WO2021146962A1 - 非连续接收参数的处理方法、存储介质和处理 - Google Patents
非连续接收参数的处理方法、存储介质和处理 Download PDFInfo
- Publication number
- WO2021146962A1 WO2021146962A1 PCT/CN2020/073639 CN2020073639W WO2021146962A1 WO 2021146962 A1 WO2021146962 A1 WO 2021146962A1 CN 2020073639 W CN2020073639 W CN 2020073639W WO 2021146962 A1 WO2021146962 A1 WO 2021146962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- discontinuous reception
- different
- parameters
- user equipment
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 40
- 238000003672 processing method Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 117
- 238000004891 communication Methods 0.000 claims abstract description 111
- 230000007246 mechanism Effects 0.000 claims description 62
- 230000011664 signaling Effects 0.000 claims description 49
- 230000004913 activation Effects 0.000 claims description 28
- 238000005516 engineering process Methods 0.000 claims description 20
- 230000007774 longterm Effects 0.000 claims description 5
- 230000005611 electricity Effects 0.000 abstract description 5
- 230000015654 memory Effects 0.000 description 35
- 230000008569 process Effects 0.000 description 19
- 238000004590 computer program Methods 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0251—Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
- H04W52/0258—Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/25—Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/30—Connection release
- H04W76/38—Connection release triggered by timers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- This application relates to the field of communications, and in particular, to a processing method, storage medium, and processing for discontinuously received parameters.
- ProSe Proximity based Service
- the resource pool is not continuous in the time domain, so that the UE (User Equipment) is on the side link Discontinuously send/receive data, so as to achieve the effect of power saving.
- V2X Vehicle-to-Everything
- NR V2X New Radio, New Radio
- the embodiments of the present application provide a method for processing discontinuously received parameters, a storage medium, and a processor.
- a method for processing discontinuous reception parameters including: sending discontinuous reception parameters and parameter values to user equipment; wherein, discontinuous reception parameters corresponding to different communication parameters are different, or , The parameter values of discontinuous reception parameters corresponding to different communication parameters are different.
- a method for processing discontinuous reception parameters including: sending a discontinuous reception mechanism, or discontinuous reception parameters and parameter values to a user equipment; wherein, different specific messages correspond to The discontinuous reception mechanism or discontinuous reception parameters are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values.
- a method for processing discontinuous reception parameters including: a user equipment receives discontinuous reception parameters and parameter values, wherein the discontinuous reception parameters corresponding to different communication parameters are different, or, The discontinuous reception parameters corresponding to different communication parameters have different parameter values; the user equipment is configured based on the discontinuous reception parameters and parameter values.
- a method for processing discontinuous reception parameters including: a user equipment receives a discontinuous reception mechanism, or discontinuous reception parameters and parameter values, where different specific messages correspond to discontinuous reception.
- the continuous reception mechanism or the discontinuous reception parameters are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values; the user equipment is configured based on the discontinuous reception mechanism, or the discontinuous reception parameters and parameter values.
- a network device including: a communication module for sending discontinuous reception parameters and parameter values to user equipment; wherein, discontinuous reception parameters corresponding to different communication parameters are different, or , The parameter values of discontinuous reception parameters corresponding to different communication parameters are different.
- a network device including: a communication module for sending a discontinuous reception mechanism, or discontinuous reception parameters and parameter values to user equipment; wherein, different specific messages correspond to The discontinuous reception mechanism or discontinuous reception parameters are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values.
- a user equipment including: a communication module for receiving discontinuous reception parameters and parameter values, wherein the discontinuous reception parameters corresponding to different communication parameters are different, or different communication The parameter values of the discontinuous reception parameters corresponding to the parameters are different; the processing module is used for configuration based on the discontinuous reception parameters and parameter values.
- a user equipment including: a communication module for receiving a discontinuous reception mechanism, or discontinuous reception parameters and parameter values, wherein the discontinuous reception corresponding to different specific messages The mechanism or discontinuous reception parameters are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values; the processing module is used to configure based on the discontinuous reception mechanism, or discontinuous reception parameters and parameter values.
- a storage medium includes a stored program, wherein when the program is running, the device where the storage medium is located is controlled to execute the discontinuous aspects of any one of the first to fourth aspects. The processing method of the received parameter.
- a processor is provided, which is configured to run a program, wherein the discontinuous reception parameter processing method of any one of the first aspect to the fourth aspect is executed when the program is running.
- Fig. 1 is a schematic diagram of a communication system applied in an embodiment of the present application
- Fig. 2a is a schematic diagram of a D2D communication system in mode A applied in an embodiment of the present application;
- 2b is a schematic diagram of a D2D communication system in mode B applied in an embodiment of the present application;
- FIG. 3 is a flowchart of a first method for processing discontinuously received parameters according to an embodiment of the present application
- FIG. 4 is a flowchart of a second method for processing discontinuously received parameters according to an embodiment of the present application
- Fig. 5 is a flowchart of a third method for processing discontinuously received parameters according to an embodiment of the present application.
- Fig. 6 is a flowchart of a fourth method for processing discontinuously received parameters according to an embodiment of the present application.
- Fig. 7 is a schematic diagram of a network device according to an embodiment of the present application.
- Fig. 8 is a schematic diagram of a user equipment according to an embodiment of the present application.
- Fig. 9 is a schematic diagram of a communication device according to an embodiment of the present application.
- Fig. 10 is a schematic diagram of a chip according to an embodiment of the present application.
- Fig. 11 is a schematic diagram of a communication system according to an embodiment of the present application.
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GSM Global System of Mobile Communication
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
- the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
- the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
- the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
- BTS Base Transceiver Station
- NodeB, NB base station
- LTE Long Term Evolutional Node B
- eNB evolved base station
- CRAN Cloud Radio Access Network
- the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
- the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
- the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
- PSTN Public Switched Telephone Networks
- DSL Digital Subscriber Line
- WLAN wireless local area networks
- IoT Internet of Things
- a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
- mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
- PCS Personal Communications System
- GPS Global Positioning System
- Terminal equipment may refer to an access terminal, user equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
- the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- D2D communication may be performed between the terminal devices 120.
- the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
- NR New Radio
- Figure 1 exemplarily shows one network device and two terminal devices.
- the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
- the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
- network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
- the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
- the communication device may include a network device 110 having a communication function and a terminal device 120.
- the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
- the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
- Device-to-device communication is a sidelink transmission technology (Sidelink, SL) based on D2D, which is different from the way in which communication data is received or sent through base stations in traditional cellular systems.
- Sidelink Sidelink
- the Internet of Vehicles system uses direct terminal-to-terminal communication. , So it has higher spectral efficiency and lower transmission delay.
- mode A and mode B are defined: mode A and mode B, as shown in Figures 2a and 2b, where the solid line in the figure shows the side link , The dotted line shows the downlink (DownLink, DL).
- the transmission resources of the terminal are allocated by the base station.
- the base station allocates resources to the terminal based on the grant signaling (Grant) through the downlink, and the terminal performs data on the side link according to the resources allocated by the base station.
- the base station can allocate a single transmission resource for the terminal, and can also allocate a semi-static transmission resource for the terminal.
- the vehicle-mounted terminal selects a resource in the resource pool for data transmission.
- D2D is divided into different stages for research.
- ProSe In Rel-12/13, device-to-device communication is researched for the ProSe scenario, which is mainly for public safety services.
- the UE can send/receive data discontinuously on the side link, thereby saving power.
- V2X because the vehicle-mounted system has continuous power supply, power efficiency is not a major issue, while data transmission delay is a major issue. Therefore, the system design requires terminal equipment to continuously send and receive.
- Wearable devices FeD2D, Further Enhancements to LTE Device to Device: In Rel-14, this scenario studies the scenario where wearable devices connect to the network through mobile phones, which are mainly oriented towards low mobile speed and low power access Scene.
- NR V2X is not limited to broadcast scenarios, but further extends to unicast and multicast scenarios. In these scenarios, the application of V2X is studied.
- NR V2X will also define the above-mentioned mode-A/B resource authorization modes; furthermore, the user may be in a hybrid mode, that is, mode-A can be used for resource acquisition, and at the same time Use mode-B for resource acquisition.
- NR V2X introduces HARQ retransmission based on feedback, not limited to unicast communication, Including multicast communication;
- the main problem is that for the same UE, the UE has the same power-saving requirements for different needs:
- the power saving requirements under different interfaces include Uu (User Equipment) and PC5.
- the embodiment of the present application proposes a method for processing discontinuously received parameters.
- FIG. 3 is a schematic flowchart of the first method for processing discontinuous reception parameters provided by an embodiment of the application. This method can be executed by a network device.
- the method includes:
- Step S302 sending discontinuous reception parameters and parameter values to the user equipment.
- the discontinuous reception parameters corresponding to different communication parameters are different, or the discontinuous reception parameters corresponding to different communication parameters have different parameter values.
- the communication parameters include at least one of the following: propagation mode, service type, wireless access technology type, interface type, and carrier frequency.
- the device that executes the above step S302 may be a network device.
- the network device may be a network device as shown in FIG. 1 and may transmit DRX parameters and parameter values to the user equipment. Data can be transmitted between UEs through the side link.
- the UE can be a terminal device as shown in Figure 1.
- the UE uses different communication parameters. In order to meet different requirements, For electricity demand, different DRX parameters can be set for different communication parameters, or the same DRX parameters can be set for different communication parameters, but the parameter values of the DRX parameters are different.
- the UE After the UE receives the DRX parameters and parameter values, it can be configured based on the received DRX parameters and parameter values, so that the UE discontinuously transmits/receives data on the side link, thereby achieving the effect of power saving.
- the user equipment by sending discontinuous reception parameters and parameter values to the user equipment, the user equipment can be configured based on the received discontinuous reception parameters and parameter values, where the discontinuous reception parameters corresponding to different communication parameters
- the receiving parameters are different, or the parameter values of the discontinuous receiving parameters corresponding to different communication parameters are different.
- different DRX parameters or parameter values can be set for the different needs of the UE, so that the UE can send/receive data non-continuously under the coexistence of different scenarios, achieving the effect of saving power, and solving the related problems.
- the user equipment transmits data on the side link, which consumes a lot of power and cannot achieve the technical problem of power saving.
- different DRX parameters can be used for different propagation modes (broadcast, multicast, unicast), or the same DRX parameters, but different The DRX parameter value.
- Discontinuous reception parameters include at least one of the following: discontinuous reception period, time offset, length of discontinuous reception active time (ondurationtimer), length of discontinuous reception activation timer (inactivitytimer), and retransmission timer (retransmission timer) length of time.
- the propagation mode when the propagation mode is the first mode, it is determined to use the first discontinuous reception parameter; when the propagation mode is the second mode, it is determined to use the second discontinuous reception parameter;
- the parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter
- the parameter values are at least partially different or all different.
