WO2021147939A1 - 抗除草剂多肽、核酸及其应用 - Google Patents

抗除草剂多肽、核酸及其应用 Download PDF

Info

Publication number
WO2021147939A1
WO2021147939A1 PCT/CN2021/073021 CN2021073021W WO2021147939A1 WO 2021147939 A1 WO2021147939 A1 WO 2021147939A1 CN 2021073021 W CN2021073021 W CN 2021073021W WO 2021147939 A1 WO2021147939 A1 WO 2021147939A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
hppd
amino acid
plants
mutant
Prior art date
Application number
PCT/CN2021/073021
Other languages
English (en)
French (fr)
Inventor
王木桂
牛小牧
张金山
王飞
Original Assignee
山东舜丰生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东舜丰生物科技有限公司 filed Critical 山东舜丰生物科技有限公司
Priority to CN202180001779.7A priority Critical patent/CN113423826B/zh
Publication of WO2021147939A1 publication Critical patent/WO2021147939A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)

Definitions

  • the alanine (A) at position 347 is mutated to an amino acid selected from the group consisting of valine (V).
  • the glutamic acid (E) at position 353 is mutated to an amino acid selected from the group consisting of lysine (K).
  • the mutation methods of other mutation sites corresponding to the amino acid sequence shown in SEQ ID No. 1 include: A20E, D152N, D170N, G176C, E353K, P211L, P336L, Y339H, Y340H, R93S , A103S, H141R/K/T, A165V, V191I, R220K, G226H, L276W, P277N, P336D/L, P337A, N338D/SY, G342D, R346C/D/H/S/Y, D370N, I377C, P386T, L390I , M392L, E403G, K410I, K418P, G419F/L/V, N420S, N420T, E430G and Y431L one or more.
  • the parental HPPD polypeptide is derived from rice, and its amino acid sequence is shown in SEQ ID No. 1;
  • the amino acid sequence of the parent HPPD polypeptide has at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, or at least 97% of the amino acid sequence shown in SEQ ID No. 1. , At least 98%, at least 99% sequence identity.
  • the said substantially identical is that at most 50 (preferably 1-20, more preferably 1-10, more preferably 1-5) amino acids are different, wherein, The difference includes amino acid substitution, deletion or addition, and the mutant protein has herbicide tolerance activity (preferably, isoxazole herbicide resistance activity).
  • Another aspect of the present invention provides a fusion protein comprising the mutant polypeptide or biologically active fragment thereof, and other components fused with it, such as a tag peptide such as a histidine tag, for example, 6 ⁇ His, or
  • a tag peptide such as a histidine tag, for example, 6 ⁇ His
  • the plastid guide peptide is, for example, a peptide guided into the chloroplast.
  • polynucleotide is selected from the following group:
  • the polynucleotide is preferably single-stranded or double-stranded.
  • the plants include monocotyledonous plants and dicotyledonous plants.
  • the introduction of the HPPD mutant polypeptide includes the step of mutating and expressing the endogenous HPPD nucleotide sequence of the plant to introduce the mutant polypeptide.
  • the method of introducing mutations in the method includes natural mutation, physical mutagenesis (such as ultraviolet mutagenesis, X-ray or Y-ray mutagenesis), chemical mutagenesis (such as nitrous acid, hydroxylamine, EMS , Nitrosoguanidine, etc.), biological mutagenesis (such as virus or bacteria-mediated mutagenesis), gene editing.
  • physical mutagenesis such as ultraviolet mutagenesis, X-ray or Y-ray mutagenesis
  • chemical mutagenesis such as nitrous acid, hydroxylamine, EMS , Nitrosoguanidine, etc.
  • biological mutagenesis such as virus or bacteria-mediated mutagenesis
  • the gene editing tools include CRISPR, TALEN and ZFN.
  • Another aspect of the present invention provides a method for controlling an effective amount of unwanted plants at a plant cultivation site, the method comprising:
  • FIG. 4 The T1 generation seedlings from HPPD-CBE-sg6 transformants are homozygous mutants.
  • the HPPD gene has a C 1040,1041 ->T base substitution, resulting in an amino acid mutation A347V.
  • the underline indicates the PAM sequence.
  • parental nucleotide or polypeptide can be extracted from the parental plant according to techniques well known to those skilled in the art, or can be obtained by chemical synthesis.
  • the amino acid sequence of the parent HPPD polypeptide, for example, is shown in SEQ ID No. 1.
  • mutant protein contains a core amino acid mutation related to HPPD inhibitory herbicide resistance at position 347 corresponding to the sequence shown in SEQ ID No. 1.
  • the term "homology” or “identity” is used to refer to the sequence matching between two polypeptides or between two nucleic acids.
  • a certain position in the two sequences to be compared is occupied by the same base or amino acid monomer subunit (for example, a certain position in each of the two DNA molecules is occupied by adenine, or two A certain position in each of the polypeptides is occupied by lysine)
  • the molecules are the same at that position.
  • the comparison is made when two sequences are aligned to produce maximum identity.
  • Such an alignment can be used, for example, the identity of the amino acid sequence can be by conventional methods, refer to, for example, Smith and Waterman, 1981, Adv. Appl. Math.
  • operably linked is intended to mean that the nucleotide sequence of interest is linked to the one or more regulatory elements (e.g., , In an in vitro transcription/translation system or when the vector is introduced into the host cell, in the host cell).
  • tomato (Lycopersicon spp.) e.g. tomato (Lycopersicon esculentum), tomato (Lycopersicon lycopersicum), pear-shaped tomato (Lycopersicon spp.) Lycopersicon pyriforme), Macrotyloma spp., kale, Luffa acutangula, lentil, okra, onion, potato , Artichoke (artichoke), asparagus (asparagus), broccoli (broccoli), Brussels sprouts, cabbage, carrot, cauliflower, celery, Kale (collardgreens), summer squash (squash), winter melon (Benincasa hispida), asparagus officinalis, celery (Apium graveolens), amaranth (Ama ranthus spp.), allium (Allium spp.
  • tomato (Lycopersicon spp.) e.g. tomato (Lycopersicon esculentum), tomato
  • the term "maximum tolerable concentration” refers to the herbicide concentration that can be withstood when the p-hydroxyphenylpyruvate dioxygenase (HPPD) can still maintain its catalytic activity when the herbicide is applied.
  • the catalytic activity is the activity of HPPD to convert p-hydroxyphenylpyruvate into homogentisic acid.
  • the parent p-hydroxyphenylpyruvate dioxygenase protein of the present invention is derived from the genus Oryza, especially rice. More preferably, the parent p-hydroxyphenylpyruvate dioxygenase protein has the amino acid sequence shown in SEQ ID NO. 1, or has at least 80%, at least 85%, or at least the amino acid sequence shown in SEQ ID NO. An amino acid sequence of 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity.
  • the present invention also relates to the deletion of one or more amino acid residues from the N and/or C terminus of the mutant p-hydroxyphenylpyruvate dioxidase (HPPD) protein, while retaining its required Functionally active fragments (such as amino acid fragments containing the mutation site of the present invention), which are also within the scope of the present invention, are called biologically active fragments.
  • HPPD p-hydroxyphenylpyruvate dioxidase
  • the present invention provides a method for identifying isoxazole HPPD herbicides by using mutant HPPD, said mutant HPPD having the polypeptide or active fragment shown in SEQ ID NO.2.
  • the method includes the following steps: providing a mutant HPPD polypeptide, or a cell or plant expressing the mutant HPPD polypeptide (test group); transforming a mutant HPPD polypeptide, or a cell or plant expressing the mutant HPPD polypeptide, and the parent ( (Such as wild-type) protein, cell, or plant control group to apply the test compound; determine the activity or growth or viability of the test group and the control group; select the test that causes the control group's activity or growth or viability to decrease compared with the test group Compound.
  • the present invention has screened out a HPPD mutant polypeptide with higher resistance to isoxazole herbicides or triketone herbicides.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

提供了抗除草剂多肽、核酸及其应用,具体地,提供了抗除草剂基因、多肽及其在植物育种中的应用,具体地,提供了一种突变的HPPD多肽,并且所述突变的HPPD多肽与亲本HPPD多肽相比,在对应于SEQ ID NO.1的第347位氨基酸和/或第353位氨基酸发生突变。突变后的HPPD多肽对除草剂具有很强的耐受性,在提高和培育抗HPPD抑制性除草剂耐受性植物领域中具有非常广阔的应用前景。

