WO2021147961A1 - 一种扫描成像方法、计算机设备和存储介质 - Google Patents
一种扫描成像方法、计算机设备和存储介质 Download PDFInfo
- Publication number
- WO2021147961A1 WO2021147961A1 PCT/CN2021/073134 CN2021073134W WO2021147961A1 WO 2021147961 A1 WO2021147961 A1 WO 2021147961A1 CN 2021073134 W CN2021073134 W CN 2021073134W WO 2021147961 A1 WO2021147961 A1 WO 2021147961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- target
- channel data
- imaging method
- line scan
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 48
- 238000004590 computer program Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 230000004075 alteration Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00007—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
- H04N1/00018—Scanning arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00005—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to image data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/0005—Methods therefor in service, i.e. during normal operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00071—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
- H04N1/00082—Adjusting or controlling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
Definitions
- This application relates to the field of image processing technology, and in particular to a scanning imaging method, computer equipment and storage medium.
- the existing line scan camera is usually set with a certain scanning direction. After acquiring the scanning data obtained by scanning along the scanning direction, the scanning data is corrected according to the set correction parameters to obtain an image. If the scanning direction is inconsistent with the set scanning direction, the image corrected by the set correction parameters will have obvious chromatic aberration, which will result in unqualified image quality. Therefore, it can only be scanned and imaged along the set scanning direction in normal use. , The scanning time for a specific target is relatively long, which is not conducive to rapid real-time image output.
- the embodiments of the present application provide a scanning imaging method, a computer device, and a storage medium, which can improve scanning efficiency and improve the quality of scanned images.
- the first aspect of the embodiments of the present application provides a scanning imaging method, including:
- a second aspect of the embodiments of the present application provides a scanning imaging method, including:
- a third aspect of the embodiments of the present application provides a computer device, wherein the computer device includes a memory and a processor;
- the memory is used to store a computer program
- the processor is configured to execute the computer program and implement any one of the aforementioned scanning imaging methods when the computer program is executed.
- the fourth aspect of the embodiments of the present application provides a computer-readable storage medium that stores a computer program, and if the computer program is executed by a processor, the scanning imaging method of any one of the foregoing is implemented.
- the beneficial effect of the embodiments of the present application is that by acquiring the first scan data when the line scan camera scans the target along the first direction, the first scan data is corrected according to the correction rule corresponding to the first direction. , Obtain the first image; and obtain the second scan data when the line scan camera scans the target along the second direction; correct the second scan data according to the correction rule corresponding to the second direction to obtain the second image; The first image and the second image are stitched together to obtain a scanned image of the target object. It can realize scanning on the reciprocating path, reduce the idle distance of the movement, and improve the scanning efficiency. Moreover, when the scanning direction is different, the scanning data is corrected by the correction rule corresponding to the scanning direction to improve the quality of the scanned image.
- FIG. 1 is a schematic flowchart of a scanning imaging method according to Embodiment 1 of the application;
- Figure 2 is a schematic diagram of a line scan camera scanning a target
- FIG. 3 is a schematic diagram of scanning a certain area when the image sensor scans a target object in a first direction
- FIG. 4 is a schematic diagram of the first scan data when the line scan camera scans the target along the first direction;
- FIG. 5 is a schematic diagram of scanning a certain area when the image sensor scans the target object in the second direction;
- FIG. 6 is a schematic diagram of second scan data when the line scan camera scans the target in the second direction
- FIG. 7 is a schematic diagram of performing stitching processing on the first image and the second image
- Fig. 8 is a schematic diagram of the moving track of the line scan camera relative to the target
- FIG. 9 is a schematic diagram of the comparison between the scanned image of the scanning imaging method according to the embodiment of the application and the scanned images of other scanning methods;
- FIG. 10 is a schematic flowchart of a scanning imaging method according to Embodiment 2 of this application.
- FIG. 11 is a schematic structural diagram of a computer device according to the third embodiment of the application.
- Figure 1 shows a schematic flow chart of a scanning imaging method.
- Scanning imaging methods can be applied to computer equipment.
- Computer equipment can include, for example, cameras, scanners, personal computers, server computers, handheld or portable devices, tablet devices, multi-processor systems, microprocessor-based systems, and programmable Consumer computer equipment, network PCs, minicomputers, mainframe computers, etc.
- the scanning imaging method is applied to a scanner equipped with a line-scan camera, such as a digital slice scanner, to realize a process of scanning a target object, such as a slice specimen, etc., through the line-scan camera to obtain a scanned image of the target object.
- a line-scan camera such as a digital slice scanner
- the line scan camera may be integrated with the scanner.
- the line scan camera may be embedded with the scanner, or the line scan camera may be detachably connected to the scanner.
- the type of line scan camera is not limited.
- the line scan camera may include, for example, two-line (2lines) line scan cameras, three-line (3lines) line scan cameras, and other multi-line line scan cameras, TDI (time delay integration, time Time-lapse integration) line scan camera, multi-chip line scan camera, etc.
- the scanning imaging method may be applied to a processor of a line scan camera and/or a processor of a scanner.
- the scanning imaging method includes the following steps S110 to S150.
- Step S110 Acquire first scan data when the line scan camera scans the target along the first direction.
- the first direction is from top to bottom. It is understandable that, of course, the first direction can also be from bottom to top, from left to right as the first direction, from right to left as the first direction, etc., which are not limited in this specification.
- the scanner includes a motion mechanism, and the motion mechanism can move with a line scan camera, or the motion mechanism can move with a stage on which a target is placed, or move with a line scan camera and a stage on which the target is placed, respectively.
- the embodiments of this specification are described by taking the movement mechanism carrying the line scan camera to realize the relative movement of the line scan camera and the target as an example.
- the image sensor of the line scan camera includes a plurality of pixel strips parallel to each other, and the extension direction of each pixel strip is perpendicular to the first direction.
- the line scan camera may also be a two-line scan camera, a TDI line scan camera, a multi-chip line scan camera, and the like.
- the image sensor includes three parallel pixel strips.
- the extension direction of each pixel strip is the horizontal direction.
- each of the plurality of pixel strips senses light of different wavelength ranges.
- the pixel strips can sense light of various wavelengths such as infrared light, red light, blue light, green light, and ultraviolet light.
- the three pixel strips respectively sense red light, blue light and green light. It is understandable that the multiple pixel bands of the image sensor can of course also sense light in other wavelength ranges, and the interval between adjacent pixel bands can also be other values, or the order of the pixel bands in different wavelength ranges can also be different. There is no restriction on this.
- a plurality of the pixel bands are arranged adjacently or separated by a specific distance.
- the red channel data corresponding to the red light pixel band in the area is obtained through the red light pixel band, and the blue light pixel band is obtained
- the blue channel data at the position corresponding to the pixel band of the blue light in this area is obtained through the pixel band of green light and the green channel data at the position corresponding to the pixel band of the green light in the area.
- the first scan data includes a plurality of first channel data, and each of the plurality of first channel data is acquired through a corresponding pixel band.
