WO2021134373A1 - 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机 - Google Patents

氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机 Download PDF

Info

Publication number
WO2021134373A1
WO2021134373A1 PCT/CN2019/130214 CN2019130214W WO2021134373A1 WO 2021134373 A1 WO2021134373 A1 WO 2021134373A1 CN 2019130214 W CN2019130214 W CN 2019130214W WO 2021134373 A1 WO2021134373 A1 WO 2021134373A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen sensor
preset
oxygen
oxygen concentration
characteristic curve
Prior art date
Application number
PCT/CN2019/130214
Other languages
English (en)
French (fr)
Inventor
万聪颖
陈广涛
凌伟
汪超
梁冬生
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/130214 priority Critical patent/WO2021134373A1/zh
Priority to CN201980098615.3A priority patent/CN114173850B/zh
Publication of WO2021134373A1 publication Critical patent/WO2021134373A1/zh
Priority to US17/854,093 priority patent/US20220331533A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • A61M2205/702General characteristics of the apparatus with testing or calibration facilities automatically during use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the invention relates to the technical field of oxygen sensors, in particular to a calibration method of an oxygen sensor, a medical ventilation system, an anesthesia machine, and a ventilator.
  • Medical ventilation systems such as ventilators or anesthesia machines usually place oxygen sensors on the inhalation branch to monitor the patient's inhaled O2 concentration.
  • Common oxygen sensors include electrochemical oxygen cells and paramagnetic oxygen sensors.
  • the principle of the electrochemical oxygen battery is that under a fixed pressure and temperature, the voltage value produced by the oxygen battery is proportional to the O2 concentration. Obtain the voltage-oxygen concentration ratio coefficient of the oxygen cell under the working pressure and temperature through the calibration operation, and then monitor the voltage output of the oxygen cell in the mixed gas to calculate the current oxygen concentration of the mixed gas.
  • the output voltage-oxygen concentration ratio may change over time, so it is necessary to perform a calibration operation at intervals to re-determine the voltage-oxygen concentration ratio coefficient.
  • Oxygen battery calibration is a maintenance function that is often used when the ventilator/anesthesia machine is in use.
  • the general recommendation is to calibrate 100% and 21% oxygen concentration at least once a month, and calibrate 21% oxygen concentration at least once every 72 hours.
  • the current calibration process of oxygen batteries takes a long time, and the calibration of a single point requires 3 to 5 minutes. This is because the response time of the electrochemical oxygen battery is slow.
  • the oxygen battery needs about 3 minutes to reach the maximum value stably.
  • this manual provides the calibration method of the oxygen sensor, medical ventilation system, anesthesia machine, and ventilator, which can calibrate the characteristic curve of the oxygen sensor.
  • an embodiment of the present application provides a method for calibrating an oxygen sensor, and the method includes:
  • the characteristic curve of the oxygen sensor is determined according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the embodiments of the present application provide a medical ventilation system
  • the ventilation system includes at least one gas source interface, at least one gas supply branch and a breathing circuit respectively connected to the at least one gas source interface;
  • the breathing circuit includes an inhalation branch, and the inhalation branch is provided with an oxygen sensor;
  • the at least one gas supply branch can output gas to the suction branch
  • the ventilation system further includes a processor configured to execute the following steps:
  • the characteristic curve of the oxygen sensor is determined according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • an embodiment of the present application provides an anesthesia machine, including the aforementioned medical ventilation system.
  • an embodiment of the present application provides a ventilator, including the aforementioned medical ventilation system.
  • the embodiments of this specification provide a calibration method of an oxygen sensor, a medical ventilation system, an anesthesia machine, and a ventilator.
  • a calibration method of an oxygen sensor According to at least two electrical outputs corresponding to at least two time points in a preset time period when the oxygen sensor is at a preset oxygen concentration Signal to determine the response function of the oxygen sensor in the preset oxygen concentration. Since the response function can represent the relationship between the electrical signal output by the oxygen sensor and time, the steady-state output value of the oxygen sensor in the preset oxygen concentration can be determined according to the response function. Therefore, the characteristic curve of the oxygen sensor is determined according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • FIG. 1 is a schematic flowchart of a calibration method of an oxygen sensor in an embodiment
  • Figure 2 is a schematic diagram of a structure of a medical ventilation system
  • Fig. 3 is a schematic diagram of the change of the output voltage value after the oxygen concentration of the environment where the oxygen sensor is located;
  • Fig. 4 is a schematic diagram of a sub-process for determining a response function in Fig. 1;
  • Figure 5 is a schematic diagram of determining the characteristic curve of the oxygen sensor according to the calibration point
  • Fig. 6 is a schematic diagram of an embodiment of a modified characteristic curve
  • Fig. 7 is a schematic diagram of another embodiment of a modified characteristic curve
  • Fig. 8 is a schematic structural diagram of a medical ventilation system in an embodiment.
  • FIG. 1 is a schematic flowchart of an oxygen sensor calibration method provided by an embodiment of this specification.
  • the calibration method can be applied to a calibration device of an oxygen sensor, an oxygen concentration measuring device provided with an oxygen sensor, etc., to determine the characteristic curve of the oxygen sensor and other processes.
  • the calibration device of the oxygen sensor, the oxygen concentration measurement device provided with the oxygen sensor, etc. may include at least one of a medical ventilation system, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, and the like.
  • the medical ventilation system may be a medical ventilation system in an anesthesia machine or a ventilator.
  • the medical ventilation system 100 includes at least one gas source interface 110, at least one gas supply branch 120 and a breathing circuit 130 respectively connected to the at least one gas source interface 110.
  • the breathing circuit 130 includes an inhalation branch 131, and the inhalation branch 131 is provided with an oxygen sensor 10.
  • the breathing circuit 130 may also include an expiratory branch 132.
  • At least one gas supply branch 120 can output gas to the inhalation branch 131. At least one gas supply branch 120 can be controlled to output gas to the inhalation branch 131 to adjust the oxygen concentration of the gas in the inhalation branch 131.
  • the medical ventilation system 100 further includes a gas control device 140.
  • the gas control device 140 can control the gas output from at least one gas supply branch 120 to the inhalation branch 131 to achieve control of the gas output to the inhalation branch 131, including the type, flow rate, concentration, or pressure of the gas. One or more of the control.
  • the gas control device 140 can also provide respiratory support to the patient connected to the breathing circuit 130.
  • the oxygen sensor 10 is electrically connected to the gas control device 140 and can transmit the oxygen concentration data of the inhalation branch 131 to the gas control device 140.
  • air can be output to the inspiratory branch 131 through one of the gas source interfaces 110 through its gas supply branch 120; pure oxygen can be output to the inspiratory branch through the other gas source interface 110 through its gas supply branch 120 Road 131.
  • the gas control device 140 may control the opening degree of at least one gas supply branch 120 to adjust the oxygen concentration of the gas output to the inhalation branch 131.
  • the current calibration method for oxygen sensors is usually to place the oxygen sensor in a gas environment of known concentration, wait for its output voltage to stabilize, and record the corresponding voltage value; then change the gas environment to a known gas environment. For another concentration, wait for its output voltage to stabilize and record the corresponding voltage value; then trace the voltage-oxygen concentration curve based on the two measurement results.
  • the usual calibration point selects an environment of 100% pure oxygen and 21% pure air to obtain a voltage-oxygen concentration curve, so that the concentration value corresponding to each voltage value can be obtained to realize the detection of the concentration of the mixed gas.
  • this application proposes a method for calibrating the characteristic curve of the oxygen sensor.
  • the calibration method of the oxygen sensor in the embodiment of this specification includes step S110 to step S140.
  • the ambient oxygen concentration where the oxygen sensor is located is adjusted to a known preset oxygen concentration, and this moment may be referred to as a reference moment.
  • the preset oxygen concentration may be, for example, the oxygen concentration of air.
  • the oxygen sensor is placed in an air environment.
  • the preset oxygen concentration may be 21%, or the oxygen concentration of pure oxygen, such as 100%.
  • the value of the preset oxygen concentration may not be limited to this.
  • the oxygen sensor is connected to the detection circuit, and the detection circuit is used to detect the electrical signal output by the oxygen sensor, such as a voltage value, a current value, etc., for example, a digital value obtained by analog-to-digital conversion.
  • the electrical signal output by the oxygen sensor is shown in FIG. 3.
  • the electrical signal output by the oxygen sensor is detected at at least two time points in a preset time period after the ambient oxygen concentration where the oxygen sensor is located is adjusted to a known preset oxygen concentration.
  • the electrical signal output by the oxygen sensor can be detected from the 5th to the 40th second, or the electrical signal output by the oxygen sensor at the 5th, 10th, 20th, and 35th seconds can be detected.
  • the electrical signal output by the oxygen sensor between the 3rd to the 5th second and the 13th to the 15th second can be detected.
  • time for detecting the electrical signal output by the oxygen sensor within the preset time period may be discrete, continuous, or a collection of several time periods.
  • the duration of the preset time period is not greater than 2 minutes. Therefore, the detection of the oxygen sensor can take less time, which improves the efficiency of calibration.
