WO2021147955A1 - 资源配置方法、装置和设备 - Google Patents

资源配置方法、装置和设备 Download PDF

Info

Publication number
WO2021147955A1
WO2021147955A1 PCT/CN2021/073101 CN2021073101W WO2021147955A1 WO 2021147955 A1 WO2021147955 A1 WO 2021147955A1 CN 2021073101 W CN2021073101 W CN 2021073101W WO 2021147955 A1 WO2021147955 A1 WO 2021147955A1
Authority
WO
WIPO (PCT)
Prior art keywords
hop
resource configuration
multiplexing
iab node
scheduled
Prior art date
Application number
PCT/CN2021/073101
Other languages
English (en)
French (fr)
Inventor
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022544327A priority Critical patent/JP7339451B2/ja
Priority to KR1020227028199A priority patent/KR20220129038A/ko
Priority to EP21744689.7A priority patent/EP4096327A4/en
Publication of WO2021147955A1 publication Critical patent/WO2021147955A1/zh
Priority to US17/847,140 priority patent/US20220322320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communications, and in particular to a method, device, and equipment for resource configuration.
  • the Integrated Access Backhaul (IAB) node includes a distributed unit (DU) and a mobile terminal (MT) unit. Relying on MT, an IAB node can establish a wireless connection with the DU of a parent IAB node, thereby establishing a backhaul link of the IAB node.
  • DU distributed unit
  • MT mobile terminal
  • the stride is referred to as a jump below.
  • the hop between the IAB node and the child IAB node of the IAB node that is, hop A
  • the hop between the IAB node and the parent IAB node of the IAB node, that is, hop B is scheduled by the parent IAB node.
  • conservative scheduling is adopted for hop A and hop B, so that the spectrum utilization efficiency of the IAB node's network is low.
  • the embodiments of the present application provide a resource configuration method, device, and equipment to solve the problem of low spectrum utilization efficiency of the IAB node network.
  • the embodiment of the present application provides a resource configuration method, which is applied to the central unit CU.
  • the CU communicates with the first IAB node and the second IAB node, and the first IAB node and the second IAB node schedule the first IAB node respectively Data transmission on the first hop and the second hop, the method includes:
  • the multiplexing resource configuration information of the first hop and/or the second hop is sent, and the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode.
  • an embodiment of the present application provides a resource configuration method, which is applied to an IAB node, and the IAB node communicates with a central unit CU.
  • the method includes:
  • multiplexing resource configuration information sent by the CU, where the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode of a hop scheduled by an IAB node and a hop scheduled by another IAB node;
  • the IAB node is a child IAB node or a parent IAB node of another IAB node.
  • an embodiment of the present application provides a resource configuration device.
  • the resource configuration device communicates with a first IAB node and a second IAB node.
  • the first IAB node and the second IAB node respectively schedule the first hop of the first IAB node.
  • the resource configuration device includes:
  • Multiplexing mode determining module used to determine the multiplexing mode between the first hop and the second hop
  • the sending module is used to send the multiplexing resource configuration information of the first hop and/or the second hop, and the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode.
  • an embodiment of the present application provides a resource configuration device, the resource configuration device communicates with a central unit CU, and the resource configuration device includes:
  • the receiving module is configured to receive multiplexing resource configuration information sent by the CU, where the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode of the hop scheduled by the resource configuration device and the hop scheduled by another resource configuration device;
  • the scheduling module is used to schedule the on-hop data transmission of the resource configuration device according to the resource configuration represented by the multiplexed resource configuration information
  • the resource configuration device is a child resource configuration device or a parent resource configuration device of another resource configuration device.
  • an embodiment of the present application provides a resource allocation device, including a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor to implement the technology of the first aspect
  • the resource allocation method in the solution or the resource allocation method in the technical solution implementing the second aspect is executed by the processor to implement the technology of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the resource configuration in the technical solution of the first aspect is realized Method or implement the resource allocation method in the technical solution of the second aspect.
  • the embodiments of the present application provide a resource configuration method, device, and equipment.
  • the CU determines the multiplexing mode of the first hop and the second hop of the first IAB node, and sends the multiplexing resource configuration of the first hop and/or the second hop information.
  • the multiplexing resource configuration information can characterize the resource configuration of the multiplexing mode.
  • the sent multiplexing resource configuration information of the first hop and/or the second hop can enable the first IAB node to schedule data transmission on the first hop based on the multiplexing resource configuration information of the first hop, and/or make the second IAB
  • the node schedules data transmission on the second hop based on the multiplexing resource configuration information of the second hop.
  • the first hop and the second hop adopt the multiplexing mode for data transmission, thereby improving the spectrum utilization efficiency of the IAB node network.
  • FIG. 1 is a schematic structural diagram of an embodiment of an IAB system provided by this application.
  • FIG. 2 is a schematic diagram of an example of communication between an IAB node and a central unit provided by an embodiment of this application;
  • FIG. 3 is a flowchart of an embodiment of a resource configuration method applied to a central unit provided by this application;
  • FIG. 4 is a schematic diagram of an example of resource configuration of a first IAB node provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of another example of resource configuration of a first IAB node provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another example of resource configuration of a first IAB node provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an example of the resource mode of the first IAB node in the first hop provided by an embodiment of this application;
  • FIG. 8 is a flowchart of an embodiment of a resource configuration method applied to an IAB node provided by this application.
  • FIG. 9 is a schematic diagram of an example of a resource jump mode provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a resource configuration device provided by this application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a resource configuration device provided by this application.
  • FIG. 12 is a schematic diagram of the hardware structure of an embodiment of a resource configuration device provided by this application.
  • FIG. 13 is a schematic diagram of the hardware structure of an embodiment of a resource configuration device provided by this application.
  • FIG. 1 is a schematic structural diagram of an embodiment of an IAB system provided by this application.
  • the IAB system includes multiple IAB nodes and multiple terminal devices. Each IAB node can access one or more terminal devices, which is not limited here.
  • the IAB node may correspond to a parent IAB node (ie parent IAB node), and the IAB node may correspond to a child IAB node (ie child IAB node).
  • the second IAB node is the parent node of the first IAB node
  • the third IAB node is the parent node of the second IAB node.
  • There is a cross hop between an IAB node and its downstream nodes ie, a cross hop
  • jump is referred to as “jump” below.
  • Downstream nodes of the IAB node may include child IAB nodes or terminal devices of the IAB node.
  • the IAB node can schedule the hop between the IAB node and its downstream node, and the parent IAB node of the IAB node can schedule the hop between the IAB node and its parent IAB node.
  • the IAB node can be specifically implemented as a base station, which is not limited here.
  • the terminal device can be implemented as a mobile phone, a computer, a tablet computer, and other communication devices, which is not limited here.
  • An IAB node includes a distributed unit (DU) and a mobile terminal (MT) unit. Relying on the MT unit, an IAB node can establish a wireless connection with the DU of a parent IAB node, thereby establishing a backhaul link of the IAB node. It should be noted that a host IAB node (ie donor IAB node) is included in an integrated access backhaul loop. The host IAB node does not include the MT unit.
  • FIG. 2 is a schematic diagram of an example of communication between an IAB node and a central unit (Centralized Unit, CU) provided by an embodiment of the application.
  • Centralized Unit Centralized Unit
  • the DUs of all IAB nodes are connected to a CU, and the CU configures the DU.
  • the MT unit of all IAB nodes is connected to the CU, and the MT unit is configured by the CU.
  • the CU may be specifically implemented as a base station, which is not limited here.
  • the embodiment of the present application provides a resource configuration method, which is applied to the CU.
  • the CU communicates with the first IAB node and the second IAB node.
  • the first IAB node and the second IAB node schedule the first hop and the second hop of the first IAB node, respectively.
  • the second IAB node is a parent IAB node of the first IAB node, that is, the first IAB node is a child IAB node of the second IAB node.
  • the first hop may be a hop between the first IAB node and a downstream node of the first IAB node, and the first IAB node schedules data transmission on the first hop.
  • the second hop may be a hop between the first IAB node and the second IAB node, and the second IAB node schedules the data transmission on the second hop.
  • FIG. 3 is a flowchart of an embodiment of a resource configuration method applied to a central unit provided by this application. As shown in FIG. 3, the resource configuration method may include step S301 and step S303.
  • step S301 the multiplexing mode between the first hop and the second hop is determined.
  • the first IAB node participates in both the data transmission of the first hop and the data transmission of the second hop.
  • the CU may predetermine the multiplexing mode between the first hop and the second hop, so that the data transmission of the first IAB node on the first hop and the data transmission of the first IAB node on the second hop are in the multiplexing mode, Thereby improving the spectrum utilization efficiency of the IAB node network.
  • the CU may determine the multiplexing mode between the first hop and the second hop based on the data transceiving capability of the first IAB node and/or the data transmission capability of the second IAB node.
  • the specific manner in which the CU determines the multiplexing mode between the first hop and the second hop is not limited here.
  • step S302 the multiplexing resource configuration information of the first hop and/or the second hop is sent.
  • the CU may send the multiplexing resource configuration information of the first hop.
  • the CU may send the multiplexing resource configuration information of the second hop.
  • the CU may also send the multiplexing resource configuration information of the first hop and the multiplexing resource configuration information of the second hop.
  • the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode in the foregoing steps, so that the IAB node that receives the multiplexing resource configuration information performs resource configuration according to the multiplexing resource configuration information.
  • the CU may determine the multiplexing resource configuration information of the first hop and/or the multiplexing resource configuration information of the second hop based on the data transceiving capability of the first IAB node and/or the data transmission capability of the second IAB node.
  • the specific manner in which the CU determines the multiplexing resource configuration information of the first IAB node and the multiplexing resource configuration information of the second IAB node is not limited here.
  • the CU sends the multiplexing resource configuration information of the first hop to the first IAB node, so that the first IAB node uses the multiplexing resource configuration information of the first hop to schedule data transmission on the first hop. And/or, the CU sends the multiplexing resource configuration information of the second hop to the second IAB node, so that the second IAB node uses the multiplexing resource configuration information of the second hop to schedule data transmission on the second hop.
  • the CU determines the multiplexing mode of the first hop and the second hop of the first IAB node, and sends the multiplexing resource configuration information of the first hop and/or the second hop.
  • the multiplexing resource configuration information can characterize the resource configuration of the multiplexing mode.
  • the sent multiplexing resource configuration information of the first hop and/or the second hop can enable the first IAB node to schedule data transmission on the first hop based on the multiplexing resource configuration information of the first hop, and/or make the second IAB
  • the node schedules data transmission on the second hop based on the multiplexing resource configuration information of the second hop.
  • the first hop and the second hop adopt the multiplexing mode for data transmission, thereby improving the spectrum utilization efficiency of the IAB node network.
  • the multiplexing resource configuration information may include time domain resource parameters.
  • the time domain resource parameter may characterize the time domain resource.
  • the time domain resource may include a time period occupied by data transmission that jumps up in the time domain.
  • the time period may include a symbol (ie symbol), a time slot (ie slot), a subframe, a sub-slot (ie sub-slot), a symbol set, a time slot set or a sub-slot set, etc., which are not limited here. .
  • the multiplexing resource configuration information may also include one or more of the following: frequency domain resource parameters, multiplexing mode parameters, power control parameters, period parameters, and multiplexing mode configuration parameters.
  • the multiplexing mode parameter can characterize the multiplexing mode of the first hop and the second hop.
  • the multiplexing mode may include, but is not limited to, one or more of the following: first hop and second hop space division multiplexing transmission, first hop and second hop space division multiplexing reception, first hop and second hop Frequency division multiplexing transmission, first and second hop frequency division multiplexing reception, first hop uplink reception and second hop uplink transmission at the same time co-frequency multiplexing, first hop downlink transmission and second hop downlink Receiving simultaneous same frequency multiplexing, first hop uplink reception and second hop uplink transmission simultaneous different frequency multiplexing, first hop downlink transmission and second hop downlink reception simultaneous different frequency multiplexing.
  • Other resource reuse modes are also within the protection scope of the embodiments of the present application, such as the simultaneous co-frequency full-duplex mode of a single antenna module, which will not be illustrated one by one here.
  • the first hop and second hop space division multiplexing transmission is called the space division multiplexing data transmission mode (ie SDM TX mode);
  • the first hop and second hop space division multiplexing reception is called the space division multiplexing transmission mode (SDM TX mode).