- FIG. 4 is a schematic diagram of obtaining first scan data when the line scan camera scans the target object along the first direction in step S110.
- the image sensor scans different areas of the target, and the scanning positions of each pixel band at different times are also different.
- the first channel data consistent with the number of pixel bands can be obtained at each time.
- the red channel data R, the blue channel data B, and the green channel data G can be obtained at different positions at each time.
- the red channel data, blue channel data, and green channel data at the same location can be obtained.
- the green channel data G1 acquired at time T1 the blue channel data B3 acquired at time T3, and the red channel data R5 acquired at time T5 correspond to the same position of the target object.
- Step S120 Perform correction processing on the first scan data according to the correction rule corresponding to the first direction to obtain a first image.
- step S120 performing correction processing on the first scan data according to the correction rule corresponding to the first direction to obtain the first image includes: according to multiple first channels corresponding to the same position of the target object The data determines the image of the location.
- the multiple first channel data at the same position are acquired at different moments when the line scan camera scans the target along the first direction.
- the RGB channels of the three-line array camera are spatially different, the RGB channels captured at the same time correspond to images at different positions.
- the pixel data of the red channel data R1, the blue channel data B1, and the green channel data G1 are obtained at time T1.
- the blue channel data B3 and the green channel Data G1 is image data at the same place in space.
- the red channel data R5 and blue channel data B3 at this time, and the green channel data G1 are image data at the same place in space.
- the blue channel data at 3 moments and the red channel data at 5 moments can be respectively buffered during the scanning process. While the buffered data is constantly updated, the green, blue, blue, and blue channels can be aligned with the time or storage location of the buffered data. With the data of the three red channels, the first image without chromatic aberration is finally obtained.
- the corresponding correction rules can be set according to the specific structure of the image sensor. For example, when multiple pixel bands of the image sensor sense light of different wavelength ranges, there are other intervals between adjacent pixel bands, or pixel bands of different wavelength ranges. When the order of is different, the number of channel data corresponding to various wavelength ranges in the scanning process can be adjusted adaptively; that is, the purpose of the above example is to facilitate the description of an implementation of this embodiment, and should not be used as a limitation to the embodiment of this specification. .
- step S120 performing correction processing on the first scan data according to the correction rule corresponding to the first direction to obtain the first image includes: based on the correction rule corresponding to the first direction, and according to each The acquisition time of the first channel data determines multiple first channel data at the same location of the target, and determines the image of the location based on the multiple first channel data.
- the correction rule includes the number of rows of the red channel data, the blue channel data, and the green channel data in the spatial position deviation, or the deviation of the acquisition time of the red channel data, the blue channel data, and the green channel data.
- the correction rule may be determined through a calibration process, and the calibration process may be implemented through an algorithm, or may be manually set.
- the number of rows in the spatial position of the red channel data, blue channel data, and green channel data may not necessarily be integers, and this number of rows can be determined through the calibration process.
- correction rule corresponding to the first direction can be adjusted adaptively according to the type and specifications of the image sensor used by the line scan camera, and will not be repeated here.
- Step S130 Acquire second scan data when the line scan camera scans the target in the second direction.
- the included angle between the first direction and the second direction is 180 degrees.
- the second direction is a bottom-up direction.
- the posture of the line scan camera when scanning the target in the first direction is the same as the posture when scanning the target in the second direction.
- the three pixel strips of the line camera image sensor are arranged in the order from top to bottom: red light pixel strip, blue light pixel strip, green
- the pixel band of light as shown in Figure 5, when scanning the target in the second direction, the top-to-bottom arrangement of the three pixel bands of the line camera image sensor is also maintained: red light pixel band, blue light pixel Pixel strip with green light.
- the red channel data corresponding to the position of the red light pixel band in the area is obtained through the red light pixel band, and the blue light pixel band is obtained
- the blue channel data at the position corresponding to the pixel band of the blue light in this area is obtained through the pixel band of green light and the green channel data at the position corresponding to the pixel band of the green light in the area.
- the second scan data includes a plurality of second channel data, and each of the plurality of second channel data is acquired through a corresponding pixel band.
- FIG. 6 is a schematic diagram of obtaining second scan data when the line scan camera scans the target object along the second direction in step S130.
- the image sensor scans different areas of the target, and the scanning positions of each pixel band at different times are also different.
- the first channel data consistent with the number of pixel bands can be obtained at each time.
- the red channel data R, the blue channel data B, and the green channel data G can be obtained at different positions at each time.
- the red channel data, blue channel data, and green channel data at the same location can be obtained.
- the red channel data R1 acquired at time T1 the blue channel data B3 acquired at time T3, and the green channel data G5 acquired at time T5 correspond to the same position of the target object.
- Step S140 Perform correction processing on the second scan data according to the correction rule corresponding to the second direction to obtain a second image.
- the performing correction processing on the second scan data according to the correction rule corresponding to the second direction in step S140 to obtain the second image includes: according to multiple second channels corresponding to the same position of the target object The data determines the image of the location.
- the multiple second channel data at the same position are acquired at different moments when the line scan camera scans the target in the second direction.
- the RGB channels of the three-line array camera are spatially different, the RGB channels captured at the same time correspond to images at different positions.
- the pixel data of the red channel data R1, the blue channel data B1, and the green channel data G1 are acquired at time T1.
- the blue channel data B3 and the red channel Data R1 is image data at the same place in space.
- the green channel data G5 and blue channel data B3 at this time, and the red channel data R1 are image data at the same place in space.
- the blue channel data at 3 moments and the green channel data at 5 moments are respectively buffered during the scanning process. While the buffered data is constantly updated, the green, blue, and red can be aligned with the time or storage location of the buffered data. With the data of three channels, the first image without chromatic aberration is finally obtained.
- the performing correction processing on the second scan data according to the correction rule corresponding to the second direction in step S140 to obtain the second image includes: based on the correction rule corresponding to the second direction, and according to each The acquisition time of the second channel data determines multiple second channel data at the same location of the target, and determines the image of the location based on the multiple second channel data.
- the correction rule includes the number of rows of the spatial position deviation of the red channel data, the blue channel data, and the green channel data, or the deviation of the acquisition time of the red channel data, the blue channel data, and the green channel data.
- correction rule corresponding to the second direction can be adjusted adaptively according to the type and specifications of the image sensor used by the line scan camera, and will not be described in detail here.
- Step S150 Perform splicing processing on the first image and the second image to obtain a scanned image of the target object.
- multiple first images scanned in the first direction multiple times and multiple second images scanned multiple times in the second direction are spliced according to the scanning order to obtain Scanned image of the entire target object.
- the scanning imaging method further includes: controlling the relative movement of the line scan camera or the stage of the target, so that the line scan camera alternately scans the target along the first direction And scanning in the second direction.
- the line scan camera scans the target in the first direction on the left side of the target, then scans in the second direction, and then scans in the first direction again to alternately complete the overall scan of the target.
