以是连续的波形或特征值在预设范围内的波形。
此外,由于无效QRS波形的数量一般要远远小于有效QRS波形的数量,所以为了简便算法步骤,可以通过预设算法判断出无效QRS波形,将其排除,从而将剩余的QRS波形作为有效的QRS波形。其中,可以通过判断QRS波形是否完整,进行QRS波形的无效判断。一般地,由于心电图机开始和结束采集心电波形的时间点不一定是QRS波形的有效起点和终点,所以采集到的心电波形中的第一个QRS波形和最后一个QRS波形可能是不完整的心电波形,故可以将该不完整的QRS波形判断为无效QRS波形并将其排除,保留其他有效的QRS波形。另外,由于被采集者在初始采集心电波形时情绪紧张,导致初始采集的QRS波形为异常QRS波形,且会持续一段时间,所以可以通过预设算法将情绪紧张型的QRS波形判断出来,并将其排除;或者直接将在开始预设时间段QRS波形判断为无效QRS波形并将其排除。
步骤S1012:基于多个有效QRS波形对应点的幅值,得到心电波形的平均模板波形。
在获取该心电波形上的得到多个有效QRS波形之后,获取该多个有效QRS波形对应点的幅值,将多个有效QRS波形对应点的幅值进行取平均值或取中值,以作为该心电波形的平均模板波形的对应点的幅值。例如,将多个有效QRS波形的波峰点的幅值进行取平均值,作为该心电波形的平均模板波形对应波峰点的幅值,同理可以将多个有效QRS波形的波谷点的幅值进行取平均值,作为该心电波形的平均模板波形对应波谷点的幅值。除波峰点和波谷点外,心电波形的平均模板波形的其他对应点的幅值也可以采用多个有效QRS波形对应点的幅值进行取平均值或取中值的方式获得,在此不做赘述。
在一些实施例中,步骤S1012可具体包括:获取多个有效QRS波形上对应点的幅值的平均值,以作为平均模板波形上对应点的幅值。
一般地,心电波形可以包括起点、终点、波峰、波谷。具体地,可以是将获取到的多个有效QRS波形进行对准,即多个有效QRS波形的起点和终点相同,获取对应同一时间点的多个有效QRS波形的幅值,计算出该时间点对应的多个有效QRS波形的幅值的平均值,将该平均值作为该时间点对应的平均模板波形的幅值。根据该方法对应计算所有时间点对应的平均模板波形的幅值,以得到心电波形的平均模板波形。
在另一些实施例中,步骤S1012可具体包括:将多个有效QRS波形按照幅值大小进行排序,取处于中间位置的有效QRS波形作为心电波形对应的平均模板波形。
具体地,可以是将获取到的多个有效QRS波形进行对准,即多个有效QRS波形的起点和终点相同,将一时间点对应的多个有效QRS波形的幅值根据由大到小或由小到大的顺序进行排序,取处于中间位置的有效QRS波形作为心电波形对应的平均模板波形。其中,该时间点可以是随机选取或预先设定的。
其中,上述排序方式包括两种情况,一种情况:若多个有效QRS波形为奇数个有效QRS波形时,此时处于中间位置的有效QRS波形只有一个,即可以直接选取该有效QRS波形作为心电波形对应的平均模板波形;另一种情况:若多个有效QRS波形为偶数个有效QRS波形时,此时处于中间位置的有效QRS波形有两个,一种实施方式是选取其中一个有效QRS波形作为心电波形对应的平均模板波形,另一种实施方式是将该两个有效QRS波形上对应点的幅值的平均值作为平均模板波形上对应点的幅值,以得到心电波形的平均模板波形。需要说明的是,得到平均模板波形的方法有多种,不限于上述步骤S1012描述的方式。
在一些实施例中,心电图机可以采集得到多导联心电波形。其中多导联可以包括是3导联、5导联、12导联、15导联以及18导联等,在此不做限定。对应地,本步骤S101可具体包括:对多导联心电波形中的每导联心电波形进行处理,得到每导联心电波形对应的平均模板波形。其中,可对每导联心电波形执行上述步骤S1011和S1012以得到每导联心电波形对应的平均模板波形,此处不做赘述。步骤S102:在显示界面上显示平均模板波形。
本实施例中,心电图机可以包括至少一个显示界面,该显示界面用于显示平均模板波形。例如,心电图机设有触控显示屏,通过该触控显示屏显示的界面即为该显示界面。
多导联心电波形可对应存在多个平均模板波形,心电图机可提供波形选择区给用户选择要显示的平均模板波形,进而显示用户选择的平均模板波形。其中,心电图机可以包括至少 一个显示界面。如图2和图3所示,显示界面可以包括波形选择区201和波形显示区202。波形选择区201和波形显示区202的区域比例和相对位置可以根据实际情况进行调整。可选地,波形选择区201和波形显示区202的区域比例可以为1:4。
在显示界面的波形选择区201中显示有多个波形略缩图,其中,多个波形略缩图可以包括每个导联心电波形的平均模板波形略缩图(如图2的波形选择区201中的第I导联的平均模板波形略缩图、第II导联的平均模板波形略缩图、第III导联的平均模板波形略缩图……)、所有导联心电波形的平均模板波形进行叠加得到的略缩图(如图2的波形选择区201中ALL导联的平均模板波形叠加略缩图)。其中,波形略缩图中包括了导联的名称和该导联对应的平均模板波形。检测到用户在波形选择区201中对一波形略缩图的选择信号,将选择的波形略缩图对应的平均模板波形在波形显示区202中显示。其中,用户可以通过波形略缩图直观的查看到波形,以方便用户快速、准确地选择所需要查看的平均模板波形。可选地,当再次检测到用户在波形选择区201中对该波形略缩图的选择信号时,对该波形显示区202中显示的心电波形的平均模板波形进行隐藏,以防止隐私信息被泄露。例如,当医生不需要查看心电波形时,可以将波形显示区202中显示的波形进行隐藏,以防止隐私信息被泄露。
其中,上述选择信号可以是滑动信号,当检测到用户的滑动信号时,对不同平均模板波形进行切换显示。其中,可以根据用户在波形显示区202中产生的触摸点的移动轨迹,对波形进行切换显示。如图2所示,波形显示区202当前显示的波形为第II导联的平均模板波形,当检测到用户的触摸点向右移动时,依次显示触摸点所在波形缩略图对应的平均模板波形,即依次显示第III导联的平均模板波形、AVR导联的平均模板波形等等;同理检测到用户的触摸点向左移动时,依次显示第I导联的平均模板波形、ALL导联的平均模板波形,触摸点最终停留的波形缩略图对应的平均模板波形,为最终显示的平均模板波形。移动轨迹可以是非闭合轨迹和闭合轨迹。非闭合轨迹例如是预设长度的线段,闭合轨迹例如是圆形、长方形、三角形等。本申请所有实施例中的触摸点可以是由用户的手指或具有指示功能的操作工具触摸显示界面所产生的。这里的用户可以包括心电波形的采集者或被采集者或者其他人员,这里的具有指示功能的操作工具可以包括鼠标、激光笔或触控笔等。
基于用户在显示界面上的选择操作,在显示界面的波形显示区202显示至少一个导联心电波形的平均模板波形。可选地,以Q波的起点为基准点作一平行线,建立基线。其中,每个待显示导联的平均模板波形在显示界面中的基线位置相同,即是每个待显示导联的平均模板波形在显示界面显示时,对应Q波的起点在显示界面中的位置相同。
本实施例中,心电图机还可对平均模板波形进行测量得到测量值,并可以基于测量值进行分析得到分析结果,在显示界面上显示该测量值和/或分析结果。