  • the first hop and second hop frequency division multiplexing transmission is called frequency division multiplexing data transmission mode (ie FDMTX mode);
  • the first hop and second frequency hopping Multiplexed reception is called frequency division multiplexed data transmission mode (ie FDM RX mode);
  • the first hop of uplink reception and the second hop of uplink transmission at the same frequency multiplexing at the same time is called the first full duplex mode;
  • the same frequency multiplexing of the downlink transmission of the first hop and the downlink reception of the second hop at the same time is called the second full-duplex mode;
  • the uplink reception of the first hop and the uplink transmission of the second hop at the same time are called the third full duplex.
  • Work mode The first hop of downlink transmission and the second hop of downlink reception are multiplexed with different frequencies at the same time as the fourth full-duplex mode.
  • Space Division Multiplexing means that IAB nodes receive physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) data from the parent IAB node at the same time on the same time-frequency resources and receive physical downlink shared channel (PDSCH) data from the child IAB node or terminal device.
  • Uplink shared channel (Physical Uplink Shared Channel, PDSCH) data, or an IAB node simultaneously sends PUSCH data to a parent IAB node and PDSCH data to a child IAB node or terminal device on the same time-frequency resource.
  • the hop between the IAB node and the child IAB node is the first hop
  • the hop between the IAB node and the parent IAB node is the second hop.
  • the SDM TX mode characterizes data transmission on both the first hop and the second hop, that is, the first IAB node transmits downlink data on the first hop, the first IAB node transmits uplink data on the second hop, and the first IAB node transmits data on the second hop. Power distribution between the first hop and the second hop.
  • the SDMRX mode characterizes data reception on both the first hop and the second hop, that is, the first IAB node receives uplink data on the first hop, and the first IAB node receives downlink data on the second hop.
  • Frequency Division Multiplexing refers to that the IAB node receives PDSCH data from the parent IAB node and PUSCH data from the child IAB node or terminal device at the same time on different frequency resources, or the IAB node at the same time on different frequency resources Send PUSCH data to the parent IAB node and send PDSCH data to the child IAB node or terminal device.
  • the FDM TX mode characterizes data transmission on both the first hop and the second hop.
  • the first IAB node performs data downlink transmission on a part of the frequency band on the first hop, and the first IAB node transmits data on another part of the frequency band on the second hop. Uplink transmission.
  • the FDMRX mode characterizes data reception on both the first hop and the second hop.
  • the first IAB node performs data uplink reception on a part of the frequency band on the first hop, and the first IAB node performs data downlink on another part of the frequency band on the second hop. take over.
  • Simultaneous co-frequency duplex means that the IAB node simultaneously receives PDSCH data from the parent IAB node and sends PDSCH data to the child IAB node or terminal device on the same time-frequency resource, or the IAB node is on the same time-frequency resource At the same time, PUSCH data is sent to the parent IAB node and PUSCH data is received from the child IAB node or terminal device.
  • MPTR is a technology in which IAB nodes use different antenna modules (namely panels) to send and receive data at the same time. For example, an IAB node is equipped with two antenna modules, and when one antenna module receives data, the other antenna module transmits data. There can be greater isolation between the antenna modules of the MPTR, which can reduce the interference caused by data transmission to data reception to a certain extent.
  • the first full-duplex mode represents that the first hop of data uplink reception and the second hop of data uplink transmission are performed on the same time domain resource and the same frequency domain resource.
  • the first full-duplex mode can be implemented in a multiple antenna module transmission uplink (Multiple Pannel Transmission Reception Uplink, MPTR UL) manner.
  • MPTR UL Multiple Pannel Transmission Reception Uplink
  • the second full-duplex mode represents that the first hop of data downlink transmission and the second hop of data downlink reception are performed on the same time domain resource and the same frequency domain resource.
  • the second full-duplex mode can be implemented in a multiple-antenna module transmission downlink (Multiple Pannel Transmission Reception Downlink, MPTRDL) manner.
  • MPTRDL Multiple Pannel Transmission Reception Downlink
  • the third full-duplex mode represents that the first hop of data uplink reception and the second hop of data uplink transmission are performed on the same time domain resource and different frequency domain resources, respectively.
  • the third full-duplex mode can be implemented by MPTR UL.
  • the fourth full-duplex mode represents that the first hop of data downlink transmission and the second hop of data downlink reception are respectively performed on the same time domain resource and different frequency domain resources.
  • the fourth full-duplex mode can be implemented in MPTRDL.
  • the MPTR UL mode characterizes that there is data transmission on both the first hop and the second hop.
  • the first IAB node performs data uplink reception on the first hop, and the first IAB node performs data uplink transmission on the second hop.
  • the MPTRDL mode characterizes that there is data transmission on both the first hop and the second hop, that is, the first IAB node performs data downlink transmission on the first hop, and the first IAB node performs data downlink reception on the second hop.
  • the frequency domain resource parameters can characterize frequency domain resources.
  • the frequency domain resource may include a frequency band occupied by the IAB node for data transmission on a certain hop in the frequency domain.
  • the power control parameter may characterize the power control of the first hop and/or the power control of the second hop.
  • the period parameter may characterize the period of the resource configuration of the first hop and the resource configuration of the second hop.
  • the multiplexing mode configuration parameters are specific configuration parameters in the multiplexing mode.
  • the configuration parameters of the multiplexing mode may be specific configuration parameters in the SDM mode, etc., which are not limited here.
  • the multiplexing mode parameter may be specifically represented by numbers, letters, special symbols, or character strings, etc., which is not limited herein.
  • the foregoing multiplexing resource configuration information may be carried by Radio Resource Control (RRC) signaling or F1-AP signaling and transmitted to the first IAB node or the second IAB node.
  • RRC Radio Resource Control
  • the CU can use RRC signaling to send the multiplexing resource configuration information to the corresponding MT unit in the first IAB node or the MT unit in the second IAB node, and then the MT unit in the first IAB node will multiplex the resource configuration information It is forwarded to the DU in the first IAB node, or the MT unit in the second IAB node forwards the multiplexing resource configuration information to the DU in the second IAB node.
  • the CU may use F1-AP signaling to send the multiplexing resource configuration information to the corresponding DU in the first IAB node or the DU in the second IAB node.
  • the following examples illustrate the resource configuration of the first IAB node after the first IAB node schedules the first hop and the second IAB node schedules the second hop.
  • FIG. 4 is a schematic diagram of an example of resource configuration of a first IAB node provided by an embodiment of this application.
  • the first IAB node is configured in SDM TX mode in time slot 2 and time slot 3, and in SDMRX mode in time slot 4 and time slot 5, and the period is 11 time slots.
  • the first IAB node is configured in time slot 13 and time slot 14 to be in SDM TX mode, and time slot 15 and time slot 16 are in SDMRX mode.
  • FIG. 5 is a schematic diagram of another example of resource configuration of a first IAB node provided in an embodiment of the application.
  • the first IAB node is configured in FDM TX mode in timeslot 2 and timeslot 3, and in FDMRX mode in timeslot 4 and timeslot 5, and the period is 11 timeslots.
  • the first IAB node is configured in the FDM TX mode in the time slot 13 and the time slot 14, and in the FDMRX mode in the time slot 15 and the time slot 16.
  • the configuration of the first IAB node in each cycle will not be explained here.
  • FIG. 6 is a schematic diagram of another example of resource configuration of the first IAB node provided by an embodiment of the application.
  • the first IAB node is configured in MPTR UL mode in timeslot 2 and timeslot 3, and in MPTRDL mode in timeslot 4 and timeslot 5, and the period is 11 timeslots.
  • the first IAB node is configured in the MPTR UL mode in the time slot 13 and the time slot 14, and in the MPTRDL mode in the time slot 15 and the time slot 16.
  • FIG. 7 is a schematic diagram of an example of the resource mode of the first IAB node in the first hop provided by an embodiment of the application.
  • the first hop of the first IAB node is HARDUL configuration in time slot 0, time slot 1, and time slot 2, and NA configuration in time slot 3 and time slot 4, and in time slot 5 and time slot 6.
  • time slot 7 is HARD DL configuration
  • time slot 8 and time slot 9 are flexible configuration.
  • the resource reuse mode of time slot 1 and time slot 2 is SDM RX mode.
  • the HARDUL configuration refers to uplink time slots or Orthogonal Frequency Division Multiplexing (OFDM) symbols that the DU can use at any time.
  • HARDDL configuration refers to the downlink time slot or OFDM symbol that the DU can use at any time.
  • NA refers to the time slot or OFDM symbol that the DU cannot use.
  • the flexible configuration refers to the time slot or OFDM symbol that the DU can use when the previous hop of the first hop is not in use.
  • the CU may also send at least part of the multiplexing resource configuration information of the first hop to the second IAB node, so that the second IAB node can obtain at least part of the resource configuration of the first hop.
  • at least part of the multiplexing resource configuration information of the first hop may be used by the second IAB node to determine the first hop and the multiplexing resource configuration information of the second hop based on the at least part of the multiplexing resource configuration information of the first hop and the multiplexing resource configuration information of the second hop. Multiplexing mode between the second hops.
  • the CU may also send at least part of the multiplexing resource configuration information of the second hop to the first IAB node, so that the first IAB node can obtain at least a part of the resource configuration of the second hop.
  • at least part of the multiplexing resource configuration information of the second hop may be used by the first IAB node to determine the first hop based on the at least part of the multiplexing resource configuration information of the second hop and the multiplexing resource configuration information of the first hop. Resource reuse mode of hop and second hop.
  • FIG. 8 is a flowchart of an embodiment of a resource configuration method applied to an IAB node provided by this application. As shown in FIG. 8, the resource configuration method may include step S401 and step S402.
  • step S401 the multiplexing resource configuration information sent by the CU is received.
  • the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode of a hop scheduled by an IAB node and a hop scheduled by another IAB node.
  • step S402 according to the resource configuration represented by the multiplexed resource configuration information, data transmission on the hop of the IAB node is scheduled.
  • the hop scheduled by the IAB node and the hop scheduled by another IAB node use a multiplexing mode for data transmission, which improves the spectrum utilization efficiency of the network of the IAB node.
  • Another IAB node can also communicate with the CU.
  • the other IAB node is a child IAB node or a parent IAB node of the IAB node.
  • the IAB node may be regarded as the second IAB node in the foregoing embodiment, and the other IAB node may be regarded as the first IAB node in the foregoing embodiment.
  • the IAB node may be regarded as the first IAB node in the foregoing embodiment, and the other IAB node may be regarded as the second IAB node in the foregoing embodiment.
  • the description of the multiplexing resource configuration information can refer to the relevant content in the above-mentioned embodiment, which will not be repeated here.
  • the IAB node may perform resource configuration on the hops scheduled by the IAB node based on the multiplexing resource configuration information received from the CU.
  • the hops scheduled by the IAB node and the hops scheduled by the child IAB node or the parent IAB node of the IAB node use a multiplexing mode for data transmission, thereby improving the spectrum utilization efficiency of the IAB network.
  • the foregoing multiplexing resource configuration information may include time domain resource parameters.
  • multiplexing resource configuration information may also include but not limited to one or more of the following: frequency domain resource parameters, multiplexing mode parameters, power control parameters, period parameters, and multiplexing mode configuration parameters.
  • the above-mentioned multiplexing resource configuration information may be carried in RRC signaling or F1-AP signaling. That is, the IAB node can receive RRC signaling or F1-AP signaling, and the RRC signaling includes multiplexing resource configuration information, or the F1-AP signaling includes multiplexing resource configuration information.
  • Multiplexing modes include one or more of the following: hops scheduled by an IAB node and space division multiplex transmission scheduled by another IAB node, hops scheduled by an IAB node and space division multiplex reception scheduled by another IAB node, IAB Node-scheduled hop and frequency-division multiplex transmission of another IAB node, hops scheduled by IAB node and frequency-division multiplex reception of another IAB node, uplink reception of hops scheduled by IAB node and another IAB node Uplink transmission of scheduled hops, simultaneous co-frequency multiplexing, downlink transmission of hops scheduled by an IAB node, and downlink reception of hops scheduled by another IAB node Simultaneous co-frequency multiplexing, uplink reception of hops scheduled by IAB node, and another IAB node
  • the uplink transmission of the scheduled hop is multiplexed at the same time, and the downlink transmission of the hop scheduled by the IAB node and the downlink reception of the hop scheduled by another IAB node are multiplex
  • time domain resource parameters time domain resource parameters
  • frequency domain resource parameters power control parameters
  • multiplexing mode parameters period parameters
  • multiplexing mode configuration parameters RRC signaling and F1-AP signaling
  • the IAB node may also receive at least part of the multiplexing resource configuration information of another IAB node sent by the CU, so as to obtain the resource configuration of the hop scheduled by the other IAB node. Further, the IAB node may also obtain the multiplexing mode of the hop scheduled by another IAB node based on the multiplexing resource configuration information of the IAB node itself and the multiplexing resource configuration information of another IAB node.
  • the multiplexing resource configuration information of the IAB node itself can characterize the resource configuration of the hop scheduled by the IAB node
  • the multiplexing resource configuration information of another IAB node can characterize the resource configuration of the hop scheduled by another IAB node.
