WO2021147227A1 - 混合腔压力控制方法、呼吸机设备和计算机可读存储介质 - Google Patents

混合腔压力控制方法、呼吸机设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2021147227A1
WO2021147227A1 PCT/CN2020/095139 CN2020095139W WO2021147227A1 WO 2021147227 A1 WO2021147227 A1 WO 2021147227A1 CN 2020095139 W CN2020095139 W CN 2020095139W WO 2021147227 A1 WO2021147227 A1 WO 2021147227A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
mixing chamber
air
current
pressure
Prior art date
Application number
PCT/CN2020/095139
Other languages
English (en)
French (fr)
Inventor
吴本清
罗忠杰
罗小锁
李秋华
彭强
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Publication of WO2021147227A1 publication Critical patent/WO2021147227A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3341Pressure; Flow stabilising pressure or flow to avoid excessive variation

Definitions

  • the present invention relates to the field of medical technology, in particular to a mixing chamber pressure control method, a ventilator device and a computer-readable storage medium.
  • the accuracy and fluctuation range of the pressure control of the mixing chamber of the ventilator adopting the air-oxygen mixing chamber scheme has a very important influence on the flow control and oxygen concentration control of various ventilation modes.
  • Using an adaptive algorithm to adjust the pressure of the mixing chamber can achieve precise control of the pressure in the mixing chamber when the suction flow is stable and when the suction flow is small. However, it does not solve the control problem that the pressure of the mixing chamber drops drastically when the flow rate rises rapidly with a large target flow rate. The faster the flow rate increases, the more the mixing chamber pressure drops, which increases the difficulty of controlling the ventilator flow rate and oxygen concentration.
  • a pressure control method of a mixing chamber includes: acquiring a first air outlet flow rate in the current unit time and a second air outlet flow rate in the previous unit time of the current unit time; according to the first air outlet flow rate and the first air flow rate Second, the outlet air flow rate obtains the current outlet air flow rate change ratio; and adjusts the air inlet amount of the mixing chamber according to the current outlet air flow rate change rate.
  • the adjustment value of the intake air volume of the mixing chamber is directly proportional to the change ratio of the current output air flow.
  • the step of adjusting the intake air volume of the mixing chamber according to the current air flow rate change ratio includes: generating a control electric signal according to the current air flow change rate; adjusting the electromagnetic valve of the mixing chamber according to the control electric signal .
  • the step of generating the control electric signal according to the current airflow change ratio includes: obtaining the control electric signal according to the following formula:
  • ⁇ DA is the control electrical signal
  • ⁇ Fo is the difference in flow rate
  • Fo is the first outflow flow rate
  • K is the compensation coefficient
  • the step of obtaining the change ratio of the current outlet air flow according to the first air outlet flow rate and the second air outlet flow rate includes: subtracting the second air outlet flow rate from the first air outlet flow rate to obtain a flow difference; The ratio of the difference in flow rate to the first outflow flow rate is acquired as the rate of change in the outflow flow rate.
  • the step of adjusting the air intake volume of the mixing chamber according to the change ratio of the current outlet air flow includes: adjusting the air intake volume of the mixing chamber in combination with an adaptive algorithm.
  • the mixing chamber is in a pressure controlled ventilation mode.
  • a ventilator device includes: an acquisition module, which is used to acquire a first air flow rate in the current unit time and a second air flow rate in the previous unit time; and a calculation module, which is used to obtain the first air flow rate according to the first air flow rate and the second air flow rate in the previous unit time.
  • the second outlet air flow rate calculates the current outlet air flow rate change ratio; the adjustment module adjusts the electromagnetic valve of the mixing chamber according to the current outlet air flow rate change rate.
  • a ventilator device includes a processor and a memory, the processor is coupled to the memory, the memory is stored with a computer program, and the processor executes the computer program to implement the method as described above.
  • a computer-readable storage medium stores a computer program, and the computer program can be executed by a processor to implement the above-mentioned method.
  • FIG. 1 is a schematic flowchart of a first embodiment of a pressure control method of a mixing chamber provided by the present invention
  • FIG. 2 is a schematic flowchart of a second embodiment of the pressure control method of the mixing chamber provided by the present invention
  • Figure 3 is the control effect diagram when the target pipeline pressure is 20Hpa and the adaptive algorithm is used to adjust the pressure of the mixing chamber;
  • Figure 4 is a control effect diagram when the target pipeline pressure is 20Hpa and the method shown in Figure 1 or Figure 2 is used to adjust the pressure of the mixing chamber;
  • Figure 5 is the control effect diagram when the target pipeline pressure is 35Hpa and the adaptive algorithm is used to adjust the pressure of the mixing chamber;
  • Figure 6 shows that the target pipeline pressure is 35Hpa, and the method shown in Figure 1 or Figure 2 is used to adjust the pressure of the mixing chamber;
  • Figure 7 is a schematic structural diagram of the first embodiment of the ventilator device provided by the present invention.