- the scanning imaging method further includes: controlling the line scan camera after the scanning along the first direction and/or along the second direction of the line scan camera is completed Or the carrier of the target moves relative to a predetermined distance along a third direction, and the third direction is perpendicular to the first direction.
- FIG. 8 is a schematic diagram of the movement track of the line camera relative to the target. 1 to 8 in FIG. 8 represent the sequence of the movement trajectory of the line camera. After the line-scan camera scans the target in the first direction, it moves a preset distance to the right, and then scans along the second direction; the line-scan camera scans the target in the second direction After completion, move the preset distance to the right again to scan in the first direction.
- the first image is obtained by correcting the first scan data when a certain column is scanned in the first direction
- the second image is obtained by correcting the second scan data when the column is scanned in the second direction.
- the first image and the second image are subjected to image fusion processing to obtain a higher-precision scanned image of the column, and then the scanned images of all the columns of the target object are stitched together to obtain the overall scanned image.
- the scanning imaging method can obtain the first scan data when the line scan camera scans the target along the first direction, and correct the first scan data according to the correction rule corresponding to the first direction, so as to obtain the first scan data.
- Image and acquiring the second scan data when the line scan camera scans the target in the second direction; correcting the second scan data according to the correction rule corresponding to the second direction to obtain the second image; then the first image and the first image
- the two images are stitched together to obtain a scanned image of the target object. It can realize scanning on the reciprocating path, reduce the idle distance of the movement, and improve the scanning efficiency.
- the scanning direction is different, the scanning data is corrected by the correction rule corresponding to the scanning direction to improve the quality of the scanned image.
- the left side is the scanned image without corresponding correction processing
- the right side is the scanned image obtained by the scanning imaging method according to the embodiment of this specification.
- the scanned image has higher quality and eliminates chromatic aberration.
- the left and right parts of the scanned image on the left in FIG. 9 correspond to the scanning results of the front and back in different directions in the embodiment. The two results are stitched together to form a final complete image. It can be seen that the right half has a relatively obvious color difference. There is no such chromatic aberration in the right scanned image in 9.
- FIG. 10 is a schematic flowchart of another scanning imaging method provided by an embodiment of this application.
- the scanning imaging method includes the following steps S210 to S240.
- Step S210 Obtain a first image when the line scan camera scans the target along the first direction.
- the line scan camera itself can obtain the first scan data when the line scan camera scans the target along the first direction, and perform correction processing on the first scan data according to the correction rule corresponding to the first direction, Get the first image. It is understandable that the line scan camera is preset with a fixed scanning direction, and the scanning direction can be used as the first direction, and the corresponding scanning camera can output the corrected first image.
- the color correction in the first direction can be implemented by the line scan camera itself, but the parameters set inside the camera can only ensure that the correction in one direction is successful. If you use the color correction function that comes with the line scan camera, the image generated by the line scan camera when scanning the target in the reverse direction will have serious color distortion, as shown in the scanned image on the left in Figure 9, the image at this time is not available .
- Step S220 Obtain second scan data when the line scan camera scans the target in the second direction.
- the second scan data can be obtained when the line scan camera scans the target in the second direction.
- a computer device communicatively connected with the line scan camera such as a scanner, a personal computer, a server computer, a handheld device or a portable device, a tablet type device, etc., can read the second scan data from the line scan camera.
- the included angle between the first direction and the second direction is 180 degrees.
- the scanning imaging method further includes: controlling the relative movement of the line scan camera or the carrier of the target, so that the line scan camera alternately scans the target along the first direction and scans the target along the Scan in the second direction.
- the scanning imaging method further includes: after the scanning of the line scan camera in the first direction and/or the scanning in the second direction is completed, controlling the line scan camera or the target object
- the carrier moves relative to a predetermined distance along a third direction, and the third direction is perpendicular to the first direction.
- Step S230 Perform correction processing on the second scan data according to the correction rule corresponding to the second direction to obtain a second image.
- the image sensor of the line scan camera includes a plurality of pixel strips parallel to each other, and the extension direction of each pixel strip is perpendicular to the first direction.
- each of the plurality of pixel bands senses light of different wavelength ranges;
- the second scan data includes a plurality of second channel data, and each of the plurality of second channel data is acquired through a corresponding pixel band.
- the performing correction processing on the second scan data according to the correction rule corresponding to the second direction to obtain the second image includes: determining the data according to multiple second channel data corresponding to the same position of the target object. The image of the location; wherein the multiple second channel data at the same location are acquired at different times when the line scan camera scans the target along the second direction.
- a computer device communicatively connected with a line scan camera such as a scanner, a personal computer, a server computer, a handheld device or a portable device, a tablet-type device, etc.
- a line scan camera such as a scanner, a personal computer, a server computer, a handheld device or a portable device, a tablet-type device, etc.
- the scanned data undergoes correction processing to obtain a second image.
- the performing correction processing on the second scan data according to the correction rule corresponding to the second direction to obtain the second image includes: based on the correction rule corresponding to the second direction, according to each of the first
- the acquisition time of the two-channel data determines multiple second-channel data at the same location of the target, and determines the image of the location based on the multiple second-channel data.
- Step S240 Perform splicing processing on the first image and the second image to obtain a scanned image of the target object.
- a computer device communicatively connected with a line scan camera may perform stitching processing on the first image and the second image to obtain a scanned image of the target object.
- Steps S220, S230, and S240 respectively correspond to S130, S140, and S150 in the first embodiment, and will not be repeated.
- the scanning imaging method obtaineds the first image obtained when the line scan camera scans the target object along the default first direction; and obtains the second scan data when the line scan camera scans the target object along the second direction; Correction processing is performed on the second scan data according to the correction rule corresponding to the second direction to obtain a second image; then the first image and the second image are spliced together to obtain a scanned image of the target object. It can realize scanning on the reciprocating path, reduce the idle distance of the movement, and improve the scanning efficiency. Moreover, when the scanning direction is different, the scanning data is corrected by the correction rule corresponding to the scanning direction to improve the quality of the scanned image.
- a computer-readable storage medium in which a computer program is stored. If the computer program is executed by a processor, the steps of the aforementioned scanning imaging method are realized.
- This application can be used in many general or special computing system environments or configurations. For example: cameras, scanners, personal computers, server computers, handheld or portable devices, tablet devices, multi-processor systems, microprocessor-based systems, programmable consumer computer equipment, network PCs, small computers, mainframe computers , Distributed computing environment including any of the above systems or equipment, etc., as in the third embodiment.
- a computer device as shown in FIG. 11 includes a memory 200 and a processor 300.
- the memory 200 is used to store program instructions; if the processor 300 executes the program instructions, the steps of the scanning imaging method described above are implemented.
- the computer device may include, for example, a camera, a scanner, a personal computer, a server computer, a handheld device or a portable device, a tablet device, a multi-processor system, a microprocessor-based system, a programmable consumer computer device, and a network PC, small computer, mainframe computer, etc.