- the broadcast mode uses the DRX cycle
- the multicast mode uses the time offset
- the unicast mode uses the DRX active time length.
- Both the broadcast mode and the multicast mode use the DRX cycle, but the parameter values of the DRX cycle are different.
- Unicast mode uses the length of DRX active time.
- Broadcast mode uses DRX cycle and time offset
- multicast mode uses time offset and DRX activation timer
- unicast mode uses DRX active time length and retransmission timer time length.
- Both the broadcast mode and the multicast mode use the DRX cycle and time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- Unicast mode uses the length of DRX active time.
- Discontinuous reception parameters are sent through at least one of the following signaling: radio resource control (Radio Resource Control, RRC) signaling, system information block (System Information Block, SIB) message, and pre-configuration signaling.
- RRC Radio Resource Control
- SIB System Information Block
- different DRX parameters can be used for different services/service types, or the same DRX parameter but different DRX parameter values can be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the service type when the service type is the first type, it is determined to use the first discontinuous reception parameter; when the service type is the second type, it is determined to use the second discontinuous reception parameter;
- the parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter
- the parameter values are at least partially different or all different.
- the first type uses the DRX cycle
- the second type uses time offset.
- Both the first type and the second type use the DRX cycle, but the parameter values of the DRX cycle are different.
- the first type uses DRX cycle and time offset
- the second type uses time offset and DRX activation timer.
- Both the first type and the second type use the DRX cycle and the time offset, but the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are sent through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- the target address the provider service identifier (PSID), the intelligent transportation system application identifier (ITSAID), the business priority, and the PC5 5G service quality identifier (PC5 5QI).
- PSID provider service identifier
- ITSAID intelligent transportation system application identifier
- PC5 5QI PC5 5G service quality identifier
- 5G QoS Identifier, PQI PC5 Quality of Service Flow Identifier
- PC5 QoS Flow Identifier PC5 QoS Flow Identifier
- QoS attribute identifiers determine the service type. That is, different target addresses, PSID, ITSAID, service priority, PQI, PFI, and QoS attribute identification, etc., can determine different service types.
- different DRX parameters may be used for different RAT types, or the same DRX parameter but different DRX parameter values may be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the RAT type when the RAT type is the first type, it is determined to use the first discontinuous reception parameter; when the RAT type is the second type, it is determined to use the second discontinuous reception parameter;
- the parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter
- the parameter values are at least partially different or all different.
- LTE uses DRX cycle and NR uses time offset.
- Both LTE and NR use the DRX cycle, but the parameter values of the DRX cycle are different.
- LTE uses DRX cycle and time offset
- NR uses time offset and DRX activation timer.
- Both LTE and NR use DRX cycle and time offset. However, the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are sent through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- RAT types include: LTE and NR, or different releases of LTE/NR.
- different DRX parameters can be used for different interface types, or the same DRX parameters but different DRX parameter values can be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the interface type when the interface type is the first type, it is determined to use the first discontinuous reception parameter; when the interface type is the second type, it is determined to use the second discontinuous reception parameter; where the first The parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter The parameter values are at least partially different or all different.
- the Uu interface uses the DRX cycle, and the PC5 interface uses time offset.
- Both the Uu interface and the PC5 interface use the DRX cycle, but the parameter values of the DRX cycle are different.
- Uu interface uses DRX cycle and time offset
- PC5 interface uses time offset and DRX activation timer.
- Both the Uu interface and the PC5 interface use the DRX cycle and time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- Discontinuous reception parameters are sent through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- Interface types include: Uu interface and PC5 interface.
- DRX parameters for different interface types, or the same DRX parameters but different DRX parameter values, including:
- the first parameter is the input information for calculating the PC5 DRX parameter value, and the calculated PC5 DRX parameter value is returned to the UE.
- the first parameter includes at least one of the following information of the UE: UE's identity information, propagation mode information, source address information, PQI, PFI, and QoS attribute information, etc.
- the parameter value of the discontinuous reception parameter corresponding to the user equipment interface is sent to the user equipment, where the user equipment is used to determine the parameter value of the discontinuous reception parameter corresponding to the PC5 interface based on the parameter value of the discontinuous reception parameter corresponding to the user equipment interface. That is, the network only issues the first DRX parameter value used by Uu, and the UE derives the second DRX parameter value used by PC5 according to the first DRX parameter value used by Uu.
- different DRX parameters may be used for different carrier frequencies, or the same DRX parameters but different DRX parameter values may be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the carrier frequency when the carrier frequency is the first frequency, it is determined to use the first discontinuous reception parameter; when the carrier frequency is the second frequency, it is determined to use the second discontinuous reception parameter;
- the parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter
- the parameter values are at least partially different or all different.
- the first frequency uses the DRX cycle
- the second frequency uses the time offset
- Both the first frequency and the second frequency use the DRX cycle, but the parameter values of the DRX cycle are different.
- the first frequency uses DRX cycle and time offset
- the second frequency uses time offset and DRX activation timer.
- Both the first frequency and the second frequency use the DRX cycle and the time offset, but the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are sent through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- FIG. 4 is a schematic flowchart of a second method for processing discontinuous reception parameters provided by an embodiment of the application. This method can also be executed by a network device.
- the method includes:
- Step S402 sending a discontinuous reception mechanism, or discontinuous reception parameters and parameter values to the user equipment.
- the discontinuous reception mechanisms or discontinuous reception parameters corresponding to different specific messages are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values.
- the device that executes the above step S402 may be a network device.
- the network device may be a network device as shown in FIG. 1 and may transmit a DRX mechanism, or DRX parameters and parameter values, to the user equipment. Data can be transmitted between UEs through a side link.
- the UE can be a terminal device as shown in Figure 1.
- For the same UE in order to meet the power saving requirements of sending/receiving specific messages, it can be targeted for sending/receiving specific messages.
- To receive set different DRX mechanisms, or DRX parameters, or set the same DRX parameters for different specific messages, but the parameter values of the DRX parameters are different.
- the UE After the UE receives the DRX mechanism, or DRX parameters and parameter values, it can be configured based on the received DRX mechanism, or DRX parameters and parameter values, so that the UE discontinuously transmits/receives data on the side link, thereby achieving savings.
- the effect of electricity The effect of electricity.
- the user equipment by sending the discontinuous reception mechanism, or discontinuous reception parameters and parameter values to the user equipment, the user equipment can be based on the received discontinuous reception mechanism, or discontinuous reception parameters and Parameter values are configured, where the discontinuous reception mechanism or discontinuous reception parameters corresponding to different specific messages are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values.
- DRX mechanisms for the sending/receiving of specific messages, different DRX mechanisms, or DRX parameters, or parameter values can be set, so that the UE can discontinuously send/receive data in this scenario to achieve the effect of power saving, and then It solves the technical problem that the user equipment transmits data on the side link in the related technology, which consumes a large amount of power and cannot achieve the purpose of power saving.
- the sending/receiving of specific messages triggers different DRX mechanisms, or different DRX parameters, or different values of DRX parameters.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the specific message when the specific message is the first message, it is determined to use the first discontinuous reception parameter; when the specific message is the second message, it is determined to use the second discontinuous reception parameter; where the first The parameters included in the discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is different from the parameter included in the second discontinuous reception parameter The parameter values are at least partially different or all different.
- the first message uses the DRX cycle
- the second message uses the time offset
- the third message uses the DRX active time length.
- Both the first message and the second message use the DRX cycle, but the parameter values of the DRX cycle are different.
- the third message uses the DRX active time length.
- the first message uses the DRX cycle and time offset
- the second message uses the time offset and the DRX activation timer
- the third message uses the DRX active time length and the retransmission timer time length.
- Both the first message and the second message use the DRX cycle and the time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- the third message uses the DRX active time length.
- Discontinuous reception parameters are sent through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- the specific message when the specific message is the first message, it is determined to start the first discontinuous reception timer. And/or, when the specific message is the second message, it is determined to enter the discontinuous reception state. And/or, when the specific message is the third message, it is determined to enter the active state.
- the reception or transmission of the first message starts the first DRX timer
- the reception or transmission of the second message causes the UE to enter the DRX state
- the reception or transmission of the third message is when the UE enters an active state.
- FIG. 5 is a schematic flowchart of a third method for processing discontinuous reception parameters provided by an embodiment of the application. This method can be executed by the user equipment.
- the method includes:
- Step S502 the user equipment receives discontinuous reception parameters and parameter values
- step S504 the user equipment performs configuration based on the discontinuous reception parameters and parameter values.
- the discontinuous reception parameters corresponding to different communication parameters are different, or the discontinuous reception parameters corresponding to different communication parameters have different parameter values.
- the communication parameters include at least one of the following: propagation mode, service type, wireless access technology type, interface type, and carrier frequency.
- the device that sends the discontinuously received parameters and parameter values may be a network device.
- the network device may be a network device as shown in FIG. 1 and may transmit DRX parameters and parameter values to the user equipment. Data can be transmitted between UEs through the side link.
- the UE can be a terminal device as shown in Figure 1.
- the UE uses different communication parameters. In order to meet different requirements, For electricity demand, different DRX parameters can be set for different communication parameters, or the same DRX parameters can be set for different communication parameters, but the parameter values of the DRX parameters are different.
- the UE After the UE receives the DRX parameters and parameter values, it can be configured based on the received DRX parameters and parameter values, so that the UE discontinuously transmits/receives data on the side link, thereby achieving the effect of power saving.
- different DRX parameters can be used for different propagation modes (broadcast, multicast, unicast), or the same DRX parameters, but different The DRX parameter value.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment performs configuration based on discontinuous reception parameters and parameter values, including: determining to use the first discontinuous reception parameter when the propagation mode is the first mode; and when the propagation mode is the second mode Next, determine to use the second discontinuous reception parameter; where the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the broadcast mode uses the DRX cycle
- the multicast mode uses the time offset
- the unicast mode uses the DRX active time length.
- Both the broadcast mode and the multicast mode use the DRX cycle, but the parameter values of the DRX cycle are different.
- Unicast mode uses the length of DRX active time.
- Broadcast mode uses DRX cycle and time offset
- multicast mode uses time offset and DRX activation timer
- unicast mode uses DRX active time length and retransmission timer time length.
- Both the broadcast mode and the multicast mode use the DRX cycle and time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- Unicast mode uses the length of DRX active time.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- different DRX parameters can be used for different service types, or the same DRX parameter but different DRX parameter values can be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment performs configuration based on the discontinuous reception parameters and parameter values, including: when the service type is the first type, determining to use the first discontinuous reception parameter; when the service type is the second type Next, determine to use the second discontinuous reception parameter; where the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the first type uses the DRX cycle
- the second type uses time offset.
- Both the first type and the second type use the DRX cycle, but the parameter values of the DRX cycle are different.
- the first type uses DRX cycle and time offset
- the second type uses time offset and DRX activation timer.