在此实施例中,心电图机可以直接对心电波形进行处理,得到心电波形对应的平均模板波形,并在该心电图机显示界面上显示平均模板波形,便于用户在通过心电图机采集心电波形后可以直接在心电图机上查看平均模板波形;其次,由于不再需要将心电波形传输到电脑端,可以避免因为传输过程中出现问题,例如网络信号不佳,而导致的用户无法查看平均模板波形的情况的发生;再次,通过缩略图的形式在波形选择区中显示所有导联的平均模板波形,使得用户可以更加直观的选取需要查看的平均模板波形。
针对上述实施例中在显示界面显示的平均模板波形,心电图机提供对显示的平均模板波形进行缩放、基准线重定位等功能。具体可参阅下面方法实施例。
请参阅图4和图5,图4示出了本申请心电波形的数据测量方法第二实施例的流程示意图,图5示出了本申请第Ⅱ导联的平均模板波形放大后的显示界面示意图。本实施例的方法可以包括以下步骤:
步骤S201:心电图机对心电波形进行处理,得到心电波形对应的平均模板波形。
步骤S202:在显示界面上显示平均模板波形。
其中,步骤S201、S202的相关说明可参阅上述实施例步骤S101、S102,在此不做赘述。
步骤S203:响应于用户对显示界面进行的预设操作,对显示界面上显示的平均模板波 形进行相应缩放处理。
心电图机可以包括触摸显示屏,该显示界面为触摸显示屏的显示界面。其中,响应于用户在显示界面上进行的预设操作,可以对显示界面上显示的平均模板波形进行相应缩放处理。可选地,显示界面上可以实时显示放大或缩小的倍数。具体地,预设操作可以为以下至少一种:点击显示界面上的预设图标、单击显示界面上显示的平均模板波形、双击显示界面上显示的平均模板波形、触摸显示界面以在显示界面上形成两个进行靠近或远离的触摸点。
例如,预设图标可以包括放大图标和缩小图标。放大图标用于将平均模板波形进行放大显示,缩小图标用于将平均模板波形进行缩小显示。例如,心电图机响应于用户在显示界面上点击放大图标,将显示界面上显示的平均模板波形进行放大处理,响应于用户在显示界面上点击缩小图标,将显示界面上显示的平均模板波形进行缩小处理。
又例如,在单击或双击显示界面上显示的平均模板波形进行缩放的情况下,波形的缩放可以是在一定预设范围内。具体地,响应于用户单击或双击显示界面上显示的平均模板波形,将显示界面上显示的平均模板波形进行放大处理,当到达放大阈值后,继续对应单击或双击显示界面上显示的平均模板波形,可以将显示界面上显示的平均模板波形停止放大处理或者进行缩小处理。在其他实施方式中,还可以通过单击或双击显示界面上显示的平均模板波形直接显示其预设缩放大小的平均模板波形。
再例如,可以通过两个触摸点的靠近和远离对应将平均模板波形进行缩小和放大显示。用户触摸显示界面,在显示界面上形成两个触摸点,响应于用户在显示界面上的两个触摸点进行靠近,可以对显示界面上显示的平均模板波形进行相应缩小处理;响应于用户在显示界面上的两个触摸点进行远离,可以对显示界面上显示的平均模板波形进行相应放大处理。可以理解的是,对应于预设操作的缩放处理还有多种组合,此处不做赘述。
可选地,如图5所示,放大显示平均模板波形的波形显示区可以占据整个显示界面,以通过整个波形显示区显示放大后的平均模板的波形,从而便于用户查看平均模板波形或对平均模板波形进行其他操作。此时,显示界面上可以设置测量尺图标。用户点击测量尺图标,将测量尺显示在平均模板波形的相应位置,以对在放大后的平均模板波形进行测量,得到特征参数值。例如,特征参数值可以是时限、幅值、心率等。
在一些实施例中,心电图机还可以包括恢复图标。该恢复图标可以设置于显示界面。用户可以通过点击该恢复图标将处于放大或缩小状态的平均模板波形直接恢复到原始显示大小。可选地,还可以在再次检测到用户在波形选择区中对该波形略缩图的选择信号时,将处于放大或缩小状态的心电波形的平均模板波形直接恢复到原始显示大小。其中,原始显示大小为初始点击该波形略缩图时显示的波形的大小。
上述预设操作可以通过触屏操作、光标控制操作、语音控制操作等方式实现。其中,触屏操作即是对显示屏进行触摸操作,例如单指触摸显示屏上的预设图标、显示界面上的平均模板波形,或双指触摸显示屏并且双指在显示屏上进行远离或靠近移动等。光标控制操作可以是通过键盘、遥控杆、鼠标中的一种或多种方式实现。例如,可以设置键盘上的某两个按键分别作为放大和缩小平均模板波形的按键,当点击缩小按键时,将平均模板波形缩小显示,当点击放大按键时,将平均模板波形放大显示。同理,也可以在遥控杆上设置放大和缩小按键,对平均模板波形进行缩放显示。另外,可以通过鼠标选中平均模板波形,单击或双击鼠标右键,将平均模板波形进行缩小或放大显示,具体实施方式此处不再赘述。语音控制操作可以是检测语音数据中的关键词,并基于关键词执行相关的缩放控制指令,例如是当检测到关键词“放大”时,将平均模板进行放大显示,当检测到关键词“缩小”时,将平均模板进行缩小显示。
在此实施例中,通过响应于用户对显示界面进行的预设操作,对显示界面上显示的平均模板波形进行相应缩放处理,便于用户对平均模板波形进行查看,其中,通过检测用户预设操作的方式可以快速对波形进行缩放处理,且操作方式简单。
请参阅图6a至图7,图6a示出了本申请心电波形的数据测量方法第三实施例的流程示 意图,图6b示出了本申请心电波形的数据测量方法第四实施例的部分流程示意图,图7示出了本申请心电分析结果的显示界面示意图。本实施例的方法可以包括以下步骤:
步骤S301:心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线。
其中,心电图机显示心电波形对应的平均模板波形以及如何得到平均模板波形可参阅上述实施例步骤S101、S102,在此不做赘述。
具体地,心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线。其中,至少一条基准线包括P基准线、Q基准线、S基准线和T基准线中的至少一者。P基准线进一步包括P1基准线和P2基准线。T基准线进一步包括T1基准线和T2基准线。其中,基准线可以在通过预设算法进行分析后自动显示在平均模板波形的相应位置处。
步骤S302:响应于用户对基准线的移动操作,移动基准线在平均模板波形上的位置。
由于心电图机是根据基准线在平均模板波形上的位置得到对应测量值进而基于测量值进行心电分析。故基准线的位置是否准确是后续心电数据测量以及分析的关键。单靠心电图机默认确定的位置可能存在不准确的情况,故本实施例提出显示的基准线能够根据用户操作进行移动,进而可实现由用户来校准基准线位置,以保证后续心电数据测量以及分析的准确性。
具体地,不同区域内特征点处的基准线的移动范围可如下:
P1基准线:P波起点基准线,调整范围为QRS波起点至P波终点之间。
P2基准线:P波终点基准线,范围为P波起点至Q基准线之间。
Q基准线:范围为P波终点至S点基准线之间。
S基准线:范围为Q基准线至T波终点基准线之间。
T1基准线:T波起点基准线,范围为S基准线至QRS波形终点之间。
T2基准线:T波终点基准线,范围为T波起点至QRS波形终点之间。
