WO2021147957A1 - 光信号的传输方法、装置及设备 - Google Patents

光信号的传输方法、装置及设备 Download PDF

Info

Publication number
WO2021147957A1
WO2021147957A1 PCT/CN2021/073106 CN2021073106W WO2021147957A1 WO 2021147957 A1 WO2021147957 A1 WO 2021147957A1 CN 2021073106 W CN2021073106 W CN 2021073106W WO 2021147957 A1 WO2021147957 A1 WO 2021147957A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
signal transmission
signals
frequency
Prior art date
Application number
PCT/CN2021/073106
Other languages
English (en)
French (fr)
Inventor
王东
李允博
蔡谦
孙将
张德朝
李晗
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US17/794,703 priority Critical patent/US20230069239A1/en
Priority to EP21744786.1A priority patent/EP4096125A4/en
Priority to JP2022544857A priority patent/JP7470802B2/ja
Publication of WO2021147957A1 publication Critical patent/WO2021147957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0276Transmission of OAMP information using pilot tones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength

Definitions

  • the present disclosure relates to the field of communication technology, in particular to a method, device and equipment for transmitting optical signals.
  • Optical layer OAM (Operation Administration and Maintenance, operation, management and maintenance) is a key technology for the evolution of optical transmission networks. At present, there are mainly two schemes: out-of-band mode and in-band mode. Abundant optical layer monitoring information can be achieved through the out-of-band method, but additional channel resources need to be occupied, and detection light sources and detection receiving devices need to be introduced.
  • the in-band solution is expected to become an important evolution direction of optical layer OAM technology.
  • In-band optical layer OAM technology integrates low-speed signal modulation and demodulation unit inside the optical module, loads the monitoring signal to the envelope of the carried service signal through amplitude or frequency modulation, and shares optical fiber and channel resources with the carried service signal, saving The channel resources are saved, and the transparently transmitted monitoring signal has nothing to do with the bearer service signal protocol.
  • in-band optical layer OAM technology such as 5G fronthaul networks or large-capacity optical transport networks
  • WDM Widelength Division Multiplexing
  • the demodulation process is mainly composed of photoelectric conversion by photodetector, low-frequency extraction unit to extract OAM information in low-speed band, and low-frequency demodulation unit to demodulate in-band OAM information.
  • the frequency of the in-band OAM information is k, which is much smaller than the frequency f of the service signal.
  • one physical station corresponds to 3 AAUs (active antenna units), and each AAU has 2 25G optical modules under the 160M spectrum. It adopts single-fiber bidirectional WDM technology and requires 12 25G WDM with different wavelengths. aisle. Therefore, the receiving end correspondingly needs 12 in-band OAM detection systems (including optical splitters, detection units, etc.), which leads to an increase in system costs and an increase in potential failure points.
  • the present disclosure provides an optical signal transmission method, device and equipment. Solve the problem of high system cost in related technologies.
  • the embodiments of the present disclosure provide the following solutions:
  • a transmission method of an optical signal is applied to a first device, the first device includes n first color light modules, where n is an integer greater than 1, and the method includes:
  • the n first color optical modules respectively transmit optical signals with frequency f and wavelengths ⁇ 1 ⁇ n, ⁇ 1 ⁇ n are different from each other, and the optical signals with wavelengths ⁇ 1 ⁇ n are superimposed with modulation frequencies of k1 ⁇ kn respectively.
  • the in-band optical layer operates, manages and maintains OAM information.
  • the optical signal transmission method further includes: multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn through the first multiplexer to obtain a multiplexed optical signal.
  • the optical signal transmission method further includes: sending the multiplexed optical signal to the second device through an optical fiber link.
  • the f is greater than k1 to kn.
  • the optical signal transmission method further includes: n first color light modules receive the optical signal obtained after demultiplexing the received optical signal sent by the second device through the first demultiplexer.
  • the embodiment of the present disclosure also provides a method for transmitting an optical signal, which is applied to a second device, the second device includes n second color light modules, where n is an integer greater than 1, and the method includes:
  • receiving the multiplexed optical signal sent by the first device includes: receiving the multiplexed optical signal sent by the first device through an optical fiber link.
  • the optical signal transmission method further includes:
  • the first multi-frequency demodulation unit in the first detection unit extracts and demodulates n low-speed in-band OAM information with modulation frequencies of k1 to kn from electrical signals of multiple frequencies, respectively.
  • the optical signal transmission method further includes: demultiplexing the multiplexed optical signal by a second demultiplexer to obtain n optical signals, and the n optical signals are: the wavelengths are respectively The optical signals of ⁇ 1 to ⁇ n are respectively superimposed with the optical signals of the in-band OAM information with modulation frequencies of k1 to kn.
  • the second demultiplexer sends the n optical signals obtained after demultiplexing to the n second color light modules respectively.
  • the f is greater than k1 to kn.
  • the optical signal transmission method further includes: the n second color light modules respectively send optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the wavelengths are ⁇ 1.
  • the optical signal of ⁇ n is superimposed on the OAM information of the in-band optical layer operation, management and maintenance with modulation frequency of k1 ⁇ kn respectively.
  • the optical signal transmission method further includes: multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies of k1 to kn through a second multiplexer to obtain a multiplexed optical signal.
  • the optical signal transmission method further includes:
  • the second multi-frequency demodulation unit in the second detection unit extracts and demodulates n low-speed in-band OAM information with modulation frequencies of k1 to kn from electrical signals of multiple frequencies, respectively.
  • the optical signal transmission method further includes: sending the multiplexed optical signal to the first device through an optical fiber link.
  • the embodiment of the present disclosure also provides an optical signal transmission device, which is applied to a first device, the first device includes n first color light modules, n is an integer greater than 1, and the device includes:
  • the n first color optical modules respectively transmit optical signals with frequency f and wavelengths ⁇ 1 ⁇ n, ⁇ 1 ⁇ n are different from each other, and the optical signals with wavelengths ⁇ 1 ⁇ n are superimposed with modulation frequencies of k1 ⁇ kn respectively.
  • the in-band optical layer operates, manages and maintains OAM information.
  • the optical signal transmission device further includes: a first multiplexer, which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain a complex Light signal after use.
  • a first multiplexer which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain a complex Light signal after use.
  • the first multiplexer sends the multiplexed optical signal to the second device through an optical fiber link.
  • the f is greater than k1 to kn.
  • the optical signal transmission device further includes: n first color light modules receive optical signals obtained after demultiplexing the received optical signals sent by the second device through the first demultiplexer.
  • the embodiment of the present disclosure also provides an optical signal transmission device.
  • the device includes n first color light modules, where n is an integer greater than 1, and the n first color light modules have a transmission frequency of f and a wavelength, respectively.
