WO2019057047A1 - 心电波形图显示方法和装置 - Google Patents
心电波形图显示方法和装置 Download PDFInfo
- Publication number
- WO2019057047A1 WO2019057047A1 PCT/CN2018/106369 CN2018106369W WO2019057047A1 WO 2019057047 A1 WO2019057047 A1 WO 2019057047A1 CN 2018106369 W CN2018106369 W CN 2018106369W WO 2019057047 A1 WO2019057047 A1 WO 2019057047A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform
- electrocardiogram
- time
- target
- feature map
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000013507 mapping Methods 0.000 claims abstract description 21
- 230000008859 change Effects 0.000 claims description 14
- 238000003745 diagnosis Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 15
- 230000001269 cardiogenic effect Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/339—Displays specially adapted therefor
Definitions
- Embodiments of the present invention relate to the field of image display, and in particular, to a method and apparatus for displaying an electrocardiogram waveform.
- ECG data In the medical field, people usually judge whether the heart or the organs related to the heart are healthy by collecting ECG data from single to multi-channel and from several minutes to many days. Because of the numerous collected ECG data, if you look through one by one The ECG waveform formed by these ECG data is used to locate cardiogenic diseases, and the workload is huge.
- the collected ECG data is processed by a computer to obtain a simplified sample feature map capable of feeding back part of the electrocardiographic characteristics, and then the cardiac problem is located according to the sample feature map, but any sample
- the electrocardiographic characteristics that can be fed back by the characteristic map are limited.
- the cardiogenic diseases cannot be comprehensively covered by the limited electrocardiographic characteristics, and there are certain limitations in the diagnosis of blind spots.
- the process of forming the sample feature map cannot be guaranteed.
- the algorithm used in the algorithm is completely accurate, and the sample feature map formed according to the algorithm is not necessarily accurate. If the cardiogenic disease is only located through the sample feature map, the positioning error may be caused.
- Embodiments of the present invention provide a method and apparatus for displaying an electrocardiogram waveform, which can solve the problem of a diagnosis blind spot and a positioning error caused by only locating a cardiogenic disease through a sample feature map.
- a first aspect of the embodiments of the present invention provides a method for displaying an electrocardiogram waveform, including:
- the target sample feature map is a sample feature map of a heart rate point trend graph, an electrocardiogram scatter plot, an ECG waterfall graph, and an ECG rainbow trend graph;
- an electrocardiogram waveform view viewing instruction where the electrocardiogram waveform view viewing instruction includes a viewing area selected by a user in the target sample feature map;
- the target sample feature map is a heart rate point trend graph; and the mapping relationship between the feature region in the target sample feature map and the waveform time of the electrocardiogram waveform and the The viewing area determining the target waveform time includes: determining a heart rate scatter located in the viewing area; determining a time corresponding to the heart rate scatter as the target waveform time.
- the target sample feature map is an electrocardiogram scatter diagram; and the mapping relationship between the feature region in the target sample feature map and the waveform time of the electrocardiogram waveform and the The viewing area determining the target waveform time includes: determining a heart rate change scatter located in the viewing area; determining a time corresponding to the heart rate change scatter as the target waveform time.
- the target sample feature map is an electrocardiogram graph; the mapping relationship between the feature region in the target sample feature map and the waveform time of the electrocardiogram waveform and the viewing
- the determining the target waveform time includes determining a heartbeat line located in the viewing area; determining a time corresponding to the heartbeat line as the target waveform time.
- the target sample feature map is an electrocardiogram rainbow trend graph; and the mapping relationship between the feature region in the target sample feature map and the waveform time of the electrocardiogram waveform graph and the The viewing area determining the target waveform time includes: determining an electrocardiographic feature band located in the viewing area; determining a time corresponding to the electrocardiographic feature band as a target waveform time.
- a second aspect of the embodiments of the present invention provides an electrocardiographic waveform display device, including:
- a first determining module configured to determine a currently displayed target sample feature map, wherein the target sample feature map is a sample of a heart rate point trend graph, an electrocardiogram scatter plot, an ECG waterfall graph, and an ECG rainbow trend graph Feature map
- An acquiring module configured to acquire an electrocardiogram waveform view viewing instruction, where the electrocardiogram waveform view viewing instruction includes a viewing area selected by a user in the target sample feature map;
- a time determining module configured to determine a target waveform time according to a mapping relationship between a feature region in the target sample feature map and a waveform time of the electrocardiogram waveform; and the viewing region;
- a second determining module configured to determine an ECG digital signal corresponding to the target waveform time
- a display module configured to convert the electrocardiographic digital signal into an electrocardiogram waveform for display.
- the selected viewing region selected by the user on the target sample feature map is obtained, and then the mapping between the feature region in the target sample feature map and the waveform time of the ECG waveform map is performed.
- the relationship and the viewing location can determine the target waveform time, and then display the ECG waveform corresponding to the target waveform time.
- All the ECG features can be fed back through the four complementary sample feature maps, and the user can comprehensively according to the four sample feature maps.
- the cardiogenic disease is found, and the blind spot is eliminated.
- the sample feature map in the view region can be displayed in reverse according to the viewing area selected by the user, that is, the corresponding sample feature map in the region is displayed.
- the ECG allows the user to further locate cardiogenic diseases based on the complete ECG and avoid the problem of misplacement.
- FIG. 1 is a schematic flow chart of a method for displaying an electrocardiogram waveform according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of determining a viewing area according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of another determining viewing area according to an embodiment of the present invention.
- FIG. 4 is a partial appearance view of an electrocardiogram waveform display device according to an embodiment of the present invention.
- FIG. 5 is a schematic flowchart diagram of another ECG waveform display method according to an embodiment of the present invention.
- FIG. 6 is a partial appearance view of another electrocardiogram waveform display device according to an embodiment of the present invention.
- FIG. 7 is a heart rate point trend diagram provided by an embodiment of the present invention.
- FIG. 9 is a diagram of an electrocardiogram waterfall provided by an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of an electrocardiographic waveform display device according to an embodiment of the present invention.
- FIG. 12 is a structural block diagram of an implementation manner of an electrocardiographic waveform display device according to an embodiment of the present invention.
- the solution of the embodiment of the present invention can be applied to a device or system that has an ECG signal collection and display, and the device includes, but is not limited to, a mobile phone, a wearable device (such as a watch, a headset, a smart clothing, etc.), and the system can be A device having an ECG signal acquisition function and a device having a display function, wherein the device having an ECG signal acquisition function may include an ECG sensor.