Description

抗除草剂多肽、核酸及其应用 技术领域
本发明属于农业基因工程领域,具体涉及抗除草剂多肽、核酸及其应用,尤其涉及向植物赋予HPPD抑制性除草剂抗性或耐受性的新型突变型对羟苯基丙酮酸双氧化酶(HPPD)、其编码核酸以及应用。
背景技术
对羟基苯丙酮酸双加氧酶(4-Hydroxyphenylpyruvate Dioxygenase,HPPD,EC 1.13.11.27)是生物体内酪氨酸代谢过程中重要的酶,几乎存在于所有需氧的生物体中,生物体内酪氨酸(Tyrosine)在酪氨酸氨基转移酶(Tyrosine aminotransferase,TAT)的作用下生成对羟基苯丙酮酸(p-hydroxyphenylpyruvic acid,HPPA),在氧气的参与下HPPD能够将HPPA催化转化成尿黑酸(homogentisate,HGA)。在动物体内,HPPD的主要作用是促进酪氨酸、芳氨酸、苯丙氨酸的分解代谢。但在植物体内的作用与动物体内显著不同,尿黑酸进一步形成质体醌(plastoquinones)和生育酚(tocopherols,维生素E)(Ahrens et al.,2013)。生育酚起膜相关抗氧化剂的作用,是植物生长必须的抗氧化剂,能有效地增强植物的抗逆性。质体醌是植物进行光合作用过程中的关键辅助因子,促进植物体内类胡萝卜素等的合成。植物体中60%以上的叶绿素都结合于捕光天线复合物上,该复合物吸收太阳光能并将激发能传递给光合作用反应中心,而类胡萝卜素是反应中心的叶绿素结合蛋白和天线系统的重要组成部分,在植物光合作用中担负着光吸收辅助色素的重要功能,具有吸收和传递电子的能力,并在清除自由基方面起着重要作用。
HPPD受到抑制会导致植物细胞内的光合作用解偶联、辅助捕光色素缺乏,同时由于缺乏通常由类胡萝卜素提供的光保护作用,活性氧中间体和光氧化导致叶绿素破坏,结果造成植物光合作用组织产生白化症状,生长受到抑制,直至死亡(Beaudegnies et al.,2009)。
自20世纪90年代起被确定为除草剂靶标,HPPD是继乙酰乳酸合成酶(ALS)、5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS)和乙酰辅酶A羧化酶(ACCase)后又一重要的除草剂作用靶标,其独特的作用机制可以有效防治多种抗性杂草。HPPD类除草剂是近年来兴起的一类热销产品,具有高效、低毒、环境相容性好以及对后茬作物安全性高等一系列优点。研究发现植物与哺乳动物HPPD氨基酸序列的同源性存在显著差异,而同为植物界或者动物界的同源性比较高(Yang et al.,2004)。这为后续开发具有更高选择性和安全性的HPPD类除草剂提供了理论指导基础。目前,按结构分类已经开发了5种以HPPD为靶标的除草剂,主要包括三酮类、吡唑酮类、异噁唑类、二酮腈类和二苯酮类。
然而,这些HPPD抑制除草剂在杀死杂草的同时也会给作物带来一定的伤害,不同农作物对不同的HPPD除草剂的耐受程度不同,也限制了HPPD除草剂的使用范围,因此获得耐受除草剂的作物尤为重要。目前的策略除了试图绕过HPPD介导的尿黑酸产生外,还包括过表达该酶从而在植物中产生大量的除草剂靶标酶,减轻除草剂的抑制作用。虽然HPPD的过表达使得植物对除草剂(如异噁氟草的二酮腈衍生物)有更好的萌发前耐受性,但该耐受性不足以抵抗萌发后的除草剂处理。
CRISPR/Cas基因编辑技术是近几年新兴的基因工程技术,其是由guideRNA介导的DNA切割技术,针对Cas的不同已经开发出多种编辑系统,包括Cas9、Cpf1、Cms1、 C2c1、C2c2等。CRISPR/Cas编辑技术可以实现三种定点编辑:第一种是基因的定点敲除,Cas蛋白在靶向RNA(gRNA)的指导下识别和切割靶点,产生双链DNA断裂;断裂的DNA通常以非同源末端连接(NHEJ)来修复;在修复时容易产生移码突变以破坏这个基因。定点敲除的效率都较高。第二种是对靶标进行同源置换来更换靶标序列或者定点插入。在产生双链DNA断裂时,如果在附近存在同源修复模板,这时可能发生同源置换或定点插入。同源置换的效率较低,并随着要置换的序列的长度增长而变得更低。第三种是单碱基编辑。单碱基编辑是利用CRISPR/Cas系统将脱氨酶靶向基因组中特定的位点从而对特定碱基进行修饰的基因编辑方法。此种方法已经在水稻中成功运用。
HPPD类除草剂大规模使用的时间较短,目前关于HPPD基因自身突变产生抗性的报道极少。但结合CRISPR技术,我们可以加快抗性HPPD多肽的筛选,改进作物对HPPD抑制剂的耐受性。对于扩大除草剂使用范围、延长使用寿命具有重要意义。
发明内容
本发明目的是提供一种可提高植物对HPPD抑制性除草剂产生抗性或耐受性的突变型HPPD多肽;本发明还涉及突变型HPPD的生物学活性片段,编码所述蛋白或片段的多核苷酸及其应用。
一方面,本发明提供了一种对羟基苯丙酮酸双加氧酶(HPPD)的突变多肽,所述突变多肽与亲本对羟基苯丙酮酸双加氧酶(HPPD)的氨基酸序列相比,在对应于SEQ ID No.1所示氨基酸序列的第347位氨基酸和/或第353位氨基酸发生突变。
在另一优选例中,所述的突变为氨基酸的插入、缺失或替换。
在另一优选例中,所述的突变多肽为除草剂抗性多肽。
进一步的,所述第347位氨基酸由丙氨酸(A)突变为非丙氨酸的氨基酸,所述非丙氨酸的氨基酸选自缬氨酸(V),甘氨酸(G),亮氨酸(L),异亮氨酸(I),苯丙氨酸(F),色氨酸(W),酪氨酸(Y),天冬氨酸(D),天冬酰胺(N),谷氨酸(E),赖氨酸(K),谷氨酰胺(Q),甲硫氨酸(M),丝氨酸(S),苏氨酸(T),半胱氨酸(C),脯氨酸(P),组氨酸(H)或精氨酸(R)。
在另一优选例中,所述第347位丙氨酸(A)突变为选自下组的氨基酸:缬氨酸(V),甘氨酸(G)、亮氨酸(L)或异亮氨酸(I)。
在另一优选例中,所述第347位丙氨酸(A)突变为选自下组的氨基酸:缬氨酸(V)。
进一步的,所述第353位氨基酸由谷氨酸(E)突变为非谷氨酸的氨基酸,所述非谷氨酸的氨基酸选自丙氨酸(A)、缬氨酸(V),甘氨酸(G),亮氨酸(L),异亮氨酸(I),苯丙氨酸(F),色氨酸(W),酪氨酸(Y),天冬氨酸(D),天冬酰胺(N),赖氨酸(K),谷氨酰胺(Q),甲硫氨酸(M),丝氨酸(S),苏氨酸(T),半胱氨酸(C),脯氨酸(P),组氨酸(H)或精氨酸(R)。
在另一优选例中,所述第353位谷氨酸(E)突变为选自下组的氨基酸:赖氨酸(K),组氨酸(H)或精氨酸(R)。
在另一优选例中,所述第353位谷氨酸(E)突变为选自下组的氨基酸:赖氨酸(K)。
在另一优选例中,所述的突变多肽为具有SEQ ID No.2-4任一所示氨基酸序列的多肽、其活性片段、或其保守性变异多肽。
在另一优选例中所述的突变多肽的氨基酸序列如SEQ ID No.2-4任一所示。
在另一优选例中,所述的突变型HPPD多肽进一步包括其他突变位点,所述的其他突变位点为对应于SEQ ID No.1所示氨基酸序列的第20、93、103、141、152、165、 170、176、191、211、220、226、276、277、336、337、338、339、340、342、346、353、370、377、386、390、392、403、410、418、419、420、430和431位点中的一种或多种,所述的其他突变位点能够保持或增强突变多肽对HPPD抑制性除草剂的耐受性或抗性或增加突变型HPPD多肽对除草剂的适用范围。
在另一优选例中,所述的对应于SEQ ID No.1所示氨基酸序列的其他突变位点的突变方式包括:A20E、D152N、D170N、G176C、E353K、P211L、P336L、Y339H、Y340H、R93S、A103S、H141R/K/T、A165V、V191I、R220K、G226H、L276W、P277N、P336D/L、P337A、N338D/SY、G342D、R346C/D/H/S/Y、D370N、I377C、P386T、L390I、M392L、E403G、K410I、K418P、G419F/L/V、N420S、N420T、E430G和Y431L中的一种或多种。
在另一优选例中,所述亲本HPPD多肽来源于单子叶植物和/或双子叶植物。
在另一优选例中,所述亲本HPPD多肽来源于选自下组的一种或多种植物:禾本科、豆科、藜科、十字花科植物。
在另一优选例中,所述亲本HPPD多肽来源于选自下组的一种或多种植物:拟南芥、水稻、烟草、玉米、高粱、大麦、小麦、小米、大豆、番茄、马铃薯、藜麦、生菜、油菜、白菜、草莓。
在另一优选例中,所述亲本HPPD多肽来源于水稻,其氨基酸序列如SEQ ID No.1所示;
在另一优选例中,所述亲本HPPD多肽的氨基酸序列与SEQ ID No.1所示的氨基酸序列具有至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%的序列同一性。
在另一优选例中,所述突变多肽(除草剂抗性多肽)为SEQ ID No.1所示的多肽经突变形成的。
在另一优选例中,所述的突变多肽除所述突变(如347或353或347+353)外,其余的氨基酸序列与SEQ ID No.1所示的序列相同或基本相同。
在另一优选例中,所述的基本相同是至多有50个(较佳地为1-20个,更佳地为1-10个、更佳地1-5个)氨基酸不相同,其中,所述的不相同包括氨基酸的取代、缺失或添加,且所述的突变蛋白具有除草剂耐受活性(较佳地,耐异噁唑类除草剂的活性)。
在另一优选例中,所述的HPPD抑制性除草剂包括三酮类、二酮腈类、异噁唑类、吡唑类、二苯酮类、或其组合。三酮类除草剂优选双环磺草酮、硝磺草酮、甲基磺草酮、环磺酮、特呋三酮或氟吡草酮中的一种或任意几种,所述异噁唑类除草剂优选异噁唑草酮、异噁氯草酮、异恶草酮中的一种或任意几种。
在另一优选例中,所述的HPPD抑制性除草剂为异噁唑类,所述的异噁唑类HPPD抑制剂包括异噁唑草酮、异噁氯草酮、异恶草酮。
在另一优选例中,所述的HPPD抑制性除草剂为三酮类,所述的三酮类HPPD抑制剂包括双环磺草酮、硝磺草酮、甲基磺草酮、环磺酮、特呋三酮或氟吡草酮。
在另一优选例中,所述的突变多肽与亲本HPPD多肽相比,其最大耐受浓度,提高至少1.5倍,优选提高至少2倍,优选提高至少3倍,优选提高至少4倍,优选提高至少5倍,优选提高至少6倍,优选提高至少10倍。优选的所述HPPD抑制性除草剂为异噁唑草酮,或者,为三酮类除草剂,较佳的为硝磺草酮。
在另一优选例中,含有突变多肽的植物相比亲本植物对异噁唑类除草剂或三酮类除草剂的耐受浓度至少提高了2倍,优选提高了3倍,优选提高了4倍,优选提高了5倍,优选提高了6倍,优选提高了7倍,优选提高了8倍,优选提高了10倍,优选提高了12倍,优选提高了14倍,优选提高了16倍。
在另一优选例中,所述突变型HPPD多肽(347)赋予植物至少150μM,优选至少200μM,优选至少250μM,优选至少300μM,优选至少350μM,优选至少400μM,优选至少500μM,优选至少600μM,优选至少800μM的异噁唑类除草剂或三酮类除草剂的耐受性。优选异噁唑草酮或硝磺草酮。
在另一优选例中,所述除草剂抗性多肽或其活性片段选自下组:
(a)具有SEQ ID No.2-4任一所示氨基酸序列的多肽或其活性片段;
(b)将SEQ ID No.2-4任一所示氨基酸序或其活性片段列经过一个或多个(如2个、3个、4个,5个,6个,7个,8个,9个或10个)氨基酸残基的取代、缺失或添加而形成的,且具有HPPD抑制性除草剂耐受活性的由(a)衍生的多肽。
在另一优选例中,所述的衍生的多肽与SEQ ID No.2所示序列的同源性至少为60%,较佳地至少为70%,更佳地至少为80%,最佳地至少为90%,如95%、97%、99%。
本发明另一方面,提供一种融合蛋白,包含所述的突变多肽或其生物活性片段,以及与之融合的其它组分,例如标签肽如,组氨酸标签,例如,6×His,或者质体引导肽例如引导到叶绿体内的肽。
本发明另一方面,提供一种多核苷酸,编码所述突变多肽或其活性片段的多核苷酸。
在另一优选例中,所述多核苷酸选自下组:
(a)编码如SEQ ID NO No.2-4任一所示多肽的多核苷酸;
(b)序列如SEQ ID NO No.6-8任一所示的多核苷酸;
(c)核苷酸序列与SEQ ID NO No.6-8任一所示序列的同源性≥80%(较佳地≥90%,更佳地≥95%,最佳地≥98%),且编码SEQ ID No.2所示多肽的多核苷酸;
(d)与(a)-(c)任一所述的多核苷酸互补的多核苷酸。
在另一优选例中,所述的多核苷酸选自下组:基因组序列、cDNA序列、RNA序列、或其组合。
在另一优选例中,所述的多核苷酸优选是单链的或双链的。
在另一优选例中,所述的多核苷酸在所述突变多肽的ORF的侧翼还额外含有选自下组的辅助元件:信号肽、分泌肽、标签序列(如6His)、或其组合。
在另一优选例中,该多核苷酸还包含与所述突变多肽的ORF序列操作性连接的启动子。
在另一优选例中,所述的启动子选自下组:组成型启动子、组织特异性启动子、诱导型启动子、或者强启动子。
本发明另一方面,提供一种核酸构建体,含有所述的多核苷酸以及与之可操作连接的调控元件。
在另一优选例中所述的调控元件选自下组中的一种或多种:增强子、转座子、启动子、终止子、前导序列、多腺苷酸序列、标记基因。
本发明另一方面,提供一种载体,所述的载体含有所述的多核苷酸。
在另一优选例中,所述的载体包括表达载体、穿梭载体或整合载体。
本发明另一方面,提供一种宿主细胞,所述的宿主细胞含有所述的核酸构建体或所述的载体或基因组中整合有所述的多核苷酸。
在另一优选例中,所述的宿主细胞为真核细胞,如酵母细胞或动物细胞或植物细胞。
在另一优选例中,所述的宿主细胞为原核细胞,如大肠杆菌。
在另一优选例中,所述植物包括被子植物和裸子植物。
在另一优选例中,所述植物包括单子叶植物和双子叶植物。
在另一优选例中,所述植物包括草本植物和木本植物。
在另一优选例中,所述植物包括拟南芥、烟草、水稻、玉米、高粱、大麦、小麦、小米、大豆、番茄、马铃薯、藜麦、生菜、油菜、白菜、草莓。
本发明另一方面,提供一种制备所述突变多肽或其活性片段的方法,所述的方法包括步骤:
(a)在适合表达的条件下,培养包含所述突变多肽的宿主细胞,从而表达所述的突变多肽;和
(b)分离所述的突变多肽。
本发明另一方面,提供一种耐受HPPD抑制性除草剂或对HPPD抑制性除草剂具有抗性的植物细胞、植物组织、植物部分、植物,其中,所述植物细胞、植物组织、植物部分、植物含有所述的突变多肽或其多核苷酸序列。
本发明另一方面,提供一种赋予植物对HPPD抑制性除草剂产生抗性或耐受性的方法,所述方法包括在植物细胞、植物组织、植物部分或植物中引入所述HPPD突变多肽的步骤。
在另一优选例中,所述的方法中,引入HPPD突变多肽包括将HPPD突变多肽在植物细胞、植物组织、植物部分或植物中进行表达,例如,通过表达载体对所述突变多肽进行表达的,或者将所述编码突变多肽的多核苷酸整合到植物基因组上进行表达。
在另一优选例中,上述方法包括以下步骤:
(1)提供携带表达载体的农杆菌,所述的表达载体含有所述的突变多肽或其活性片段的DNA编码序列;
(2)将植物细胞、植物组织、植物部分与步骤(1)中的农杆菌接触,从而使所述突变多肽或其活性片段的DNA编码序列转入植物细胞,并且整合到植物细胞的染色体上;和