  • the optical signals of ⁇ 1 to ⁇ n are different from each other, and the optical signals with wavelengths of ⁇ 1 to ⁇ n are superimposed on the optical signals with modulation frequencies of k1 to kn to operate, manage, and maintain OAM information for the in-band optical layer.
  • the embodiment of the present disclosure also provides an optical signal transmission device, which is applied to a second device, the second device includes n second color light modules, n is an integer greater than 1, and the device includes:
  • the receiving module is used to receive the multiplexed optical signal sent by the first device.
  • the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with a modulation frequency of k1.
  • the receiving module receives the multiplexed optical signal sent by the first device through an optical fiber link.
  • the optical signal transmission device further includes: a first detection unit, and the first detection unit includes a first photodetector and a first multi-frequency demodulation unit;
  • the first photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the first multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission device further includes: a second demultiplexer, configured to demultiplex the multiplexed optical signal to obtain n optical signals, and the n optical signals are: wavelengths respectively
  • the optical signals with modulation frequencies of k1 to kn are superimposed on the optical signals of ⁇ 1 to ⁇ N, respectively, after the OAM information in the band is modulated.
  • the second demultiplexer sends the n optical signals to the n second color light modules respectively.
  • the f is greater than k1 to kn.
  • the optical signal transmission device further includes: the n second color light modules respectively transmit optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the wavelengths are ⁇ 1.
  • the optical signal of ⁇ n is superimposed on the OAM information of the in-band optical layer operation, management and maintenance with modulation frequency of k1 ⁇ kn respectively.
  • the optical signal transmission device further includes: a second multiplexer for multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies of k1 to kn to obtain a multiplexed optical signal .
  • the optical signal transmission device further includes: a second detection unit, and the second detection unit includes a second photodetector and a second multi-frequency demodulation unit;
  • the second photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the second multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission device further includes: sending the multiplexed optical signal to the first device through an optical fiber link.
  • the embodiment of the present disclosure also provides an optical signal transmission device, the device includes n second color light modules, where n is an integer greater than 1, and further includes:
  • the receiver is used to receive the multiplexed optical signal sent by the first device.
  • the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with a modulation frequency of k1.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method as described above.
  • optical signals of different wavelengths are sent through different color light modules, and OAM information of the in-band optical layer of different modulation frequencies is superimposed, and all carriers are injected into the same detection unit at the receiving end for unified demodulation.
  • this method greatly simplifies the system architecture and significantly reduces the system cost.
  • Figure 1 is a schematic diagram of a semi-active system architecture oriented to 5G fronthaul in related technologies
  • Figure 2 is a schematic diagram of the demodulation process of OAM information in the low-speed band in related technologies
  • Figure 3 is a schematic diagram of the electrical signal containing frequency information in related technologies
  • FIG. 4 is a schematic flowchart of a method for transmitting an optical signal of a first device according to an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of a semi-active system architecture based on multi-channel low-frequency modulation for 5G according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for transmitting an optical signal of a second device according to an embodiment of the disclosure
  • FIG. 7 is another schematic flowchart of the optical signal transmission method of the second end device according to the embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a detection unit of a receiving end device according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of an electrical signal containing frequency information according to an embodiment of the disclosure.
  • FIG. 10 is another schematic diagram of a semi-active system architecture based on multi-channel low-frequency modulation for 5G according to an embodiment of the present disclosure
  • FIG. 11 is another schematic diagram of a semi-active system architecture based on multi-channel low frequency modulation for 5G according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a method for transmitting an optical signal, which is applied to a first device.
  • the first device includes n color light modules, where n is an integer greater than 1, and the method includes :
  • Step 41 The n first color light modules respectively send optical signals with a frequency of f and wavelengths of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the optical signals with wavelengths of ⁇ 1 to ⁇ n are superimposed with a modulation frequency of Operation, management, and maintenance of OAM information for the in-band optical layer of k1 to kn.
  • the f is greater than k1 to kn.
  • different colored light modules in addition to sending optical signals of different wavelengths, different colored light modules also need to superimpose OAM information of the in-band optical layer with different modulation frequencies, and all carriers are injected into the same detection unit at the receiving end for unified demodulation.
  • this method greatly simplifies the system architecture and significantly reduces the system cost.
  • the optical signal transmission method may further include:
  • Step 42 Multiplex the n optical signals superimposed with in-band OAM information with modulation frequencies of k1 to kn through the first multiplexer to obtain a multiplexed optical signal. Further, the multiplexed optical signal is transmitted through the optical fiber link, specifically, the multiplexed optical signal is transmitted to the second device through the optical fiber link.
  • the optical signal transmission method may further include:
  • Step 43 The n first color light modules of the first device receive the optical signal obtained after demultiplexing the received optical signal sent by the second device through the first demultiplexer.
  • Figure 5 is a semi-active system architecture based on multi-channel low-frequency modulation for 5G.
  • the first device 11 (such as a remote device) includes a plurality of first color light modules and a first multiplexer.
  • the first color optical module sends an optical signal with a wavelength of ⁇ n, which carries high-speed service information (frequency is f), such as 10G or 25G.
  • ⁇ n which carries high-speed service information
  • f high-speed service information
  • KHz-MHz modulation frequency of kn
  • the ability to generate OAM information of the optical layer in the low-speed band with n modulation frequencies is required.
  • the multiplexer performs wavelength division multiplexing of n optical signals of different wavelengths (frequency f) that carry in-band optical layer OAM information (modulation frequency is kn), and then injects them into the optical fiber link and transmits them to the central office equipment, as shown in the figure. ⁇ 12 ⁇ The second device 12.
  • different color light modules 1 to n respectively send optical signals ⁇ 1 to ⁇ n of different wavelengths.
  • each color light module superimposes the OAM information of the in-band optical layer with different modulation frequencies k1 to kn on optical signals of different wavelengths ⁇ 1 to ⁇ n, respectively.