  • Fig. 8 is a schematic structural diagram of a second embodiment of a ventilator device provided by the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the adaptive algorithm is used to adjust the mixing chamber pressure. Due to the hysteresis characteristics of the solenoid valve and the flow sensor, the current control quantity cannot be applied immediately, and the control quantity of the mixing chamber pressure cannot be accurately predicted when the flow rate rises rapidly, resulting in a relatively low intake air volume in the mixing chamber. Less and more air output, breaking the dynamic balance of air intake and air output of the mixing chamber, thus causing the problem of rapid pressure drop in the mixing chamber. The faster the outlet air flow of the mixing chamber changes, the greater the deviation of the intake air volume adjusted by the control algorithm, and the greater the error accumulated in the mixing chamber pressure. If the control coefficient is increased, due to the hysteresis characteristics of the solenoid valve and the flow sensor, the control amount cannot be adjusted in advance, and the pressure of the mixing chamber will be too high when the target is reached.
  • a pressure control method of the mixing chamber which can avoid the problem of large fluctuations in the pressure of the mixing chamber caused by the rapid increase or decrease of the flow rate, and effectively improve the stability of the ventilator.
  • FIG. 1 is a schematic flowchart of a first embodiment of a pressure control method for a mixing chamber provided by the present invention.
  • the pressure control method of the mixing chamber provided by the present invention includes the following steps:
  • S101 Acquire the first air outlet flow rate in the current unit time and the second air outlet flow rate in the previous unit time of the current unit time.
  • the low-pressure valve flow sensor monitors the air outlet state of the mixing chamber, specifically, the air outlet flow rate per unit time is obtained. When it is detected that the first outgas flow rate in the current unit time is not 0, the first outgas flow rate in the current unit time and the second outgas flow rate in the previous unit time of the current unit time are acquired.
  • the length of the unit time can be set according to actual needs, such as 2ms, 10ms, 20ms, and so on.
  • the outflow flow rate of the mixing chamber corresponds to the inhalation flow rate of the user. It can be combined with other sensors to determine whether the user needs to inhale, for example, to determine whether the user wears a breathing mask, etc. If it is determined that the user needs to inhale, get the current The first out-gas flow rate per unit time and the second out-gas flow rate in the previous unit time of the current unit time.
  • the first outgas flow rate in the current unit time and the second outgas flow rate in the previous unit time of the current unit time may also be acquired through regular sampling.
  • the sampling period is set according to actual needs.
  • S102 Acquire a current rate of change of the air outlet flow according to the first air outlet flow rate and the second air outlet flow rate.
  • the current outgas flow rate change ratio is calculated according to the first outgas flow rate in the current unit time and the outgas flow rate in the previous unit time of the current unit time.
  • the second outlet flow rate is subtracted from the first outlet flow rate to obtain the flow rate difference, and the ratio of the flow rate difference to the first outlet flow rate is obtained as the rate of change of the outlet air flow rate.
  • the ratio of the flow rate difference to the second outlet air flow rate is obtained as the outlet air flow rate change ratio.
  • the air intake volume of the mixing chamber is adjusted according to the acquired current rate of change of the outlet air flow, for example, the solenoid valve of the mixing chamber is adjusted to adjust the air intake volume of the mixing chamber.
  • the adjustment value of the intake air volume of the mixing chamber is proportional to the change ratio of the current output air flow. That is, the larger the current outlet air flow rate change ratio, the greater the adjustment value of the air intake volume of the mixing chamber, and the smaller the current outlet air flow rate change rate, the smaller the adjustment value of the air intake air volume of the mixing chamber.
  • the current output flow rate is obtained according to the first air flow rate in the current unit time and the second air output rate in the previous unit time of the current unit time, and the mixture is adjusted according to the current air flow rate change.
  • the current flow rate is smaller, the current outlet flow rate change ratio is greater, the current flow rate is larger, the current outlet flow rate change rate is smaller, the intake amount can be adjusted in advance, and at the same time.
  • FIG. 2 is a schematic flowchart of a second embodiment of the pressure control method of the mixing chamber provided by the present invention.
  • the pressure control method of the mixing chamber provided by the present invention includes the following steps:
  • S201 Acquire the first air outlet flow rate in the current unit time and the second air outlet flow rate in the previous unit time of the current unit time.
  • step S201 is basically the same as step S101 in the first embodiment of the pressure control method of the mixing chamber provided by the present invention, and will not be repeated here.
  • the second outlet flow rate is subtracted from the first outlet flow rate to obtain the flow difference, and the ratio of the flow difference to the first outlet flow rate is obtained as the outlet flow rate change ratio.
  • the ratio of the flow rate difference to the second outlet flow rate may also be obtained as the outlet flow rate change ratio.
  • S203 Generate a control electric signal according to the current airflow change ratio, and adjust the electromagnetic valve of the mixing chamber according to the control electric signal.
  • the mixing chamber is in PCV (Pressure Control Ventilation, pressure control ventilation mode)
  • PCV Pressure Control Ventilation, pressure control ventilation mode
  • the control target is the airway pressure
  • the outlet flow is dynamically adjusted in real time according to the airway pressure, and there is no fixed target ventilation volume. Therefore, it is necessary to find out the control parameters that the smaller the flow rate, the greater the compensation, and the larger the flow rate the smaller the compensation.
  • the current rate of change in outgas flow is a control parameter that meets the control requirements.