- Both the first type and the second type use the DRX cycle and the time offset, but the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- the target address the provider service identifier (PSID), the intelligent transportation system application identifier (ITSAID), the business priority, and the PC5 5G service quality identifier (PC5 5QI).
- PSID provider service identifier
- ITSAID intelligent transportation system application identifier
- PC5 5QI PC5 5G service quality identifier
- 5G QoS Identifier, PQI PC5 Quality of Service Flow Identifier
- PC5 QoS Flow Identifier PC5 QoS Flow Identifier
- QoS attribute identifiers determine the service type. That is, different target addresses, PSID, ITSAID, service priority, PQI, PFI, and QoS attribute identification, etc., can determine different service types.
- different DRX parameters may be used for different RAT types, or the same DRX parameter but different DRX parameter values may be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment performs configuration based on discontinuous reception parameters and parameter values, including: when the RAT type is the first type, determining to use the first discontinuous reception parameter; when the RAT type is the second type Next, determine to use the second discontinuous reception parameter; where the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- LTE uses DRX cycle and NR uses time offset.
- Both LTE and NR use the DRX cycle, but the parameter values of the DRX cycle are different.
- LTE uses DRX cycle and time offset
- NR uses time offset and DRX activation timer.
- Both LTE and NR use DRX cycle and time offset. However, the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- RAT types include: LTE and NR, or different releases of LTE/NR.
- different DRX parameters can be used for different interface types, or the same DRX parameters but different DRX parameter values can be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment performs configuration based on discontinuous reception parameters and parameter values, including: when the interface type is the first type, determining to use the first discontinuous reception parameter; when the interface type is the second type Next, determine to use the second discontinuous reception parameter; where the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the Uu interface uses the DRX cycle, and the PC5 interface uses time offset.
- Both the Uu interface and the PC5 interface use the DRX cycle, but the parameter values of the DRX cycle are different.
- Uu interface uses DRX cycle and time offset
- PC5 interface uses time offset and DRX activation timer.
- Both the Uu interface and the PC5 interface use the DRX cycle and time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- Interface types include: Uu interface and PC5 interface.
- DRX parameters for different interface types, or the same DRX parameters but different DRX parameter values, including:
- the user equipment reports the first parameter, where the first parameter is used to determine the parameter value of the discontinuous reception parameter corresponding to the PC5 interface. That is, the network device receives the first parameter reported by the UE, calculates the PC5 DRX parameter value based on the first parameter, and returns the calculated PC5 DRX parameter value to the UE.
- the first parameter includes at least one of the following information of the UE: UE's identity information, propagation mode information, source address information, PQI, PFI, and QoS attribute information, etc.
- the user equipment After receiving the parameter value of the discontinuous reception parameter corresponding to the user equipment interface, the user equipment determines the parameter value of the discontinuous reception parameter corresponding to the PC5 interface based on the parameter value of the discontinuous reception parameter corresponding to the user equipment interface. That is, the network only issues the first DRX parameter value used by Uu, and the UE derives the second DRX parameter value used by PC5 according to the first DRX parameter value used by Uu.
- different DRX parameters may be used for different carrier frequencies, or the same DRX parameters but different DRX parameter values may be used.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment performs configuration based on discontinuous reception parameters and parameter values, including: determining to use the first discontinuous reception parameter when the carrier frequency is the first frequency; and when the carrier frequency is the second frequency Next, determine to use the second discontinuous reception parameter; where the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the first frequency uses the DRX cycle
- the second frequency uses the time offset
- Both the first frequency and the second frequency use the DRX cycle, but the parameter values of the DRX cycle are different.
- the first frequency uses DRX cycle and time offset
- the second frequency uses time offset and DRX activation timer.
- Both the first frequency and the second frequency use the DRX cycle and the time offset, but the parameter value of the DRX cycle is different, and the parameter value of the time offset is also different.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- FIG. 6 is a schematic flowchart of a fourth method for processing discontinuous reception parameters provided by an embodiment of the application. This method can be executed by the user equipment.
- the method includes:
- Step S602 the user equipment receives the discontinuous reception mechanism, or discontinuous reception parameters and parameter values;
- step S604 the user equipment configures based on the discontinuous reception mechanism, or discontinuous reception parameters and parameter values.
- the discontinuous reception mechanisms or discontinuous reception parameters corresponding to different specific messages are different, or the discontinuous reception parameters corresponding to different specific messages have different parameter values.
- the device that sends the discontinuous reception mechanism, or the device that discontinuously receives the parameters and parameter values may be a network device.
- the network device may be a network device as shown in FIG. 1 and may transmit the DRX mechanism to the user equipment. Or, DRX parameters and parameter values. Data can be transmitted between UEs through a side link.
- the UE can be a terminal device as shown in Figure 1.
- For the same UE in order to meet the power saving requirements of sending/receiving specific messages, it can be targeted for sending/receiving specific messages.
- To receive set different DRX mechanisms, or DRX parameters, or set the same DRX parameters for different specific messages, but the parameter values of the DRX parameters are different.
- the UE After the UE receives the DRX mechanism, or DRX parameters and parameter values, it can be configured based on the received DRX mechanism, or DRX parameters and parameter values, so that the UE discontinuously transmits/receives data on the side link, thereby achieving savings.
- the effect of electricity The effect of electricity.
- the sending/receiving of specific messages triggers different DRX mechanisms, or different DRX parameters, or different values of DRX parameters.
- the discontinuous reception parameters include at least one of the following: DRX cycle, time offset, length of DRX active time (ondurationtimer), length of DRX activation timer (inactivitytimer), and time length of retransmission timer (retransmission timer).
- the user equipment is configured based on the discontinuous reception mechanism, or discontinuous reception parameters and parameter values, including: when the specific message is the first message, determining to use the first discontinuous reception parameter; When the message is the second message, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter
- the parameter value of the parameter included in one discontinuous reception parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the first message uses the DRX cycle
- the second message uses the time offset
- the third message uses the DRX active time length.
- Both the first message and the second message use the DRX cycle, but the parameter values of the DRX cycle are different.
- the third message uses the DRX active time length.
- the first message uses the DRX cycle and time offset
- the second message uses the time offset and the DRX activation timer
- the third message uses the DRX active time length and the retransmission timer time length.
- Both the first message and the second message use the DRX cycle and the time offset, but the parameter values of the DRX cycle are different, and the parameter values of the time offset are also different.
- the third message uses the DRX active time length.
- Discontinuous reception parameters are received through at least one of the following signaling: RRC signaling, SIB message, and pre-configuration signaling.
- the user equipment is configured based on the discontinuous reception mechanism, or discontinuous reception parameters and parameter values, including: when the specific message is the first message, the user equipment determines to start the first discontinuous reception Timer. And/or, the user equipment is configured based on a discontinuous reception mechanism, or discontinuous reception parameters and parameter values, including: when the specific message is the second message, the user equipment determines to enter the discontinuous reception state. And/or, the user equipment is configured based on a discontinuous reception mechanism, or discontinuous reception parameters and parameter values, including: when the specific message is the first message, the user equipment determines to enter the active state.
- the reception or transmission of the first message starts the first DRX timer
- the reception or transmission of the second message causes the UE to enter the DRX state
- the reception or transmission of the third message is when the UE enters an active state.
- the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
- the implementation process constitutes any limitation.
- the network device 700 includes: a communication module 702.
- the communication module 702 is configured to send discontinuous reception parameters and parameter values to the user equipment; wherein, discontinuous reception parameters corresponding to different communication parameters are different, or discontinuous reception corresponding to different communication parameters The parameter value of the parameter is different.
- the communication module 702 is further configured to receive the first parameter reported by the user equipment, where the first parameter is used to determine the parameter value of the discontinuous reception parameter corresponding to the PC5 interface.
- the communication module 702 is further configured to send the parameter value of the discontinuous reception parameter corresponding to the user equipment interface to the user equipment, where the user equipment is configured to be based on the parameter value of the discontinuous reception parameter corresponding to the user equipment interface Determine the parameter value of the discontinuous receiving parameter corresponding to the PC5 interface.
- the communication module 702 is configured to send a discontinuous reception mechanism, or discontinuous reception parameters and parameter values to the user equipment; wherein, the discontinuous reception mechanism or discontinuous reception corresponding to different specific messages The parameters are different, or the parameter values of the discontinuous reception parameters corresponding to different specific messages are different.
- the user equipment 800 includes: a communication module 802 and a processing module 804.
- the communication module 802 is configured to receive discontinuous reception parameters and parameter values, wherein the discontinuous reception parameters corresponding to different communication parameters are different, or the discontinuous reception parameters corresponding to different communication parameters are different.
- the values are different; the processing module 804 is used for configuration based on discontinuously received parameters and parameter values.
- the communication parameters include: a propagation mode; the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the propagation mode is the first mode; when the propagation mode is the second mode In this case, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the communication parameters include: service type; the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the service type is the first type; when the service type is the second type In this case, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the communication parameters include: RAT type; the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the RAT type is the first type; when the RAT type is the second type In this case, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the communication parameters include: interface type; the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the interface type is the first type; when the interface type is the second type In this case, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the communication module 802 is further configured to report the first parameter, where the first parameter is used to determine the parameter value of the discontinuous reception parameter corresponding to the PC5 interface.
- the processing module 804 is further configured to, after receiving the parameter value of the discontinuous reception parameter corresponding to the user equipment interface, determine that the PC5 interface corresponds based on the parameter value of the discontinuous reception parameter corresponding to the user equipment interface The parameter value of the discontinuous receiving parameter.
- the communication parameters include: carrier frequency; the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the carrier frequency is the first frequency; when the carrier frequency is the second frequency In this case, it is determined to use the second discontinuous reception parameter; wherein the parameters included in the first discontinuous reception parameter and the parameters included in the second discontinuous reception parameter are at least partially different or both different, or the first discontinuous reception parameter includes The parameter value of the parameter and the parameter value of the parameter included in the second discontinuous reception parameter are at least partly different or both are different.
- the communication module 802 is also used to receive a discontinuous reception mechanism, or discontinuous reception parameters and parameter values, wherein the discontinuous reception mechanism or discontinuous reception parameters corresponding to different specific messages are different , Or, the parameter values of the discontinuous reception parameters corresponding to different specific messages are different; the processing module 804 is configured to configure based on the discontinuous reception mechanism, or, the discontinuous reception parameters and parameter values.
- the processing module 804 is further configured to determine to start the first discontinuous reception timer when the specific message is the first message.
- the processing module 804 is further configured to determine to enter the discontinuous reception state when the specific message is the second message.
- the processing module 804 is further configured to determine to enter the active state when the specific message is the first message.
