WO2024002115A1 - 一种业务处理方法、光模块以及接入站点、汇聚站点 - Google Patents

一种业务处理方法、光模块以及接入站点、汇聚站点 Download PDF

Info

Publication number
WO2024002115A1
WO2024002115A1 PCT/CN2023/102995 CN2023102995W WO2024002115A1 WO 2024002115 A1 WO2024002115 A1 WO 2024002115A1 CN 2023102995 W CN2023102995 W CN 2023102995W WO 2024002115 A1 WO2024002115 A1 WO 2024002115A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channels
signals
optical
access
Prior art date
Application number
PCT/CN2023/102995
Other languages
English (en)
French (fr)
Inventor
张强
陈玉杰
司明钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024002115A1 publication Critical patent/WO2024002115A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the embodiments of the present application relate to the field of optoelectronics technology, and in particular, to a service processing method, an optical module, an access site, and a convergence site.
  • service traffic is usually aggregated to an aggregation (AGG) site through multiple access (ACC) sites.
  • AGG aggregation
  • ACC multiple access
  • the ACC site and the AGG site are deployed through optical fiber direct drive, that is, a pair of optical fibers is used to carry services between each ACC site and the AGG site.
  • the consumption of optical fibers and optical modules is relatively large.
  • it is deployed using wavelength division multiplexing. Different wavelengths are allocated to different ACCs to carry services.
  • Optical multiplexing and demultiplexing devices need to be deployed in both ACC sites and AGG sites to converge and separate light of multiple wavelengths.
  • the consumption of optical fiber can be reduced, but it requires the deployment of more multiplexing and demultiplexing devices, optical amplifiers, optical fiber interface units and other devices in the optical layer, resulting in higher optical layer costs, and due to the devices deployed in the optical layer More, resulting in poorer integration.
  • ACC sites with different wavelengths need to be configured separately and cannot be reused, which reduces the flexibility of network deployment.
  • Embodiments of this application provide a service processing method, optical module, access site, and aggregation site to solve the problem of poor network deployment flexibility.
  • embodiments of the present application provide a convergence site, including a first optical module and a first framer; the first framer is used to obtain the first service signals of N access sites, and The first service signals of N access sites are encapsulated to obtain N first service flows, where N is a positive integer; the first optical module is used to separately divide the N first service flows into M channel to obtain M first channel signals; M is an integer greater than or equal to N; the first service flows of different access sites are divided into different channels; for each of the M first channel signals Perform line coding to obtain M first encoded signals; multiplex the M first encoded signals into first electrical signals, convert the first electrical signals into first optical signals, and send the first optical signals .
  • the optical module implements channel division of business flows, and each channel is independently coded to reduce the coupling between signals from different access sites, so that when receiving, the access site can select the access site based on the channel. Its own channel signal and the channel signals of other channels do not need to be processed. There is no need to deploy additional optical layer components at the aggregation site, such as multiplexers, optical amplifiers, etc., and different sites use the same structure without special deployment, improving the flexibility of network deployment. In addition, since the aggregation site independently codes the channel signal of each channel, the access site side can determine the coded signal required by its own site without decoding, and the signals of other sites do not need to be processed, which can improve the utilization of processing resources.
  • the aggregation site is connected to a first access site; the first optical module is also used to receive a second optical signal sent by the first access site; and connect the second optical signal to the first access site.
  • the optical signal is converted into a second electrical signal, and the second electrical signal is demultiplexed to obtain M second encoded signals corresponding to M channels; the M second encoded signals are line decoded to obtain M second encoded signals.
  • the service flow of the first access site among the N access sites is divided into K+1 channels, and the first access site is one of the N access sites.
  • the service bandwidth required by the first access site is less than or equal to the total bandwidth of K+1 channels and greater than the total bandwidth of K channels, where K+1 is a positive integer less than M.
  • the N equals M
  • the K 0
  • the channel bandwidth of the first access site is greater than or equal to the bandwidth required by the first access site.
  • different access sites occupy different channels, and the size of the channel depends on the bandwidth required by the access site. wide match.
  • the N is less than M
  • the bandwidths of the M channels are all the same
  • the total bandwidth of the M channels is greater than or equal to the total bandwidth required by N access sites.
  • the channels are divided uniformly, and the bandwidths of different channels are the same. This is also applicable when the bandwidth of the access site increases or decreases, improving the flexibility of configuration.
  • the M first encoded signals each include a channel identifier of the corresponding channel.
  • the first optical module is specifically configured to multiplex the M channels of first coded signals into first electrical signals using time division multiplexing or frequency division multiplexing.
  • embodiments of the present application provide an access site, including a second optical module and a second framer;
  • the second optical module is used to: receive a third optical signal and convert the third optical signal into a third electrical signal; demultiplex the third electrical signal to obtain M corresponding to M channels. channel third coded signals; determine K+1 channels corresponding to the access site among the M channels, K+1 is a positive integer less than M; use the third coded signals corresponding to the K+1 channels Line decoding is performed respectively to obtain the third service flow of the access site, and the M-K-1 first coded signals in the M channels except the first coded signals of the K+1 channels are obtained from all the first coded signals of the K+1 channels.
  • the second optical module emits;
  • the second framer is used to decapsulate the third service flow to obtain a third service signal of the access site.
  • the M channels are configured to belong to N access sites, and different access sites are configured to different channels, that is, the service flows of different access sites are located in different channels.
  • the access site further includes a third optical module
  • the second optical module is used to send the M-K-1 first encoded signals of the M channels except the first encoded signals of the K+1 channels to the third optical module to pass
  • the third optical module performs electro-optical conversion on the M-K-1 third encoded signal and then sends it from the access site.
  • the access station decodes the received coded signals belonging to its own channel and sends them to the framer for decapsulation, while the coded signals for other channels are directly sent out after electro-optical conversion through another optical module, without the need for Through framer processing, each access site only needs to configure a framer that supports its own required bandwidth, reducing framer deployment requirements and deployment costs.
  • the access site does not need to configure optical layer devices, such as multiplexers, optical amplifiers, etc., which can improve integration and reduce the size of the access site.
  • different access sites adopt the same structure without special deployment, which improves the flexibility of network deployment.
  • the second framer is also used to obtain a fourth service signal of the access site, and encapsulate the fourth service signal to obtain a third service signal of the access site.
  • the third optical module is used to divide the fourth service stream into L channels among the K+1 channels to obtain L fourth channel signals; L is greater than 0 and less than or An integer equal to K+1; perform line coding on each of the L fourth channel signals to obtain the L fourth coded signal; combine the M-K-1 third coded signal and the L fourth coded signal Multiplexing to obtain a fourth electrical signal, performing electro-optical conversion on the fourth electrical signal to obtain a fourth optical signal, and sending the fourth optical signal.
  • the framer only needs to encapsulate the access site's own signal, so that each access site only needs to configure a framer that supports the bandwidth it requires, reducing framer deployment requirements and reduce deployment costs.
  • the optical module divides the channels for the encapsulated business flow and encodes it independently. It is not coupled with the signals of other access sites. Then, the optical module and the signals of other access sites are multiplexed and electro-optically converted and then sent out. There is no need to perform special processing on signals from other sites, which can improve the utilization of processing resources.
  • the third optical module is specifically used to multiplex the M-K-1 first encoded signals and L channels of fourth encoded signals using time division multiplexing or frequency division multiplexing. is the fourth electrical signal.
  • determining K+1 channels corresponding to the access station among the M channels includes:
  • embodiments of the present application provide a convergence site, including a first optical module and a first framer;
  • the first framer is used to obtain the first service signals of N access sites, and encapsulate the first service signals of the N access sites respectively to obtain N first service flows, where N is a positive integer. ;
  • the first optical module is used to divide the N service flows into M channels respectively to obtain M first channel signals; M is an integer greater than or equal to N; the service flows of different access sites are divided to different channels; multiplex M first channel signals into a first multiplexed signal, perform line coding on the first multiplexed signal to obtain a first coded signal, and convert the first coded signal into a first optical signal signal, and send the first optical signal.
  • the optical module implements channel division of business flows, reducing the coupling between signals at different access sites, so that the access site When receiving, the point can select the channel signal of the access station itself based on the channel, and the channel signals of other channels do not need to be processed.
  • the aggregation site there is no need to deploy additional optical layer components at the aggregation site, such as multiplexers, optical amplifiers, etc., and different sites use the same structure without special deployment, improving the flexibility of network deployment.
  • the aggregation site divides the service flows of different access sites into different channels during channelization processing, the access site side can determine the channel signals required by its own site without decapsulation by the framer. Improve utilization of processing resources.
  • the aggregation site is connected to a first access site; the first optical module is also used to receive a second optical signal sent by the first access site; and The optical signal is photoelectrically converted to obtain a second encoded signal, the second encoded signal is line decoded to obtain a first multiplexed signal, and the first multiplexed signal is demultiplexed to obtain M second channel signals; and Aggregate the M second channel signals into N second service streams; the first framer is also used to decapsulate the N second service streams respectively to obtain the N second service streams of the N access sites.
  • the service flow of the first access site among the N access sites is divided into K+1 channels, and the first access site is one of the N access sites.
  • the service bandwidth required by the first access site is less than or equal to the total bandwidth of K+1 channels and greater than the total bandwidth of K channels, where K+1 is a positive integer less than M.
  • the N equals M
  • the K 0
  • the channel bandwidth of the first access site is greater than or equal to the bandwidth required by the first access site.
  • the N is less than M
  • the bandwidths of the M channels are all the same
  • the total bandwidth of the M channels is greater than or equal to the total bandwidth required by N access sites.
  • the M first channel signals each include a channel identifier of the corresponding channel.
  • the first optical module is specifically configured to multiplex the M channels of first coded signals into first electrical signals using time division multiplexing or frequency division multiplexing.
  • embodiments of the present application provide an access site, including a second optical module and a second framer;
  • the second optical module is used to: receive a third optical signal, perform photoelectric conversion on the third optical signal to obtain a third encoded signal, and perform line decoding on the third encoded signal to obtain a first complex signal.
  • the M channels are configured to belong to N access sites, and different access sites are configured to different channels, that is, the service flows of different access sites are located in different channels.
  • the access site further includes a third optical module
  • the second optical module is used to send the M-K-1 first encoded signals of the M channels except the first encoded signals of the K+1 channels to the third optical module to pass
  • the third optical module performs electro-optical conversion and then emits the light from the access site.
  • the access station decodes the received coded signal belonging to its own channel and sends it to the framer for decapsulation, while the channel signals of other channels are directly sent out after electro-optical conversion through another optical module, without
  • each access site only needs to configure a framer that supports its own required bandwidth, reducing framer deployment requirements and deployment costs.
  • the access site does not need to configure optical layer devices, such as multiplexers, optical amplifiers, etc., which can improve integration and reduce the size of the access site.
  • different access sites adopt the same structure without special deployment, which improves the flexibility of network deployment.
  • a third framer is also included.
  • the third framer is used to obtain the fourth service signal of the access site and encapsulate the fourth service signal to obtain the fourth service flow of the access site;
  • the third optical module is used to divide the fourth service flow into L channels among K+1 channels to obtain L fourth channel signals; L is an integer greater than 0 and less than K+1;
  • the M-K-1 third channel signal and the L fourth channel signal are multiplexed to obtain a second multiplexed signal, the second multiplexed signal is line encoded to obtain a fourth encoded signal, and the fourth The encoded signal is electro-optically converted to obtain a fourth optical signal, and the fourth optical signal is sent.
  • the framer only needs to encapsulate the access site's own signal, so that each access site only needs to configure a framer that supports the bandwidth it requires, reducing framer deployment requirements and reduce deployment costs.
  • the optical module divides the channels for the encapsulated business flow, and then uniformly encodes the channel signals of other access sites and converts them into electro-optical signals before sending them out. There is no need to perform special processing on signals from other sites, which can improve the utilization of processing resources.
  • the third optical module is specifically configured to use time division multiplexing or frequency division multiplexing to combine the MK-1 third channel signals and L fourth channel signals are multiplexed into the second multiplexed signal.
  • determining K+1 channels corresponding to the access station among the M channels includes:
  • the channel identifiers of the channels to which the M third channel signals belong are respectively analyzed, and the channels to which the M third encoded signals respectively belong are determined to belong to the access site according to the channel identifiers in the M third channel signals. K+1 channel.
  • embodiments of the present application provide an optical module, which is applied to an access site and includes an optical demodulator and a processor;
  • Optical demodulator used for photoelectric conversion of the received optical signal to obtain an electrical signal
  • a processor configured to demultiplex the electrical signals to obtain M coded signals corresponding to the M channels; determine K+1 channels corresponding to the access site among the M channels, where K is a natural number; The coded signals corresponding to the K+1 channels are line decoded to obtain the service flow of the access site, and the service flow of the access site is sent from the optical module; and the M channels are divided M-K-1 encoded signals other than the K+1 channels are sent from the optical module.
  • the optical module further includes an optical modulator, a second pass-through interface, and an upload ADD interface;
  • the processor is also used to execute:
  • the L2 coded signals other than the L2 coded signals and the L1 coded signals are multiplexed to obtain an electrical signal; the optical modulator is used to perform electro-optical conversion on the electrical signal and send it out.
  • embodiments of the present application provide an optical module applied to an access site, including an optical modulator and a processor;
  • the processor is used to execute:
  • K is a natural number; divide the service flow into L1 channels among the K+1 channels, and obtain the L1 channel signal; L1 is greater than 0 And is an integer less than K+1; perform line coding on the L1 channel signals respectively to obtain the L1 coded signal;
  • the optical modulator is used to perform electro-optical conversion on the electrical signal and then send it out.
  • the optical module also includes a pass-through interface and an upload interface.
  • the processor receives the business flow through the upload interface.
  • the processor receives the L2 coded signals of the M channels except the K+1 channels through the pass-through interface.
  • embodiments of the present application provide an optical module applied to an access site, including an optical demodulator and a processor;
  • Optical demodulator used for photoelectric conversion of the received optical signal to obtain a coded signal
  • a processor configured to perform: perform line decoding on the encoded signal to obtain a multiplexed signal, demultiplex the multiplexed signal to obtain M channel signals corresponding to the M channels; determine all of the M channels There are K+1 channels corresponding to the access site, and K+1 is a positive integer less than M; the K+1 channel signals corresponding to the K+1 channels are merged into the service flow of the access site from the The optical module sends out; among the M channel signals, M-K-1 channel signals except the K+1 channel signal are sent out from the optical module.
  • the optical module also includes a first pass-through interface and a delivery interface.
  • the processor combines the K+1 channel signals corresponding to the K+1 channel into a service flow of the access site and sends it out from the delivery interface.
  • the processor sends M-K-1 channel signals, except the K+1 channel signal, from the first pass-through interface among the M channel signals.
  • the optical module further includes a light modulator.
  • the processor is also configured to perform: by receiving the service flow to be sent by the access station, determine K+1 channels corresponding to the access station among the M channels, where K is a natural number; convert the service flow to Divide it into L1 channels among the K+1 channels to obtain the L1 channel signal; L1 is an integer greater than 0 and less than K+1; receive L2 of the M channels except the K+1 channels channel signals, multiplexing the L2 channel signals and the L1 channel signal to obtain a multiplexed signal, performing line coding on the multiplexed signal to obtain an encoded signal; an optical modulator, used for performing electro-optical processing on the encoded signal Convert an optical signal and send the optical signal.
  • embodiments of the present application provide an optical module, which is applied to an access site and includes an optical modulator and a processor; the processor is configured to: receive service flows and determine the M channels. K+1 channels corresponding to the access site, K is a natural number; divide the service flow into L1 channels among the K+1 channels, and obtain the L1 channel signal; L1 is an integer greater than 0 and less than K+1 ; Receive L2 channel signals other than the K+1 channels among the M channels, and multiplex the L2 channel signals and the L1 channel signal to obtain a multiplexed signal, and perform multiplexing on the multiplexed signal Line coding is performed to obtain a coded signal; an optical modulator is used to perform electro-optical conversion of the coded signal An optical signal is obtained in exchange and the optical signal is sent.
  • embodiments of the present application provide an optical module applied to a convergence site, including an optical modulator and a processor;
  • the processor receives the first service flows of N access sites, where N is a positive integer; divides the N first service flows into M channels respectively to obtain M first channel signals; M is greater than or equal to An integer of N; the first service flows of different access sites are divided into different channels; line coding is performed on each of the M first channel signals to obtain M first coded signals; the M first channel signals are The first encoded signal is multiplexed into a first electrical signal.
  • the optical modulator is used to convert the first electrical signal into a first optical signal and send the first optical signal.
  • the optical module further includes an optical demodulator, configured to receive the second optical signal sent by the first access station; convert the second optical signal into a second electrical signal, and The second electrical signal is demultiplexed to obtain M second encoded signals corresponding to M channels; the M second encoded signals are line decoded to obtain M second channel signals; and the M second encoded signals are obtained
  • the two-channel signals are aggregated into N second service flows and sent through the line physical interface.
  • embodiments of the present application provide an optical module, which is applied to a convergence site and includes an optical modulator and a processor; the processor receives N first service flows to be received by N access sites. Divide the N first service flows into M channels to obtain M first channel signals; M is an integer greater than or equal to N; the service flows of different access sites are divided into different channels; The first channel signal is multiplexed into a first multiplexed signal, and the first multiplexed signal is line-coded to obtain a first coded signal.
  • An optical modulator used to convert the first encoded signal into a first optical signal and send the first optical signal.
  • the optical module further includes: an optical demodulator, configured to receive a second optical signal sent by the first access station; and perform photoelectric conversion on the second optical signal to obtain a second encoded signal.
  • the processor is further configured to perform line decoding on the second encoded signal to obtain a first multiplexed signal, demultiplex the first multiplexed signal to obtain M second channel signals; and convert the M second channel signals
  • the second channel signals are aggregated into N second service flows and sent out through the line physical interface.
  • embodiments of the present application provide a service signal processing method, which is applied to aggregation sites, including: obtaining the first service signals of N access sites, and encapsulating the first service signals of the N access sites respectively.
  • N is a positive integer
  • M is greater than or An integer equal to N
  • the service flows of different access sites are divided into different channels
  • line coding is performed on each of the M first channel signals to obtain M first coded signals
  • the M first channel signals are The first encoded signal is multiplexed into a first electrical signal, the first electrical signal is converted into a first optical signal, and the first optical signal is sent.
  • the aggregation site is connected to the first access site; it also includes:
  • the second optical signal sent by the first access station is received through the first optical module; the second optical signal is converted into a second electrical signal through the first optical module, and the second electrical signal is Demultiplexing is performed to obtain M second encoded signals corresponding to M channels; line decoding is performed on the M second encoded signals to obtain M second channel signals; and the M second encoded signals are obtained through the first optical module.
  • the second channel signals are aggregated into N second service streams;
  • the N second service flows are respectively decapsulated to obtain second service signals of the N access stations.
  • the service flow of the first access site among the N access sites is divided into K+1 channels, and the first access site is one of the N access sites.
  • the service bandwidth required by the first access site is less than or equal to the total bandwidth of K+1 channels and greater than the total bandwidth of K channels, where K+1 is a positive integer less than M.
  • the N equals M
  • the K 0
  • the channel bandwidth of the first access site is greater than or equal to the bandwidth required by the first access site.
  • the N is less than M
  • the bandwidths of the M channels are all the same
  • the total bandwidth of the M channels is greater than or equal to the total bandwidth required by N access sites.
  • the M first encoded signals each include a channel identifier of the corresponding channel.
  • multiplexing the M channels of first encoded signals into first electrical signals includes:
  • the M channels of first coded signals are multiplexed into first electrical signals in a time division multiplexing manner or in a frequency division multiplexing manner.
  • embodiments of the present application provide a service signal processing method, which is applied to an access site.
  • the method includes:
  • the third optical signal is received through the second optical module of the access site, and the third optical signal is converted into a third electrical signal; the third electrical signal is demultiplexed to obtain M corresponding to M channels. channel of the third coded signal; determine the K+1 channels corresponding to the access site among the M channels, where K+1 is a positive integer less than M; use the second optical module to convert the K+1 channels.
  • the third coded signals corresponding to the channels are respectively line decoded to obtain the third service flow of the access site, and M-K-1 of the M channels except the first coded signals of the K+1 channels are
  • the first encoded signal is sent to the third optical module of the access site, so that the third optical module performs electro-optical conversion on the M-K-1 third encoded signal and sends it out;
  • the access station decapsulates the third service flow to obtain a third service signal of the access station.
  • the method further includes:
  • the access station obtains a fourth service signal to be sent by the access station, and encapsulates the fourth service signal to obtain a fourth service flow of the access station;
  • the fourth service stream is divided into L channels among the K+1 channels through the third optical module to obtain L fourth channel signals;
  • L is an integer greater than 0 and less than or equal to K+1 ;
  • multiplexing the M-K-1 third coded signal and the L fourth coded signal to obtain a fourth electrical signal includes: using time division multiplexing or frequency division multiplexing.
  • the M-K-1 first coded signals and L channels of fourth coded signals are multiplexed into the fourth electrical signal.
  • determining K+1 channels corresponding to the access station among the M channels includes:
  • embodiments of the present application provide a service signal processing method, which is applied to aggregation sites, including: obtaining the first service signals to be received by N access sites, and processing the first service signals of the N access sites respectively. Encapsulate to obtain N first service flows, where N is a positive integer;
  • the N first service flows are divided into M channels through the first optical module of the aggregation site to obtain M first channel signals; M is an integer greater than or equal to N; the services of different access sites
  • the stream is divided into different channels; M first channel signals are multiplexed into a first multiplexed signal, the first multiplexed signal is line-encoded to obtain a first encoded signal, and the first encoded signal is converted into a first optical signal, and transmit the first optical signal.
  • the aggregation site is connected to the first access site; the method further includes:
  • the second optical signal sent by the first access station is received through the first optical module; the second optical signal is photoelectrically converted to obtain a second encoded signal, and the second encoded signal is line decoded to obtain
  • the first multiplexed signal is demultiplexed to obtain M second channel signals; and the M second channel signals are aggregated into N second service streams; the aggregation site
  • the N second service flows are respectively decapsulated to obtain second service signals of the N access stations.
  • the service flow of the first access site among the N access sites is divided into K+1 channels, and the first access site is one of the N access sites.
  • the service bandwidth required by the first access site is less than or equal to the total bandwidth of K+1 channels and greater than the total bandwidth of K channels, where K+1 is a positive integer less than M.
  • the N equals M
  • the K 0
  • the channel bandwidth of the first access site is greater than or equal to the bandwidth required by the first access site.