  • control electrical signal is generated according to the current airflow change ratio
  • control electrical signal is generated according to the current airflow change ratio through a preset algorithm, specifically, the control electrical signal is obtained according to the following formula:
  • ⁇ DA is the control electrical signal
  • ⁇ Fo is the flow difference
  • Fo is the first outflow flow
  • K is the compensation coefficient
  • ⁇ Fo/Fo is the current airflow change ratio.
  • Fo may also be the second outflow flow rate.
  • the specific value of K can be adjusted according to the use scenario. For example, different models of ventilators correspond to different K.
  • the first outflow flow rate in the current unit time is small, but the flow difference is large. Therefore, the current outflow flow rate change ratio is large, and the corresponding ⁇ DA is large. Adjust the intake air volume in advance.
  • the first outflow flow rate in the current unit time is large, but the flow difference is small, so the current outflow flow rate change ratio is small, and the corresponding ⁇ DA is small to avoid mixing when reaching the target The cavity pressure is too high.
  • an adaptive algorithm is used to adjust the air intake volume of the mixing chamber.
  • the inlet and outlet air flow is small, and the pressure drop of the mixing chamber is relatively small.
  • the flow rate adjusted by the adaptive algorithm is small, so it cannot meet the rapid increase of the subsequent air flow, causing the pressure of the mixing chamber to drop rapidly.
  • Demand When the method of steps S201-S203 is combined for adjustment, the ⁇ DA is relatively large, and the intake air volume can be adjusted in advance in the initial stage of the user's inhalation, so as to avoid the rapid pressure drop of the mixing chamber when the output air flow rate rises rapidly.
  • the adaptive algorithm can achieve a smooth control of the pressure of the mixing chamber.
  • the ⁇ DA is small, and the effect on the adaptive algorithm is also small, so that it can be accurately controlled under the condition of dynamic changes in the outlet flow. Mixing chamber pressure.
  • Figure 3 is a control effect diagram when the target pipeline pressure is 20Hpa and the pressure of the mixing chamber is adjusted by an adaptive algorithm.
  • the upper curve represents the pressure of the mixing chamber.
  • Figure 4 is a control effect diagram when the target pipeline pressure is 20Hpa and the method described in Figure 1 or Figure 2 is used to adjust the pressure of the mixing chamber.
  • the upper curve represents the pressure of the mixing chamber.
  • Figure 5 is a control effect diagram when the target pipeline pressure is 35Hpa and the pressure of the mixing chamber is adjusted by an adaptive algorithm.
  • the upper curve represents the pressure of the mixing chamber.
  • Figure 6 is a control effect diagram when the target pipeline pressure is 35Hpa and the method described in Figure 1 or Figure 2 is used to adjust the pressure of the mixing chamber.
  • the upper curve represents the pressure of the mixing chamber.
  • the adaptive algorithm is used to adjust the air intake volume of the mixing chamber.
  • the adaptive algorithm cannot meet the demand of the subsequent rapid rise of the outlet air flow, the pressure of the mixing chamber will drop rapidly. Adjust the air intake volume of the mixing chamber in advance.
  • the adaptive algorithm can achieve a stable control of the mixing chamber pressure, reduce the influence on the adaptive algorithm. It can accurately control the mixing chamber pressure under the condition of dynamic changes in the outlet air flow, which is effective Improve the stability of the ventilator.
  • FIG. 7 is a schematic structural diagram of the first embodiment of the ventilator device provided by the present invention.
  • the ventilator device 10 includes: an acquisition module 11, a calculation module 12, and an adjustment module 13.
  • the obtaining module 11 is configured to obtain the first air outlet flow rate in the current unit time and the second air outlet flow rate in the previous unit time.
  • the calculation module 12 is used for calculating the current output air flow rate change ratio according to the first air output flow rate and the second air output flow rate.
  • the adjustment module 13 is used to adjust the electromagnetic valve of the mixing chamber according to the current rate of change of the outlet air flow.
  • the adjustment value of the air intake volume of the mixing chamber is proportional to the change ratio of the current output air flow.
  • the adjustment module 13 is also used to generate a control electric signal according to the current air flow rate of change; and adjust the electromagnetic valve of the mixing chamber according to the control electric signal.
  • the adjustment module 13 is also used to obtain the control electrical signal according to the following formula:
  • ⁇ DA is the control electrical signal
  • ⁇ Fo is the flow difference
  • Fo is the first outflow flow
  • K is the compensation coefficient
  • the calculation module 12 is also used to subtract the second outflow flow rate from the first outflow flow rate to obtain a flow difference; compare the flow difference with the first outflow flow rate to obtain the rate of change in the outflow flow rate.
  • the adjustment module 13 is also used to adjust the air intake of the mixing chamber in combination with an adaptive algorithm.
  • the mixing chamber is in a pressure-controlled ventilation mode.
  • the ventilator device adjusts the air intake volume of the mixing chamber according to the current rate of change in the outlet air flow, and at the same time adjusts the air intake volume of the mixing chamber in combination with the adaptive algorithm, which can be used in the case of dynamic changes in the outlet air flow.
  • the pressure of the mixing chamber is accurately controlled to avoid the problem of large fluctuations in the pressure of the mixing chamber caused by the rapid increase or decrease of the flow rate, and effectively improve the stability of the ventilator.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a ventilator device provided by the present invention.