- FIG. 1 is a schematic flowchart of a method for displaying an electrocardiogram waveform according to an embodiment of the present invention. As shown in the figure, the method includes at least:
- S101 Determine a currently displayed target sample feature map, where the target sample feature map is a sample feature map of a heart rate point trend graph, an electrocardiogram scatter plot, an ECG waterfall graph, and an ECG rainbow trend graph.
- the sample feature map currently displayed on the display screen is the target sample feature map.
- the heart rate point trend graph, the electrocardiogram scatter plot, the ECG waterfall graph, and the ECG rainbow trend graph may be numbered, and then a serial number parameter is used to store the currently displayed target sample feature map. Number, according to the serial number parameter, determine the currently displayed target sample feature map. For example, the heart rate point trend graph, the ECG scatter plot, the ECG waterfall graph, and the ECG rainbow trend graph are numbered 1, 2, 3, 4, respectively, and the serial number parameter is 3, then the currently displayed target sample feature map is determined. For the ECG waterfall map.
- the ECG waveform view viewing instruction is obtained by acquiring the user's operation.
- the user's operation may be acquired through the display screen.
- the obtained user's operation may be an action of the user's finger sliding on the display screen, and the ECG may be acquired according to the action of the user's finger.
- the waveform view viewing instruction, in this manner, the first instruction triggering operation may be preset, and the first instruction triggering operation includes but is not limited to clicking a display operation, pressing a display operation, and double-clicking a display operation, and the user directly acts on the display.
- the operation of the screen when detecting that the user performs the first instruction triggering operation, determining an area where the user's finger slides on the display screen, and determining an area where the user's finger is slid over the selected viewing area of the user in the target sample feature map.
- the first instruction trigger operation is a click operation, as shown in FIG. 2, the heart rate point trend graph is displayed in the display screen, and when it is detected that the user clicks the view waveform graph button on the display screen of FIG. 2, it is determined.
- the A area is determined as the viewing area selected by the user in the heart rate dot pattern.
- the user's operation can be obtained by using a mouse.
- the user's motion can be captured by the mouse and displayed on the display screen in the form of a cursor, and the ECG can be obtained according to the sliding of the mouse.
- the waveform view viewing instruction in this manner, the second instruction triggering operation may be preset, and the second instruction triggering operation may be an operation of clicking the display interface operation, double-clicking the display operation, and the like, the user acts on the display interface through the mouse.
- the second instruction triggering operation determining the area selected by the cursor on the display interface, and determining the area selected by the cursor as the viewing area selected by the user in the target sample feature map.
- the second instruction triggering operation is to double-click the operation of the display interface.
- the heart rate point-like trend graph is displayed in the display screen.
- the user detects that the user double-clicks the view waveform graph button in the display interface by the mouse Then, the area where the cursor is circled in the display interface is determined, and the area circled by the cursor on the display interface is the B area, and the B area is determined as the viewing area selected by the user in the electrocardiogram scatter plot.
- the user's operation can be obtained through a keyboard/key.
- the user-selected area can be determined through the keyboard/key.
- the initial coordinates can be determined by acquiring the number on the keyboard/key by the user.
- the destination coordinates determine the viewing area selected by the user in the target sample feature map, wherein the area formed by the initial coordinates and the destination coordinates in the display screen is the viewing area selected by the user. In this way, coordinates need to be set for each point in the display screen, where the origin can be any point in the display, for example, the apex of one corner of the display screen can be used as the origin.
- a point in the lower left corner of the display screen serves as the origin.
- the user inputs the initial coordinates (1, 1) and the destination coordinates (2, 2) by pressing the button.
- the area formed by the initial coordinates (1, 1) and the destination coordinates (2, 2) of the display screen is the C area, and the C area is determined as the viewing area selected by the user in the target sample feature map.
- the target sample feature map is a heart rate point trend graph
- the target corresponding to the heart rate point trend graph in the viewing area may be determined according to a time mapping relationship between the heart rate point trend graph and the ECG waveform map.
- the waveform time, the heart rate point trend graph is composed of a plurality of heart rate scatter points of the feedback heart rate, and each heart rate scatter point corresponds to one time, and the specific process of determining the target waveform time is: determining the heart rate scatter point located in the viewing area, The time corresponding to the heart rate scatter is determined as the target waveform time.
- the target sample feature map is an electrocardiogram scatter plot
- the time-map relationship between the ECG scatter plot and the ECG waveform map may be used to determine an ECG scatter plot corresponding to the view region.
- the target waveform time, the electrocardiogram scatter plot is composed of a plurality of heart rate change scatter points of the feedback heart rate change, and each heart rate change scatter point corresponds to one time, the specific process of determining the target waveform time is: determining the located in the view area The heart rate changes scatter, and the time corresponding to the heart rate change scatter is determined as the target waveform time.
- the target sample feature map is an ECG waterfall map
- the target waveform time corresponding to the ECG waterfall map in the viewing area may be determined according to a time mapping relationship between the ECG waterfall map and the ECG waveform map.
- the ECG waterfall map is composed of a plurality of heartbeat lines of feedback heartbeat, and each heartbeat line corresponds to the length of time of the heartbeat, and the specific process of determining the target waveform time is: determining the heartbeat line in the viewing area, The time corresponding to the heartbeat line is determined as the target waveform time.
- the target sample feature map is an ECG rainbow trend graph
- the ECG rainbow trend graph in the viewing region may be determined according to a time mapping relationship between the ECG rainbow trend graph and the ECG waveform graph.
- the target waveform time, the ECG rainbow trend graph is composed of a plurality of ECG characteristic bands that feed back the ECG feature values, and each ECG feature band corresponds to a unipolar lead time, and the specific process of determining the target waveform time is:
- An electrocardiographic feature zone located in the viewing area determines a time corresponding to the electrocardiographic feature band as a target waveform time.
- the ECG digital signal corresponding to the target waveform time may be searched for locally stored ECG digital signals according to the target waveform time. Since in the computer system, only the ECG digital signal can be stored, and the collected ECG data is an ECG analog signal, the ECG digital signal can be obtained by performing analog-to-digital conversion on all the collected ECG analog signals, and then The ECG digital signal converted from all ECG analog signals is stored locally.
- the connection may be established with the server, and the ECG signal is transmitted to the server for storage.
- the ECG digital signal corresponding to the target waveform time may be acquired from the server according to the target waveform time, and the specific process is: Sending a target waveform time to the server, and receiving an ECG signal sent by the server according to the target waveform time.