  • the N is less than M
  • the bandwidths of the M channels are all the same
  • the total bandwidth of the M channels is greater than or equal to the total bandwidth required by N access sites.
  • the M first channel signals each include a channel identifier of the corresponding channel.
  • multiplexing the M channels of first coded signals into first electrical signals includes: multiplexing the M channels of first coded signals in a time division multiplexing manner or in a frequency division multiplexing manner. is the first electrical signal.
  • embodiments of the present application provide a service signal processing method, which is applied to an access site, including:
  • the access site receives a third optical signal through the second optical module of the access site, and performs photoelectric conversion on the third optical signal to obtain a third coded signal; performs line interpretation on the third coded signal.
  • code to obtain a first multiplexed signal demultiplex the first multiplexed signal to obtain M third channel signals corresponding to M channels; determine K+1 corresponding to the access site in the M channels channels, K+1 is a positive integer less than M; merge the K+1 channel signals into the third service stream; combine the M-K-1 third channels among the M channels except the K+1 channels.
  • the channel signal is sent to the third optical module of the access site to be emitted after performing electro-optical conversion by the third optical module;
  • the access station decapsulates the third service flow to obtain the third service signal of the access station.
  • the method further includes: the access site obtains a fourth service signal of the access site, and encapsulates the fourth service signal to obtain a fourth service flow of the access site. ;
  • the fourth service stream is divided into L channels among K+1 channels through the third optical module to obtain L fourth channel signals; L is an integer greater than 0 and less than K+1; the The third channel signal of the M-K-1 channel and the fourth channel signal of the L channel are multiplexed to obtain a second multiplexed signal.
  • the second multiplexed signal is line-encoded to obtain a fourth encoded signal.
  • the fourth encoded signal is Perform electro-optical conversion to obtain a fourth optical signal, and send the fourth optical signal.
  • the third optical module is specifically configured to use time division multiplexing or frequency division multiplexing to combine the MK-1 third channel signals and L fourth channel signals are multiplexed into the second multiplexed signal.
  • determining K+1 channels corresponding to the access station among the M channels includes:
  • the channel identifiers of the channels to which the M third channel signals belong are respectively analyzed, and the channels to which the M third encoded signals respectively belong are determined to belong to the access site according to the channel identifiers in the M third channel signals. K+1 channel.
  • embodiments of the present application provide a convergence site, including a first optical module and a first framer; the first framer is used to obtain first service signals of N access sites, respectively. Encapsulate the first service signals of N access sites to obtain N first service flows, where N is a positive integer; the first optical module is used to divide the N first service flows into M respectively channels to obtain M first channel signals; M is an integer greater than or equal to N; the first service flows of different access sites are divided into different channels; the first electrical signal is generated according to the M first channel signals, Convert the first electrical signal into a first optical signal, and send the first optical signal.
  • generating a first electrical signal based on M first channel signals includes:
  • the first optical module is specifically configured to multiplex the M channels of first coded signals into first electrical signals using time division multiplexing or frequency division multiplexing.
  • generating a first electrical signal based on M first channel signals includes:
  • M first channel signals are multiplexed into a first multiplexed signal, and the first multiplexed signal is line-encoded to obtain a first electrical signal (which may also be called a first encoded signal).
  • the first optical module is specifically used to multiplex the M first channel signals into a first multiplexed signal using a time division multiplexing method or a frequency division multiplexing method.
  • the aggregation site is connected to the first access site
  • the first optical module is also used to receive the second optical signal sent by the first access site; convert the second optical signal into a second electrical signal, and demultiplex the second electrical signal. Obtain M second encoded signals corresponding to M channels; perform line decoding on the M second encoded signals to obtain M second channel signals; and aggregate the M second channel signals into N second business flow;
  • the first framer is also used to decapsulate the N second service flows respectively to obtain the second service signals of the N access stations.
  • the service flow of the first access site among the N access sites is divided into K+1 channels, and the first access site is one of the N access sites.
  • the service bandwidth required by the first access site is less than or equal to the total bandwidth of K+1 channels and greater than the total bandwidth of K channels, where K+1 is a positive integer less than M.
  • N equals M
  • K 0
  • the channel bandwidth of the first access site is greater than or equal to the bandwidth required by the first access site.
  • N is less than M
  • the bandwidths of the M channels are all the same
  • the total bandwidth of the M channels is greater than or equal to the total bandwidth required by N access sites.
  • the M first coded signals respectively carry channel identifiers of their respective channels.
  • embodiments of the present application provide a service signal processing method, which is applied to aggregation sites, including: obtaining the first service signals to be received by N access sites, and processing the first service signals of the N access sites respectively. Encapsulate to obtain N first service flows, where N is a positive integer;
  • the N first service flows are divided into M channels through the first optical module of the aggregation site to obtain M first channel signals; M is an integer greater than or equal to N; the services of different access sites The stream is divided into different channels; a first optical signal is generated according to the M first channel signals, and the first optical signal is sent.
  • Figure 1 is a schematic structural diagram of a service transmission network
  • Figure 2 is a schematic diagram of wavelength division multiplexing networking mode
  • Figure 3 is a schematic diagram of the shared ring networking method
  • Figure 4 is a schematic structural diagram of the access ring in the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the aggregation site in the embodiment of the present application.
  • Figure 6A is a schematic diagram of the downlink processing flow of a convergence site in an embodiment of the present application.
  • Figure 6B is a schematic diagram of the downlink processing flow of a convergence site in an embodiment of the present application.
  • Figure 7A is a schematic diagram of the uplink processing flow of a convergence site in an embodiment of the present application.
  • Figure 7B is a schematic diagram of the uplink processing flow of another aggregation site in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the optical module 220 in the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an access site in an embodiment of the present application.
  • Figure 10A is a schematic diagram of the downlink processing flow of an access station in an embodiment of the present application.
  • Figure 10B is a schematic diagram of the uplink processing flow of another access station in this embodiment of the present application.
  • Figure 11A is a schematic diagram of the processing flow of an access station in an embodiment of the present application.
  • FIG. 11B is a schematic diagram of the processing flow of another access station in the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the optical module 441 in the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of the optical module 442 in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an optical module applied to an access site in an embodiment of the present application.
  • Figure 15 is a functional schematic diagram of a convergence site in an embodiment of the present application.
  • Figure 16 is a functional schematic diagram of an access site in an embodiment of the present application.
  • Figure 17 is a functional schematic diagram of another aggregation site in the embodiment of the present application.
  • Figure 18 is a functional schematic diagram of another access site in the embodiment of the present application.
  • Figure 19 is a flow chart of a service signal processing method in an embodiment of the present application.
  • Figure 20 is a flow chart of another service signal processing method in the embodiment of the present application.
  • Figure 21 is a flow chart of another service signal processing method in the embodiment of the present application.
  • Figure 22 is a flow chart of yet another service signal processing method in an embodiment of the present application.
  • the business transmission network is generally divided into three layers. As shown in Figure 1, the business transmission network includes the core layer, the aggregation layer and the access layer.
  • the switching nodes at the core layer may be called core nodes, the switching nodes at the aggregation layer may be called Aggregation (AGG) nodes, and the switching nodes at the access layer may be called Access (ACC) nodes.
  • AAG Aggregation
  • ACC Access
  • the core layer mainly provides high-bandwidth business bearing and transmission, and completes interconnection with existing networks.
  • Existing networks can include asynchronous transfer mode (English: asynchronous transfer mode, abbreviated as: ATM) network, digital data network (English: digital data network (DDN), Internet protocol (English: internet protocol (IP) network, etc.
  • the main function of the aggregation layer is to provide the business access node with the aggregation and distribution processing of user business data, and at the same time to implement service level classification of the business.
  • the access layer uses a variety of access technologies to allocate bandwidth and services to realize user access.
  • the access layer equipment completes the multiplexing and transmission of multiple services.
  • a node may also be called a site, a network device, etc.
  • the first possible networking method is optical fiber direct drive networking
  • the second possible networking method is wavelength division multiplexing ring networking
  • the third possible networking method is shared ring networking.
  • Figure 1 takes the access layer and aggregation layer using ring networking as an example.
  • the first possible networking method is a Wi-Fi (Fi).
  • each ACC site and the AGG site conduct business interaction.
  • a pair of optical fibers is used to carry services between each ACC site and each AGG site.
  • the consumption of optical fibers and optical modules is relatively large. For example, if the number of ACC sites is N, 2N pairs of optical fibers need to be consumed; if M rings are connected to each AGG site, 2N*M pairs of optical fibers need to be consumed. It requires 4N optical modules.
  • the second possible networking mode wavelength division multiplexing ring networking mode.
  • Wavelength division multiplexing refers to combining two or more lights of different wavelengths (carrying various information) at the transmitting end through a multiplexer (also called a multiplexer) and coupling them to the same Transmission in optical fiber.
  • a multiplexer also called a multiplexer
  • the light of various wavelengths is separated by a demultiplexer (also called a splitter or demultiplexer), and then further processed by the optical receiver to restore the original signal.
  • a demultiplexer also called a splitter or demultiplexer
  • the transmission capacity of optical fiber can be increased through wavelength division multiplexing technology.
  • different ACC sites allocate different wavelengths to carry services. Refer to Figure 2, where the network includes N ACC sites as an example.
  • the AGG site includes N optical modules, N framers (FRAMER, FRM), multiplexers and demultiplexers, optical amplifiers (optical amplifiers for short), and optical line interface units (FIU).
  • N optical modules correspond to the ACC site one-to-one.
  • the working wavelengths of the N optical modules in the AGG are in one-to-one correspondence with the wavelengths allocated by the ACC site.
  • the optical module is used to perform photoelectric conversion processing or electro-optical conversion processing.
  • the N framers are respectively used to parse the data frames of the N access stations or frame the data.
  • Multiplexers include combiners and demultiplexers.
  • the ACC site includes optical layer modules, including 2 FIUs, 2 optical amplifiers, and 2 multiplexers and demultiplexers.
  • the ACC site also includes 2 optical modules, 2 framers and client-side units.
  • the multiplexer and demultiplexer in the ACC site receives the optical signal, separates the optical signal of its corresponding wavelength, and sends it to the optical module. Then, the optical signals other than the optical signal of its own corresponding wavelength among the received optical signals are sent to another multiplexer and demultiplexer at the ACC site, and are multiplexed with the optical signals sent by the own ACC site before being sent out.
  • the bandwidth of the service signals supported by the wavelength division multiplexing service transmission network is 40*10G.
  • the business transmission network includes 40 ACC sites, and each ACC site supports 10G bandwidth. Then 40 10G optical modules are needed in AGG.
  • many components are required at the optical layer, including multiplexers, optical amplifiers, optical line interface units, etc.
  • ACC sites and AGG sites require a large number of optical modules in total.
  • N ACC sites require 4N optical modules, resulting in higher networking costs. Since the optical layer is deployed on many devices, the integration level is poor.
  • ACC sites with different wavelengths need to be configured separately and cannot be reused, which reduces the flexibility of network deployment.
  • the third possible networking method is a third possible networking method.
  • the entire ring traffic is directly aggregated into a single optical port.
  • 40 10G modules are needed to carry 40*10G signals
  • one 400G module is directly used to carry traffic.
  • Figure 3 taking the 400G shared ring as an example, at the AGG site, 400G services are sent to the nearest ACC site through the 400G optical module. The 400G services are extracted through the 400G module at the ACC site. After passing through the switching network, the services that need to be processed at the site pass through the single board of the branch, while the services that need to be sent to the next ACC site pass through the switching network and are combined with the needs of the ACC site. The traffic sent eastward continues to be delivered together.
  • the networking method of the shared ring is relatively simple and the integration level is relatively good.
  • the number of optical modules consumed is 2N+2, which is lower than the 4N modules of optical fiber direct drive and wavelength division solutions.
  • the optical module/framer/switching network traffic of each ACC site needs to support large ports.
  • each ACC site requires at least one 400G framer even if it only requires 10G bandwidth for upstream and downstream services. If east-west separation is supported, two 400G framers are required, resulting in high power consumption and high cost of the overall solution.
  • each ACC site needs to process 400G bandwidth services to determine its own 10G service traffic. That is, 400G bandwidth services need to be processed by FRM and switching networks, resulting in large delays and possible increases. to tens of microseconds (us).
  • embodiments of this application provide a service processing method, aggregation site, and access site.
  • This application does not require a multiplexer and demultiplexer at the optical layer.
  • Business flow penetration is achieved at the electrical layer, which can achieve low latency, low power consumption and high integration carrying effects.
  • the aggregation site and access site provided by the embodiments of this application can be applied to the access ring.
  • Aggregation sites and access sites can also be collectively referred to as network devices.
  • Network equipment is equipment that can use optical modules, such as packet transport network (PTN) equipment or optical transport network (OTN) equipment, etc.
  • the access ring can support bidirectional transmission.
  • dual-fiber unidirectional or single-fiber bidirectional transmission can be used.
  • Dual-fiber unidirectional means that any two network devices in the access ring are connected through two optical fibers, and the two optical fibers transmit optical signals in opposite directions.
  • Single-fiber bidirectional means that any two network devices in the access ring are connected through an optical fiber, and this optical fiber can transmit optical signals in both directions.
  • FIG 4 is a schematic structural diagram of an access ring provided by an embodiment of the present application.
  • the access ring adopts dual fiber unidirectional.
  • the access ring may include N access sites and aggregation points.
  • Figure 4 is only an example and does not specifically limit the number of access sites and aggregation sites included in the access ring.
  • the access ring includes three access sites as an example.
  • the access sites included in the access ring are access site 1, access site 2 and access site 3 respectively.
  • Access site 2 is connected to access site 1 and access site 3 respectively through optical fibers
  • the aggregation site is connected to access site 1 and access site 3 respectively through optical fibers.
  • the following describes the structure of the aggregation site and the access site.
  • the aggregation site includes a framer 110 and an optical module 220.
  • the framer 110 supports service flows that process the total bandwidth required by the access stations included in the access ring. It can be understood that the bandwidth supported by the framer 110 is greater than or equal to the total bandwidth of the access stations included in the access ring. Take the access ring including N access sites as an example.
  • the aggregation site It may also include other components, such as a power component used to supply power to the system, a clock component used to provide a working clock to the system, etc., which are not specifically limited in this application.
  • the functions of each component in the aggregation site are described as follows, as shown in Figure 6A and Figure 6B.
  • the framer 110 acquires the service signals that need to be sent to each access station, for example, acquires the service signals of N access stations in the access ring. It should be understood that the traffic signals that need to be sent to each access station may not be generated at the same time. Therefore, the number of traffic signals received by the framer 110 may be less than N, that is, traffic signals from some stations of N access stations are received. In the embodiment of this application, receiving service signals from N access stations is taken as an example. For convenience of description, the traffic signal received by the framer 110 is called a first traffic signal.
  • the framer 110 respectively encapsulates the first service signals of the N access stations to obtain the first service flows of the N access stations, where N is a positive integer.
  • the method of encapsulating the first service signal by the framer 110 is not specifically limited in this application.
  • the optical module 220 receives the encapsulated N first service flows from the framer 110 .
  • the optical module 220 performs channelization processing on the N first service flows.
  • the channelized channel signal is then line-encoded and then sent out after electro-optical conversion.
  • the optical module 220 separately divides the N first service streams into M channels to obtain M channel signals.
  • the M channel signals are here referred to as first channel signals.
  • M is an integer greater than or equal to N.
  • the optical module 220 may receive N first service flows through a communication interface (or interface circuit).
  • the interface circuit may use a serial deserializer (SerDes, SDS) or an analog to digital/digital to analog converter (ADDA), etc., which are not specifically limited in the embodiments of this application.
  • dividing the N first service flows into M channels can be understood as dividing the encapsulated service flows of each access station into small granular services.
  • Different access sites have different channels corresponding to the first service flow. Taking the first access site among N access sites as an example, the service flow of the first access site is divided into K+1 channels.
  • the service bandwidth required by the first service site is less than or equal to the total bandwidth of K+1 channels, and greater than the total bandwidth of K channels.
  • K+1 is a positive integer less than M.
  • each channel has a different channel identification.
  • Channel identifiers corresponding to different access sites may be pre-configured in the access site and aggregation site.
  • the channel signal corresponding to each channel can carry a channel identifier, which is used by the access station to identify the channel signal.
  • each access site corresponds to a channel.
  • one access site may correspond to one or more channels, and different access sites may correspond to different numbers of channels.
  • the bandwidths of the M channels can all be the same.
  • N first service flows can be divided into M channels based on setting the division bandwidth (or setting the division granularity).
  • the total bandwidth of M channels is greater than or equal to the total bandwidth required by N access sites.
  • the service bandwidths of N access sites are: 1G, 25G..., and the bandwidth of each channel can be 10G.
  • Channel division based on the set split bandwidth is conducive to the subsequent expansion of some access sites, reduces frequent upgrades, and reduces implementation complexity.
  • the traffic of some access sites is less than 10G, and 10G channels are allocated, which can be used for subsequent expansion of the access site.
  • each channel may be independently coded, or the M first channel signals may be uniformly coded.
  • the optical module 220 performs line coding (which may also be called channel coding) on each of the M first channel signals to obtain M first coded signals. . Then, M channels of first encoded signals are multiplexed into one channel of signals. For convenience of description, the multiplexed signal is called the first electrical signal.
  • time division multiplexing or frequency division multiplexing may be used. It can be understood that when the time division multiplexing method is adopted, the spectrum of the first optical signal obtained after electro-optical conversion of the first electrical signal is a single carrier spectrum. When frequency division multiplexing is adopted, the spectrum of the first optical signal obtained after electro-optical conversion of the first electrical signal is a multi-photon carrier spectrum.
  • the optical module 220 multiplexes M first channel signals into one signal.
  • the multiplexed channel signal is called a first multiplexed signal
  • the first multiplexed signal is encoded to obtain a first encoded signal.
  • electro-optical conversion is performed on the first encoded signal.
  • time division multiplexing or frequency division multiplexing may be used. It can be understood that when the time division multiplexing method is adopted, the spectrum of the first optical signal obtained after electro-optical conversion of the first electrical signal is a single carrier spectrum.
  • frequency division multiplexing the spectrum of the first optical signal obtained after electro-optical conversion of the first electrical signal is a multi-photon carrier spectrum.
  • FEC forward error correction
  • OAM operations, administration, and maintenance
  • the first coded signal may carry the quality of the coded signal (or channel signal) used to detect the channel.
  • Performance management mainly refers to the measurement of parameters such as packet loss, delay, and jitter in network transmission. It can also implement statistics on various types of traffic in the network (such as the number of bytes received and sent, the number of error frames, etc.).
  • the optical module 220 receives the optical signal sent by the first access station.
  • the optical signal from the first access station is referred to as the second optical signal here.
  • the optical module 220 converts the second optical signal into a second electrical signal.
  • Signal processing includes line decoding, and the line decoding method here corresponds to the aforementioned line encoding method.
  • the optical module 220 demultiplexes the second electrical signal to obtain M second coded signals corresponding to M channels, and then demultiplexes the M second electrical signals.
  • the encoded signal is line decoded to obtain M second channel signals.
  • the optical module 220 aggregates the M second channel signals to obtain N second service streams, and sends them to the framer 110 .
  • the framer 110 decapsulates the N second service flows respectively to obtain the second service signals of the N access stations.
  • the optical module 220 receives the second optical signal sent by the first access station; performs photoelectric conversion on the second optical signal to obtain the second coded signal. , perform line decoding on the second encoded signal to obtain the first multiplexed signal, demultiplex the first multiplexed signal to obtain M second channel signals; and aggregate the M second channel signals into N second services stream and sent to framer 110.
  • the framer 110 decapsulates the N second service flows respectively to obtain the second service signals of the N access stations.
  • the optical module 220 includes an optical modulator 2201, an optical demodulator 2202, and a processor 2203.
  • the processor 2203 may be a general processor, a digital signal processor (DSP), an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc.
  • the processor 2203 is DSP2203 as an example.
  • the light modulator 2201 is used to perform photoelectric conversion.
  • Optical demodulator 2202 is used to perform electro-optical conversion.
  • the processor 2203 is used to perform processing such as line encoding and decoding, multiplexing, segmentation, and aggregation.
  • the optical module 220 may also include an analog-to-digital-to-analog conversion interface 2204 and a line physical interface 2205.
  • the analog-to-digital conversion interface 2204 may include an analog-to-digital conversion interface and a digital-to-analog conversion interface.
  • the analog-to-digital conversion interface is used to perform analog-to-digital conversion processing on the electro-optically converted signal of the optical demodulator 2202, which can be understood as converting the analog signal into a digital signal.
  • the digital-to-analog conversion interface is used to perform digital-to-analog conversion processing on electrical signals before the optical modulator 2201 performs electro-optical conversion, which can be understood as converting digital signals into analog signals.
  • the line physical interface 2205 can use a serial deserializer (SerDes, SDS) or an analog-to-digital/digital-to-analog converter (ADDA).
  • each device in the optical module 220 will be described below from the functional perspective of the optical module 220 described in FIGS. 6A, 6B, 7A and 7B.
  • the optical module 220 receives the N first service streams sent by the framer 110 through the line physical interface 2205 .
  • DSP2203 performs segmentation processing on the N first service streams and segments them into M channels to obtain M channel signals. Then each channel signal is independently coded, and the independently coded M channels (or M channels) coded signals are multiplexed.
  • the multiplexed signal is input to the optical modulator 2201.
  • the optical modulator 2201 performs electro-optical conversion on the input signal and then emits the converted signal.
  • the optical module 220 also includes an analog-to-digital to digital-to-analog conversion interface 2204.
  • the multiplexed signal of the DSP 2203 is input to the analog-to-digital to digital-to-analog conversion interface 2204.
  • the multiplexed signal is subjected to digital-to-analog conversion through the analog-to-digital to digital-to-analog conversion interface 2204. After conversion processing, it is sent to the optical modulator 2201.
  • the optical module 220 receives the N first service streams sent by the framer 110 through the line physical interface 2205 .
  • DSP2203 performs segmentation processing on the N first service streams and segments them into M channels to obtain M channel signals. Then, M channel signals are multiplexed into one signal, and then the multiplexed signal is uniformly encoded.
  • the uniformly encoded signal is input to the optical modulator 2201.
  • the optical modulator 2201 performs electro-optical conversion on the input signal and then emits the converted signal.
  • the optical module 220 also includes an analog-to-digital to digital-to-analog conversion interface 2204.
  • the DSP 2203 inputs the uniformly encoded signal to the analog-to-digital to digital-to-analog conversion interface 2204, and performs digital processing on the uniformly encoded signal through the analog-to-digital to digital-to-analog conversion interface 2204. After analog conversion processing, it is sent to the optical modulator 2201.
  • the optical demodulator 2202 in the optical module 220 performs photoelectric conversion on the received second optical signal and outputs it to the DSP 2203 .
  • DSP2203 performs signal processing on the photoelectrically converted signal, including demultiplexing the photoelectrically converted second electrical signal to obtain M coded signals.
  • the M encoded signals are decoded respectively to obtain M channel signals.
  • M channel signals are aggregated to obtain the service flows of N access sites. The aggregated service flows of the N access sites are then sent out through the line physical interface 2205.