  • the ventilator device 20 includes a processor 21 and a memory 22.
  • the processor 21 is coupled to the memory 22.
  • a computer program is stored in the memory 22, and the processor 21 executes the computer program when it is working to implement the method shown in FIGS. 1 to 2. The detailed method can be referred to the above, and will not be repeated here.
  • the ventilator device adjusts the air intake volume of the mixing chamber according to the current rate of change in the outlet air flow, and at the same time adjusts the air intake volume of the mixing chamber in combination with the adaptive algorithm, which can be used in the case of dynamic changes in the outlet air flow.
  • the pressure of the mixing chamber is accurately controlled to avoid the problem of large fluctuations in the pressure of the mixing chamber caused by the rapid increase or decrease of the flow rate, and effectively improve the stability of the ventilator.
  • FIG. 9 is a schematic structural diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • At least one computer program 31 is stored in the computer-readable storage medium 30, and the computer program 31 is used to be executed by the processor to implement the method shown in FIGS.
  • the computer-readable storage medium 30 may be a storage chip in a terminal, a hard disk, or a mobile hard disk, or other readable and writable storage tools such as a USB flash drive, or an optical disk, and may also be a server or the like.
  • the computer program in the computer-readable storage medium in this embodiment can be used to adjust the air intake volume of the mixing chamber according to the current rate of change in the air outlet flow rate, and at the same time adjust the air intake volume of the mixing chamber in combination with an adaptive algorithm. , It can precisely control the pressure of the mixing chamber under the condition of the dynamic change of the outlet air flow, avoiding the problem of large fluctuations in the pressure of the mixing chamber caused by the rapid increase or decrease of the flow, and effectively improve the stability of the ventilator.
  • the present invention adjusts the air intake volume of the mixing chamber according to the current rate of change of the outlet air flow, and at the same time adjusts the air intake volume of the mixing chamber in combination with an adaptive algorithm, and can precisely control the mixing chamber under the condition of dynamic changes in the outlet air flow.
  • Pressure to avoid the problem of large fluctuations in mixing chamber pressure caused by rapid rise or fall of flow, and effectively improve the stability of the ventilator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ventilation (AREA)
  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

一种混合腔的压力控制方法,包括:获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量(S101);根据第一出气流量和第二出气流量获取当前出气流量变化比率(S102);根据当前出气流量变化比率调整混合腔的进气量(S103)。还公开了一种呼吸机设备(20)和计算机可读存储介质(30)。能够避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。