- the ECG digital signal can be saved in the server to save local storage space.
- the digital-to-analog conversion of the electrocardiographic digital signal is performed to obtain an electrocardiogram analog signal, and the electrocardiogram waveform corresponding to the electrocardiogram analog signal is displayed on the display screen according to the correspondence relationship between the electrocardiographic analog signal and the time; or the number is directly The signal is displayed on the display by a time series corresponding to the conversion of the sampling rate.
- the selected viewing region selected by the user on the target sample feature map is obtained, and then the mapping between the feature region in the target sample feature map and the waveform time of the ECG waveform map is performed.
- the relationship and the viewing location determine the target waveform time, and then display the ECG waveform corresponding to the target waveform time.
- the combination of the four sample feature maps helps to quickly find all aspects of the problem, and reversely displays the sample features of the partial region.
- the corresponding ECG waveform map helps to locate cardiogenic diseases more accurately and quickly.
- FIG. 5 is a schematic flowchart diagram of another ECG waveform display method according to an embodiment of the present invention. As shown in the figure, the method includes:
- the ECG analog signal of the first user may be collected by the core electrode piece in contact with the first user, and the ECG analog signal is sent to the signal amplifier for amplification, thereby obtaining a clear and strong ECG analog signal.
- the ECG analog signal is converted into an ECG digital signal by analog-to-digital conversion, and the ECG digital signal is sampled by using a preset sampling frequency to obtain an ECG digital signal.
- the ECG digital signal can be saved locally, or the ECG digital signal can be sent to the server for storage.
- the characteristic signals of each sample feature map may be determined according to the manner in which each sample feature map is generated.
- the signature signal can be a feature value in the heartbeat, such as an RR interval, a QT interval, an amplitude of the ST segment, and the like.
- the sample feature viewing instruction of the second user is obtained by acquiring an operation of the second user.
- the operation of the second user can be obtained through an input device such as a display screen, a mouse, a keyboard, or a button.
- buttons For example, as shown in FIG. 6, there are 4 buttons, wherein button 1 represents a heart rate point pattern, button 2 represents an electrocardiogram, button 3 represents an electrocardiogram, and button 4 represents an electrocardiogram.
- button 1 represents a heart rate point pattern
- button 2 represents an electrocardiogram
- button 3 represents an electrocardiogram
- button 4 represents an electrocardiogram.
- the feature signal is an RR interval.
- the time corresponding to the R wave in each heart beat can be determined by the electrocardiographic detection signal according to the electrocardiographic digital signal and the time difference between the adjacent two R waves can be determined as the RR interval.
- the heart rate value and the time corresponding to each heart rate value can be determined, and the heart rate scatters reflecting the heart rate are displayed on the display screen with the time as the horizontal axis coordinate and the heart rate value as the vertical axis coordinate, forming a heart rate dot shape.
- the trend graph can be as shown in Figure 7.
- the feature signal is an RR interval.
- the time corresponding to the R wave in each heart beat can be determined by the electrocardiographic detection signal according to the electrocardiographic digital signal and the time difference between the adjacent two R waves can be determined as the RR interval.
- the current RR interval is taken as the horizontal axis coordinate, and the heart rate scatter which reflects the heart rate change in the following RR interval as the vertical axis coordinate is displayed on the display screen to form an electrocardiogram scatter diagram, as shown in FIG. .
- the characteristic signal is a heart beat amplitude.
- the time and amplitude corresponding to the R wave in each heart beat can be determined by the electrocardiographic detection algorithm according to the electrocardiographic digital signal.
- the start and end positions can be customized, and a signal from the start position to the end position is used as a heart beat to determine the respective amplitudes of the heart beat, according to the respective amplitudes of a heart beat in different colors. Differentiate the different amplitudes one by one in the vertical direction of the display to form a color heartbeat line, and then arrange the color heartbeat lines corresponding to each heart beat from left to right or top to bottom to form an electrocardiogram.
- the waterfall map can be as shown in Figure 9.
- the feature signal is the characteristic value of the heart beat
- the feature value may be the amplitude of the ST segment or the QT interval.
- the amplitude of the ST segment in each heart beat and the time corresponding to the ST segment can be determined by the ECG detection algorithm according to the electrocardiographic digital signal.
- the amplitude of the ST segment it can be distinguished by different colors and displayed in chronological order on the display screen from left to right to form an electrocardiographic characteristic line, and the line is widened to form an electrocardiographic characteristic band; the electrocardiographic characteristic of the lead is pressed Arranged from top to bottom, an ECG rainbow trend graph is formed, as shown in FIG.
- the user can obtain an ECG analog signal and save the digital signal converted by the ECG analog signal, and display one of the four sample feature maps according to the user's sample feature map viewing instruction.
- the sample feature map can feed back all the ECG features through four complementary sample feature maps.
- the user can find the cardiogenic diseases in all directions according to the four sample feature maps, eliminating the blind spot of diagnosis, and after finding the problem, according to the user.
- the selected viewing area reversely displays the sample feature map in the viewing area, that is, displays the complete electrocardiogram corresponding to the sample feature map in the area, and the user can further locate the cardiogenic disease according to the complete electrocardiogram to avoid positioning. Wrong question.
- the embodiment of the present invention further provides a corresponding device.
- FIG. 11 is a schematic structural diagram of an electrocardiographic waveform display device according to an embodiment of the present invention. As shown in the figure, the ECG waveform display device includes:
- the first determining module 310 is configured to determine a currently displayed target sample feature map, where the target sample feature map is one of a heart rate point trend graph, an electrocardiogram scatter plot, an ECG waterfall graph, and an ECG rainbow trend graph.
- Sample feature map is one of a heart rate point trend graph, an electrocardiogram scatter plot, an ECG waterfall graph, and an ECG rainbow trend graph.
- the obtaining module 320 is configured to acquire an electrocardiogram view viewing instruction, where the ECG waveform view viewing instruction includes a viewing area selected by the user in the target sample feature map;
- the time determining module 330 is configured to determine a target waveform time according to a mapping relationship between a feature region in the target sample feature map and a waveform time of the electrocardiogram waveform and the viewing region;
- a second determining module 340 configured to determine an ECG digital signal corresponding to the target waveform time
- the display module 350 is configured to convert the electrocardiographic digital signal into an electrocardiogram waveform for display.
- the target sample feature map is a heart rate dot-like trend graph; the time determining module 330 is specifically configured to: determine a heart rate scatter point located in the viewing area; and correspond to the heart rate scatter point The time is determined as the target waveform time.