  • the preset time period is within a time range from the 0th second to the 60th second when the oxygen sensor starts to be at the preset oxygen concentration.
  • the electrical signal output by the oxygen sensor changes significantly; by detecting the oxygen sensor output at some or all of the time period, the oxygen sensor can be determined more accurately based on the at least two electrical signals The response function corresponding to the preset oxygen concentration.
  • the oxygen sensor may be placed in an environment with a preset oxygen concentration, and at least two electrical signals corresponding to at least two time points output by the oxygen sensor during the preset time period can be obtained.
  • the method for adjusting the ambient oxygen concentration may be to change the position of the oxygen sensor, for example, remove it from the machine and place it in an environment with a known oxygen concentration.
  • the oxygen sensor can be placed in a pure oxygen environment or in the air, and then at least two electrical signals corresponding to the output of at least two time points within a preset period of time can be detected, for example, to record the electrical output of the oxygen sensor for a subsequent period of time.
  • the electrical signal level of the chemical response may be to change the position of the oxygen sensor, for example, remove it from the machine and place it in an environment with a known oxygen concentration.
  • the oxygen sensor can be placed in a pure oxygen environment or in the air, and then at least two electrical signals corresponding to the output of at least two time points within a preset period of time can be detected, for example, to record the electrical output of the oxygen sensor for a subsequent period of time.
  • the electrical signal level of the chemical response may be to change the position of the oxygen sensor, for example, remove it from the machine and place it in
  • a gas with a preset oxygen concentration may be injected into the space where the oxygen sensor is located, and at least two electrical signals corresponding to at least two time points output by the oxygen sensor during the preset time period can be obtained.
  • the chamber where the oxygen sensor is located is flushed with a gas with a preset oxygen concentration, so as to adjust the ambient oxygen concentration where the oxygen sensor is located to a known preset oxygen concentration.
  • the acquiring at least two electrical signals correspondingly output at at least two time points in a preset time period when the oxygen sensor is at a preset oxygen concentration includes: charging the inhalation branch with preset For gas with oxygen concentration, at least two electrical signals corresponding to at least two time points output by the oxygen sensor within a preset time period are obtained.
  • the oxygen sensor 10 is provided in the inhalation branch 131 of the medical ventilation device 100.
  • the inhalation branch 131 can be filled with a gas with a preset oxygen concentration, for example, to the inhalation branch of an anesthesia machine or a ventilator.
  • the path is filled with pure oxygen or pure air to adjust the oxygen concentration of the environment where the oxygen sensor is located to a known preset oxygen concentration.
  • the oxygen concentration of the gas output from the at least one gas supply branch to the inhalation branch can be controlled by the gas control device of the medical ventilation system.
  • the gas supply branch that transmits air can be controlled by the gas control device to deliver air to the inhalation branch, or the gas control device can be used to control the gas supply branch that transmits pure oxygen to deliver pure oxygen to the inhalation branch.
  • S120 Determine a response function of the oxygen sensor corresponding to the preset oxygen concentration according to the at least two time points and the at least two electrical signals.
  • the response function represents the relationship between the electrical signal output by the oxygen sensor and time.
  • the response function of the oxygen sensor corresponding to the preset oxygen concentration can be obtained by fitting. According to the corresponding function, the stable output electrical signal value of the oxygen sensor can be determined when the oxygen sensor is at the oxygen concentration.
  • the response function of the oxygen sensor corresponding to the preset oxygen concentration can be determined by a nonlinear fitting algorithm, such as a compressibility particle swarm algorithm.
  • step S120 determines the response function of the oxygen sensor corresponding to the preset oxygen concentration according to the at least two time points and the at least two electrical signals, including step S121 And step S122.
  • S121 Determine a model parameter of a response function of the oxygen sensor corresponding to the preset oxygen concentration according to the at least two time points and the at least two electrical signals.
  • the response function with the model parameters to be determined may be preset as the function model of the oxygen sensor at the preset oxygen concentration, and then it may be determined according to the at least two time points and the electrical signals at each time point obtained in step S110.
  • Model parameters so that the model parameters of the response function of the oxygen sensor corresponding to the preset oxygen concentration can be obtained.
  • the calibration of the oxygen sensor needs to be based on the stable electrical signal output by the oxygen sensor in the known oxygen concentration, for example, the electrical signal detected after placing the oxygen sensor in the known oxygen concentration for 5 minutes; therefore, the response function is in time
  • the value of the function tends to be stable as it approaches positive infinity.
  • the response function may include a superposition of one or more of a step response function, an exponential function, or a polynomial function.
  • the response function is not limited to the aforementioned ones, and can also be a function other than step response function, exponential function, and polynomial function.
  • the function value f(0) can be used as the starting point. Voltage; when t tends to + ⁇ , the function value f(+ ⁇ ) tends to a fixed value.
  • the response function may include a step response function.
  • the function model can be used to describe the step response of the oxygen sensor.
  • f(+ ⁇ ) can be used as the electrical signal corresponding to the oxygen sensor at the current known oxygen concentration, such as the output voltage.
  • the response function may include an exponential function.
  • the coefficients A, B, and b of the exponential function are fitted according to the voltage-time curve measured in the preset time period, and the coefficients A, B, and b of the exponential function can be obtained.
  • f(+ ⁇ ) approaches A+B, which is the final stable output voltage of the known oxygen concentration.
  • b is a positive number and B is also a positive number; while in the step response of the oxygen sensor with decreasing oxygen concentration, b is a negative number and B is also a negative number.
  • the response function may include a polynomial function.
  • One of its possible forms is the response function of the output electrical signal of the oxygen sensor at a known concentration.
  • t represents time
  • a n represents the coefficient of the polynomial function.
  • the coefficients A n of the polynomial function are fitted according to the voltage-time curve measured in the preset time period, and then the coefficients A n of the polynomial function can be obtained.
  • the response function obtained by fitting the electrical signal during the preset time period when the oxygen sensor is at the preset oxygen concentration can reflect the change trend of the output electrical signal when the oxygen sensor is at the preset oxygen concentration. Therefore, it can be inferred that the output electrical signal of the oxygen sensor at the preset oxygen concentration for 3 minutes, 5 minutes or even longer, and the output electrical signal at this time can be used as the steady-state output value.
  • the function value that determines that the response function tends to be stable is the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the function value of the response function at the preset time value is the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the preset time value is not less than 3 minutes.
  • the output electrical signal when the oxygen sensor is at the preset oxygen concentration for 5 minutes can be obtained, and the output electrical signal can be used as the steady-state output value.
  • the function value of the response function when the time value tends to positive infinity is the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the function value f(+ ⁇ ) when the response function f(t) is determined when t approaches + ⁇ is taken as the steady-state output value.
  • the steady-state output value can also be determined by the change trend of the function value of the response function. For example, when the change in the function value of the response function at the preset time interval is less than the preset threshold, the function value at the end of the time interval is determined as the steady-state output value of the oxygen sensor in the preset oxygen concentration .
  • the calibration point of the oxygen sensor can be determined according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the steady-state output value of the oxygen sensor at 21% oxygen concentration is Q21, then the calibration point 1 in Figure 5 can be determined; the steady-state output value of the oxygen sensor at 100% oxygen concentration is Q100, then it can be determined as Calibration point 2 in Figure 5.
  • S140 Determine a characteristic curve of the oxygen sensor according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the preset oxygen concentration may include at least two different oxygen concentrations, and the characteristic curve of the Yang sensor is determined according to calibration points obtained under different oxygen concentrations.
  • step S140 determines the characteristic curve of the oxygen sensor according to the steady-state output value of the oxygen sensor in the preset oxygen concentration, which may include:
  • the characteristic curve of the oxygen sensor is determined according to at least two calibration points, and the at least two calibration points are respectively determined by steady-state output values corresponding to the at least two preset oxygen concentrations.
  • Step S140 determining the characteristic curve of the oxygen sensor according to the steady-state output value of the oxygen sensor in the preset oxygen concentration may include: determining the characteristic curve of the oxygen sensor according to at least two calibration points by means of linear interpolation. Characteristic curve; or determine the slope of the characteristic curve according to at least two calibration points, and then determine the point slope equation of the characteristic curve according to the slope and one calibration point; or determine the intercept equation of the characteristic curve according to at least two calibration points , Oblique-intercept equation, two-point equation, etc.