(3)选择已转入所述突变多肽或其活性片段的DNA编码序列的植物细胞。
在另一优选例中,所述方法中,引入HPPD突变多肽还包括将植物的内源性HPPD进行突变从而引入所述突变多肽的步骤。
在另一优选例中,所述方法中,引入HPPD突变多肽包括将植物的内源性HPPD核苷酸序列进行突变并表达从而引入所述突变多肽的步骤。
在另一优选例中,所述的方法中,引入突变的方法包括自然变异、物理诱变(如紫外线诱变、X射线或Y射线诱变)、化学诱变(如亚硝酸、羟胺、EMS、亚硝基胍等)、生物诱变(如病毒或细菌介导的诱变)、基因编辑。
在另一优选例中,所述的方法包括将以下步骤:
(1)在植物细胞、植物组织、植物部分中引入含有基因编辑工具的表达载体;
(2)使基因编辑工具作用于其内源性HPPD编码序列,并使其在相应于SEQ NO:1的347和/或353位点发生突变;
(3)筛选突变的植物细胞、植物组织、植物部分;
(4)分离所述的基因编辑工具。
在另一优选例中,所述的基因编辑工具包括CRISPR、TALEN和ZFN。
本发明另一方面,提供一种试剂,所述试剂可用于提高植物细胞、植物组织或植物的除草剂抗性或耐受性,所述的试剂含有本发明所述的突变多肽或编码突变多肽的核苷酸。
本发明另一方面,提供了所述突变多肽、所述多核苷酸、所述融合蛋白、所述核酸构建体或所述载体在培育(制备)对HPPD抑制性除草剂具有抗性或耐受性的植物、或制备用于培育对HPPD抑制性除草剂具有抗性或耐受性的植物的试剂或试剂盒中的用途。
本发明另一方面,提供一种鉴定或选择转化的植物细胞、植物组织、植物或其部分的方法,包括:(i)提供转化的植物细胞、植物组织,植物或其部分,其中所述转化的植物细胞、植物组织、植物或其部分包含所示的多核苷酸或其变体或衍生物,其中多核苷酸编码作为选择标记使用的突变多肽,并且其中所述转化的植物细胞、植物组织、植物或其部份可以包含另一种分离的多核苷酸部份包含;(ii)使转化的植物细胞、植物组织、植物或其部份与至少一种HPPD抑制性除草剂接触;(iii)确定植物细胞、植物组织、植物或其部分是否受抑制性除草剂影响;和(iv)鉴定或选择转化的植物细胞、植物组织、植物或其部分。
本发明另一方面提供一种在植物栽培地点控制不想要植物有效量的的方法,所述方法包括:
(1)在所述的栽培地点提供包含所述的突变多肽或所述的多核苷酸或所述的核酸构建体或所述载体的植物;
(2)将植物进行栽培,在所述的栽培地点施用有效量的HPPD抑制性除草剂。
附图说明
图1.Anc689BE4max-nCas9碱基编辑器。OsU6、ZmUbi为启动子;sgRNA为向导RNA;bp-NLS为核定位信号;尿嘧啶DNA糖基化酶抑制剂;NOS为终止子。
图2.HPPD-CBE-sg6的T0代转化植株出现C 1040,1041->T的碱基替换。下划线标示PAM序列。
图3.来自HPPD-CBE-sg6转化体的T1代幼苗对异噁唑草酮具有抗性。
图4.来自HPPD-CBE-sg6转化体的T1代幼苗为纯合突变体,其HPPD基因出现C 1040,1041->T的碱基替换,导致一个氨基酸突变A347V。下划线标示PAM序列。
图5.HPPD-CBE-sg8的T0代转化植株出现G 1056,1057->A的碱基替换。下划线标示PAM序列。
图6.来自HPPD-CBE-sg8转化体的T1代幼苗对硝磺草酮具有抗性。
图7.来自HPPD-CBE-sg8转化体的T1代幼苗为纯合突变体,其HPPD基因出现G1 056,1057->A的碱基替换,导致一个氨基酸突变E353K。下划线标示PAM序列。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案,均包括在本发明范围中,限于篇幅,在此不再一一累述。
发明详述
除非本申请定义,本发明中所使用的科学术语或专业名词具有本领域技术人员所理解的含义,当本领域技术人员理解的含义与本申请所定义的含义出现矛盾时,以本申请所定义的含义为准。
如本文所用,术语“AxxB”表示第xx位的氨基酸A变为氨基酸B,例如“L87I”表示第87位的氨基酸L突变为I,以此类推。对于同一位点的多种突变类型,各类型之间以“/”隔开,例如P336D/L表示相对于SEQ ID NO.1的氨基酸序列而言,第336位的脯氨酸被天冬氨酸或亮氨酸取代。对于双重或多重突变,各突变之间以“/”隔开, 例如,A347V/E353K表示相对于SEQ ID NO.1的氨基酸序列而言,第347位的丙氨酸被缬氨酸取代,第353位的谷氨酸被赖氨酸取代,以及第370位的天冬氨酸被天冬酰胺取代,全部三个突变均存在于所述具体的突变型HPPD蛋白内。
如本文所用,术语“HPPD”是指对羟苯基丙酮酸双氧化酶(4-Hydroxyphenylpyruvate Dioxygenase,HPPD,EC 1.13.11.27),其存在于各种生物体中,是催化酪氨酸的降解产物-对羟苯基丙酮酸(4-hydroxyphenylpyruvate,HPP)加氧生成尿黑酸(homogentisate,HGA)反应的关键酶。HPPD的抑制会导致植物细胞内的光合作用解偶联、辅助捕光色素缺乏,同时由于缺乏通常由类胡萝卜素提供的光保护作用,活性氧中间体和光氧化导致叶绿素破坏,结果造成植物光合作用组织产生白化症状,生长受到抑制,直至死亡。HPPD抑制类除草剂已证实是非常有效的选择性除草剂,具有广谱的除草活性,既可在芽前也可以在芽后使用,具有活性高、残留低、对哺乳动物安全和环境友好等特点。
如本文所用,术语“HPPD抑制剂”、“HPPD除草剂”“HPPD抑制性除草剂”、“HPPD抑制类除草剂”可互换使用,是指本身有除草活性的物质或者与能改变其效果的其他除草剂和/或添加剂合用的物质,其通过抑制HPPD而起作用,表现为抑制植物生长甚至使植物死亡的制剂。本身能够通过抑制HPPD而起除草作用的物质在本领域中是熟知的,包括许多类型,1)三酮类,例如,磺草酮(Sulcotrione,CAS号:99105-77-8);硝磺草酮(Mesotrione,CAS号:104206-82-8);氟吡草酮(bicyclopyrone,CAS号:352010-68-5);环磺酮(tembotrione,CAS号:335104-84-2);呋喃磺草酮(tefuryltrione,CAS号:473278-76-1);双环磺草酮(Benzobicyclon,CAS号:156963-66-5);2)二酮腈类,例如,2-氰基-3-环丙基-1-(2-甲基磺酰基-4-三氟甲基苯基)丙-1,3-二酮(CAS号:143701-75-1);2-氰基-3-环丙基-1-(2-甲基磺酰基-3,4-二氯苯基)丙-1,3-二酮(CAS号:212829-55-5);2-氰基-1-[4-(甲基磺酰基)-2-三氟甲基苯基]-3-(1-甲基环丙基)丙-1,3-二酮(CAS号:143659-52-3);3)异噁唑类,例如,异噁氟草(isoxaflutole,又称异噁唑草酮,CAS号:141112-29-0);异噁氯草酮(isoxachlortole,CAS号:141112-06-3);异恶草酮(clomazone,CAS号:81777-89-1);4)吡唑类,例如,苯唑草酮(topramezone,CAS号:210631-68-8);磺酰草吡唑(pyrasulfotole,CAS号:365400-11-9);苄草唑(pyrazoxyfen,CAS号:71561-11-0);吡唑特(pyrazolate,CAS号:58011-68-0);吡草酮(benzofenap,CAS号:82692-44-2);双唑草酮(CAS号:1622908-18-2);Tolpyralate(CAS号:1101132-67-5);苯唑氟草酮(CAS号:1992017-55-6);环吡氟草酮(CAS号:1855929-45-1);三唑磺草酮(CAS号:1911613-97-2);5)二苯酮类;6)其他类:lancotrione(CAS号:1486617-21-3);fenquinotrione(CAS号:1342891-70-6)。优选地,所述除草剂是异噁唑类、三酮类;优选地,所述除草剂是异噁唑草酮、硝磺草酮。所述的除草剂可以综合考虑所适用作物或杂草的类型,在于出苗前、出苗后、种植前和种植时控制不想要植物(如杂草)。
术语“有效量”或“有效浓度”分别意指这样的量或浓度,所述量或浓度足够杀死相似的亲本(或野生型)植物、植物组织、植物细胞或宿主细胞或抑制其生长,但是所述量不杀死本发明的抗除草剂植物、植物组织、植物细胞和宿主细胞或不严重抑制其生长。一般地,除草剂的有效量是农业生产系统中例行用来杀死目的杂草的量。这种量是本领域普通技术人员已知的。本发明所述的除草剂是在任何生长阶段或在种植或出苗之前直接施加至植物或施加至植物的地点时,它们显示除草活性。观察到的效果取决于待控制的植物物种、植物的生长阶段、稀释物的施加参数和喷雾液滴大小、 固态组分的粒度、使用时的环境条件、所用的具体化合物、使用的具体辅助剂和载体、土壤类型等,以及施加的化学品的量。如本领域已知,可以调节这些因素和其他因素以促进非选择性或选择性除草作用。
术语“亲本核苷酸或多肽”指的是可以在自然界中被发现存在的核酸分子或多肽(蛋白质),其包括未经人工改造的野生型核酸分子或蛋白质(多肽),也可以包括经过人工改造但不含有本发明内容的核酸分子或蛋白质(多肽)。其核苷酸可以通过基因工程技术来获得,如基因组测序、聚合酶链式反应(PCR)等,其氨基酸序列可由核苷酸序列推导而得到。所述“亲本植物”即含有亲本核苷酸或多肽的植物。所述“亲本核苷酸或多肽”可以根据本领域技术人员所熟知的技术从亲本植物中进行提取,亦可通过化学合成的方法获得。所述亲本HPPD多肽的氨基酸序列,例如SEQ ID No.1所示。
本发明所述的“耐受性”或“抗性”是指HPPD蛋白或含有蛋白的细胞、组织或植物体,在保持酶活性或生存力或植物生长情况下,所能承受除草剂的能力,一般可以用除草剂的使用量或使用浓度等参数进行表征。进一步的,本发明中“对HPPD抑制性除草剂的耐受性增强”或“对HPPD抑制性除草剂的抗性增强”的HPPD酶是指这样的HPPD酶,与亲本HPPD酶在同等条件保持其将对羟基苯丙酮酸催化转化为尿黑酸的活性下,其最大耐受浓度,表现出比亲本HPPD酶高至少1.5-10倍。“对HPPD抑制性除草剂的耐受性增强”或“对HPPD抑制性除草剂的抗性增强”的植物是指这样的植物,其对所述HPPD抑制性除草剂的耐受性或抗性与含有亲本HPPD基因的植物相比提高,其耐受浓度相比亲本植物的耐受浓度高至少2倍-16倍。本发明所述的提高“耐受性”或“抗性”的最佳程度为在同等除草剂使用量或浓度下,可以减少或抑制或杀死不想要植物但不影响含有本发明所述突变蛋白的植物的生长或生存能力。
本发明所述“赋予植物对HPPD抑制性除草剂产生抗性或耐受性”是包括针对亲本植物中没有对HPPD抑制性除草剂的抗性或耐受性,或亲本植物对HPPD抑制性除草剂有一定或较低的耐受性(在同等除草剂的浓度下),通过向植物中引入本发明所述的突变多肽或编码突变多肽的核苷酸,从而给予没有抗性的植物一定程度的除草剂抗性或耐受性,提高具有一定或较低耐受性的植物对除草剂的耐受性。
术语“蛋白”、“多肽”和“肽”在本发明中可以互换使用,指的是氨基酸残基聚合物,包括其中一个或多个氨基酸残基是天然氨基酸残基的化学类似物的聚合物。本发明的蛋白和多肽可以重组产生,也可以通过化学合成。术语“突变蛋白”或“突变型蛋白”指的是这样的蛋白质,其与亲本蛋白质的氨基酸序列相比,具有一个或多个氨基酸残基的取代、插入、缺失和/或添加。如本文所用,术语“除草剂抗性多肽”、“突变的HPPD多肽”、“突变型HPPD多肽”、“突变HPPD蛋白”、“突变HPPD酶”、“突变蛋白”、“突变多肽”、“本发明多肽”等可互换使用。优选地,所述突变蛋白在对应于SEQ ID No.1所示序列的第347位含有与HPPD抑制性除草剂抗性相关的核心氨基酸突变。
术语“氨基酸”是指含有氨基的羧酸。生物体内的各种蛋白质是由20种基本氨基酸构成的。除甘氨酸外均为L-α-氨基酸(其中脯氨酸是一种L-α-亚氨基酸),其结构通式为
Figure PCTCN2021073021-appb-000001
(R基为可变基团)。
术语“多核苷酸”、“核苷酸序列”、“核酸序列”、“核酸分子”和“核酸”可以互换使用,包括DNA、RNA或者其杂交体,可以是双链或单链的。
术语“同源性”或“同一性”用于指两个多肽之间或两个核酸之间序列的匹配情况。当两个进行比较的序列中的某个位置都被相同的碱基或氨基酸单体亚单元占据时(例如,两个DNA分子的每一个中的某个位置都被腺嘌呤占据,或两个多肽的每一个中的某个位置都被赖氨酸占据),那么各分子在该位置上是同一的。两个序列之间。通常,在将两个序列比对以产生最大同一性时进行比较。这样的比对可通过使用,例如,氨基酸序列的同一性可以通过常规方法,参考例如Smith and Waterman,1981,Adv.Appl.Math.2:482,Pearson&Lipman,1988,Proc.Natl.Acad.Sci.USA 85:2444,Thompson et al.,1994,Nucleic Acids Res 22:467380等的教导,通过计算机化运行运算法则(Wisconsin Genetics软件包中的GAP,BESTFIT,FASTA,和TFASTA,Genetics Computer Group)来确定。也可使用可从美国国立生物技术信息中心(National Center for Biotechnology Information www.ncbi.nlm.nih.gov/)获得的BLAST运算法则(Altschulet al.,1990,Mol.Biol.215:403-10),使用默认参数确定。
如本文中所使用的,术语“可操作地连接”旨在表示感兴趣的核苷酸序列以一种允许该核苷酸序列的表达的方式被连接至该一种或多种调节元件(例如,处于一种体外转录/翻译系统中或当该载体被引入到宿主细胞中时,处于该宿主细胞中)。
在本发明中,“宿主生物”应理解为可以引入突变型HPPD蛋白编码核酸的任何单细胞或多细胞生物,包括例如细菌如大肠杆菌,真菌如酵母(例如酿酒酵母)、霉菌(例如曲霉菌),植物细胞和植物等。