- the target sample feature map is an electrocardiogram scatter diagram
- the time determining module 330 is specifically configured to: determine a heart rate change scatter point located in the view area; and change the heart rate change scatter point The corresponding time is determined as the target waveform time.
- the target sample feature map is an ECG waterfall map
- the time determining module 330 is specifically configured to: determine a heartbeat line located in the viewing area; and time corresponding to the heart beat line Determined as the target waveform time.
- the target sample feature map is an electrocardiogram rainbow trend graph
- the time determining module 330 is specifically configured to: determine an ECG feature band located in the viewing area; and determine a time corresponding to the ECG feature band as a target waveform time.
- the first determining module 310, the obtaining module 320, and the time determining module 330, the second determining module 340, and the related functions implemented by the display module 350 in FIG. 11 may be combined with a processor and an electrocardiogram.
- the sensor and the peripheral output system are implemented.
- An implementation manner of the electrocardiographic waveform display device according to the embodiment of the present invention is described below.
- the device is equipped with a display screen and an electrocardiographic sensor.
- the ECG sensor is capable of capturing the user's ECG data, and in an alternative manner, the display screen can be a touch screen. This display can be used to display ECG waveforms, sample feature maps, function menus, and more.
- Fig. 12 is a block diagram showing the structure of an implementation of an electrocardiographic waveform display device.
- the electrocardiographic waveform display device can include a memory 410 (one or more computer readable storage media), a core control module 420, and a peripheral system 430. These components can communicate over one or more communication buses 440.
- the peripheral system 430 is mainly used for the interaction function between the electrocardiographic waveform display device and the user/external environment, and mainly includes the input and output devices of the electrocardiographic waveform display device.
- the peripheral system 430 can include a display controller 431, a sensor management module 432, and an input controller 433. Wherein, each controller can be coupled with a corresponding peripheral device (such as display screen 4311, sensor 4321, keyboard/button 4331).
- the display screen 4311 may be configured with a touch screen of a self-capacitive floating touch panel or a touch screen configured with an infrared floating touch panel.
- the peripheral system 430 may also include other I/O peripherals.
- the core control module 420 can be integrated to include one or more processors 421, a clock module 422, and a power management module 423.
- the clock module 422 integrated in the core control module 420 is primarily used to generate the clocks required for data transfer and timing control for the processor 421.
- the power management module 423 integrated in the core control module 420 is primarily used to provide a stable, high accuracy voltage to the processor 421 and peripheral systems.
- Memory 410 is coupled to processor 421 for storing various software programs and/or sets of instructions.
- memory 410 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
- the memory 410 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
- the memory 410 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
- the memory 410 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
- electrocardiographic waveform display device is only an example provided by the embodiment of the present invention, and that the electrocardiographic waveform display device may have more or fewer components than those shown, and two or more components may be combined. Or can have different configurations of components.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