Description

混合腔压力控制方法、呼吸机设备和计算机可读存储介质 技术领域
本发明涉及医疗技术领域,尤其涉及混合腔压力控制方法、呼吸机设备和计算机可读存储介质。
背景技术
采用空氧混合腔方案的呼吸机,其混合腔压力控制的精度和波动幅度,对各种通气模式的流量控制和氧浓度控制有着十分重要的影响。混合腔压力控制得越精准,越容易控制呼吸机的流量和氧浓度,且其稳定性会更好。
技术问题
采用自适应算法调节混合腔压力,可以实现吸气流量稳定段和小流量吸气时对混合腔压力的精准控制。但未解决较大目标流量在流量快速上升时造成混合腔压力大幅度下掉的控制问题。流量增速越快,混合腔压力下掉越多,增加了呼吸机流量和氧浓度的控制难度。
技术解决方案
基于此,有必要针对上述问题,提出了混合腔压力控制方法、呼吸机设备和计算机可读存储介质。
一种混合腔的压力控制方法,包括:获取当前单位时间内的第一出气流量以及所述当前单位时间的前一单位时间内的第二出气流量;根据所述第一出气流量和所述第二出气流量获取当前出气流量变化比率;根据所述当前出气流量变化比率调整混合腔的进气量。
其中,所述混合腔的进气量的调整值与所述当前出气流量变化比率成正比。
其中,所述根据所述当前出气流量变化比率调整混合腔的进气量的步骤,包括:根据所述当前气流变化比率生成控制电信号;根据所述控制电信号调整所述混合腔的电磁阀门。
其中,所述根据所述当前气流变化比率生成控制电信号的步骤,包括:根据以下公式获取所述控制电信号:
ΔDA = K × (ΔFo/Fo)
其中,ΔDA为所述控制电信号,ΔFo为所述流量差值,Fo为所述第一出气流量,K为补偿系数。
其中,所述根据所述第一出气流量和所述第二出气流量获取当前出气流量变化比率的步骤,包括:将所述第二出气流量所述第一出气流量相减,获取流量差值;获取所述流量差值与所述第一出气流量的比值作为所述出气流量变化比率。
其中,所述根据所述当前出气流量变化比率调整混合腔的进气量的步骤,包括:结合自适应算法调整所述混合腔的进气量。
其中,所述混合腔处于压力控制通气模式。
一种呼吸机设备,包括:获取模块,用于获取当前单位时间内的第一出气流量以及前一单位时间内的第二出气流量;计算模块,用于根据所述第一出气流量和所述第二出气流量计算当前出气流量变化比率;调整模块,根据所述当前出气流量变化比率调整混合腔的电磁阀门。
一种呼吸机设备,包括:处理器和存储器,所述处理器耦接所述存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如上所述的方法。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序能够被处理器执行以实现如上所述的方法。
有益效果
采用本发明实施例,具有如下有益效果:
根据当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量获取当前出气流量变化比率,根据当前出气流量变化比率调整混合腔的进气量,在流量差值一定的情况下,当前流量越小时当前出气流量变化比率越大,当前流量越大时当前出气流量变化比率越小,可以提前把进气量调整到位,同时避免出现在达到目标时混合腔压力过高的问题,能够避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本发明提供的混合腔的压力控制方法的第一实施例的流程示意图;
图2是本发明提供的混合腔的压力控制方法的第二实施例的流程示意图;
图3为目标管道压力为20Hpa,采用自适应算法调整混合腔压力时的控制效果图;
图4为目标管道压力为20Hpa,采用图1或图2所示的方法调整混合腔压力时的控制效果图;
图5为目标管道压力为35Hpa,采用自适应算法调整混合腔压力时的控制效果图;
图6为目标管道压力为35Hpa,采用图1或图2所示的方法调整混合腔压力时;
图7是本发明提供的呼吸机设备的第一实施例的结构示意图;
图8是本发明提供的呼吸机设备的第二实施例的结构示意图;
图9是本发明提供的计算机可读存储介质的一实施例的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
采用自适应算法调节混合腔压力,由于电磁阀和流量传感器存在滞后特性,当前的控制量并不能立即作用,不能准确预测流量快速上升时混合腔压力的控制量,从而导致混合腔进气量较少、出气量较多,打破了混合腔进气量和出气量的动态平衡,因此造成了混合腔压力出现快速下掉的问题。混合腔出气流量变化越快,造成控制算法调节的进气量偏差就越大,混合腔压力累积的误差就越大。如果加大控制系数,由于电磁阀和流量传感器的滞后特性,无法提前调小控制量,会出现在达到目标时混合腔压力过高的问题。
在本实施例中,为了解决上述问题,提供了一种混合腔的压力控制方法,能够避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
请参阅图1,图1是本发明提供的混合腔的压力控制方法的第一实施例的流程示意图。本发明提供的混合腔的压力控制方法包括如下步骤:
S101:获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量。
在一个具体的实施场景中,通过低压阀流量传感器监测混合腔的出气状态,具体地说,获取每一单位时间内的出气流量。当检测到当前单位时间内的第一出气流量不为0时,则获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量。
在本实施场景中,单位时间的长度可以根据实际需要设置,例如2ms、10ms、20ms等。
在其他实施场景中,混合腔的出气流量对应用户的吸气流量,可以结合其他传感器判断用户是否需要吸气,例如,判断用户是否带上呼吸面罩等,若判定用户需要吸气,则获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量。
在其他实施场景中,还可以通过定期采样获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量。采样周期根据实际需要进行设置。
S102:根据第一出气流量和第二出气流量获取当前出气流量变化比率。
在本实施场景中,根据当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的出气流量计算出当前出气流量变化比率。例如,将第二出气流量第一出气流量相减,获取流量差值,获取流量差值与第一出气流量的比值作为出气流量变化比率。或者,获取流量差值与第二出气流量的比值作为出气流量变化比率。
在其他实施场景中,还可以计算相邻的若干出气流量变化比率的平均值,将该平均值作为当前出气流量变化比率。
S103:根据当前出气流量变化比率调整混合腔的进气量。