响应于用户对基准线的移动操作,按照用户的移动轨迹,移动基准线在平均模板波形上的位置。可选地,心电图机包括触摸显示屏,该显示界面为触摸显示屏的显示界面。具体地,可以是用户触摸某一基准线,且随着触摸点在显示界面上的移动轨迹,移动基准线在平均模板波形上的位置。在其他实施例中,可采用语音控制基准线的移动,例如心电图机可以检测到用户点击显示界面上的移动图标,然后获取用户输入(如在显示界面输入或语音输入)的基准线的目标位置信息,或可以直接通过语音输入移动指令,控制基准线的移动,将该基准线移动到目标位置上。
可选地,用户可以同时选取多条基准线,响应于用户对基准线的移动操作,同时移动多条基准线在平均模板波形上的位置。通过该方式,可以避免移动某一基准线而改变多条基准线之间的间距,且可以简化用户操作,提高基准线重定位效率。
可选地,用户可以分别移动多条基准线,例如用户在移动P基准线到达目标位置之后还可以进一步移动Q基准线、S基准线或T基准线。
步骤S303:基于移动后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值。
本实施例中的心电图机可以基于基准线在平均模板波形上的位置自动计算出对应的特征参数值。
具体如,基于移动后的P基准线在平均模板波形上的位置,可以获得对应心电波形的PR间期。基于移动后的Q基准线在平均模板波形上的位置,可以获得对应心电波形的PR间期、QRS时限、QT间期、QTc间期中的至少一个。基于移动后的S基准线在平均模板波形上的位置,可以获得对应心电波形的QRS时限。基于移动后的T基准线在平均模板波形上的位置,可以获得对应心电波形的QT间期和/或QTc间期。
其中,PR间期、QRS时限、QT间期、QTc间期都是心电波形的特征参数值,也是医 生进行临床诊断的重要依据。当医生认为某一基准线所处位置不准确时,可以通过移动该基准线,对该基准线的位置进行调整,以得到正确的特征参数值。
本实施例,通过心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线,通过用户对基准线的移动操作,移动基准线在平均模板波形上的位置,其中,用户可以根据实际情况对基准线位置进行调整,操作简单,基于移动后的基准线对平均模板波形进行数据测量和校准,得到心电波形的至少一个特征参数值,以使得该特征参数值更加接近于正确的特征参数值。
如图6b所示,在其他实施例中,步骤S303之后还可包括:
步骤S304:显示心电波形的至少一个特征参数值。
其中,如图2所示,可以在显示界面的参数显示区203显示至少一个特征参数值,还可以在显示界面的波形显示区201显示至少一个特征参数值。参数显示区203可以根据实际情况进行设定。响应于用户对基准线的移动操作,可以实时获取基准线在平均模板波形上的位置,并基于该位置,实时显示得到的心电波形的至少一个特征参数值,即特征参数值跟随基准线的移动而对应变化。
例如,可以在显示界面的参数显示区203显示PR间期、QRS时限、QT间期、QTc间期等特征参数值,还可以在显示界面的波形显示区201显示时限(T),幅值(V),和心率(bpm)等特征参数值。如果显示界面显示的特征参数值不在对应的正常特征参数范围内时,可以将该特征参数值进行标记。比如,成年人60-100次心率时,QT间期的正常值范围为0.44s~0.36s,若显示界面显示的某成年人的平均模板波形的QT间期为0.56s,不在正常值范围内,则将该特征参数值进行标红显示,以提醒用户该特征参数值不在正常值范围内。
步骤S305:检测到用户对显示界面上的分析图标的触发信号,对特征参数值进行分析,得到初始心电分析结果。
具体地,对基准线进行重定位后,当检测到用户点击显示界面上的分析图标时,心电图机可以自动对特征参数值进行分析,得到初始心电分析结果。可选地,如图7所示,初始心电分析结果可以在其他显示界面进行显示。
步骤S306:检测到用户对显示界面上的结果修改图标的触发信号,显示包含初始心电分析结果的修改输入区。
步骤S307:根据用户在修改输入区中的输入信息,更新修改输入区中的内容。
步骤S308:检测到用户对显示界面上的确认修改图标的触发信号,获取修改输入区中的当前内容,并将当前内容作为最终心电分析结果。
其中,用户可以根据显示界面中显示的平均模板波形、基准线以及对应得到的特征参数值对心电图机自动生成的初始心电分析结果的正确性进行判断。当用户认为心电图机自动生成的初始心电分析结果不正确时,可以直接在心电图机上对初始心电分析结果进行修改,以得到正确的心电分析结果。可选地,心电图机可以对初始心电分析结果和用户修改的心电分析结果进行存储,以供后续需要进行查验、调取或修改。进一步地,心电图机还可以按照一定顺序存储修改人、修改时间、修改地点等信息,以方便后续进行查验、调取或修改。
在将当前内容作为最终心电分析结果之前,还包括:在显示界面上显示签名输入区;获取用户在签名输入区中的触摸点移动痕迹,作为待验证签名;获取当前登录账户的预存签名与待验证签名是否匹配;若匹配,则将当前内容作为最终心电分析结果;若不匹配,则不将当前内容作为最终心电分析结果。
可选地,在待验证签名与当前登录账户的预存签名不匹配时,可以向当前登录账户的用户发送提示信息,以提示用户该心电图机上有异常修改心电分析结果的情况出现,当待验证签名与当前登录账户的预存签名多次不匹配时,可以将签名输入区进行锁定,以防止他人通过不断更换待验证签名,从而获得当前登录账户的预存签名,进而修改心电分析结果。例如,心电图机可以通过短信、电话或用户随身携带的心电图机配套设备的提示音对当前登录账户的用户进行提醒。此外,由于当前登录账户的用户生成待验证签名与预存签名的时间不同或 其他原因,待验证签名与预存签名会存在差异,所以即便待验证签名为当前登录账户的用户的签名也可能存在与预存签名不匹配的情况。所以为解决当前登录账户的用户的待验证签名与预存签名不匹配,从而无法修改最终心电分析结果的情况,心电图机上还可以包括摄像头模组,在当前登录账户的预存签名与待验证签名不匹配时,心电图机自动启动摄像头模组,获取当前修改心电分析结果的用户的特征信息,并将当前修改心电分析结果的用户的特征信息与当前登录账户的预存特征信息进行匹配,若匹配成功,则将当前内容作为最终心电分析结果;若匹配不成功,则不将当前内容作为最终心电分析结果,进一步地,可以将获取到的当前修改心电分析结果的用户的特征信息发送给当前登录账户的用户,并保存在心电图机中,以待后期查验。该特征信息可以是人脸图像信息或虹膜信息。通过上述方式,可以避免非当前登录账户的用户对最终心电分析结果进行篡改。
可以理解的是,显示心电波形的至少一个特征参数值的步骤与得到心电分析结果的步骤之间并无一定的先后关系,可以根据实际情况进行选择。
请参阅图8,图8示出了本申请心电波形的数据测量方法第五实施例的流程示意图。
步骤S401:心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线。
其中,心电图机显示心电波形对应的平均模板波形以及如何得到平均模板波形,可参阅上述实施例步骤S101、S102,在平均模板波形的相应位置显示至少一条基准线,可参阅上述实施例步骤S301,在此不做赘述。