  • the resource configuration of the hop scheduled by the IAB node and the resource configuration of the hop scheduled by another IAB node can determine the resource reuse mode of the hop scheduled by another IAB node.
  • FIG. 9 is a schematic diagram of an example of a resource jump mode provided in an embodiment of this application.
  • the IAB node is a child IAB node of another IAB node, that is, the IAB node can be regarded as the first IAB node in the foregoing embodiment, and the other IAB node can be regarded as the second IAB node in the foregoing embodiment. node.
  • the IAB node schedules the first hop
  • another IAB node schedules the second hop.
  • the resource configuration of the first and second hops is shown in Figure 9.
  • the first hop is HARDUL configuration in time slot 0, HARDUL configuration in time slot 1, HARD DL configuration in time slot 6, and HARD in time slot 7 DL configuration.
  • the second hop is HARDUL configuration in time slot 0, HARDDL configuration in time slot 1, HARDUL configuration in time slot 6, and HARD DL configuration in time slot 7.
  • the IAB node receives the multiplexing resource configuration information of another IAB node sent by the CU, it obtains the resource configuration of the second hop scheduled by the other IAB node.
  • the resource configuration of the first hop is the HARDUL configuration
  • the resource configuration of the second hop is the HARDUL configuration. It can be determined that the resource reuse mode of the first hop and the second hop is the MPTR UL mode.
  • the resource configuration of the first hop is HARDUL configuration
  • the resource configuration of the second hop is HARDDL configuration. It can be determined that the resource reuse mode of the first hop and the second hop is SDM RX mode.
  • the resource configuration of the first hop is HARDDL configuration
  • the resource configuration of the second hop is HARDUL configuration.
  • the resource reuse mode of the first hop and the second hop is SDM TX mode.
  • the resource configuration of the first hop is HARDDL configuration
  • the resource configuration of the second hop is HARDDL configuration. It can be determined that the resource reuse mode of the first hop and the second hop is MPTR DL mode.
  • the embodiment of the present application also provides a resource configuration device.
  • the resource configuration device communicates with the first IAB node and the second IAB node.
  • the first IAB node and the second IAB node schedule data transmission on the first hop and the second hop of the first IAB node, respectively.
  • the resource configuration apparatus may be implemented as the CU in the foregoing embodiment.
  • FIG. 10 is a schematic structural diagram of an embodiment of a resource configuration device provided by this application.
  • the resource configuration device 500 may include a multiplexing mode determination module 501 and a sending module 502.
  • the multiplexing mode determining module 501 is used to determine the multiplexing mode between the first hop and the second hop.
  • the sending module 502 is configured to send the multiplexing resource configuration information of the first hop and/or the second hop.
  • the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode.
  • the resource configuration apparatus determines the multiplexing mode of the first hop and the second hop of the first IAB node, and sends the multiplexing resource configuration information of the first hop and/or the second hop.
  • the multiplexing resource configuration information can characterize the resource configuration of the multiplexing mode.
  • the sent multiplexing resource configuration information of the first hop and/or the second hop can enable the first IAB node to schedule data transmission on the first hop based on the multiplexing resource configuration information of the first hop, and/or make the second IAB
  • the node schedules data transmission on the second hop based on the multiplexing resource configuration information of the second hop.
  • the first hop and the second hop adopt the multiplexing mode for data transmission, thereby improving the spectrum utilization efficiency of the IAB node network.
  • the sending module 502 is configured to: send the multiplexing resource configuration information of the first hop to the first IAB node, and/or send the multiplexing resource configuration information of the second hop to the second IAB node.
  • the sending module 502 is further configured to send at least part of the multiplexing resource configuration information of the first hop to the second IAB node.
  • at least part of the multiplexing resource configuration information of the first hop can be used by the second IAB node to determine the first hop and the second hop based on at least part of the multiplexing resource configuration information of the first hop and the multiplexing resource configuration information of the second hop The multiplexing mode between.
  • the sending module 502 is further configured to send at least part of the multiplexing resource configuration information of the second hop to the first IAB node. At least part of the multiplexing resource configuration information of the second hop can be used by the first IAB node to determine between the first hop and the second hop based on the at least part of the multiplexing resource configuration information of the second hop and the multiplexing resource configuration information of the first hop The multiplexing mode.
  • the multiplexing resource configuration information in the foregoing embodiment includes time domain resource parameters.
  • the multiplexing resource configuration information further includes one or more of the following: frequency domain resource parameters, multiplexing mode parameters, power control parameters, period parameters, and multiplexing mode configuration parameters.
  • the multiplexing mode includes one or more of the following: first hop and second hop space division multiplexing transmission, first hop and second hop space division multiplexing reception, first hop and second hop frequency division multiplexing Use transmission, first hop and second hop frequency division multiplexing reception, first hop uplink reception and second hop uplink transmission simultaneously with frequency multiplexing, first hop downlink transmission and second hop downlink reception at the same time Frequency multiplexing, the uplink reception of the first hop and the uplink transmission of the second hop are multiplexed at the same time, and the downlink transmission of the first hop and the downlink reception of the second hop are multiplexed at the same time.
  • the multiplexing resource configuration information is carried in RRC signaling or F1-AP signaling.
  • the first IAB node in the foregoing embodiment is a child IAB node of the second IAB node.
  • the embodiment of the present application also provides a resource configuration device.
  • the resource configuration device can communicate with the CU.
  • the resource configuration device may be implemented as the IAB node in the above-mentioned embodiment.
  • FIG. 11 is a schematic structural diagram of an embodiment of a resource configuration device provided by this application. As shown in FIG. 11, the resource configuration device 600 may include a receiving module 601 and a scheduling module 602.
  • the receiving module 601 is configured to receive multiplexing resource configuration information sent by the CU.
  • the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode of the hop scheduled by the resource configuration device and the hop scheduled by another resource configuration device.
  • the scheduling module 602 is configured to schedule data transmission on the hop according to the resource configuration characterized by the multiplexed resource configuration information.
  • the resource configuration device is a child resource configuration device or a parent resource configuration device of another resource configuration device.
  • the resource configuration device may perform resource configuration on the hops scheduled by the resource configuration device based on the multiplexed resource configuration information received from the CU.
  • the hops scheduled by the resource configuration device and the hops scheduled by the child resource configuration device or the parent resource configuration device of the resource configuration device use a multiplexing mode for data transmission, thereby improving the spectrum utilization efficiency of the IAB network.
  • the receiving module is further configured to: receive at least part of the multiplexing resource configuration information of a hop scheduled by another resource configuration device sent by the CU; and another resource configuration based on the multiplexing resource configuration information of the hop scheduled by the resource configuration device.
  • the resource configuration information of at least part of the hops scheduled by the device is reused, and the multiplexing mode of the hops scheduled by another resource configuration device is acquired.
  • the multiplexing resource configuration information includes time domain resource parameters.
  • the multiplexing resource configuration information further includes one or more of the following: frequency domain resource parameters, multiplexing mode parameters, power control parameters, period parameters, and multiplexing mode configuration parameters.
  • the multiplexing mode includes one or more of the following: hops scheduled by the resource configuration device and hops scheduled by another resource configuration device for space division multiplexing transmission, hops scheduled by the resource configuration device and hops scheduled by another resource configuration device.
  • Space division multiplexing reception hops scheduled by the resource configuration device and frequency hopping multiplex transmission scheduled by another resource configuration device, hops scheduled by the resource configuration device and frequency hopping multiplex reception scheduled by another resource configuration device, resource configuration
  • the uplink reception of a hop scheduled by the device and the uplink transmission of a hop scheduled by another resource configuration device are simultaneously co-frequency multiplexed
  • the downlink transmission of a hop scheduled by the resource configuration device and the downlink reception of a hop scheduled by another resource configuration device are simultaneously co-frequency multiplexed.
  • the multiplexing resource configuration information is carried in radio resource control RRC signaling or F1-AP signaling.
  • FIG. 12 is a schematic diagram of the hardware structure of an embodiment of a resource configuration device provided by this application.
  • the resource configuration device can be regarded as the CU in the foregoing embodiment, and can be specifically implemented as a base station.
  • the resource configuration device 700 includes: a memory 701, a processor 702, a radio frequency unit 703, and a computer program stored in the memory 701 and running on the processor 702.
  • Those skilled in the art can understand that the structure of the resource configuration device shown in FIG. 12 does not constitute a limitation on the resource configuration device.
  • the resource configuration device may include more or fewer components than shown in the figure, or combine certain components. Or different component arrangements.
  • the processor 702 is used for the multiplexing mode between the first hop and the second hop.
  • the radio frequency unit 703 is configured to send the multiplexing resource configuration information of the first hop and/or the second hop. Among them, the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 702 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the radio frequency unit 703 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices on a transmission medium, and for receiving and transmitting data under the control of the processor 702.
  • the processor 702 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 702 when performing operations.
  • the resource configuration device may include a processor 702, a memory 701, and a computer program stored on the memory 701 and running on the processor 702.
  • the computer program is executed by the processor 702
  • the above-mentioned CU is implemented.
  • Each process of the embodiment of the resource configuration method shown in FIG. 3 can achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 13 is a schematic diagram of the hardware structure of an embodiment of a resource configuration device provided by this application.
  • the resource configuration device can be regarded as the IAB node in the foregoing embodiment, and can be specifically implemented as a base station.
  • the resource configuration device 800 includes a memory 801, a processor 802, a radio frequency unit 803, and a computer program stored in the memory 801 and running on the processor 802.
  • the structure of the resource configuration device shown in FIG. 13 does not constitute a limitation on the resource configuration device, and the resource configuration device may include more or less components than those shown in the figure, or a combination of certain components. Or different component arrangements.
  • the radio frequency unit 803 is configured to receive multiplexing resource configuration information sent by the CU.
  • the multiplexing resource configuration information is used to characterize the resource configuration of the multiplexing mode of the hop scheduled by the resource configuration device and the hop scheduled by another resource configuration device.
  • the resource configuration device is a child resource configuration device or a parent resource configuration device of another resource configuration device.
  • the processor 802 is configured to schedule data transmission on the hop of the resource configuration device according to the resource configuration represented by the multiplexed resource configuration information.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 802 and various circuits of the memory represented by the memory 801 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description of them will be given in this article.
  • the bus interface provides the interface.
  • the radio frequency unit 803 may be multiple elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium, and for receiving and transmitting data under the control of the processor 802.
  • the processor 802 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 802 when performing operations.
  • the resource configuration device may include a processor 802, a memory 801, and a computer program stored in the memory 801 and running on the processor 802.
  • the computer program is executed by the processor 802
  • the above-mentioned application to the IAB node is realized.
  • Each process of the embodiment of the resource configuration method shown in FIG. 8 can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the above-mentioned resource configuration method embodiment applied to a CU is realized, or, Each process of the foregoing embodiment of the resource configuration method applied to an IAB node is realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the resource configuration method, device, device, and storage medium in the foregoing embodiments can be applied to 5G communication systems and subsequent communication systems, and are not limited herein.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • each block in the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by a program or instruction.
  • These programs or instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device to generate a machine such that these programs or instructions are executed by the processor of the computer or other programmable data processing device Enables the realization of functions/actions specified in one or more blocks of the flowchart and/or block diagram.
  • Such a processor can be, but is not limited to, a general-purpose processor, a dedicated processor, a special application processor, or a field programmable logic circuit. It can also be understood that each block in the block diagram and/or flowchart and the combination of the blocks in the block diagram and/or flowchart can also be implemented by dedicated hardware that performs the specified function or action, or can be implemented by dedicated hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Stereophonic System (AREA)