  • the optical module 220 also includes an analog-to-digital to digital-to-analog conversion interface 2204.
  • the optical demodulator 2202 inputs the output photoelectrically converted second electrical signal to the analog-to-digital to digital-to-analog conversion interface 2204, and passes through the analog-to-digital to digital-to-analog conversion interface. 2204 first performs digital-to-analog conversion processing on the second electrical signal and then sends it to DSP2203.
  • the optical demodulator 2202 in the optical module 220 performs photoelectric conversion on the received second optical signal and outputs it to the DSP 2203 .
  • DSP2203 performs signal processing on the photoelectrically converted signal, including decoding the photoelectrically converted second electrical signal to obtain one encoded signal, and then demultiplexing the one encoded signal to obtain M channel signals.
  • the optical module 220 also includes an analog-to-digital to digital-to-analog conversion interface 2204.
  • the optical demodulator 2202 inputs the output photoelectrically converted second electrical signal to the analog-to-digital to digital-to-analog conversion interface 2204, and passes through the analog-to-digital to digital-to-analog conversion interface. 2204 first performs digital-to-analog conversion processing on the second electrical signal and then sends it to DSP2203.
  • the access station includes a framer 331, an optical module 441 and an optical module 442.
  • the framer 331 supports processing the service flow of the total bandwidth required by the access station itself. It can be understood that the bandwidth supported by the framer 331 is greater than or equal to the bandwidth required by the access station itself.
  • the optical module 441 and the optical module 442 support signal pass-through. The pass-through here is not an optical signal, but an electrical signal.
  • a framer 332 for performing encapsulation may also be included in the access station. The framer 332 supports a bandwidth that is greater than or equal to the bandwidth required by the access station itself.
  • the signal processing of the electrical signal after photoelectric conversion of the optical signal includes line decoding.
  • the line decoding method here corresponds to the line encoding method of the aggregation site mentioned above.
  • the access site may be an access site connected to a convergence node, such as access site 1 or access site 3 in Figure 4, or it may be access site 2 connected to access sites at both ends. This application does not specifically limit this.
  • the optical signal received by the access site comes from the upstream site.
  • the upstream site can be an aggregation site or other access sites.
  • the received optical signal comes from the aggregation site; when the access site structure is applied to access site 2, the received optical signal comes from the upstream Access site 1.
  • the received optical signal is called the third optical signal as an example.
  • the optical module 441 receives the third optical signal and converts the third optical signal into a third electrical signal.
  • the optical module 441 demultiplexes the third electrical signal to obtain M third encoded signals corresponding to the M channels.
  • the optical module 441 determines K+1 channels corresponding to the access station among the M channels, where K+1 is a positive integer less than M.
  • the optical module 441 can obtain channel identifiers of M channels from M third encoded signals.
  • the channel identifier may be included in data communication network (DCN) information of the third encoded signal.
  • DCN data communication network
  • the access site may also include a controller, and the controller is configured with a channel identifier of a channel corresponding to the access site.
  • the optical module 441 can determine from the controller which channels among the M channels are the channels corresponding to the access site.
  • the optical module 441 performs line decoding on the third coded signals corresponding to the K+1 channels to obtain the third service flow of the access site, and decodes M-K signals among the M channels except the first coded signals of the K+1 channels.
  • the -1 first encoded signal is sent to the optical module 442, so that the optical module 442 performs electro-optical conversion on the M-K-1 third encoded signal and then sends it out.
  • the framer 331 decapsulates the third service stream to obtain the third service signal of the access site.
  • the optical module 442 after the optical module 442 receives the third coded signal of the M-K-1 channel, if the access station does not have an uplink service signal to be sent at this time, the optical module 442 targets the third coded signal of the M-K-1 channel.
  • the three coded signals are multiplexed and electro-optically converted and sent out.
  • the optical module 442 receives the third coded signal of the M-K-1 channel, if the access station has an uplink service signal to be sent at this time, such as the fourth business signals.
  • a framer 332 for performing encapsulation may also be included in the access site.
  • the fourth service signal is encapsulated by the framer 332 to obtain the fourth service flow of the access station.
  • the optical module 442 divides the fourth service stream into L channels among the K+1 channels to obtain L channels of fourth channel signals.
  • L is an integer greater than 0 and less than or equal to K+1.
  • the channels are divided according to the set split bandwidth.
  • the number of channels occupied by each access station is related to the bandwidth required by the access station itself.
  • the number of channels configured for the access site is K+1. It should be noted that when the bandwidth of the service flow of the access site is reduced, the number of occupied channels can be less than K+1.
  • the optical module 442 performs line coding on each of the L fourth channel signals to obtain the L fourth coded signal; multiplexes the M-K-1 third coded signal and the L fourth coded signal A fourth electrical signal is obtained, electro-optical conversion is performed on the fourth electrical signal to obtain a fourth optical signal, and the fourth optical signal is sent.
  • the multiplexing mentioned here may adopt time division multiplexing or frequency division multiplexing, which is not specifically limited in the embodiments of the present application.
  • the framing component has both an encapsulation function and a decapsulation function. Encapsulation and decapsulation can be implemented by the same framing component. Therefore, the above framer 331 and the framer 332 can be composed of one framer. components to implement. In other scenarios, the framing component with the encapsulation function and the decapsulation function is deployed separately, so the above-mentioned framer 331 and framer 332 can be implemented by two components independently.
  • the optical module 441 receives the third optical signal, and performs photoelectric conversion on the third optical signal to obtain a third encoded signal; Perform line decoding on the third coded signal to obtain the first multiplexed signal, demultiplex the first multiplexed signal to obtain M third channel signals corresponding to M channels; determine K corresponding to the access site in the M channels +1 channel, K+1 is a positive integer less than M; combine K+1 channel signals into the third service stream and send it to the framer 331; MK other than K+1 channels among the M channels -1 third channel signal is sent to the optical module 442 to perform electro-optical conversion through the optical module 442 and then be sent out.
  • the framer 331 decapsulates the third service stream to obtain the third service signal of the access site.
  • the optical module 442 after the optical module 442 receives the third channel signal of the M-K-1 channel, if the access station does not have an uplink service signal to be sent at this time, the optical module 442 targets the third channel signal of the M-K-1 channel.
  • the three-channel signals are multiplexed, line-encoded and electro-optically converted before being sent out.
  • the optical module 442 receives the third channel signal of the M-K-1 channel, if the access station has an uplink service signal to be sent at this time, such as the fourth business signals.
  • the fourth service signal is encapsulated by the framer 332 to obtain the fourth service flow of the access station.
  • the optical module 442 divides the fourth service stream into L channels among the K+1 channels to obtain L channels of fourth channel signals.
  • L is an integer greater than 0 and less than or equal to K+1.
  • the channels are divided according to the set split bandwidth.
  • the number of channels occupied by each access station is related to the bandwidth required by the access station itself.
  • the number of channels configured for the access site is K+1. It should be noted that when the bandwidth of the service flow of the access site is reduced, the number of occupied channels can be less than K+1.
  • the optical module 442 multiplexes the fourth channel signal of the L channel and the third channel signal of the M-K-1 channel, and then performs line coding on the multiplexed signal to obtain the fourth coded signal; performs electro-optical conversion on the fourth coded signal to obtain the fourth coded signal. optical signal, sending a fourth optical signal.
  • the multiplexing mentioned here may adopt time division multiplexing or frequency division multiplexing, which is not specifically limited in the embodiments of the present application.
  • the above-mentioned optical module 441 can adopt this structure.
  • the optical module includes an optical demodulator 4411, a processor 4412, a pass-through interface 4413, and a drop interface 4414.
  • the light modulator 4411 is used to perform photoelectric conversion.
  • the processor 4412 is used to perform processing such as line encoding and decoding, multiplexing, and aggregation.
  • the channel signals of non-local access sites are sent through the pass-through interface 4413, and the channel signals of the local access site are sent through the Drop interface.
  • the optical module 441 also includes an analog-to-digital conversion interface 4415, which is located between the optical modulator 4411 and the processor 4412.
  • Processor 4412 may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or the like.
  • the processor 4412 is a digital signal processor (digital signal processing, DSP) 4412 as an example.
  • each device in the above-mentioned optical module 441 will be described below from the functional perspective of the optical module 441 described in FIG. 10A and FIG. 10B .
  • the optical demodulator 4411 in the optical module 441 receives the third optical signal, converts the third optical signal into a third electrical signal, and outputs it to the analog-to-digital conversion interface 4415 .
  • the analog-to-digital conversion interface 4415 performs analog-to-digital conversion processing on the third electrical signal.
  • the analog-to-digital converted signal is then sent to DSP4412.
  • DSP4412 demultiplexes the signals after analog-to-digital conversion to obtain M third encoded signals corresponding to M channels.
  • DSP4412 determines the K+1 channels corresponding to the access station among the M channels.
  • DSP4412 performs line decoding on the third coded signals corresponding to the K+1 channels to obtain the third service flow of the access site, and sends the third service flow through the Drop interface.
  • the DSP4412 sends out the M-K-1 first encoded signals among the M channels, except the first encoded signals of the K+1 channels, through the pass-through interface 4413.
  • the optical demodulator 4411 in the optical module 441 receives the third optical signal, converts the third optical signal into a third encoded signal, and outputs it to the analog-to-digital conversion interface 4415 .
  • the analog-to-digital conversion interface 4415 performs analog-to-digital conversion processing on the third encoded signal.
  • the analog-to-digital converted signal is then sent to DSP4412.
  • DSP4412 performs line decoding on the analog-to-digital converted signal to obtain the first multiplexed signal, demultiplexes the first multiplexed signal to obtain M third channel signals corresponding to M channels; determines the access points in the M channels There are K+1 channels corresponding to the site; the K+1 channel signals are merged into the third service stream and sent out through Drop interface 4414. DSP4412 sends the M-K-1 third channel signal except K+1 channels among M channels through the pass-through interface 4413.
  • the above-mentioned optical module 442 can adopt this structure.
  • the optical module includes an optical modulator 4421, a processor 4422, a pass-through interface 4423, and an upload ADD interface 4424.
  • the light modulator 4411 is used to perform electro-optical conversion.
  • the processor 4412 is used to perform processing such as line coding, multiplexing, and aggregation.
  • the channel signals of non-local access stations are received through the pass-through interface 4413, and the service flows of the local access station are received through the ADD interface 4424.
  • the optical module 442 also includes a digital-to-analog conversion interface 4425, which is located between the optical modulator 4421 and the processor 4422.
  • Processor 4422 may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or the like.
  • the processor 4422 is a digital signal processor (digital signal processing, DSP) 4422 as an example.
  • the optical module 442 receives the fourth service flow through the ADD interface 4424.
  • the optical module 442 receives the third encoded signal of MK-1 channels sent by the optical module 441 through the pass-through interface 4423.
  • DSP4422 divides the fourth service stream into L channels among K+1 channels to obtain L fourth channel signals.
  • DSP4422 performs line coding on each of the L fourth channel signals to obtain the L fourth coded signal; multiplexes the MK-1 third coded signal and the L fourth coded signal to obtain the fourth telecommunications Number.
  • the digital-to-analog conversion interface 4425 performs digital-to-analog conversion processing on the fourth electrical signal.
  • the optical modulator 4421 performs electro-optical conversion on the digital-to-analog converted signal to obtain a fourth optical signal, and sends the fourth optical signal.
  • the optical module 442 receives the fourth service flow through the ADD interface 4424 .
  • the optical module 442 receives the third channel signals of M-K-1 channels sent by the optical module 441 through the pass-through interface 4423.
  • DSP4422 divides the fourth service stream into L channels among the K+1 channels to obtain L channels of fourth channel signals.
  • DSP4422 multiplexes the fourth channel signal of L channel and the third channel signal of M-K-1 channel, and then performs line coding on the multiplexed signal to obtain the fourth coded signal.
  • the digital-to-analog conversion interface 4425 performs digital-to-analog conversion processing on the fourth encoded signal.
  • the optical modulator 4421 performs electro-optical conversion on the digital-to-analog converted signal to obtain a fourth optical signal, and sends the fourth optical signal.
  • the access ring supports bidirectional transmission.
  • the optical module 441 and the optical module 442 may adopt the same structure.
  • the optical module includes an optical modulator, an optical demodulator, a processor, and interface circuits 1 and 2.
  • the optical module may also include a digital-to-analog conversion interface and an analog-to-digital conversion interface.
  • the optical module in FIG. 14 has the function of the optical module 441 and also has the function of the optical module 442.
  • the optical demodulator has the same function as the above-mentioned optical demodulator 4411.
  • the light modulator has the same function as the light modulator 4421 described above.
  • the processor has the functionality of both DSP4412 and DSP4422.
  • the interface circuit 1 can be used as a pass-through interface, having both the function of the pass-through interface 4413 and the function of the pass-through interface 4423 .
  • the interface circuit 2 can be used as a Drop interface or an ADD interface, and has the functions of the Drop interface 4414 and the ADD interface 4424.
  • the optical modulator and optical demodulator may be integrated into one device.
  • the analog-to-digital conversion interface and the digital-to-analog conversion interface can also be integrated in one interface circuit.
  • the service traffic received from the framer is channelized on the aggregation site side and multiplexed into one signal before being sent out. Therefore, on the access site side, only the corresponding channel of the access site is required.
  • the signal is delivered, and the signals of other channels are directly passed through to another optical module.
  • the bandwidth of the framer only needs to adapt to the bandwidth of the access site, thereby reducing the cost of the framer.
  • there is no need to add optical layer equipment which can further reduce deployment costs.
  • independent line coding is used, so that there is no need to decode each channel, and only the encoded signal is passed through, which can reduce complexity and transmission delay.
  • the solutions provided by the embodiments of this application will be described in detail below based on specific application scenarios.
  • the aggregation site in the access ring can adopt the structure shown in Figure 5.
  • the structure of the access sites 1-3 can adopt the structure of the access site shown in Figure 9, which will not be described again here.
  • the processing flow in the counterclockwise transmission direction is similar to the processing flow in the clockwise transmission direction. Only the processing flow in the counterclockwise transmission direction is taken as an example below.
  • the following takes the bandwidth supported by the aggregation node as 60G as an example.
  • Example 1 taking the independent encoding method as an example.
  • the optical module in the convergence node adopts the structure shown in Figure 8 as an example. In the subsequent description, examples of the labels of each device will no longer be provided.
  • the physical interface of the line in the optical module in the aggregation node uses SDS as an example. See Figure 15.
  • the framer in the aggregation node obtains the downlink service signals that need to be sent to access stations 1-3.
  • the downlink service signal of access site 1 is called service signal 1-1
  • the downlink service signal of access site 2 is called service signal 1-2
  • the downlink service signal of access site 3 is called service signal 1-3. .
  • the framer encapsulates the downlink service signals of access sites 1-3 respectively to obtain the service flow 1-1 of access site 1, the service flow 1-2 of access site 2, and the service flow 1-3 of access site 3. .
  • the optical module receives the service flow of access sites 1-3 through the physical line interface.
  • the DSP then performs signal processing on the traffic flows of access sites 1-3.
  • Signal processing includes segmentation processing, independent line coding and multiplexing processing (also called interleaving).
  • Signal processing can also include other signal processing, such as Slice processing.
  • the DSP divides the service flows of access sites 1-3 into multiple channels.
  • segmentation according to the set segmentation granularity as an example. For example, the bandwidth supported by the aggregation site is 60G.
  • the number of channels is 6, such as channel 1-channel 6.
  • the service bandwidth of access site 1 is 9G
  • the service bandwidth of access site 2 is 25G
  • the service bandwidth of access site 3 is 20G.
  • the number of channels of access site 1 is 1.
  • the service flow 1-1 of access site 1 is divided into channel 1 to obtain the channel signal 1-1 of channel 1.
  • the number of channels of access site 2 is 3.
  • the service flow 1-2 of access site 2 is divided into channel 2-channel 4 to obtain channel signals 1-2 of channel 2, channel signals 1-3 of channel 3, and channels of channel 4. Signals 1-4.
  • the number of channels of access site 3 is 2.
  • the service flow 1-3 of access site 3 is divided into channels 5-6 to obtain channel signals 1-5 of channel 5 and channel signals 1-6 of channel 6.
  • the DSP performs line coding on the channel signals of channel 1 to channel 6 respectively, and obtains the coded signals 1-1 ⁇ coded signals 1 ⁇ 6 corresponding to channel 1 to channel 6 respectively.
  • the encoded signal 1-1 ⁇ encoded signal 1 ⁇ 6 is further multiplexed and sent to ADDA.
  • the multiplexed signal is digital-to-analog converted by ADDA and then sent to the optical modulator.
  • the optical modulator performs electro-optical conversion on the digital-to-analog converted signal to obtain an optical signal 1 and sends it out.
  • optical module 1 in access site 1 receives optical signal 1.
  • the optical demodulator in the optical module 1 photoelectrically converts the optical signal 1 into an electrical signal 1.
  • the electrical signal 1 is converted from analog to digital through the ADDA in the optical module 1 to obtain the digital signal 1.
  • the DSP in optical module 1 demultiplexes digital signal 1 to obtain encoded signal 1-1 ⁇ encoded signal 1-6, and decodes the encoded signal of channel 1 to obtain channel signal 1-1 of channel 1.
  • the channel signal 1-1 of channel 1 is the service flow 1-1 of access site 1.
  • Optical module 1 sends the service flow 1-1 of access site 1 to framer 1 in access site 1 through the Drop interface.
  • the framer 1 decapsulates the service flow of the access station 1 to obtain the downlink service signal 1-1 of the access station 1.
  • the DSP in optical module 1 sends channel 2 to channel 5 corresponding to encoded signals 1-2 and encoded signals 1-5 to optical module 2 through the pass-through interface.
  • Optical module 2 receives channel 2-channel 5 through the pass-through interface, which correspond to encoded signals 1-2 and encoded signals 1-5 respectively.
  • the framer 2 receives the uplink service signal 2-1 of the access station 2, and encapsulates the uplink service signal 2-1 of the access station 2 into a service flow 2-1.
  • the optical module 2 receives the uplink service flow 2-1 of the access site 2 through the ADD interface.
  • the DSP in optical module 2 divides the upstream service flow 2-1 into channel 1 to obtain the channel signal 2-1 of the channel, and performs line coding on the channel signal 2-1 of channel 1 to obtain the coded signal 2-1 of channel 1.
  • the DSP receives the channel 2-channel 5 from the pass-through interface corresponding to the encoded signal 1-2, the encoded signal 1-5, and the encoded signal 2-1 of channel 1 is multiplexed into an electrical signal.
  • the electrical signal is digital-to-analog converted into an analog signal through ADDA in the optical module 2 .
  • the optical modulator in the optical module 2 conducts electro-optical conversion on the analog signal to obtain the optical signal 2 and sends it out.
  • optical signal 2 is received, and the optical signal 2 is processed in a manner similar to access station 1.
  • the encoded signals of channel 2 to channel 4 are decoded respectively to obtain the channel signals of channel 2 to channel 4.
  • the channel signals from channel 2 to channel 4 are further aggregated to obtain the downlink service flow of access site 2.
  • Example 2 takes the unified encoding method as an example.
  • optical module in the convergence node adopts the structure shown in Figure 8 as an example. In the subsequent description, examples of the labels of each device will no longer be provided.
  • the framer in the aggregation node obtains the downlink service signals that need to be sent to access stations 1-3.
  • the framer encapsulates the downlink service signals 1-1 ⁇ downlink service signals 1-3 of the access stations 1-3 respectively to obtain the service flows 1-1 ⁇ service flows 1-3 corresponding to the access stations 1-3 respectively.
  • the optical module receives service flow 1-1 ⁇ service flow 1-3 through the physical line interface.
  • the DSP then performs signal processing on service flows 1-1 ⁇ service flows 1-3.
  • Signal processing includes segmentation processing, independent line coding and multiplexing processing (also called interleaving). Signal processing can also include other signal processing, such as Slice processing.
  • the DSP divides the service flows of access sites 1-3 into multiple channels.
  • the bandwidth supported by the aggregation site is 60G.
  • the number of channels is 6, such as channel 1-channel 6.
  • the service bandwidth of access site 1 is 9G
  • the service bandwidth of access site 2 is 25G
  • the service bandwidth of access site 3 is 20G.
  • the number of channels of access site 1 is 1.
  • the service flow 1-1 of access site 1 is divided into channel 1 to obtain the channel signal 1-1 of channel 1.
  • the number of channels of access site 2 is 3.
  • the service flow 1-2 of access site 2 is divided into channel 2-channel 4 to obtain channel signals 1-2 of channel 2, channel signals 1-3 of channel 3, and channels of channel 4. Signals 1-4.
  • the number of channels of access site 3 is 2.
  • the service flow 1-3 of access site 3 is divided into channels 5-6 to obtain channel signals 1-5 of channel 5 and channel signals 1-6 of channel 6.
  • the DSP multiplexes the channel signals 1-1 and channel signals 1-6 corresponding to channel 1 to channel 6 respectively into one electrical signal, and then performs unified line coding on the electrical signal to obtain a coded signal.
  • This encoded signal is further sent to ADDA.
  • a coded signal is digital-to-analog converted by ADDA and then sent to the optical modulator.
  • the optical modulator performs electro-optical conversion on the digital-to-analog converted signal to obtain an optical signal 1 and sends it out.
  • the convergence node sends an optical signal 1 to the access site 1.
  • optical module 1 and optical module 2 respectively.
  • framer 1 and framer 2 respectively.
  • Optical module 1 in access site 1 receives optical signal 1.
  • the optical demodulator in the optical module 1 photoelectrically converts the optical signal 1 into an electrical signal 1.
  • the electrical signal 1 is converted from analog to digital through ADDA in the optical module 1 to obtain a coded signal.
  • the DSP in the optical module 1 performs line decoding on a coded signal to obtain an electrical signal.
  • the electrical signal is demultiplexed to obtain channel signals 1-1 ⁇ channel signals 1-6 corresponding to channel 1 to channel 6 respectively.
  • Channel signal 1-1 of channel 1 carries the service flow 1-1 of access site 1.
  • Optical module 1 sends the service flow 1-1 of access site 1 to framer 1 in access site 1 through the Drop interface.
  • the framer 1 decapsulates the service flow 1-1 of the access station 1 to obtain the downlink service signal 1-1 of the access station 1.
  • the DSP in optical module 1 sends channel signals 1-2 and channel signals 1-5 corresponding to channel 2 to channel 5 to optical module 2 through the pass-through interface.
  • the optical module 2 receives channel signals 1-2 and channel signals 1-5 corresponding to channel 2 to channel 5 respectively through the pass-through interface.
  • the framer 2 receives the uplink service signal 2-1 of the access station 2, and encapsulates the uplink service signal 2-1 of the access station 2 into a service flow 2-1.
  • the optical module 2 receives the uplink service flow 2-1 of the access site 2 through the ADD interface.
  • the DSP in optical module 2 splits the upstream service flow 2-1 to channel 1 to obtain the channel signal 2-1 of channel 1, and combines the channel signal 2-1 of channel 1 with the channel signals 1-2 ⁇ corresponding to channel 2-channel 5 respectively.
  • Channel signals 1-5 are multiplexed into a multiplexed signal, and then the multiplexed signal is uniformly encoded to obtain a coded signal. Then, the encoded signal is digital-to-analog converted into an analog signal through ADDA in the optical module 2. Further, the optical modulator in the optical module 2 conducts electro-optical conversion on the analog signal to obtain the optical signal 2 and sends it out.
  • optical signal 2 is received, and the optical signal 2 is processed in a manner similar to access station 1. After the DSP completes demultiplexing, the channel signals from channel 2 to channel 4 are aggregated to obtain the downlink service flow of access site 2.
  • the embodiments of this application also provide a service signal processing method.
  • the following describes the service signal processing method from the perspective of aggregation site and access site execution respectively.
  • Figure 19 is a schematic flow chart of a service signal processing method. This method is performed by the aggregation site.
  • Figure 19 takes the aggregation site using independent line coding as an example when performing line coding.
  • M is an integer greater than or equal to N; the service flows of different access sites are divided into different channels.
  • Figure 20 is a schematic flow chart of a service signal processing method. This method is performed by the access site.
  • Figure 20 takes the access station using independent line coding as an example when performing line coding.
  • Figure 21 is a schematic flow chart of a service signal processing method. This method is performed by the aggregation site.
  • Figure 21 takes the unified line coding method as an example when the aggregation site performs line coding.
  • M is an integer greater than or equal to N; the service flows of different access sites are divided into different channels.
  • Figure 22 is a schematic flow chart of a service signal processing method. This method is performed by the access site.
  • Figure 22 takes the access station using the unified line coding method as an example when performing line coding.
  • the service traffic received from the framer is channelized on the aggregation site side and multiplexed into one signal before being sent out. Therefore, on the access site side, only the channel corresponding to the access site is required.
  • the signal is delivered, and the signals of other channels are directly passed through to another optical module.
  • the bandwidth of the framer only needs to adapt to the bandwidth of the access site, thereby reducing the cost of the framer.
  • Compared with the wavelength division multiplexing ring networking method there is no need to add optical layer equipment, which can further reduce deployment costs.
  • independent line coding is used, so that there is no need to decode each channel, and only the encoded signal is passed through, which can reduce complexity and transmission delay.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, this application may be adopted In the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Abstract