  • the optical signals of n different wavelengths carrying the OAM information of the optical layer in the band are sent by the optical module, they are sent to the first multiplexer, are wavelength division multiplexed into WDM signals, and then injected into the optical fiber link for transmission.
  • an embodiment of the present disclosure provides an optical signal transmission method, which is applied to a second device.
  • the second device includes n second color light modules, where n is an integer greater than 1, and the method include:
  • Step 61 Receive the multiplexed optical signal sent by the first device.
  • the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with modulation frequencies of k1 to kn.
  • the multiplexed optical signal sent by the first device may be received through an optical fiber link; optionally, the f is greater than k1 to kn.
  • the optical signal transmission method may further include:
  • Step 62 Direct photoelectric conversion of the multiplexed optical signal by the first photodetector in the first detection unit to generate electrical signals of multiple frequencies;
  • Step 63 Extract n low-speed in-band OAM information with modulation frequencies of k1 to kn respectively from the electrical signals of multiple frequencies by the first multi-frequency demodulation unit in the first detection unit, and perform decoding Tune.
  • the optical signal transmission method includes:
  • Step 71 Receive the multiplexed optical signal sent by the first device, where the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with modulation frequencies of k1 to kn.
  • the multiplexed optical signal sent by the first device may be received through an optical fiber link; optionally, the f is greater than k1 to kn.
  • Step 72 Demultiplex the multiplexed optical signal by a second demultiplexer to obtain n optical signals.
  • the n optical signals are: optical signals with wavelengths of ⁇ 1 to ⁇ n are superimposed on the optical signals respectively.
  • the optical signal after the OAM information in the band with the modulation frequency of k1 to kn.
  • the optical signal transmission method may further include:
  • Step 73 The second demultiplexer sends the n optical signals obtained after demultiplexing to the n second color light modules respectively.
  • the second device mainly includes the following units:
  • Multi-channel low-frequency modulation information detection unit mainly composed of photodetectors and multi-frequency demodulation units. Among them, the photodetector directly performs photoelectric conversion of n WDM signals of different wavelengths carrying OAM information of the optical layer to generate electrical signals with multiple frequencies; the multi-frequency demodulation unit simultaneously extracts the modulation frequencies of k1 to kn. OAM information in n low-speed bands and demodulated.
  • the second demultiplexer wavelength-decomposes and multiplexes n optical signals of different wavelengths (frequency f) carrying in-band optical layer OAM information (modulation frequency is kn), and then sends them to the corresponding color light module for reception.
  • n WDM signals of different wavelengths carrying in-band optical layer OAM information are directly injected into the same photodetector for photoelectric conversion, and the converted electrical signal contains multiple frequencies, as shown in Figs. 8 and 9.
  • the multi-frequency demodulation unit is injected, and at the same time, the N low-speed band OAM information with modulation frequencies of k1 to kn are extracted and demodulated.
  • the different wavelengths ⁇ 1 to ⁇ n of the above optical signals and the different modulation frequencies k1 to kn of the OAM information of the in-band optical layer are only used for distinguishing, rather than limiting the corresponding relationship.
  • the color light module of the remote device sends an optical signal with a wavelength of ⁇ n, and at the same time generates OAM information of the optical layer in the low-speed band with a modulation frequency of kn, and loads it on the high-speed optical signal with a wavelength of ⁇ n and a frequency of f.
  • the multiplexer of the remote device performs wavelength division multiplexing of n optical signals (frequency f) of different wavelengths carrying in-band optical layer OAM information (modulation frequency is kn), and then injects them into the optical fiber link for transmission.
  • the multi-channel low-frequency modulation information detection unit directly photoelectrically converts n WDM signals of different wavelengths carrying OAM information of the in-band optical layer through a photodetector to generate electrical signals with multiple frequencies, and further extract the modulation frequency at the same time. It is the OAM information in the n low-speed bands of k1 to kn, and demodulated.
  • the demultiplexer performs wavelength division multiplexing of n optical signals (frequency f) of different wavelengths carrying in-band optical layer OAM information (modulation frequency is kn), and then sends them to the corresponding color light module for reception.
  • the optical signal transmission method may further include:
  • the n second color optical modules of the second device respectively send optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the wavelengths are ⁇ 1 to ⁇ n, respectively
  • the OAM information of the in-band optical layer operation, management and maintenance with modulation frequency k1 ⁇ kn is superimposed on the optical signal respectively.
  • the optical signal transmission method may further include: multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn through a second multiplexer to obtain a multiplexed optical signal.
  • the optical signal transmission method may further include: directly performing photoelectric conversion on the multiplexed optical signal by a second photodetector in the second detection unit to generate electrical signals of multiple frequencies;
  • the second multi-frequency demodulation unit in the second detection unit extracts and demodulates n low-speed in-band OAM information with modulation frequencies of k1 to kn from electrical signals of multiple frequencies, respectively.
  • the optical signal transmission method may further include: sending the multiplexed optical signal to the first device through an optical fiber link.
  • the central office equipment when the central office equipment receives an optical signal, the optical signal is converted into an electrical signal by the first detection unit (including a photodetector and a frequency demodulation unit), and the n wavelengths are respectively processed Demodulation greatly simplifies the system architecture and significantly reduces system costs.
  • the central office equipment can also superimpose the in-band optical layer operation, management, and maintenance OAM information with modulation frequencies of k1 to kn on the optical signals with a transmission frequency of f and wavelengths of ⁇ 1 to ⁇ n when sending optical signals.
  • the multi-frequency demodulation unit extracts modulation at the same time
  • the N low-speed band OAM information with frequencies of k1 to kn are demodulated, thereby simplifying the system architecture and reducing the system cost.
  • the embodiment of the present disclosure also provides an optical signal transmission device, which is applied to a first device, the first device includes n first color light modules, n is an integer greater than 1, and the device includes:
  • the n first color optical modules respectively transmit optical signals with frequency f and wavelengths ⁇ 1 ⁇ n, ⁇ 1 ⁇ n are different from each other, and the optical signals with wavelengths ⁇ 1 ⁇ n are superimposed with modulation frequencies of k1 ⁇ kn respectively.
  • the in-band optical layer operates, manages and maintains OAM information.
  • the optical signal transmission device may further include: a first multiplexer, which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain The multiplexed optical signal.
  • a first multiplexer which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain The multiplexed optical signal.
  • the first multiplexer sends the multiplexed optical signal to the second device through an optical fiber link.
  • the f is greater than k1 to kn.
  • the optical signal transmission device may further include: n first color light modules receive optical signals obtained after demultiplexing the received optical signals sent by the second device through the first demultiplexer.