Abstract

本申请实施例公开了一种资源配置方法、装置和设备,涉及通信技术领域。该方法应用于中心单元CU,CU与第一IAB节点、第二IAB节点通信,第一IAB节点与第二IAB节点分别调度第一IAB节点的第一跳和第二跳上的数据传输,该方法包括:确定第一跳和第二跳之间的复用模式;发送第一跳和/或第二跳的复用资源配置信息,复用资源配置信息用于表征复用模式的资源配置。

Description

资源配置方法、装置和设备
相关申请的交叉引用
本申请要求享有于2020年01月23日提交的名称为“资源配置方法、装置和设备”的中国专利申请202010076411.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及通信领域,尤其涉及一种资源配置方法、装置和设备。
背景技术
集成接入回传(Integrated Access Backhaul,IAB)节点包括分布式单元(Distributed Unit,DU)和移动终端(Mobile Termination,MT)单元。依靠MT,一个IAB节点可以与一个父IAB节点的DU建立无线连接,从而建立IAB节点的回传链路。
随着IAB技术的发展演进,IAB节点需要实现跨跳即across hop。为了便于说明,下面将跨跳称为跳。其中,IAB节点与该IAB节点的子IAB节点之间的跳即跳A由该IAB节点调度。IAB节点与该IAB节点的父IAB节点之间的跳即跳B由父IAB节点调度。为了避免该IAB节点调度的跳A的数据传输与父IAB节点调度的跳B的数据传输的冲突过大,因此对跳A和跳B采用保守调度,使得IAB节点的网络的频谱利用效率较低。
发明内容
本申请实施例提供一种资源配置方法、装置和设备,以解决IAB节点的网络的频谱利用效率低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种资源配置方法,应用于中心单元CU,CU与第一IAB节点、第二IAB节点通信,第一IAB节点与第二IAB节点分别调度第一IAB节点的第一跳和第二跳上的数据传输,该方法包括:
确定第一跳和第二跳之间的复用模式;
发送第一跳和/或第二跳的复用资源配置信息,复用资源配置信息用于表征复用模式的资源配置。
第二方面,本申请实施例提供了一种资源配置方法,应用于IAB节点,IAB节点与中心单元CU通信,该方法包括:
接收CU发送的复用资源配置信息,复用资源配置信息用于表征IAB节点调度的跳与另一个IAB节点调度的跳的复用模式的资源配置;
按照复用资源配置信息表征的资源配置调度IAB节点的跳上的数据传输;
其中,IAB节点为另一个IAB节点的子IAB节点或父IAB节点。
第三方面,本申请实施例提供了一种资源配置装置,资源配置装置与第一IAB节点、第二IAB节点通信,第一IAB节点与第二IAB节点分别调度第一IAB节点的第一跳和第二跳上的数据传输,资源配置装置包括:
复用模式确定模块,用于确定第一跳和第二跳之间的复用模式;
发送模块,用于发送第一跳和/或第二跳的复用资源配置信息,复用资源配置信息用于表征复用模式的资源配置。
第四方面,本申请实施例提供了一种资源配置装置,资源配置装置与中心单元CU通信,资源配置装置包括:
接收模块,用于接收CU发送的复用资源配置信息,复用资源配置信息用于表征资源配置装置调度的跳与另一个资源配置装置调度的跳的复用模式的资源配置;
调度模块,用于按照复用资源配置信息表征的资源配置调度资源配置装置的跳上的数据传输;
其中,资源配置装置为另一个资源配置装置的子资源配置装置或父资源配置装置。
第五方面,本申请实施例提供了一种资源配置设备,包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现第一方面的技术方案中的资源配置方法或实现第二方面的技术方案中的资源配置方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现第一方面的技术方案中的资源配置方法或实现第二方面的技术方案中的资源配置方法。
本申请实施例提供了一种资源配置方法、装置和设备,CU确定第一IAB节点的第一跳和第二跳的复用模式,发送第一跳和/或第二跳的复用资源配置信息。其中,复用资源配置信息可表征该复用模式的资源配置。发送的第一跳和/或第二跳的复用资源配置信息,可使第一IAB节点基于第一跳的复用资源配置信息调度第一跳上的数据传输,和/或使第二IAB节点基于第二跳的复用资源配置信息调度第二跳上的数据传输。第一跳与第二跳采用复用模式进行数据传输,从而提高IAB节点的网络的频谱利用效率。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请。其中,相同或相似的附图标记表示相同或相似的特征。
图1为本申请提供的IAB系统的一实施例的结构示意图;
图2为本申请实施例提供的IAB节点与中心单元的一示例的通信示意图;
图3为本申请提供的应用于中心单元的资源配置方法的一实施例的流程图;
图4为本申请实施例提供的第一IAB节点的资源配置的一示例的示意图;
图5为本申请实施例提供的第一IAB节点的资源配置的另一示例的示意图;
图6为本申请实施例提供的第一IAB节点的资源配置的又一示例的示意图;
图7为本申请实施例提供的第一IAB节点在第一跳的资源模式的一示例的示意图;
图8为本申请提供的应用于IAB节点的资源配置方法的一实施例的流程图;
图9为本申请实施例提供的跳的资源模式的一示例的示意图;
图10为本申请提供的资源配置装置的一实施例的结构示意图;
图11为本申请提供的资源配置装置的一实施例的结构示意图;
图12为本申请提供的资源配置设备的一实施例的硬件结构示意图;
图13为本申请提供的资源配置设备的一实施例的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种资源配置方法、装置和设备,可应用于集成接入回传(Integrated Access Backhaul,IAB)系统中。在有线传输网部署不到位的情况下,IAB系统中IAB节点可依赖无线回传实现信息传输。图1为本申请提供的IAB系统的一实施例的结构示意图。如图1所示,IAB系统包括多个IAB节点和多个终端设备。每个IAB节点可接入一个或多个终端设备,在此并不限定。IAB节点可对应有父IAB节点(即parent IAB node),IAB节点可对应有子IAB节点(即child IAB node)。如图1所示的三个IAB节点中,第二个IAB节点即为第一个IAB节点的父节点,第三个IAB节点即为第二个IAB节点的父节点。一个IAB节点与它的下游节点之间存在跨跳(即across hop),该IAB节点与它的父IAB节点之间存在跨跳。为了便于说明,下面将“跨跳”称为“跳”。IAB节点的下 游节点可包括该IAB节点的子IAB节点或终端设备。IAB节点可调度该IAB节点与它的下游节点之间的跳,该IAB节点的父IAB节点可调度该IAB节点与它的父IAB节点之间的跳。IAB节点具体可实现为基站,在此并不限定。终端设备可实现为手机、电脑、平板电脑以及其他通信设备,在此并不限定。
一个IAB节点包括分布式单元(Distributed Unit,DU)和移动终端(Mobile Termination,MT)单元。依靠MT单元,一个IAB节点可以与一个父IAB节点的DU建立无线连接,从而建立IAB节点的回传链路。需要说明的是,在一个集成接入回传回路中包括一个宿主IAB节点(即donor IAB node)。宿主IAB节点不包括MT单元。图2为本申请实施例提供的IAB节点与中心单元(Centralized Unit,CU)的一示例的通信示意图。如图2所示,在一个集成接入回传回路中,所有IAB节点的DU连接到一个CU,由该CU对DU进行配置。所有IAB节点的MT单元连接到该CU,由该CU对MT单元进行配置。CU可具体实现为基站,在此并不限定。
本申请实施例提供一种资源配置方法,应用于CU。该CU与第一IAB节点、第二IAB节点通信。第一IAB节点与第二IAB节点分别调度第一IAB节点的第一跳和第二跳。具体地,第二IAB节点为第一IAB节点的父IAB节点,即第一IAB节点为第二IAB节点的子IAB节点。第一跳可为第一IAB节点与第一IAB节点的下游节点之间的跳,由第一IAB节点调度第一跳上的数据传输。第二跳可为第一IAB节点与第二IAB节点之间的跳,由第二IAB节点调度第二跳上的数据传输。图3为本申请提供的应用于中心单元的资源配置方法的一实施例的流程图。如图3所示,该资源配置方法可包括步骤S301和步骤S303。
在步骤S301中,确定第一跳和第二跳之间的复用模式。
第一IAB节点既参与第一跳的数据传输,又参与第二跳的数据传输。CU可预先确定第一跳和第二跳之间的复用模式,使得第一IAB节点在第一跳上的数据传输与第一IAB节点在第二跳上的数据传输处于该复用模式,从而提高IAB节点的网络的频谱利用效率。
具体地,CU可基于第一IAB节点的数据收发能力和/或第二IAB节点的数据传输能力,确定第一跳和第二跳之间的复用模式。在此并不限定CU确定第一跳和第二跳之间的复用模式的具体方式。
在步骤S302中,发送第一跳和/或第二跳的复用资源配置信息。
CU可发送第一跳的复用资源配置信息。CU可发送第二跳的复用资源配置信息。CU也可发送第一跳的复用资源配置信息和第二跳的复用资源配置信息。其中,复用资源配置信息用于表征上述步骤中复用模式的资源配置,从而使得接收到复用资源配置信息的IAB节点根据该复用资源配置信息进行资源配置。
具体地,CU可基于第一IAB节点的数据收发能力和/或第二IAB节点的数据传输能力,确定第一跳的复用资源配置信息和/或第二跳的复用资源配置信息。在此并不限定CU确定第一IAB节点的复用资源配置信息和第二IAB节点的复用资源配置信息的具体方式。
进一步地,CU向第一IAB节点发送第一跳的复用资源配置信息,以使第一IAB节点利用第一跳的复用资源配置信息,调度第一跳上的数据传输。和/或,CU向第二IAB节点发送第二跳的复用资源配置信息,以使第二IAB节点利用第二跳的复用资源配置信息,调度第二跳上的数据传输。
在本申请实施例中,CU确定第一IAB节点的第一跳和第二跳的复用模式,发送第一跳和/或第二跳的复用资源配置信息。其中,复用资源配置信息可表征该复用模式的资源配置。发送的第一跳和/或第二跳的复用资源配置信息,可使第一IAB节点基于第一跳的复用资源配置信息调度第一跳上的数据传输,和/或使第二IAB节点基于第二跳的复用资源配置信息调度第二跳上的数据传输。第一跳与第二跳采用复用模式进行数据传输,从而提高IAB节点的网络的频谱利用效率。
在一些示例中,复用资源配置信息可包括时域资源参数。时域资源参数可表征时域资源。比如,时域资源可包括时域上跳的数据传输占用的时间段。其中,时间段可包括符号(即symbol)、时隙(即slot)、子帧、子时隙(即sub-slot)、符号集合、时隙集合或子时隙集合等,在此并不限定。
复用资源配置信息还可包括以下的一项或多项:频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
复用模式参数可表征第一跳和第二跳的复用模式。例如,复用模式可包括但不限于以下一种或多种:第一跳和第二跳空分复用发送、第一跳和第二跳空分复用接收、第一跳和第二跳频分复用发送、第一跳和第二跳频分复用接收、第一跳的上行接收和第二跳的上行发送同时同频复用、第一跳的下行发送和第二跳的下行接收同时同频复用、第一跳的上行接收和第二跳的上行发送同时不同频复用、第一跳的下行发送和第二跳的下行接收同时不同频复用。其他的资源复用模式也在本申请实施例的保护范围内,如单天线模块的同时同频全双工模式,在此并不一一进行举例说明。