本申请涉及光电子技术领域,公开了一种业务处理方法、光模块以及接入站点、汇聚站点,用以提高网络部署的灵活度。在汇聚站点侧针对从成帧器接收的业务流量进行通道化处理,并在发出之前复用为一路信号,从而在接入站点侧,仅需将本接入站点对应通道的信号进行下发,其他通道的信号直接穿通到另一个光模块,无需通过成帧器全部解封装后来确定本接入站点的信号,可以降低接入站点的成帧器的带宽,即成帧器的带宽仅需适配本接入站点的带宽即可,从而可以降低成帧器成本。并且无需增加光层设备,可以进一步降低部署成本。一些场景中采用独立线路编码的方式,从而无需对每一通道进行译码,仅需对编码信号进行穿通,可以降低复杂度,降低传输时延。

Description

一种业务处理方法、光模块以及接入站点、汇聚站点
本申请要求于2022年7月1日提交中国国家知识产权局、申请号为202210774334.9、申请名称为“一种业务处理方法、光模块以及接入站点、汇聚站点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光电子技术领域,尤其涉及一种业务处理方法、光模块以及接入站点、汇聚站点。
背景技术
固网、移动及专线业务的持续增长对当前承载技术的带宽、成本、集成度、功耗、时延及运维等提出了越来越严格的要求。在部署网络时,通常将业务流量通过多个接入(access,ACC)站点向汇聚(aggregation,AGG)站点进行汇聚。ACC站点与AGG站点在网络中部署时,一种方式中,ACC站点与AGG站点通过光纤直驱的方式部署,即每个ACC站点与AGG站点之间通过一对光纤进行业务承载。该方式中,光纤的消耗量较大以及针对光模块的消耗较多。另一种方式中,采用波分复用的方式来部署。针对不同的ACC分配不同的波长来进行业务承载。在ACC站点与AGG站点中均需要部署光学合分波器件,用于进行多个波长的光的汇聚与分离。该方式中,可以降低光纤的消耗量,但是需要在光层部署较多的合分波器件、以及光放大器、光纤接口单元等器件,导致光层成本较高,并且由于光层部署于的器件较多,导致集成度较差。此外,由于需要为不同的ACC站点分配不同的波长,即不同的ACC站点的波长需要不同,导致不同的波长的ACC站点均需要单独配置,无法复用,降低网络部署的灵活度。
发明内容
本申请实施例提供一种业务处理方法、光模块以及接入站点、汇聚站点,用以解决的网络部署灵活度较差的问题。
第一方面,本申请实施例提供一种汇聚站点,包括第一光模块以及第一成帧器;所述第一成帧器,用于获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;所述第一光模块,用于分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的第一业务流被分割到不同的通道;针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
上述方案中,光模块实现对业务流的通道划分,并且每个通道独立编码,降低不同接入站点的信号之间的耦合度,从而接入站点在接收时,可以基于通道来选择接入站点自身的通道信号,其它通道的通道信号无需进行处理。无需针对汇聚站点增加部署光层器件,比如合分波器、光放大器等等,并且不同站点采用相同的结构,无需特殊部署,提高网络部署的灵活度。此外,由于汇聚站点针对每个通道的通道信号进行独立编码,从而接入站点侧无需解码即可以确定自身站点所需的编码信号,其它站点的信号无需进行处理,可以提高处理资源的利用率。
在一种可能的设计中,所述汇聚站点与第一接入站点连接;所述第一光模块,还用于接收所述第一接入站点发送的第二光信号;将所述第二光信号转换为第二电信号,对所述第二电信号进行解复用得到M个通道对应的M路第二编码信号;将所述M路第二编码信号进行线路译码得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;所述第一成帧器,还用于对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
在一种可能的设计中,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
在一种可能的设计中,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。上述设计中,不同的接入站点占用不同的通道,通道的大小与接入站点所需的带 宽匹配。
在一种可能的设计中,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。上述设计中,通道进行统一划分,不同的通道的带宽大小相同,在接入站点带宽增加减少的情况下同样适用,提高配置的灵活度。
在一种可能的设计中,M路第一编码信号分别包括所属通道的通道标识。
在一种可能的设计中,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
第二方面,本申请实施例提供一种接入站点,包括第二光模块、第二成帧器;
所述第二光模块,用于执行:接收第三光信号,并将所述第三光信号转换为第三电信号;对所述第三电信号进行解复用得到M个通道对应的M路第三编码信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;将所述K+1个通道对应的第三编码信号分别进行线路译码得到所述接入站点的第三业务流,并将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号从所述第二光模块发出;
所述第二成帧器,用于对所述第三业务流进行解封装,以得到所述接入站点的第三业务信号。
其中,确定所述M个通道被配置为属于N个接入站点,不同的接入站点被配置到不同的通道,即不同的接入站点的业务流位于不同的通道。
在一种可能的设计中,所述接入站点还包括第三光模块;
所述第二光模块,用于将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述第三光模块,以通过所述第三光模块针对所述M-K-1路第三编码信号执行电光转换后从所述接入站点发出。
通过上述方案,接入站点将接收到的属于自身通道的编码信号进行译码并发送给成帧器进行解封装,而对于其它通道的编码信号直接通过另一个光模块进行电光转换后发出,无需通过成帧器处理,从而每个接入站点仅需配置支持自身所需带宽的成帧器即可,降低成帧器的部署要求,降低部署成本。另外,接入站点无需配置光层器件,比如合分波器、光放大器等等,可以提高集成度,降低接入站点体积大小。并且不同接入站点采用相同的结构,无需特殊部署,提高网络部署的灵活度。
在一种可能的设计中,所述第二成帧器,还用于获取所述接入站点的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;所述第三光模块,用于将所述第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于或者等于K+1的整数;针对L路第四通道信号中每路通道信号进行线路编码得到L路第四编码信号;将所述M-K-1路第三编码信号以及所述L路第四编码信号复用得到第四电信号,并对所述第四电信号进行电光转换得到第四光信号,发送所述第四光信号。
上述设计中,针对需要接入站点上传的信号,成帧器仅需针对接入站点自身的信号进行封装,从而每个接入站点仅需配置支持自身所需带宽的成帧器即可,降低成帧器的部署要求,降低部署成本。光模块针对封装后的业务流进行通道划分后独立编码,与其它接入站点的信号不耦合,然后在光模块与其它接入站点的信号进行复用以及电光转换后发出即可。在无需针对其它站点的信号进行特殊处理,可以提高处理资源的利用率。
在一种可能的设计中,所述第三光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M-K-1个第一编码信号和L路第四编码信号复用为所述第四电信号。
在一种可能的设计中,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
从所述M路第三编码信号分别解析所属通道的通道标识,根据所述M路第三编码信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
第三方面,本申请实施例提供一种汇聚站点,包括第一光模块以及第一成帧器;
所述第一成帧器,用于获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
所述第一光模块,用于分别将所述N个业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;将M路第一通道信号复用为第一复用信号,对所述第一复用信号进行线路编码得到第一编码信号,将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
上述方案中,光模块实现对业务流的通道划分,降低不同接入站点的信号之间的耦合度,从而接入站 点在接收时,可以基于通道来选择接入站点自身的通道信号,其它通道的通道信号无需进行处理。无需针对汇聚站点增加部署光层器件,比如合分波器、光放大器等等,并且不同站点采用相同的结构,无需特殊部署,提高网络部署的灵活度。此外,由于汇聚站点在通道化处理时,针对不同的接入站点的业务流分割到不同的通道上,从而接入站点侧无需成帧器解封装即可以确定自身站点所需的通道信号,可以提高处理资源的利用率。
在一种可能的设计中,所述汇聚站点与第一接入站点连接;所述第一光模块,还用于接收所述第一接入站点发送的第二光信号;对所述第二光信号进行光电转换得到第二编码信号,对所述第二编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;所述第一成帧器,还用于对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
在一种可能的设计中,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
在一种可能的设计中,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
在一种可能的设计中,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
在一种可能的设计中,M路第一通道信号分别包括所属通道的通道标识。
在一种可能的设计中,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
第四方面,本申请实施例提供一种接入站点,包括第二光模块、第二成帧器;
所述第二光模块,用于执行:接收第三光信号,并对所述第三光信号进行光电转换得到为第三编码信号;对所述第三编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M个通道对应的M路第三通道信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;将K+1路通道信号合并为第三业务流并发送至所述第二成帧器;将所述M个通道中除所述K+1个通道以外的M-K-1路第三通道信号从所述第二光模块发出;所述第二成帧器,用于对第三业务流进行解封装,以得到所述接入站点的第三业务信号。
其中,确定所述M个通道被配置为属于N个接入站点,不同的接入站点被配置到不同的通道,即不同的接入站点的业务流位于不同的通道。
在一种可能的设计中,所述接入站点还包括第三光模块;
所述第二光模块,用于将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述第三光模块,以通过所述第三光模块执行电光转换后从所述接入站点发出。
通过上述方案,接入站点将接收到的属于自身通道的编码信号进行译码并发送给成帧器进行解封装,而对于其它通道的通道信号直接通过另一个光模块进行电光转换后发出,无需通过成帧器处理,从而每个接入站点仅需配置支持自身所需带宽的成帧器即可,降低成帧器的部署要求,降低部署成本。另外,接入站点无需配置光层器件,比如合分波器、光放大器等等,可以提高集成度,降低接入站点体积大小。并且不同接入站点采用相同的结构,无需特殊部署,提高网络部署的灵活度。
在一种可能的设计中,还包括第三成帧器;
所述第三成帧器,用于获取所述接入站点的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;
所述第三光模块,用于将所述第四业务流分割到K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于K+1的整数;将所述M-K-1路第三通道信号以及所述L路第四通道信号复用得到第二复用信号,对所述第二复用信号进行线路编码得到第四编码信号,对所述第四编码信号进行电光转换得到第四光信号,并发送所述第四光信号。
上述设计中,针对需要接入站点上传的信号,成帧器仅需针对接入站点自身的信号进行封装,从而每个接入站点仅需配置支持自身所需带宽的成帧器即可,降低成帧器的部署要求,降低部署成本。光模块针对封装后的业务流进行通道划分后与其它接入站点的通道信号进行统一编码以及电光转换后发出即可。在无需针对其它站点的信号进行特殊处理,可以提高处理资源的利用率。
在一种可能的设计中,所述第三光模块,具体用于采用时分复用方式或者采用频分复用方式将所述 M-K-1个第三通道信号和L路第四通道信号复用为所述第二复用信号。
在一种可能的设计中,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
从所述M路第三通道信号分别解析所属通道的通道标识,根据所述M路第三通道信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
第五方面,本申请实施例提供一种光模块,应用于接入站点,包括光解调器、处理器;
光解调器,用于对接收到的光信号进行光电转换得到电信号;
处理器,用于对所述电信号进行解复用得到M个通道对应的M路编码信号;确定所述M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述K+1个通道对应的编码信号进行线路译码得到所述接入站点的业务流,将所述接入站点的业务流从所述光模块发出;并将所述M个通道中除所述K+1个通道以外的M-K-1路编码信号从所述光模块发出。
在一种可能的设计中,所述光模块还包括光调制器、第二穿通接口、上传ADD接口;
所述处理器,还用于执行:
接收接入站点待发送的业务流;确定M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;对所述L1路通道信号分别进行线路编码得到L1路编码信号;接收所述M个通道中除所述K+1个通道以外的L2路编码信号,针对所述L2个编码信号以及L1路编码信号进行复用得到一路电信号;所述光调制器,用于对所述一路电信号进行电光转换后发出。
第六方面,本申请实施例提供一种光模块,应用于接入站点,包括光调制器、处理器;
所述处理器,用于执行:
接收业务流;
确定M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;对所述L1路通道信号分别进行线路编码得到L1路编码信号;
接收所述M个通道中除所述K+1个通道以外的L2路编码信号;
针对所述L2个编码信号以及L1路编码信号进行复用得到一路电信号;
所述光调制器,用于对所述一路电信号进行电光转换后发出。
示例性地,光模块还包括穿通接口和上传接口。
处理器通过上传接口接收业务流。处理器通过穿通接口接收所述M个通道中除所述K+1个通道以外的L2路编码信号。
第七方面,本申请实施例提供一种光模块,应用于接入站点,包括光解调器、处理器;
光解调器,用于对接收到的光信号进行光电转换得到编码信号;
处理器,用于执行:对所述编码信号进行线路译码得到复用信号,对所述复用信号进行解复用得到M个通道对应的M路通道信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;将所述K+1通道对应的K+1路通道信号合并为所述接入站点的业务流从所述光模块发出;将所述M路通道信号中除所述K+1路通道信号以外的M-K-1路通道信号从所述光模块发出。
示例性地,光模块还包括第一穿通接口和下发接口。
处理器将所述K+1通道对应的K+1路通道信号合并为所述接入站点的业务流从所述下发接口发出。处理器将所述M路通道信号中除所述K+1路通道信号以外的M-K-1路通道信号从所述第一穿通接口发出。
在一种可能的设计中,所述光模块还包括光调制器。所述处理器,还用于执行:通过接收接入站点待发送的业务流,确定所述M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;接收所述M个通道中除所述K+1个通道以外的L2个通道信号,并针对所述L2个通道信号以及L1路通道信号进行复用得到复用信号,对所述复用信号进行线路编码得到编码信号;光调制器,用于对所述编码信号进行电光转换得到光信号,并发送所述光信号。
第八方面,本申请实施例提供一种光模块,应用于接入站点,包括光调制器、处理器;所述处理器,用于执行:接收业务流,确定所述M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;接收所述M个通道中除所述K+1个通道以外的L2个通道信号,并针对所述L2个通道信号以及L1路通道信号进行复用得到复用信号,对所述复用信号进行线路编码得到编码信号;光调制器,用于对所述编码信号进行电光转 换得到光信号,并发送所述光信号。
第九方面,本申请实施例提供一种光模块,应用于汇聚站点,包括光调制器、处理器;
所述处理器接收N个接入站点的第一业务流,N为正整数;分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的第一业务流被分割到不同的通道;针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号。光调制器用于将所述第一电信号转换为第一光信号,并发送所述第一光信号。
在一种可能的设计中,所述光模块还包括光解调器,用于接收第一接入站点发送的第二光信号;将所述第二光信号转换为第二电信号,对所述第二电信号进行解复用得到M个通道对应的M路第二编码信号;将所述M路第二编码信号进行线路译码得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流通过所述线路物理接口发出。
第十方面,本申请实施例提供一种光模块,应用于汇聚站点,包括光调制器、处理器;处理器接收N个接入站点待接收的N个第一业务流。将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;将M路第一通道信号复用为第一复用信号,对所述第一复用信号进行线路编码得到第一编码信号。光调制器,用于将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
在一种可能的设计中,所述光模块还包括:光解调器,用于接收第一接入站点发送的第二光信号;对所述第二光信号进行光电转换得到第二编码信号。所述处理器还用于对所述第二编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流并通过所述线路物理接口发出。
第十一方面,本申请实施例提供一种业务信号处理方法,应用于汇聚站点,包括:获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;通过汇聚站点中的第一光模块分别将所述N个业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
在一种可能的设计中,所述汇聚站点与第一接入站点连接;还包括:
通过所述第一光模块接收所述第一接入站点发送的第二光信号;通过所述第一光模块将所述第二光信号转换为第二电信号,对所述第二电信号进行解复用得到M个通道对应的M路第二编码信号;将所述M路第二编码信号进行线路译码得到M路第二通道信号;通过所述第一光模块并将所述M路第二通道信号汇聚为N个第二业务流;
对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
在一种可能的设计中,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
在一种可能的设计中,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
在一种可能的设计中,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
在一种可能的设计中,M路第一编码信号分别包括所属通道的通道标识。
在一种可能的设计中,将所述M路第一编码信号复用为第一电信号,包括:
采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
第十二方面,本申请实施例提供一种业务信号处理方法,应用于接入站点,所述方法包括:
通过所述接入站点的第二光模块接收第三光信号,并将所述第三光信号转换为第三电信号;对所述第三电信号进行解复用得到M个通道对应的M路第三编码信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;通过所述第二光模块将所述K+1个通道对应的第三编码信号分别进行线路译码得到所述接入站点的第三业务流,并将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述接入站点的第三光模块,以通过所述第三光模块针对所述M-K-1路第三编码信号执行电光转换后发出;
所述接入站点对所述第三业务流进行解封装,以得到所述接入站点的第三业务信号。
在一种可能的设计中,所述方法还包括:
所述接入站点获取所述接入站点待发送的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;
通过所述第三光模块将所述第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于或者等于K+1的整数;针对L路第四通道信号中每路通道信号进行线路编码得到L路第四编码信号;将所述M-K-1路第三编码信号以及所述L路第四编码信号复用得到第四电信号,并对所述第四电信号进行电光转换得到第四光信号,发送所述第四光信号。
在一种可能的设计中,将所述M-K-1路第三编码信号以及所述L路第四编码信号复用得到第四电信号,包括:采用时分复用方式或者采用频分复用方式将所述M-K-1个第一编码信号和L路第四编码信号复用为所述第四电信号。
在一种可能的设计中,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
从所述M路第三编码信号分别解析所属通道的通道标识,根据所述M路第三编码信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
第十三方面,本申请实施例提供一种业务信号处理方法,应用于汇聚站点,包括:获取N个接入站点待接收的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
通过所述汇聚站点的第一光模块分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;将M路第一通道信号复用为第一复用信号,对所述第一复用信号进行线路编码得到第一编码信号,将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
在一种可能的设计中,所述汇聚站点与第一接入站点连接;所述方法还包括:
通过所述第一光模块接收所述第一接入站点发送的第二光信号;对所述第二光信号进行光电转换得到第二编码信号,对所述第二编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;所述汇聚站点对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
在一种可能的设计中,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
在一种可能的设计中,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
在一种可能的设计中,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
在一种可能的设计中,M路第一通道信号分别包括所属通道的通道标识。
在一种可能的设计中,将所述M路第一编码信号复用为第一电信号,包括:采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
第十四方面,本申请实施例提供一种业务信号处理方法,应用于接入站点,包括:
所述接入站点通过所述接入站点的第二光模块接收第三光信号,并对所述第三光信号进行光电转换得到为第三编码信号;对所述第三编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M个通道对应的M路第三通道信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;将K+1路通道信号合并为第三业务流;将所述M个通道中除所述K+1个通道以外的M-K-1路第三通道信号发送至所述接入站点的第三光模块,以通过所述第三光模块执行电光转换后发出;
所述接入站点对第三业务流进行解封装,以得到所述接入站点的第三业务信号。
在一种可能的设计中,还包括:所述接入站点获取所述接入站点的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;
通过所述第三光模块将所述第四业务流分割到K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于K+1的整数;将所述M-K-1路第三通道信号以及所述L路第四通道信号复用得到第二复用信号,对所述第二复用信号进行线路编码得到第四编码信号,对所述第四编码信号进行电光转换得到第四光信号,并发送所述第四光信号。
在一种可能的设计中,所述第三光模块,具体用于采用时分复用方式或者采用频分复用方式将所述 M-K-1个第三通道信号和L路第四通道信号复用为所述第二复用信号。
在一种可能的设计中,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
从所述M路第三通道信号分别解析所属通道的通道标识,根据所述M路第三通道信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
第十五方面,本申请实施例提供一种汇聚站点,包括第一光模块以及第一成帧器;所述第一成帧器,用于获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;所述第一光模块,用于分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的第一业务流被分割到不同的通道;根据M路第一通道信号生成第一电信号,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
在一种可能的设计中,根据M路第一通道信号生成第一电信号,包括:
针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号。
在一种可能的设计中,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
在一种可能的设计中,根据M路第一通道信号生成第一电信号,包括:
将M路第一通道信号复用为第一复用信号,对所述第一复用信号进行线路编码得到第一电信号(也可以称为第一编码信号)。
在一种可能的设计中,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一通道信号复用为第一复用信号。
在一种可能的设计中,所述汇聚站点与第一接入站点连接;
所述第一光模块,还用于接收所述第一接入站点发送的第二光信号;将所述第二光信号转换为第二电信号,对所述第二电信号进行解复用得到M个通道对应的M路第二编码信号;将所述M路第二编码信号进行线路译码得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;
所述第一成帧器,还用于对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
在一种可能的设计中,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
在一种可能的设计中所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
在一种可能的设计中所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
在一种可能的设计中M路第一编码信号分别携带所属通道的通道标识。
第十六方面,本申请实施例提供一种业务信号处理方法,应用于汇聚站点,包括:获取N个接入站点待接收的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
通过所述汇聚站点的第一光模块分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;根据M路第一通道信号生成第一光信号,并发送所述第一光信号。
附图说明
图1为一种业务传输网络结构示意图;
图2为波分复用组网方式示意图;
图3为共享环形组网方式示意图;
图4为本申请实施例中接入环的结构示意图;
图5为本申请实施例中汇聚站点的结构示意图;
图6A为本申请实施例中一种汇聚站点的下行处理流程示意图;
图6B为本申请实施例中一种汇聚站点的下行处理流程示意图;
图7A为本申请实施例中一种汇聚站点的上行处理流程示意图;
图7B为本申请实施例中另一种汇聚站点的上行处理流程示意图;
图8为本申请实施例中光模块220结构示意图;
图9为本申请实施例中接入站点的结构示意图;
图10A为本申请实施例中一种接入站点的下行处理流程示意图;
图10B为本申请实施例中另一种接入站点的上行处理流程示意图;
图11A为本申请实施例中一种接入站点的处理流程示意图;
图11B为本申请实施例中另一种接入站点的处理流程示意图;
图12为本申请实施例中光模块441结构示意图;
图13为本申请实施例中光模块442结构示意图;
图14为本申请实施例中应用于接入站点的光模块结构示意图;
图15为本申请实施例中一种汇聚站点的功能示意图;
图16为本申请实施例中一种接入站点的功能示意图;
图17为本申请实施例中另一种汇聚站点的功能示意图;
图18为本申请实施例中另一种接入站点的功能示意图;
图19为本申请实施例中一种业务信号处理方法流程图;
图20为本申请实施例中另一种业务信号处理方法流程图;
图21为本申请实施例中又一种业务信号处理方法流程图;
图22为本申请实施例中又一种业务信号处理方法流程图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
业务传输网络一般分为三层,参见图1所示,业务传输网络分别包括核心层(core layer)、汇聚层(Aggregation layer)以及接入层(Access layer)。核心层的交换节点可以称为核心节点,汇聚层的交换节点可以称为汇聚(Aggregation,AGG)节点,接入层的交换节点可以称为接入(Access,ACC)节点。
核心层主要提供高带宽的业务承载和传输,完成和已有网络之间的互联互通,已有网络可以包括异步传输模式(英文:asynchronous transfer mode,简称:ATM)网络、数字数据网(英文:digital data network,简称:DDN)、因特网协议(英文:internet protocol,简称:IP)网络等。汇聚层的主要功能是给业务接入节点提供用户业务数据的汇聚和分发处理,同时要实现业务的服务等级分类。接入层利用多种接入技术,进行带宽和业务分配,实现用户的接入,接入层设备完成多业务的复用和传输。
本申请实施例中,节点也可以称为站点、或者网络设备等。目前汇聚层与接入层之间有几种可能的组网方式。第一种可能的组网方式为光纤直驱组网方式,第二种可能的组网方式为波分复用环型组网方式,第三种可能的组网方式为共享环型组网方式。下面针对三种组网方式进行简要说明。图1中以接入层与汇聚层采用环型组网方式为例。
第一种可能的组网方式:
光纤直驱组网方式中每个ACC站点与AGG站点间进行业务交互。每个ACC站点与每个AGG站点间通过一对光纤进行业务承载。该组网方式中,光纤的消耗量较大以及针对光模块的消耗较多。比如,ACC站点数为N,则需要消耗2N对光纤;若每个AGG站点下,下挂M个环,则需要消耗2N*M对光纤。需要消耗4N个光模块。
第二种可能的组网方式:波分复用环型组网方式。
波分复用是指将两种或两种以上的不同波长的光(携带各种信息)在发送端经复用器(亦称合波器(multiplexer))汇合在一起,并耦合到同一根光纤中进行传输。在接收端,经解复用器(亦称分波器或称去复用器(demultiplexer))将各种波长的光分离,然后由光接收器做进一步处理以恢复出原信号。这 种在同一根光纤中同时传输两个或两个以上的不同波长的光的技术,称为波分复用。通过波分复用技术可以提高光纤的传输容量。波分复用组网方式中,不同的ACC站点通过分配不同的波长来进行业务承载。参见图2所示,组网中包括N个ACC站点为例。以双向环为例。AGG站点中包括N个光模块、N个成帧器(FRAMER,FRM)、合分波器、光放大器(简称光放)、光线路接口单元(FIU)。N个光模块与ACC站点一一对应。AGG中N个光模块的工作波长与ACC站点分配波长一一对应相同。光模块用于执行光电转换处理或者电光转换处理。N个成帧器分别用于对N个接入站点的数据帧进行解析或者将数据进行成帧处理。合分波器包括合波器和分波器。ACC站点中包括光层模块,分别为2个FIU、2个光放以及2个合分波器。ACC站点中还包括2个光模块、2个成帧器以及客户侧单元。ACC站点中合分波器接收到光信号中,将自身对应波长的光信号分离出来发送到光模块。然后将接收到光信号中除自身对应波长的光信号以外的光信号发送ACC站点的另一个合分波器中,与自身ACC站点发送的光信号进行合波后发出。
比如,波分复用的业务传输网络中支持承载的业务信号的带宽为40*10G。业务传输网络中包括40个ACC站点,每个ACC站点支持10G带宽。则AGG中需要40个10G光模块。从上可以看出,波分复用组网方式中,在光层需要的器件较多,包括合分波器、光放以及光线路接口单元等。ACC站点和AGG站点总共需要的光模块数量较多,N个ACC站点对应需要4N个光模块,导致组网成本较高。由于光层部署于的器件较多,导致集成度较差。此外,由于需要为不同的ACC站点分配不同的波长,即不同的ACC站点的波长需要不同,导致不同的波长的ACC站点均需要单独配置,无法复用,降低网络部署的灵活度。
第三种可能的组网方式:
共享环型组网方式中将整环流量直接汇聚到单光口中。在第二种可能的组网方式中为了承载40*10G信号需要采用40个10G模块,而采用共享环组网方式中,直接采用一个400G模块进行流量承载。参见图3所示,以400G共享环为例,在AGG站点,400G的业务通过400G光模块发送至最邻近的ACC站点。在ACC站点通过400G模块将400G业务解出,通过交换网后需要在该站处理的业务通过支路的单板,而需要继续送往下一个ACC站点的业务则通过交换网后结合ACC站点需要向东向发送的业务一起继续传递。共享环的组网方式比较简单,集成度也比较优。光模块数目消耗为2N+2,相对光纤直驱及波分方案4N模块相比,数目降低。但是共享环组网方式中,环流量汇聚后,需要每个ACC站点的光模块/成帧器/交换网流量都支持大端口。比如400G共享环,每个ACC站点即便仅需要10G带宽业务上下,也需要至少一个400G成帧器,若支持东西向分离则需要2个400G成帧器,导致整体解决方案功耗及成本高。同时单站扩容时全系统都要升级,成本会增加很大。另外,在每个ACC站点上需要针对400G带宽的业务进行处理来确定属于自身的10G业务流量,即针对400G带宽的业务需要经过FRM及交换网等处理,导致延时较大,可能会增大至几十微秒(us)。
基于此,本申请实施例提供一种业务处理方法、汇聚站点以及接入站点。本申请中不需要光层的合分波器,在电层实现业务流穿通,可以获得低时延、低功耗以及高集成度的承载效果。
本申请实施例提供的将汇聚站点以及接入站点可以应用于接入环。汇聚站点以及接入站点也可以统称为网络设备。网络设备是可以应用光模块的设备,比如采用分组传送网(packet transport network,PTN)设备或者光传送网(optical transport network,OTN)设备等等。
另外需要说明的是,本申请的描述中的“多个”,是指“两个或两个以上”。在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例中接入环可以支持双向传输,具体可以采用双纤单向,或者单纤双向。双纤单向是指,接入环中任意两个网络设备之间通过两根光纤连接,并且两根光纤传输光信号的方向相反。单纤双向是指,接入环中任意两个网络设备之间通过一根光纤连接,该一根光纤能够传输两个方向的光信号。
参见图4所示,为本申请实施例提供的接入环的结构示意图,该接入环采用双纤单向。接入环中可以包括N个接入站点以及汇聚点。图4仅是一种示例,并不对接入环中包括的接入站点以及汇聚站点的数量进行具体限定。此处以接入环中包括3个接入站点为例进行说明。接入环中包括的接入站点分别为接入站点1、接入站点2以及接入站点3。接入站点2分别通过光纤与接入站点1和接入站点3相连,汇聚站点分别通过光纤与接入站点1和接入站点3相连。
下面对汇聚站点的结构以及接入站点的结构进行说明。
参见图5所示,为一种可能的汇聚站点的结构示意图。汇聚站点包括成帧器110、光模块220。成帧器110为支持处理接入环包括的接入站点所需的总带宽的业务流,可以理解为,成帧器110支持的带宽大于或者等于接入环包括的接入站点的总带宽。以接入环包括N个接入站点为例。需要说明的是,汇聚站点 中还可以包括其它的组件,比如电源组件用于给系统供电,时钟组件用于给系统提供工作时钟等,本申请对此不作具体限定。如下对汇聚站点中各个组件的功能进行描述,参见图6A和图6B所示。
成帧器110获取需要发送给各个接入站点的业务信号,比如获取接入环中N个接入站点的业务信号。应理解的是,需要发送给各个接入站点的业务信号可能不同时产生。因此成帧器110接收到的业务信号的数量可能小于N,即接收到N个接入站点某些站点的业务信号。本申请实施例中以接收N个接入站点的业务信号为例。为了便于描述,将成帧器110接收的业务信号称为第一业务信号。
成帧器110分别对N个接入站点的第一业务信号进行封装,以得到N个接入站点的第一业务流,N为正整数。成帧器110对第一业务信号的封装方式本申请不作具体限定。
光模块220从成帧器110接收完成封装的N个第一业务流。光模块220对N个第一业务流进行通道化处理。然后对通道化处理后的通道信号进行线路编码,再经过电光转换后发出。
具体的,光模块220分别将N个第一业务流分割到M个通道,得到M路通道信号,为了便于与后续出现的通道信号区分,此处将M路通道信号称为第一通道信号。M为大于或者等于N的整数。
一些实施例中,光模块220可以通过通信接口(或者称为接口电路)来接收到N个第一业务流。该接口电路可以采用串行解串器(SerDes,SDS)或者采用模数数模转换器(analog to digital/digital to analog converter,ADDA)等等,本申请实施例对此不作具体限定。
需要说明的是,将N个第一业务流分割到M个通道,可以理解为将每个接入站点已经封装的业务流分割为小颗粒业务。不同的接入站点的第一业务流所对应的通道不同。以N个接入站点中的第一接入站点为例,第一接入站点的业务流被分割到K+1个通道。第一业务站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽。K+1为小于M的正整数。示例性地,每个通道具有不同的通道标识。不同的接入站点对应的通道标识可以是预先配置在接入站点以及汇聚站点中。每个通道对应通道信号中可以携带通道标识,用于接入站点识别该通道信号。
一些实施例中,每个接入站点均对应一个通道。此时N=M。在该情况下,可以根据每个接入站点的带宽将N个接入站点的第一业务流分割到N个通道。即K=0。
另一个实施例中,一个接入站点可以对应一个或者多个通道,不同的接入站点对应的通道数量不同。M个通道的带宽可以均相同。比如,可以基于设定分割带宽(或者设定分割颗粒度)将N个第一业务流分割到M个通道。M个通道的总带宽大于或者等于N个接入站点所需的总带宽。比如,N个接入站点的业务带宽分别为:1G、25G……,每个通道的带宽可以为10G。基于设定分割带宽来进行通道划分,有利于后续一些接入站点的扩容,减少频繁升级,降低实现复杂度。比如一些接入站点的流量不足10G,分配10G的通道,可以用于后续该接入站点的扩容。
光模块220在针对M路第一通道信号进行线路编码时,可以采用每个通道独立编码的方式,也可以采用M路第一通道信号统一编码的方式。
在采用独立编码方式的情况下,参见图6A所示,光模块220针对M路第一通道信号中每路第一通道信号进行线路编码(也可以称为信道编码)得到M路第一编码信号。然后对M路第一编码信号复用为一路信号。为了便于描述将复用的一路信号称为第一电信号。在针对M路第一编码信号复用时可以采用时分复用方式,也可以采用频分复用方式。可以理解的是,采用时分复用方式时,针对第一电信号经过电光转换后得到的第一光信号的光谱为单载波光谱。采用频分复用方式时,针对第一电信号经过电光转换后得到的第一光信号的光谱为多光子载波光谱。
在采用统一编码方式的情况下,参见图6B所示,光模块220针对M路第一通道信号复用为一路信号。为了便于描述将复用的一路通道信号称为第一复用信号,然后针对第一复用信号进行编码得到第一编码信号。进而对第一编码信号执行电光转换。在针对M路第一通道信号复用时可以采用时分复用方式,也可以采用频分复用方式。可以理解的是,采用时分复用方式时,针对第一电信号经过电光转换后得到的第一光信号的光谱为单载波光谱。采用频分复用方式时,针对第一电信号经过电光转换后得到的第一光信号的光谱为多光子载波光谱。
示例性地,线路编码时,可以采用前项纠错(forward error correction,FEC)编码方式。一些实施例中,在执行FEC编码后,可以在编码后的信号中增加操作、管理与维护(operations,administration,and maintenance,OAM)信息。OAM信息用于检测各个通道的信号的质量或者OAM信息用于对各个通道的信号进行性能管理。第一编码信号中可以携带用于检测该通道的编码信号(或者说通道信号)的质量。性能管理主要是指对网络传输中的丢包、时延、抖动等参数的衡量,也可以实现对网络中各类流量(如接收发送字节数、错误帧数量等)进行统计。
上述针对汇聚站点从汇聚站点与接入站点之间传输下行信号的角度进行描述。下面针对汇聚站点从接入站点与汇聚站点之间传输上行信号的角度进行描述。以汇聚站点与第一接入站点连接为例。参见图7A和图7B所示,光模块220接收第一接入站点发送的光信号。为了便于与上述汇聚站点发送的第一光信号进行区分,此处将来自第一接入站点的光信号称为第二光信号。光模块220将第二光信号转换为第二电信号。针对第二电信号进一步执行信号处理来得到各个接入站点的业务流发送给成帧器110,从而成帧器110对接收到的业务流进行解封装得到N个接入站点的业务信号。在信号处理时包括线路译码,此处的线路译码方式与前述的线路编码方式对应。