- the computer device provided by the embodiment of the application can obtain the first scan data when the line scan camera scans the target along the first direction, and correct the first scan data according to the correction rule corresponding to the first direction to obtain the first image ; And acquiring the second scan data when the line scan camera scans the target in the second direction; correcting the second scan data according to the correction rule corresponding to the second direction to obtain the second image; then the first image and the second
- the image stitching process can get the scanned image of the target object. It can realize scanning on the reciprocating path, reduce the idle distance of the movement, and improve the scanning efficiency. Moreover, when the scanning direction is different, the scanning data is corrected by the correction rule corresponding to the scanning direction to improve the quality of the scanned image.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
一种扫描成像方法,包括:获取线阵相机沿第一方向扫描目标物时的第一扫描数据;根据第一方向对应的校正规则对第一扫描数据进行校正处理,得到第一图像;获取线阵相机沿第二方向扫描目标物时的第二扫描数据;根据第二方向对应的校正规则对第二扫描数据进行校正处理,得到第二图像;对第一图像和第二图像进行拼接处理,得到目标物的扫描图像。可以实现往复路径上的扫描,减少运动的空程,提高扫描效率,而且在扫描方向不同时,采用扫描方向对应的校正规则对扫描数据进行校正处理,提高扫描图像的质量。还提供了计算机设备和存储介质。
Description
本申请涉及图像处理技术领域,尤其涉及一种扫描成像方法、计算机设备和存储介质。
现有的线阵相机通常设定有一定的扫描方向,在获取沿该扫描方向扫描得到的扫描数据后,根据设定好的校正参数对扫描数据进行校正得到图像。如果扫描方向和设定的扫描方向不一致,则设定好的校正参数校正得到的图像会出现明显的色差,从而导致图像质量不合格,因此通常使用时只能沿设定的扫描方向进行扫描成像,对特定目标物的扫描时间比较长,不利于快速实时出图。
发明内容
本申请实施例提供一种扫描成像方法、计算机设备和存储介质,可以提高扫描效率,和提高扫描图像的质量。
本申请实施例第一方面提供了一种扫描成像方法,包括:
获取线阵相机沿第一方向扫描目标物时的第一扫描数据;
根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像;
获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据;
根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像;
对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
本申请实施例第二方面提供了一种扫描成像方法,包括:
获取线阵相机沿第一方向扫描目标物时的第一图像;
获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据;
根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像;
对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
本申请实施例第三方面提供了一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现前述任一项的扫描成像方法。
本申请实施例第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,若所述计算机程序被处理器执行,实现前述任一项的扫描成像方法。
相比现有技术,本申请实施例的有益效果在于:通过获取线阵相机沿第一方向扫描目标物时的第一扫描数据,根据第一方向对应的校正规则对第一扫描数据进行校正处理,得到第一图像;以及获取线阵相机沿第二方向扫描目标物时的第二扫描数据;根据第二方向对应的校正规则对第二扫描数据进行校正处理,得到第二图像;之后对第一图像和第二图像进行拼接处理可以得到目标物的扫描图像。可以实现往复路径上的扫描,减少运动的空程,提高扫描效率,而且在扫描方向不同时,采用扫描方向对应的校正规则对扫描数据进行校正处理,提高扫描图像的质量。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示 例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例一的扫描成像方法的流程示意图;
图2为线阵相机扫描目标物的示意图;
图3为图像传感器沿第一方向扫描目标物时对某一区域进行扫描的示意图;
图4为线阵相机沿第一方向扫描目标物时的第一扫描数据的示意图;
图5为图像传感器沿第二方向扫描目标物时对某一区域进行扫描的示意图;
图6为线阵相机沿第二方向扫描目标物时的第二扫描数据的示意图;
图7为对第一图像和第二图像进行拼接处理的示意图;
图8为线阵相机相对目标物的移动轨迹示意图;
图9为本申请实施例扫描成像方法的扫描图像与其他扫描方法扫描图像的对比示意;
图10为本申请实施例二的扫描成像方法的流程示意图;
图11为本申请实施例三的计算机设备的结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互组合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块的划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置示意图中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
实施例一
如图1所示为一种扫描成像方法的流程示意图。扫描成像方法可以应用于计算机设备,计算机设备例如可以包括相机、扫描仪、个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、可编程的消费计算机设备、网络PC、小型计算机、大型计算机等。
示例性的,扫描成像方法应用于搭载线阵相机的扫描仪,例如数字切片扫描仪,用于实现通过线阵相机扫描目标物,如切片标本等,得到目标物的扫描图像等过程。
示例性的,线阵相机可以与扫描仪一体化设置,如线阵相机可以内嵌入扫描仪,或者线阵相机可以与扫描仪可拆卸的连接。
在本说明实施例中,不限制线阵相机的类型,线阵相机例如可以包括二线(2lines)线阵相机、三线(3lines)线阵相机等多线线阵相机、TDI(time delay integration,时间延时积分)线阵相机,多片式线阵相机等。
示例性的,扫描成像方法可以应用于线阵相机的处理器和/或扫描仪的处理器。
如图1所示,扫描成像方法包括以下步骤S110至步骤S150。
步骤S110、获取线阵相机沿第一方向扫描目标物时的第一扫描数据。
如图2所示,以由上至下为第一方向。可以理解的,当然也可以以由下至上为第一方向、以由左至右为第一方向、以由右至左为第一方向等等,本说明书对此不做限制。
示例性的,扫描仪包括运动机构,运动机构可以载着线阵相机移动,或者运动机构可以载着放置目标物的载台移动,或者分别载着线阵相机和放置目标物的载台移动。本说明书实施例以运动机构载着线阵相机移动实现线阵相机和目标物相对运动为例进行说明。
在一些可行的实施方式中,所述线阵相机的图像传感器包括多个相互平行的像素带,各所述像素带的延伸方向均与所述第一方向垂直。