在本实施场景中,根据获取的当前出气流量变化比率调整混合腔的进气量,例如,调整混合腔的电磁阀,从而调整混合腔的进气量。具体地说,混合腔的进气量的调整值与当前出气流量变化比率成正比。即为当前出气流量变化比率越大,混合腔的进气量的调整值就越大,当前出气流量变化比率越小,混合腔的进气量的调整值就越小。
在流量差值一定的情况下,当前流量越小时当前出气流量变化比率越大,当前流量越大时当前出气流量变化比率越小,因此在用户吸气的初始阶段,当前单位时间内的第一出气流量较小,但是流量差值较大,因此当前出气流量变化比率较大,对应的混合腔的进气量的调整值较大,可以提前把进气量调整到位。而在用户吸气的平稳阶段,当前单位时间内的第一出气流量较大,但是流量差值较小,因此当前出气流量变化比率较小,对应的混合腔的进气量的调整值较小,避免出现在达到目标时混合腔压力过高的问题。
通过上述描述可知,在本实施例中根据当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量获取当前出气流量变化比率,根据当前出气流量变化比率调整混合腔的进气量,在流量差值一定的情况下,当前流量越小时当前出气流量变化比率越大,当前流量越大时当前出气流量变化比率越小,可以提前把进气量调整到位,同时避免出现在达到目标时混合腔压力过高的问题,能够避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
请参阅图2,图2是本发明提供的混合腔的压力控制方法的第二实施例的流程示意图。本发明提供的混合腔的压力控制方法包括如下步骤:
S201:获取当前单位时间内的第一出气流量以及当前单位时间的前一单位时间内的第二出气流量。
在一个具体的实施场景中,步骤S201与本发明提供的混合腔的压力控制方法的第一实施例中的步骤S101基本一致,此处不再进行赘述。
S202:将第二出气流量第一出气流量相减,获取流量差值,获取流量差值与第一出气流量的比值作为出气流量变化比率。
在本实施场景中,将第二出气流量第一出气流量相减,获取流量差值,获取流量差值与第一出气流量的比值作为出气流量变化比率。在其他实施场景中,还可以获取流量差值与第二出气流量的比值作为出气流量变化比率。
S203:根据当前气流变化比率生成控制电信号,根据控制电信号调整混合腔的电磁阀门。
在本实施场景中,混合腔处于PCV(Pressure Control Ventilation,压力控制通气模式)控制目标是气道压力,其出气流量是根据气道压力实时动态调整,没有固定的目标通气量。因此,需要找出流量越小时补偿越大、流量越大时补偿越小的控制参数。在流量差值一定的情况下,当前流量越小时当前出气流量变化比率越大,当前流量越大时当前出气流量变化比率越小。因此,当前出气流量变化比率是符合控制需求的控制参数。
在本实施场景中,根据当前气流变化比率生成控制电信号,例如通过预设算法根据当前气流变化比率生成控制电信号,具体地说,根据以下公式获取控制电信号:
ΔDA = K × (ΔFo/Fo)
其中,ΔDA为控制电信号,ΔFo为流量差值,Fo为第一出气流量,K为补偿系数,ΔFo/Fo为当前气流变化比率。在其他实施场景中,Fo也可以是第二出气流量。在本实施场景中,K的具体数值可以根据使用场景进行调节。例如,不同型号的呼吸机对应不同的K。
在本实施场景中,因此在用户吸气的初始阶段,当前单位时间内的第一出气流量较小,但是流量差值较大,因此当前出气流量变化比率较大,对应的ΔDA较大,可以提前把进气量调整到位。而在用户吸气的平稳阶段,当前单位时间内的第一出气流量较大,但是流量差值较小,因此当前出气流量变化比率较小,对应的ΔDA较小,避免出现在达到目标时混合腔压力过高的问题。
进一步地,在本实施场景中结合自适应算法调整混合腔的进气量。用户吸气的初始阶段进出气流量较小,混合腔压力下掉也相对较小,自适应算法调整的流量就较小,所以就无法满足接下来的出气流量快速上升造成混合腔压力急速下掉的需求。当结合步骤S201-S203的方法进行调节时,ΔDA较大,可以在用户吸气的初始阶段提前将进气量调整到位,避免混合腔在出气流量快速上升时出现压力急速下掉的情况。而当用户吸气的平稳阶段时,自适应算法可以达到对混合腔压力的平稳控制,ΔDA较小,对自适应算法的影响也较小,这样就能在出气流量动态变化的情况下精准控制混合腔压力。
请结合参阅图3-图6。图3为目标管道压力为20Hpa,采用自适应算法调整混合腔压力时的控制效果图,上方的曲线表示混合腔的压力。
图4为目标管道压力为20Hpa,采用图1或图2所述的方法调整混合腔压力时的控制效果图,上方的曲线表示混合腔的压力。
图5为目标管道压力为35Hpa,采用自适应算法调整混合腔压力时的控制效果图,上方的曲线表示混合腔的压力。
图6为目标管道压力为35Hpa,采用图1或图2所述的方法调整混合腔压力时的控制效果图,上方的曲线表示混合腔的压力。
通过对比图3和图4,以及对比图5和图6可知,采用图1或图2所述的方法可以很好的稳定混合腔的压力。
通过上述描述可知,在本实施例中同时结合自适应算法对混合腔的进气量进行调整,可以在自适应算法无法满足接下来的出气流量快速上升造成混合腔压力急速下掉的需求时,提前将混合腔的进气量调整到位,在自适应算法可以达到对混合腔压力的平稳控制时,降低对自适应算法的影响,能够在出气流量动态变化的情况下精准控制混合腔压力,有效提升了呼吸机的稳定性。
请参阅图7,图7是本发明提供的呼吸机设备的第一实施例的结构示意图。呼吸机设备10包括:获取模块11、计算模块12和调整模块13。
获取模块11用于获取当前单位时间内的第一出气流量以及前一单位时间内的第二出气流量。计算模块12用于根据第一出气流量和第二出气流量计算当前出气流量变化比率。调整模块13用于根据当前出气流量变化比率调整混合腔的电磁阀门。
其中,混合腔的进气量的调整值与当前出气流量变化比率成正比。
调整模块13还用于根据当前气流变化比率生成控制电信号;根据控制电信号调整混合腔的电磁阀门。
调整模块13还用于根据以下公式获取控制电信号:
ΔDA = K × (ΔFo/Fo)
其中,ΔDA为控制电信号,ΔFo为流量差值,Fo为第一出气流量,K为补偿系数。
计算模块12还用于将第二出气流量第一出气流量相减,获取流量差值;将流量差值与第一出气流量做比,获取出气流量变化比率。
调整模块13还用于结合自适应算法调整混合腔的进气量。
其中,混合腔处于压力控制通气模式。
通过上述描述可知,在本实施例中呼吸机设备根据当前出气流量变化比率调整混合腔的进气量,同时结合自适应算法对混合腔的进气量进行调整,能够在出气流量动态变化的情况下精准控制混合腔压力,避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
请参阅图8,图8是本发明提供的呼吸机设备的第二实施例的结构示意图。呼吸机设备20包括处理器21、存储器22。处理器21耦接存储器22。存储器22中存储有计算机程序,处理器21在工作时执行该计算机程序以实现如图1-图2所示的方法。详细的方法可参见上述,在此不再赘述。