  • the device is a device corresponding to the method shown in FIG. 4, and all the implementation manners in the foregoing method embodiments are applicable to the embodiments of the device, and the same technical effects can also be achieved.
  • the embodiment of the present disclosure also provides an optical signal transmission device.
  • the device includes n first color light modules, where n is an integer greater than 1, and the n first color light modules have a transmission frequency of f and a wavelength, respectively.
  • the optical signals of ⁇ 1 to ⁇ n are different from each other, and the optical signals with wavelengths of ⁇ 1 to ⁇ n are superimposed on the optical signals with modulation frequencies of k1 to kn to operate, manage, and maintain OAM information for the in-band optical layer.
  • the optical signal transmission equipment may further include: a first multiplexer, which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain The multiplexed optical signal.
  • a first multiplexer which multiplexes n optical signals superimposed with in-band OAM information with modulation frequencies k1 to kn to obtain The multiplexed optical signal.
  • the first multiplexer sends the multiplexed optical signal to the second device through an optical fiber link.
  • the f is greater than k1 to kn.
  • the optical signal transmission device may further include: n first color light modules receive optical signals obtained after demultiplexing the received optical signals sent by the second device through the first demultiplexer.
  • the sending end device is the sending end device corresponding to the method shown in FIG. 4, and all the implementation manners in the foregoing method embodiment are applicable to the device embodiment, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides an optical signal transmission device, which is applied to a second device, the second device includes n second color light modules, n is an integer greater than 1, and the device includes:
  • the receiving module is used to receive the multiplexed optical signal sent by the first device.
  • the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with a modulation frequency of k1.
  • the receiving module receives the multiplexed optical signal sent by the first device through an optical fiber link.
  • the optical signal transmission device further includes: a first detection unit, and the first detection unit includes a first photodetector and a first multi-frequency demodulation unit;
  • the first photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the first multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission device further includes: a second demultiplexer, configured to demultiplex the multiplexed optical signal to obtain n optical signals, and the n optical signals are: wavelengths respectively
  • the optical signals with modulation frequencies of k1 to kn are superimposed on the optical signals of ⁇ 1 to ⁇ N, respectively, after the OAM information in the band is modulated.
  • the second demultiplexer sends the n optical signals to the n second color light modules respectively.
  • the f is greater than k1 to kn.
  • the optical signal transmission device further includes: the n second color light modules respectively transmit optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the wavelengths are ⁇ 1.
  • the optical signal of ⁇ n is superimposed on the OAM information of the in-band optical layer operation, management and maintenance with modulation frequency of k1 ⁇ kn respectively.
  • the optical signal transmission device further includes: a second multiplexer for multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies of k1 to kn to obtain a multiplexed optical signal .
  • the optical signal transmission device further includes: a second detection unit, and the second detection unit includes a second photodetector and a second multi-frequency demodulation unit;
  • the second photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the second multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission apparatus further includes: sending the multiplexed optical signal to the first device through an optical fiber link.
  • the device is a device corresponding to the method shown in FIG. 6 or FIG. 7, and all the implementation manners in the foregoing method embodiment are applicable to the device embodiment, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides an optical signal transmission device, the device includes n second color light modules, where n is an integer greater than 1, and further includes:
  • the receiver is used to receive the multiplexed optical signal sent by the first device.
  • the multiplexed optical signal is n optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n respectively superimposed with a modulation frequency of k1.
  • the receiver receives the multiplexed optical signal sent by the first device through an optical fiber link.
  • the optical signal transmission device further includes: a first detection unit, and the first detection unit includes a first photodetector and a first multi-frequency demodulation unit;
  • the first photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the first multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission equipment further includes: a second demultiplexer, configured to demultiplex the multiplexed optical signal to obtain n optical signals, and the n optical signals are: wavelengths, respectively
  • the optical signals with modulation frequencies of k1 to kn are superimposed on the optical signals of ⁇ 1 to ⁇ N, respectively, after the OAM information in the band is modulated.
  • the second demultiplexer sends the n optical signals to the n second color light modules respectively.
  • the f is greater than k1 to kn.
  • the optical signal transmission equipment further includes: the n second color light modules respectively transmit optical signals with a frequency of f and a wavelength of ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n are different from each other, and the wavelengths are ⁇ 1 respectively.
  • the optical signal of ⁇ n is superimposed on the OAM information of the in-band optical layer operation, management and maintenance with modulation frequency of k1 ⁇ kn respectively.
  • the optical signal transmission equipment further includes: a second multiplexer for multiplexing n optical signals superimposed with in-band OAM information with modulation frequencies of k1 to kn to obtain a multiplexed optical signal .
  • the optical signal transmission device further includes: a second detection unit, and the second detection unit includes a second photodetector and a second multi-frequency demodulation unit;
  • the second photodetector directly performs photoelectric conversion on the multiplexed optical signal to generate electrical signals of multiple frequencies
  • the second multi-frequency demodulation unit extracts and demodulates n low-speed band OAM information with modulation frequencies of k1 to kn, respectively, from electrical signals of multiple frequencies.
  • the optical signal transmission device further includes: sending the multiplexed optical signal to the first device through an optical fiber link.
  • the receiving end device is the receiving end device corresponding to the method shown in FIG. 6 or FIG. 7, and all the implementation manners in the foregoing method embodiment are applicable to the device embodiment, and the same technology can be achieved. Effect.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in FIG. 4 or FIG. 6 or FIG. 7 above.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a chronological order in the order of description, but do not necessarily need to be performed in a chronological order, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the methods and devices of the present disclosure can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices with hardware and firmware. , Software or a combination of them, this can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • each module is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a certain chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本公开的实施例提供一种光信号的传输方法、装置及设备。第一设备侧的方法包括:n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。