为便于说明,本说明书以三线阵相机为例进行说明。在其他一些实施方式中,线阵相机也可以为二线阵相机、TDI线阵相机、多片式线阵相机等。
如图3所示,图像传感器包括三个相互平行的像素带。当第一方向为竖直方向时,各所述像素带的延伸方向为横向。
具体的,多个所述像素带各自感应不同波长范围的光线,例如像素带可以感应红外光、红色光、蓝色光、绿色光、紫外光等各种波长的光。
如图3所示,三个像素带分别感应红色光、蓝色光和绿色光。可以理解的,图像传感器的多个像素带当然也可以感应其他波长范围的光线,相邻像素带之间的间隔也可以为其他的数值、或者不同波长范围像素带的排序也可以不同,本说明书对此不做限制。
示例性的,多个所述像素带相邻设置,或者间隔特定的距离设置。
可以理解的,当多个所述像素带间隔特定的距离设置时,可以防止其他波长范围的光线的干扰,提高扫描成像的质量。
如图3所示,图像传感器扫描到目标物的图示区域时,通过红色光的像素带获取该区域中与所述红色光的像素带对应位置的红色通道数据,通过蓝色光的像素带获取该区域中与所述蓝色光的像素带对应位置的蓝色通道数据,通过绿色光的像素带获取该区域中与所述绿色光的像素带对应位置的绿色通道数据。
示例性的,所述第一扫描数据包括多个第一通道数据,所述多个第一通道数据各自通过对应的像素带获取。
如图4所示为步骤S110获取线阵相机沿第一方向扫描目标物时的第一扫描数据的示意图。
在T1时刻至T6时刻,图像传感器扫描到目标物的不同区域,各像素带在不同时刻扫描的位置也不同。在每一时刻均可获取与像素带数目一致的第一通道数据,例如每一时刻可以获取不同位置的红色通道数据R、蓝色通道数据B、绿色通道数据G。
如图4所示,经过多个时刻,可以获取同一位置的红色通道数据、蓝色通道数据、绿色通道数据。例如在T1时刻获取的绿色通道数据G1,在T3时刻获取的蓝色通道数据B3、在T5时刻获取的红色通道数据R5对应于目标物的同一位置。
步骤S120、根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像。
示例性的,步骤S120中所述根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像,包括:根据对应于目标物同一位置的多个第一通道数据确定所述位置的图像。
其中,所述同一位置的多个第一通道数据是在所述线阵相机沿所述第一方向扫描目标物的不同时刻获取的。
由于三线阵相机RGB通道排布在空间上是有差异的,这就导致在同一时刻拍摄到的RGB通道对应的是不同位置的图像。如图4所示,在T1时刻获取到红色通道数据R1,蓝色通道数据B1,绿色通道数据G1的像素数据,当按照扫描方向到T3时刻,此时的蓝色通道数据B3才和绿色通道数据G1是空间上同一处的图像数据,同理到T5时刻,此时的红色通道数据R5和蓝色通道数据B3,绿色通道数据G1是空间上同一处的图像数据。
示例性的,可以在扫描过程中分别缓冲3个时刻的蓝色通道数据,5个时刻的红色通道数据,在不断更新缓冲数据的同时,可以结合缓冲数据的时刻或存 储位置对齐绿、蓝、红三个通道的数据,最终获得无色差的第一图像。
可以理解的,可以根据图像传感器的具体结构设置相应的校正规则,例如,当图像传感器的多个像素带感应不同波长范围的光线,相邻像素带之间具有其他间隔、或者不同波长范围像素带的排序不同时,扫描过程中缓冲各种波长范围对应的通道数据的数目可以适应性调整;即以上举例的目的为便于说明本实施例的一种实现方式,不应作为对本说明书实施例的限定。
示例性的,步骤S120中所述根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像,包括:基于所述第一方向对应的校正规则,根据各所述第一通道数据的获取时间确定目标物同一位置的多个第一通道数据,以及根据所述多个第一通道数据确定所述位置的图像。
示例性的,校正规则包括红色通道数据、蓝色通道数据、绿色通道数据在空间位置上偏差的行数,或者包括红色通道数据、蓝色通道数据、绿色通道数据的获取时刻的偏差。
示例性的,校正规则可以通过一个校准过程来确定,该校准过程可以通过算法实现,也可以通过手动设定。例如,由于线阵相机图像传感器的像素加工等因素,红色通道数据、蓝色通道数据、绿色通道数据在空间位置上偏差的行数不一定为整数,这个行数可以通过该校准过程来确定。
如图4所示,目标物同一位置的红色通道数据和绿色通道数据差了5行,蓝色通道数据和绿色通道数据差了3行,那么在校正过程中,可以缓存5行红色通道数据,3行蓝色通道数据,在T5时刻的时候将同一空间位置的通道数据进行对齐处理,之后的扫描校正过程是个循环处理的过程。
可以理解的,第一方向对应的校正规则可以根据线阵相机所使用的图像传感器的种类、规格等进行适应性调整,在此不做赘述。
步骤S130、获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据。
具体的,所述第一方向和所述第二方向的夹角为180度。
如图2所示,当第一方向为由上至下的方向时,第二方向为由下至上的方向。
具体的,线阵相机在沿第一方向扫描目标物时的姿态和沿第二方向扫描目标物时的姿态相同。示例性的,如图3所示,沿第一方向扫描目标物时,线阵相机图像传感器三个像素带由上至下的排列顺序为:红色光的像素带、蓝色光的像素带、绿色光的像素带;如图5所示,沿第二方向扫描目标物时,线阵相机图像传感器三个像素带由上至下的排列顺序也保持为:红色光的像素带、蓝色光的像素带、绿色光的像素带。
如图5所示,图像传感器扫描到目标物的图示区域时,通过红色光的像素带获取该区域中与所述红色光的像素带对应位置的红色通道数据,通过蓝色光的像素带获取该区域中与所述蓝色光的像素带对应位置的蓝色通道数据,通过绿色光的像素带获取该区域中与所述绿色光的像素带对应位置的绿色通道数据。
示例性的,所述第二扫描数据包括多个第二通道数据,所述多个第二通道数据各自通过对应的像素带获取。
如图6所示为步骤S130获取线阵相机沿第二方向扫描目标物时的第二扫描数据的示意图。
在T1时刻至T6时刻,图像传感器扫描到目标物的不同区域,各像素带在不同时刻扫描的位置也不同。在每一时刻均可获取与像素带数目一致的第一通道数据,例如每一时刻可以获取不同位置的红色通道数据R、蓝色通道数据B、绿色通道数据G。
如图6所示,经过多个时刻,可以获取同一位置的红色通道数据、蓝色通 道数据、绿色通道数据。例如在T1时刻获取的红色通道数据R1,在T3时刻获取的蓝色通道数据B3、在T5时刻获取的绿色通道数据G5对应于目标物的同一位置。
步骤S140、根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像。
示例性的,步骤S140中所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:根据对应于目标物同一位置的多个第二通道数据确定所述位置的图像。
其中,所述同一位置的多个第二通道数据是在所述线阵相机沿所述第二方向扫描目标物的不同时刻获取的。
由于三线阵相机RGB通道排布在空间上是有差异的,这就导致在同一时刻拍摄到的RGB通道对应的是不同位置的图像。如图6所示,在T1时刻获取到红色通道数据R1,蓝色通道数据B1,绿色通道数据G1的像素数据,当按照扫描方向到T3时刻,此时的蓝色通道数据B3才和红色通道数据R1是空间上同一处的图像数据,同理到T5时刻,此时的绿色通道数据G5和蓝色通道数据B3,红色通道数据R1是空间上同一处的图像数据。
示例性的,在扫描过程中分别缓冲3个时刻的蓝色通道数据,5个时刻的绿色通道数据,在不断更新缓冲数据的同时,可以结合缓冲数据的时刻或存储位置对齐绿、蓝、红三个通道的数据,最终获得无色差的第一图像。
示例性的,步骤S140中所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:基于所述第二方向对应的校正规则,根据各所述第二通道数据的获取时间确定目标物同一位置的多个第二通道数据,以及根据所述多个第二通道数据确定所述位置的图像。
示例性的,校正规则包括红色通道数据、蓝色通道数据、绿色通道数据在空间位置上偏差的行数,或者包括红色通道数据、蓝色通道数据、绿色通道数据的获取时刻的偏差。
如图6所示,目标物同一位置的绿色通道数据和红色通道数据差了5行,蓝色通道数据和红色通道数据差了3行,那么在校正过程中,可以缓存5行绿色通道数据,3行蓝色通道数据,在T5时刻的时候将同一空间位置的通道数据进行对齐处理,之后的扫描校正过程是个循环处理的过程。
可以理解的,第二方向对应的校正规则可以根据线阵相机所使用的图像传感器的种类、规格等进行适应性调整,在此不做赘述。
步骤S150、对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