  • the calibration method of the oxygen sensor includes:
  • the characteristic curve of the oxygen sensor is determined according to at least two calibration points, and the at least two calibration points are respectively determined by steady-state output values corresponding to the at least two preset oxygen concentrations.
  • the calibration point 1 determined according to the steady-state output value of the oxygen sensor in the 21% oxygen concentration of Q21 and the steady-state output value of the oxygen sensor in the 100% oxygen concentration determined by the standard of Q100 Fixed point 2, you can determine the characteristic curve of the oxygen sensor in Figure 5.
  • the higher the oxygen concentration of the environment where the oxygen sensor is located the higher the output electrical signal, such as the voltage value.
  • the oxygen concentration of the environment in which the current oxygen sensor is located can be determined.
  • the calibration of the oxygen sensor curve according to at least two calibration points. For example, calibrate the output of the oxygen sensor under 21% pure air and 100% pure oxygen respectively, and then determine the output electrical signal curve corresponding to the oxygen sensor under different oxygen concentrations by linear interpolation, so as to realize the oxygen sensor calibration.
  • a 100% and 21% oxygen concentration calibration is performed at least once a month.
  • the characteristic curve of the oxygen sensor can also be determined based on more than two calibration points.
  • the characteristic curve of the oxygen sensor is determined by the least square method, so as to minimize the sum of the distances between the more than two calibration points and the characteristic curve.
  • the linear or non-linear characteristic curve can be determined by fitting more than two calibration points.
  • a preset characteristic curve function is obtained, which includes several parameters to be determined, and the value of the parameter can be determined by the least square method to obtain the characteristic curve of the oxygen sensor; wherein the goal of the least square method is to make the characteristic curve of the oxygen sensor.
  • the sum of the distances between more than two calibration points and the characteristic curve determined by fitting is the smallest.
  • step S140 determines the characteristic curve of the oxygen sensor according to the steady-state output value of the oxygen sensor in the preset oxygen concentration, which may include:
  • the dotted line in the coordinate axis represents the characteristic curve of the oxygen sensor determined at a previous historical moment, for example, the characteristic curve of the oxygen sensor determined 72 hours ago.
  • the solid line in the coordinate axis represents the corrected characteristic curve according to the recently determined calibration point 1.
  • the correcting the characteristic curve to be calibrated according to the steady-state output value of the oxygen sensor in the preset oxygen concentration includes:
  • the characteristic curve to be calibrated is corrected so that the corrected characteristic curve covers at least one calibration point, and the calibration point is determined by the corresponding preset oxygen concentration and the steady-state output value corresponding to the preset oxygen concentration.
  • the characteristic curve to be calibrated may be shifted, so that the shifted characteristic curve covers at least one calibration point.
  • the characteristic curve to be calibrated may be rotated, so that the rotated characteristic curve covers at least one calibration point.
  • the characteristic curve to be calibrated is rotated around the calibration point of 100% oxygen concentration. It is understandable that the calibration point of the 100% oxygen concentration can be determined at a previous historical moment.
  • the characteristic curve to be calibrated can also be corrected based on more than one calibration point. For example, the sum of the distances between the more than one calibration point and the corrected characteristic curve is minimized.
  • a calibration point is determined at least every 72 hours, such as a calibration point of 21% oxygen concentration, and the characteristic curve of the oxygen sensor is corrected according to the calibration point; for accurate monitoring of daily use, it can be performed every 24 hours. % Oxygen concentration characteristic curve correction.
  • the oxygen concentration of the environment in which the oxygen sensor is located can be determined according to the output electrical signal of the oxygen sensor.
  • the gas control device 140 can detect the output electrical signal of the oxygen sensor in real time, and determine the oxygen concentration of the gas in the inhalation branch 131 according to the output electrical signal; the gas control device 140 can determine the oxygen concentration of the gas in the inhalation branch 131 according to the oxygen concentration and The difference between the set oxygen concentrations controls the gas flow and/or pressure output by at least one gas supply branch 120 to adjust the oxygen concentration of the gas output to the inhalation branch 131 to reach the set oxygen concentration.
  • the method for calibrating the oxygen sensor determines that the oxygen sensor is at the preset oxygen concentration according to at least two electrical signals correspondingly output at at least two time points in the preset time period when the oxygen sensor is at the preset oxygen concentration.
  • Corresponding response function can represent the relationship between the electrical signal output by the oxygen sensor and time
  • the steady-state output value of the oxygen sensor in the preset oxygen concentration can be determined according to the response function, so that according to the oxygen sensor in the preset oxygen concentration
  • the steady-state output value determines the characteristic curve of the oxygen sensor.
  • FIG. 8 is a schematic structural diagram of a medical ventilation system 100 according to an embodiment of this specification.
  • the medical ventilation system 100 includes at least one gas source interface 110, at least one gas supply branch 120 connected to the at least one gas source interface 110, and a breathing circuit 130.
  • the breathing circuit 130 includes an inhalation branch 131, and the inhalation branch 131 is provided with an oxygen sensor 10.
  • the breathing circuit 130 may also include an expiratory branch 132.
  • At least one gas supply branch 120 can output gas to the inhalation branch 131. At least one gas supply branch 120 can be controlled to output gas to the inhalation branch 131 to adjust the oxygen concentration of the gas in the inhalation branch 131.
  • the medical ventilation system 100 further includes a gas control device 140.
  • the gas control device 140 and the inhalation branch 131 are respectively connected to at least one gas supply branch 120; the gas control device 140 controls the output of the at least one gas supply branch 120 to Inhale gas from branch 131.
  • air can be output to the inspiratory branch 131 through one of the gas source interfaces 110 through its gas supply branch 120; pure oxygen can be output to the inspiratory branch through the other gas source interface 110 through its gas supply branch 120 Road 131.
  • the gas control device 140 can control the opening degree of at least one gas supply branch 120 to adjust the oxygen concentration of the gas output to the inhalation branch 131.
  • the medical ventilation system 100 further includes a processor 101.
  • the processor 101 may be provided in the gas control device 140, or may also be provided on a control board outside the gas control device 140, for example.
  • the processor 101 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the oxygen sensor 10 is electrically connected to the gas control device 140 and/or the processor 101, and can transmit the oxygen concentration data of the inhalation branch 131 to the gas control device 140 and/or the processor 101.
  • the processor 101 is used to execute the steps of the aforementioned oxygen sensor calibration method.
  • the processor 101 is configured to run a computer program stored in a memory, and implement the following steps when the computer program is executed:
  • the characteristic curve of the oxygen sensor is determined according to the steady-state output value of the oxygen sensor in the preset oxygen concentration.
  • the oxygen sensor 10 is provided in the inhalation branch 131 of the medical ventilation device 100.
  • the inhalation branch 131 can be filled with a gas with a preset oxygen concentration, for example, to the inhalation branch of an anesthesia machine or a ventilator.
  • the path is filled with pure oxygen or pure air to adjust the oxygen concentration of the environment where the oxygen sensor is located to a known preset oxygen concentration.
  • the processor 101 or the gas control device 140 may control the opening degree of at least one gas supply branch 120 to adjust the oxygen concentration of the gas output to the inhalation branch 131.
  • the ventilator or anesthesia machine includes the above-mentioned medical ventilation system.
  • the units and implementations included in the medical ventilation system are as described above, and will not be repeated here.
  • the embodiments of this specification also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation Example provides the steps of the oxygen sensor calibration method.
  • the computer-readable storage medium may be the internal storage unit of the medical ventilation system described in any of the foregoing embodiments, such as the hard disk or memory of the medical ventilation system.
  • the computer-readable storage medium may also be an external storage device of the medical ventilation system, such as a plug-in hard disk equipped on the medical ventilation system, a smart memory card (Smart Media Card, SMC), and a secure digital (Secure Digital). , SD) card, flash card (Flash Card), etc.
  • the medical ventilation system, anesthesia machine, ventilator, and computer-readable storage medium provided in the above-mentioned embodiments of this specification only need to acquire at least two electrical signals within a short period of time after the ambient oxygen concentration changes to determine the output of the oxygen sensor
  • the relationship between the electrical signal and time so that the electrical signal output by the oxygen sensor in a stable state at the corresponding oxygen concentration can be obtained.
  • There is no need to wait for a long time after the voltage is completely stable which can reduce the time waiting for the oxygen sensor to respond, improve the calibration efficiency, and facilitate Improve the oxygen concentration monitoring accuracy of ventilation equipment such as anesthesia machine or ventilator in daily use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种氧传感器(10)的校准方法、医疗通气系统(100),方法包括:获取氧传感器(10)处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号(S110);根据至少两个时间点和至少两个电信号确定氧传感器(10)在预设氧浓度对应的响应函数(S120);根据响应函数确定氧传感器(10)在预设氧浓度中的稳态输出值(S130);根据氧传感器(10)在预设氧浓度中的稳态输出值确定氧传感器(10)的特性曲线(S140)。该方法减少了等待氧传感器(10)响应的时间,提高了校准效率,便于提升日常使用麻醉机或呼吸机等通气设备的氧浓度监测精度。