步骤S402:响应于用户对平均模板波形的第一预设操作,将平均模板波形放大显示,并将基准线相应显示在放大后的平均模板波形的对应位置上。
心电图机可以包括触摸显示屏,可响应用户对触摸显示屏的显示界面的操作,而对平均模板波形进行放大。具体地,第一预设操作可以包括点击显示界面上的预设图标或单击显示界面上显示的平均模板波形、触摸显示界面以在显示界面上形成两个进行远离的触摸点。
具体地,当第一预设操作为点击显示界面上的预设图标或单击显示界面上显示的平均模板波形时,响应于用户对平均模板波形的第一预设操作,将平均模板波形放大显示,可以包括:若检测到预设图标或平均模板波形被点击,则按照预设单位放大倍数将平均模板波形进行放大显示。预设图标可以设置于心电图机或与心电图机连接的其他设备的显示界面,例如,预设图标设置于心电图机的显示界面。预设单位放大倍数可以根据实际需要进行设定,预设单位放大倍数例如但不限为是1倍、3倍、10倍等。在一个应用场景中,用户点击预设图标,当心电图机检测到预设图标被点击,按照预设的3倍放大倍数将平均模板波形进行放大显示,当再次检测到预设图标被点击,则继续按照预设的3倍放大倍数将已经放大3倍的平均模板波形进一步进行放大显示,此时显示界面显示的平均模板波形为原始平均模板波形的9倍大小。可以理解的是,波形的放大可以是在一定预设范围内。当响应于用户一次或多次点击显示界面上的预设图标或一次或多次单击显示界面上显示的平均模板波形,将显示界面上显示的平均模板波形进行放大至放大阈值后,继续检测到点击显示界面上的预设图标或单击显示界面上显示的平均模板波形,可以不再对显示界面上显示的平均模板波形进行放大,或者将显示界面上显示的平均模板波形恢复至原来大小。
当第一预设操作为双击显示界面上显示的平均模板波形时,响应于用户对平均模板波形的第一预设操作,将平均模板波形放大显示,可以包括:获取两次点击平均模板波形之间的时间差;基于时间差,确定放大倍数;按照放大倍数将平均模板波形进行放大显示。可选地,时间差越大对应的放大倍数就越小。其中,基于时间差确定放大倍数之前,还包括建立时间差与放大倍数或时间差范围与放大倍数或的对应关系。例如,时间差为0.1s、0.5s、1s,分别对应的放大倍数为10倍、5倍、1倍。若检测到两次点击平均模板波形之间的时间差为0.5s,对应将平均模板波形放大5倍。又例如,时间差范围为100ms~0.1s、0.1s~0.5s、0.5s~1s,分别对应的放大倍数为8倍、4倍、2倍,其中每个时间差范围不包括该范围的右端点值。若检测到两次点击平均模板波形之间的时间差为0.5s,0.5s属于时间差范围0.5s~1s,则对应将平 均模板波形放大2倍。可以理解的是,波形的放大可以是在一定预设范围内。当响应于用户一次或多次双击显示界面上显示的平均模板波形,将显示界面上显示的平均模板波形进行放大至放大阈值后,继续检测到双击显示界面上显示的平均模板波形,可以不再对显示界面上显示的平均模板波形进行放大,或者将显示界面上显示的平均模板波形恢复至原来大小。
当第一预设操作为触摸显示界面以在显示界面上形成两个进行远离的触摸点时,响应于用户对平均模板波形的第一预设操作,将平均模板波形放大显示,可以包括:获取两个触摸点进行远离时的速度和/或停止远离时的距离;基于速度和/或距离,确定放大倍数;按照放大倍数将平均模板波形进行放大显示。心电图机可以获取两个触摸点远离时的速度和停止远离时的距离。可选地,速度越快和/或距离越大对应的放大倍数就越大。其中,基于速度和/或距离确定放大倍数之前,还包括建立速度与放大倍数的对应关系、距离与放大倍数的对应关系。具体地,可根据需要预先建立对应关系包括:速度是10cm/s、1cm/s、1mm/s,对应的放大倍数为9倍、6倍、3倍;距离是0.1cm、1cm、2cm,对应的放大倍数为1倍、2倍、3倍。例如,只根据速度来确定放大倍数,则基于上述速度的对应关系,当确定当两个触摸点进行远离时的速度为1cm/s,得到对应的放大倍数为6倍。又例如,只根据距离来确定放大倍数,则基于上述距离的对应关系,当确定当两个触摸点停止远离时之间的距离为2cm,得到对应的放大倍数为3倍。再例如,可知根据速度和距离来确定放大倍数,则基于上述速度和距离的对应关系,当两个触摸点以1cm/s的速度进行远离,停止远离时两个触摸点之间的距离为1cm,对应的放大倍数为6*2=12倍。
可选地,如图5所示,放大显示平均模板波形的波形显示区可以占据整个显示界面,以通过整个波形显示区显示放大后的平均模板的波形,从而便于用户查看平均模板波形或对平均模板波形进行其他操作。此时,显示界面上可以设置测量尺图标。用户点击测量尺图标,将测量尺显示在平均模板波形的相应位置,以对在放大后的平均模板波形进行测量,得到特征参数值。例如,特征参数值可以是时限、幅值、心率等。
在一些实施例中,心电图机还可以包括恢复图标。该恢复图标可以设置于显示界面。用户可以通过点击该恢复图标将处于放大状态的平均模板波形直接恢复到原始显示大小。可选地,还可以在再次检测到用户在波形选择区中对该波形略缩图的选择信号时,将处于放大状态的心电波形的平均模板波形直接恢复到原始显示大小。其中,原始显示大小为初始点击该波形略缩图时显示的波形的大小。
上述预设操作可以通过触屏操作、光标控制操作、语音控制操作等方式实现。具体实现方式可参考上面实施例的相关描述,在此不做赘述。
心电图机在将平均模板波形放大显示时,还可以将基准线相应显示在放大后的平均模板波形的对应位置上。例如,可获得基准线在放大前的平均模板波形上的原始位置信息,并将原始位置信息与平均模板波形的当前放大倍数的乘积作为基准线在放大后的平均模板波形上的最新位置,并将该基准线显示在该最新位置上。
可以理解的是,本文所述的将平均模板波形放大显示的实施例中,由于波形放大后在原来的波形显示区可能无法显示放大后的完整波形,故可在波形显示区显示部分放大后的波段,在检测到用户对显示波形的滑动操作,例如向右滑动的操作,则在波形显示区上显示位于之前显示的放大后波段右侧的波段,若向左滑动的操作,则在波形显示区上显示位于之前显示的放大波段左侧的波段。或者,可不局限只在波形显示区显示放大后的波段,而是在完整显示界面上显示放大后的波形(如图5所示)。
步骤S403:响应于用户对基准线的第二预设操作,调整基准线在放大后的平均模板波形的位置。
第二预设操可以为上述实施例中的移动操作,或者为用户对显示界面的移动图标的点击操作、或者用户进行语音控制等,例如心电图机检测到用户点击显示界面上的移动图标,获取用户输入(如在显示界面输入或语音输入)的基准线的目标位置信息,则将该基准线移动到目标位置上。
例如,按照用户的移动轨迹,移动基准线在放大后的平均模板波形上的位置。其中,通过将波形进行放大,在放大后的平均模板波形上移动基准线可以快速、精确的移动基准线到目标位置。在其他实施方式中,可以在检测到用户对基准线的第二预设操作时,自动放大平均模板的波形,用户根据放大后的平均模板的波形调整基准线在放大后的平均模板波形的位置。通过上述方式,可以在移动基准线的同时对平均模板波形进行放大,过程快捷,且不需要用户手动对波形进行放大。