一种可能的实施例中,在线路编码采用独立编码的情况下,光模块220针对第二电信号进行解复用来得到M个通道对应的M路第二编码信号,然后对M路第二编码信号进行线路译码得到M路第二通道信号。然后光模块220对M路第二通道信号进行汇聚处理得到N个第二业务流,并发送给成帧器110。所述成帧器110对N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
另一种可能的实施例中,在线路编码采用同一编码的情况下,光模块220接收所述第一接入站点发送的第二光信号;对第二光信号进行光电转换得到第二编码信号,对第二编码信号进行线路译码得到第一复用信号,对第一复用信号进行解复用得到M路第二通道信号;并将M路第二通道信号汇聚为N个第二业务流,并发送给成帧器110。所述成帧器110对N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
参见图8所示为一种可能的光模块220结构示意图。光模块220中包括光调制器2201、光解调器2202、处理器2203。处理器2203可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。本申请实施例中以处理器2203为DSP2203为例。光调制器2201用于执行光电转换。光解调器2202用于执行电光转换。处理器2203用于执行线路编译码、复用、分割以及汇聚等处理。一些实施例中,光模块220中还可以包括模数数模转换接口2204以及线路物理接口2205。模数数模转换接口2204可以包括模数转换接口以及数模转换接口。模数转换接口用于对光解调器2202电光转换后的信号进行模数转换处理,可以理解为将模拟信号转换为数字信号。数模转换接口用于在光调制器2201执行电光转换之前的电信号进行数模转换处理,可以理解为将数字信号转换为模拟信号。线路物理接口2205可以采用串行解串器(SerDes,SDS)或者采用模数数模转换接口(analog to digital/digital to analog converter,ADDA)。
下面从图6A、图6B、图7A以及图7B中描述的光模块220的功能角度,对上述光模块220中的各个器件的功能进行描述。
一些实施例中,结合图6A来说,光模块220通过线路物理接口2205接收成帧器110发送的N个第一业务流。DSP2203对N个第一业务流执行分割处理,分割到M个通道得到M路通道信号。然后针对每路通道信号进行独立编码,在对独立编码后的M路(或者M个通道)编码信号进行复用。复用后的信号输入到光调制器2201。光调制器2201对输入的信号进行电光转换后发出。示例性地,光模块220还包括模数数模转换接口2204,DSP2203复用后的信号输入到模数数模转换接口2204,经过模数数模转换接口2204对复用后的信号执行数模转换处理后发送给光调制器2201。结合图6B来说,光模块220通过线路物理接口2205接收成帧器110发送的N个第一业务流。DSP2203对N个第一业务流执行分割处理,分割到M个通道得到M路通道信号。然后将M路通道信号复用为一路信号,然后对该复用后的一路信号进行统一编码。统一编码后的信号输入到光调制器2201。光调制器2201对输入的信号进行电光转换后发出。示例性地,光模块220还包括模数数模转换接口2204,DSP2203将统一编码后的信号输入到模数数模转换接口2204,经过模数数模转换接口2204对统一编码后的信号执行数模转换处理后发送给光调制器2201。
另一些实施例中,结合图7A来说,光模块220中光解调器2202对接收到第二光信号进行光电转换,并输出给DSP2203。DSP2203对光电转换后的信号执行信号处理,包括光电转换后的第二电信号进行解复用得到M路编码信号。然后针对M路编码信号分别进行译码得到M路通道信号。然后针对M路通道信号进行汇聚得到N个接入站点的业务流。然后将汇聚处理后的N个接入站点的业务流通过线路物理接口2205发出。示例性地,光模块220还包括模数数模转换接口2204,光解调器2202将输出的光电转换后的第二电信号输入到模数数模转换接口2204,经过模数数模转换接口2204先对第二电信号执行数模转换处理后再发送给DSP2203。一些实施例中,结合图7B来说,光模块220中光解调器2202对接收到第二光信号进行光电转换,并输出给DSP2203。DSP2203对光电转换后的信号执行信号处理,包括光电转换后的第二电信号进行译码得到一路编码信号,然后从一路编码信号解复用得到M路通道信号。然后针对M路通道信号进行汇聚得到N个接入站点的业务流。然后将汇聚处理后的N个接入站点的业务流通过线路物理接口2205 发出。示例性地,光模块220还包括模数数模转换接口2204,光解调器2202将输出的光电转换后的第二电信号输入到模数数模转换接口2204,经过模数数模转换接口2204先对第二电信号执行数模转换处理后再发送给DSP2203。
参见图9所示,为一种可能的接入站点的结构示意图。接入站点包括成帧器331、光模块441和光模块442。成帧器331支持处理接入站点自身所需的总带宽的业务流,可以理解为,成帧器331支持的带宽大于或者等于接入站点自身所需的带宽。光模块441与光模块442之间支持信号穿通,这里的穿通并非穿通光信号,穿通的是电信号。一些实施例中,接入站点中还可以包括用于执行封装的成帧器332。成帧器332支持的带宽大于或者等于接入站点自身所需的带宽。如下对接入站点中各个组件的功能进行描述,参见图10A和图10B所示。接入站点接收下行的光信号时,在对光信号进行光电转换后的电信号进行信号处理时包括线路译码,此处的线路译码方式与前述汇聚站点的线路编码方式对应。示例性地,该接入站点可以是连接汇聚节点的接入站点,比如图4中的接入站点1或者接入站点3,也可以是两端连接接入站点的接入站点2。本申请对此不作具体限定。接入站点接收到的光信号来自于上游站点,上游站点可以是汇聚站点,也可以是其他接入站点。以信号传输方向为逆时针为例,接入站点的结构应用于接入站点1时,接收的光信号来自汇聚站点,接入站点的结构应用于接入站点2时,接收的光信号来自上游的接入站点1。后续为了描述接入站点的功能,将接收的光信号称为第三光信号为例。
一种可能的实现方式中,在线路编码采用独立编码的情况下,参见图10A所示,光模块441接收第三光信号,并将第三光信号转换为第三电信号。光模块441对第三电信号进行解复用得到M个通道对应的M路第三编码信号。光模块441确定M个通道中接入站点对应的K+1个通道,K+1为小于M的正整数。一些实施例中,光模块441可以从M路第三编码信号中获取M个通道的通道标识。从而能够确定M个通道中K+1个通道是接入站点对应的通道。示例性地,通道标识可以包含在第三编码信号的数据通信网络(data communication network,DCN)信息中。
示例性地,接入站点中还可以包括控制器,控制器中配置接入站点对应的通道的通道标识。光模块441可以从控制器来确定M个通道中那些通道是该接入站点对应的通道。
光模块441将K+1个通道对应的第三编码信号分别进行线路译码得到接入站点的第三业务流,并将M个通道中除K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至光模块442,以通过光模块442针对M-K-1路第三编码信号执行电光转换后发出。成帧器331对第三业务流进行解封装,以得到接入站点的第三业务信号。
一些实施例中,在光模块442接收到M-K-1路第三编码信号后,如果此时该接入站点不存在要发送的上行的业务信号的情况下,光模块442针对M-K-1路第三编码信号进行复用以及电光转换后发出。
另一些实施例中,参见图11A所示,在光模块442接收到M-K-1路第三编码信号后,如果此时该接入站点存在要发送的上行的业务信号的情况下,比如第四业务信号。接入站点中还可以包括用于执行封装的成帧器332。由成帧器332对第四业务信号进行封装,以得到该接入站点的第四业务流。进一步地,光模块442将第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号。L为大于0且小于或者等于K+1的整数。一种示例中,每个接入站点对应一个通道,此时K=0,L=1。另一种示例种,通道是按照设定分割带宽划分的,在该情况下,每个接入站点占用的通道数与接入站点自身所需要的带宽相关。为接入站点配置的通道数量为K+1个。需要说明的是,该接入站点的业务流的带宽降低时,占用的通道数量可以小于K+1个。光模块442针对L路第四通道信号中每路第四通道信号进行线路编码得到L路第四编码信号;将所述M-K-1路第三编码信号以及所述L路第四编码信号复用得到第四电信号,并对第四电信号进行电光转换得到第四光信号,发送第四光信号。此处所提及的复用可以采用时分复用或者频分复用方式,本申请实施例对此不作具体限定。
需要说明的是,一些场景中,成帧组件具有封装功能也具有解封装功能,可以由同一个成帧组件来实现封装和解封装,因此上述成帧器331和成帧器332可以由一个成帧组件来实现。另一些场景中,具有封装功能和解封装功能的成帧组件单独部署,因此上述成帧器331和成帧器332可以由两个组件单独实现。
另一种可能的实现方式中,在线路编码采用统一编码的情况下,参见图10B所示,光模块441接收第三光信号,并对第三光信号进行光电转换得到为第三编码信号;对第三编码信号进行线路译码得到第一复用信号,对第一复用信号进行解复用得到M个通道对应的M路第三通道信号;确定M个通道中接入站点对应的K+1个通道,K+1为小于M的正整数;将K+1路通道信号合并为第三业务流并发送至成帧器331;将M个通道中除K+1个通道以外的M-K-1路第三通道信号发送至光模块442,以通过光模块442执行电光转换后发出。成帧器331对第三业务流进行解封装,以得到接入站点的第三业务信号。
一些实施例中,在光模块442接收到M-K-1路第三通道信号后,如果此时该接入站点不存在要发送的上行的业务信号的情况下,光模块442针对M-K-1路第三通道信号进行复用、线路编码以及电光转换后发出。
另一些实施例中,参见图11B所示,在光模块442接收到M-K-1路第三通道信号后,如果此时该接入站点存在要发送的上行的业务信号的情况下,比如第四业务信号。由成帧器332对第四业务信号进行封装,以得到该接入站点的第四业务流。进一步地,光模块442将第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号。L为大于0且小于或者等于K+1的整数。一种示例中,每个接入站点对应一个通道,此时K=0,L=1。另一种示例种,通道是按照设定分割带宽划分的,在该情况下,每个接入站点占用的通道数与接入站点自身所需要的带宽相关。为接入站点配置的通道数量为K+1个。需要说明的是,该接入站点的业务流的带宽降低时,占用的通道数量可以小于K+1个。光模块442针对L路第四通道信号以及M-K-1路第三通道信号复用后,然后对复用后的信号进行线路编码得到第四编码信号;对第四编码信号进行电光转换得到第四光信号,发送第四光信号。此处所提及的复用可以采用时分复用或者频分复用方式,本申请实施例对此不作具体限定。
参见图12所示为一种可能的光模块结构示意图。上述光模块441可以采用该结构。光模块中包括光解调器4411、处理器4412以及穿通接口4413、以及下发Drop接口4414。光调制器4411用于执行光电转换。处理器4412用于执行线路编译码、复用以及汇聚等处理。非本接入站点的通道信号通过穿通接口4413发出,本接入站点的通道信号通过Drop接口发出。一些实施例中,光模块441中还包括模数转换接口4415,该模数转换接口4415位于光调制器4411和处理器4412之间。处理器4412可以是通用处理器、数字信号处理器(DSP)、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。本申请实施例中以处理器4412为数字信号处理器(digital signal processing,DSP)4412为例。
下面从图10A、图10B中描述的光模块441的功能角度,对上述光模块441中的各个器件的功能进行描述。
一些实施例中,结合图10A来说,光模块441中光解调器4411接收第三光信号,并将第三光信号转换为第三电信号,输出给模数转换接口4415。模数转换接口4415对第三电信号进行模数转换处理。然后将模数转换处理后的信号发送给DSP4412。DSP4412对模数转换处理后的信号进行解复用得到M个通道对应的M路第三编码信号。DSP4412确定M个通道中接入站点对应的K+1个通道。DSP4412将K+1个通道对应的第三编码信号分别进行线路译码得到接入站点的第三业务流,通过Drop接口将第三业务流发出。DSP4412将M个通道中除K+1个通道的第一编码信号以外的M-K-1路第一编码信号通过穿通接口4413发出。
结合图10B来说,光模块441中光解调器4411接收第三光信号,并将第三光信号转换为第三编码信号,输出给模数转换接口4415。模数转换接口4415对第三编码信号进行模数转换处理。然后将模数转换处理后的信号发送给DSP4412。DSP4412对模数转换处理后的信号进行线路译码得到第一复用信号,对第一复用信号进行解复用得到M个通道对应的M路第三通道信号;确定M个通道中接入站点对应的K+1个通道;将K+1路通道信号合并为第三业务流通过Drop接口4414发出。DSP4412将M个通道中除K+1个通道以外的M-K-1路第三通道信号通过穿通接口4413发出。
参见图13所示为另一种可能的光模块结构示意图。上述光模块442可以采用该结构。光模块中包括光调制器4421、处理器4422以及穿通接口4423、以及上传ADD接口4424。光调制器4411用于执行电光转换。处理器4412用于执行线路编码、复用以及汇聚等处理。通过穿通接口4413接收非本接入站点的通道信号,本接入站点的业务流通过ADD接口4424接收。一些实施例中,光模块442中还包括数模转换接口4425,该数模转换接口4425位于光调制器4421和处理器4422之间。处理器4422可以是通用处理器、数字信号处理器(DSP)、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。本申请实施例中以处理器4422为数字信号处理器(digital signal processing,DSP)4422为例。
下面从图11A、图11B中描述的光模块442的功能角度,对上述光模块442中的各个器件的功能进行描述。
另一些实施例中,结合图11A来说,光模块442通过ADD接口4424接收第四业务流。光模块442通过穿通接口4423接收光模块441发送的M-K-1个通道的第三编码信号。DSP4422将第四业务流分割到K+1个通道中的L个通道,得到L路第四通道信号。DSP4422针对L路第四通道信号中每路第四通道信号进行线路编码得到L路第四编码信号;将所述M-K-1路第三编码信号以及L路第四编码信号复用得到第四电信 号。数模转换接口4425针对第四电信号进行数模转换处理。光调制器4421针对数模转换后的信号进行电光转换得到第四光信号,发送第四光信号。
结合图11B来说,光模块442通过ADD接口4424接收第四业务流。光模块442通过穿通接口4423接收光模块441发送的M-K-1个通道的第三通道信号。DSP4422将第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号。DSP4422针对L路第四通道信号以及M-K-1路第三通道信号复用后,然后对复用后的信号进行线路编码得到第四编码信号。数模转换接口4425针对第四编码信号进行数模转换处理。光调制器4421针对数模转换后的信号进行电光转换得到第四光信号,发送第四光信号。
一些可能的场景中,接入环支持双向传输。在该情况下,光模块441和光模块442可以采用相同的结构。例如,参见图14所示,图14中不对各个器件进行标号。光模块包括光调制器、光解调器、处理器以及接口电路1、接口电路2。光模块还可以包括数模转换接口和模数转换接口。图14的光模块具有光模块441的功能,也具有光模块442的功能。光解调器与上述光解调器4411的功能相同。光调制器与上述光调制器4421的功能相同。处理器既具有DSP4412的功能,也具有DSP4422的功能。接口电路1可以作为穿通接口,既具有穿通接口4413的功能也具有穿通接口4423的功能。接口电路2可以作为Drop接口,也可以作为ADD接口,既具有Drop接口4414的功能也具有ADD接口4424的功能。
一些实施例中,光调制器和光解调器可以集成在一个器件中。模数转换接口和数模转换接口也可以集成在一个接口电路中。
本申请实施例中,在汇聚站点侧针对从成帧器接收的业务流量进行通道化处理,并在发出之前复用为一路信号,从而在接入站点侧,仅需将本接入站点对应通道的信号进行下发,其他通道的信号直接穿通到另一个光模块,无需通过成帧器全部解封装后来确定本接入站点的信号,可以降低接入站点的成帧器的带宽,即成帧器的带宽仅需适配本接入站点的带宽即可,从而可以降低成帧器成本。另外无需增加光层设备,可以进一步降低部署成本。一些场景中采用独立线路编码的方式,从而无需对每一通道进行译码,仅需对编码信号进行穿通,可以降低复杂度,降低传输时延。
下面结合具体应用场景,对本申请实施例提供的方案进行详细说明。以图4所示的接入环为例。汇聚站点以及接入站点1ˉ3均支持双向光信号传输。接入环中汇聚站点可以采用图5所示的结构。接入站点1-3的结构可以采用图9所示的接入站点的结构,此处不再赘述。逆时针传输方向的处理流程与顺时针传输方向的处理流程类似,如下仅以逆时针传输方向的处理流程为例。如下以汇聚节点支持的带宽为60G为例。
示例1,以独立编码方式为例说明。
在汇聚节点中光模块采用图8所示的结构为例。后续描述中,不再对各个器件的标号进行示例。汇聚节点中光模块中线路物理接口以采用SDS为例。参见图15所示。汇聚节点中的成帧器获取需要发送给接入站点1-3的下行业务信号。将接入站点1的下行业务信号称为业务信号1-1,将接入站点2的下行业务信号称为业务信号1-2,将接入站点3的下行业务信号称为业务信号1-3。成帧器分别对接入站点1-3的下行业务信号进行封装得到接入站点1的业务流1-1,接入站点2的业务流1-2,接入站点3的业务流1-3。光模块通过物理线路接口接收接入站点1-3的业务流。然后DSP对接入站点1-3的业务流执行信号处理。信号处理包括分割处理、独立线路编码以及复用处理(也可以称为间插)。信号处理还可以包括其他的信号处理,比如Sl ice处理等。DSP将接入站点1-3的业务流分割到多个通道。此处以按照设定的分割颗粒度进行分割为例。比如汇聚站点的支持的带宽为60G,以分割颗粒度为10G为例,通道数量为6,比如通道1-通道6。接入站点1的业务带宽为9G,接入站点2的业务带宽为25G,接入站点3的业务带宽为20G。接入站点1的通道数量为1,接入站点1的业务流1-1分割到通道1得到通道1的通道信号1-1。接入站点2的通道数量为3,接入站点2的业务流1-2分割到通道2-通道4得到通道2的通道信号1-2、通道3的通道信号1-3、通道4的通道信号1-4。接入站点3的通道数量为2,接入站点3的业务流1-3分割到通道5-通道6得到通道5的通道信号1-5以及通道6的通道信号1-6。进一步地,DSP分别对通道1-通道6的通道信号进行线路编码,得到通道1-通道6分别对应的编码信号1-1ˉ编码信号1ˉ6。进一步对编码信号1-1ˉ编码信号1ˉ6复用后发送给ADDA。复用后的信号经过ADDA进行数模转换后发送给光调制器。光调制器针对数模转换后的信号进行电光转换得到光信号1发出。
汇聚节点向接入站点1发出光信号1。为了便于对接入站点中的两个光模块进行区分,分别称为光模块1和光模块2。为了便于对接入站点中的两个成帧器进行区分,分别称为成帧器1和成帧器2。参见图16所示,接入站点1中光模块1接收光信号1。光模块1中光解调器对光信号1进行光电转换为电信号1。通过光模块1中的ADDA对电信号1进行模数转换得到数字信号1。然后光模块1中的DSP对数字信号1进行解复用得到编码信号1-1ˉ编码信号1-6,对通道1的编码信号进行译码得到通道1的通道信号1-1。通 道1的通道信号1-1即为接入站点1的业务流1-1。光模块1通过Drop接口将接入站点1的业务流1-1发送给接入站点1中成帧器1。成帧器1对接入站点1的业务流进行解封装得到接入站点1的下行业务信号1-1。光模块1中的DSP通过穿通接口将通道2-通道5分别对应编码信号1-2ˉ编码信号1-5发送给光模块2。光模块2通过穿通接口接收通道2-通道5分别对应编码信号1-2ˉ编码信号1-5。成帧器2接收接入站点2的上行业务信号2-1,将接入站点2的上行业务信号2-1封装为业务流2-1。光模块2通过ADD接口接收接入站点2的上行业务流2-1。光模块2中DSP将上行业务流2-1分割到通道1得到通道的通道信号2-1,并对通道1的通道信号2-1进行线路编码得到通道1的编码信号2-1。然后DSP将从穿通接口接收的通道2-通道5分别对应编码信号1-2ˉ编码信号1-5,以及通道1的编码信号2-1复用为一路电信号。然后通过光模块2中ADDA对该一路电信号进行数模转换为模拟信号。进一步地,通过光模块2中光调制器对模拟信号进行电光转换得到光信号2发出。
对于接入站点2来说,接收到光信号2,对光信号2的处理方式与接入站点1类似。在DSP完成解复用后,将通道2-通道4的编码信号分别进行译码得到通道2-通道4的通道信号。再进一步对通道2-通道4的通道信号进行汇聚得到接入站点2的下行业务流。
示例2,以统一编码方式为例说明。
在汇聚节点中光模块采用图8所示的结构为例。后续描述中,不再对各个器件的标号进行示例。