Description

氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机 技术领域
本发明涉及氧传感器技术领域,尤其涉及一种氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机。
背景技术
呼吸机或麻醉机等医疗通气系统通常会在吸气支路上放置氧传感器来监测病人的吸入O2浓度,常见的氧传感器有电化学氧电池和顺磁氧传感器。其中电化学氧电池的原理是在固定压力和温度下,氧电池产生的电压值与O2浓度成比例关系。通过校准操作获取氧电池在工作压力和温度下的电压-氧浓度比例系数,然后监测氧电池在混合气体中的电压输出,即可计算出当前混合气体的氧浓度。
由于氧电池发生电化学反应是一个消耗过程,其输出的电压-氧浓度比例关系可能会随着时间变化,因此每隔一段时间就需要进行一次定标校准操作,重新确定其电压-氧浓度比例系数。
氧电池校准是呼吸机/麻醉机使用时会经常用到的维护功能,通常的建议是至少每月进行一次100%和21%的氧浓度校准,至少每72小时校准一次21%氧浓度,为了日常使用的准确监测,最好每24小时进行一次21%氧浓度的校准,校准的频度较高。然而,目前氧电池的校准过程用时较长,单个点的定标都需要3至5min。这是因为电化学氧电池的响应时间较慢,当环境发生单位阶跃突变时,如从21%氧浓度的空气中放入100%的纯氧中,氧电池需要约3min才能稳定达到最大值;而当环境从100%的纯氧变化为21%纯空气时,氧电池需要3至5min才能稳定达到最低值。高频度的校准需求和长时间的校准时长,增加了额外的机器准备时间,无疑给繁忙的医护工作增加了工作负担。
发明内容
基于此,本说明书提供了氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机,可以对氧传感器的特性曲线进行校准。
第一方面,本申请实施例提供了一种氧传感器的校准方法,所述方法包括:
获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,所述响应函数表示所述氧传感器输出的电信号与时间的关系;
根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值;
根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
第二方面,本申请实施例提供了一种医疗通气系统,
所述通气系统包括至少一个气源接口、分别与所述至少一个气源接口连接的至少一个气体供应支路和呼吸回路;
所述呼吸回路包括吸气支路,所述吸气支路设有氧传感器;
所述至少一个气体供应支路能够向所述吸气支路输出气体;
所述通气系统还包括处理器,所述处理器用于执行下述步骤:
控制所述至少一个气体供应支路向所述吸气支路输出气体,以调整所述吸气支路的气体的氧浓度;
获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,所述响应函数表示所述氧传感器输出的电信号与时间的关系;
根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值;
根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
第三方面,本申请实施例提供了一种麻醉机,包括:前述的医疗通气系统。
第四方面,本申请实施例提供了一种呼吸机,包括:前述的医疗通气系统。
本说明书实施例提供了氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机,通过根据氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,确定氧传感器在预设氧浓度对应的响应函数,由于响应函数可以表示氧传感器输出的电信号与时间的关系,可以根据响应函数确定氧传感器在预设氧浓度中的稳态输出值,从而根据氧传感器在预设氧浓度中的稳态输出值确定氧传感器的特性曲线。只需要在环境氧浓度变化后的较短时间内获取至少两个电信号,就可以确定氧传感器输出的电信号与时间的关系,从而可以得到相应氧浓度时氧传感器稳定状态下输出的电信号,不需要等待很长时间后电压完全稳定,可以减少等待氧传感器响应的时间,提高了校准效率,便于提升日常使用麻醉机或呼吸机等通气设备的氧浓度监测精度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书的公开内容。
附图说明
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一实施例中氧传感器的校准方法的流程示意图;
图2是医疗通气系统的一种结构示意图;
图3是氧传感器所处环境氧浓度变化后输出电压值变化的示意图;
图4是图1中确定响应函数的子流程示意图;
图5是根据标定点确定氧传感器特性曲线的示意图;
图6是修正特性曲线一实施方式的示意图;
图7是修正特性曲线另一实施方式的示意图;
图8是一实施例中医疗通气系统的结构示意图。
附图标记:100、医疗通气系统;110、气源接口;120、气体供应支路;130、呼吸回路;131、吸气支路;10、氧传感器;132、呼气支路;140、气体控制装 置;101、处理器。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本说明书的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本说明书一实施例提供的一种氧传感器的校准方法,的流程示意图。该校准方法可以应用于氧传感器的校准装置、设有氧传感器的氧浓度测量装置等,用于确定氧传感器的特性曲线等过程。
其中,氧传感器的校准装置、设有氧传感器的氧浓度测量装置等可以包括医疗通气系统、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备等中的至少一项。进一步而言,医疗通气系统可以为麻醉机或呼吸机中的医疗通气系统。
示例性的,如图2所示,医疗通气系统100包括至少一个气源接口110、分别与至少一个气源接口110连接的至少一个气体供应支路120和呼吸回路130。
其中,呼吸回路130包括吸气支路131,吸气支路131设有氧传感器10。
示例性的,呼吸回路130还可以包括呼气支路132。
具体的,至少一个气体供应支路120能够向吸气支路131输出气体。可以通过控制至少一个气体供应支路120向吸气支路131输出气体,以调整吸气支路131的气体的氧浓度。
示例性的,医疗通气系统100还包括气体控制装置140。气体控制装置140可以控制至少一个气体供应支路120的气体输出到吸气支路131,以实现对输 出到吸气支路131气体的控制,包括对气体的类型、流速、浓度或压力等中的一项或多项的控制。当然,通过对气体供应支路120输出气体的控制,气体控制装置140还可以实现对连接到呼吸回路130的病人提供呼吸支持。
示例性的,氧传感器10与气体控制装置140电连接,能够将吸气支路131的氧浓度数据传输给气体控制装置140。
示例性的,空气可以通过其中一个气源接口110经其气体供应支路120输出到吸气支路131;纯氧可以通过另一个气源接口110经其气体供应支路120输出到吸气支路131。
示例性的,气体控制装置140可以控制至少一个气体供应支路120的开度,以调节输出到吸气支路131的气体的氧浓度。
本申请的发明人发现,目前对氧传感器的校准方法通常是将氧传感器放置于已知浓度的气体环境中,等待其输出电压稳定后记录对应的电压值;然后将气体环境改变为已知的另一浓度,再等待其输出电压稳定后记录对应的电压值;之后根据两次测量结果描记出电压-氧浓度曲线。通常的校准点会选取100%纯氧和21%纯空气的环境,获得电压-氧浓度曲线,从而可以获得每一个电压值所对应的浓度值,以实现对混合气体的浓度进行检测。但是氧传感器进入一个浓度气体环境后一般需要3至5分钟甚至更长的时间才能输出稳定的电压,因此校准所需的时间很长。
示例性的,如图3所示为将氧传感器从纯氧环境移到纯空气环境后其输出电压值以类似指数曲线的形式迅速下降,然后逐渐稳定;该拟合曲线具体可以根据移到纯空气环境后各个时刻氧传感器输出的电压测量值拟合得到。根据该曲线可以得出即使在120秒左右,电压值仍在缓慢下降。若在校准时采用此时的电压值作为氧传感器在21%氧环境中的输出基准电压,则会造成对实时监测的氧浓度的高估。因此一种做法是在校准氧传感器时在每个基准浓度上等待3分钟甚至更久,以降低这种偏差。
针对该发现,本申请提出一种对氧传感器的特性曲线进行校准的方法。
如图1所示,本说明书实施例的氧传感器的校准方法包括步骤S110至步骤S140。
S110、获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号。
示例性的,在某一时刻将氧传感器所处的环境氧浓度调整为已知的预设氧浓度,该时刻可称为基准时刻。
示例性的,预设氧浓度例如可以为空气的氧浓度,例如将氧传感器放在空气环境中。
示例性的,预设氧浓度例如可以21%、或纯氧的氧浓度,如100%,当然预设氧浓度的取值可以不限于此。
示例性的,氧传感器连接于检测电路,检测电路用于检测氧传感器输出的电信号,例如电压值、电流值等,例如还可以为经模数转换得到的数字值。
示例性的,氧传感器在基准时刻处于预设氧浓度后,其输出的电信号,例如电压值随时间的变化如图3所示。