在本发明中,“植物”应理解为能够进行光合作用的任何分化的多细胞生物,在包括处于任何成熟或发育阶段的作物植物,特别是单子叶或双子叶植物,例如:(1)粮食作物:稻属(Oryza spp.),例如稻(Oryza sativa)、阔叶稻(Oryza latifolia)、水稻(Oryza sativa)、光稃稻(Oryza glaberrima);小麦属(Triticumspp.),例如普通小麦(Triticumaestivum)、硬粒小麦(T.Turgidumssp.durum);大麦属(Hordeum spp.),例如大麦(Hordeum vulgare)、亚利桑那大麦(Hordeum arizonicum);黑麦(Secale cereale);燕麦属(Avena spp.),例如燕麦(Avena sativa)、野燕麦(Avena fatua)、比赞燕麦(Avena byzantina)、Avena fatuavar.sativa、杂种燕麦(Avena hybrida);稗属(Echinochloa spp.),例如,珍珠粟(Pennisetum glaucum)、高粱(两色高粱(Sorghum bicolor)、高粱(Sorghum vulgare))、黑小麦、玉蜀黍或玉米、粟、稻(rice)、谷子、糜子、两色蜀黍(Sorghum bicolor)、黍子、荞麦属(Fagopyrum spp.)、黍(Panicum miliaceum)、小米(Setaria italica)、沼生菰(Zizaniapalustris)、埃塞俄比亚画眉草(Eragrostis tef)、稷(Panicum miliaceum)、龙爪稷(Eleusine coracana);(2)豆类作物:大豆属(Glycine spp.),例如大豆(Glycine max)、黄豆(Soja hispida)、Soja max)、野豌豆属(Vicia spp.)、豇豆属(Vigna spp.)、豌豆属(Pisum spp.)、芸豆(field bean)、羽扇豆属(Lupinus spp.)、蚕豆属(Vicia)、酸豆(Tamarindus indica)、兵豆(Lens culinaris)、山黧豆属(Lathyrus spp.)、扁豆属(Lablab)、蚕豆、绿豆、红豆、鹰嘴豆;(3)油料作物:花生(Arachis hypogaea)、落花生属(Arachis spp)、胡麻属(Sesamum spp.)、向日葵属(Helianthus spp.)(例如向日葵(Helianthus annuus))、油棕属(Elaeis)(例如油棕(Eiaeis guineensis)、美洲油棕(Elaeisoleifera))、大豆(soybean)、油菜(Brassicanapus)、芸苔、芝麻、芥菜(Brassicajuncea)、油菜籽油菜(oilseedrape)、油茶、油棕、油橄榄、蓖麻、欧洲油菜(Brassica napus L.)、卡诺拉油菜(canola);(4)纤维作物:剑麻(Agave sisalana)、棉属(棉花、海岛棉(Gossypium barbadense)、陆地棉(Gossypium hirsutum))、红麻、剑麻、蕉麻、亚麻(Linum usitatissimum)、黄麻、苎麻、大麻(Cannabis sativa)、火麻;(5)水果类作 物:枣属(Ziziphus spp.)、香瓜属(Cucumis spp.)、鸡蛋果(Passiflora edulis)、葡萄属(Vitis spp.)、越桔属(Vaccinium spp.)、西洋梨(Pyrus communis)、李属(Prunus spp.)、番石榴属(Psidium spp.)、石榴(Punicagranatum)、苹果属(Malus spp.)、西瓜(Citrulluslanatus)、柑桔属(Citrus spp.)、无花果(Ficuscarica)、金桔属(Fortunella spp.)、草莓属(Fragaria spp.)、山楂属(Crataegus spp.)、柿树属(Diospyros spp.)、红仔果(Eugenia unifora)、枇杷(Eriobotrya japonica)、龙眼(Dimocarpus longan)、番木瓜(Carica papaya)、椰子属(Cocos spp.)、阳桃(Averrhoacarambola)、狲猴桃属(Actinidia spp.)、扁桃(Prunus amygdalus)、芭蕉属(Musa spp.)(香蕉)、鳄梨属(Persea spp.)(鳄梨(Persea americana))、番石榴(Psidium guajava)、曼密苹果(Mammea americana)、芒果(Mangifera indica)、橄榄(油橄榄(Oleaeuropaea))、番木瓜(Caricapapaya)、椰子(Cocos nucifera)、凹缘金虎尾(Malpighia emarginata)、人心果(Manilkara zapota)、菠萝(Ananas comosus)、番荔枝属(Annona spp.)、柑桔树(柑桔属物种(Citrus spp.))、波罗蜜属(Artocarpus spp.)、荔枝(Litchi chinensis)、茶藨子属(Ribes spp.)、悬钩子属(Rubus spp.)、梨、桃、杏、梅、杨梅、柠檬、金橘、榴莲、橙、草莓(strawbe rry)、蓝莓、哈密瓜、甜瓜、椰枣、胡桃树、樱桃树;(6)根茎类作物:木薯属(Manihot spp.)、甘薯(Ipomoea batatas)、芋(Colocasia esculenta)、榨菜、洋葱、荸荠、油莎草、山药;(7)蔬菜类作物:菠菜属(Spinacia spp.)、菜豆属(Phaseolus spp.)、莴苣(Lactuca sativa)、苦瓜属(Momordica spp)、欧芹(Petroselinum crispum)、辣椒属(Ca psicum spp.)、茄属(Solanum spp.)(例如马铃薯(Solanum tuberosum)、红茄(Solanumintegrifolium)或蕃茄(Solanum lycopersicum))、蕃茄属(Lycopersicon spp.)(例如西红柿(Lycopersicon esculentum)、蕃茄(Lycopersicon lycopersicum)、梨形蕃茄(Lycopersicon pyriforme))、硬皮豆属(Macrotyloma spp.)、无头甘蓝(kale)、棱角丝瓜(Luffa acutangula)、小扁豆(lentil)、秋葵(okra)、洋葱(onion)、马铃薯(potato)、洋蓟(artichoke)、芦笋(asparagus)、西兰花(broccoli)、球芽甘蓝(Brussels sprouts)、卷心菜(cabbage)、胡萝卜(carrot)、花椰菜(cauliflower)、芹菜(celery)、羽衣甘蓝(collardgreens)、西葫芦(squash)、冬瓜(Benincasa hispida)、石刁柏(Asparagus officinalis)、旱芹(Apium graveolens)、苋属(Ama ranthus spp.)、葱属(Allium spp.)、秋葵属(Abelmoschus spp.)、苦苣(Cichorium endivia)、南瓜属(Cucurbita spp.)、芫荽(Coriandrum sativum)、埃塞俄比亚芥(B.carinata)、萝卜(Rapbanus sativus)、芸苔属(Brassica)物种(例如欧洲油菜(Brassica napus)、芜菁亚种(Brassica rapa ssp.)、卡诺拉油菜(canola)、油籽油菜(oilseed rape)、芜菁油菜(turnip rape)、芥菜、甘蓝、黑芥、油菜籽油菜)、孢子甘蓝、茄科植物(茄子)、甜椒、黄瓜、丝瓜、白菜、油菜、甘蓝、葫芦、韭菜、莲、藕、生菜;(8)花卉作物:小金莲花(Tropaeolumminus)、金莲花(Tropaeolummajus)、美人蕉(Canna indica)、仙人掌属(Opuntia spp.)、万寿菊属(Tagetes spp.)、兰花、文殊兰、君子兰、朱顶红、玫瑰、月季、茉莉花、郁金香、樱花、牵牛花、金盏花、荷花、雏菊、康乃馨、矮牵牛花、郁金香、百合、梅花、水仙、迎春、报春、瑞香、山茶、白玉兰、紫玉兰、琼花、君子兰、海棠、牡丹、芍药、丁香、杜鹃、西洋杜鹃、含笑、紫荆、棣棠、锦带花、连翘、云南黄馨、金雀花、仙客来、蝴蝶兰、石斛、风信子、鸢尾、马蹄莲、金盏菊、百枝莲、四季海棠、吊钟海棠、竹节海棠、天竺葵;(9)药用作物:红花(Carthamus tinctorius)、薄荷属(Mentha spp.)、波叶大黄(Rheum rhabarbarum)、番红花(Crocus sativus)、枸杞、玉竹、黄精、知母、麦冬、川贝、 郁金、砂仁、何首乌、大黄、甘草、黄芪、人参、三七、五加、当归、川芎、北柴胡、曼佗罗、洋金花、薄荷、益母草、藿香、黄芩、夏枯草、除虫菊、银杏、金鸡纳树、天然橡胶树、苜蓿、胡椒;(10)原料作物:橡胶、蓖麻(Ricinus communis)、油桐、桑、忽布、桦、桤木、漆树;(11)牧草作物:冰草属(Agropyron spp.)、车轴草属(Trifolium spp.)、芒(Miscanthus sinensis)、狼尾草属(Pennisetum sp.)、虉草(Phalaris arundinacea)、柳枝稷(Panicum virgatum)、草原草(prairiegrasses)、印度草(Indiangrass)、大须芒草(Big bluestem grass)、梯牧草(Phleum pratense)、草皮草(turf)、莎草科(高山嵩草、脚苔草(Carex pediformis)、低苔草)、苜蓿、梯牧草、紫花苜蓿、草木犀、紫云英、柽麻、田菁、红萍、水葫芦、紫穗槐、羽扇豆、三叶草、沙打旺、水浮莲、水花生、黑麦草;(12)糖料作物:甘蔗(甘蔗属物种(Saccharumspp.))、甜菜(Beta vulgaris);(13)饮料作物:大叶茶(Camellia sinensis)、茶(CamelliaSinensis)、茶树(tea)、咖啡(咖啡属物种(Coffea spp.))、可可树(Theobroma cacao)、蛇麻花(啤酒花);(14)草坪植物:固沙草(Ammophila arenaria)、早熟禾属(Poa spp.)(草地早熟禾(Poa pratensis)(蓝草))、剪股颖属物种(Agrostis spp.)(剪股颖、匍匐剪股颖(Agrostis palustris))、黑麦草属物种(Lolium spp.)(黑麦草)、羊茅属物种(Festucaspp.)(羊茅)、结缕草属物种(Zoysia spp.)(结缕草(Zoysiajaponica))、狗牙根属物种(Cynodon spp.)(百慕大草、狗牙根)、侧钝叶草(Stenotaphrum secunda tum)(圣奥古斯丁草)、雀稗属物种(Paspalum spp.)(巴哈草)、假俭草(Eremochloa ophiuroides)(百足草)、地毯草属物种(Axonopus spp.)(地毯草)、指形垂穗草(Bouteloua dactyloides)(野牛草)、垂穗草属变种物种(Boutelouavar.spp.)(格兰马草)、马唐(Digitariasanguinalis)、香附子(Cyperusrotundus)、短叶水蜈蚣(Kyllingabrevifolia)、阿穆尔莎草(Cyperusamuricus)、加拿大飞蓬(Erigeroncanadensis)、天胡荽(Hydrocotylesibthorpioides)、鸡眼草(Kummerowiastriata)、地锦(Euphorbiahumifusa)、耕地堇菜(Violaarvensis)、白颖苔草、异穗苔草、草皮草(turf);(15)树木作物:松属(Pinus spp.)、柳属(Salix sp.)、槭树属(Acer spp.)、木槿属(Hibiscus spp.)、桉属(Eucalyptus sp.)、银杏(Ginkgo biloba)、箣竹属(Bambusa sp.)、杨属(Populus spp.)、牧豆树属(Prosopis spp.)、栎属(Quercusspp.)、刺葵属(Phoenix spp.)、山毛榉属(Fagus spp.)、吉贝(Ceiba pentandra)、樟属(Cinnamomum spp.)、黄麻属(Corchorus sp.)、南方芦苇(Phragmites australis)、酸浆属(Physalis spp.)、山蚂蝗属(Desmodium spp.)、杨、常春藤、白杨、珊瑚树、银杏、栎类、臭椿、木荷、冬青、悬铃木、女贞、大叶黄扬、落叶松、黑荆树、马尾松、思茅松,云南松、南亚松、油松、红松、黑胡桃、柠檬、悬铃木、蒲桃、珙桐、木棉、爪哇木棉、洋紫荆、羊蹄甲、雨树、合欢、龙牙花、刺桐、广玉兰、苏铁、紫薇、针叶树、乔木、灌木;(16)坚果作物:巴西栗(Bertholletia excelsea)、栗属(Castanea spp.)、榛属(Corylus spp.)、山核桃属(Carya spp.)、核桃属(Juglansspp.)、阿月浑子(Pistaciavera)、腰果(Anacardium)、occidentale)、澳洲坚果(全缘叶澳洲坚果(Macadamia integrifolia))、碧根果、夏威夷果、开心果、巴旦木以及产生坚果的植物;(17)其他:拟南芥、臂形草、蒺藜草、大狗尾草、牛筋草、Cadaba farinosa、藻类(algae)、Carex elata、观赏植物、大果假虎刺(Carissamacrocarpa)、菜蓟属(Cynara spp.)、野胡萝卜(Daucus carota)、薯蓣属(Dioscorea spp.)、蔗茅属(Erianthus sp.)、苇状羊茅(Festuca arundinacea)、萱草(Hemerocallisfulva)、百脉根属(Lotus spp.)、Luzula sylvatica、紫苜蓿(Medicago  sativa)、草木樨属(Melilotus spp.)、黑桑(Morus nigra)、烟草属(Nicotiana spp.)、木犀榄属(Olea spp.)、鸟足豆属(Ornithopus spp.)、欧防风(Pastinaca sativa)、接骨木属(Sambucus spp.)、白芥属(Sina pis sp.)、蒲桃属(Syzygium spp.)、鸭茅状摩擦禾(Tripsacum dactyloides)、Triticosecale rimpaui、香堇(Viola odorata)等。
术语“不想要的植物”理解为影响所需植物(如农作物)正常生长的、没有实用或应用价值的植物,可以包括杂草,例如双子叶和单子叶杂草。双子叶杂草包括,但不限于以下属的杂草:白芥属(Sinapis)、独行菜属(Lepidium)、拉拉藤Galium)、繁缕属(Stellaria)、母菊属(Matricaria)、春黄菊属(Anthemis)、牛膝菊属(Galinsoga)、藜属(Chenopodium)、荨麻属(Urtica)、千里光属(Senecio)、苋属(Amaranthus)、马齿苋属(Portulaca)、苍耳属(Xanthium)、旋花属(Convolvulus)、番薯属(Ipomoea)、蓼属(Polygonum)、田菁属(Sesbania)、豚草属(Ambrosia)、蓟属(Cirsium)、飞廉属(Carduus)、苦苣菜属(Sonchus)、茄属(Solanum)、蔊菜属(Rorippa)、节节菜属(Rotala)、母草属(Lindernia)、野芝麻属(Lamium)、婆婆纳属(Veronica)、苘麻属(Abutilon)、三棘果属(Emex)、曼陀罗属(Datura)、堇菜属(Viola)、鼬瓣花属(Galeopsis)、罂粟属(Papaver)、矢车菊属(Centaurea)、车轴草属(Trifolium)、毛莨属(Ranunculus)和蒲公英属(Taraxacum)。单子叶杂草包括,但不限于以下属的杂草:稗属(Echinochloa)、狗尾草属(Setaria)、黍属(Panicum)、马唐属(Digitaria)、梯牧草属(Phleum)、早熟禾属(Poa)、羊茅属(Festuca)、穇属(Eleusine)、臂形草属(Brachiaria)、黑麦草属(Lolium)、雀麦属(Bromus)、燕麦属(Avena)、莎草属(Cyperus)、高粱属(Sorghum)、冰草属(Agropyron)、狗牙根属(Cynodon)、雨久花属(Monochoria)、飘拂草属(Fimbristyslis)、慈姑属(Sagittaria)、荸荠属(Eleocharis)、藨草属(Scirpus)、雀稗属(Paspalum)、鸭嘴草属(Ischaemum)、尖瓣花属(Sphenoclea)、龙爪茅属(Dactyloctenium)、剪股颖属(Agrostis)、看麦娘属(Alopecurus)和阿披拉草属(Apera)。所述的不想要植物还可以包括与所要栽培植物不同的其他植物,例如在水稻栽培地自然生长的部分或少量大豆等作物。