- the units in the apparatus of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
一种心电波形图显示方法,包括:确定当前显示的目标样本特征图,目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图(S101);获取心电波形图查看指令,心电波形图查看指令包括用户在目标样本特征图中选定的查看区域(S102);根据目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及查看区域确定目标波形时间(S103);确定目标波形时间对应的心电数字信号(S104);将心电数字信号转换为心电波形图进行显示(S105)。该方法可以解决仅通过样本特征图去定位心脏问题而导致的诊断盲区和定位错误的问题。还公开了一种心电波形图显示装置。
Description
本发明实施例涉及图像显示领域,尤其涉及心电波形图显示方法和装置。
在医学领域,人们通常通过采集从单导到多导、从几分钟到多天的心电数据来判断心脏或与心脏有关的器官是否健康,由于采集的心电数据繁多,若通过一一查看由这些心电数据形成的心电波形图来定位心源性疾病,则工作量巨大。
在目前的一些方式中,通过计算机对采集到的心电数据进行处理,得到一个能反馈部分心电特征的精简的样本特征图,然后根据该样本特征图来定位心脏问题,但是,任何一个样本特征图能反馈的心电特征都是有限的,通过有限的心电特征无法全方位地心源性疾病,存在诊断盲区,有一定的局限性;另外,由于无法保证在形成样本特征图的过程中所采用的算法完全准确,根据该算法形成的样本特征图不一定准确,若仅通过样本特征图去定位心源性疾病,则可能定位错误。
发明内容
本发明实施例提供心电波形图显示方法和装置,可以解决仅通过样本特征图去定位心源性疾病而导致的诊断盲区和定位错误的问题。
本发明实施例第一方面提供一种心电波形图显示方法,包括:
确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图;
获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域;
根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间;
确定所述目标波形时间对应的心电数字信号;
将所述心电数字信号转换为心电波形图进行显示。
在一种可能的设计中,所述目标样本特征图为心率点状趋势图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心率散点;将所述心率散点对应的时间确定为目标波形时间。
在一种可能的设计中,所述目标样本特征图为心电散点图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心率变化散点;将所述心率变化散点对应的时间确定为目标波形时间。
在一种可能的设计中,所述目标样本特征图为心电瀑布图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心搏线条;将所述心搏线条对应的时间确定为目标波形时间。
在一种可能的设计中,所述目标样本特征图为心电彩虹趋势图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心电特征带;将所述心电特征带对应的时间确定为目标波形时间。
本发明实施例第二方面提供一种心电波形显示装置,包括:
第一确定模块,用于确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图;
获取模块,用于获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域;
时间确定模块,用于根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间;
第二确定模块,用于确定所述目标波形时间对应的心电数字信号;
显示模块,用于将所述心电数字信号转换为心电波形图进行显示。
本发明实施例中,通过确定当前显示的目标样本特征图,获取用户在目 标样本特征图上选定的查看区域,然后根据目标样本特征图中的特征区域与心电波形图的波形时间的映射关系以及查看区位可确定目标波形时间,然后显示该目标波形时间对应的心电波形图,通过四种互相补充的样本特征图可反馈所有心电特征,用户可根据这四种样本特征图全方位地发现心源性疾病,消除诊断盲区,在发现问题后,可根据用户选定的查看区域对该查看区域中的样本特征图进行反向显示,即显示该区域中的样本特征图对应的完整的心电图,用户可根据完整的心电图进一步定位心源性疾病,避免出现定位错误的问题。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种心电波形图显示方法的流程示意图;
图2是本发明实施例提供的一种确定查看区域的示意图;
图3是本发明实施例提供的另一种确定查看区域的示意图;
图4是本发明实施例提供的一种心电波形图显示装置的部分外观示意图;
图5是本发明实施例提供的另一种心电波形图显示方法的流程示意图;
图6是本发明实施例提供的另一种心电波形图显示装置的部分外观示意图;
图7是本发明实施例提供的心率点状趋势图;
图8是本发明实施例提供的心电散点图;
图9是本发明实施例提供的心电瀑布图;
图10是本发明实施例提供的心电彩虹趋势图;
图11是本发明实施例提供的一种心电波形显示装置的组成结构示意图;
图12是本发明实施例提供的心电波形显示装置的一种实现方式的结构框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的方案可应用在具备心电信号采集及显示的设备或系统上,该设备包括但不限于手机、可穿戴设备(如手表、头戴设备、智能服装等)等,系统可以由具备心电信号采集功能的设备和具备显示功能的设备组成,其中,具备心电信号采集功能的设备可包括心电传感器。
参见图1,图1是本发明实施例提供的一种心电波形图显示方法的流程示意图,如图所示,所述方法至少包括:
S101,确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图。
其中,当前正显示在显示屏上的样本特征图即为目标样本特征图。
在一种具体实现方式中,可对心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图设置编号,然后用一个序号参数来存储当前显示的目标样本特征图的编号,根据序号参数确定当前显示的目标样本特征图。例如,心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图的编号分别为1,2,3,4,序号参数为3,则确定当前显示的目标样本特征图为心电瀑布图。
S102,获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域。
其中,通过获取用户的操作获取心电波形图查看指令。
在一种可能的实现方式中,可以通过显示屏获取用户的操作,例如,获取到的用户的操作可以为用户的手指在显示屏上滑动的动作,则可根据用户的手指的动作获取心电波形图查看指令,在此种方式下,可以预置第一指令触发操作,该第一指令触发操作包括但不限于单击显示屏操作、按压显示屏 操作、双击显示操作等用户直接作用于显示屏的操作,当检测到用户执行了该第一指令触发操作,则确定用户手指在显示屏上滑动的区域,将用户手指滑过的区域确定为用户在目标样本特征图中选定的查看区域。
例如,第一指令触发操作为单击操作,如图2所示,显示屏中显示着心率点状趋势图,当检测到用户单击图2的显示屏上的查看波形图按钮后,则确定用户手指在显示屏上滑动的区域,用户手指在显示上滑动的区域为A区域,则将A区域确定为用户在心率点状趋势图中选定的查看区域。
在另一种可能的实现方式中,可以通过鼠标获取用户的操作,此时可通过鼠标捕捉用户的动作,并以光标的形式在显示屏界面上表现出来,则可根据鼠标的滑动获取心电波形图查看指令,在此种方式下,可以预置第二指令触发操作,该第二指令触发操作可以为单击显示屏界面操作、双击显示屏操作等用户通过鼠标作用于显示屏界面的操作,当检测到用户执行了该第二指令触发操作,则确定显示屏界面上光标选中的区域,将光标选中的区域确定为用户在目标样本特征图中选定的查看区域。
例如,第二指令触发操作为双击显示屏界面的操作,如图3所示,显示屏中显示着心率点状趋势图,当通过鼠标检测到用户双击显示屏界面中的查看波形图按钮后,则确定光标在显示屏界面中圈选的区域,光标在显示屏界面上圈选的区域为B区域,则将B区域确定为用户在心电散点图中选定的查看区域。
在又一种可能的实现方式中,可以通过键盘/按键获取用户的操作,此时可通过键盘/按键确定用户选定的区域,例如,可以通过获取用户通过键盘/按键上的数字确定初始坐标和目的坐标确定用户在目标样本特征图中选定的查看区域,其中,初始坐标和目的坐标在显示屏中所形成的区域即为用户选定的查看区域。在此种方式下,需要按照给显示屏中的每个点设置坐标,其中,原点可以为显示屏中的任意一个点,例如,可将显示屏边缘的一个角的顶点作为原点。