- the processing module 804 is further configured to determine to use the first discontinuous reception parameter when the specific message is the first message; when the specific message is the second message, determine to use the second Discontinuous reception parameters; wherein the parameters included in the first discontinuous reception parameters and the parameters included in the second discontinuous reception parameters are at least partially different or not the same, or the parameter value of the parameter included in the first discontinuous reception parameter is the same as that of the first discontinuous reception parameter 2.
- the parameter values of the parameters included in the discontinuous reception parameters are at least partially different or all different.
- the embodiment of the present application also provides a storage medium, the storage medium includes a stored program, wherein the device where the storage medium is located is controlled to execute the processing method of each discontinuously received parameter in the embodiment of the present application when the program is running.
- the embodiment of the present application also provides a processor, which is used to run a program, where the method for processing each discontinuously received parameter in the embodiment of the present application is executed when the program is running.
- FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
- the communication device 900 shown in FIG. 9 includes a processor 902, and the processor 902 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
- the communication device 900 may further include a memory 904.
- the processor 902 can call and run a computer program from the memory 904 to implement the method in the embodiment of the present application.
- the memory 904 may be a separate device independent of the processor 902, or may be integrated in the processor 904.
- the communication device 900 may further include a transceiver 906, and the processor 902 may control the transceiver 906 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
- the transceiver 906 may include a transmitter and a receiver.
- the transceiver 906 may further include an antenna, and the number of antennas may be one or more.
- the communication device 900 may specifically be a network device of an embodiment of the application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
- the communication device 900 may specifically be a user equipment of an embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the user equipment in each method of the embodiments of the present application. For brevity, details are not repeated here. .
- FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
- the chip 1000 shown in FIG. 10 includes a processor 1002, and the processor 1002 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
- the chip 1000 may further include a memory 1004.
- the processor 1002 can call and run a computer program from the memory 1004 to implement the method in the embodiment of the present application.
- the memory 1004 may be a separate device independent of the processor 1002, or may be integrated in the processor 1002.
- the chip 1000 may further include an input interface 1006.
- the processor 1002 can control the input interface 1006 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
- the chip 1000 may further include an output interface 1008.
- the processor 1002 can control the output interface 1008 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
- the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
- the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
- the chip can be applied to the user equipment in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the chip can implement the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- details are not described herein again.
- the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
- FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1102 and a network device 1104.
- the terminal device 1102 can be used to implement the corresponding function implemented by the user equipment in the above method
- the network device 1104 can be used to implement the corresponding function implemented by the network device in the above method.
- the terminal device 1102 can be used to implement the corresponding function implemented by the user equipment in the above method
- the network device 1104 can be used to implement the corresponding function implemented by the network device in the above method.
- the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
- the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
- the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP Digital Signal Processor
- ASIC application specific integrated circuit
- FPGA Field Programmable Gate Array
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- DRAM synchronous dynamic random access memory
- DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
- Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
- DR RAM Direct Rambus RAM
- the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
- the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
- the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer-readable storage medium may be applied to the user equipment in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the computer program causes the computer to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the embodiments of the present application also provide a computer program product, including computer program instructions.
- the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program product can be applied to the user equipment in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the computer program instructions cause the computer to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the computer program instructions cause the computer to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- the embodiment of the present application also provides a computer program.
- the computer program can be applied to the network device in the embodiment of the present application.
- the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- I won’t repeat it here.
- the computer program may be applied to the user equipment in the embodiments of the present application.
- the computer program runs on the computer, the computer is caused to execute the corresponding processes implemented by the user equipment in the various methods of the embodiments of the present application.
- I won’t repeat it here.
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Circuits Of Receivers In General (AREA)
- Communication Control (AREA)
- Stereo-Broadcasting Methods (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
一种非连续接收参数的处理方法、存储介质和处理。其中,该方法包括:用户设备接收非连续接收参数和参数值(S502),其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同;用户设备基于非连续接收参数和参数值进行配置(S504)。解决了用户设备在侧行链路上传输数据,耗电量较大,无法达到省电的目的的技术问题。
Description
本申请涉及通信领域,具体而言,涉及一种非连续接收参数的处理方法、存储介质和处理。
目前,在ProSe(Proximity based Service,临近服务)中,通过配置资源池在时域上的位置,例如资源池在时域上非连续,达到UE(User Equipment,用户设备)在侧行链路上非连续发送/接收数据,从而达到省电的效果。
但是,在车联网(V2X,Vehicle-to-Everything),或NR V2X(NR:New Radio,新空口)中,由于车载系统具有持续的供电,在系统设计上要求终端设备进行连续的发送和接收,导致侧行链路的耗电量较大,无法达到省电的目的。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种非连续接收参数的处理方法、存储介质和处理器。