示例性的,如图7所示,将多次沿第一方向扫描得到的多个第一图像和多次沿第二方向扫描得到的多个第二图像,根据扫描的顺序进行拼接处理,得到目标物整体的扫描图像。
在一些可行的实施方式中,所述扫描成像方法还包括:控制所述线阵相机或目标物的载台相对运动,使所述线阵相机交替对目标物进行沿所述第一方向的扫描和沿所述第二方向的扫描。
如图2所示,线阵相机在目标物的左侧先沿第一方向扫描目标物,然后沿第二方向扫描,之后再次沿第一方向扫描,以此交替完成对目标物整体的扫描。
在一些可行的实施方式中,所述扫描成像方法还包括:在所述线阵相机沿所述第一方向的扫描和/或沿所述第二方向的扫描完成后,控制所述线阵相机或目标物的载台沿第三方向相对运动预设的距离,所述第三方向与所述第一方向垂直。
示例性的,如图8所示为线阵相机相对目标物的移动轨迹示意图。图8中的1至8表示线阵相机移动轨迹的先后顺序。在线阵相机相对目标物沿所述第一方向的扫描完成后,向右侧移动预设的距离,然后沿所述第二方向进行扫描;在线阵相机相对目标物沿所述第二方向的扫描完成后,向右侧再次移动预设的距离,以沿第一方向进行扫描。
在一些实施方式中,也可以对目标物的同一列或同一行进行第一方向的扫描和第二方向的扫描,然后再对下一列或下一行进行第一方向的扫描和第二方向的扫描。示例性的,对某一列沿第一方向扫描时的第一扫描数据校正处理得到第一图像,对该列沿第二方向扫描时的第二扫描数据校正处理得到第二图像,将该列的第一图像和第二图像进行图像融合处理,可以得到该列较高精度的扫描图像,之后将目标物所有列的扫描图像拼接得到整体的扫描图像。
本申请实施例提供的扫描成像方法,可以通过获取线阵相机沿第一方向扫描目标物时的第一扫描数据,根据第一方向对应的校正规则对第一扫描数据进行校正处理,得到第一图像;以及获取线阵相机沿第二方向扫描目标物时的第二扫描数据;根据第二方向对应的校正规则对第二扫描数据进行校正处理,得到第二图像;之后对第一图像和第二图像进行拼接处理可以得到目标物的扫描图像。可以实现往复路径上的扫描,减少运动的空程,提高扫描效率,而且在扫描方向不同时,采用扫描方向对应的校正规则对扫描数据进行校正处理,提高扫描图像的质量。
示例性的,如图9所示,左侧为未进行相应校正处理时的扫描图像,右侧为本说明书实施例扫描成像方法得到的扫描图像,该扫描图像质量更高,消除了色差。具体的,图9中左侧扫描图像的左右两部分分别对应实施例中正反不同方向的扫描结果,两个结果拼接形成最终完整的图像,可以看出右半部分具 有比较明显的色差,图9中右侧扫描图像则不存在这种色差。
实施例二
请结合前述实施例参阅本实施例,如图10所示为本申请实施例提供的另一种扫描成像方法的流程示意图。
如图2所示,扫描成像方法包括以下步骤S210至步骤S240。
步骤S210、获取线阵相机沿第一方向扫描目标物时的第一图像。
在一些实施方式中,线阵相机自身可以获取线阵相机沿第一方向扫描目标物时的第一扫描数据,根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像。可以理解的线阵相机预设有固定的扫描方向,可以将该扫描方向作为第一方向,相应的扫描相机可以输出校正后的第一图像。
具体的,第一方向的色彩校正可以由线阵相机自身实现,但相机内部设置的参数只能保证一个方向上的校正成功。如果使用线阵相机自带的色彩校正功能,则线阵相机在反向扫描目标物时生成的图像会存在较为严重的色彩畸变,如图9中左侧的扫描图像,此时的图像不可用。
步骤S220、获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据。
示例性的,线阵相机沿第二方向扫描目标物时可以得到第二扫描数据。与线阵相机通信连接的计算机设备,如扫描仪、个人计算机、服务器计算机、手持设备或便携式设备、平板型设备等可以从线阵相机读取所述第二扫描数据。
示例性的,所述第一方向和所述第二方向的夹角为180度。
示例性的,所述扫描成像方法还包括:控制所述线阵相机或目标物的载台相对运动,使所述线阵相机交替对目标物进行沿所述第一方向的扫描和沿所述第二方向的扫描。
示例性的,所述扫描成像方法还包括:在所述线阵相机沿所述第一方向的 扫描和/或沿所述第二方向的扫描完成后,控制所述线阵相机或目标物的载台沿第三方向相对运动预设的距离,所述第三方向与所述第一方向垂直。
步骤S230、根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像。
示例性的,所述线阵相机的图像传感器包括多个相互平行的像素带,各所述像素带的延伸方向均与所述第一方向垂直。
示例性的,多个所述像素带各自感应不同波长范围的光线;所述第二扫描数据包括多个第二通道数据,所述多个第二通道数据各自通过对应的像素带获取。
示例性的,所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:根据对应于目标物同一位置的多个第二通道数据确定所述位置的图像;其中,所述同一位置的多个第二通道数据是在所述线阵相机沿所述第二方向扫描目标物的不同时刻获取的。
示例性的,与线阵相机通信连接的计算机设备,如扫描仪、个人计算机、服务器计算机、手持设备或便携式设备、平板型设备等可以根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像。
示例性的,所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:基于所述第二方向对应的校正规则,根据各所述第二通道数据的获取时间确定目标物同一位置的多个第二通道数据,以及根据所述多个第二通道数据确定所述位置的图像。
步骤S240、对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
示例性的,与线阵相机通信连接的计算机设备可以对所述第一图像和所述 第二图像进行拼接处理,得到目标物的扫描图像。
步骤S220、S230和S240,分别对应实施例一中的S130、S140和S150,不再赘述。
本申请实施例提供的扫描成像方法,通过获取线阵相机沿默认的第一方向扫描目标物时得到的第一图像;以及获取线阵相机沿第二方向扫描目标物时的第二扫描数据;根据第二方向对应的校正规则对第二扫描数据进行校正处理,得到第二图像;之后对第一图像和第二图像进行拼接处理可以得到目标物的扫描图像。可以实现往复路径上的扫描,减少运动的空程,提高扫描效率,而且在扫描方向不同时,采用扫描方向对应的校正规则对扫描数据进行校正处理,提高扫描图像的质量。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法,如:
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,若所述计算机程序被处理器执行,实现前述扫描成像方法的步骤。
本申请可用于众多通用或专用的计算系统环境或配置中。例如:相机、扫描仪、个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、可编程的消费计算机设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等,如实施例三。
实施例三
如图11所示的一种计算机设备,包括存储器200和处理器300,存储器200用于存储程序指令;若处理器300执行该程序指令,实现上述扫描成像方法的步骤。
示例性的,计算机设备例如可以包括相机、扫描仪、个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、可编程的消费计算机设备、网络PC、小型计算机、大型计算机等。
本实施例中的计算机设备与前述实施例中的方法是基于同一发明构思下的不同方面,在前面已经对方法实施过程作了详细的描述,所以本领域技术人员可根据前述描述清楚地了解本实施中的计算机设备的结构及实施过程,为了说明书的简洁,在此就不再赘述。
本申请实施例提供的计算机设备,可以通过获取线阵相机沿第一方向扫描目标物时的第一扫描数据,根据第一方向对应的校正规则对第一扫描数据进行校正处理,得到第一图像;以及获取线阵相机沿第二方向扫描目标物时的第二扫描数据;根据第二方向对应的校正规则对第二扫描数据进行校正处理,得到第二图像;之后对第一图像和第二图像进行拼接处理可以得到目标物的扫描图像。可以实现往复路径上的扫描,减少运动的空程,提高扫描效率,而且在扫描方向不同时,采用扫描方向对应的校正规则对扫描数据进行校正处理,提高扫描图像的质量。
上述实施方式仅为本申请的优选实施方式,不能以此来限定本申请保护的范围,本领域的技术人员在本申请的基础上所做的任何非实质性的变化及替换均属于本申请所要求保护的范围。
Claims (14)