通过上述描述可知,在本实施例中呼吸机设备根据当前出气流量变化比率调整混合腔的进气量,同时结合自适应算法对混合腔的进气量进行调整,能够在出气流量动态变化的情况下精准控制混合腔压力,避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
请参阅图9,图9是本发明提供的计算机可读存储介质的一实施例的结构示意图。计算机可读存储介质30中存储有至少一个计算机程序31,计算机程序31用于被处理器执行以实现如图1-图2所示的方法,详细的方法可参见上述,在此不再赘述。在一个实施例中,计算机可读存储介质30可以是终端中的存储芯片、硬盘或者是移动硬盘或者优盘、光盘等其他可读写存储的工具,还可以是服务器等等。
通过上述描述可知,在本实施例中计算机可读存储介质中的计算机程序可以用于根据当前出气流量变化比率调整混合腔的进气量,同时结合自适应算法对混合腔的进气量进行调整,能够在出气流量动态变化的情况下精准控制混合腔压力,避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
区别于现有技术,本发明根据当前出气流量变化比率调整混合腔的进气量,同时结合自适应算法对混合腔的进气量进行调整,能够在出气流量动态变化的情况下精准控制混合腔压力,避免流量快速上升或者下降引起的混合腔压力大幅度波动问题,有效提升呼吸机的稳定性。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种混合腔的压力控制方法,其特征在于,包括:
    获取当前单位时间内的第一出气流量以及所述当前单位时间的前一单位时间内的第二出气流量;
    根据所述第一出气流量和所述第二出气流量获取当前出气流量变化比率;
    根据所述当前出气流量变化比率调整混合腔的进气量。
  2. 根据权利要求1所述的混合腔的压力控制方法,其特征在于,
    所述混合腔的进气量的调整值与所述当前出气流量变化比率成正比。
  3. 根据权利要求2所述的混合腔的压力控制方法,其特征在于,所述根据所述当前出气流量变化比率调整混合腔的进气量的步骤,包括:
    根据所述当前气流变化比率生成控制电信号;
    根据所述控制电信号调整所述混合腔的电磁阀门。
  4. 根据权利要求3所述的混合腔的压力控制方法,其特征在于,所述根据所述当前气流变化比率生成控制电信号的步骤,包括:
    根据以下公式获取所述控制电信号:
    ΔDA = K × (ΔFo/Fo)
    其中,ΔDA为所述控制电信号,ΔFo为所述流量差值,Fo为所述第一出气流量,K为补偿系数。
  5. 根据权利要求1所述的混合腔的压力控制方法,其特征在于,所述根据所述第一出气流量和所述第二出气流量获取当前出气流量变化比率的步骤,包括:
    将所述第二出气流量所述第一出气流量相减,获取流量差值;
    获取所述流量差值与所述第一出气流量的比值作为所述出气流量变化比率。
  6. 根据权利要求1所述的混合腔的压力控制方法,其特征在于,所述根据所述当前出气流量变化比率调整混合腔的进气量的步骤,包括:
    结合自适应算法调整所述混合腔的进气量。
  7. 根据权利要求1所述的混合腔的压力控制方法,其特征在于,
    所述混合腔处于压力控制通气模式。
  8. 一种呼吸机设备,其特征在于,包括:
    获取模块,用于获取当前单位时间内的第一出气流量以及前一单位时间内的第二出气流量;
    计算模块,用于根据所述第一出气流量和所述第二出气流量计算当前出气流量变化比率;
    调整模块,根据所述当前出气流量变化比率调整混合腔的电磁阀门。
  9. 一种呼吸机设备,其特征在于,包括:处理器和存储器,所述处理器耦接所述存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序能够被处理器执行以实现如权利要求1-7任一项所述的方法。
PCT/CN2020/095139 2020-01-20 2020-06-09 混合腔压力控制方法、呼吸机设备和计算机可读存储介质 WO2021147227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010063443.0A CN111265746B (zh) 2020-01-20 2020-01-20 混合腔压力控制方法、呼吸机设备和计算机可读存储介质
CN202010063443.0 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147227A1 true WO2021147227A1 (zh) 2021-07-29

Family

ID=70991101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095139 WO2021147227A1 (zh) 2020-01-20 2020-06-09 混合腔压力控制方法、呼吸机设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111265746B (zh)
WO (1) WO2021147227A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185372A (zh) * 2021-11-08 2022-03-15 北京谊安医疗系统股份有限公司 一种用于呼吸机的通气压力升降速率控制系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047621A2 (en) * 2002-11-26 2004-06-10 Ric Investments, Inc. Apparatus for providing positive airway pressure to a patient
CN103608062A (zh) * 2011-03-18 2014-02-26 马奎特紧急护理公司 支持换气的呼吸设备和方法
CN203745923U (zh) * 2013-12-26 2014-07-30 北京谊安医疗系统股份有限公司 呼吸机的通气流量的控制系统
CN105194776A (zh) * 2015-08-28 2015-12-30 重庆工商职业学院 一种呼吸机气道压力控制方法
CN107050600A (zh) * 2017-05-23 2017-08-18 湖南明康中锦医疗科技发展有限公司 呼吸机及持续正压通气cpap模式下的压力控制方法
CN109507884A (zh) * 2018-11-30 2019-03-22 深圳市科曼医疗设备有限公司 空氧混合器压力控制方法、装置、计算机设备和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193124B (zh) * 2008-05-27 2023-07-25 菲舍尔和佩克尔保健有限公司 用于精确湿度控制的增湿器室温度控制