根据本申请实施例的第一方面,提供了一种非连续接收参数的处理方法,包括:发送非连续接收参数和参数值至用户设备;其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
根据本申请实施例的第二方面,提供了一种非连续接收参数的处理方法,包括:发送非连续接收机制,或,非连续接收参数和参数值至用户设备;其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
根据本申请实施例的第三方面,提供了一种非连续接收参数的处理方法,包括:用户设备接收非连续接收参数和参数值,其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同;用户设备基于非连续接收参数和参数值进行配置。
根据本申请实施例的第四方面,提供了一种非连续接收参数的处理方法,包括:用户设备接收非连续接收机制,或,非连续接收参数和参数值,其中,不同特定消息 对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同;用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置。
根据本申请实施例的第五方面,提供了一种网络设备,包括:通信模块,用于发送非连续接收参数和参数值至用户设备;其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
根据本申请实施例的第六方面,提供了一种网络设备,包括:通信模块,用于发送非连续接收机制,或,非连续接收参数和参数值至用户设备;其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
根据本申请实施例的第七方面,提供了一种用户设备,包括:通信模块,用于接收非连续接收参数和参数值,其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同;处理模块,用于基于非连续接收参数和参数值进行配置。
根据本申请实施例的第八方面,提供了一种用户设备,包括:通信模块,用于接收非连续接收机制,或,非连续接收参数和参数值,其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同;处理模块,用于基于非连续接收机制,或,非连续接收参数和参数值进行配置。
根据本申请实施例的第九方面,提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行第一方面至第四方面中任一方面的非连续接收参数的处理方法。
根据本申请实施例的第十方面,提供了一种处理器,处理器用于运行程序,其中,程序运行时执行第一方面至第四方面中任一方面的非连续接收参数的处理方法。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例应用的通信系统的示意图;
图2a是本申请实施例应用的模式A下的D2D通信系统的示意图;
图2b是本申请实施例应用的模式B下的D2D通信系统的示意图;
图3是根据本申请实施例的第一种非连续接收参数的处理方法的流程图;
图4是根据本申请实施例的第二种非连续接收参数的处理方法的流程图;
图5是根据本申请实施例的第三种非连续接收参数的处理方法的流程图;
图6是根据本申请实施例的第四种非连续接收参数的处理方法的流程图;
图7是根据本申请实施例的一种网络设备的示意图;
图8是根据本申请实施例的一种用户设备的示意图;
图9是根据本申请实施例的一种通信设备的示意图;
图10是根据本申请实施例的一种芯片的示意图;以及
图11是根据本申请实施例的一种通信系统的示意图。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行设备到设备(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新空口(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
设备到设备通信是基于D2D的一种侧行链路传输技术(Sidelink,SL),与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP(3rd Generation Partnership Project,第三代移动通信标准化组织)定义了两种传输模式:模式A和模式B,如图2a和2b所示,其中,图中实线示出了侧行链路,虚线示出了下行链路(DownLink,DL)。
如图2a所示的模式A,终端的传输资源是由基站分配的,基站通过下行链路基于授权信令(Grant)向终端分配资源,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
如图2b所示的模式B,车载终端在资源池中选取一个资源进行数据的传输。
在3GPP中,D2D分成了不同的阶段进行研究。
ProSe:在Rel-12/13中设备到设备通信,是针对ProSe的场景进行了研究,其主要针对公共安全类的业务。
在ProSe中,通过配置资源池在时域上的位置,例如资源池在时域上非连续,达到UE在侧行链路上非连续发送/接收数据,从而达到省电的效果。
车联网:在Rel-14/15中,车联网系统针对车车通信的场景进行了研究,其主要面向相对高速移动的车车、车人通信的业务;
在V2X中,由于车载系统具有持续的供电,因此功率效率不是主要问题,而数据传输的时延是主要问题,因此在系统设计上要求终端设备进行连续的发送和接收。
可穿戴设备(FeD2D,Further Enhancements to LTE Device to Device):在Rel-14中,这个场景对于可穿戴设备通过手机接入网络的场景进行了研究,其主要面向是低移动速度以及低功率接入的场景。
在FeD2D中,在预研阶段3GPP结论为基站可以通过一个relay终端去配置remote终端的DRX(Discontinuous Reception,非连续接收)参数,但是由于该课题没有进一步进入标准化阶段,如何进行DRX配置的具体细节没有结论。
NR V2X在LTE V2X的基础上,不局限于广播场景,而是进一步拓展到了单播和组播的场景,在这些场景下研究V2X的应用。
类似于LTE V2X,NR V2X也会定义上述mode-A/B两种资源授权模式;更进一步,用户可能处在一个混合的模式下,即既可以使用mode-A进行资源的获取,又同时可以使用mode-B进行资源的获取。
不同于LTE V2X,除了无反馈的、UE自主发起的HARQ重传(HARQ:Hybrid Automatic Repeat reQuest,混合自动重传请求),NR V2X引入了基于反馈的HARQ重传,不限于单播通信,也包括组播通信;
与LTE V2X相同,在NR V2X中,由于车载系统具有持续的供电,因此功率效率不是主要问题,而数据传输的时延是主要问题,因此在系统设计上要求终端设备进行连续的发送和接收。
在上述相关技术的基础上,如何设计侧行链路的省电机制,以便于在不同场景共存的情况下解决省电的问题,是目前需要解决的问题。
如何在设计侧行链路的省电机制,主要的问题在于,针对同一个UE,UE针对不同的需求,同样具有省电需求:
不同传播模式下的省电需求,例如广播,组播,单播;
不同业务下的省电需求;
不同RAT(Radio Access Technology,无线接入技术)下的省电需求;
不同interface下的省电需求,包括Uu(User equipment,用户设备)和PC5。
因此,本申请实施例提出了一种非连续接收参数的处理方法。
图3为本申请实施例提供的第一种非连续接收参数的处理方法的示意性流程图。该方法可以由网络设备执行。
如图3所示,该方法包括:
步骤S302,发送非连续接收参数和参数值至用户设备。
其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
在本申请上述实施例中,通信参数包括如下至少之一:传播模式、业务类型、无线接入技术类型、接口类型和载波频率。在该实施例中,执行上述步骤S302的设备可以是网络设备,该网络设备可以为如图1所示的网络设备,可以向用户设备传输DRX参数和参数值。UE之间可以通过侧行链路传输数据,该UE可以为如图1所示的终端设备,对于同一个UE,针对不同的需求,UE所使用的通信参数不同,为了满足不同需求下的省电需求,可以针对不同的通信参数,设置不同的DRX参数,或者,针对不同的通信参数,设置相同的DRX参数,但DRX参数的参数值不同。
UE在接收到DRX参数和参数值之后,可以基于接收到的DRX参数和参数值进行配置,从而UE在侧行链路上非连续发送/接收数据,进而达到省电的效果。
通过本申请上述实施例提供的方案,通过发送非连续接收参数和参数值至用户设备,使得用户设备可以基于接收到的非连续接收参数和参数值进行配置,其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。与相关技术相比,针对UE的不同需求,可以设置不同的DRX参数或参数值,使得UE在不同场景共存的情况下均可以非连续发送/接收数据,达到省电的效果,进而解决了相关技术中用户设备在侧行链路上传输数据,耗电量较大,无法达到省电的目的技术问题。
在第一种可选的实施例中,对于不同传播模式下的省电机制,可以针对不同的传播模式(广播、组播、单播)使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:非连续接收周期、时间偏移量、非连续接收活跃时间(ondurationtimer)的长度、非连续接收激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在传播模式为第一模式的情况下,确定使用第一非连续接收参数;在传播模式为第二模式的情况下,确定使用第二非连续接收参数;其中,第一非连续 接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
广播模式使用DRX周期,组播模式使用时间偏移,而单播模式使用DRX活跃时间长度。
广播模式和组播模式均使用DRX周期,但是,DRX周期的参数值不同。单播模式使用DRX活跃时间长度。
广播模式使用DRX周期和时间偏移,组播模式使用时间偏移和DRX激活定时器,而单播模式使用DRX活跃时间长度和重传定时器时间长度。
广播模式和组播模式均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。单播模式使用DRX活跃时间长度。
非连续接收参数通过如下至少一种信令发送:无线资源控制(Radio Resource Control,RRC)信令、系统消息块(System Information Block,SIB)消息和预配置信令。
在第二种可选的实施例中,对于不同业务类型的省电机制,可以针对不同的业务/业务类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在业务类型为第一类型的情况下,确定使用第一非连续接收参数;在业务类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一类型使用DRX周期,第二类型使用时间偏移。
第一类型和第二类型均使用DRX周期,但是,DRX周期的参数值不同。
第一类型使用DRX周期和时间偏移,第二类型使用时间偏移和DRX激活定时器。
第一类型和第二类型均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令发送:RRC信令、SIB消息和预配置信令。
在本申请实施例中,基于目标地址、供应商服务标识(Provider Service Identifier,PSID)、智能交通系统应用标识(Intelligent Transportation Systems Application Identifier,ITSAID)、业务优先级、PC5 5G服务质量标识(PC5 5QI(5G QoS Identifier),PQI)、PC5服务质量流标识(PC5 QoS Flow Identifier,PFI)和服务质量(Quality of Service,QoS)属性标识确定业务类型。也即,不同的目标地址、PSID、ITSAID、业务优先级、PQI、PFI和QoS属性标识等,可以确定出不同的业务类型。
在第三种可选的实施例中,对于不同RAT类型的省电机制,可以针对不同的RAT类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在RAT类型为第一类型的情况下,确定使用第一非连续接收参数;在RAT类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
LTE使用DRX周期,NR使用时间偏移。
LTE和NR均使用DRX周期,但是,DRX周期的参数值不同。
LTE使用DRX周期和时间偏移,NR使用时间偏移和DRX激活定时器。
LTE和NR均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令发送:RRC信令、SIB消息和预配置信令。
RAT类型包括:LTE和NR,或,LTE/NR的不同版本(release)。
在第四种可选的实施例中,对于不同interface类型下的省电机制,可以针对不同的interface类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在interface类型为第一类型的情况下,确定使用第一非连续接收参数;在interface类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
Uu接口使用DRX周期,PC5接口使用时间偏移。
Uu接口和PC5接口均使用DRX周期,但是,DRX周期的参数值不同。
Uu接口使用DRX周期和时间偏移,PC5接口使用时间偏移和DRX激活定时器。
Uu接口和PC5接口均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令发送:RRC信令、SIB消息和预配置信令。
Interface类型包括:Uu接口和PC5接口。
针对不同的interface类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值,包括:
接收用户设备上报的第一参数,其中,第一参数用于确定PC5接口对应的非连续接收参数的参数值。也即,UE向网络上报第一参数,第一参数为计算PC5 DRX参数值的输入信息,并将计算得到的PC5 DRX参数值返回至UE。
其中,第一参数包括UE的如下信息中的至少之一:UE的身份信息、传播方式信息、源地址信息、PQI、PFI和QoS属性信息等。
发送用户设备接口对应的非连续接收参数的参数值至用户设备,其中,用户设备用于基于用户设备接口对应的非连续接收参数的参数值确定PC5接口对应的非连续接收参数的参数值。也即,网络仅下发Uu使用的第一DRX参数值,由UE根据Uu使用的第一DRX参数值,推得PC5使用的第二DRX参数值。
在第五种可选的实施例中,对于不同载波频率/频带/频率范围的省电机制,可以针对不同的载波频率使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数 值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在载波频率为第一频率的情况下,确定使用第一非连续接收参数;在载波频率为第二频率的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一频率使用DRX周期,第二频率使用时间偏移。
第一频率和第二频率均使用DRX周期,但是,DRX周期的参数值不同。
第一频率使用DRX周期和时间偏移,第二频率使用时间偏移和DRX激活定时器。
第一频率和第二频率均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令发送:RRC信令、SIB消息和预配置信令。
图4为本申请实施例提供的第二种非连续接收参数的处理方法的示意性流程图。该方法同样可以由网络设备执行。
如图4所示,该方法包括:
步骤S402,发送非连续接收机制,或,非连续接收参数和参数值至用户设备。
其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
在该实施例中,执行上述步骤S402的设备可以是网络设备,该网络设备可以为如图1所示的网络设备,可以向用户设备传输DRX机制,或,DRX参数和参数值。UE之间可以通过侧行链路传输数据,该UE可以为如图1所示的终端设备,对于同一个UE,为了满足特定消息的发送/接收的省电需求,可以针对特定消息的发送/接收,设置不同的DRX机制,或DRX参数,或,针对不同的特定消息,设置相同的DRX参数,但DRX参数的参数值不同。