下面为了便于说明,将第一跳和第二跳空分复用发送称为空分复用数据发送模式(即SDM TX模式);将第一跳和第二跳空分复用接收称为空分复用数据接收模式(即SDMRX模式);将第一跳和第二跳频分复用发送称为频分复用数据发送模式(即FDMTX模式);将第一跳和第二跳频分复用接收称为频分复用数据发送模式(即FDM RX模式);将第一跳的上行接收和第二跳的上行发送同时同频复用称为第一全双工模式;将第一跳的下行发送和第二跳的下行接收同时同频复用称为第二全双工模式;将第一跳的上行接收和第二跳的上行发送同时不同频复用称为第三全双工模式;将第一跳的下行发送和第二跳的下行接收同时不同频复用称为第四全双工模式。
空分复用(Space Division Multiplexing,SDM)指IAB节点在同样的时频资源上同时从父IAB节点接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)数据和从子IAB节点或终端设备接收物理上行共享信道(Physical Uplink Shared Channel,PDSCH)数据,或者IAB节点在同样的时频资源上同时向父IAB节点发送PUSCH数据和向子IAB节点或终端设备发送PDSCH数据。其中,IAB节点与子IAB节点之间的跳为第一跳,IAB节点与父IAB节点之间的跳为第二跳。
SDM TX模式表征同时具有第一跳和第二跳上的数据发送,即第一IAB节点在第一跳进行下行数据发送,第一IAB节点在第二跳进行上行数 据发送,第一IAB节点在第一跳和第二跳之间的功率分配。
SDMRX模式表征同时具有第一跳和第二跳上的数据接收,即第一IAB节点在第一跳进行上行数据接收,第一IAB节点在第二跳进行下行数据接收。
频分复用(Frequency Division Multiplexing,FDM)指IAB节点在不同的频率资源上同时从父IAB节点接收PDSCH数据和从子IAB节点或终端设备接收PUSCH数据,或者IAB节点在不同的频率资源上同时向父IAB节点发送PUSCH数据和向子IAB节点或终端设备发送PDSCH数据。
FDM TX模式表征同时具有第一跳和第二跳上的数据发送,第一IAB节点在第一跳上的一部分频段进行数据下行发送,第一IAB节点在第二跳上的另一部分频段进行数据上行发送。
FDMRX模式表征同时具有第一跳和第二跳上的数据接收,第一IAB节点在第一跳上的一部分频段进行数据上行接收,第一IAB节点在第二跳上的另一部分频段进行数据下行接收。
同时同频双工(即Full Duplex)指IAB节点在同样的时频资源上同时从父IAB节点接收PDSCH数据和向子IAB节点或终端设备发送PDSCH数据,或者IAB节点在同样的时频资源上同时向父IAB节点发送PUSCH数据和从子IAB节点或终端设备接收PUSCH数据。MPTR是IAB节点使用不同的天线模块(即panel)同时分别进行数据收发的技术。例如,一个IAB节点装备两个天线模块,其中一个天线模块接收数据时,另一个天线模块发送数据。MPTR的天线模块之间可以有较大的隔离度,可以一定程度上减少数据发送对数据接收造成的干扰。
第一全双工模式表征在相同的时域资源和相同的频域资源上进行第一跳的数据上行接收和第二跳的数据上行发送。在一些示例中,第一全双工模式可通过多天线模块传输上行(Multiple Pannel Transmission ReceptionUplink,MPTR UL)方式实现。
第二全双工模式表征在相同的时域资源和相同的频域资源上进行第一跳的数据下行发送和第二跳的数据下行接收。在一些示例中,第二全双工 模式可通过多天线模块传输下行(Multiple Pannel Transmission Reception Downlink,MPTRDL)方式实现。
第三全双工模式表征在相同的时域资源和不同的频域资源上分别进行第一跳的数据上行接收和第二跳的数据上行发送。在一些示例中,第三全双工模式可通过MPTR UL方式实现。
第四全双工模式表征在相同的时域资源和不同的频域资源上分别进行第一跳的数据下行发送和第二跳的数据下行接收。在一些示例中,第四全双工模式可通过MPTRDL方式实现。
MPTR UL模式表征同时具有第一跳和第二跳上的数据传输,第一IAB节点在第一跳进行数据上行接收,第一IAB节点在第二跳进行数据上行发送。
MPTRDL模式表征同时具有第一跳和第二跳上的数据传输,即第一IAB节点在第一跳进行数据下行发送,第一IAB节点在第二跳进行数据下行接收。
频域资源参数可表征频域资源。例如,频域资源可包括频域上IAB节点在某一跳上进行数据传输占用的频段。
功率控制参数可表征第一跳的功率控制和/或第二跳的功率控制。
周期参数可表征第一跳的资源配置和第二跳的资源配置的周期。
复用模式配置参数为复用模式下的具体配置参数。比如,若复用模式为SDM TX模式或SDMRX模式,复用模式配置参数可为SDM模式下的具体配置参数等,在此并不限定。
在一些示例中,复用模式参数可具体用数字、字母、特殊符号或字符串等表示,在此并不限定。上述复用资源配置信息可承载于无线资源控制(Radio Resource Control,RRC)信令或F1-AP信令传输至第一IAB节点或第二IAB节点。
CU可利用RRC信令将复用资源配置信息发送给相应的第一IAB节点中的MT单元或第二IAB节点中的MT单元,再由第一IAB节点中的MT单元将复用资源配置信息转发给第一IAB节点中的DU,或者,再由第二IAB节点中的MT单元将复用资源配置信息转发给第二IAB节点中的 DU。
CU可利用F1-AP信令将复用资源配置信息发送给相应的第一IAB节点中的DU或第二IAB节点中的DU。
为了便于说明,下面举例说明第一IAB节点对第一跳调度及第二IAB节点对第二跳调度后的第一IAB节点的资源配置。
例如,图4为本申请实施例提供的第一IAB节点的资源配置的一示例的示意图。如图4所示,第一IAB节点配置在时隙2和时隙3为SDM TX模式,在时隙4和时隙5为SDMRX模式,且周期为11个时隙。对应地,在第二个周期中,第一IAB节点配置在时隙13和时隙14为SDM TX模式,在时隙15和时隙16为SDMRX模式。依次类推,在此不一一说明每个周期中第一IAB节点的配置。
又例如,图5为本申请实施例提供的第一IAB节点的资源配置的另一示例的示意图。如图5所示,第一IAB节点配置在时隙2和时隙3为FDM TX模式,在时隙4和时隙5为FDMRX模式,且周期为11个时隙。对应地,在第二个周期中,第一IAB节点配置在时隙13和时隙14为FDM TX模式,在时隙15和时隙16为FDMRX模式。依次类推,在此不一一说明每个周期中第一IAB节点的配置。
再例如,图6为本申请实施例提供的第一IAB节点的资源配置的又一示例的示意图。如图6所示,第一IAB节点配置在时隙2和时隙3为MPTR UL模式,在时隙4和时隙5为MPTRDL模式,且周期为11个时隙。对应地,在第二个周期中,第一IAB节点配置在时隙13和时隙14为MPTR UL模式,在时隙15和时隙16为MPTRDL模式。依次类推,在此不一一说明每个周期中第一IAB节点的配置。
进一步地,复用资源配置信息还可具体指示跳在某一个或某几个时隙上的资源模式(即resource pattern)。图7为本申请实施例提供的第一IAB节点在第一跳的资源模式的一示例的示意图。如图7所示,第一IAB节点的第一跳在时隙0、时隙1和时隙2为HARDUL配置,在时隙3和时隙4为NA配置,在时隙5、时隙6和时隙7为HARD DL配置,在时隙8和时隙9为flexible配置。其中,时隙1和时隙2的资源复用模式为SDM  RX模式。
其中,HARDUL配置指DU可以随时使用的上行时隙或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。HARDDL配置指DU可以随时使用的下行时隙或OFDM符号。NA指DU不可以使用的时隙或OFDM符号。flexible配置指第一跳的上一跳不使用时DU可使用的时隙或OFDM符号。
在另一些实施例中,CU还可将第一跳的至少部分复用资源配置信息向第二IAB节点发送,以使第二IAB节点获取到第一跳的至少部分的资源配置情况。在一些示例中,第一跳的至少部分复用资源配置信息可用于第二IAB节点基于第一跳的至少部分复用资源配置信息和第二跳的复用资源配置信息,确定第一跳与第二跳之间的复用模式。
在又一些实施例中,CU还可将第二跳的至少部分复用资源配置信息向第一IAB节点发送,以使第一IAB节点获取到第二跳的至少部分的资源配置情况。在一些示例中,第二跳的至少部分复用资源配置信息可用于第一IAB节点还可基于第二跳的至少部分复用资源配置信息和第一跳的复用资源配置信息,确定第一跳与第二跳的资源复用模式。
本申请实施例还提供一种资源配置方法,应用于IAB节点。该IAB节点可与CU通信。图8为本申请提供的应用于IAB节点的资源配置方法的一实施例的流程图。如图8所示,该资源配置方法可包括步骤S401和步骤S402。
在步骤S401中,接收CU发送的复用资源配置信息。
复用资源配置信息用于表征IAB节点调度的跳与另一个IAB节点调度的跳的复用模式的资源配置。
在步骤S402中,按照复用资源配置信息表征的资源配置,调度IAB节点的跳上的数据传输。
该IAB节点调度的跳与另一个IAB节点调度的跳采用复用模式进行数据传输,提高了IAB节点的网络的频谱利用效率。另一个IAB节点也可与CU通信。另一个IAB节点为IAB节点的子IAB节点或父IAB节点。
在另一个IAB节点为IAB节点的子IAB节点的情况下,该IAB节点 可看作上述实施例中的第二IAB节点,另一个IAB节点可看作上述实施例中的第一IAB节点。
在另一个IAB节点为IAB节点的父IAB节点的情况下,该IAB节点可看作上述实施例中的第一IAB节点,另一个IAB节点可看作上述实施例中的第二IAB节点。
复用资源配置信息的说明可参见上述实施例中的相关内容,在此不再赘述。
在本申请实施例中,IAB节点可基于从CU接收的复用资源配置信息,对该IAB节点调度的跳进行资源配置。且该IAB节点调度的跳与该IAB节点的子IAB节点或父IAB节点调度的跳采用复用模式进行数据传输,从而提高IAB的网络的频谱利用效率。
在一些示例中,上述复用资源配置信息可包括时域资源参数。
进一步地,上述复用资源配置信息还可包括但不限于以下一项或多项:频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
在一些示例中,上述复用资源配置信息可承载于RRC信令或承载于F1-AP信令。也就是说,IAB节点可接收RRC信令或F1-AP信令,RRC信令包括复用资源配置信息,或者,F1-AP信令包括复用资源配置信息。
复用模式包括以下一种或多种:IAB节点调度的跳和另一个IAB节点调度的跳空分复用发送、IAB节点调度的跳和另一个IAB节点调度的跳空分复用接收、IAB节点调度的跳和另一个IAB节点调度的跳频分复用发送、IAB节点调度的跳和另一个IAB节点调度的跳频分复用接收、IAB节点调度的跳的上行接收和另一个IAB节点调度的跳的上行发送同时同频复用、IAB节点调度的跳的下行发送和另一个IAB节点调度的跳的下行接收同时同频复用、IAB节点调度的跳的上行接收和另一个IAB节点调度的跳的上行发送同时不同频复用、IAB节点调度的跳的下行发送和另一个IAB节点调度的跳的下行接收同时不同频复用。
其中,时域资源参数、频域资源参数、功率控制参数、复用模式参数、周期参数、复用模式配置参数、RRC信令以及F1-AP信令的说明可参 见上述实施例中的相关内容,在此不再赘述。
在另一些实施例中,该IAB节点还可接收CU发送的另一个IAB节点的至少部分复用资源配置信息,以获取另一个IAB节点调度的跳的资源配置情况。进一步地,该IAB节点还可基于IAB节点自身的复用资源配置信息和另一个IAB节点的复用资源配置信息,获取另一个IAB节点调度的跳的复用模式。