- 一种扫描成像方法,其特征在于,包括:获取线阵相机沿第一方向扫描目标物时的第一扫描数据;根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像;获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据;根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像;对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
- 如权利要求1所述的扫描成像方法,其特征在于,所述第一方向和所述第二方向的夹角为180度;所述扫描成像方法还包括:控制所述线阵相机或目标物的载台相对运动,使所述线阵相机交替对目标物进行沿所述第一方向的扫描和沿所述第二方向的扫描。
- 如权利要求2所述的扫描成像方法,其特征在于,所述扫描成像方法还包括:在所述线阵相机沿所述第一方向的扫描和/或沿所述第二方向的扫描完成后,控制所述线阵相机或目标物的载台沿第三方向相对运动预设的距离,所述第三方向与所述第一方向垂直。
- 如权利要求1-3中任一项所述的扫描成像方法,其特征在于,所述线阵相机的图像传感器包括多个相互平行的像素带,各所述像素带的延伸方向均与所述第一方向垂直;多个所述像素带各自感应不同波长范围的光线;所述第一扫描数据包括多个第一通道数据,所述多个第一通道数据各自通 过对应的像素带获取;所述第二扫描数据包括多个第二通道数据,所述多个第二通道数据各自通过对应的像素带获取。
- 如权利要求4所述的扫描成像方法,其特征在于,所述根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像,包括:根据对应于目标物同一位置的多个第一通道数据确定所述位置的图像;其中,所述同一位置的多个第一通道数据是在所述线阵相机沿所述第一方向扫描目标物的不同时刻获取的;所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:根据对应于目标物同一位置的多个第二通道数据确定所述位置的图像;其中,所述同一位置的多个第二通道数据是在所述线阵相机沿所述第二方向扫描目标物的不同时刻获取的。
- 如权利要求4所述的扫描成像方法,其特征在于,所述根据所述第一方向对应的校正规则对所述第一扫描数据进行校正处理,得到第一图像,包括:基于所述第一方向对应的校正规则,根据各所述第一通道数据的获取时间确定目标物同一位置的多个第一通道数据,以及根据所述多个第一通道数据确定所述位置的图像;所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:基于所述第二方向对应的校正规则,根据各所述第二通道数据的获取时间确定目标物同一位置的多个第二通道数据,以及根据所述多个第二通道数据确定所述位置的图像。
- 一种扫描成像方法,其特征在于,包括:获取线阵相机沿第一方向扫描目标物时的第一图像;获取所述线阵相机沿第二方向扫描目标物时的第二扫描数据;根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像;对所述第一图像和所述第二图像进行拼接处理,得到目标物的扫描图像。
- 如权利要求7所述的扫描成像方法,其特征在于,所述第一方向和所述第二方向的夹角为180度;所述扫描成像方法还包括:控制所述线阵相机或目标物的载台相对运动,使所述线阵相机交替对目标物进行沿所述第一方向的扫描和沿所述第二方向的扫描。
- 如权利要求8所述的扫描成像方法,其特征在于,所述扫描成像方法还包括:在所述线阵相机沿所述第一方向的扫描和/或沿所述第二方向的扫描完成后,控制所述线阵相机或目标物的载台沿第三方向相对运动预设的距离,所述第三方向与所述第一方向垂直。
- 如权利要求7-9中任一项所述的扫描成像方法,其特征在于,所述线阵相机的图像传感器包括多个相互平行的像素带,各所述像素带的延伸方向均与所述第一方向垂直;多个所述像素带各自感应不同波长范围的光线;所述第二扫描数据包括多个第二通道数据,所述多个第二通道数据各自通过对应的像素带获取。
- 如权利要求10所述的扫描成像方法,其特征在于,所述根据所述第二 方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:根据对应于目标物同一位置的多个第二通道数据确定所述位置的图像;其中,所述同一位置的多个第二通道数据是在所述线阵相机沿所述第二方向扫描目标物的不同时刻获取的。
- 如权利要求10所述的扫描成像方法,其特征在于,所述根据所述第二方向对应的校正规则对所述第二扫描数据进行校正处理,得到第二图像,包括:基于所述第二方向对应的校正规则,根据各所述第二通道数据的获取时间确定目标物同一位置的多个第二通道数据,以及根据所述多个第二通道数据确定所述位置的图像。
- 一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现:如权利要求1-6中任一项所述的扫描成像方法;和/或如权利要求7-12中任一项所述的扫描成像方法。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于:若所述计算机程序被处理器执行,实现:如权利要求1-6中任一项所述的扫描成像方法;和/或如权利要求7-12中任一项所述的扫描成像方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2020100684177 | 2020-01-21 | ||
CN202010068417 | 2020-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147961A1 true WO2021147961A1 (zh) | 2021-07-29 |
Family
ID=71147081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/073134 WO2021147961A1 (zh) | 2020-01-21 | 2021-01-21 | 一种扫描成像方法、计算机设备和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111314571A (zh) |
WO (1) | WO2021147961A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118247445A (zh) * | 2024-05-30 | 2024-06-25 | 先临三维科技股份有限公司 | 数据处理方法、装置、设备及存储介质 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111314571A (zh) * | 2020-01-21 | 2020-06-19 | 许之敏 | 一种扫描成像方法、计算机设备和存储介质 |
CN113436288A (zh) * | 2021-07-22 | 2021-09-24 | 许姜严 | 一种基于鱼眼镜头的线扫描全景相机及其编码方法 |
CN114745503B (zh) * | 2022-04-08 | 2024-01-12 | 陕西科技大学 | 一种扫描控制方法及线扫相机 |
CN115866422A (zh) * | 2022-11-24 | 2023-03-28 | 威海华菱光电股份有限公司 | 像素数据确定方法、装置及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10107976A (ja) * | 1996-10-01 | 1998-04-24 | Fuji Photo Film Co Ltd | 画像読取装置 |
CN103852962A (zh) * | 2012-12-04 | 2014-06-11 | 建兴电子科技股份有限公司 | 扫描投影装置及其扫描控制方法 |
CN105143953A (zh) * | 2013-04-26 | 2015-12-09 | 浜松光子学株式会社 | 图像取得装置、制作试样的焦点图的方法以及系统 |
CN106791259A (zh) * | 2017-02-15 | 2017-05-31 | 南京航空航天大学 | 大幅面扫描仪和扫描方法 |
CN109781010A (zh) * | 2019-01-21 | 2019-05-21 | 珠海博明软件有限公司 | 一种大范围数据拼接的点云数据计算方法、装置和系统 |
CN111314571A (zh) * | 2020-01-21 | 2020-06-19 | 许之敏 | 一种扫描成像方法、计算机设备和存储介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572338A (en) * | 1992-09-14 | 1996-11-05 | Eastman Kodak Company | Image scanning device having direction-responsive programmable delay mechanism |