可选地,在调整基准线在放大后的平均模板波形的位置后,还可根据用户的选择确定是否锁定当前显示界面,在锁定当前显示界面后用户再次触摸当前显示界面不会对该显示界面内容进行更改。此外,用户还可以根据需要解锁当前显示界面。上述步骤可以通过用户设置的快捷键来实现,快捷键可以设置于显示界面上。
步骤S404:基于调整后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值。
其中,对于该步骤的描述可以参考上述实施例步骤S303中相应位置的描述。当然,在其他实施例中,步骤S404之后还可以包括上述实施例步骤S304-S308的步骤,此处不做赘述。
在本实施例中,心电图机可以显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线,通过第一预设操作将平均模板波形放大显示,并将基准线相应显示在放大后的平均模板波形的对应位置上,然后通过第二预设操作,调整基准线在放大后的平均模板波形的位置,其中,由于将平均模板的波形进行放大显示,便于用户找到基准线调整的目标位置,进而基于调整后的基准线对平均模板波形的相关参数进行准确测量,得到心电波形的至少一个特征参数值,以使得该特征参数值更加接近于正确的该特征参数值。
请参阅图9至图10b,图9示出了本申请心电波形的数据测量方法第六实施例的流程示意图,图10a示出了本申请第Ⅱ导联的平均模板波形放大后的显示界面的另一示意图,图10b示出了本申请第Ⅱ导联的平均模板波形放大后的显示界面的又一示意图。
步骤S501:心电图机显示心电波形对应的平均模板波形,并在平均模板波形的相应位置显示至少一条基准线。
其中,心电图机显示心电波形对应的平均模板波形以及如何得到平均模板波形,可参阅上述实施例步骤S101、S102,在平均模板波形的相应位置显示至少一条基准线,可参阅上述实施例步骤S301,在此不做赘述。
步骤S502:基于预设区域信息或用户选择的区域信息,确定显示界面上的待放大区域。
本实施例中,显示界面上的待放大区域可默认设置或用户进行设置。该待放大区域用于选择出后续放大显示的波形,即,不在待放大区域中的波形则不会进行后续放大显示。故本实施例中,显示界面上显示的平均模板波形可根据待放大区域的设置而实现部分放大。
具体地,预设区域信息可以是预先设定的显示界面中的某一区域的位置信息。用户选择的区域信息可以包括用户在显示界面上选中的区域的位置信息或用户输入的位置信息。预设区域信息或用户选择的区域信息可以是整个波形显示区,或者部分波形显示区。待放大区域确定后,心电图机仅会对待放大区域内显示的平均模板波形进行放大显示。
步骤S503:响应于用户对平均模板波形的第一预设操作,获取位于待放大区域中的平均模板波形作为待放大波形。
本实施例步骤S503、S504、S505和S506可用于实现响应于用户对平均模板波形的第一预设操作,将平均模板波形放大显示,并将基准线相应显示在放大后的平均模板波形的对应位置上的步骤。
其中,对于第一预设操作的阐述请参见上述步骤S402中相应位置的阐述。例如,继续参阅图2,用户仅需要对T1-T2段波形进行放大显示,那么用户可以在显示界面上选中T1-T2段波形所在的区域作为待放大区域204,从而在用户对平均模板波形进行第一预设操作(如点击平均模板波形)时,可以获取待放大区域204中的T1-T2段波形以作为待放大波形。
步骤S504:对待放大波形的至少部分波段进行放大显示。
在确定得到待放大波形后,可对待放大波形的至少部分波段进行放大显示。其中,放大后的波段可在显示界面的波形显示区中进行显示,如图10a所示,在获得待放大区域204中的T1-T2段波形作为待放大波形后,可在波形显示区域202上显示放大后的T1-T2段波形。当然,放大后的波段也可以只在上述待放大区域204中进行显示,例如,可将T1-T2段波形的至少部分波段放大后显示在待放大区域204中。又或者,放大后的波段还可以在完整显示界面上进行显示,如图10b所示,若用户选择波形显示区域中P1-T2段波形所在的区域作为待放大区域,可将该P1-T2段波形进行放大显示。
可以理解的是,当放大倍数较大时,待放大波形不能全部显示在显示界面中,考虑到放大后的波形未必能完整显示,可考虑选择待放大波形的部分波段进行放大显示。具体地,可选择待放大波形中用户预先选中的基准线所在的波段进行放大显示,或者可选择待放大波形的中间波段进行放大显示,具体波段选择方式可根据实际需求进行设定,在此不做限制。需要说明的是,用户预先选中的基准线为待放大波形中的基准线。
本实施例以选择待放大波形中用户预先选中的基准线所在的波段进行放大显示为例进行具体说明。在一实施例中,可在本步骤S501之前,还包括响应于用户对至少一条基准线的选中操作,确定所述至少一条基准线为第一目标基准线;本步骤S504对应具体包括:将待放大波形中包含第一目标基准线的波段进行放大显示。一种情况:响应于用户选取一条基准线的选中操作,将该条基准线作为第一目标基准线,将待放大波形中包含第一目标基准线的波段进行放大显示,其中包含第一目标基准线的波段可以是包含第一目标基准线的预设时间范围内的波段。例如,响应于用户对S基准线的选中操作,将S基准线作为第一目标基准线,将包含S基准线的10ms范围内的波段进行放大显示。另一种情况是:响应于用户选取至少两条基准线的选中操作,将该至少两条基准线作为第一目标基准线,将待放大波形中包含第一目标基准线的波段进行放大显示,其中包含第一目标基准线的波段可以是首尾两条基准线之间的波段或包含首尾两条基准线的预设时间范围内的波段。其中,预设时间范围可以根据实际情况进行选取。例如,响应于用户对P1基准线、Q基准线和S基准线的选中操作,将P1基准线、Q基准线和S基准线作为第一目标基准线,P1基准线和S基准线分别为首尾基准线,将P1基准线和S基准线之间的波段或包含P1基准线和S基准线的20ms内的波段,进行放大显示。其中,选中操作可以通过触屏、光标或语音输入等方式实现。例如,通过触摸Q基准线,将Q基准线选中。通过确定第一目标基准线,并将包含第一目标基准线的波段进行放大显示,即可以通过选中的基准线确定当前要显示的放大波段,从而在后续操作中能够针对性地对第一目标基准线进行移动,而不需要在显示放大波形后,再去查找需要进行重定位的基准线,可以简化用户操作。
步骤S505:将基准线相应显示在放大后的平均模板波形的对应位置上。
其中,心电图机可以获取基准线在放大前的待放大波形上的原始位置,确定原始位置在放大后的待放大波形上的对应位置,并将基准线显示在对应位置上。例如,S基准线在放大前的待放大波形上的5ms位置,在将待放大波形进行放大2倍显示后,S基准线的原始位置也同样被放大两倍,从而可以确定S基准线在放大后的待放大波形上的对应位置为10ms位置,并将基准线显示在10ms位置上。