具体地,该IAB节点自身的复用资源配置信息可表征该IAB节点调度的跳的资源配置,另一个IAB节点的复用资源配置信息可表征另一个IAB节点调度的跳的资源配置,对比该IAB节点调度的跳的资源配置和另一个IAB节点调度的跳的资源配置,可确定另一个IAB节点调度的跳的资源复用模式。
例如,图9为本申请实施例提供的跳的资源模式的一示例的示意图。在本示例中,该IAB节点为另一IAB节点的子IAB节点,即该IAB节点可看作上述实施例中的第一IAB节点,另一IAB节点可看作上述实施例中的第二IAB节点。对应地,该IAB节点调度的为第一跳,另一IAB节点调度的为第二跳。第一跳和第二跳的资源配置如图9所示,第一跳在时隙0为HARDUL配置,在时隙1为HARDUL配置,在时隙6为HARD DL配置,在时隙7为HARD DL配置。第二跳在时隙0为HARDUL配置,在时隙1为HARDDL配置,在时隙6为HARDUL配置,在时隙7为HARD DL配置。
若该IAB节点接收到CU发送的另一个IAB节点的复用资源配置信息,得到另一个IAB节点调度的第二跳的资源配置。在时隙0,第一跳的资源配置为HARDUL配置,第二跳的资源配置为HARDUL配置,可确定第一跳和第二跳的资源复用模式为MPTR UL模式。在时隙1,第一跳的资源配置为HARDUL配置,第二跳的资源配置为HARDDL配置,可确定第一跳和第二跳的资源复用模式为SDM RX模式。在时隙6,第一跳的资源配置为HARDDL配置,第二跳的资源配置为HARDUL配置,可确定第一跳和第二跳的资源复用模式为SDM TX模式。在时隙7,第一跳的资源配置为HARDDL配置,第二跳的资源配置为HARDDL配置,可确定第一 跳和第二跳的资源复用模式为MPTR DL模式。
本申请实施例还提供一种资源配置装置。该资源配置装置与第一IAB节点、第二IAB节点通信。第一IAB节点与第二IAB节点分别调度第一IAB节点的第一跳和第二跳上的数据传输。具体的,该资源配置装置可实现为上述实施例中的CU。图10为本申请提供的资源配置装置的一实施例的结构示意图。如图10所示,该资源配置装置500可包括复用模式确定模块501和发送模块502。
复用模式确定模块501用于确定第一跳和第二跳之间的复用模式。
发送模块502用于发送第一跳和/或第二跳的复用资源配置信息。
复用资源配置信息用于表征复用模式的资源配置。
在本申请实施例中,资源配置装置确定第一IAB节点的第一跳和第二跳的复用模式,发送第一跳和/或第二跳的复用资源配置信息。其中,复用资源配置信息可表征该复用模式的资源配置。发送的第一跳和/或第二跳的复用资源配置信息,可使第一IAB节点基于第一跳的复用资源配置信息调度第一跳上的数据传输,和/或使第二IAB节点基于第二跳的复用资源配置信息调度第二跳上的数据传输。第一跳与第二跳采用复用模式进行数据传输,从而提高IAB节点的网络的频谱利用效率。
在一些示例中,发送模块502用于:向第一IAB节点发送第一跳的复用资源配置信息,和/或向第二IAB节点发送第二跳的复用资源配置信息。
在一些示例中,发送模块502还用于将第一跳的至少部分复用资源配置信息向第二IAB节点发送。其中,第一跳的至少部分复用资源配置信息可用于第二IAB节点基于第一跳的至少部分复用资源配置信息和第二跳的复用资源配置信息,确定第一跳和第二跳之间的复用模式.
在另一些示例中,发送模块502还用于将第二跳的至少部分复用资源配置信息向第一IAB节点发送。第二跳的至少部分复用资源配置信息可用于第一IAB节点基于第二跳的至少部分复用资源配置信息和第一跳的复用资源配置信息,确定第一跳和第二跳之间的复用模式。
具体地,上述实施例中的复用资源配置信息包括时域资源参数。
进一步地,复用资源配置信息还包括以下一项或多项:频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
具体地,复用模式包括以下一种或多种:第一跳和第二跳空分复用发送、第一跳和第二跳空分复用接收、第一跳和第二跳频分复用发送、第一跳和第二跳频分复用接收、第一跳的上行接收和第二跳的上行发送同时同频复用、第一跳的下行发送和第二跳的下行接收同时同频复用、第一跳的上行接收和第二跳的上行发送同时不同频复用、第一跳的下行发送和第二跳的下行接收同时不同频复用。
在一些示例中,复用资源配置信息承载于RRC信令或承载于F1-AP信令。
具体地,上述实施例中的第一IAB节点为第二IAB节点的子IAB节点。
本申请实施例还提供了一种资源配置装置。该资源配置装置可与CU通信。具体地,该资源配置装置可实现为上述实施例中的IAB节点。图11为本申请提供的资源配置装置的一实施例的结构示意图。如图11所示,该资源配置装置600可包括接收模块601和调度模块602。
接收模块601用于接收CU发送的复用资源配置信息。
其中,复用资源配置信息用于表征资源配置装置调度的跳与另一个资源配置装置调度的跳的复用模式的资源配置。
调度模块602用于按照复用资源配置信息表征的资源配置调度在跳上的数据传输。
资源配置装置为另一个资源配置装置的子资源配置装置或父资源配置装置。
在本申请实施例中,资源配置装置可基于从CU接收的复用资源配置信息,对该资源配置装置调度的跳进行资源配置。且该资源配置装置调度的跳与该资源配置装置的子资源配置装置或父资源配置装置调度的跳采用复用模式进行数据传输,从而提高IAB的网络的频谱利用效率。
在一些示例中,接收模块还用于:接收CU发送的另一个资源配置装置调度的跳的至少部分复用资源配置信息;基于资源配置装置调度的跳的 复用资源配置信息和另一个资源配置装置调度的跳的至少部分复用资源配置信息,获取另一个资源配置装置调度的跳的复用模式。
具体地,复用资源配置信息包括时域资源参数。
进一步地,复用资源配置信息还包括以下一项或多项:频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
具体地,复用模式包括以下一种或多种:资源配置装置调度的跳和另一个资源配置装置调度的跳空分复用发送、资源配置装置调度的跳和另一个资源配置装置调度的跳空分复用接收、资源配置装置调度的跳和另一个资源配置装置调度的跳频分复用发送、资源配置装置调度的跳和另一个资源配置装置调度的跳频分复用接收、资源配置装置调度的跳的上行接收和另一个资源配置装置调度的跳的上行发送同时同频复用、资源配置装置调度的跳的下行发送和另一个资源配置装置调度的跳的下行接收同时同频复用、资源配置装置调度的跳的上行接收和另一个资源配置装置调度的跳的上行发送同时不同频复用、资源配置装置调度的跳的下行发送和另一个资源配置装置调度的跳的下行接收同时不同频复用。
在一些示例中,复用资源配置信息承载于无线资源控制RRC信令或承载于F1-AP信令。
图12为本申请提供的资源配置设备的一实施例的硬件结构示意图。该资源配置设备可视为上述实施例中的CU,具体可实现为基站。如图12所示,该资源配置设备700包括:存储器701、处理器702、射频单元703及存储在存储器701上并可在处理器702上运行的计算机程序。本领域技术人员可以理解,图12中示出的资源配置设备的结构并不构成对资源配置设备的限定,资源配置设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,处理器702用于第一跳和第二跳之间的复用模式。
射频单元703用于发送第一跳和/或第二跳的复用资源配置信息。其中,复用资源配置信息用于表征复用模式的资源配置。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器702代表的一个或多个处理器和存储器701代表的存储器的各种电 路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。射频单元703可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元,用于在处理器702的控制下接收和发送数据。处理器702负责管理总线架构和通常的处理,存储器701可以存储处理器702在执行操作时所使用的数据。
在一些实施例中,资源配置设备可包括处理器702,存储器701,存储在存储器701上并可在处理器702上运行的计算机程序,该计算机程序被处理器702执行时实现上述用于CU的如图3所示的资源配置方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图13为本申请提供的资源配置设备的一实施例的硬件结构示意图。该资源配置设备可视为上述实施例中的IAB节点,具体可实现为基站。如图13所示,该资源配置设备800包括:存储器801、处理器802、射频单元803及存储在存储器801上并可在处理器802上运行的计算机程序。本领域技术人员可以理解,图13中示出的资源配置设备的结构并不构成对资源配置设备的限定,资源配置设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频单元803用于接收CU发送的复用资源配置信息。其中,复用资源配置信息用于表征资源配置设备调度的跳与另一个资源配置设备调度的跳的复用模式的资源配置。资源配置设备为另一个资源配置设备的子资源配置设备或父资源配置设备。
处理器802用于按照复用资源配置信息表征的资源配置,调度资源配置设备的跳上的数据传输。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器802代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本 文不再对其进行进一步描述。总线接口提供接口。射频单元803可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元,用于在处理器802的控制下接收和发送数据。处理器802负责管理总线架构和通常的处理,存储器801可以存储处理器802在执行操作时所使用的数据。
在一些实施例中,资源配置设备可包括处理器802,存储器801,存储在存储器801上并可在处理器802上运行的计算机程序,该计算机程序被处理器802执行时实现上述用于IAB节点的如图8所示的资源配置方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于CU的资源配置方法实施例的各个过程,或者,实现上述应用于IAB节点的资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
上述实施例中的资源配置方法、装置、设备及存储介质可应用于5G通信系统以及后续通信系统中,在此并不限定。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于CU实施例、IAB节点实施例、基站实施例和计算机可读存储介质实施例而言,相关之处可以参见方法实施例的说明部分。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面参考根据本申请的实施例的方法、装置(系统)和机器程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由程序或指令实现。这些程序或指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些程序或指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种资源配置方法,应用于中心单元CU,所述CU与第一IAB节点、第二IAB节点通信,所述第一IAB节点与所述第二IAB节点分别调度所述第一IAB节点的第一跳和第二跳上的数据传输,所述方法包括:
    确定第一跳和第二跳之间的复用模式;