Description

光信号的传输方法、装置及设备
相关申请的交叉引用
本申请主张在2020年1月23日在中国提交的中国专利申请号No.202010076376.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种光信号的传输方法、装置及设备。
背景技术
光层OAM(Operation Administration and Maintenance,操作、管理和维护)是光传输网络演进的关键技术。目前主要有两种方案:带外方式和带内方式。通过带外方式可以实现丰富的光层监控信息,但是,需要占用额外的波道资源,还需要引入探测光源和检测接收装置。
面向5G前传网络的轻量级OAM需求以及大容量光传送网波长级管控需求,带内方案有望成为光层OAM技术的重要演进方向。
带内光层OAM技术,在光模块内部集成低速信号调制解调单元,将监控信号通过幅度或频率调制加载到所承载业务信号的包络上,与承载业务信号共享光纤与波道资源,节约了波道资源,而且透传的监控信号与所承载业务信号协议无关。
而目前带内光层OAM技术的潜在应用场景,如5G前传网络或大容量光传送网,均采用WDM(Wavelength Division Multiplexing,波分复用)技术,不同波长对应单独的光模块,接收端检测也一一对应。
以面向5G前传的半有源系统为例,其架构图如图1所示。远端不同的彩光模块1到N,分别发送不同波长的光信号,各模块叠加的为相同调制频率的带内光层OAM信息;在局端接收时,对于每个通路,即每一个波长,分别分光后注入对应的检测单元进行解调。
如图2所示,解调过程主要由光电探测器进行光电转换、低频提取单元 提取低速带内OAM信息、低频解调单元对带内OAM信息进行解调三部分组成。
如图3所示,带内OAM信息(即管理信息)的频率为k,远小于业务信号的频率f。
对于典型的S111物理站,1个物理站对应3个AAU(有源天线单元)、160M频谱下每个AAU具备2个25G光模块,采用单纤双向WDM技术,需要12个不同波长的25G WDM通道。因此,接收端对应需要12个带内OAM检测系统(包括分光器、检测单元等),导致系统成本提升、潜在故障点增多。
发明内容
本公开提供了一种光信号的传输方法、装置及设备。解决相关技术中系统成本高的问题。
为解决上述技术问题,本公开的实施例提供如下方案:
一种光信号的传输方法,应用于第一设备,所述第一设备包括n个第一彩光模块,n为大于1的整数,所述方法包括:
n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输方法,还包括:通过第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,光信号的传输方法,还包括:将复用后的光信号通过光纤链路发送至第二设备。
可选的,所述f大于k1~kn。
可选的,光信号的传输方法,还包括:n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
本公开的实施例还提供一种光信号的传输方法,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述方法包括:
接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、 波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
可选的,接收第一设备发送的复用后的光信号,包括:通过光纤链路接收第一设备发送的复用后的光信号。
可选的,光信号的传输方法还包括:
通过第一检测单元中的第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
通过所述第一检测单元中的第一多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输方法,还包括:通过第二分波器对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λn的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
可选的,所述第二分波器将解复用后得到的n个光信号分别发送给所述n个第二彩光模块。
可选的,所述f大于k1~kn。
可选的,光信号的传输方法还包括:所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输方法还包括:通过第二合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,光信号的传输方法还包括:
通过第二检测单元中的第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
通过所述第二检测单元中的第二多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输方法还包括:通过光纤链路将所述复用后的光信 号发送给第一设备。
本公开的实施例还提供一种光信号的传输装置,应用于第一设备,所述第一设备包括n个第一彩光模块,n为大于1的整数,所述装置包括:
n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输装置还包括:第一合波器,所述第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,所述第一合波器将复用后的光信号通过光纤链路发送至第二设备。
可选的,所述f大于k1~kn。
可选的,光信号的传输装置还包括:n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
本公开的实施例还提供一种光信号的传输设备,所述设备包括n个第一彩光模块,n为大于1的整数,所述n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
本公开的实施例还提供一种光信号的传输装置,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述装置包括:
接收模块,用于接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
可选的,所述接收模块通过光纤链路接收第一设备发送的复用后的光信号。
可选的,光信号的传输装置还包括:第一检测单元,所述第一检测单元包括第一光电探测器和第一多频率解调单元;
所述第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第一多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输装置还包括:第二分波器,用于对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λN的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
可选的,所述第二分波器将n个光信号分别发送给所述n个第二彩光模块。
可选的,所述f大于k1~kn。
可选的,光信号的传输装置还包括:所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输装置还包括:第二合波器,用于对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,光信号的传输装置还包括:第二检测单元,所述第二检测单元包括第二光电探测器和第二多频率解调单元;
所述第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第二多频率解调单元分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输装置,还包括:通过光纤链路将所述复用后的光信号发送给第一设备。
本公开的实施例还提供一种光信号的传输设备,所述设备包括n个第二彩光模块,n为大于1的整数,还包括:
接收机,用于第一设备发送的接收复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
本公开的实施例还提供一种计算机可读存储介质,包括指令,当所述指 令在计算机运行时,使得计算机执行如上所述的方法。
本公开的上述方案至少包括以下有益效果:
本公开的上述方案,通过不同的彩光模块发送不同波长的光信号,叠加不同调制频率的带内光层OAM信息,在接收端将所有载波注入同一个检测单元进行统一解调。相比单通道低频调制信息方法及系统,该方法大幅简化系统架构、显著降低系统成本。
附图说明
图1为相关技术中面向5G前传的半有源系统架构示意图;
图2为相关技术中,低速带内OAM信息解调流程示意图;
图3为相关技术中,电信号含频率信息示意图;
图4为本公开的实施例第一设备的光信号的传输方法的流程示意图;
图5为本公开的实施例面向5G基于多通道低频调制的半有源系统架构示意图;
图6为本公开的实施例的第二设备的光信号的传输方法的一个流程示意图;
图7为本公开的实施例的第二端设备的光信号的传输方法的另一个流程示意图;
图8为本公开的实施例的接收端设备的检测单元的架构示意图;
图9为本公开的实施例电信号含频率信息示意图;
图10为本公开的实施例面向5G基于多通道低频调制的半有源系统架构另一示意图;
图11为本公开的实施例面向5G基于多通道低频调制的半有源系统架构又一示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地 理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图4所示,本公开的实施例还提供一种光信号的传输方法,应用于第一设备,所述第一设备包括n个彩光模块,n为大于1的整数,所述方法包括:
步骤41,n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。可选的,所述f大于k1~kn。λ1~λn的光信号上分别叠加调制频率为k1~kn的OAM信息时,该OAM信息可以采用调幅等方式,叠加在λ1~λn的光信号上。
该实施例中,不同的彩光模块除发送不同波长的光信号,还需叠加不同调制频率的带内光层OAM信息,在接收端将所有载波注入同一个检测单元进行统一解调。相比单通道低频调制信息方法及系统,该方法大幅简化系统架构、显著降低系统成本。
本公开的一可选的实施例中,光信号的传输方法还可以包括:
步骤42,通过第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。进一步的,将复用后的光信号通过光纤链路传输,具体的,将复用后的光信号通过光纤链路传输至第二设备。
本公开的一可选的实施例中,光信号的传输方法还可以包括:
步骤43,第一设备的n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
如图5所示,图5为面向5G基于多通道低频调制的半有源系统架构,该系统中,第一设备11(如远端设备)包括多个第一彩光模块以及第一合波器,第一彩光模块发送波长为λn的光信号,携带高速业务信息(频率为f),如10G或25G。生成调制频率为kn(KHz~MHz量级)的低速带内光层OAM信息,并加载到波长为λn、频率为f的高速光信号上。需具备生成n种调制频率的低速带内光层OAM信息的能力。合波器将携带带内光层OAM信息(调制频率为kn)的n个不同波长的光信号(频率为f)进行波分复用,然后注入光纤链路传输至局端设备,如图中的第二设备12。
本公开的上述实施例,在远端,不同的彩光模块1到n,分别发送不同波长的光信号λ1~λn。同时,各彩光模块分别在不同波长的光信号λ1~λn上叠加不同调制频率k1~kn的带内光层OAM信息。携带带内光层OAM信息的n个不同波长的光信号经光模块发送后,至第一合波器处,经波分复用为WDM信号后注入光纤链路传输。