在一情况下,由于用户需要移动的基准线当前所在位置与目标位置偏离较远,当用户以目标位置确定待放大区域,将待放大区域进行放大显示后,由于该需要移动的基准线偏离较远,从而无法在放大后的当前显示界面进行显示,需要移动待放大区域才能将该基准线进行选中,然后再移动该基准线和待放大区域到目标位置。所以本实施例,在步骤S501之前还可以包括:响应于用户对至少一条基准线的选中操作,确定至少一条基准线为第二目标基准线。对应地,将基准线相应显示在放大后的平均模板波形的对应位置上包括:将第二目标基准线显示在当前显示的放大后的平均模板波形的第二预设位置上。其中,第二预设位置可以是正中间位置或任一个位置。当第二目标基准线仅包括一条基准线时,可以直接将该基准线显示在预设位置上。当第二目标基准线包括多条基准线时,可以将多条基准线分别显示在不同的 预设位置上或将多条基准线在某一预设位置上按一定间隔排列显示。在当前显示的放大波段上可始终显示第二目标基准线。举例说明,如图2所示,用户需要移动Q基准线到待放大区域204中,但是由于Q基准线距离待放大区域较远,从而无法在放大后的当前显示界面进行显示(如图10a所示),但是可以在进行第一预设操作前,将Q基准线选中,当用户进行第一预设操作将待放大区域中的波段进行放大显示后,Q基准线可以直接显示在该放大波段的正中间位置或任一个位置,以便于用户对Q基准线进行后续操作。
步骤S506:在显示界面的第一预设位置上显示包含完整的平均模板波形的波形缩小图,且在波形缩小图中的相应位置显示对应待放大区域的区域框。
在步骤S504对待放大波形的至少部分波段进行放大显示之后,为了便于用户重新定位新的待放大区域,可在显示界面的第一预设位置显示包含完整的平均模板波形的波形缩小图。
第一预设位置可以根据需要进行设定,例如第一预设位置可以右上角、左上角、右下角或左下角等。
如图10b所示,在显示界面的左上角位置上显示包含完整的平均模板波形的波形缩小图901,且在波形缩小图901中的相应位置显示对应待放大区域的区域框902。
如图2所示,波形缩小图还可以是波形选择区201中的波形略缩图,在波形略缩图中的相应位置显示对应待放大区域的区域框903,此处不在赘述。
步骤S507:检测到用户对波形缩小图中区域框的移动操作,并基于移动后区域框在波形缩小图中的位置,更新待放大区域的位置。
其中,移动操作可以是按住区域框,并在波形缩小图中拖动区域框,即移动区域框在波形缩小图中的位置。或者,显示界面进一步包括滑块区,移动操作可以是拖动滑块区中的滑块,在检测到滑块区中的滑块被拖动时,对应移动区域框在波形缩小图中的位置。可以理解的是,上述区域框所框住的区域即为待放大区域。
具体地,检测到用户按住区域框,并在波形缩小图中拖动区域框或拖动滑块区中的滑块,基于移动后区域框在波形缩小图中的位置,更新待放大区域的位置。
步骤S508:获取更新后的待放大区域中的平均模板波形作为新的待放大波形,并重新执行对待放大波形的至少部分波段进行放大显示以及后续步骤。
具体地,将更新后的待放大区域中的平均模板波的至少部分波段进行放大显示,并将基准线相应显示在放大后的平均模板波形的对应位置上。其中,上述步骤的具体执行可参考上述说明。
在一个应用场景中,当待放大区域中显示的部分平均模板波形不包括当前用户需要调整的波段时,可以通过移动波形缩小图中的区域框,快速找到需要调整的波段。当然,也可以通过触摸显示界面生成触摸点,根据触摸点的移动轨迹对应移动平均模板波形,以调整显示界面中显示的平均模板波形。例如,当前显示界面中显示的平均模板波形为P2-Q段波形,当触摸点向左滑动时,对应将平均模板波形向左滑动,从而显示QS段波形。
步骤S509:响应于用户对基准线的第二预设操作,调整基准线在放大后的平均模板波形的位置。
步骤S510:基于调整后的基准线对平均模板波形进行数据测量,得到心电波形的至少一个特征参数值。
其中,对于步骤S509和S510的描述可以分别参考上述实施例步骤S403和步骤S303中相应位置的描述。当然,在其他实施例中,步骤S510之后还可以包括上述实施例步骤S304-S308的步骤,此处不做赘述。
在本实施例中,通过设置待放大区域,且仅将待放大区域内的平均模板波形进行放大,可以提高对平均模板波形进行放大显示的灵活性,而且由于可以仅对需要调整的波段进行放大显示,可以提高基准线定位的准确性;其次,由选中的基准线可以快速确定当前要显示的放大波段;再次,在将待放大区域中的待放大波形进行放大显示之后,可以通过改变波形缩小图中区域框的位置来改变待放大区域的位置,从而能够快速、准确地更新待放大区域内的 待放大波形,并将待放大波形进行放大显示。
请参阅图11,图11是本申请心电图机一实施例的框架示意图。心电图机100包括相互耦接的处理器101和存储器102,处理器101用于执行存储器102存储的程序指令以实现上述任一方法实施例中的步骤或者上述任一方法实施例中心电图机对应执行的步骤。该心电图机100除包括上述处理器101和存储器102之外,还可根据需求包括触摸屏、打印组件、通信电路等,在此不做限定。
具体而言,处理器101用于控制其自身以及存储器102以实现上述任一方法实施例中的步骤。处理器101还可以称为CPU(Central Processing Unit,中央处理单元)。处理器101可能是一种集成电路芯片,具有信号的处理能力。处理器101还可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,处理器101可以由多个集成电路芯片共同实现。
请参阅图12,图12是本申请心电图机另一实施例的爆炸示意图。如图12所示,心电图机包括主机10,主机10包括壳体11和镶嵌在壳体中的显示屏12,该主机10可包括图11所示的处理器和存储器,还可包括通信电路以用于外部设备进行通信,其中该通信电路可包括以下至少一个:wifi通信电路、蓝牙通信电路、蜂窝移动通信电路等。
在一个实施场景中,显示屏12为触摸式显示屏,以便用户通过触摸显示屏12,实现与心电图机的交互。例如,在心电图机的触摸式显示屏显示界面上显示有数据采集图标,在检测到用户对数据采集图标的触摸信号时,执行心电数据采集。心电图机还可利用该触摸式显示屏实现上述任一实施例中与用户的交互操作。
壳体11包括相背设置的第一侧部111和第二侧部112,第一侧部111用于与外设装置连接,在一个实施场景中,外设装置可以包括把手20、打印组件30中的任意一种。在一个具体的实施场景中,外设装置与第一侧部111连接时,第二侧部112与外设装置同时抵接于支撑面,从而使得显示屏12所在的平面与支撑面之间形成预定角度,从而便于用户查看显示屏12上所显示的界面,或者触摸显示屏12,预定角度可以设置为30度、35度等等,本实施例在此不做具体限制。
此外,为了方便、快捷地实现主机10与外设装置之间的连接,还可以在主机10和外设装置上设置相互匹配的连接件。以外设装置包括把手20为例,主机10靠近于第一侧部111的两侧均开设有定位槽113,把手20包括两个相对设置的第一定位臂21,第一定位臂21与定位槽113相互匹配,从而可以将第一定位臂21插入定位槽113,实现主机10与把手20之间的可拆卸连接。在一个实施场景中,第一侧部111还可以开设有若干卡接孔(图未示),把手20还包括设置于两个第一定位臂21之间的第一安装部22,第一安装部22上设置有与卡接孔相互匹配的第一卡接柱221。在一个实施场景中,为了便于用户通过把手20携带主机10,把手20还包括提手23,提手23、两个第一定位臂21以及第一安装部22围合形成穿过槽24,以供用户握持,进而用户可以方便地携带主机10。或者,当外设装置包括打印组件30时,与把手20类似地,打印组件30可以包括两个相对设置的第二定位臂31,第二定位臂31与定位槽113相互匹配,从而可以将第二定位臂31插入定位槽113,实现主机10与打印组件30之间的可拆卸连接。在一个实施场景中,打印组件30还包括设置于两个第二定位臂31之间的第二安装部32,第二安装部32上设置有与卡接孔相互匹配的第二卡接柱321。