在本发明中,术语“植物组织”或“植物部分”包括植物细胞、原生质体、植物组织培养物、植物愈伤组织、植物块以及植物胚、花粉、胚珠、种子、叶、茎、花、枝、幼苗、果实、核、穗、根、根尖、花药等。
在本发明中,“植物细胞”应理解为来自或发现于植物的任何细胞,其能够形成例如:未分化组织如愈伤组织,分化组织如胚胎,植物的组成部分,植物或种子。
在本发明中,术语“基因编辑”技术包括CRISPR技术、TALEN技术、ZFN技术。CRISPR技术中所指基因编辑工具包括guideRNA、Cas蛋白(如Cas9、Cpf1、Cas12b等)。TALEN技术中所指的基因编辑工具是可以切割特定DNA序列的限制酶,其包括一个TAL效应子DNA结合结构域和一个DNA切割结构域。ZFN技术中所指的基因编辑工具也是可以切割特定DNA序列的限制酶,其包括一个锌指DNA结合结构域与一个DNA切割结构域。本领域技术人员熟知,将编码基因编辑工具的核苷酸及其他调控元件构建于适宜的载体中,再转化细胞,可以实现对细胞内基因组的编辑,所述编辑的类型包括基因敲除、插入、碱基编辑。
在本发明中,术语“最大耐受浓度”是指在施用除草剂的情况下,对羟基苯丙酮酸双加氧酶(HPPD)仍能保持其催化活性时所能承受的除草剂浓度,所述催化活性即HPPD将对羟基苯丙酮酸转化为尿黑酸的活性。
本发明突变蛋白及其编码核酸
本发明公开了一种突变型HPPD蛋白或其生物活性片段,其与亲本HPPD蛋白相比,对HPPD抑制性除草剂的抗性或耐受性有所提高。特别地,本发明的突变型对羟苯基丙酮酸双氧化酶(HPPD)蛋白相比亲本HPPD蛋白,在对应于SEQ ID No.1所示序列中的第347和/或353位氨基酸发生突变。进一步的,所述的突变型HPPD多肽,还可以在对应于SEQ ID No.1所示序列中的第20、152、170、176、211、347、353、339和340位中的一个或多个位置处发生突变。优选地,所述的突变类型包括A20E、D152N、D170N、G176C、P211L、P336L、Y339H、Y340H、A347V和E353K。更进一步的本发明突变蛋白还可以包括现有技术已经公开的与SEQ ID No.1相应的其他HPPD抗性位点以及突变方式,如WO2019233349A1文本中所记载的突变位点及突变方式,现有技术所公开的与HPPD抗性相关的内容均引用在本发明中。
优选地,所述突变型HPPD蛋白的氨基酸序列进一步与SEQ ID NO.1所示的氨基酸序列具有至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%序列同一性。
本发明所述蛋白质内的特定氨基酸位置(编号)是利用标准序列比对工具通过将目标蛋白质的氨基酸序列与SEQ ID NO.1进行比对而确定的,譬如用Smith-Waterman运算法则或用CLUSTALW2运算法则比对两个序列,其中当比对得分最高时认为所述序列是对准的。比对得分可依照Wilbur,W.J.and Lipman,D.J.(1983)Rapid similarity searches ofnucleic acid and protein data banks.Proc.Natl.Acad.Sci.USA,80:726-730中所述的方法进行计算。在ClustalW2(1.82)运算法则中优选使用默认参数:蛋白质缺口开放罚分=10.0;蛋白质缺口延伸罚分=0.2;蛋白质矩阵=Gonnet;蛋白质/DNA端隙=-1;蛋白质/DNAGAPDIST=4。优选采用AlignX程序(vectorNTI组中的一部分),以适于多重比对的默认参数(缺口开放罚分:10og缺口延伸罚分0.05)通过将蛋白质的氨基酸序列与SEQ ID NO.1进行比来确定本发明所述蛋白质内特定氨基酸的位置。例如通过序列比对,确定在大麦作物中(序列登录号CAA04245.1)其相应于SEQ ID NO.1序列的347位为第335位,以此类推,玉米作物中(序列登录号NP_001105782.2)相应位点为第342位,番茄作物(序列登录号XP_004240171.1)中相应位点为第341位,大豆作物中(序列登录号NP_001235148.2)相应位点为第396位。再如,通过序列比对,确定在大麦作物中(序列登录号CAA04245.1)其相应于SEQ ID NO.1序列的353位为第341位,以此类推,玉米作物中(序列登录号NP_001105782.2)相应位点为第348位。
应理解,本发明突变蛋白中的氨基酸编号基于SEQ ID NO.1作出,当某一具体突变蛋白与SEQ ID NO.1所示序列的同源性达到80%或以上时,突变蛋白的氨基酸编号可能会有相对于SEQ ID NO.1的氨基酸编号的错位,如向氨基酸的N末端或C末端错位1-5位,而采用本领域常规的序列比对技术,本领域技术人员通常可以理解这样的错位是在合理范围内的,且不应当由于氨基酸编号的错位而使同源性达80%(如90%、95%、98%)的、具有相同或相似的除草剂耐受活性的突变蛋白不在本发明突变蛋白的范围内。
在本发明中,亲本对羟苯基丙酮酸双氧化酶蛋白可以来源于任何植物,特别是前述单子叶或双子叶植物。现有技术文献中已经公开了一些来源的亲本(如野生型)对羟苯基丙酮酸双氧化酶蛋白序列以及编码序列,这些现有技术文献在此引入本文作为参考。
优选地,本发明的亲本对羟苯基丙酮酸双氧化酶蛋白来源于稻属,特别是水稻。 更优选地,所述亲本对羟苯基丙酮酸双氧化酶蛋白具有SEQ ID NO.1所示的氨基酸序列,或者与SEQ ID NO.1所示氨基酸序列有至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%序列同一性的氨基酸序列。
本发明还包括所述突变多肽(蛋白)还包括其活性片段、变体、衍生物和类似物包括以下所述的蛋白的任何取代、突变或修饰所产生的物质。
例如,本领域技术人员还清楚,可以改变蛋白质的结构而不对其活性和功能性产生不利影响,例如可以在蛋白质氨基酸序列中引入一个或多个保守性氨基酸取代,而不会对蛋白质分子的活性和/或三维构型产生不利影响。本领域技术人员清楚保守性氨基酸取代的实例以及实施方式。具体的说,可以用与待取代位点属于相同组的另一氨基酸残基取代该氨基酸残基,即用非极性氨基酸残基取代另一非极性氨基酸残基,用极性不带电荷的氨基酸残基取代另一极性不带电荷的氨基酸残基,用碱性氨基酸残基取代另一碱性氨基酸残基,和用酸性氨基酸残基取代另一酸性氨基酸残基。这样的取代的氨基酸残基可以是也可以不是由遗传密码编码的。只要取代不损害蛋白质的生物活性,则一种氨基酸被属于同组的其他氨基酸替换的保守取代落在本发明的范围内。因此,本发明的突变型HPPD蛋白除了包含上述突变之外,还可以在氨基酸序列中包含一个或多个其他突变例如保守性取代。另外,本发明也涵盖还包含一个或多个其他非保守取代的突变型HPPD蛋白,只要该非保守取代不显著影响本发明的蛋白质的所需功能和生物活性即可。
如本领域中所熟知的,可以从蛋白质的N和/或C末端缺失一或多个氨基酸残基而仍保留其功能活性。因此,在另一方面,本发明还涉及从突变型对羟苯基丙酮酸双氧化酶(HPPD)蛋白的N和/或C末端缺失了一或多个氨基酸残基、同时保留了其所需功能活性的片段(比如含有本发明突变位点的氨基酸片段),它们也在本发明的范围内,被称为生物活性片段。在本发明中,“生物活性片段”是指本发明的突变型HPPD蛋白的一部分,其保留了本发明的突变型HPPD蛋白的生物学活性、同时对HPPD抑制剂的耐受性或抗性相比于不具有所述突变的HPPD片段有所提高。例如,突变型HPPD蛋白的生物学活性片段可以是在所述蛋白质的N和/或C末端缺失了一个或多个(例如1-50个、1-25个、1-10个或1-5个,例如1、2、3、4或5个)氨基酸残基的部分,但其仍然保留了全长蛋白的生物学活性。
此外,还可以对本发明突变蛋白进行修饰。修饰(通常不改变一级结构)形式包括:体内或体外的突变蛋白的化学衍生形式如乙酰化或羧基化。修饰还包括糖基化,如那些在突变蛋白的合成和加工中或进一步加工步骤中进行糖基化修饰而产生的突变蛋白。这种修饰可以通过将突变蛋白暴露于进行糖基化的酶(如哺乳动物的糖基化酶或去糖基化酶)而完成。修饰形式还包括具有磷酸化氨基酸残基(如磷酸酪氨酸,磷酸丝氨酸,磷酸苏氨酸)的序列。还包括被修饰从而提高了其抗蛋白水解性能或优化了溶解性能的突变蛋白。
本发明还提供了一种融合蛋白,其中包含本发明的突变型HPPD蛋白或其生物活性片段,以及与之融合的其它组分。在一个优选的实施方案中,所述其它组分是质体引导肽,例如引导到叶绿体内的肽,其将突变的HPPD蛋白靶向叶绿体。在另一个实施方案中,所述其它组分是标签肽,例如6×His。在又一个实施方案中,所述其它组分是有助于提高所述突变型HPPD蛋白的溶解性的肽,例如NusA肽。
本发明还提供编码所述突变型HPPD多肽的多核苷酸,也可以是还包括附加编码和/或非编码序列的多核苷酸。优选的所述突变型HPPD多肽如SEQ NO.2所示。本领域技术人员十分清楚,由于遗传密码的简并性,有多种不同的核酸序列可以编码本文公 开的氨基酸序列。产生编码相同蛋白质的其他核酸序列在本领域普通技术人员的能力范围内,因此本发明涵盖因遗传密码子的简并性而编码相同氨基酸序列的核酸序列。例如,为了在目标宿主生物例如植物中实现异源基因的高表达,可以对所述基因采用宿主生物偏好的密码子进行优化,以使其更好地表达。
本发明还包括严格条件下与上述多核苷酸序列杂交且两个序列之间具有至少50%,较佳地至少70%,更佳地至少80%匹配度的多核苷酸。优选地,所述严谨条件可以指6M尿素、0.4%SDS、0.5×SSC的条件或与其同等的杂交条件,也可以指严谨性更高的条件,例如6M尿素、0.4%SDS、0.1×SSC或与其同等的杂交条件,或杂交时加有变性剂,如50%(v/v)甲酰胺,0.1%小牛血清/0.1%Ficoll,42℃等。在各种条件中,温度可约为40℃以上,如需要严谨性更高的条件时,温度例如可约为50℃,进一步可约为65℃。
本发明的突变蛋白和多核苷酸优选以分离的形式提供,更佳地,被纯化至均质。
本发明多核苷酸全长序列通常可以通过PCR扩增法、重组法或人工合成的方法获得。对于PCR扩增法,可根据本发明所公开的有关核苷酸序列,尤其是开放阅读框序列来设计引物,并用市售的cDNA库或按本领域技术人员已知的常规方法所制备的cDNA库作为模板,扩增而得有关序列。当序列较长时,常常需要进行两次或多次PCR扩增,然后再将各次扩增出的片段按正确次序拼接在一起。所获得的核苷酸序列可将其克隆入载体,再转入细胞,然后通过常规方法从增殖后的宿主细胞中分离得到大批量有关序列。本发明突变位点亦可通过人工合成引入。
核酸构建物、载体
本发明还提供了一种核酸构建体,其中包含编码本发明的突变型对羟苯基丙酮酸双氧化酶蛋白或其生物活性片段或者融合蛋白的核酸序列以及与之可操作连接的一个或多个调控元件。术语“调控元件”在本发明中指的是能够调节与之可操作连接的核酸的转录和/或翻译的核酸序列。所述的调控元件包括启动子劽、终止子序列、前导序列、多聚腺苷酸化序列、信号肽编码区、标记基因等。
本发明所述的启动子可以是在选定宿主细胞内显示转录活性的任何核苷酸序列,包括突变的、截短的和杂合的启动子,并且可能获自与宿主细胞同源或异源的编码细胞外或细胞内多肽的基因。作为在植物细胞或植物中表达的启动子,可使用对羟苯基丙酮酸双氧化酶天然的启动子,或者在植物中具有活性的异源启动子。所述启动子可以是组成型表达的,或者可以是诱导型表达的。启动子的实例包括例如组蛋白启动子,水稻肌动蛋白启动子,植物病毒启动子例如花椰菜花叶病毒启动子等。
本发明还提供了一种表达载体,其中包含有编码本发明的突变型对羟苯基丙酮酸双氧化酶蛋白或其生物活性片段或者融合蛋白的核酸序列以及与之可操作连接的表达调控元件。表达载体中还至少含有一个复制起点,以实现自我复制。载体的选择通常取决于载体与该载体待引入之宿主细胞的相容性。载体可能是自主复制载体,即作为染色体外实体存在的载体,它的复制不依赖于染色体的复制,例如质粒、染色体外元件、微型染色体或人工染色体。该载体可能包含保证自我复制的任何元件。或者,所述载体可能是当引入宿主细胞时被整合入基因组中并与其所整合入的染色体一起复制的载体。此外,可使用单个载体或质粒或者一起包含待引入宿主细胞基因组之总DNA的两个或更多个载体或质粒,或者转座子。或者,所述载体也可以是对宿主细胞内源性的HPPD基因进行基因编辑的载体。
载体可以是例如质粒、病毒、粘粒、噬菌体等类型,它们是本领域技术人员所熟 知的,在本领域中众多描述。优选地,本发明中的表达载体是质粒。表达载体可包含启动子、翻译起始的核糖体结合位点、聚腺苷酸化位点、转录终止子、增强子等。表达载体中也可以含有一个或多个可选择标记基因以便用于选择包含载体的宿主细胞。这种可选择的标记包括编码二氢叶酸还原酶的基因,或赋予新霉素耐受性的基因,赋予对四环素或氨苄青霉素耐受性的基因等。
本发明的载体可以包含允许载体整合入宿主细胞基因组或在细胞内不依赖于基因组而自主复制的元件。对于整合进入宿主细胞基因组的方面,所述载体可依靠编码多肽的多核苷酸序列或适于通过同源或非同源重组整合入基因组的载体的任何其它元件。或者,载体可包含用于指导在染色体的准确位置通过同源重组整合入宿主细胞基因组的附加的核苷酸序列。为了提高在准确位置处整合的可能性,整合元件应优选包含足够数目的核酸,譬如100至10,000个碱基对,优选400至10,000个碱基对,更优选800至10,000个碱基对,它们与相应的靶序列具有高度的同一性以提高同源重组的概率。整合元件可能是与宿主细胞基因组内靶序列同源的任何序列。此外,整合元件可能是非编码的或编码的核苷酸序列。另一方面,载体可能通过非同源重组整合入宿主细胞的基因组内。对于自主复制而言,载体可能进一步包含能使载体在所述宿主细胞内自主复制的复制起点。复制起点可能是在细胞内发挥作用的介导自主复制的任何质粒复制子。术语"复制起点"或"质粒复制子"在此定义为能使质粒或载体在体内进行复制的核苷酸序列。
可将一拷贝以上的本发明之多核苷酸插入宿主细胞中以提高基因产物的产量。可通过将至少一个额外拷贝的序列整合入宿主细胞基因组中或者通过将可扩增的可选择标记基因与所述多核苷酸包含在一起来达到多核苷酸拷贝数目的增加,在后一情形下,包含扩增拷贝的选择标记基因以及由此而来的附加拷贝的多核苷酸的细胞可通过在适当的可选择制剂存在的条件下人工培养所述细胞进行选择。