示例性的,在将氧传感器所处的环境氧浓度调整为已知的预设氧浓度后的预设时间段内的至少两个时间点检测得到氧传感器输出的电信号。如图3所示,可以检测第5秒至第40秒之间氧传感器输出的电信号,或者可以检测第5秒、第10秒、第20秒、第35秒时氧传感器输出的电信号,或者可以检测第3秒至第5秒和第13秒至第15秒之间氧传感器输出的电信号。
可以理解的,在预设时间段内检测氧传感器输出的电信号的时间可以是离散的、也可以是连续的,或者还可以是若干时间段的集合。
在一些实施方式中,所述预设时间段的时长不大于2分钟。从而对氧传感器的检测可以占用较少的时间,提高了校准的效率。
示例性的,所述预设时间段处于所述氧传感器开始处于所述预设氧浓度的第0秒至第60秒的时间范围内。在该时间段内,氧传感器输出的电信号有比较明显的变化;通过检测该时间段的部分或全部时刻的氧传感器输出,可以更准确的根据所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数。
在一些实施方式中,可以将所述氧传感器放置于预设氧浓度的环境中,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号。
所述环境氧浓度的调整方法可以是改变氧传感器位置,例如将其从机器上移出放置于已知氧浓度的环境中。示例性的,可以将氧传感器放置于纯氧的环境或者空气中,然后检测预设时间段内至少两个时间点对应输出的至少两个电信号,例如记录随后一段时长的氧传感器输出的电化学响应的电信号水平。
在另一些实施方式中,可以向所述氧传感器所在的空间注入预设氧浓度的气体,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号。
示例性的,通过预设氧浓度的气体冲洗氧传感器所处的容腔,以将氧传感器所处的环境氧浓度调整为已知的预设氧浓度。
示例性的,所述获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,包括:向所述吸气支路充入预设氧浓度的气体,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号。
如图2所示,氧传感器10设于医疗通气设备100的吸气支路131,可以通过向吸气支路131充入预设氧浓度的气体,例如向麻醉机或呼吸机的吸气支路充入纯氧气或纯空气,以将氧传感器所处的环境氧浓度调整为已知的预设氧浓度。
在一些实施方式中,如图2所示,可以通过医疗通气系统的气体控制装置控制所述至少一个气体供应支路输出到所述吸气支路的气体的氧浓度。例如可以通过气体控制装置控制传输空气的气体供应支路向吸气支路输送空气,或者通过气体控制装置控制传输纯氧的气体供应支路向吸气支路输送纯氧。
S120、根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数。
具体的,所述响应函数表示所述氧传感器输出的电信号与时间的关系。
示例性的,根据氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,可以拟合得到该预设氧浓度对应的氧传感器的响应函数。根据该相应函数可以确定氧传感器处于该氧浓度时稳定的输出电信号的值。
示例性的,可以通过非线性拟合算法,例如压缩因子粒子群算法等确定所述氧传感器在所述预设氧浓度对应的响应函数。
在一些实施方式中,如图4所示,步骤S120根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,包括步骤S121和步骤S122。
S121、根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器 在所述预设氧浓度对应的响应函数的模型参数。
具体的,可以预设具有待确定模型参数的响应函数作为氧传感器在所述预设氧浓度的函数模型,然后可以根据步骤S110获取的所述至少两个时间点和各时间点的电信号确定模型参数,从而可以得到所述氧传感器在所述预设氧浓度对应的响应函数的模型参数。
对氧传感器的校准需要根据氧传感器在已知氧浓度中输出的稳定的电信号,例如将氧传感器放置在已知氧浓度中5分钟后检测得到的电信号;因此,所述响应函数在时间趋近正无穷时函数值趋向稳定的值。
S122、根据确定的模型参数,得到所述氧传感器在所述预设氧浓度对应的响应函数。
在一些实施方式中,所述响应函数可以包括阶跃响应函数、指数函数或多项式函数中的一种或多种的叠加。
可以理解的,响应函数不限于前述几种,也可以为阶跃响应函数、指数函数、多项式函数之外的函数,此类函数在时间t=0时,函数值f(0)可以作为起始电压;在t趋于+∞时,函数值f(+∞)趋于一个固定值。
示例性的,所述响应函数可以包括阶跃响应函数。所述的函数模型可以用来描述氧传感器的阶跃响应。当环境氧浓度发生阶跃变化时,氧传感器在当前已知氧浓度下输出电压从起始值逐渐变化到最终的稳定电压值。所述函数模型f(t)具备以下特征:t=0时,f(0)表示基准时刻的电信号,如电压;时间t趋于+∞时,f(+∞)趋于一个固定值,如最终的稳定电压。示例性的可以将f(+∞)作为氧传感器在当前已知氧浓度下对应的电信号,如输出电压。
示例性的,所述响应函数可以包括指数函数。其一种可采取的形式是氧传感器在已知浓度下输出电信号的响应函数数f(t)=A+B×e (b/t),其中t表示时间,A、B、b分别表示指数函数的系数。根据S110获取的所述至少两个时间点和各时间点的电信号,例如根据在预设时间段内实测的电压-时间曲线拟合出指数函数的系数A、B、b,即可获取在该已知氧浓度下氧传感器的稳定输出电压。当t=0时,f(0)=A,即初始氧电池输出电压。当t趋于+∞时,f(+∞)趋于A+B,即该已知氧浓度的最终稳定输出电压。在氧浓度上升的氧传感器阶跃响应中,b为正数,B也为正数;而在氧浓度下降的氧传感器阶跃响应中,b为负数,B也为负数。
示例性的,所述响应函数可以包括多项式函数。其一种可采取的形式是氧传感器在已知浓度下输出电信号的响应函数
Figure PCTCN2019130214-appb-000001
Figure PCTCN2019130214-appb-000002
其中t表示时间,A n表示该多项式函数的系数。根据S110获取的所述至少两个时间点和各时间点的电信号,例如根据在预设时间段内实测的电压-时间曲线拟合出多项式函数的系数A n,即可获取在该已知氧浓度下氧传感器的稳定输出电压。当t=0时,f(0)=A 0,可以表示基准时刻氧传感器输出的电压。当t趋于+∞时,f(+∞)也会趋近于稳定值。
S130、根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值。
根据氧传感器处于预设氧浓度时在预设时间段内的电信号拟合得到的响应函数,可以反映氧传感器处于预设氧浓度时输出电信号的变化趋势。从而可以推测氧传感器处于预设氧浓度3分钟、5分钟甚至更久时的输出电信号,此时的输出电信号可以作为稳态输出值。
示例性的,确定所述响应函数趋向稳定的函数值为所述氧传感器在所述预设氧浓度中的稳态输出值。
在一些实施方式中,可以确定所述响应函数在预设时间值时的函数值为所述氧传感器在所述预设氧浓度中的稳态输出值。
示例性的,所述预设时间值不小于3分钟。
例如,将t=5分钟代入步骤S120确定的预设氧浓度对应的响应函数,可以得到氧传感器处于预设氧浓度5分钟时的输出电信号,可以将该输出电信号作为稳态输出值。
在另一些实施方式中,可以确定所述响应函数在时间值趋于正无穷时的函数值为所述氧传感器在所述预设氧浓度中的稳态输出值。
示例性的,将确定响应函数f(t)在t趋于+∞时的函数值f(+∞)作为稳态输出值。
在其他一些实施方式中,还可以通过对所述响应函数的函数值的变化趋势来确定稳态输出值。例如当在预设的时间间隔响应函数的函数值变化小于预设的阈值,则将所述时间间隔结束时的函数值确定为所述氧传感器在所述预设氧 浓度中的稳态输出值。
从而实现了利用氧传感器在环境氧浓度改变后预设时间段内的电化学响应曲线估计氧传感器在该氧浓度环境时稳定的电化学响应水平。
具体的,根据氧传感器在预设氧浓度中的稳态输出值可以确定氧传感器的标定点。例如,氧传感器在21%氧浓度中的稳态输出值为Q21,则可以确定如图5中的标定点1;氧传感器在100%氧浓度中的稳态输出值为Q100,则可以确定如图5中的标定点2。
S140、根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
在一些实施方式中,所述预设氧浓度可以包括至少两个不同的氧浓度,根据不同氧浓度下得到的标定点确定杨传感器的特性曲线。此时,步骤S140根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线,可以包括:
根据至少两个标定点确定所述氧传感器的特性曲线,所述至少两个标定点分别由所述至少两个预设氧浓度对应的稳态输出值确定。
步骤S140根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线,可以包括:通过线性插值的方式,根据至少两个标定点确定所述氧传感器的特性曲线;或者根据至少两个标定点确定特性曲线的斜率,然后根据该斜率和一个标定点确定特性曲线的点斜式方程;或者也可以根据至少两个标定点确定特性曲线的截距式方程、斜截式方程、两点式等。
示例性的,氧传感器的校准方法包括:
分别获取所述氧传感器处于至少两个预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述至少两个预设氧浓度对应的响应函数;
根据所述至少两个预设氧浓度对应的响应函数确定所述氧传感器在所述至少两个所述预设氧浓度中的稳态输出值;
根据至少两个标定点确定所述氧传感器的特性曲线,所述至少两个标定点分别由所述至少两个预设氧浓度对应的稳态输出值确定。
示例性的,如图5所示,根据氧传感器在21%氧浓度中的稳态输出值为Q21 确定的标定点1和氧传感器在100%氧浓度中的稳态输出值为Q100确定的标定点2,可以确定图5中的氧传感器的特性曲线。例如氧传感器所处环境的氧浓度越高,则输出的电信号,如电压值也越高。相应地,通过检测氧传感器输出的电信号,可以确定当前氧传感器所处环境的氧浓度。
从而可以实现根据至少两个标定点实现氧传感器曲线定标。例如分别对21%纯空气和100%纯氧环境下的氧传感器输出进行定标,然后通过线性插值的方法确定出不同氧浓度下的氧传感器对应的输出电信号的曲线,实现对氧传感器的校准。
示例性的,至少每月进行一次100%和21%的氧浓度校准。
示例性的,还可以根据多于两个标定点确定所述氧传感器的特性曲线。例如通过最小二乘法等确定氧传感器的特性曲线,以使所述多于两个标定点和特性曲线之间的距离之和最小。通过最小二乘法,可以根据多于两个标定点拟合确定直线或非直线的特性曲线。
具体的,获取预设的特性曲线函数,该函数包括若干待确定的参数,通过最小二乘法可以确定所述参数的值以得到氧传感器的特性曲线;其中最小二乘法拟合的目标是使所述多于两个标定点和拟合确定的特性曲线之间的距离之和最小。
在一些实施方式中,步骤S140根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线,可以包括:
获取所述氧传感器的待校准的特性曲线;根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线。
示例性的,如图6和图7所示,坐标轴中的虚线表示在以前的历史时刻确定的氧传感器的特性曲线,例如为72小时之前确定的氧传感器的特性曲线。坐标轴中的实线表示根据最近确定的标定点1修正后的特性曲线。
示例性的,所述根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线,包括:
修正所述待校准的特性曲线,以使修正后的特性曲线覆盖至少一个标定点,所述标定点由对应的预设氧浓度和所述预设氧浓度对应的稳态输出值确定。
示例性的,如图6所示,可以对待校准的特性曲线进行平移,以使平移后的特性曲线覆盖至少一个标定点。
示例性的,如图7所示,可以对待校准的特性曲线进行旋转,以使旋转后的特性曲线覆盖至少一个标定点。例如将待校准的特性曲线以100%氧浓度的标定点为中心进行转转。可以理解的,该100%氧浓度的标定点可以为以前的历史时刻确定的。
在一些实施方式中,也可以根据多于一个的标定点修正待校准的特性曲线。例如使得所述多于一个的标定点与修正后的特性曲线之间的距离之和最小。
示例性的,至少每72小时确定一个标定点,如21%氧浓度的标定点,并根据该标定点对氧传感器的特性曲线进行修正;为了日常使用的准确监测,可以每24小时进行一次21%氧浓度的特性曲线修正。
可以理解的,基于步骤S140确定的氧传感器的特性曲线,根据氧传感器的输出电信号可以确定氧传感器所处环境的氧浓度。
示例性的,如图2所示,气体控制装置140可以实时检测氧传感器的输出电信号,根据输出电信号确定吸气支路131中气体的氧浓度;气体控制装置140可以根据该氧浓度和设定的氧浓度之间的差值,控制至少一个气体供应支路120输出的气体流量和/或压力,以调节输出到吸气支路131的气体的氧浓度达到设定的氧浓度。
本申请实施例提供的氧传感器的校准方法,通过根据氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,确定氧传感器在预设氧浓度对应的响应函数,由于响应函数可以表示氧传感器输出的电信号与时间的关系,可以根据响应函数确定氧传感器在预设氧浓度中的稳态输出值,从而根据氧传感器在预设氧浓度中的稳态输出值确定氧传感器的特性曲线。只需要在环境氧浓度变化后的较短时间内获取至少两个电信号,就可以确定氧传感器输出的电信号与时间的关系,从而可以得到相应氧浓度时氧传感器稳定状态下输出的电信号,不需要等待很长时间后电压完全稳定,可以减少等待氧传感器响应的时间,提高了校准效率,便于提升日常使用麻醉机或呼吸机等通气设备的氧浓度监测精度。
请结合上述实施例参阅图8,图8是本说明书一实施例提供的医疗通气系统100的结构示意图。该医疗通气系统100包括至少一个气源接口110、分别与至少一个气源接口110连接的至少一个气体供应支路120、和呼吸回路130。
其中,呼吸回路130包括吸气支路131,吸气支路131设有氧传感器10。
示例性的,呼吸回路130还可以包括呼气支路132。
具体的,至少一个气体供应支路120能够向吸气支路131输出气体。可以通过控制至少一个气体供应支路120向吸气支路131输出气体,以调整吸气支路131的气体的氧浓度。
示例性的,医疗通气系统100还包括气体控制装置140,气体控制装置140和吸气支路131分别与至少一个气体供应支路120连接;气体控制装置140控制至少一个气体供应支路120输出到吸气支路131的气体。
示例性的,空气可以通过其中一个气源接口110经其气体供应支路120输出到吸气支路131;纯氧可以通过另一个气源接口110经其气体供应支路120输出到吸气支路131。
示例性的,气体控制装置140能够控制至少一个气体供应支路120的开度,以调节输出到吸气支路131的气体的氧浓度。
具体的,医疗通气系统100还包括处理器101,处理器101例如可以设置在气体控制装置140中,或者也可以设置在气体控制装置140之外的控制板上。
具体地,处理器101可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
示例性的,氧传感器10与气体控制装置140和/或处理器101电连接,能够将吸气支路131的氧浓度数据传输给气体控制装置140和/或处理器101。
其中,所述处理器101用于执行前述的氧传感器的校准方法的步骤。
示例性的,所述处理器101用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
控制所述至少一个气体供应支路向所述吸气支路输出气体,以调整所述吸气支路的气体的氧浓度;
获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,所述响应函数表示所述氧传感器输出的电信号与时间的关系;
根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值;
根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
如图8所示,氧传感器10设于医疗通气设备100的吸气支路131,可以通过向吸气支路131充入预设氧浓度的气体,例如向麻醉机或呼吸机的吸气支路充入纯氧气或纯空气,以将氧传感器所处的环境氧浓度调整为已知的预设氧浓度。
示例性的,处理器101或者气体控制装置140可以控制至少一个气体供应支路120的开度,以调节输出到吸气支路131的气体的氧浓度。
本说明书实施例提供的医疗通气系统的具体原理和实现方式均与前述实施例的氧传感器的校准方法类似,此处不再赘述。
本说明书另一实施例还提供一种呼吸机或者麻醉机,该呼吸机或者麻醉机包括上述医疗通气系统,该医疗通气系统包含的单元及实现方式如上所述,此处不再赘述。
本说明书的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的氧传感器的校准方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的医疗通气系统的内部存储单元,例如所述医疗通气系统的硬盘或内存。所述计算机可读存储介质也可以是所述医疗通气系统的外部存储设备,例如所述医疗通气系统上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本说明书上述实施例提供的医疗通气系统、麻醉机、呼吸机、计算机可读存储介质,只需要在环境氧浓度变化后的较短时间内获取至少两个电信号,就可以确定氧传感器输出的电信号与时间的关系,从而可以得到相应氧浓度时氧传感器稳定状态下输出的电信号,不需要等待很长时间后电压完全稳定,可以减少等待氧传感器响应的时间,提高了校准效率,便于提升日常使用麻醉机或呼吸机等通气设备的氧浓度监测精度。
应当理解,在此本说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本说明书。
还应当理解,在本说明书和所附权利要求书中使用的术语“和/或”是指相 关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本说明书的具体实施方式,但本说明书的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本说明书揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本说明书的保护范围之内。因此,本说明书的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种氧传感器的校准方法,其特征在于,所述方法包括:
    获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
    根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,所述响应函数表示所述氧传感器输出的电信号与时间的关系;
    根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值;
    根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,包括:
    将所述氧传感器放置于预设氧浓度的环境中,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号;或者
    向所述氧传感器所在的空间注入预设氧浓度的气体,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号。
  3. 根据权利要求1所述的方法,其特征在于,所述氧传感器设于医疗通气设备的吸气支路;
    所述获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号,包括:
    向所述吸气支路充入预设氧浓度的气体,获取所述氧传感器在预设时间段内至少两个时间点对应输出的至少两个电信号。
  4. 根据权利要求1所述的方法,其特征在于,所述预设时间段的时长不大于2分钟。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,包括:
    根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数的模型参数;
    根据确定的模型参数,得到所述氧传感器在所述预设氧浓度对应的响应函数。
  6. 根据权利要求5所述的方法,其特征在于,所述响应函数在时间趋近正无穷时函数值趋向稳定的值。
  7. 根据权利要求5所述的方法,其特征在于,所述响应函数包括阶跃响应函数、指数函数或多项式函数中的一种或多种的叠加。
  8. 根据权利要求5所述的方法,其特征在于,所述根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值,包括:
    确定所述响应函数趋向稳定的函数值为所述氧传感器在所述预设氧浓度中的稳态输出值。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线,包括:
    获取所述氧传感器的待校准的特性曲线;
    根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线,包括:
    修正所述待校准的特性曲线,以使修正后的特性曲线覆盖至少一个标定点,所述标定点由对应的预设氧浓度和所述预设氧浓度对应的稳态输出值确定。
  11. 根据权利要求10所述的方法,其特征在于,所述预设氧浓度包括至少两个氧浓度,所述根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线,包括:
    根据至少两个标定点确定所述氧传感器的特性曲线,所述至少两个标定点分别由所述至少两个预设氧浓度对应的稳态输出值确定。
  12. 根据权利要求11所述的方法,其特征在于,所述根据至少两个标定点确定所述氧传感器的特性曲线,包括:
    通过线性插值的方式,根据至少两个标定点确定所述氧传感器的特性曲线。
  13. 一种医疗通气系统,其特征在于,所述通气系统包括至少一个气源接口、 分别与所述至少一个气源接口连接的至少一个气体供应支路和呼吸回路;
    所述呼吸回路包括吸气支路,所述吸气支路设有氧传感器;
    所述至少一个气体供应支路能够向所述吸气支路输出气体;
    所述通气系统还包括处理器,所述处理器用于执行下述步骤:
    控制所述至少一个气体供应支路向所述吸气支路输出气体,以调整所述吸气支路的气体的氧浓度;
    获取所述氧传感器处于预设氧浓度时在预设时间段内至少两个时间点对应输出的至少两个电信号;
    根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数,所述响应函数表示所述氧传感器输出的电信号与时间的关系;
    根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值;
    根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线。
  14. 根据权利要求13所述的系统,其特征在于,所述预设时间段的时长不大于2分钟。
  15. 根据权利要求13-14中任一项所述的系统,其特征在于,所述处理器执行所述根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在所述预设氧浓度对应的响应函数时,执行:
    根据所述至少两个时间点和所述至少两个电信号确定所述氧传感器在预设氧浓度对应的响应函数的模型参数;
    根据确定的模型参数,得到所述氧传感器在所述预设氧浓度对应的响应函数。
  16. 根据权利要求15所述的系统,其特征在于,所述响应函数在时间趋近正无穷时函数值趋向稳定的值。
  17. 根据权利要求15所述的系统,其特征在于,所述响应函数包括阶跃响应函数、指数函数或多项式函数中的一种或多种的叠加。
  18. 根据权利要求15所述的系统,其特征在于,所述处理器执行所述根据所述响应函数确定所述氧传感器在所述预设氧浓度中的稳态输出值时,执行:
    确定所述响应函数趋向稳定的函数值为所述氧传感器在所述预设氧浓度中 的稳态输出值。
  19. 根据权利要求13-18中任一项所述的系统,其特征在于,所述处理器执行所述根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线时,执行:
    获取所述氧传感器的待校准的特性曲线;
    根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线。
  20. 根据权利要求19所述的系统,其特征在于,所述处理器执行所述根据所述氧传感器在所述预设氧浓度中的稳态输出值修正所述待校准的特性曲线时,执行:
    修正所述待校准的特性曲线,以使修正后的特性曲线覆盖至少一个标定点,所述标定点由对应的预设氧浓度和所述预设氧浓度对应的稳态输出值确定。
  21. 根据权利要求20所述的系统,其特征在于,所述预设氧浓度包括至少两个氧浓度,所述处理器执行所述根据所述氧传感器在所述预设氧浓度中的稳态输出值确定所述氧传感器的特性曲线时,执行:
    根据至少两个标定点确定所述氧传感器的特性曲线,所述至少两个标定点分别由所述至少两个预设氧浓度对应的稳态输出值确定。
  22. 根据权利要求21所述的系统,其特征在于,所述处理器执行所述根据至少两个标定点确定所述氧传感器的特性曲线时,执行:
    通过线性插值的方式,根据至少两个标定点确定所述氧传感器的特性曲线。
  23. 一种麻醉机,其特征在于,包括:如权利要求13-22中任一项所述的医疗通气系统。
  24. 一种呼吸机,其特征在于,包括:如权利要求13-22中任一项所述的医疗通气系统。
PCT/CN2019/130214 2019-12-30 2019-12-30 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机 WO2021134373A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/130214 WO2021134373A1 (zh) 2019-12-30 2019-12-30 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机
CN201980098615.3A CN114173850B (zh) 2019-12-30 2019-12-30 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机
US17/854,093 US20220331533A1 (en) 2019-12-30 2022-06-30 Calibration method for oxygen sensor, medical ventilation system, anesthetic machine, and ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130214 WO2021134373A1 (zh) 2019-12-30 2019-12-30 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/854,093 Continuation US20220331533A1 (en) 2019-12-30 2022-06-30 Calibration method for oxygen sensor, medical ventilation system, anesthetic machine, and ventilator