例如,如图4所示,显示屏左下角的一个点作为原点,在用户按下图4中的查看波形图按键后,用户通过按键输入初始坐标(1,1)和目的坐标(2, 2),显示屏初始坐标(1,1)和目的坐标(2,2)形成的区域为C区域,则将C区域确定为用户在目标样本特征图中选定的查看区域。
S103,根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间。
在一种实施方式中,该目标样本特征图为心率点状趋势图,则可以根据心率点状趋势图与心电波形图的时间映射关系确定该查看区域中的心率点状趋势图对应的目标波形时间,心率点状趋势图由多个反馈心率的心率散点构成,每个心率散点对应一个时间,则确定目标波形时间的具体过程为:确定位于所述查看区域中的心率散点,将所述心率散点对应的时间确定为目标波形时间。
在另一种实施方式中,该目标样本特征图为心电散点图,则可以根据心电散点图与心电波形图的时间映射关系确定该查看区域中的心电散点图对应的目标波形时间,心电散点图由多个反馈心率变化的心率变化散点构成,每个心率变化散点对应一个时间,则确定目标波形时间的具体过程为:确定位于所述查看区域中的心率变化散点,将所述心率变化散点对应的时间确定为目标波形时间。
在又一种实施方式中,该目标样本特征图为心电瀑布图,则可以根据心电瀑布图与心电波形图的时间映射关系确定该查看区域中的心电瀑布图对应的目标波形时间,心电瀑布图由多个反馈心搏的心搏线条构成,每条心搏线条对应心搏的时间长度,则确定目标波形时间的具体过程为:确定所述查看区域中的心搏线条,将所述心搏线条对应的时间确定为目标波形时间。
在又一种实施方式中,该目标样本特征图为心电彩虹趋势图,则可以根据心电彩虹趋势图与心电波形图的时间映射关系确定该查看区域中的心电彩虹趋势图对应的目标波形时间,心电彩虹趋势图由多条反馈心电特征值的心电特征带构成,每条心电特征带对应一个单极导联的时间,则确定目标波形时间的具体过程为:确定位于所述查看区域中的心电特征带,将所述心电特征带对应的时间确定为目标波形时间。
S104,确定所述目标波形时间对应的心电数字信号。
具体实现中,可以根据目标波形时间在本地存储的心电数字信号中查找该目标波形时间对应的心电数字信号。由于在计算机系统中,只能存储心电数字信号,而采集的心电数据为心电模拟信号,则可以通过对采集得到的所有心电模拟信号进行模数转换可得到心电数字信号,然后将所有心电模拟信号转换而来的心电数字信号保存在本地。
在可选实施方式中,还可以与服务器建立连接,将心电信号传输给服务器进行保存,此时,可以根据目标波形时间从服务器获取该目标波形时间对应的心电数字信号,具体过程为:向服务器发送目标波形时间,接收所述服务器根据所述目标波形时间发送的心电信号。在此种实施方式中,可将心电数字信号保存在服务器中,以节省本地的存储空间。
S105,将所述心电数字信号转换为心电波形图进行显示。
具体实施中,对心电数字信号进行数模转化得到心电模拟信号,根据心电模拟信号与时间的对应关系将心电模拟信号对应的心电波形图显示在显示屏上;或直接将数字信号通过与采样率的转换得到对应的时间序列显示在显示屏上。
本发明实施例中,通过确定当前显示的目标样本特征图,获取用户在目标样本特征图上选定的查看区域,然后根据目标样本特征图中的特征区域与心电波形图的波形时间的映射关系以及查看区位可确定目标波形时间,然后显示该目标波形时间对应的心电波形图,通过四种样本特征图的组合有助于快速发现各方面的问题,通过反向显示部分区域的样本特征图对应的心电波形图,有助于更加准确快速地定位心源性疾病。
参见图5,图5是本发明实施例提供的另一种心电波形图显示方法的流程示意图,如图所示,所述方法包括:
S201,获取第一用户的心电模拟信号。
其中,可以通过与第一用户接触的心电极片采集第一用户的心电模拟信号并将心电模拟信号送入信号放大器中放大,从而得到清晰较强的心电模拟信号。
S202,将所述心电模拟信号转化为心电数字信号并保存。
本发明实施例中,通过模数转换将心电模拟信号转换为心电数字信号,采用预设的采样频率对心电模拟信号采样得到心电数字信号。
在可选实施方式中,可以将心电数字信号在本地保存,也可以将心电数字信号发送到服务器进行保存。
S203,根据所述心电数字信号确定各个样本特征图的特征信号。
其中,可根据生成各个样本特征图的方式确定各个样本特征图的特征信号。
在一种实现方式中,该特征信号可以为心搏中的特征值,如RR间期、QT间期、ST段的幅值,等等。
S204,获取第二用户的样本特征图查看指令。
其中,通过获取第二用户的操作获取第二用户的样本特征查看指令。
具体实现中,可通过显示屏、鼠标、键盘/按键等输入设备获取第二用户的操作。
例如,如图6所示,存在4个按键,其中,按键1代表心率点状趋势图,按键2代表心电散点图,按键3代表心电瀑布图,按键4代表心电彩虹趋势图,当检测到有用户按下按键时则可以获取第二用户的样本特征图查看指令,进一步根据按键的数字可确定样本特征图查看指令对应的样本特征图。
S205,根据所述样本特征图查看指令确定待显示的目标样本特征图。
S206,将所述待显示的目标样本特征图的特征信号转化为目标样本特征图进行显示。
在待显示的目标样本特征图为心率点状趋势图的情况下,特征信号为RR间期。在步骤S203中,可根据心电数字信号通过心电检测算法确定每一个心搏中的R波对应的时间并将相邻的两个R波的时间之差确定为RR间期。根据RR间期可确定心率值以及各个心率值对应的时间,将以时间为横轴坐标,以心率值为纵轴坐标的反映心率的心率散点一一显示在显示屏上,形成心率点状趋势图,可如图7所示。
在待显示的目标样本特征图为心电散点图的情况下,特征信号为RR间 期。在步骤S203中,可根据心电数字信号通过心电检测算法确定每一个心搏中的R波对应的时间并将相邻的两个R波的时间之差确定为RR间期。将以当前的RR间期为横轴坐标,以下一个RR间期为纵轴坐标的反映心率变化的心率散点一一显示在显示屏上,形成心电散点图,可如图8所示。
在待显示的目标样本特征图为心电瀑布图的情况下,特征信号为心搏幅值。在步骤S203中,可根据心电数字信号通过心电检测算法确定每一个心搏中的R波对应的时间和幅值。可自定义起始与结束位置,并将从起始位置到结束位置之间的一段信号作为一个心搏,确定这段心搏的各个幅值,根据一段心搏的各个幅值以不同的颜色区分不同的幅值在显示屏的垂直方向上一一显示,形成一条彩色心搏线条,然后把每段心搏对应的彩色心搏线条按从左到右或从上到下排列,形成心电瀑布图,可如图9所示。
在待显示的目标样本特征图为心电彩虹趋势图的情况下,特征信号为心搏的特征值,特征值可以为ST段的幅值或QT间期等。以特征值为ST段的幅值为例,在步骤S203中,可根据心电数字信号通过心电检测算法确定每一个心搏中ST段的幅值以及该ST段对应的时间。可根据ST段的幅值以不同颜色区分并按时间顺序在显示屏上从左到有进行显示形成心电特征线条,将线条加宽形成心电特征带;将导联的心电特征带按从上至下的方式排列,则形成心电彩虹趋势图,可如图10所示。
S207,获取心电波形图查看指令,所述心电波形图查看指令包括所述第二用户在所述目标样本特征图中选定的查看区域。
S208,根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间。
S209,确定所述目标波形时间对应的心电数字信号。
S210,将所述心电数字信号转换为心电波形图进行显示。
其中,步骤S207~S210的具体实现方式可参考图1对应的实施例中步骤S102~S105的描述,此处不再赘述。
本发明实施例中,可通过获取用户的心电模拟信号并保存该心电模拟信号转换而来的数字信号,根据用户的样本特征图查看指令向用户显示四种样 本特征图中的其中一种样本特征图,通过四种互相补充的样本特征图可反馈所有心电特征,用户可根据这四种样本特征图全方位地发现心源性疾病,消除诊断盲区,在发现问题后,可根据用户选定的查看区域对该查看区域中的样本特征图进行反向显示,即显示该区域中的样本特征图对应的完整的心电图,用户可根据完整的心电图进一步定位心源性疾病,避免出现定位错误的问题。
上述详细阐述了本发明实施例的方法,为了便于更好地实施本发明实施例的上述方案,本发明实施例还提供了相应的装置。
参见图11,图11是本发明实施例提供的一种心电波形显示装置的组成结构示意图,如图所示,所述心电波形显示装置包括:
第一确定模块310,用于确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图;
获取模块320,用于获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域;
时间确定模块330,用于根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间;
第二确定模块340,用于确定所述目标波形时间对应的心电数字信号;
显示模块350,用于将所述心电数字信号转换为心电波形图进行显示。
在可选实施方式中,所述目标样本特征图为心率点状趋势图;所述时间确定模块330具体用于:确定位于所述查看区域中的心率散点;将所述心率散点对应的时间确定为目标波形时间。
在可选实施方式中,所述目标样本特征图为心电散点图;所述时间确定模块330具体用于:确定位于所述查看区域中的心率变化散点;将所述心率变化散点对应的时间确定为目标波形时间。