此外,主机10还包括设置于壳体11上的第一采集接口114、第二采集接口115、开关按键116,第二侧部112还设有出声孔1121,以及用于扫描条码的扫描头1122。此外,主机10还可以进一步包括电源适配器接口、以太网口、USB(Universal Serial Bus,通用串行总线)接口、SD(Secure Digital,安全数码)记忆卡槽、SIM(Subscriber Identification Module,用户身份识别)卡槽、NFC(Near Field Communication,近场通信)识别器中的至少一者。
此外,主机10的操作系统(Operation System,OS)可以基于Linux、Windows等等, 本实施例在此不做具体限制。
上述把手20、打印组件30可以根据实际需要进行配置。例如,对于经常在户外携带、使用的场景,可以在主机10的基础上,额外再配置把手20和打印组件30,而对于在医院内部使用的场景,可以在主机10的基础上,额外再配置打印组件30,或者主机10通过网络与外部打印装置连接时,也可以不再额外配置打印组件30,本实施例在此不再一一举例。
可以理解的是,上述心电图机还可选择性设置以下至少一个组件:摄像组件以用于进行图像或视频采集并配合通信电路实现与远端的视频交互、GPS定位组以用于获取心电图机的位置、生物特征采集组件以用于采集用户的生物特征(如采集指纹的指纹采集组件、采集瞳孔的摄像组件等)。
请参阅图13,图13示出了本申请计算机可读存储介质一实施例的结构示意图,该计算机可读存储介质300上存储有程序指令301,程序指令301被处理器执行时实现如上述任一实施例的步骤。
该计算机可读存储介质300具体可以为U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等可以存储程序指令301的介质,或者也可以为存储有该程序指令301的服务器,该服务器可将存储的程序指令301发送给其他设备运行,或者也可以自运行该存储的程序指令301。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种心电波形的数据测量方法,其特征在于,包括:
    心电图机显示心电波形对应的平均模板波形,并在所述平均模板波形的相应位置显示至少一条基准线;
    响应于用户对所述基准线的移动操作,移动所述基准线在所述平均模板波形上的位置;
    基于移动后的所述基准线对所述平均模板波形进行数据测量,得到所述心电波形的至少一个特征参数值。
  2. 根据权利要求1所述的方法,其特征在于,所述移动所述基准线在所述平均模板波形上的位置,包括:
    按照用户的移动轨迹,移动所述基准线在所述平均模板波形上的位置。
  3. 根据权利要求1所述的方法,其特征在于,所述至少一条基准线包括P基准线、Q基准线、S基准线和T基准线中的至少一者;
    所述基于移动后的所述基准线对所述平均模板波形进行数据测量,得到所述心电波形的至少一个特征参数值,包括以下至少一个步骤:
    基于移动后的所述P基准线在所述平均模板波形上的位置,获得对应心电波形的PR间期;
    基于移动后的所述Q基准线在所述平均模板波形上的位置,获得对应心电波形的PR间期、QRS时限、QT间期、QTc间期中的至少一个;
    基于移动后的所述S基准线在所述平均模板波形上的位置,获得对应心电波形的QRS时限;
    基于移动后的所述T基准线在所述平均模板波形上的位置,获得对应心电波形的QT间期和/或QTc间期。
  4. 根据权利要求1所述的方法,其特征在于,在所述基于移动后的所述基准线对所述平均模板波形进行数据测量,得到所述心电波形的至少一个特征参数值之后,所述方法还包括:
    显示所述心电波形的至少一个特征参数值。
  5. 根据权利要求1所述的方法,其特征在于,在所述基于移动后的所述基准线对所述平均模板波形进行数据测量,得到所述心电波形的至少一个特征参数值之后,所述方法还包括:
    检测到用户对显示界面上的分析图标的触发信号,对所述至少一个特征参数值进行分析,得到初始心电分析结果。
  6. 根据权利要求5所述的方法,其特征在于,在所述对所述至少一个特征参数值进行分析,得到初始心电分析结果之后,所述方法还包括:
    检测到用户对所述显示界面上的结果修改图标的触发信号,显示包含所述初始心电分析结果的修改输入区;
    根据用户在所述修改输入区中的输入信息,更新所述修改输入区中的内容;
    检测到用户对所述显示界面上的确认修改图标的触发信号,获取所述修改输入区中的当前内容,并将所述当前内容作为最终心电分析结果。
  7. 根据权利要求6所述的方法,其特征在于,在所述将所述当前内容作为最终心电分析结果之前,所述方法还包括:
    在所述显示界面上显示签名输入区;
    获取用户在所述签名输入区中的触摸点移动痕迹,作为待验证签名;
    获取当前登录账户的预存签名与所述待验证签名是否匹配;
    若匹配,则执行所述将所述当前内容作为最终心电分析结果;
    若不匹配,则不执行所述将所述当前内容作为最终心电分析结果。
  8. 根据权利要求1所述的方法,其特征在于,在所述显示心电波形对应的平均模板波形之前,所述方法还包括:
    获取所述心电波形上的多个有效QRS波形;
    基于所述多个有效QRS波形对应点的幅值,得到所述心电波形的平均模板波形。
  9. 一种心电图机,其特征在于,包括:
    相互耦接的处理器和存储器,所述处理器用于执行所述存储器存储的程序指令以实现如权利要求1-8中任一项方法中的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有程序指令,所述程序指令被处理器执行时实现如权利要求1-8中任一项方法中的步骤。
PCT/CN2021/075369 2020-01-20 2021-02-05 心电波形的数据测量方法、心电图机和可读存储介质 WO2021148045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010066774.X 2020-01-20
CN202010066774.XA CN112668380A (zh) 2020-01-20 2020-01-20 心电波形的数据测量方法、心电图机和装置

Publications (1)

Publication Number Publication Date
