WO2023222076A1 - 非连续传输方法、装置、终端及网络侧设备 - Google Patents

非连续传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023222076A1
WO2023222076A1 PCT/CN2023/095011 CN2023095011W WO2023222076A1 WO 2023222076 A1 WO2023222076 A1 WO 2023222076A1 CN 2023095011 W CN2023095011 W CN 2023095011W WO 2023222076 A1 WO2023222076 A1 WO 2023222076A1
Authority
WO
WIPO (PCT)
Prior art keywords
discontinuous transmission
configuration information
mode
transmission
communication
Prior art date
Application number
PCT/CN2023/095011
Other languages
English (en)
French (fr)
Inventor
黄伟
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023222076A1 publication Critical patent/WO2023222076A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application belongs to the field of mobile communication technology, and specifically relates to a discontinuous transmission method, device, terminal and network side equipment.
  • a backscatter communication (BSC) system such as a radio frequency identification (Radio Frequency Identification, RFID) system
  • the time when the network device sends continuous waves and commands to the sending device of the backscatter communication is not fixed.
  • the agreed time window causes the sending device of backscatter communication to continuously blindly check the selection (Select), query (Query) or confirmation (Acknowledge character, ACK) and other control commands, thereby increasing the time required for the sending device of backscattering communication. Detection complexity and power consumption.
  • Embodiments of the present application provide a discontinuous transmission method, device, terminal and network side equipment, which can solve the problem of increased detection complexity and power consumption of the sending equipment of reflection and scattering communication due to the need for constant blind detection.
  • a discontinuous transmission method applied to the first device, and the method includes:
  • the first device obtains first configuration information, the first configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission for the first device; wherein, in the first mode The first device at least performs communication transmission, and the first device in the second mode performs energy collection without performing communication transmission;
  • the first device performs an energy harvesting operation or communicates with a second device according to the first configuration information; wherein the first device is a sending device for backscatter communication.
  • a device for discontinuous transmission including:
  • the first configuration module is used to obtain first configuration information.
  • the first configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission; wherein, the discontinuous transmission in the first mode
  • the transmission device at least performs communication transmission, and the discontinuous transmission device in the second mode performs energy collection without performing communication transmission;
  • the first execution module is configured to perform an energy harvesting operation or perform communication transmission with a second device according to the first configuration information; wherein the discontinuous transmission device is a sending device for backscatter communication.
  • a discontinuous transmission method applied to the second device, and the method includes:
  • the second device obtains second configuration information, and the second configuration information is used to configure the second device.
  • Set relevant parameters in the first mode and second mode of discontinuous transmission wherein, the second device in the first mode at least communicates and transmits with the first device, and the second device in the second mode Send a radio frequency signal for energy harvesting to the first device;
  • the second device performs communication transmission with the first device or sends a radio frequency signal to the first device according to the second configuration information; wherein the first device is a sending device for backscatter communication.
  • a discontinuous transmission device including:
  • the second configuration module is used to obtain second configuration information.
  • the second configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission; wherein, the discontinuous transmission in the first mode
  • the transmission device performs communication and transmission with at least the first device, and the discontinuous transmission device in the second mode sends a radio frequency signal for energy collection to the first device;
  • the second execution module is configured to perform communication transmission with the first device or send a radio frequency signal to the first device according to the second configuration information; wherein the first device is a sending device for backscatter communication.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to perform energy harvesting operations or communicate with a second device according to the first configuration information, and the communication interface is configured to Get the first configuration information.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the processor is configured to communicate or transmit to the first device according to the second configuration information. Radio frequency signal, the communication interface is used to obtain the second configuration information.
  • a ninth aspect provides a discontinuous transmission system, including: a first device and a second device.
  • the first device can be used to perform the steps of the discontinuous transmission method as described in the first aspect.
  • the second device It can be used to perform the steps of the discontinuous transmission method as described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the first configuration information is obtained, the first configuration information is used to configure relevant parameters in the first mode and the second mode of discontinuous transmission, and energy collection is performed based on the first configuration information. Operate or communicate with a second device, thereby reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing device power consumption.
  • Figure 1 is a schematic structural diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic flowchart of a discontinuous transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a discontinuous transmission cycle provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of another discontinuous transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a discontinuous transmission device provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of another discontinuous transmission method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another discontinuous transmission device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal that implements an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a network-side device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node , Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of the present application This introduction only takes the base station in the NR system as an example, and does not limit the specific type of base station.
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application functions (Application Function, AF) etc.
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • this embodiment of the present application provides a discontinuous transmission method.
  • the execution subject of the method is the first device.
  • the method can be executed by software or hardware installed on the first device.
  • the method includes the following steps.
  • the first device obtains first configuration information.