在可选实施方式中,所述目标样本特征图为心电瀑布图;所述时间确定模块330具体用于:确定位于所述查看区域中的心搏线条;将所述心搏线条 对应的时间确定为目标波形时间。
在可选实施方式中,所述目标样本特征图为心电彩虹趋势图;
所述时间确定模块330具体用于:确定位于所述查看区域中的心电特征带;将所述心电特征带对应的时间确定为目标波形时间。
需要说明的是,图11对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图1或图5所示实施例的描述,这里不再赘述。
在一种可能实现的方式中,图11中的第一确定模块310、获取模块320以及、时间确定模块330、第二确定模块340以及显示模块350所实现的相关功能可以结合处理器、心电传感器以及外围输出系统来实现,下面介绍本发明实施例涉及的心电波形显示装置的一种实现方式。该装置配置显示屏、心电传感器。该心电传感器能够捕捉用户的心电数据,在可选方式中,该显示屏可以为触摸屏。该显示屏可用于显示心电波形图,样本特征图,功能菜单,等等。
图12是心电波形显示装置的一种实现方式的结构框图。如图12所示,心电波形显示装置可包括:存储器410(一个或多个计算机可读存储介质)、核心控制模块420、外围系统430。这些部件可在一个或多个通信总线440上通信。
外围系统430主要用于心电波形显示装置和用户/外部环境之间的交互功能,主要包括心电波形显示装置的输入输出装置。具体实现中,外围系统430可包括:显示屏控制器431、传感器管理模块432、输入控制器433。其中,各个控制器可与各自对应的外围设备(如显示屏4311、传感器4321、键盘/按键4331)耦合。在一些实施例中,显示屏4311可以配置有自电容式的悬浮触控面板的触摸屏,也可以是配置有红外线式的悬浮触控面板的触摸屏。需要说明的,外围系统430还可以包括其他I/O外设。
核心控制模块420可集成包括:一个或多个处理器421、时钟模块422以及电源管理模块423。集成于核心控制模块420的时钟模块422主要用于为处理器421产生数据传输和时序控制所需要的时钟。集成于核心控制模块420中的电源管理模块423主要用于为处理器421以及外围系统提供稳定的、 高精确度的电压。
存储器410与处理器421耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器410可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器410可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器410还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器410还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
应当理解,心电波形显示装置仅为本发明实施例提供的一个例子,并且,心电波形显示装置可具有比示出的部件更多或更少的部件,可以组合两个或更多个部件,或者可具有部件的不同配置实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (10)
- 一种心电波形图显示方法,其特征在于,包括:确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图;获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域;根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间;确定所述目标波形时间对应的心电数字信号;将所述心电数字信号转换为心电波形图进行显示。
- 根据权利要求1所述的方法,其特征在于,所述目标样本特征图为心率点状趋势图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心率散点;将所述心率散点对应的时间确定为目标波形时间。
- 根据权利要求1所述的方法,其特征在于,所述目标样本特征图为心电散点图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心率变化散点;将所述心率变化散点对应的时间确定为目标波形时间。
- 根据权利要求1所述的方法,其特征在于,所述目标样本特征图为心电瀑布图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之 间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心搏线条;将所述心搏线条对应的时间确定为目标波形时间。
- 根据权利要求1所述的方法,其特征在于,所述目标样本特征图为心电彩虹趋势图;所述根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间包括:确定位于所述查看区域中的心电特征带;将所述心电特征带对应的时间确定为目标波形时间。
- 一种心电波形显示装置,其特征在于,包括:第一确定模块,用于确定当前显示的目标样本特征图,所述目标样本特征图为心率点状趋势图、心电散点图、心电瀑布图以及心电彩虹趋势图中的一种样本特征图;获取模块,用于获取心电波形图查看指令,所述心电波形图查看指令包括用户在所述目标样本特征图中选定的查看区域;时间确定模块,用于根据所述目标样本特征图中的特征区域与心电波形图的波形时间之间的映射关系以及所述查看区域确定目标波形时间;第二确定模块,用于确定所述目标波形时间对应的心电数字信号;显示模块,用于将所述心电数字信号转换为心电波形图进行显示。
- 根据权利要求6所述的装置,其特征在于,所述目标样本特征图为心率点状趋势图;所述时间确定模块具体用于:确定位于所述查看区域中的心率散点;将所述心率散点对应的时间确定为目标波形时间。
- 根据权利要求6所述的装置,其特征在于,所述目标样本特征图为心电散点图;所述时间确定模块具体用于:确定位于所述查看区域中的心率变化散点;将所述心率变化散点对应的时间确定为目标波形时间。
- 根据权利要求6所述的装置,其特征在于,所述目标样本特征图为心电瀑布图;所述时间确定模块具体用于:确定位于所述查看区域中的心搏线条;将所述心搏线条对应的时间确定为目标波形时间。
- 根据权利要求6所述的装置,其特征在于,所述目标样本特征图为心电彩虹趋势图;所述时间确定模块具体用于:确定位于所述查看区域中的心电特征带;将所述心电特征带对应的时间确定为目标波形时间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710852966.1A CN107865655A (zh) | 2017-09-19 | 2017-09-19 | 心电波形图显示方法和装置 |
CN201710852966.1 | 2017-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019057047A1 true WO2019057047A1 (zh) | 2019-03-28 |
Family
ID=61761571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/106369 WO2019057047A1 (zh) | 2017-09-19 | 2018-09-19 | 心电波形图显示方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107865655A (zh) |
WO (1) | WO2019057047A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114126487A (zh) * | 2019-12-02 | 2022-03-01 | 深圳迈瑞生物医疗电子股份有限公司 | 监护方法及监护装置、监护设备、计算机可读存储介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107865655A (zh) * | 2017-09-19 | 2018-04-03 | 深圳星康医疗科技有限公司 | 心电波形图显示方法和装置 |
CN109431491A (zh) * | 2018-09-28 | 2019-03-08 | 上海优加利健康管理有限公司 | 一种用于心电监测的自动报告生成方法和系统 |
CN110009711B (zh) * | 2019-05-20 | 2021-11-16 | 厦门纳龙科技有限公司 | 一种心搏组合特征散点图生成方法、终端设备及存储介质 |
CN113786200B (zh) * | 2020-05-28 | 2022-10-11 | 深圳邦健生物医疗设备股份有限公司 | 心电信号处理方法、装置、设备及可读介质 |
CN111685758A (zh) * | 2020-06-23 | 2020-09-22 | 深圳星康医疗科技有限公司 | 一种新型心电波形图条的展示方式 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2093683A2 (en) * | 2008-02-24 | 2009-08-26 | Karl Storz Endoscopy-America, Inc. | Patient monitoring |