CN101507854B (zh) * 2009-03-23 2011-04-20 王中 带压缩空气的呼吸机空氧混合装置
CN103920214A (zh) * 2014-04-28 2014-07-16 深圳市帝迈生物技术有限公司 一种呼吸机及其呼吸压力调控系统和调控方法
WO2017096428A1 (en) * 2015-12-10 2017-06-15 Resmed Limited Methods and apparatus for respiratory treatment
CN106267494B (zh) * 2016-08-31 2019-02-22 湖南明康中锦医疗科技发展有限公司 基于吸气努力程度的呼吸机参数调整方法及呼吸机
US20190254567A1 (en) * 2016-09-03 2019-08-22 Cipla Limited Device for measuring respiratory parameters of a patient
CN106730199B (zh) * 2016-12-23 2019-10-01 湖南明康中锦医疗科技发展有限公司 持续正压力通气稳压的装置及呼吸机
CN110464944B (zh) * 2019-08-26 2022-04-19 深圳创达云睿智能科技有限公司 一种呼吸机的控制方法、装置及呼吸机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047621A2 (en) * 2002-11-26 2004-06-10 Ric Investments, Inc. Apparatus for providing positive airway pressure to a patient
CN103608062A (zh) * 2011-03-18 2014-02-26 马奎特紧急护理公司 支持换气的呼吸设备和方法
CN203745923U (zh) * 2013-12-26 2014-07-30 北京谊安医疗系统股份有限公司 呼吸机的通气流量的控制系统
CN105194776A (zh) * 2015-08-28 2015-12-30 重庆工商职业学院 一种呼吸机气道压力控制方法
CN107050600A (zh) * 2017-05-23 2017-08-18 湖南明康中锦医疗科技发展有限公司 呼吸机及持续正压通气cpap模式下的压力控制方法
CN109507884A (zh) * 2018-11-30 2019-03-22 深圳市科曼医疗设备有限公司 空氧混合器压力控制方法、装置、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185372A (zh) * 2021-11-08 2022-03-15 北京谊安医疗系统股份有限公司 一种用于呼吸机的通气压力升降速率控制系统及控制方法
CN114185372B (zh) * 2021-11-08 2023-09-19 北京谊安医疗系统股份有限公司 一种用于呼吸机的通气压力升降速率控制系统及控制方法

Also Published As

Publication number Publication date
CN111265746A (zh) 2020-06-12
CN111265746B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
AU2014224161B2 (en) Methods and Apparatus for Pressure Therapy in the Treatment of Sleep Disordered Breathing
RU2606663C2 (ru) Система и способ для инсуффляции и экссуффляции субъекта
JP2011516159A (ja) 人工呼吸器リーク補償
US9636472B2 (en) Ventilation method and ventilation device
WO2021147227A1 (zh) 混合腔压力控制方法、呼吸机设备和计算机可读存储介质
EA039070B1 (ru) Способ контролирования мощности аппарата для анестезии на основе нечеткого адаптивного пид-контролирования
US11679216B2 (en) Process for operating a ventilator and ventilator operating according to the process
JP2001112868A (ja) 機械的呼吸補助システムにおけるガス流のフィードバック制御
GB2615984A (en) Respiratory system and method
CN108211075B (zh) 呼吸机风机的稳压方法
CN116617511A (zh) 在高水平peep下调节基础流量的方法、控制装置和存储介质
CN117065165A (zh) 一种医用呼吸机双水平压力转换控制算法
WO2021147225A1 (zh) 混合腔压力控制方法、呼吸机设备和计算机可读存储介质
WO2021134373A1 (zh) 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机
CN111672002B (zh) 一种呼吸机的压力调节方法及装置
WO2017008549A1 (zh) 一种呼吸机的闭环容量控制方法
CN104069575A (zh) 一种麻醉机或呼吸机的小潮气量通气控制方法
CN109890444B (zh) 患者呼气压力的自动调节
CN117531079A (zh) 呼吸机及其压力调整方法、系统
CN116474233B (zh) 一种医用湿化器输出量高精度控制方法、系统及介质
US20230270961A1 (en) Lung-protective ventilation
WO2021232276A1 (zh) 通气调节方法以及高频通气系统
CN118454036A (zh) 基于环境压力与生理参数的呼吸机压力控制方法及系统
AU2015261740B2 (en) Ventilation method and ventilation device
JP2008000372A (ja) ガス供給機構の制御方法および制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916192

Country of ref document: EP

Kind code of ref document: A1