如图6所示,本公开的实施例提供一种光信号的传输方法,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述方法包括:
步骤61,接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。具体的,可以通过光纤链路接收第一设备发送的复用后的光信号;可选的,所述f大于k1~kn。
本公开的一可选的实施例中,光信号的传输方法,还可以包括:
步骤62,通过第一检测单元中的第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
步骤63,通过所述第一检测单元中的第一多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
如图7所法,本公开的一可选的实施例中,光信号的传输方法,包括:
步骤71,接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。具体的,可以通过光纤链路接收第一设备发送的复用后的光信号;可选的,所述f大于k1~kn。
步骤72,通过第二分波器对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λn的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
可选的,所述光信号的传输方法还可以包括:
步骤73,所述第二分波器将解复用后得到的n个光信号分别发送给n个第二彩光模块。
下面结合图5、图8和图9说明上述第二设备的具体实现过程:
第二设备主要包括以下单元:
多通道低频调制信息检测单元:主要由光电探测器、多频率解调单元组成。其中,光电探测器将携带带内光层OAM信息的n个不同波长的WDM信号直接进行光电转换,生成含多个频率的电信号;多频率解调单元同时提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
第二分波器:将携带带内光层OAM信息(调制频率为kn)的n个不同波长的光信号(频率为f)进行波分解复用,然后发送给对应的彩光模块进行接收。
在系统接收端,携带带内光层OAM信息的n个不同波长的WDM信号直接注入同一个光电探测器进行光电转换,转换后的电信号含多个频率,如图8和图9所示。
然后,注入多频率解调单元,同时提取调制频率分别为k1~kn的N个低速带内OAM信息并进行解调。需要指出的是,上述光信号的不同波长λ1~λn与带内光层OAM信息的不同调制频率k1~kn,仅用作区分,而不是限制其对应关系。
本公开的上述光信号的传输方法流程如下:
(1)远端设备的彩光模块发送波长为λn的光信号,同时生成调制频率为kn的低速带内光层OAM信息,并加载到波长为λn、频率为f的高速光信号上。
(2)远端设备的合波器将携带带内光层OAM信息(调制频率为kn)的n个不同波长的光信号(频率为f)进行波分复用,然后注入光纤链路传输。
(3)局端设备的有源设备接收到该WDM信号后,通过分光器,一部分WDM信号注入多通道低频调制信息检测单元,另一部分WDM信号送至分波器。
(4)多通道低频调制信息检测单元通过光电探测器将携带带内光层OAM信息的n个不同波长的WDM信号直接进行光电转换,生成含多个频 率的电信号,在进一步同时提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
(5)分波器将携带带内光层OAM信息(调制频率为kn)的n个不同波长的光信号(频率为f)进行波分解复用,然后发送给对应的彩光模块进行接收。
如图10所示,本公开的一可选的实施例中,光信号的传输方法,还可以包括:
第二设备(如局端设备)的所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输方法还可以包括:通过第二合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,光信号的传输方法还可以包括:通过第二检测单元中的第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
通过所述第二检测单元中的第二多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输方法还可以包括:通过光纤链路将所述复用后的光信号发送给第一设备。
本公开的该实施例,在局端设备接收光信号时,通过第一检测单元(包括一个光电探测器和一个频率解调单元)对光信号进行转换为电信号,并分别对n个波长进行解调,大幅简化系统架构、显著降低系统成本。当然,该局端设备还可以在发送光信号时,在发送频率为f、波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息,从而实现局端到远端的光信号的发送,并且利用第二检测单元进行n个不同波长的WDM信号直接进行光电转换,生成含多个频率的电信号;多频率解调单元同时提取调制频率分别为k1~kn的N个低速带内OAM信息,并进行解调,从而简化系统架构,降低系统成本。
如图11所示,为在一个系统中,远端设备(第一设备)与局端设备(第二设备)之间的双向的光信号的传输的系统架构,光信号的处理过程和上述图5和图10中的相同,这里不再赘述。
本公开的实施例还提供一种光信号的传输装置,应用于第一设备,所述第一设备包括n个第一彩光模块,n为大于1的整数,所述装置包括:
n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输装置还可以包括:第一合波器,所述第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,所述第一合波器将复用后的光信号通过光纤链路发送至第二设备。
可选的,所述f大于k1~kn。
可选的,光信号的传输装置还可以包括:n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
需要说明的是,该装置是与上述图4所示方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种光信号的传输设备,所述设备包括n个第一彩光模块,n为大于1的整数,所述n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输设备还可以包括:第一合波器,所述第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,所述第一合波器将复用后的光信号通过光纤链路发送至第二设备。
可选的,所述f大于k1~kn。
可选的,光信号的传输设备还可以包括:n个第一彩光模块接收通过第一 分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
需要说明的是,该发送端设备是与上述图4所示方法对应的发送端设备,上述方法实施例中所有实现方式均适用于该设备的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种光信号的传输装置,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述装置包括:
接收模块,用于接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
可选的,所述接收模块通过光纤链路接收第一设备发送的复用后的光信号。
可选的,光信号的传输装置还包括:第一检测单元,所述第一检测单元包括第一光电探测器和第一多频率解调单元;
所述第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第一多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输装置还包括:第二分波器,用于对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λN的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
可选的,所述第二分波器将n个光信号分别发送给所述n个第二彩光模块。
可选的,所述f大于k1~kn。
可选的,光信号的传输装置还包括:所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输装置还包括:第二合波器,用于对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信 号。
可选的,光信号的传输装置还包括:第二检测单元,所述第二检测单元包括第二光电探测器和第二多频率解调单元;
所述第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第二多频率解调单元分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输装置还包括:通过光纤链路将所述复用后的光信号发送给第一设备。
需要说明的是,该装置是与上述图6或者图7所示方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种光信号的传输设备,所述设备包括n个第二彩光模块,n为大于1的整数,还包括:
接收机,用于第一设备发送的接收复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
可选的,所述接收机通过光纤链路接收第一设备发送的复用后的光信号。
可选的,光信号的传输设备还包括:第一检测单元,所述第一检测单元包括第一光电探测器和第一多频率解调单元;
所述第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第一多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输设备还包括:第二分波器,用于对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λN的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
可选的,所述第二分波器将n个光信号分别发送给所述n个第二彩光模块。
可选的,所述f大于k1~kn。
可选的,光信号的传输设备还包括:所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
可选的,光信号的传输设备还包括:第二合波器,用于对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
可选的,光信号的传输装置还包括:第二检测单元,所述第二检测单元包括第二光电探测器和第二多频率解调单元;
所述第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
所述第二多频率解调单元分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
可选的,光信号的传输设备还包括:通过光纤链路将所述复用后的光信号发送给第一设备。
需要说明的是,该接收端设备是与上述图6或者图7所示方法对应的接收端设备,上述方法实施例中所有实现方式均适用于该设备的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上图4或者图6或者图7所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是 本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU) 或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (33)