WO2021148045A1 true WO2021148045A1 (zh) 2021-07-29

Family

ID=75402796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075369 WO2021148045A1 (zh) 2020-01-20 2021-02-05 心电波形的数据测量方法、心电图机和可读存储介质

Country Status (2)

Country Link
CN (1) CN112668380A (zh)
WO (1) WO2021148045A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613496A (en) * 1995-11-29 1997-03-25 Hewlett-Packard Company Method and apparatus for creating a representative heartbeat from an ECG waveform
CN102793539A (zh) * 2012-08-31 2012-11-28 深圳市理邦精密仪器股份有限公司 心电向量图检测分析方法及系统
CN107684421A (zh) * 2016-08-05 2018-02-13 深圳先进技术研究院 一种胎儿心电分离方法及装置
CN110367969A (zh) * 2019-07-05 2019-10-25 复旦大学 一种改进的心电信号快速聚类分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537464A4 (en) * 2011-07-25 2014-08-20 Edan Instruments Inc METHOD AND SYSTEM FOR AUTOMATED DETECTION AND ANALYSIS IN PEDIATRIC ELECTROCARDIOGRAPHY
CN110200623A (zh) * 2018-02-28 2019-09-06 深圳市理邦精密仪器股份有限公司 心电图的参数显示方法、装置、终端设备及介质
CN109171704A (zh) * 2018-09-19 2019-01-11 深圳市理邦精密仪器股份有限公司 心电波形分析的方法、装置、终端和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613496A (en) * 1995-11-29 1997-03-25 Hewlett-Packard Company Method and apparatus for creating a representative heartbeat from an ECG waveform
CN102793539A (zh) * 2012-08-31 2012-11-28 深圳市理邦精密仪器股份有限公司 心电向量图检测分析方法及系统
CN107684421A (zh) * 2016-08-05 2018-02-13 深圳先进技术研究院 一种胎儿心电分离方法及装置
CN110367969A (zh) * 2019-07-05 2019-10-25 复旦大学 一种改进的心电信号快速聚类分析方法

Also Published As

Publication number Publication date
CN112668380A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN104216642B (zh) 一种终端控制方法
US20120218231A1 (en) Electronic Device and Method for Calibration of a Touch Screen
JP4900361B2 (ja) 画像処理装置、画像処理方法およびプログラム
US8897866B2 (en) Multi-touch approach for ECG measurement
US9836130B2 (en) Operation input device, operation input method, and program
WO2018018624A1 (zh) 一种可穿戴设备的手势输入方法及可穿戴设备
WO2019214329A1 (zh) 终端的控制方法、装置及终端
US20240077948A1 (en) Gesture-based display interface control method and apparatus, device and storage medium
US20190272090A1 (en) Multi-touch based drawing input method and apparatus
EP3175325B1 (en) Reflection-based control activation
US10667766B2 (en) Method and system for monitoring multiple patient parameters on a touchscreen
WO2019057047A1 (zh) 心电波形图显示方法和装置
JP6158690B2 (ja) 画像表示装置
US11237712B2 (en) Information processing device, biomedical-signal measuring system, display method, and recording medium storing program code
WO2021148045A1 (zh) 心电波形的数据测量方法、心电图机和可读存储介质
CN110851048A (zh) 一种调整控件的方法和电子设备
WO2016145827A1 (zh) 终端的控制方法及装置
JP7119995B2 (ja) 入力装置、計測システムおよびプログラム
US20150235394A1 (en) Method And Apparatus For Displaying One Or More Waveforms
CN113160948A (zh) 心电波形的数据测量方法、心电图机和装置
CN113208602A (zh) 心电波形的处理方法、心电图机和装置
CN105892857B (zh) 图像定位方法及装置
CN107850832B (zh) 一种医疗检测系统及其控制方法
EP3435277A1 (en) Body information analysis apparatus capable of indicating blush-areas
WO2018145244A1 (zh) 超声医学检测设备及成像控制方法、成像系统、控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743930

Country of ref document: EP

Kind code of ref document: A1