    发送所述第一跳和/或所述第二跳的复用资源配置信息,所述复用资源配置信息用于表征所述复用模式的资源配置。
  2. 根据权利要求1所述的方法,其中,发送所述第一跳和/或所述第二跳的复用资源配置信息,包括:
    向所述第一IAB节点发送所述第一跳的所述复用资源配置信息,和/或向所述第二IAB节点发送所述第二跳的所述复用资源配置信息。
  3. 根据权利要求1所述的方法,其中,还包括:
    将所述第一跳的至少部分所述复用资源配置信息向所述第二IAB节点发送,所述第一跳的至少部分所述复用资源配置信息用于所述第二IAB节点基于所述第一跳的至少部分所述复用资源配置信息和所述第二跳的所述复用资源配置信息,确定所述第一跳和所述第二跳之间的所述复用模式;
    或者,
    将所述第二跳的至少部分所述复用资源配置信息向所述第一IAB节点发送,所述第二跳的至少部分所述复用资源配置信息用于所述第一IAB节点基于所述第二跳的至少部分所述复用资源配置信息和所述第一跳的所述复用资源配置信息,确定所述第一跳和所述第二跳之间的所述复用模式。
  4. 根据权利要求1至3中任意一项所述的方法,其中,所述复用资源配置信息包括时域资源参数。
  5. 根据权利要求4所述的方法,其中,所述复用资源配置信息还包括以下一项或多项:
    频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
  6. 根据权利要求1所述的方法,其中,所述复用模式包括以下一种 或多种:
    所述第一跳和所述第二跳空分复用发送、所述第一跳和所述第二跳空分复用接收、所述第一跳和所述第二跳频分复用发送、所述第一跳和第二跳频分复用接收、所述第一跳的上行接收和所述第二跳的上行发送同时同频复用、所述第一跳的下行发送和所述第二跳的下行接收同时同频复用、所述第一跳的上行接收和所述第二跳的上行发送同时不同频复用、所述第一跳的下行发送和所述第二跳的下行接收同时不同频复用。
  7. 根据权利要求1所述的方法,其中,所述复用资源配置信息承载于无线资源控制RRC信令或承载于F1-AP信令。
  8. 根据权利要求1至3中任意一项所述的方法,其中,所述第一IAB节点为所述第二IAB节点的子IAB节点。
  9. 一种资源配置方法,应用于IAB节点,所述IAB节点与中心单元CU通信,所述方法包括:
    接收所述CU发送的复用资源配置信息,所述复用资源配置信息用于表征所述IAB节点调度的跳与另一个IAB节点调度的跳的复用模式的资源配置;
    按照所述复用资源配置信息表征的所述资源配置,调度所述IAB节点的跳上的数据传输;
    其中,所述IAB节点为所述另一个IAB节点的子IAB节点或父IAB节点。
  10. 根据权利要求9所述的方法,其中,还包括:
    接收所述CU发送的所述另一个IAB节点调度的跳的至少部分所述复用资源配置信息;
    基于所述IAB节点调度的跳的所述复用资源配置信息和所述另一个IAB节点调度的跳的至少部分所述复用资源配置信息,获取所述另一个IAB节点调度的跳的所述复用模式。
  11. 根据权利要求9或10所述的方法,其中,所述复用资源配置信息包括时域资源参数。
  12. 根据权利要求11所述的方法,其中,所述复用资源配置信息还 包括以下一项或多项:
    频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
  13. 根据权利要求9所述的方法,其中,所述复用模式包括以下一种或多种:
    所述IAB节点调度的跳和所述另一个IAB节点调度的跳空分复用发送、所述IAB节点调度的跳和所述另一个IAB节点调度的跳空分复用接收、所述IAB节点调度的跳和所述另一个IAB节点调度的跳频分复用发送、所述IAB节点调度的跳和所述另一个IAB节点调度的跳频分复用接收、所述IAB节点调度的跳的上行接收和所述另一个IAB节点调度的跳的上行发送同时同频复用、所述IAB节点调度的跳的下行发送和所述另一个IAB节点调度的跳的下行接收同时同频复用、所述IAB节点调度的跳的上行接收和所述另一个IAB节点调度的跳的上行发送同时不同频复用、所述IAB节点调度的跳的下行发送和所述另一个IAB节点调度的跳的下行接收同时不同频复用。
  14. 根据权利要求9或10所述的方法,其中,所述复用资源配置信息承载于无线资源控制RRC信令或承载于F1-AP信令。
  15. 一种资源配置装置,所述资源配置装置与第一IAB节点、第二IAB节点通信,所述第一IAB节点与所述第二IAB节点分别调度所述第一IAB节点的第一跳和第二跳上的数据传输,所述资源配置装置包括:
    复用模式确定模块,用于确定第一跳和第二跳之间的复用模式;
    发送模块,用于发送所述第一跳和/或所述第二跳的复用资源配置信息,所述复用资源配置信息用于表征所述复用模式的资源配置。
  16. 根据权利要求15所述的资源配置装置,其中,所述发送模块具体用于:
    向所述第一IAB节点发送所述第一跳的所述复用资源配置信息,和/或向所述第二IAB节点发送所述第二跳的所述复用资源配置信息。
  17. 根据权利要求15所述的资源配置装置,其中,
    所述发送模块还用于将所述第一跳的至少部分所述复用资源配置信息 向所述第二IAB节点发送,所述第一跳的至少部分所述复用资源配置信息用于所述第二IAB节点基于所述第一跳的至少部分所述复用资源配置信息和所述第二跳的所述复用资源配置信息,确定所述第一跳和所述第二跳之间的所述复用模式;
    或者,
    所述发送模块还用于将所述第二跳的至少部分所述复用资源配置信息向所述第一IAB节点发送,所述第二跳的至少部分所述复用资源配置信息用于所述第一IAB节点基于所述第二跳的至少部分所述复用资源配置信息和所述第一跳的所述复用资源配置信息,确定所述第一跳和所述第二跳之间的所述复用模式。
  18. 根据权利要求15至17中任意一项所述的资源配置装置,其中,所述复用资源配置信息包括时域资源参数。
  19. 根据权利要求18所述的资源配置装置,其中,所述复用资源配置信息还包括以下一项或多项:
    频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
  20. 根据权利要求15所述的资源配置装置,其中,所述复用模式包括以下一种或多种:
    所述第一跳和所述第二跳空分复用发送、所述第一跳和所述第二跳空分复用接收、所述第一跳和所述第二跳频分复用发送、所述第一跳和第二跳频分复用接收、所述第一跳的上行接收和所述第二跳的上行发送同时同频复用、所述第一跳的下行发送和所述第二跳的下行接收同时同频复用、所述第一跳的上行接收和所述第二跳的上行发送同时不同频复用、所述第一跳的下行发送和所述第二跳的下行接收同时不同频复用。
  21. 根据权利要求15所述的资源配置装置,其中,所述复用资源配置信息承载于无线资源控制RRC信令或承载于F1-AP信令。
  22. 根据权利要求15至17中任意一项所述的资源配置装置,其中,所述第一IAB节点为所述第二IAB节点的子IAB节点。
  23. 一种资源配置装置,所述资源配置装置与中心单元CU通信,所 述资源配置装置包括:
    接收模块,用于接收所述CU发送的复用资源配置信息,所述复用资源配置信息用于表征所述资源配置装置调度的跳与另一个资源配置装置调度的跳的复用模式的资源配置;
    调度模块,用于按照所述复用资源配置信息表征的所述资源配置调度所述资源配置装置的跳上的数据传输;
    其中,所述资源配置装置为所述另一个资源配置装置的子资源配置装置或父资源配置装置。
  24. 根据权利要求23所述的资源配置装置,其中,所述接收模块还用于:
    接收所述CU发送的所述另一个资源配置装置调度的跳的至少部分所述复用资源配置信息;
    基于所述资源配置装置调度的跳的所述复用资源配置信息和所述另一个资源配置装置调度的跳的至少部分所述复用资源配置信息,获取所述另一个资源配置装置调度的跳的所述复用模式。
  25. 根据权利要求23或24所述的资源配置装置,其中,所述复用资源配置信息包括时域资源参数。
  26. 根据权利要求25所述的资源配置装置,其中,所述复用资源配置信息还包括以下一项或多项:
    频域资源参数、复用模式参数、功率控制参数、周期参数、复用模式配置参数。
  27. 根据权利要求23所述的资源配置装置,其中,所述复用模式包括以下一种或多种:
    所述资源配置装置调度的跳和所述另一个资源配置装置调度的跳空分复用发送、所述资源配置装置调度的跳和所述另一个资源配置装置调度的跳空分复用接收、所述资源配置装置调度的跳和所述另一个资源配置装置调度的跳频分复用发送、所述资源配置装置调度的跳和所述另一个资源配置装置调度的跳频分复用接收、所述资源配置装置调度的跳的上行接收和所述另一个资源配置装置调度的跳的上行发送同时同频复用、所述资源配 置装置调度的跳的下行发送和所述另一个资源配置装置调度的跳的下行接收同时同频复用、所述资源配置装置调度的跳的上行接收和所述另一个资源配置装置调度的跳的上行发送同时不同频复用、所述资源配置装置调度的跳的下行发送和所述另一个资源配置装置调度的跳的下行接收同时不同频复用。
  28. 根据权利要求23或24所述的资源配置装置,其中,所述复用资源配置信息承载于无线资源控制RRC信令或承载于F1-AP信令。
  29. 一种资源配置设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的资源配置方法或实现如权利要求9至14中任一项所述的资源配置方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的资源配置方法或实现如权利要求9至14中任一项所述的资源配置方法。
PCT/CN2021/073101 2020-01-23 2021-01-21 资源配置方法、装置和设备 WO2021147955A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022544327A JP7339451B2 (ja) 2020-01-23 2021-01-21 リソース配置方法、装置及び機器
KR1020227028199A KR20220129038A (ko) 2020-01-23 2021-01-21 자원 구성 방법, 장치 및 디바이스
EP21744689.7A EP4096327A4 (en) 2020-01-23 2021-01-21 RESOURCE CONFIGURATION METHOD AND APPARATUS, AND DEVICE
US17/847,140 US20220322320A1 (en) 2020-01-23 2022-06-22 Resource configuration method, apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010076411.4 2020-01-23
CN202010076411.4A CN113163489B (zh) 2020-01-23 2020-01-23 资源配置方法、装置和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,140 Continuation US20220322320A1 (en) 2020-01-23 2022-06-22 Resource configuration method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2021147955A1 true WO2021147955A1 (zh) 2021-07-29