UE在接收到DRX机制,或DRX参数和参数值之后,可以基于接收到的DRX机 制,或DRX参数和参数值进行配置,从而UE在侧行链路上非连续发送/接收数据,进而达到省电的效果。
通过本申请上述实施例提供的方案,通过发送非连续接收机制,或,非连续接收参数和参数值至用户设备,使得用户设备可以基于接收到的非连续接收机制,或,非连续接收参数和参数值进行配置,其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。与相关技术相比,针对特定消息的发送/接收,可以设置不同的DRX机制,或DRX参数,或参数值,使得UE在该场景下可以非连续发送/接收数据,达到省电的效果,进而解决了相关技术中用户设备在侧行链路上传输数据,耗电量较大,无法达到省电的目的技术问题。
在第六种可选的实施例中,对于特定消息的发送/接收的省电机制,特定消息的发送/接收触发不同的DRX机制,或不同DRX参数,或DRX参数的不同值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,在特定消息为第一消息的情况下,确定使用第一非连续接收参数;在特定消息为第二消息的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一消息使用DRX周期,第二消息使用时间偏移,而第三消息使用DRX活跃时间长度。
第一消息和第二消息均使用DRX周期,但是,DRX周期的参数值不同。第三消息使用DRX活跃时间长度。
第一消息使用DRX周期和时间偏移,第二消息使用时间偏移和DRX激活定时器,而第三消息使用DRX活跃时间长度和重传定时器时间长度。
第一消息和第二消息均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。第三消息使用DRX活跃时间长度。
非连续接收参数通过如下至少一种信令发送:RRC信令、SIB消息和预配置信令。
在本申请上述实施例中,在特定消息为第一消息的情况下,确定启动第一非连续接收定时器。和/或,在特定消息为第二消息的情况下,确定进入非连续接收状态。和/或,在特定消息为第三消息的情况下,确定进入活跃状态。
也即,不同的消息/方向使用不同的DRX参数/参数值包括:
第一消息的接收或发送启动第一DRX定时器;
第二消息的接收或发送使UE进入DRX状态;
第三消息的接收或发送是UE进入活跃状态。
图5为本申请实施例提供的第三种非连续接收参数的处理方法的示意性流程图。该方法可以由用户设备执行。
如图5所示,该方法包括:
步骤S502,用户设备接收非连续接收参数和参数值;
步骤S504,用户设备基于非连续接收参数和参数值进行配置。
其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
在本申请上述实施例中,通信参数包括如下至少之一:传播模式、业务类型、无线接入技术类型、接口类型和载波频率。
在该实施例中,发送非连续接收参数和参数值的设备可以是网络设备,该网络设备可以为如图1所示的网络设备,可以向用户设备传输DRX参数和参数值。UE之间可以通过侧行链路传输数据,该UE可以为如图1所示的终端设备,对于同一个UE,针对不同的需求,UE所使用的通信参数不同,为了满足不同需求下的省电需求,可以针对不同的通信参数,设置不同的DRX参数,或者,针对不同的通信参数,设置相同的DRX参数,但DRX参数的参数值不同。
UE在接收到DRX参数和参数值之后,可以基于接收到的DRX参数和参数值进行配置,从而UE在侧行链路上非连续发送/接收数据,进而达到省电的效果。
在第一种可选的实施例中,对于不同传播模式下的省电机制,可以针对不同的传播模式(广播、组播、单播)使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器 (retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收参数和参数值进行配置,包括:在传播模式为第一模式的情况下,确定使用第一非连续接收参数;在传播模式为第二模式的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
广播模式使用DRX周期,组播模式使用时间偏移,而单播模式使用DRX活跃时间长度。
广播模式和组播模式均使用DRX周期,但是,DRX周期的参数值不同。单播模式使用DRX活跃时间长度。
广播模式使用DRX周期和时间偏移,组播模式使用时间偏移和DRX激活定时器,而单播模式使用DRX活跃时间长度和重传定时器时间长度。
广播模式和组播模式均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。单播模式使用DRX活跃时间长度。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
在第二种可选的实施例中,对于不同业务类型下的省电机制,可以针对不同的业务类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收参数和参数值进行配置,包括:在业务类型为第一类型的情况下,确定使用第一非连续接收参数;在业务类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一类型使用DRX周期,第二类型使用时间偏移。
第一类型和第二类型均使用DRX周期,但是,DRX周期的参数值不同。
第一类型使用DRX周期和时间偏移,第二类型使用时间偏移和DRX激活定时器。
第一类型和第二类型均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
在本申请实施例中,基于目标地址、供应商服务标识(Provider Service Identifier,PSID)、智能交通系统应用标识(Intelligent Transportation Systems Application Identifier,ITSAID)、业务优先级、PC5 5G服务质量标识(PC5 5QI(5G QoS Identifier),PQI)、PC5服务质量流标识(PC5 QoS Flow Identifier,PFI)和服务质量(Quality of Service,QoS)属性标识确定业务类型。也即,不同的目标地址、PSID、ITSAID、业务优先级、PQI、PFI和QoS属性标识等,可以确定出不同的业务类型。
在第三种可选的实施例中,对于不同RAT类型下的省电机制,可以针对不同的RAT类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收参数和参数值进行配置,包括:在RAT类型为第一类型的情况下,确定使用第一非连续接收参数;在RAT类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
LTE使用DRX周期,NR使用时间偏移。
LTE和NR均使用DRX周期,但是,DRX周期的参数值不同。
LTE使用DRX周期和时间偏移,NR使用时间偏移和DRX激活定时器。
LTE和NR均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
RAT类型包括:LTE和NR,或,LTE/NR的不同版本(release)。
在第四种可选的实施例中,对于不同interface类型下的省电机制,可以针对不同的interface类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收参数和参数值进行配置,包括:在interface类型为第一类型的情况下,确定使用第一非连续接收参数;在interface类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
Uu接口使用DRX周期,PC5接口使用时间偏移。
Uu接口和PC5接口均使用DRX周期,但是,DRX周期的参数值不同。
Uu接口使用DRX周期和时间偏移,PC5接口使用时间偏移和DRX激活定时器。
Uu接口和PC5接口均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
interface类型包括:Uu接口和PC5接口。
针对不同的interface类型使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值,包括:
用户设备上报第一参数,其中,第一参数用于确定PC5接口对应的非连续接收参数的参数值。也即,网络设备接收到UE上报的第一参数,并基于第一参数计算得到PC5 DRX参数值,并将计算得到的PC5 DRX参数值返回至UE。
其中,第一参数包括UE的如下信息中的至少之一:UE的身份信息、传播方式信息、源地址信息、PQI、PFI和QoS属性信息等。
在接收到用户设备接口对应的非连续接收参数的参数值之后,用户设备基于用户设备接口对应的非连续接收参数的参数值,确定PC5接口对应的非连续接收参数的参 数值。也即,网络仅下发Uu使用的第一DRX参数值,由UE根据Uu使用的第一DRX参数值,推得PC5使用的第二DRX参数值。
在第五种可选的实施例中,对于不同载波频率/频带/频率范围的省电机制,可以针对不同的载波频率使用不同的DRX参数,或相同的DRX参数,但不同的DRX参数值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收参数和参数值进行配置,包括:在载波频率为第一频率的情况下,确定使用第一非连续接收参数;在载波频率为第二频率的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一频率使用DRX周期,第二频率使用时间偏移。
第一频率和第二频率均使用DRX周期,但是,DRX周期的参数值不同。
第一频率使用DRX周期和时间偏移,第二频率使用时间偏移和DRX激活定时器。
第一频率和第二频率均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
图6为本申请实施例提供的第四种非连续接收参数的处理方法的示意性流程图。该方法可以由用户设备执行。
如图6所示,该方法包括:
步骤S602,用户设备接收非连续接收机制,或,非连续接收参数和参数值;
步骤S604,用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置。
其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
在该实施例中,发送非连续接收机制,或,非连续接收参数和参数值的设备可以是网络设备,该网络设备可以为如图1所示的网络设备,可以向用户设备传输DRX机制,或,DRX参数和参数值。UE之间可以通过侧行链路传输数据,该UE可以为如图1所示的终端设备,对于同一个UE,为了满足特定消息的发送/接收的省电需求,可以针对特定消息的发送/接收,设置不同的DRX机制,或DRX参数,或,针对不同的特定消息,设置相同的DRX参数,但DRX参数的参数值不同。
UE在接收到DRX机制,或DRX参数和参数值之后,可以基于接收到的DRX机制,或DRX参数和参数值进行配置,从而UE在侧行链路上非连续发送/接收数据,进而达到省电的效果。
在第六种可选的实施例中,对于特定消息的发送/接收的省电机制,特定消息的发送/接收触发不同的DRX机制,或不同DRX参数,或DRX参数的不同值。
非连续接收参数包括如下至少之一:DRX周期、时间偏移量、DRX活跃时间(ondurationtimer)的长度、DRX激活定时器(inactivitytimer)长度和重传定时器(retransmission timer)时间长度。
在该实施例中,用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置,包括:在特定消息为第一消息的情况下,确定使用第一非连续接收参数;在特定消息为第二消息的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
下面结合如下几个示例进行详细说明:
第一消息使用DRX周期,第二消息使用时间偏移,而第三消息使用DRX活跃时间长度。
第一消息和第二消息均使用DRX周期,但是,DRX周期的参数值不同。第三消息使用DRX活跃时间长度。
第一消息使用DRX周期和时间偏移,第二消息使用时间偏移和DRX激活定时器,而第三消息使用DRX活跃时间长度和重传定时器时间长度。
第一消息和第二消息均使用DRX周期和时间偏移,但是,DRX周期的参数值不同,时间偏移的参数值也不同。第三消息使用DRX活跃时间长度。
非连续接收参数通过如下至少一种信令接收:RRC信令、SIB消息和预配置信令。
在本申请上述实施例中,用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置,包括:在特定消息为第一消息的情况下,用户设备确定启动第一非连续接收定时器。和/或,用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置,包括:在特定消息为第二消息的情况下,用户设备确定进入非连续接收状态。和/或,用户设备基于非连续接收机制,或,非连续接收参数和参数值进行配置,包括:在特定消息为第一消息的情况下,用户设备确定进入活跃状态。
也即,不同的消息/方向使用不同的DRX参数/参数值包括:
第一消息的接收或发送启动第一DRX定时器;
第二消息的接收或发送使UE进入DRX状态;
第三消息的接收或发送是UE进入活跃状态。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图6,详细描述了根据本申请实施例的非连续接收参数的处理方法,下面将结合图7至图9,描述根据本申请实施例的终端设备和网络设备。
如图7所示,根据本申请实施例的网络设备700包括:通信模块702。
在一种可选的实施例中,通信模块702用于发送非连续接收参数和参数值至用户设备;其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
可选地,作为一个实施例,通信模块702还用于接收用户设备上报的第一参数,其中,第一参数用于确定PC5接口对应的非连续接收参数的参数值。
可选地,作为一个实施例通信模块702还用于发送用户设备接口对应的非连续接收参数的参数值至用户设备,其中,用户设备用于基于用户设备接口对应的非连续接收参数的参数值确定PC5接口对应的非连续接收参数的参数值。
在另一种可选的实施例中,通信模块702用于发送非连续接收机制,或,非连续接收参数和参数值至用户设备;其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
应理解,根据本申请实施例的网络设备700中的各个模块的上述和其它操作和/或功能分别为了实现图3和图4中网络设备的相应流程,为了简洁,在此不再赘述。
如图8所示,根据本申请实施例的用户设备800包括:通信模块802和处理模块804。
在一种可选的实施例中,通信模块802用于接收非连续接收参数和参数值,其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同;处理模块804用于基于非连续接收参数和参数值进行配置。
可选地,作为一个实施例,通信参数包括:传播模式;处理模块804还用于在传播模式为第一模式的情况下,确定使用第一非连续接收参数;在传播模式为第二模式的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
可选地,作为一个实施例,通信参数包括:业务类型;处理模块804还用于在业务类型为第一类型的情况下,确定使用第一非连续接收参数;在业务类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
可选地,作为一个实施例,通信参数包括:RAT类型;处理模块804还用于在RAT类型为第一类型的情况下,确定使用第一非连续接收参数;在RAT类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
可选地,作为一个实施例,通信参数包括:interface类型;处理模块804还用于在interface类型为第一类型的情况下,确定使用第一非连续接收参数;在interface类型为第二类型的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
可选地,作为一个实施例,通信模块802还用于上报第一参数,其中,第一参数用于确定PC5接口对应的非连续接收参数的参数值。
可选地,作为一个实施例,处理模块804还用于在接收到用户设备接口对应的非 连续接收参数的参数值之后,基于用户设备接口对应的非连续接收参数的参数值,确定PC5接口对应的非连续接收参数的参数值。