参见图17所示。汇聚节点中的成帧器获取需要发送给接入站点1-3的下行业务信号。成帧器分别对接入站点1-3的下行业务信号1-1ˉ下行业务信号1-3进行封装得到接入站点1-3分别对应的业务流1-1ˉ业务流1-3。光模块通过物理线路接口接收业务流1-1ˉ业务流1-3。然后DSP对业务流1-1ˉ业务流1-3执行信号处理。信号处理包括分割处理、独立线路编码以及复用处理(也可以称为间插)。信号处理还可以包括其他的信号处理,比如Sl ice处理等。DSP将接入站点1-3的业务流分割到多个通道。此处以按照设定的分割颗粒度进行分割为例。比如汇聚站点的支持的带宽为60G,以分割颗粒度为10G为例,通道数量为6,比如通道1-通道6。接入站点1的业务带宽为9G,接入站点2的业务带宽为25G,接入站点3的业务带宽为20G。接入站点1的通道数量为1,接入站点1的业务流1-1分割到通道1得到通道1的通道信号1-1。接入站点2的通道数量为3,接入站点2的业务流1-2分割到通道2-通道4得到通道2的通道信号1-2、通道3的通道信号1-3、通道4的通道信号1-4。接入站点3的通道数量为2,接入站点3的业务流1-3分割到通道5-通道6得到通道5的通道信号1-5以及通道6的通道信号1-6。进一步地,DSP将通道1-通道6分别对应的通道信号1-1ˉ通道信号1-6复用为一路电信号,然后对该一路电信号进行统一线路编码得到一路编码信号。进一步将该一路编码信号发送给ADDA。一路编码信号经过ADDA进行数模转换后发送给光调制器。光调制器针对数模转换后的信号进行电光转换得到光信号1发出。
汇聚节点向接入站点1发出光信号1。为了便于对接入站点中的两个光模块进行区分,分别称为光模块1和光模块2。为了便于对接入站点中的两个成帧器进行区分,分别称为成帧器1和成帧器2。接入站点1中光模块1接收光信号1。
参见图18所示,光模块1中光解调器对光信号1进行光电转换为电信号1。通过光模块1中的ADDA对电信号1进行模数转换得到一路编码信号。然后光模块1中的DSP对一路编码信号进行线路译码得到一路电信号。然后对该一路电信号进行解复用得到通道1-通道6分别对应的通道信号1-1ˉ通道信号1-6。通道1的通道信号1-1即承载接入站点1的业务流1-1。光模块1通过Drop接口将接入站点1的业务流1-1发送给接入站点1中成帧器1。成帧器1对接入站点1的业务流1-1进行解封装得到接入站点1的下行业务信号1-1。光模块1中的DSP通过穿通接口将通道2-通道5分别对应的通道信号1-2ˉ通道信号1-5发送给光模块2。光模块2通过穿通接口接收通道2-通道5分别对应的通道信号1-2ˉ通道信号1-5。成帧器2接收接入站点2的上行业务信号2-1,将接入站点2的上行业务信号2-1封装为业务流2-1。光模块2通过ADD接口接收接入站点2的上行业务流2-1。光模块2中DSP将上行业务流2-1分割到通道1得到通道1的通道信号2-1,并将通道1的通道信号2-1与通道2-通道5分别对应的通道信号1-2ˉ通道信号1-5复用为一路复用信号,然后将该一路复用信号进行统一编码得到一路编码信号。然后通过光模块2中ADDA对该一路编码信号进行数模转换为模拟信号。进一步地,通过光模块2中光调制器对模拟信号进行电光转换得到光信号2发出。
对于接入站点2来说,接收到光信号2,对光信号2的处理方式与接入站点1类似。在DSP完成解复用后,将通道2-通道4的通道信号进行汇聚得到接入站点2的下行业务流。
基于以上实施例本申请实施例还提供一种业务信号处理方法。如下分别从汇聚站点和接入站点执行角度对业务信号处理方法进行说明。
参见图19所示,为一种业务信号处理方法流程示意图。该方法由汇聚站点执行。图19以汇聚站点在执行线路编码时,采用独立线路编码方式为例。
1901,获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数。
1902,通过汇聚站点中的第一光模块分别将所述N个业务流分割到M个通道,得到M路第一通道信号。M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道。
1903,针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号。
1904,将所述M路第一编码信号复用为第一电信号。
1905,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
参见图20所示,为一种业务信号处理方法流程示意图。该方法由接入站点执行。图20以接入站点在执行线路编码时,采用独立线路编码方式为例。
2001,接收第三光信号,并将所述第三光信号转换为第三电信号。
2002,通过接入站点中的第二光模块对所述第三电信号进行解复用得到M个通道对应的M路第三编码信号。
2003,通过所述第二光模块确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数。
2004,通过所述第二光模块将所述K+1个通道对应的第三编码信号分别进行线路译码得到所述接入站点的第三业务流。
2005,通过所述第二光模块将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述接入站点的第三光模块,以通过所述第三光模块发出。
2006,对所述第三业务流进行解封装,以得到所述接入站点的第三业务信号。
参见图21所示,为一种业务信号处理方法流程示意图。该方法由汇聚站点执行。图21以汇聚站点在执行线路编码时,采用统一线路编码方式为例。
2101,获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数。
2102,通过汇聚站点中的第一光模块分别将所述N个业务流分割到M个通道,得到M路第一通道信号。M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道。
2103,将M路第一通道信号复用为第一复用信号。
2104,对所述第一复用信号进行线路编码得到第一编码信号。
2105,将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
参见图22所示,为一种业务信号处理方法流程示意图。该方法由接入站点执行。图22以接入站点在执行线路编码时,采用统一线路编码方式为例。
2201,接收第三光信号,并将所述第三光信号转换为第三电信号。
2202,通过所述接入站点的第二光模块对所述第三编码信号进行线路译码得到第一复用信号。
2203,对所述第一复用信号进行解复用得到M个通道对应的M路第三通道信号。
2204,通过所述第二光模块确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数。
2205,通过所述第二光模块将K+1路通道信号合并为第三业务流;
2206,通过所述第二光模块将所述M个通道中除所述K+1个通道以外的M-K-1路第三通道信号发送至所述接入站点的第三光模块,以通过所述第三光模块发出。
2207,对第三业务流进行解封装,以得到所述接入站点的第三业务信号。
本申请实施例中,在汇聚站点侧针对从成帧器接收的业务流量进行通道化处理,并在发出之前复用为一路信号,从而在接入站点侧,仅需将本接入站点对应通道的信号进行下发,其他通道的信号直接穿通到另一个光模块,无需通过成帧器全部解封装后来确定本接入站点的信号,可以降低接入站点的成帧器的带宽,即成帧器的带宽仅需适配本接入站点的带宽即可,从而可以降低成帧器成本。相比波分复用的环形组网方式来说,无需增加光层设备,可以进一步降低部署成本。一些场景中采用独立线路编码的方式,从而无需对每一通道进行译码,仅需对编码信号进行穿通,可以降低复杂度,降低传输时延。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采 用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种汇聚站点,其特征在于,包括第一光模块以及第一成帧器;
    所述第一成帧器,用于获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
    所述第一光模块,用于分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的第一业务流被分割到不同的通道;针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
  2. 如权利要求1所述的汇聚站点,其特征在于,所述汇聚站点与第一接入站点连接;
    所述第一光模块,还用于接收所述第一接入站点发送的第二光信号;将所述第二光信号转换为第二电信号,对所述第二电信号进行解复用得到M个通道对应的M路第二编码信号;将所述M路第二编码信号进行线路译码得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;
    所述第一成帧器,还用于对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
  3. 如权利要求1或2所述的汇聚站点,其特征在于,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
  4. 如权利要求3所述的汇聚站点,其特征在于,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
  5. 如权利要求3所述的汇聚站点,其特征在于,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
  6. 如权利要求1-5任一项所述的汇聚站点,其特征在于,M路第一编码信号分别携带所属通道的通道标识。
  7. 如权利要求1-6任一项所述的汇聚站点,其特征在于,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一编码信号复用为第一电信号。
  8. 一种接入站点,其特征在于,包括第二光模块、第二成帧器以及第三光模块;
    所述第二光模块,用于执行:
    接收第三光信号,并将所述第三光信号转换为第三电信号;对所述第三电信号进行解复用得到M个通道对应的M路第三编码信号;确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;
    将所述K+1个通道对应的第三编码信号分别进行线路译码得到所述接入站点的第三业务流,并将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述第三光模块,以通过所述第三光模块针对所述M-K-1路第三编码信号执行电光转换后发出;
    所述第二成帧器,用于对所述第三业务流进行解封装,以得到所述接入站点的第三业务信号。
  9. 如权利要求8所述的接入站点,其特征在于:
    所述第二成帧器,还用于获取所述接入站点的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;
    所述第三光模块,用于将所述第四业务流分割到所述K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于或者等于K+1的整数;针对L路第四通道信号中每路通道信号进行线路编码得到L路第四编码信号;将所述M-K-1路第三编码信号以及所述L路第四编码信号复用得到第四电信号,并对所述第四电信号进行电光转换得到第四光信号,发送所述第四光信号。
  10. 如权利要求9所述的接入站点,其特征在于,所述第三光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M-K-1个第一编码信号和L路第四编码信号复用为所述第四电信号。
  11. 如权利要求8-10任一项所述的接入站点,其特征在于,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
    从所述M路第三编码信号分别解析所属通道的通道标识,根据所述M路第三编码信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
  12. 一种汇聚站点,其特征在于,包括第一光模块以及第一成帧器;
    所述第一成帧器,用于获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
    所述第一光模块,用于分别将所述N个第一业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;将M路第一通道信号复用为第一复用信号,对所述第一复用信号进行线路编码得到第一编码信号,将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
  13. 如权利要求12所述的汇聚站点,其特征在于,所述汇聚站点与第一接入站点连接;
    所述第一光模块,还用于接收所述第一接入站点发送的第二光信号;对所述第二光信号进行光电转换得到第二编码信号,对所述第二编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M路第二通道信号;并将所述M路第二通道信号汇聚为N个第二业务流;
    所述第一成帧器,还用于对所述N个第二业务流分别进行解封装得到N个接入站点的第二业务信号。
  14. 如权利要求12或13所述的汇聚站点,其特征在于,所述N个接入站点中的第一接入站点的业务流被分割到K+1个通道,所述第一接入站点为所述N个接入站点中的任一接入站点,所述第一接入站点所需的业务带宽小于或者等于K+1个通道的总带宽,且大于K个通道的总带宽,K+1为小于M的正整数。
  15. 如权利要求14所述的汇聚站点,其特征在于,所述N等于M,所述K=0,所述第一接入站点的通道带宽大于或者等于所述第一接入站点所需的带宽。
  16. 如权利要求14所述的汇聚站点,其特征在于,所述N小于M,所述M个通道的带宽均相同,所述M个通道的总带宽大于或者等于N个接入站点所需的总带宽。
  17. 如权利要求12-16任一项所述的汇聚站点,其特征在于,M路第一通道信号分别包括所属通道的通道标识。
  18. 如权利要求12-17任一项所述的汇聚站点,其特征在于,所述第一光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M路第一通道信号复用为第一复用信号。
  19. 一种接入站点,其特征在于,包括第二光模块、第二成帧器以及第三光模块;
    所述第二光模块,用于执行:
    接收第三光信号,并对所述第三光信号进行光电转换得到为第三编码信号;对所述第三编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M个通道对应的M路第三通道信号;
    确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;
    将K+1路通道信号合并为第三业务流并发送至所述第二成帧器;
    将所述M个通道中除所述K+1个通道以外的M-K-1路第三通道信号发送至所述第三光模块,以通过所述第三光模块执行电光转换后发出;
    所述第二成帧器,用于对第三业务流进行解封装,以得到所述接入站点的第三业务信号。
  20. 如权利要求19所述的接入站点,其特征在于,还包括第三成帧器;
    所述第三成帧器,用于获取所述接入站点的第四业务信号,对所述第四业务信号进行封装,以得到所述接入站点的第四业务流;
    所述第三光模块,用于将所述第四业务流分割到K+1个通道中的L个通道,得到L路第四通道信号;L为大于0且小于K+1的整数;将所述M-K-1路第三通道信号以及所述L路第四通道信号复用得到第二复用信号,对所述第二复用信号进行线路编码得到第四编码信号,对所述第四编码信号进行电光转换得到第四光信号,并发送所述第四光信号。
  21. 如权利要求20所述的接入站点,其特征在于,所述第三光模块,具体用于采用时分复用方式或者采用频分复用方式将所述M-K-1个第三通道信号和L路第四通道信号复用为所述第二复用信号。
  22. 如权利要求19-21任一项所述的接入站点,其特征在于,确定所述M个通道中所述接入站点对应的K+1个通道,包括:
    从所述M路第三通道信号分别解析所属通道的通道标识,根据所述M路第三通道信号中的通道标识确定所述M路第三编码信号分别所属的通道中属于所述接入站点的K+1通道。
  23. 一种光模块,其特征在于,应用于接入站点,包括光解调器、处理器;
    光解调器,用于对接收到的光信号进行光电转换得到电信号;
    处理器,用于对所述电信号进行解复用得到M个通道对应的M路编码信号;确定所述M个通道中所述 接入站点对应的K+1个通道,K为自然数;将所述K+1个通道对应的编码信号进行线路译码得到所述接入站点的业务流,将所述接入站点的业务流从所述光模块发出;并将所述M个通道中除所述K+1个通道以外的M-K-1路编码信号通过所述光模块发出。
  24. 一种光模块,其特征在于,应用于接入站点,包括光调制器、处理器;
    所述处理器,用于执行:
    接收业务流;
    确定M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;对所述L1路通道信号分别进行线路编码得到L1路编码信号;
    接收所述M个通道中除所述K+1个通道以外的L2路编码信号;
    针对所述L2个编码信号以及L1路编码信号进行复用得到一路电信号;
    所述光调制器,用于对所述一路电信号进行电光转换后发出。
  25. 一种光模块,其特征在于,应用于接入站点,包括光解调器、处理器;
    光解调器,用于对接收到的光信号进行光电转换得到编码信号;
    处理器,用于执行:
    对所述编码信号进行线路译码得到复用信号,对所述复用信号进行解复用得到M个通道对应的M路通道信号;
    确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;
    将所述K+1通道对应的K+1路通道信号合并为所述接入站点的业务流从所述光模块发出;
    将所述M路通道信号中除所述K+1路通道信号以外的M-K-1路通道信号从所述光模块发出。
  26. 一种光模块,其特征在于,应用于接入站点,包括光调制器、处理器、穿通接口以及上传接口;
    所述处理器,用于执行:
    接收业务流,确定所述M个通道中所述接入站点对应的K+1个通道,K为自然数;将所述业务流分割到K+1个通道中的L1个通道,得到L1路通道信号;L1为大于0且小于K+1的整数;接收所述M个通道中除所述K+1个通道以外的L2个通道信号,并针对所述L2个通道信号以及L1路通道信号进行复用得到复用信号,对所述复用信号进行线路编码得到编码信号;
    光调制器,用于对所述编码信号进行电光转换得到光信号,并发送所述光信号。
  27. 一种业务信号处理方法,其特征在于,应用于汇聚站点,包括:
    获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
    通过汇聚站点中的第一光模块分别将所述N个业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;针对M路第一通道信号中每路第一通道信号进行线路编码得到M路第一编码信号;将所述M路第一编码信号复用为第一电信号,将所述第一电信号转换为第一光信号,并发送所述第一光信号。
  28. 一种业务信号处理方法,其特征在于,应用于接入站点,包括:
    接收第三光信号,并将所述第三光信号转换为第三电信号;
    通过接入站点中的第二光模块对所述第三电信号进行解复用得到M个通道对应的M路第三编码信号;
    通过所述第二光模块确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;
    通过所述第二光模块将所述K+1个通道对应的第三编码信号分别进行线路译码得到所述接入站点的第三业务流,并将所述M个通道中除所述K+1个通道的第一编码信号以外的M-K-1路第一编码信号发送至所述接入站点的第三光模块,以通过所述第三光模块发出;
    对所述第三业务流进行解封装,以得到所述接入站点的第三业务信号。
  29. 一种业务信号处理方法,其特征在于,应用于汇聚站点,包括:
    获取N个接入站点的第一业务信号,分别对N个接入站点的第一业务信号进行封装,以得到N个第一业务流,N为正整数;
    通过所述汇聚站点的第一光模块分别将所述N个业务流分割到M个通道,得到M路第一通道信号;M为大于或者等于N的整数;不同的接入站点的业务流被分割到不同的通道;
    将M路第一通道信号复用为第一复用信号;
    对所述第一复用信号进行线路编码得到第一编码信号;
    将所述第一编码信号转换为第一光信号,并发送所述第一光信号。
  30. 一种业务信号处理方法,其特征在于,应用于接入站点,包括:
    接收第三光信号,并将所述第三光信号转换为第三电信号;
    通过所述接入站点的第二光模块对所述第三编码信号进行线路译码得到第一复用信号,对所述第一复用信号进行解复用得到M个通道对应的M路第三通道信号;
    通过所述第二光模块确定所述M个通道中所述接入站点对应的K+1个通道,K+1为小于M的正整数;
    通过所述第二光模块将K+1路通道信号合并为第三业务流;
    通过所述第二光模块将所述M个通道中除所述K+1个通道以外的M-K-1路第三通道信号发送至所述接入站点的第三光模块,以通过所述第三光模块发出;
    对第三业务流进行解封装,以得到所述接入站点的第三业务信号。
PCT/CN2023/102995 2022-07-01 2023-06-28 一种业务处理方法、光模块以及接入站点、汇聚站点 WO2024002115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210774334.9 2022-07-01
CN202210774334.9A CN117376741A (zh) 2022-07-01 2022-07-01 一种业务处理方法、光模块以及接入站点、汇聚站点