Family

ID=76881940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073101 WO2021147955A1 (zh) 2020-01-23 2021-01-21 资源配置方法、装置和设备

Country Status (6)

Country Link
US (1) US20220322320A1 (zh)
EP (1) EP4096327A4 (zh)
JP (1) JP7339451B2 (zh)
KR (1) KR20220129038A (zh)
CN (1) CN113163489B (zh)
WO (1) WO2021147955A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11751219B2 (en) * 2021-04-22 2023-09-05 T-Mobile Innovations Llc Radio frequency allocation among wireless user equipment and integrated access and backhaul mobile terminations
CN115996466B (zh) * 2023-03-23 2023-06-27 广州世炬网络科技有限公司 基于传输链路参数的节点功能切换控制方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190319774A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Scheduling over multiplexed resources under half-duplex constraint
CN110691416A (zh) * 2018-07-05 2020-01-14 华为技术有限公司 一种资源调度的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351836B (zh) 2018-04-03 2022-12-13 维沃移动通信有限公司 中继资源的配置方法和设备
CN110418380A (zh) * 2018-04-26 2019-11-05 中兴通讯股份有限公司 资源分配方法、测量方法、频域资源的确定方法、传输方法及相应装置、设备和存储介质
US11089622B2 (en) * 2018-05-29 2021-08-10 Qualcomm Incorporated Supporting scheduling plan indications
US20190394687A1 (en) * 2018-06-22 2019-12-26 Sharp Laboratories Of America, Inc. Integrated Access and Backhaul Next Generation NodeB Capabilities and Signaling
CN110536352A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 信息配置及资源预申请方法、装置、节点及存储介质
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190319774A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Scheduling over multiplexed resources under half-duplex constraint
CN110691416A (zh) * 2018-07-05 2020-01-14 华为技术有限公司 一种资源调度的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on IAB resource configuration and multiplexing", 3GPP DRAFT; R1-1912133, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, U.S.; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051819966 *
HUAWEI, HISILICON: "On resource coordination and dynamic scheduling in IAB", 3GPP DRAFT; R1-1812201, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 November 2018 (2018-11-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 5, XP051478357 *
QUALCOMM INCORPORATED (MEDIATOR): "Rel-17 IAB email discussion - report", 3GPP DRAFT; RP-193094, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 8 December 2019 (2019-12-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051838726 *

Also Published As

Publication number Publication date
JP2023512968A (ja) 2023-03-30
US20220322320A1 (en) 2022-10-06
EP4096327A4 (en) 2023-07-05
EP4096327A1 (en) 2022-11-30
CN113163489A (zh) 2021-07-23
KR20220129038A (ko) 2022-09-22
CN113163489B (zh) 2023-04-07
JP7339451B2 (ja) 2023-09-05

Similar Documents

Publication Publication Date Title
US11463226B2 (en) Resource indication method and communications device
US10904919B2 (en) Information feedback method, base station, terminal and storage medium
US11832225B2 (en) Method and device for configuring relay resource
US20140247785A1 (en) Method, terminal, and base station for cooperative communication
US11128412B2 (en) Information transmission method and communications device
CN112399585B (zh) 一种资源复用方法及装置
US20220322320A1 (en) Resource configuration method, apparatus, and device
EP4195832A1 (en) Resource multiplexing indication method and device, and relay node
CN114451033A (zh) 一种资源的动态指示方法及装置
US20220263613A1 (en) Resource configuration method and apparatus
CN112584518A (zh) 一种资源确定方法及装置
EP3082357B1 (en) Methods and devices for performing downlink transmission
WO2021160150A1 (zh) Iab网络的复用调度方法和iab节点
CN109120381B (zh) 信号发送和接收方法、装置
US11212795B2 (en) Method and apparatus for indicating and determining slot structure
CN114520987A (zh) Iab节点的冲突处理方法、装置、设备及可读存储介质
KR20170066601A (ko) 데이터 채널 스케줄링 방법, 장치 및 시스템
CN113766516A (zh) 上行配置方法、系统、基站和存储介质
CN108631901B (zh) 一种信息传输方法、处理方法及装置
CN113973361A (zh) 功率分配、获取方法、装置及节点设备
WO2021248960A1 (zh) 确定资源的方法和装置
WO2022105904A1 (zh) 传输处理方法、装置及通信设备
CN115347990A (zh) 传输处理方法、装置、通信设备及可读存储介质
CN115915462A (zh) 信道接入优先级capc的确定方法和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744689

Country of ref document: EP

Effective date: 20220823