本领域的技术人员熟知的方法能用于构建含除草剂抗性多肽编码DNA序列和合适的转录/翻译控制信号的载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。所述的DNA序列可有效连接到载体中的适当启动子上,以指导mRNA合成。载体还包括翻译起始用的核糖体结合位点和转录终止子。
本发明中适用的载体包括可从商业渠道获得的质粒,例如但不限于:pBR322(ATCC37017),pKK223-3(Pharmacia Fine Chemicals,Uppsala,Sweden),GEM1(Promega Biotec,Madison,WI,USA)pQE70,pQE60,pQE-9(Qiagen),pD10,psiX174pBluescript II KS,pNH8A,pNH16a,pNH18A,pNH46A(Stratagene),ptrc99a,pKK223-3,pKK233-3,pDR540,pRIT5(Pharmacia),pKK232-8,pCM7,pSV2CAT,pOG44,pXT1,pSG(Stratagene),pSVK3,pBPV,pMSG,和pSVL(Pharmacia)等。
本发明还提供了包含本发明核酸序列、核酸构建体或表达载体的宿主细胞。将包含编码本发明的载体引入宿主细胞中使得载体作为染色体整合体的一部分存在或如早先所述作为自我复制的染色体外载体存在,或者载体可以对宿主细胞内源性的HPPD基因进行基因编辑。宿主细胞可以是本领域技术人员熟悉的任何宿主细胞,包括原核生物细胞和真核生物细胞。
本发明的核酸序列、核酸构建体或表达载体可以通过多种技术导入宿主细胞,包括转化、转染、转导、病毒感染、基因枪或Ti-质粒介导的基因传递,以及钙磷酸盐转染、DEAE-葡聚糖介导的转染、脂转染或电穿孔等。
本发明还涉及产生突变型HPPD蛋白或其生物活性片段的方法。包括:(a)在有助于所述突变型HPPD蛋白或其生物活性片段或融合蛋白生产的条件
下培养上述宿主细胞;和(b)分离所述突变型HPPD蛋白或其生物活性片段或融合蛋白。
在本发明的生产方法中,用本领域众所周知的方法将所述细胞培养于适于所述多肽产生的营养培养基上。若所述多肽被分泌入营养培养基中,则可直接从培养基中回收该多肽。若所述多肽不分泌到培养基中,则可从细胞裂解物中回收它。
可用本领域已知特异于所述多肽的方法检测该多肽。这些检测方法可包括使用特异抗体、形成酶产物或酶底物的消失。
产生的多肽可用本领域已知的方法回收。例如,可以通过离心收获细胞,用物理的或化学的方法使之破碎,并保留得到的粗提取液以进一步纯化。可以用任何方便的方法裂解表达本发明的突变型HPPD蛋白或其生物活性片段或融合蛋白的转化宿主细胞,包括冻融循环、超声波、机械破碎或使用细胞溶解剂。这些方法是本领域技术人员熟知的。可以从转化宿主细胞的培养物中回收和纯化本发明的突变型HPPD蛋白或其生物活性片段,采用的方法包括硫酸铵或乙醇沉淀、酸提取、阴离子或阳离子交换层析、磷酸纤维素层析、疏水作用层析、亲合层析、羟磷灰石层析和植物血凝素层析等等。
本发明还涉及一种制备对HPPD抑制型除草剂具有耐受性或抗性的宿主生物特别是植物细胞、植物组织、植物部分或植物的方法,其中包括用包含本发明的突变型对羟苯基丙酮酸双氧化酶蛋白或其生物活性片段的编码核酸序列、包含所述核酸序列的核酸构建体或表达载体对所述宿主生物进行转化,合适的载体和选择标记是本领域技术人员所熟知的。宿主细胞例如植物细胞的转化方法是现有技术中已知的,包括例如原生质体转化、融合、注射、电穿孔、PEG介导的转化、离子轰击、病毒转化、农杆菌介导的转化、电穿孔或轰击等。现有技术中描述了一系列这样的转化方法,例如EP1186666中描述了大豆转化的技术,WO 92/09696中描述了单子叶植物特别是水稻转化的合适技术等。还可以有利地用根癌农杆菌或发根农杆菌培养植物外植体,以将DNA转移进植物细胞。然后可以在合适的培养基中从感染的植物材料部分(如叶碎片、茎节段、根以及原生质体或悬浮培养的细胞)再生完整植物,所述培养基可以含有用于选择的抗生素或杀虫剂。转化细胞以通常的方式在植物中生长,它们可以形成生殖细胞并将转化的性状传递到子代植物。这样的植物能以正常方式培养并与具有相同转化遗传因子或其他遗传因子的植物杂交。得到的杂合个体具有相应的表型特性。
本发明还提供了一种提高植物细胞、植物组织、植物部分或植物的HPPD抑制性除草剂耐受性或抗性的方法,其中包括用包含本发明的突变型对羟苯基丙酮酸双氧化酶蛋白或其生物活性片段或者融合蛋白的编码核酸序列的核酸分子转化所述植物或其部分,并使之表达。所述核酸分子可以作为染色体外实体存在而进行表达,或者可以整合到植物细胞的基因组中实现表达,特别是通过同源重组整合到植物细胞的内源基因位置处实现表达。
本发明还提供了一种提高植物或其部分的HPPD抑制性除草剂耐受性或抗性的方法,其中包括将表达本发明的突变型对羟苯基丙酮酸双氧化酶(HPPD)蛋白或其生物活性片段或者融合蛋白的植物与另一植物杂交,以及筛选具有提高的HPPD抑制性除草剂抗性或耐受性的植物或其部分。
本发明还提供了一种提高植物细胞、植物组织、植物部分或植物中的HPPD抑制性除草剂耐受性或抗性的方法,其中包括对所述植物细胞、植物组织、植物部分或植物的内源性HPPD蛋白进行基因编辑,以实现在其中表达本发明的突变型对羟苯基丙酮酸双氧化酶蛋白或其生物活性片段或者融合蛋白。
本发明进一步涉及通过上述方法获得的植物细胞、植物组织、植物部分和植物,及其后代。优选地,可以将转化了本发明多核苷酸的植物细胞、植物组织或植物部分再生为整个植株。本发明包括细胞培养物,包括组织细胞培养物、液体培养物和固体平板培养物。由本发明植物所产生和/或用于再生本发明植物的种子也包括在本发明范围内。其他植物组织和部分也包括在本发明中。本发明同样包括产生含有本发明核酸分子的植物或细胞的方法。产生这类植物的一种优选方法为通过种植本发明的种子。以这种方式转化的植物可以获得对多种具有不同作用模式的除草剂的抗性。
本发明还提供了一种在植物栽培地控制不想要植物有效量的方法,其中包括对包含本发明的植物或种子的栽培地施用控制不想要植物有效量的一种或多种HPPD抑制性除草剂。
在本发明中,术语“栽培地”包括栽培本发明植物的场地例如土壤,也包括例如植物种子、植物苗以及长成的植物。术语“控制不想要植物有效量”指的是除草剂的量足以影响不想要植物,如杂草,的生长或发育,例如阻止或抑制不想要植物的生长或发育,或者杀灭所述不想要植物。有利地,所述控制不想要植物有效量不会显著影响本发明植物种子、植物苗或植物的生长和/或发育。本领域技术人员可以通过常规实验确定这样的控制不想要植物有效量。
本发明提供了一种通过使用突变型HPPD鉴定异噁唑类HPPD除草剂的使用方法,所述的突变型HPPD具有SEQ ID NO.2所示的多肽或活性片段。所述的方法包括以下步骤:提供一种突变型HPPD多肽,或表达突变型HPPD多肽的细胞或植物(测试组);向突变型HPPD多肽,或表达突变型HPPD多肽的细胞或植物及亲本(如野生型)蛋白、细胞或植物的对照组施加所述测试化合物;测定测试组及对照组的活性或生长或生存力;选择与测试组相比引起对照组活性或生长或生存力减少的测试化合物。
本发明的主要优点:
1、本发明筛选出了一种对异噁唑类除草剂或三酮类除草剂具有较高抗性的HPPD突变多肽。
2、含有本发明突变型HPPD多肽的植物相比亲本植物其对异噁唑类除草剂或三酮类除草剂的耐受性提高了至少2-16倍。赋予植物对异噁唑类除草剂或三酮类除草剂的耐受浓度至少150μM-至少800μM的耐受浓度。
序列表
SEQ ID NO.: 描述
1 水稻野生型HPPD氨基酸序列
2 A347V突变型HPPD氨基酸序列
3 E353K突变型HPPD氨基酸序列
4 A347V+E353K突变型HPPD氨基酸序列
5 水稻野生型HPPD核酸序列
6 A347V突变型HPPD核酸序列
7 E353K突变型HPPD核酸序列
8 A347V+E353K突变型HPPD核酸序列
实施方式
下面结合实施例对本发明做进一步的说明,以下所述,仅是对本发明的较佳实施 例而已,并非对本发明做其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更为同等变化的等效实施例。凡是未脱离本发明方案内容,依据本发明的技术实质对以下实施例所做的任何简单修改或等同变化,均落在本发明的保护范围内。
实施例1、基因编辑载体构建及抗除草剂突变位点的筛选
1、构建靶向水稻内源HPPD基因的Anc689BE4max-nCas9碱基编辑器
CBE碱基编辑器可以在一定的序列窗口范围内实现C/G->T/A的碱基转换(Komor etal.,2016),而Anc689BE4max-nCas9碱基编辑器(图1)是在第一代CBE的基础上优化而来,在水稻中应用的结果表明能大幅提高碱基转换的效率(Wang et al,2019)。本发明以Anc689BE4max-nCas9碱基编辑器为载体,在水稻内源HPPD基因中设计若干sgRNA(以表1所示的sgRNA为例),分别克隆至Anc689BE4max-nCas9载体,形成若干靶向水稻内源HPPD基因的碱基编辑器,具体制备方法参见(Wang et al,2019),水稻内源HPPD基因编码的氨基酸如SEQ ID No.1所示。
表1靶向水稻HPPD基因的sgRNA序列
sgRNA编号 guide-PAM序列(5’-3’)
HPPD-CBE-sg6 GCGCGCCGGGGACGTGCTCT CGG
HPPD-CBE-sg8 GTCCTCCGAGAGCACGTCCC CGG
2、水稻遗传转化及转基因植株鉴定
以日本晴水稻品种作为实验材料,把以上构建好的碱基编辑器分别通过农杆菌转化,获得T0代转基因植株。通过PCR及测序对以上植株进行鉴定,发现部分植株在靶点范围内出现预期的碱基替换,例如HPPD-CBE-sg6的转化植株出现C1040,1041->T的碱基替换,导致一个氨基酸突变A347V(图2);HPPD-CBE-sg8的转化植株出现G 1056,1057->A的碱基替换,导致另一个氨基酸突变E353K(图5);
3、对水稻T1代种子进行除草剂抗性筛选
将T0代植株种植,所收获的T1代种子经脱壳消毒后,接种到加了除草剂的1/2MS培养基上,所添加的除草剂为异噁唑草酮(Isoxaflutole)或硝磺草酮(Mesotrione),终浓度均设置为400nM。接种10天后观察并统计种子发芽及幼苗生长状态。
4、实验结果
来自HPPD-CBE-sg6转化体的T1代种子在添加了异噁唑草酮(Isoxaflutole)的培养基上能正常发芽并且幼苗保持绿色(图3),而添加硝磺草酮的培养基上的水稻幼苗发芽受到抑制并且出现白化,野生型水稻幼苗在这两种筛选培养基上也均表现出明显的白化症状。通过PCR及测序鉴定,发现这些幼苗为纯合突变体,与野生型序列SEQID NO.:5相比其HPPD基因出现C 1040,1041->T的碱基替换,导致一个氨基酸突变A347V,突变的HPPD氨基酸序列SEQ ID No.2所示(图4)。
来自HPPD-CBE-sg8转化体的T1代种子在添加了硝磺草酮(Mesotrione)的培养基上能正常发芽并且幼苗保持绿色(图6),而添加异噁唑草酮的培养基上的水稻幼苗发芽受到抑制并且出现白化,野生型水稻幼苗在这两种筛选培养基上也均表现出明显的白化症状。通过PCR及测序鉴定,发现这些幼苗为纯合突变体,与野生型序列SEQ IDNO.:5相比其HPPD基因出现G 1056,1057->A的碱基替换,导致一个氨基酸突变E353K,突变的HPPD氨基酸序列SEQ ID No.3所示(图7)。这些结果表明HPPD(E353K)突变体 对硝磺草酮具有除草剂抗性。
5、实验结论
OsHPPD多肽第347位氨基酸位点的突变可以赋予植株除草剂抗性,尤其是针对于异噁唑类除草剂;OsHPPD多肽第353位氨基酸位点的突变可以赋予植株除草剂抗性,尤其是针对于三酮类除草剂;本发明在培育抗HPPD抑制性除草剂作物中具有重要应用价值。
参考文献
Ahrens H,Lange G,Muller T,Rosinger C,Willms L and van Almsick A(2013).4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners:solutions for modern and sustainable agriculture.ANGEW CHEM INT ED ENGL 52:9388-9398.
Beaudegnies R,Edmunds AJF,Fraser TEM,Hall RG,Hawkes TR,Mitchell G,Schaetzer J,Wendeborn S and Wibley J(2009)Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors-A review of the triketone chemistry story from a Syngenta perspective.BIOORGAN MED CHEM 17:4134-4152.
Yang C,Pflugrath JW,Camper DL,Foster ML,Pernich DJ and Walsh TA(2004)Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases.BIOCHEMISTRY-US 43:10414-10423.
Komor,A.C.,Kim,Y.B.,Packer,M.S.,Zuris,J.A.,and Liu,D.R.(2016).Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.NATURE 533:420–424.
Mugui Wang,Zhidan Wang,Yanfei Mao,Yuming Lu,Ruifang Yang,Xiaoping Tao and Jian-Kang Zhu(2019).Optimizing base editors for improved efficiency and expanded editing scope in rice.PLANT BIOTECHNOLOGY JOURNAL 17:1697-1699.
Hideo Maeda*,Kazumasa Murata*,Nozomi Sakuma,Satomi Takei,Akihiko Yamazaki,Md.
Rezaul Karim,Motoshige Kawata,Sakiko Hirose,Makiko Kawagishi-Kobayashi,Yojiro
Taniguchi,Satoru Suzuki,Keisuke Sekino,Masahiro Ohshima,Hiroshi Kato,Hitoshi Yoshida,Yuzuru Tozawa(2019).A rice gene that confers broad-spectrum resistance toβ-triketone herbicides.Science 365,395:393-396
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (16)