Publications (1)

Publication Number Publication Date
WO2021134373A1 true WO2021134373A1 (zh) 2021-07-08

Family

ID=76687486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130214 WO2021134373A1 (zh) 2019-12-30 2019-12-30 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机

Country Status (3)

Country Link
US (1) US20220331533A1 (zh)
CN (1) CN114173850B (zh)
WO (1) WO2021134373A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11944755B2 (en) * 2020-04-21 2024-04-02 GE Precision Healthcare LLC Methods and system for oxygen sensor prognostics in a medical gas flow device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104190A (ja) * 1996-09-26 1998-04-24 Nippon Rufuto Kk 酸素センサを用いた酸素濃度検出方法,酸素センサの異常判定方法,酸素濃縮装置の異常判定方法および酸素濃縮装置
WO2009058081A1 (en) * 2007-10-29 2009-05-07 Poseidon Diving Systems Oxygen control in breathing apparatus
CN102012395A (zh) * 2009-09-07 2011-04-13 北京谊安医疗系统股份有限公司 用于氧气检测设备的传感器校正方法
CN102441213A (zh) * 2010-10-09 2012-05-09 深圳迈瑞生物医疗电子股份有限公司 氧电池座组件、氧电池组件及麻醉机
CN104215677A (zh) * 2013-06-05 2014-12-17 北京谊安医疗系统股份有限公司 麻醉机及其氧气浓度监测方法和氧气浓度监测装置
CN104784793A (zh) * 2015-04-14 2015-07-22 深圳市科曼医疗设备有限公司 呼吸机及呼吸机的氧传感器自动校准方法
CN107084034A (zh) * 2016-02-12 2017-08-22 福特环球技术公司 用于预测传感器响应时间的方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104190A (ja) * 1996-09-26 1998-04-24 Nippon Rufuto Kk 酸素センサを用いた酸素濃度検出方法,酸素センサの異常判定方法,酸素濃縮装置の異常判定方法および酸素濃縮装置
WO2009058081A1 (en) * 2007-10-29 2009-05-07 Poseidon Diving Systems Oxygen control in breathing apparatus
CN102012395A (zh) * 2009-09-07 2011-04-13 北京谊安医疗系统股份有限公司 用于氧气检测设备的传感器校正方法
CN102441213A (zh) * 2010-10-09 2012-05-09 深圳迈瑞生物医疗电子股份有限公司 氧电池座组件、氧电池组件及麻醉机
CN104215677A (zh) * 2013-06-05 2014-12-17 北京谊安医疗系统股份有限公司 麻醉机及其氧气浓度监测方法和氧气浓度监测装置
CN104784793A (zh) * 2015-04-14 2015-07-22 深圳市科曼医疗设备有限公司 呼吸机及呼吸机的氧传感器自动校准方法
CN107084034A (zh) * 2016-02-12 2017-08-22 福特环球技术公司 用于预测传感器响应时间的方法和系统

Also Published As

Publication number Publication date
CN114173850A (zh) 2022-03-11
CN114173850B (zh) 2023-10-03
US20220331533A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP7307829B2 (ja) 一酸化窒素に曝される電気化学ガスセンサーの長期の感度変動を補償する方法
US11351319B2 (en) Determination of apnea/hypopnea during CPAP treatment
JP5658655B2 (ja) 人工呼吸器リーク補償
EP2688466B1 (en) Detection of ventilation sufficiency
US20100218765A1 (en) Flow rate compensation for transient thermal response of hot-wire anemometers
US20070278110A1 (en) System and Method for Estimating Oxygen Concentration in a Mixed Gas Experiencing Pressure Fluctuations
US20080295837A1 (en) Method to limit leak compensation based on a breathing circuit leak alarm
CN101529232A (zh) 用于对一种或多种气态分析物的分压力的确定进行校准的系统和方法
EP2571423A1 (en) System and method for estimating upper airway resistance and lung compliance employing induced central apneas
WO2021134373A1 (zh) 氧传感器的校准方法、医疗通气系统、麻醉机、呼吸机
US20170360328A1 (en) Breath sensor, breath sensor unit, and breath sensing method
WO2023125451A1 (zh) 呼吸相确定方法、装置
CN116617511A (zh) 在高水平peep下调节基础流量的方法、控制装置和存储介质
CN113724851B (zh) 呼吸机智能同步方法及其数据可视化系统
CN105286836A (zh) 一种智能家用电子血压计
US20210251512A1 (en) Evaluation system for a ventilator, and method
CN111265746B (zh) 混合腔压力控制方法、呼吸机设备和计算机可读存储介质
CN113198074A (zh) 呼吸机的气道压力修正方法、装置及呼吸机
JP2000175886A (ja) 換気データ処理方法および装置
EP3334341B1 (en) Automatic sampling accessory system
WO2023045216A1 (zh) 呼吸机自动计量校准方法、装置及存储介质
TWM570155U (zh) Automatic positive pressure breathing system
WO2023050108A1 (zh) 一种医疗通气设备及通气控制方法
CN114879772B (zh) 一种基于输液加温控制系统的自校准控制系统及其方法
WO2023070559A1 (zh) 一种医疗设备及其氧浓度测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958163

Country of ref document: EP

Kind code of ref document: A1