可选地,作为一个实施例,通信参数包括:载波频率;处理模块804还用于在载波频率为第一频率的情况下,确定使用第一非连续接收参数;在载波频率为第二频率的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
在另一种可选的实施例中,通信模块802还用于接收非连续接收机制,或,非连续接收参数和参数值,其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同;处理模块804用于基于非连续接收机制,或,非连续接收参数和参数值进行配置。
可选地,作为一个实施例,处理模块804还用于在特定消息为第一消息的情况下,确定启动第一非连续接收定时器。
可选地,作为一个实施例,处理模块804还用于在特定消息为第二消息的情况下,确定进入非连续接收状态。
可选地,作为一个实施例,处理模块804还用于在特定消息为第一消息的情况下,确定进入活跃状态。
可选地,作为一个实施例,处理模块804还用于在特定消息为第一消息的情况下,确定使用第一非连续接收参数;在特定消息为第二消息的情况下,确定使用第二非连续接收参数;其中,第一非连续接收参数包含的参数与第二非连续接收参数包含的参数至少部分不相同或均不相同,或者第一非连续接收参数包含的参数的参数值与第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
应理解,根据本申请实施例的用户设备800中的各个模块的上述和其它操作和/或功能分别为了实现图5至图6中的各个方法中用户设备的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行本申请实施例中的各个非连续接收参数的处理方法。
本申请实施例还提供了一种处理器,处理器用于运行程序,其中,程序运行时执行本申请实施例中的各个非连续接收参数的处理方法。
图9是本申请实施例提供的一种通信设备900示意性结构图。图9所示的通信设 备900包括处理器902,处理器902可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器904。其中,处理器902可以从存储器904中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器904可以是独立于处理器902的一个单独的器件,也可以集成在处理器904中。
可选地,如图9所示,通信设备900还可以包括收发器906,处理器902可以控制该收发器906与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器906可以包括发射机和接收机。收发器906还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的用户设备,并且该通信设备900可以实现本申请实施例的各个方法中由用户设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1002,处理器1002可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1004。其中,处理器1002可以从存储器1004中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1004可以是独立于处理器1002的一个单独的器件,也可以集成在处理器1002中。
可选地,该芯片1000还可以包括输入接口1006。其中,处理器1002可以控制该输入接口1006与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1008。其中,处理器1002可以控制该输出接口1008与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的用户设备,并且该芯片可以实现本申请实施例的各个方法中由用户设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1102和网络设备1104。
其中,该终端设备1102可以用于实现上述方法中由用户设备实现的相应的功能,以及该网络设备1104可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM, DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的用户设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由用户设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的用户设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由用户设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的用户设备,当该计算机程序在 计算机上运行时,使得计算机执行本申请实施例的各个方法中由用户设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保 护范围为准。
Claims (46)
- 一种非连续接收参数的处理方法,其特征在于,包括:用户设备接收非连续接收参数和参数值,其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同;所述用户设备基于所述非连续接收参数和所述参数值进行配置。
- 根据权利要求1所述的方法,其特征在于,所述通信参数包括如下至少之一:传播模式、业务类型、无线接入技术类型、接口类型和载波频率。
- 根据权利要求1或2所述的方法,其特征在于,所述非连续接收参数包括如下至少之一:非连续接收周期、时间偏移量、非连续接收活跃时间的长度、非连续接收激活定时器长度和重传定时器时间长度。
- 根据权利要求3所述的方法,其特征在于,所述通信参数包括:传播模式;所述用户设备基于所述非连续接收参数和所述参数值进行配置,包括:在所述传播模式为第一模式的情况下,所述用户设备确定使用第一非连续接收参数;在所述传播模式为第二模式的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求3所述的方法,其特征在于,所述通信参数包括:业务类型;所述用户设备基于所述非连续接收参数和所述参数值进行配置,包括:在所述业务类型为第一类型的情况下,所述用户设备确定使用第一非连续接收参数;在所述业务类型为第二类型的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求5所述的方法,其特征在于,基于目标地址、供应商服务标识、智能交通系统应用标识、业务优先级、PC5 5G服务质量标识、PC5服务质量流标识和服务质量属性标识确定所述业务类型。
- 根据权利要求3所述的方法,其特征在于,所述通信参数包括:无线接入技术类型;所述用户设备基于所述非连续接收参数和所述参数值进行配置,包括:在所述无线接入技术类型为第一类型的情况下,所述用户设备确定使用第一非连续接收参数;在所述无线接入技术类型为第二类型的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求7所述的方法,其特征在于,所述无线接入技术类型包括:长期演进和新空口,或,长期演进或新空口的不同版本。
- 根据权利要求3所述的方法,其特征在于,所述通信参数包括:接口类型;所述用户设备基于所述非连续接收参数和所述参数值进行配置,包括:在所述接口类型为第一类型的情况下,所述用户设备确定使用第一非连续接收参数;在所述接口类型为第二类型的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求9所述的方法,其特征在于,所述接口类型包括:用户设备接口和PC5接口。
- 根据权利要求10所述的方法,其特征在于,所述方法还包括如下之一:所述用户设备上报第一参数,其中,所述第一参数用于确定所述PC5接口对应的非连续接收参数的参数值;在接收到所述用户设备接口对应的非连续接收参数的参数值之后,所述用户设备基于所述用户设备接口对应的非连续接收参数的参数值,确定所述PC5接口对应的非连续接收参数的参数值。
- 根据权利要求11所述的方法,其特征在于,所述第一参数包括所述用户设备的如下信息中的至少之一:身份信息、传播方式信息、源地址信息、PC5 5G服务质量标识、PC5服务质量流标识和服务质量属性信息。
- 根据权利要求3所述的方法,其特征在于,所述通信参数包括:载波频率;所述用户设备基于所述非连续接收参数和所述参数值进行配置,包括:在所述载波频率为第一频率的情况下,所述用户设备确定使用第一非连续接收参数;在所述载波频率为第二频率的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求1或2所述的方法,其特征在于,所述非连续接收参数通过如下至少一种信令接收:无线资源控制信令、系统消息块消息和预配置信令。
- 根据权利要求1或2所述的方法,其特征在于,所述用户设备通过侧行链路传输数据。
- 一种非连续接收参数的处理方法,其特征在于,包括:用户设备接收非连续接收机制,或,非连续接收参数和参数值,其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同;所述用户设备基于所述非连续接收机制,或,所述非连续接收参数和所述参数值进行配置。
- 根据权利要求16所述的方法,其特征在于,所述用户设备基于所述非连续接收机 制,或,所述非连续接收参数和所述参数值进行配置,包括:在所述特定消息为第一消息的情况下,所述用户设备确定启动第一非连续接收定时器。
- 根据权利要求16所述的方法,其特征在于,所述用户设备基于所述非连续接收机制,或,所述非连续接收参数和所述参数值进行配置,包括:在所述特定消息为第二消息的情况下,所述用户设备确定进入非连续接收状态。
- 根据权利要求16所述的方法,其特征在于,所述用户设备基于所述非连续接收机制,或,所述非连续接收参数和所述参数值进行配置,包括:在所述特定消息为第一消息的情况下,所述用户设备确定进入活跃状态。
- 根据权利要求16至19中任意一项所述的方法,其特征在于,所述非连续接收参数包括如下至少之一:非连续接收周期、时间偏移量、非连续接收活跃时间的长度、非连续接收激活定时器长度和重传定时器时间长度。
- 根据权利要求20所述的方法,其特征在于,所述用户设备基于所述非连续接收机制,或,所述非连续接收参数和所述参数值进行配置,包括:在所述特定消息为第一消息的情况下,所述用户设备确定使用第一非连续接收参数;在所述特定消息为第二消息的情况下,所述用户设备确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求16至19中任意一项所述的方法,其特征在于,所述非连续接收参数通过如下至少一种信令接收:无线资源控制信令、系统消息块消息和预配置信令。
- 根据权利要求16至19中任意一项所述的方法,其特征在于,所述用户设备通过侧行链路传输数据。
- 一种非连续接收参数的处理方法,其特征在于,包括:发送非连续接收参数和参数值至用户设备;其中,不同通信参数对应的非连续接收参数不同,或,不同通信参数对应的非连续接收参数的参数值不同。
- 根据权利要求24所述的方法,其特征在于,所述通信参数包括如下至少之一:传播模式、业务类型、无线接入技术类型、接口类型和载波频率。
- 根据权利要求24或25所述的方法,其特征在于,所述非连续接收参数包括如下至少之一:非连续接收周期、时间偏移量、非连续接收活跃时间的长度、非连续接收激活定时器长度和重传定时器时间长度。
- 根据权利要求26所述的方法,其特征在于,所述通信参数包括:传播模式;在所述传播模式为第一模式的情况下,确定使用第一非连续接收参数;在所述传播模式为第二模式的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求26所述的方法,其特征在于,所述通信参数包括:业务类型;在所述业务类型为第一类型的情况下,确定使用第一非连续接收参数;在所述业务类型为第二类型的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求28所述的方法,其特征在于,基于目标地址、供应商服务标识、智能交通系统应用标识、业务优先级、PC5 5G服务质量标识、PC5服务质量流标识和服务质量属性标识确定所述业务类型。
- 根据权利要求26所述的方法,其特征在于,所述通信参数包括:无线接入技术类型;在所述无线接入技术类型为第一类型的情况下,确定使用第一非连续接收参数;在所述无线接入技术类型为第二类型的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求30所述的方法,其特征在于,所述无线接入技术类型包括:长期演进和新空口,或,长期演进或新空口的不同版本。
- 根据权利要求26所述的方法,其特征在于,所述通信参数包括:接口类型;在所述接口类型为第一类型的情况下,确定使用第一非连续接收参数;在所述接口类型为第二类型的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求32所述的方法,其特征在于,所述接口类型包括:用户设备接口和PC5接口。
- 根据权利要求33所述的方法,其特征在于,所述方法还包括如下之一:接收所述用户设备上报的第一参数,其中,所述第一参数用于确定所述PC5接口对应的非连续接收参数的参数值;发送所述用户设备接口对应的非连续接收参数的参数值至所述用户设备,其中,所述用户设备用于基于所述用户设备接口对应的非连续接收参数的参数值,确定所述PC5接口对应的非连续接收参数的参数值。
- 根据权利要求34所述的方法,其特征在于,所述第一参数包括所述用户设备的如下信息中的至少之一:所述用户设备的身份信息、传播方式信息、源地址信息、PC5 5G服务质量标识、PC5服务质量流标识和服务质量属性信息。
- 根据权利要求26所述的方法,其特征在于,所述通信参数包括:载波频率;在所述载波频率为第一频率的情况下,确定使用第一非连续接收参数;在所述载波频率为第二频率的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求24或25所述的方法,其特征在于,所述非连续接收参数通过如下至少一种信令发送:无线资源控制信令、系统消息块消息和预配置信令。
- 一种非连续接收参数的处理方法,其特征在于,包括:发送非连续接收机制,或,非连续接收参数和参数值至用户设备;其中,不同特定消息对应的非连续接收机制或非连续接收参数不同,或,不同特定消息对应的非连续接收参数的参数值不同。
- 根据权利要求38所述的方法,其特征在于,在所述特定消息为第一消息的情况下,确定启动第一非连续接收定时器。
- 根据权利要求38所述的方法,其特征在于,在所述特定消息为第二消息的情况下,确定进入非连续接收状态。
- 根据权利要求38所述的方法,其特征在于,在所述特定消息为第三消息的情况下,确定进入活跃状态。
- 根据权利要求38至41中任意一项所述的方法,其特征在于,所述非连续接收参数包括如下至少之一:非连续接收周期、时间偏移量、非连续接收活跃时间的长度、非连续接收激活定时器长度和重传定时器时间长度。
- 根据权利要求42所述的方法,其特征在于,在所述特定消息为第一消息的情况下,确定使用第一非连续接收参数;在所述特定消息为第二消息的情况下,确定使用第二非连续接收参数;其中,所述第一非连续接收参数包含的参数与所述第二非连续接收参数包含的参数至少部分不相同或均不相同,或者所述第一非连续接收参数包含的参数的参数值与所述第二非连续接收参数包含的参数的参数值至少部分不相同或均不相同。
- 根据权利要求38至41中任意一项所述的方法,其特征在于,所述非连续接收参数通过如下至少一种信令发送:无线资源控制信令、系统消息块消息和预配置信令。
- 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至23或权利要求24至44中任意一项所述的非连续接收参数的处理方法。
- 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至23或权利要求24至44中任意一项所述的非连续接收参数的处理方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/073639 WO2021146962A1 (zh) | 2020-01-21 | 2020-01-21 | 非连续接收参数的处理方法、存储介质和处理 |
AU2021210440A AU2021210440A1 (en) | 2020-01-21 | 2021-01-14 | Method for processing discontinuous reception parameter, storage medium, and processor |