  1. 一种对羟基苯丙酮酸双加氧酶(HPPD)的突变多肽,所述突变多肽与亲本对羟基苯丙酮酸双加氧酶(HPPD)的氨基酸序列相比,在对应于SEQ ID No.1所示氨基酸序列的第347位氨基酸和/或第353位氨基酸发生突变。
  2. 根据权利要求1所述的突变多肽,其特征在于,所述第347位氨基酸由丙氨酸(A)突变为非丙氨酸的氨基酸;所述第353位氨基酸由谷氨酸(E)突变为非谷氨酸的氨基酸;
    优选地,所述第347位丙氨酸(A)突变为选自下组的氨基酸:缬氨酸(V),甘氨酸(G)、亮氨酸(L)或异亮氨酸(I);
    优选地,所述第353位谷氨酸(E)突变为选自下组的氨基酸:赖氨酸(K),组氨酸(H)或精氨酸(R);
    优选地,所述第347位丙氨酸(A)突变为选自下组的氨基酸:缬氨酸(V);
    优选地,所述第353位谷氨酸(E)突变为选自下组的氨基酸:赖氨酸(K)。
  3. 根据权利要求1或2所述的突变多肽,其特征在于,所述亲本HPPD来源于单子叶植物或双子叶植物;
    优选地,所述亲本HPPD来源于水稻。
  4. 一种多核苷酸,其特征在于,所述多核苷酸编码权利要求1-3任一所述的突变多肽。
  5. 一种核酸构建体,其特征在于,所述构建体含有权利要求4所述的多核苷酸以及与之可操作连接的调控元件;
    优选地,所述调控元件选自下组中的一种或任意几种:增强子、转座子、启动子、终止子、前导序列、多核苷酸序列、标记基因。
  6. 一种载体,其特征在于,所述载体含有权利要求4所述的多核苷酸。
  7. 一种宿主细胞,所述的宿主细胞含有权利要求5所述的核酸构建体或权利要求6所述的载体或基因组中整合有权利要求4所述的多核苷酸。
  8. 一种制备权利要求1所述突变多肽的方法,所述的方法包括步骤:
    (a)在适合表达的条件下,培养权利要求7所述的宿主细胞,从而表达所述的突变多肽;和
    (b)分离所述的突变多肽。
  9. 一种赋予植物对HPPD抑制性除草剂产生抗性或耐受性的方法,所述方法包括在植物细胞、植物组织、植物部分或植物中引入权利要求1-3任一所述突变多肽的步骤。
  10. 根据权利要求9所述的方法,其特征在于,所述方法包括将权利要求1-3任一所述的突变多肽在植物细胞、植物组织、植物部分或植物中进行表达的步骤。
  11. 根据权利要求10所述的方法,其特征在于,所述表达包括通过表达载体对所述突变多肽进行表达的步骤,或者包括将所述编码突变多肽的多核苷酸整合到植物基因组上进行表达的步骤。
  12. 根据权利要求9所述的方法,其特征在于,所述方法包括将植物的内源性HPPD进行突变从而引入所述突变多肽的步骤。
  13. 根据权利要求9-12任一所述的方法,其特征在于,所述HPPD抑制性除草剂选自三酮类、二酮腈类、异噁唑类、吡唑类、二苯酮类、或其组合;
    优选地,所述三酮类除草剂优选双环磺草酮、硝磺草酮、甲基磺草酮、环磺酮、特呋三酮或氟吡草酮中的一种或任意几种;所述异噁唑类除草剂优选异噁唑草酮、异噁氯草酮、异恶草酮的一种或任意几种;所述吡唑类除草剂优选苄草唑、吡草酮、吡唑特、磺酰草吡唑或苯唑草酮中的一种或任意几种。
  14. 权利要求1-3任一所述的突变多肽、权利要求4所述的多核苷酸、权利要求5所述的核酸构建体或或权利要求6所述的载体或权利要求7所述的宿主细胞在制备对HPPD抑制性除草剂具有抗性或耐受性的植物中的用途;
    优选的,所述HPPD抑制性除草剂选自三酮类、异噁唑类、二酮腈类或羟基吡唑类除草剂。
  15. 一种鉴定或选择转化的植物细胞、植物组织、植物或其部分的方法,包括:(i)提供转化的植物细胞、植物组织,植物或其部分,其中所述转化的植物细胞、植物组织、植物或其部分包含如权 利要求4所示的多核苷酸,其中多核苷酸编码作为选择标记使用的突变型HPPD多肽,并且其中所述转化的植物细胞、植物组织、植物或其部份可以包含另一种分离的多核苷酸部份包含;(ii)使转化的植物细胞、植物组织、植物或其部份与至少一种除草剂接触;(iii)确定植物细胞、植物组织、植物或其部分是否受抑制性化合物影响;和(iv)鉴定或选择转化的植物细胞、植物组织、植物或其部分。
  16. 一种在植物栽培地点控制不想要的植物的方法,所述方法包括:
    (1)提供包含权利要求1-3任一所述的突变多肽或权利要求4所述的多核苷酸或权利要求5所述的核酸构建体的植物或权利要求6所述的载体,或者提供由权利要求9-12的方法得到的植物;
    (2)将步骤(1)的植物进行栽培,并向所述栽培地点施用HPPD抑制性除草剂。
PCT/CN2021/073021 2020-01-21 2021-01-21 抗除草剂多肽、核酸及其应用 WO2021147939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180001779.7A CN113423826B (zh) 2020-01-21 2021-01-21 抗除草剂多肽、核酸及其应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010072036.6 2020-01-21
CN202010072582.X 2020-01-21
CN202010072582 2020-01-21
CN202010072036 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147939A1 true WO2021147939A1 (zh) 2021-07-29