  1. 一种光信号的传输方法,应用于第一设备,所述第一设备包括n个第一彩光模块,n为大于1的整数,所述方法包括:
    n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
  2. 根据权利要求1所述的光信号的传输方法,还包括:
    通过第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
  3. 根据权利要求2所述的光信号的传输方法,还包括:
    将复用后的光信号通过光纤链路发送至第二设备。
  4. 根据权利要求1所述的光信号的传输方法,其中,所述f大于k1~kn。
  5. 根据权利要求1所述的光信号的传输方法,还包括:
    n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
  6. 一种光信号的传输方法,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述方法包括:
    接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
  7. 根据权利要求6所述的光信号的传输方法,其中,接收第一设备发送的复用后的光信号,包括:
    通过光纤链路接收第一设备发送的复用后的光信号。
  8. 根据权利要求6所述的光信号的传输方法,还包括:
    通过第一检测单元中的第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
    通过所述第一检测单元中的第一多频率解调单元,分别从多个频率的电 信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
  9. 根据权利要求8所述的光信号的传输方法,还包括:
    通过第二分波器对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λn的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
  10. 根据权利要求9所述的光信号的传输方法,其中,
    所述第二分波器将解复用后得到的n个光信号分别发送给所述n个第二彩光模块。
  11. 根据权利要求6所述的光信号的传输方法,其中,所述f大于k1~kn。
  12. 根据权利要求6所述的光信号的传输方法,还包括:
    所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
  13. 根据权利要求12所述的光信号的传输方法,还包括:
    通过第二合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
  14. 根据权利要求13所述的光信号的传输方法,还包括:
    通过第二检测单元中的第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
    通过所述第二检测单元中的第二多频率解调单元,分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
  15. 根据权利要求13所述的光信号的传输方法,还包括:
    通过光纤链路将所述复用后的光信号发送给第一设备。
  16. 一种光信号的传输装置,应用于第一设备,所述第一设备包括n个第一彩光模块,n为大于1的整数,所述装置包括:
    n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~ λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
  17. 根据权利要求16所述的光信号的传输装置,还包括:
    第一合波器,所述第一合波器对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
  18. 根据权利要求17所述的光信号的传输装置,其中,所述第一合波器将复用后的光信号通过光纤链路发送至第二设备。
  19. 根据权利要求16所述的光信号的传输装置,其中,所述f大于k1~kn。
  20. 根据权利要求16所述的光信号的传输装置,还包括:
    n个第一彩光模块接收通过第一分波器对接收到的第二设备发送的光信号进行解复用后,得到的光信号。
  21. 一种光信号的传输设备,所述设备包括n个第一彩光模块,n为大于1的整数,
    所述n个第一彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
  22. 一种光信号的传输装置,应用于第二设备,所述第二设备包括n个第二彩光模块,n为大于1的整数,所述装置包括:
    接收模块,用于接收第一设备发送的复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
  23. 根据权利要求22所述的光信号的传输装置,其中,所述接收模块通过光纤链路接收第一设备发送的复用后的光信号。
  24. 根据权利要求22所述的光信号的传输装置,还包括:第一检测单元,所述第一检测单元包括第一光电探测器和第一多频率解调单元;
    所述第一光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
    所述第一多频率解调单元,分别从多个频率的电信号中,提取调制频率 分别为k1~kn的n个低速带内OAM信息,并进行解调。
  25. 根据权利要求22所述的光信号的传输装置,还包括:
    第二分波器,用于对所述复用后的光信号进行解复用,得到n个光信号,所述n个光信号为:波长分别为λ1~λN的光信号上分别叠加了调制频率为k1~kn的带内OAM信息后的光信号。
  26. 根据权利要求25所述的光信号的传输装置,其中,
    所述第二分波器将n个光信号分别发送给所述n个第二彩光模块。
  27. 根据权利要求21所述的光信号的接收装置,其中,所述f大于k1~kn。
  28. 根据权利要求22所述的光信号的传输装置,还包括:
    所述n个第二彩光模块分别发送频率为f、波长分别为λ1~λn的光信号,λ1~λn互不相同,所述波长分别为λ1~λn的光信号上分别叠加调制频率为k1~kn的带内光层操作、管理和维护OAM信息。
  29. 根据权利要求28所述的光信号的传输装置,还包括:
    第二合波器,用于对叠加了调制频率为k1~kn的带内OAM信息的n个光信号进行复用,得到复用后的光信号。
  30. 根据权利要求29所述的光信号的传输装置,还包括:第二检测单元,所述第二检测单元包括第二光电探测器和第二多频率解调单元;
    所述第二光电探测器对所述复用后的光信号直接进行光电转换,生成多个频率的电信号;
    所述第二多频率解调单元分别从多个频率的电信号中,提取调制频率分别为k1~kn的n个低速带内OAM信息,并进行解调。
  31. 根据权利要求30所述的光信号的传输装置,还包括:
    通过光纤链路将所述复用后的光信号发送给第一设备。
  32. 一种光信号的传输设备,所述设备包括n个第二彩光模块,n为大于1的整数,还包括:
    接收机,用于第一设备发送的接收复用后的光信号,所述复用后的光信号是频率为f、波长分别为λ1~λn的n个光信号上分别叠加了调制频率为k1~kn的带内操作、管理和维护OAM信息,并进行复用后得到的光信号。
  33. 一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如权利要求1至5任一项所述的方法,或者,如权利要求6至15任一项所述的方法。
PCT/CN2021/073106 2020-01-23 2021-01-21 光信号的传输方法、装置及设备 WO2021147957A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/794,703 US20230069239A1 (en) 2020-01-23 2021-01-21 Optical signal transmission method, apparatus, and device
EP21744786.1A EP4096125A4 (en) 2020-01-23 2021-01-21 METHOD FOR TRANSMITTING OPTICAL SIGNALS, APPARATUS AND DEVICE
JP2022544857A JP7470802B2 (ja) 2020-01-23 2021-01-21 光信号伝送方法、装置及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010076376.6A CN113162724A (zh) 2020-01-23 2020-01-23 光信号的传输方法、装置及设备
CN202010076376.6 2020-01-23