CN202210786536.5A CN115175283B (zh) | 2020-01-21 | 2021-01-14 | 非连续接收参数的处理方法、存储介质和处理器 |
IL294745A IL294745A (en) | 2020-01-21 | 2021-01-14 | A method for processing a discontinuous absorption parameter, a storage medium and a processor |
KR1020227027500A KR20220129577A (ko) | 2020-01-21 | 2021-01-14 | 비연속 수신 파라미터의 처리 방법, 저장 매체 및 처리 |
PCT/CN2021/071916 WO2021147771A1 (zh) | 2020-01-21 | 2021-01-14 | 非连续接收参数的处理方法、存储介质和处理 |
BR112022014312A BR112022014312A2 (pt) | 2020-01-21 | 2021-01-14 | Método para processar parâmetro de recepção descontínua e equipamento de usuário |
JP2022543182A JP2023510385A (ja) | 2020-01-21 | 2021-01-14 | 間欠受信パラメータの処理方法、記憶媒体、及びプロセッサ |
CN202180006209.7A CN114642040A (zh) | 2020-01-21 | 2021-01-14 | 非连续接收参数的处理方法、存储介质和处理 |
CA3165193A CA3165193A1 (en) | 2020-01-21 | 2021-01-14 | Method for processing discontinuous reception parameter, storage medium, and processor |
EP21745164.0A EP4075882A4 (en) | 2020-01-21 | 2021-01-14 | METHOD OF PROCESSING A DISCONTINUOUS RECEIVING PARAMETER, STORAGE MEDIUM AND PROCESSOR |
US17/863,651 US20220346181A1 (en) | 2020-01-21 | 2022-07-13 | Method for processing discontinuous reception parameter, storage medium, and processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/073639 WO2021146962A1 (zh) | 2020-01-21 | 2020-01-21 | 非连续接收参数的处理方法、存储介质和处理 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021146962A1 true WO2021146962A1 (zh) | 2021-07-29 |
Family
ID=76992755
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073639 WO2021146962A1 (zh) | 2020-01-21 | 2020-01-21 | 非连续接收参数的处理方法、存储介质和处理 |
PCT/CN2021/071916 WO2021147771A1 (zh) | 2020-01-21 | 2021-01-14 | 非连续接收参数的处理方法、存储介质和处理 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/071916 WO2021147771A1 (zh) | 2020-01-21 | 2021-01-14 | 非连续接收参数的处理方法、存储介质和处理 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20220346181A1 (zh) |
EP (1) | EP4075882A4 (zh) |
JP (1) | JP2023510385A (zh) |
KR (1) | KR20220129577A (zh) |
CN (2) | CN114642040A (zh) |
AU (1) | AU2021210440A1 (zh) |
BR (1) | BR112022014312A2 (zh) |
CA (1) | CA3165193A1 (zh) |
IL (1) | IL294745A (zh) |
WO (2) | WO2021146962A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023222076A1 (zh) * | 2022-05-20 | 2023-11-23 | 维沃移动通信有限公司 | 非连续传输方法、装置、终端及网络侧设备 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113260025B (zh) * | 2020-02-10 | 2023-04-14 | 大唐移动通信设备有限公司 | 一种非连续接收处理方法、终端、装置以及介质 |
CN116419289A (zh) * | 2020-02-21 | 2023-07-11 | 维沃移动通信有限公司 | 非连续传输配置方法及用户设备 |
KR102518336B1 (ko) * | 2020-09-21 | 2023-04-05 | 아서스테크 컴퓨터 인코포레이션 | 무선 통신 시스템에서 ue 대 네트워크 릴레이 통신을 지원하기 위한 방법 및 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103945505A (zh) * | 2013-01-23 | 2014-07-23 | 中国电信股份有限公司 | 长期演进系统非连续接收参数的配置方法与系统 |
CN104581908A (zh) * | 2015-01-30 | 2015-04-29 | 深圳酷派技术有限公司 | 非连续接收模式的参数配置方法和装置 |
CN104322116B (zh) * | 2013-01-15 | 2018-05-29 | 华为技术有限公司 | 非连续接收方法和装置 |
CN108307489A (zh) * | 2016-08-11 | 2018-07-20 | 中兴通讯股份有限公司 | 信息处理方法、装置、用户设备及基站 |
CN108377537A (zh) * | 2016-11-04 | 2018-08-07 | 维沃移动通信有限公司 | 非连续接收的配置方法、非连续接收的方法、基站及终端 |
CN108616897A (zh) * | 2016-12-05 | 2018-10-02 | 维沃移动通信有限公司 | 一种非连续接收drx参数的配置方法、终端及网络设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0400255D0 (en) * | 2004-01-07 | 2004-02-11 | Samsung Electronics Co Ltd | Radio messages |
CN101483891B (zh) * | 2008-01-08 | 2012-12-05 | 株式会社Ntt都科摩 | 对用户设备设置激活期起始点的方法及装置 |
CN102932882B (zh) * | 2011-08-10 | 2018-05-11 | 中兴通讯股份有限公司 | 一种非连续接收方法及系统 |
US9565629B2 (en) * | 2012-05-16 | 2017-02-07 | Sony Corporation | Discontinuous traffic in a telecommunication network using terminal suggested DRX/DTX pattern |
CN104219738B (zh) * | 2013-05-29 | 2018-05-11 | 华为技术有限公司 | 非连续接收参数配置方法及装置 |
WO2018064477A1 (en) * | 2016-09-30 | 2018-04-05 | Intel IP Corporation | Systems and methods for discontinuous reception in device-to-device communication |
CN110115101A (zh) * | 2016-12-22 | 2019-08-09 | Oppo广东移动通信有限公司 | 通信方法、终端设备和网络设备 |
CN108712773B (zh) * | 2018-05-04 | 2021-10-15 | 武汉虹信科技发展有限责任公司 | 一种参数设定方法、装置及基站 |
CN110572842B (zh) * | 2019-09-20 | 2022-04-05 | 展讯通信(上海)有限公司 | 非连续接收drx数据传输方法、装置及存储介质 |
-
2020
- 2020-01-21 WO PCT/CN2020/073639 patent/WO2021146962A1/zh active Application Filing
-
2021
- 2021-01-14 EP EP21745164.0A patent/EP4075882A4/en active Pending
- 2021-01-14 CN CN202180006209.7A patent/CN114642040A/zh active Pending
- 2021-01-14 CN CN202210786536.5A patent/CN115175283B/zh active Active
- 2021-01-14 KR KR1020227027500A patent/KR20220129577A/ko unknown
- 2021-01-14 AU AU2021210440A patent/AU2021210440A1/en active Pending
- 2021-01-14 IL IL294745A patent/IL294745A/en unknown
- 2021-01-14 BR BR112022014312A patent/BR112022014312A2/pt unknown
- 2021-01-14 WO PCT/CN2021/071916 patent/WO2021147771A1/zh active Application Filing
- 2021-01-14 CA CA3165193A patent/CA3165193A1/en active Pending
- 2021-01-14 JP JP2022543182A patent/JP2023510385A/ja active Pending
-
2022
- 2022-07-13 US US17/863,651 patent/US20220346181A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104322116B (zh) * | 2013-01-15 | 2018-05-29 | 华为技术有限公司 | 非连续接收方法和装置 |
CN103945505A (zh) * | 2013-01-23 | 2014-07-23 | 中国电信股份有限公司 | 长期演进系统非连续接收参数的配置方法与系统 |
CN104581908A (zh) * | 2015-01-30 | 2015-04-29 | 深圳酷派技术有限公司 | 非连续接收模式的参数配置方法和装置 |
CN108307489A (zh) * | 2016-08-11 | 2018-07-20 | 中兴通讯股份有限公司 | 信息处理方法、装置、用户设备及基站 |
CN108377537A (zh) * | 2016-11-04 | 2018-08-07 | 维沃移动通信有限公司 | 非连续接收的配置方法、非连续接收的方法、基站及终端 |
CN108616897A (zh) * | 2016-12-05 | 2018-10-02 | 维沃移动通信有限公司 | 一种非连续接收drx参数的配置方法、终端及网络设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023222076A1 (zh) * | 2022-05-20 | 2023-11-23 | 维沃移动通信有限公司 | 非连续传输方法、装置、终端及网络侧设备 |
Also Published As
Publication number | Publication date |
---|---|
KR20220129577A (ko) | 2022-09-23 |
JP2023510385A (ja) | 2023-03-13 |
CN115175283B (zh) | 2023-11-28 |
CA3165193A1 (en) | 2021-07-29 |
EP4075882A1 (en) | 2022-10-19 |
WO2021147771A1 (zh) | 2021-07-29 |
EP4075882A4 (en) | 2023-06-07 |
BR112022014312A2 (pt) | 2023-05-02 |
AU2021210440A1 (en) | 2022-08-11 |
CN114642040A (zh) | 2022-06-17 |
US20220346181A1 (en) | 2022-10-27 |
CN115175283A (zh) | 2022-10-11 |
IL294745A (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021146962A1 (zh) | 非连续接收参数的处理方法、存储介质和处理 | |
WO2021087675A1 (zh) | 一种监听唤醒信号的方法、电子设备及存储介质 | |
WO2021142647A1 (zh) | 一种业务传输方法及装置、终端设备、网络设备 | |
WO2020087524A1 (zh) | 非授权频段上ssb的传输方法和设备 | |
WO2021128210A1 (zh) | 一种测量方法、电子设备及存储介质 | |
WO2021114206A1 (zh) | 一种cli测量的方法及装置、终端设备、网络设备 | |
WO2021119988A1 (zh) | 一种非连续接收的方法、电子设备及存储介质 | |
WO2020227860A1 (zh) | 一种终端能力确定方法及装置、终端 | |
WO2020154866A1 (zh) | 一种数据传输方法、终端设备及存储介质 | |
WO2020082248A1 (zh) | 一种控制终端移动性的方法及装置、终端 | |
WO2020077667A1 (zh) | 一种启动定时器的方法及装置、终端 | |
WO2020051919A1 (zh) | 一种资源确定及配置方法、装置、终端、网络设备 | |
WO2022151242A1 (zh) | 一种数据传输方法、电子设备及存储介质 | |
WO2019241969A1 (zh) | 配置测量信息的方法、终端设备和网络设备 | |
WO2021026717A1 (zh) | 一种资源协调方法及装置、终端设备 | |
WO2020248143A1 (zh) | 监听控制信道的方法、终端设备和网络设备 | |
WO2020124548A1 (zh) | 时频资源确定方法、装置、芯片及计算机程序 | |
WO2020062042A1 (zh) | 无线通信方法和设备 | |
WO2020087306A1 (zh) | 一种窗口配置方法及装置、终端、网络设备 | |
WO2020077745A1 (zh) | 一种连接配置方法、设备及存储介质 | |
WO2022183336A1 (zh) | 一种测量间隔的确定方法及装置、终端设备 | |
WO2021174467A1 (zh) | 一种数据传输方法、电子设备及存储介质 | |
WO2021142646A1 (zh) | 一种业务传输方法及装置、通信设备 | |
WO2020077669A1 (zh) | 一种参数配置方法、终端设备及存储介质 | |
WO2020118718A1 (zh) | 一种配置参数的确定方法及装置、终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915611 Country of ref document: EP Kind code of ref document: A1 |