Publications (1)

Publication Number Publication Date
WO2024002115A1 true WO2024002115A1 (zh) 2024-01-04

Family

ID=89383067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102995 WO2024002115A1 (zh) 2022-07-01 2023-06-28 一种业务处理方法、光模块以及接入站点、汇聚站点

Country Status (2)

Country Link
CN (1) CN117376741A (zh)
WO (1) WO2024002115A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112034A (zh) * 2005-07-13 2008-01-23 中兴通讯股份有限公司 基于通用成帧规程实现交叉及透明复用的方法和系统
CN104023282A (zh) * 2014-05-29 2014-09-03 烽火通信科技股份有限公司 基于波分pon系统的开放网络架构及信号传输方法
US20180035183A1 (en) * 2016-07-26 2018-02-01 Electronics And Telecommunications Research Institute Passive optical network receiving and transmitting frame using multiple lanes
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信系统
CN113473272A (zh) * 2021-07-02 2021-10-01 浙江大学 一种用于数据中心交换机的无阻塞光互连架构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112034A (zh) * 2005-07-13 2008-01-23 中兴通讯股份有限公司 基于通用成帧规程实现交叉及透明复用的方法和系统
CN104023282A (zh) * 2014-05-29 2014-09-03 烽火通信科技股份有限公司 基于波分pon系统的开放网络架构及信号传输方法
US20180035183A1 (en) * 2016-07-26 2018-02-01 Electronics And Telecommunications Research Institute Passive optical network receiving and transmitting frame using multiple lanes
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信系统
CN113473272A (zh) * 2021-07-02 2021-10-01 浙江大学 一种用于数据中心交换机的无阻塞光互连架构

Also Published As

Publication number Publication date
CN117376741A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
EP3739958B1 (en) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (xhaul) connectivity
US7817603B2 (en) Method and apparatus for multi-antenna signal transmission in RF long-distance wireless BS
US9184842B2 (en) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
US8059962B2 (en) Interleaving for 10G GPON
CN109560891B (zh) 实现波分复用光信号分路的方法及装置
WO2019071369A1 (zh) 光网络中数据传输方法及光网络设备
EP3641237A1 (en) Transmission network system, and data exchange and transmission method, device and apparatus
US11245491B2 (en) Method and apparatus for transmitting optical transport unit signal
WO2013029385A1 (zh) 数据交互系统及方法
WO2017201757A1 (zh) 一种业务传送方法和第一传送设备
EP1971050A1 (en) An optical transport node construction device and service dispatch method
CN100568841C (zh) 一种以太网业务的汇聚装置及方法
JP2023027345A (ja) 通信装置及び通信方法
US8908680B2 (en) Apparatus for hybrid-transmitting and bridging of a circuit service and a packet service
CN110248260B (zh) 光网络中以太数据处理的方法、装置和系统
WO2021013025A1 (zh) 数据接收方法及装置、数据发送方法及装置
US7764883B2 (en) Circuit structure for a transmission network node for transmitting high-bit, IP-based time division-multiplex signals, especially for a Multi-Gigabit Ethernet
WO2024002115A1 (zh) 一种业务处理方法、光模块以及接入站点、汇聚站点
CN109151830A (zh) 一种频谱整理的方法、装置、设备和系统
CN109510716B (zh) 信号的处理装置及方法
US10206018B2 (en) Transmission method and system for optical burst transport network
WO2007006177A1 (fr) Procédé et système permettant d’obtenir un multiplexage croisé et transparent conformément au protocole générique de verrouillage de trames
CN109257093B (zh) 一种光网络中光监控信道处理的方法和装置
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
CN113824660B (zh) 一种码流的透传方法和路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830291

Country of ref document: EP

Kind code of ref document: A1