JP4339462B2 (ja) * | 1999-09-30 | 2009-10-07 | 川崎マイクロエレクトロニクス株式会社 | カラー画像読取装置およびこれに用いられるメモリコントローラ |
JP3913602B2 (ja) * | 2002-04-23 | 2007-05-09 | 富士フイルム株式会社 | 読取画像処理方法および装置 |
CN2686236Y (zh) * | 2004-03-17 | 2005-03-16 | 深圳矽感科技有限公司 | 证件扫描仪 |
JP4527505B2 (ja) * | 2004-11-18 | 2010-08-18 | 株式会社リコー | 画像読取装置、画像読取方法および画像処理装置 |
CN100368864C (zh) * | 2005-04-18 | 2008-02-13 | 精工爱普生株式会社 | 光扫描装置、其控制方法及图像显示装置 |
JP2007082013A (ja) * | 2005-09-15 | 2007-03-29 | Ricoh Co Ltd | 画像読取回路、画像読取装置並びに画像形成装置 |
JP2011146833A (ja) * | 2010-01-13 | 2011-07-28 | Seiko Epson Corp | 光学読取装置、光学読取装置の制御方法、及び、プログラム |
JP5771993B2 (ja) * | 2011-01-11 | 2015-09-02 | 富士ゼロックス株式会社 | 画像読み取り装置および画像形成装置 |
-
2020
- 2020-02-12 CN CN202010091731.7A patent/CN111314571A/zh active Pending
-
2021
- 2021-01-21 WO PCT/CN2021/073134 patent/WO2021147961A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10107976A (ja) * | 1996-10-01 | 1998-04-24 | Fuji Photo Film Co Ltd | 画像読取装置 |
CN103852962A (zh) * | 2012-12-04 | 2014-06-11 | 建兴电子科技股份有限公司 | 扫描投影装置及其扫描控制方法 |
CN105143953A (zh) * | 2013-04-26 | 2015-12-09 | 浜松光子学株式会社 | 图像取得装置、制作试样的焦点图的方法以及系统 |
CN106791259A (zh) * | 2017-02-15 | 2017-05-31 | 南京航空航天大学 | 大幅面扫描仪和扫描方法 |
CN109781010A (zh) * | 2019-01-21 | 2019-05-21 | 珠海博明软件有限公司 | 一种大范围数据拼接的点云数据计算方法、装置和系统 |
CN111314571A (zh) * | 2020-01-21 | 2020-06-19 | 许之敏 | 一种扫描成像方法、计算机设备和存储介质 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118247445A (zh) * | 2024-05-30 | 2024-06-25 | 先临三维科技股份有限公司 | 数据处理方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111314571A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021147961A1 (zh) | 一种扫描成像方法、计算机设备和存储介质 | |
US10477185B2 (en) | Systems and methods for multiscopic noise reduction and high-dynamic range | |
US9729805B2 (en) | Imaging device and defective pixel correction method | |
CN107071234B (zh) | 一种镜头阴影校正方法及装置 | |
KR101663871B1 (ko) | 이미지의 컬러 결점을 보정하기 위한 방법 및 연관된 장치 | |
US8463068B2 (en) | Methods, systems and apparatuses for pixel value correction using multiple vertical and/or horizontal correction curves | |
US8970745B2 (en) | Image processing device, image processing method and storage medium to suppress shading of images in which pixel addition processing is performed | |
US8284278B2 (en) | Image processing apparatus, imaging apparatus, method of correction coefficient calculation, and storage medium storing image processing program | |
US8723991B2 (en) | Color imaging element, imaging device, and storage medium storing an imaging program | |
EP3902242B1 (en) | Image sensor and signal processing method | |
CN102696228B (zh) | 成像设备和混色校正方法 | |
WO2019082820A1 (ja) | カメラシステム | |
WO2019026287A1 (ja) | 撮像装置および情報処理方法 | |
US9250121B2 (en) | Imaging apparatus with plural color filters and image processing | |
JP5526287B2 (ja) | 撮像装置及び撮像方法 | |
CN114866754A (zh) | 自动白平衡方法、装置及计算机可读存储介质和电子设备 | |
US20150042782A1 (en) | Image processing apparatus, imaging apparatus, microscope system, image processing method, and computer readable recording medium | |
CN111010557B (zh) | 白点范围确定方法、白平衡校正方法及装置、存储介质 | |
US10412328B2 (en) | Systems and methods for rolling shutter compensation using iterative process | |
US9256959B1 (en) | Systems and methods for color lens shading correction | |
US9648214B2 (en) | Module for plenoptic camera system | |
JP5256236B2 (ja) | 画像処理装置および方法,ならびに画像処理プログラム | |
CN110738613B (zh) | 线阵探测器图像拼接实时校正方法、装置、设备和介质 | |
US8958000B2 (en) | Imaging device, method for controlling imaging device, and storage medium storing a control program | |
JPH09130581A (ja) | デジタルカメラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21743884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21743884 Country of ref document: EP Kind code of ref document: A1 |