Publications (1)

Publication Number Publication Date
WO2021147957A1 true WO2021147957A1 (zh) 2021-07-29

Family

ID=76882052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073106 WO2021147957A1 (zh) 2020-01-23 2021-01-21 光信号的传输方法、装置及设备

Country Status (5)

Country Link
US (1) US20230069239A1 (zh)
EP (1) EP4096125A4 (zh)
JP (1) JP7470802B2 (zh)
CN (1) CN113162724A (zh)
WO (1) WO2021147957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124410A1 (zh) * 2021-12-30 2023-07-06 华为技术有限公司 一种数据传输方法、射频单元、基带单元及通信系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630208A (zh) * 2021-08-23 2021-11-09 苏州苏驼通信科技股份有限公司 基于Demux技术的光模块运维信息解调方法及系统
CN116339444A (zh) * 2021-12-23 2023-06-27 华为技术有限公司 光计算装置、方法和系统
CN116132245A (zh) * 2023-02-13 2023-05-16 烽火通信科技股份有限公司 一种5g前传设备管理信息监测方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263130B1 (en) * 1998-07-14 2001-07-17 Nortel Networks Limited Wideband optical service channel for wave division networks
CN101610239A (zh) * 2008-06-20 2009-12-23 上海未来宽带技术及应用工程研究中心有限公司 在gepon中实现olt和onu之间带内oma的装置及其方法
CN101997614A (zh) * 2009-08-18 2011-03-30 百维通(苏州)科技有限公司 集成光收发器、光网络系统、光通信系统及方法
CN103560828A (zh) * 2013-11-08 2014-02-05 武汉邮电科学研究院 波分复用系统的光ofdm多通道直接检测方法及装置
CN104887244A (zh) * 2015-04-21 2015-09-09 苏州爱琴生物医疗电子有限公司 一种led驱动人体信号采集方法
CN105049124A (zh) * 2015-07-30 2015-11-11 电子科技大学 适用于ddo-ofdm的双发同收传输系统及其发射端
US20170134114A1 (en) * 2010-08-26 2017-05-11 Ciena Corporation Flexible grid optical spectrum transmitter, receiver, and transceiver
CN107147513A (zh) * 2016-03-01 2017-09-08 中兴通讯股份有限公司 一种多波长无源光网络的管理方法及光模块
CN107919915A (zh) * 2017-12-20 2018-04-17 武汉邮电科学研究院 多路nrz光信号转单路多电平光信号的光纤通信系统及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469812B2 (en) * 1998-12-18 2002-10-22 Worldcom, Inc. Method and system for identifying undesired products of non-linear optical mixing
CA2449563C (en) * 2001-06-22 2011-12-06 John C. Carrick System and method for measuring power of optical signals carried over a fiber optic link
US7079715B2 (en) * 2001-10-09 2006-07-18 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chip architectures and drive systems and wavelength stabilization for TxPICs
SE525926C2 (sv) * 2003-05-28 2005-05-31 Transmode Systems Ab Förfarande för överföring av driftinformation i ett WDM-system
US20050249505A1 (en) * 2004-05-10 2005-11-10 Richard Manderscheid Spectral tilt measurement system and method for an optical medium
JP5130702B2 (ja) * 2006-12-05 2013-01-30 富士通株式会社 偏波直交制御装置
JP5811631B2 (ja) 2011-06-27 2015-11-11 富士通株式会社 重畳信号検出回路および光ノード装置
JP6175330B2 (ja) 2013-09-18 2017-08-02 日本電信電話株式会社 光送信装置、光受信装置、信号重畳装置、信号重畳システム、および、信号重畳方法
CN107947893B (zh) * 2017-12-13 2019-05-28 武汉邮电科学研究院 基于远程节点与种子光源的wdm-pon系统
CN108092722B (zh) * 2017-12-14 2020-05-12 武汉电信器件有限公司 一种c-ran多路传输模块的电路及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263130B1 (en) * 1998-07-14 2001-07-17 Nortel Networks Limited Wideband optical service channel for wave division networks
CN101610239A (zh) * 2008-06-20 2009-12-23 上海未来宽带技术及应用工程研究中心有限公司 在gepon中实现olt和onu之间带内oma的装置及其方法
CN101997614A (zh) * 2009-08-18 2011-03-30 百维通(苏州)科技有限公司 集成光收发器、光网络系统、光通信系统及方法
US20170134114A1 (en) * 2010-08-26 2017-05-11 Ciena Corporation Flexible grid optical spectrum transmitter, receiver, and transceiver
CN103560828A (zh) * 2013-11-08 2014-02-05 武汉邮电科学研究院 波分复用系统的光ofdm多通道直接检测方法及装置
CN104887244A (zh) * 2015-04-21 2015-09-09 苏州爱琴生物医疗电子有限公司 一种led驱动人体信号采集方法
CN105049124A (zh) * 2015-07-30 2015-11-11 电子科技大学 适用于ddo-ofdm的双发同收传输系统及其发射端
CN107147513A (zh) * 2016-03-01 2017-09-08 中兴通讯股份有限公司 一种多波长无源光网络的管理方法及光模块
CN107919915A (zh) * 2017-12-20 2018-04-17 武汉邮电科学研究院 多路nrz光信号转单路多电平光信号的光纤通信系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096125A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124410A1 (zh) * 2021-12-30 2023-07-06 华为技术有限公司 一种数据传输方法、射频单元、基带单元及通信系统

Also Published As

Publication number Publication date
EP4096125A1 (en) 2022-11-30
CN113162724A (zh) 2021-07-23
US20230069239A1 (en) 2023-03-02
EP4096125A4 (en) 2024-02-07
JP2023511589A (ja) 2023-03-20
JP7470802B2 (ja) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2021147957A1 (zh) 光信号的传输方法、装置及设备
US10305595B2 (en) Method and apparatus for transmitting and receiving interface signals of distributed base station
CN107079204B (zh) 一种光口自协商的方法、光模块、局端设备及终端设备
CN109560891B (zh) 实现波分复用光信号分路的方法及装置
EP2753141B1 (en) Data interaction system and method thereof
CN112260794A (zh) 一种5g前传半有源wdm业务监控系统及其监控方法
CN111083808B (zh) 基于波分复用的基站系统、数据传输方法和存储介质
CN101009530A (zh) 支持组播类业务的无源光网络、复用/解复用器及方法
CN108512623B (zh) 量子信道与经典信道的合纤qkd系统及其传输方法
CN107342821B (zh) 一种光模块、网络设备、光学系统及通信系统
WO2015024453A1 (zh) 基于ftth网络的光纤和无线混合接入系统及混合接入方法
WO2011009368A1 (zh) 无源光网络中传输信息的方法、装置和系统
CN103023559A (zh) 基于资源共享保护机制的wdm-pon系统及保护方法
WO2008003215A1 (fr) Procédé, système et dispositif pour réaliser une diffusion en coupleur à multiplexage de longueurs d'onde-réseau optique passif (wdm-pon)
CN210183339U (zh) 一种半有源wdm波分系统
US20220360356A1 (en) Optical Line Terminal, Optical Network Unit, and Optical Communications System
US6597479B1 (en) Fiber quadrupler device method for providing full duplex communications to a synchronous optical network over a single optical fiber
JP4680073B2 (ja) Ponシステム
WO2020244634A1 (zh) 光模块、管控信息处理方法及通信系统
CN210093235U (zh) 一种wdm的半有源olp的新系统
KR20090063834A (ko) 광대역 무선 서비스를 위한 광 네트워크 시스템
CN210927999U (zh) 基于波分复用的基站系统
US20010055135A1 (en) Optical network element
CN101902663A (zh) 光复用段路径管理方法、装置及系统
CA2685633A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744786

Country of ref document: EP

Effective date: 20220822