Family

ID=76993068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073021 WO2021147939A1 (zh) 2020-01-21 2021-01-21 抗除草剂多肽、核酸及其应用

Country Status (2)

Country Link
CN (1) CN113423826B (zh)
WO (1) WO2021147939A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249344A (zh) * 2020-02-07 2021-08-13 山东舜丰生物科技有限公司 抗除草剂突变蛋白、核酸及其应用
CN117178892A (zh) * 2023-10-18 2023-12-08 中国农业大学 一种白颖苔草组织培养的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117987385A (zh) * 2021-03-24 2024-05-07 华中师范大学 Hppd蛋白、基因、载体、细胞、组合物及其应用、提高作物除草剂抗性的方法
CN116064430B (zh) * 2021-09-14 2023-08-11 山东舜丰生物科技有限公司 突变的hppd多肽及其应用
CN116284304B (zh) * 2022-04-14 2023-11-14 山东舜丰生物科技有限公司 一种抗除草剂多肽及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906841A (zh) * 2011-11-02 2014-07-02 巴斯夫欧洲公司 对除草剂具有增加的耐受性的植物
CN105247058A (zh) * 2013-04-30 2016-01-13 巴斯夫欧洲公司 具有增加的除草剂耐受性的植物
CN105358697A (zh) * 2013-04-30 2016-02-24 巴斯夫欧洲公司 具有增加的除草剂耐受性的植物
CN110616203A (zh) * 2018-06-04 2019-12-27 青岛清原化合物有限公司 突变型对羟苯基丙酮酸双氧化酶、其编码核酸以及应用
WO2020221312A1 (zh) * 2019-04-30 2020-11-05 山东舜丰生物科技有限公司 抗除草剂基因、多肽及其在植物育种中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906841A (zh) * 2011-11-02 2014-07-02 巴斯夫欧洲公司 对除草剂具有增加的耐受性的植物
CN105247058A (zh) * 2013-04-30 2016-01-13 巴斯夫欧洲公司 具有增加的除草剂耐受性的植物
CN105358697A (zh) * 2013-04-30 2016-02-24 巴斯夫欧洲公司 具有增加的除草剂耐受性的植物
CN110616203A (zh) * 2018-06-04 2019-12-27 青岛清原化合物有限公司 突变型对羟苯基丙酮酸双氧化酶、其编码核酸以及应用
WO2020221312A1 (zh) * 2019-04-30 2020-11-05 山东舜丰生物科技有限公司 抗除草剂基因、多肽及其在植物育种中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHINDLER CHRISTINA E. M., HOLLENBACH EVA, MIETZNER THOMAS, SCHLEIFER KLAUS‐JÜRGEN, ZACHARIAS MARTIN: "Free energy calculations elucidate substrate binding, gating mechanism, and tolerance‐promoting mutations in herbicide target 4‐hydroxyphenylpyruvate dioxygenase", PROTEIN SCIENCE, WILEY, US, vol. 28, no. 6, 1 June 2019 (2019-06-01), US, pages 1048 - 1058, XP055832918, ISSN: 0961-8368, DOI: 10.1002/pro.3612 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249344A (zh) * 2020-02-07 2021-08-13 山东舜丰生物科技有限公司 抗除草剂突变蛋白、核酸及其应用
CN117178892A (zh) * 2023-10-18 2023-12-08 中国农业大学 一种白颖苔草组织培养的方法

Also Published As

Publication number Publication date
CN113423826A (zh) 2021-09-21
CN113423826B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2021147939A1 (zh) 抗除草剂多肽、核酸及其应用
AU2019280480B2 (en) Mutant p-hydroxyphenylpyruvate dioxygenase, and coding nucleic acid and use thereof
AU2023203235A1 (en) Plants having increased tolerance to herbicides
CN103261424B (zh) 对除草剂具有增强的耐受性的植物
WO2021088601A1 (zh) 一种在生物体内产生新突变的方法及应用
CN113249343B (zh) 具有抗除草剂特性的多肽、核酸及其应用
WO2019233349A1 (zh) 突变型对羟苯基丙酮酸双氧化酶、其编码核酸以及应用
US20130053243A1 (en) Plants having increased tolerance to herbicides
US10801035B2 (en) Plants having increased tolerance to herbicides
EP3310154A1 (en) Plants having increased tolerance to herbicides
CN104662155A (zh) 对除草剂具有增强的耐受性的植物
CN113249346B (zh) 抗除草剂多肽、核酸及其应用
CN113249344B (zh) 抗除草剂突变蛋白、核酸及其应用
CN113249345B (zh) 抗除草剂多肽、核酸及其应用
US10829778B2 (en) Plants having increased tolerance to herbicides
WO2022206580A1 (zh) 对ppo抑制剂类除草剂具有耐受性的ppo多肽及应用
RU2781830C2 (ru) Мутантная п-гидроксифенилпируватдиоксигеназа, нуклеиновая кислота, кодирующая ее, и их применение
WO2023185306A1 (zh) 对ppo抑制剂类除草剂具有耐受性的ppo2多肽及应用
WO2022028440A1 (zh) 除草剂抗性蛋白、基因和用途
EP4448773A2 (en) Cyp72a219 genes conferring herbicide tolerance
CN115247157A (zh) 对ppo抑制剂类除草剂具有耐受性的ppo多肽及应用
EA046522B1 (ru) Растения, имеющие повышенную толерантность к гербицидам

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744687

Country of ref document: EP

Kind code of ref document: A1