CN101642368A (zh) * | 2008-08-04 | 2010-02-10 | 南京大学 | 自主神经功能信号的处理方法、装置和测试系统 |
US20120165883A1 (en) * | 2000-12-15 | 2012-06-28 | James Kalgren | System and method for correlation of patient health information and implant device data |
CN104145273A (zh) * | 2012-02-23 | 2014-11-12 | 日本光电工业株式会社 | 监测装置 |
CN106166065A (zh) * | 2016-06-22 | 2016-11-30 | 天津理工大学 | 一种基于社交网络的可穿戴心电健康交互平台及其实现方法 |
CN107092789A (zh) * | 2017-04-18 | 2017-08-25 | 成都琅瑞医疗技术股份有限公司 | 心电数据分析工具系统及使用方法 |
CN107865655A (zh) * | 2017-09-19 | 2018-04-03 | 深圳星康医疗科技有限公司 | 心电波形图显示方法和装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6149602A (en) * | 1996-09-10 | 2000-11-21 | Arcelus; Almudena | User-worn electrocardiogram viewer device |
US7113820B2 (en) * | 2001-07-12 | 2006-09-26 | The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration | Real-time, high frequency QRS electrocardiograph |
CN101385641B (zh) * | 2007-09-11 | 2015-03-25 | 深圳迈瑞生物医疗电子股份有限公司 | 生理参数的波形分析方法及装置 |
CN103300846B (zh) * | 2013-05-27 | 2015-03-04 | 北京嘉和美康信息技术有限公司 | 一种波形标记及显示方法、装置 |
CN105496402B (zh) * | 2015-11-20 | 2018-03-02 | 北京理工大学 | 基于散点图和符号动力学的心电特征分析方法 |
CN205683081U (zh) * | 2016-01-19 | 2016-11-16 | 张芳芳 | 一种心电散点图分析及教学装置 |
-
2017
- 2017-09-19 CN CN201710852966.1A patent/CN107865655A/zh active Pending
-
2018
- 2018-09-19 WO PCT/CN2018/106369 patent/WO2019057047A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120165883A1 (en) * | 2000-12-15 | 2012-06-28 | James Kalgren | System and method for correlation of patient health information and implant device data |
EP2093683A2 (en) * | 2008-02-24 | 2009-08-26 | Karl Storz Endoscopy-America, Inc. | Patient monitoring |
CN101642368A (zh) * | 2008-08-04 | 2010-02-10 | 南京大学 | 自主神经功能信号的处理方法、装置和测试系统 |
CN104145273A (zh) * | 2012-02-23 | 2014-11-12 | 日本光电工业株式会社 | 监测装置 |
CN106166065A (zh) * | 2016-06-22 | 2016-11-30 | 天津理工大学 | 一种基于社交网络的可穿戴心电健康交互平台及其实现方法 |
CN107092789A (zh) * | 2017-04-18 | 2017-08-25 | 成都琅瑞医疗技术股份有限公司 | 心电数据分析工具系统及使用方法 |
CN107865655A (zh) * | 2017-09-19 | 2018-04-03 | 深圳星康医疗科技有限公司 | 心电波形图显示方法和装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114126487A (zh) * | 2019-12-02 | 2022-03-01 | 深圳迈瑞生物医疗电子股份有限公司 | 监护方法及监护装置、监护设备、计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107865655A (zh) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019057047A1 (zh) | 心电波形图显示方法和装置 | |
JP6650514B2 (ja) | 定量的心臓検査 | |
CN105159539B (zh) | 可穿戴设备的触控响应方法、装置及可穿戴设备 | |
US10459546B2 (en) | Channel aggregation for optimal stylus detection | |
US20100238174A1 (en) | Cursor Synchronization in a Plurality of Graphs | |
US20150317810A1 (en) | User Interfaces for Mobile and Wearable Medical Devices | |
WO2016058387A1 (zh) | 触控交互的处理方法、装置和系统 | |
US9811178B2 (en) | Stylus signal detection and demodulation architecture | |
KR20180015987A (ko) | 펜과 관련된 정보를 판단하는 터치 감지 장치 및 그 제어 방법과 펜 | |
US8897866B2 (en) | Multi-touch approach for ECG measurement | |
US20090149749A1 (en) | Method and system for synchronized playback of ultrasound images | |
CN114287965B (zh) | 超声医学检测设备、传输控制方法以及成像系统和终端 | |
US20240077948A1 (en) | Gesture-based display interface control method and apparatus, device and storage medium | |
WO2019056611A1 (zh) | 用于触控屏的笔迹曲线生成方法、装置、设备和存储介质 | |
WO2012027969A1 (zh) | 四维心电诊断仪的实现方法及系统 | |
US20190102014A1 (en) | Selective scanning for touch-sensitive display device | |
WO2017028491A1 (zh) | 触控显示设备及触控显示方法 | |
CN104586352A (zh) | 疲劳检测方法及系统 | |
JP6671918B2 (ja) | 心電図波形表示装置、心電図波形表示方法、プログラム及び記憶媒体 | |
US20150235395A1 (en) | Method And Apparatus For Displaying One Or More Waveforms | |
US20150235394A1 (en) | Method And Apparatus For Displaying One Or More Waveforms | |
CN109192282B (zh) | 医用图像注释的编辑方法、装置、计算机设备及存储介质 | |
WO2018145244A1 (zh) | 超声医学检测设备及成像控制方法、成像系统、控制器 | |
CN113616217B (zh) | 基线漂移曲线的生成方法和装置 | |
US20170285902A1 (en) | Modifying Settings of an Electronic Test or Measurement Instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18858293 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18858293 Country of ref document: EP Kind code of ref document: A1 |