  • the first configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission (Discontinuous Transmission and Reception, DTRX) for the first device; Wherein, the first device in the first mode at least performs communication transmission, and the first device in the second mode performs energy collection without performing communication transmission.
  • DTRX discontinuous Transmission and Reception
  • the first device performs an energy collection operation or communicates with a second device according to the first configuration information; wherein the first device is a sending device for backscatter communication.
  • the first device is a sending device for backscatter communication
  • the first device may be a cellular networked, low-cost, low-power or even zero-power passive device, such as a device in an Internet of Things system.
  • the core of passive devices or tag devices in RFID systems is the need to get rid of the dependence of traditional devices on batteries or power supplies.
  • the first device includes a microcontroller unit (MCU), a switch chip, a modulation circuit and other devices, even if the chip has low power consumption characteristics, it still requires a startup voltage of several hundred millivolts or even several volts.
  • the sending device of backscatter communication performs energy collection operations on the energy in the environment through energy collection circuits. For example, based on the principle of electromagnetic induction, it performs energy collection operations on radio frequency signals in the environment. In addition, solar energy, light energy, mechanical energy, and thermal energy in the environment can all be used as energy sources for the first device. Limited by the hardware limitations of the energy harvesting circuit, the energy harvesting efficiency of the first device is generally low, so the energy harvesting circuit needs to work for a period of time to reserve enough energy for communication.
  • the embodiments of the present application introduce a discontinuous transmission mechanism or mode for backscatter communication or passive communication equipment.
  • the DTRX cycle (dtrx Cycle) and the two time periods of the first mode and the second mode included in each DTRX cycle are predefined.
  • the time period corresponding to the first mode can also be called the communication period (Communication Duration) or communication state
  • the time period corresponding to the second mode can also be called the energy storage stage (Charging Duration) or energy storage. state.
  • the first device In the communication phase, the first device is in a first mode, that is, in a communication state or mode. When the first device is in the first mode, it can communicate and transmit with the second device. The first device is in a third mode. When in the first mode, the second device needs to provide a radio frequency carrier signal to the first device so that the first device can perform backscatter transmission; or, the first device can communicate with the second device when it is in the first mode. Communication transmission and energy harvesting.
  • the first device In the energy storage stage, the first device is in the second mode, that is, in the energy storage state or mode. When the first device is in the second mode, it can only collect energy and cannot communicate with the second device. Carry out communication transmission.
  • the communication and transmission between the first device and the second device may specifically include communication-related synchronization, data transmission, instruction or signaling transmission, etc.
  • the second device is a device that supports performing the following operations:
  • the second device may be an access network device, a relay device, a terminal device, a reader/writer device, etc.
  • the first device configures relevant parameters of the discontinuous transmission mechanism or mode by obtaining first configuration information, thereby realizing communication transmission and energy collection with the second device under the discontinuous transmission mechanism or mode.
  • the second device configures the relevant parameters of the discontinuous transmission mechanism or mode by obtaining the second configuration information, thereby realizing communication transmission with the first device and radio frequency signal and Transmission of backscattered carrier signals.
  • the relevant parameters of the discontinuous transmission mechanism or mode contained in the first configuration information may be diverse.
  • the first configuration information includes at least the following two items:
  • the length of time in the first mode can be specifically expressed as a DTRX communication phase timer (dtrx Communication Timer);
  • the length of time in the second mode can be specifically expressed as a DTRX charging phase timer (dtrx Charging Timer).
  • Any two parameters or three parameters among the above parameters may be required parameters in the first configuration information.
  • the first configuration information is also used to configure other optional parameters, including at least one of the following:
  • a first timer wherein the first device can perform communication transmission with the second device during the running of the first timer, and the first timer is scheduled by the communication received within the discontinuous transmission period.
  • the instruction triggers activation and the first timer can be represented as a DTRX Inactivity Timer (dtrx Inactivity Timer).
  • the first timer is the first time after receiving the instruction or instruction information to continue the communication service. Start or restart within the time unit. After starting or restarting, the first device can continue to transmit data or instructions within the inactivity timer (Inactivity Timer);
  • the length of the first discontinuous transmission cycle which can be expressed as the short DTRX cycle length (dtrx Short Cycle);
  • the length of the second discontinuous transmission period; wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period, and the second discontinuous transmission period can be expressed as a long DTRX cycle length (dtrx Long Cycle);
  • the The second timer can be expressed as a DTRX short cycle timer (dtrx Short Cycle Timer);
  • a first command wherein the first device stops the first timer and switches to the second mode after receiving the first command.
  • the first command can be expressed as a DTRX discontinuous transmission command (DTRX Command), through the first command, the first device can enter the energy storage state or mode as soon as possible;
  • DTRX Command DTRX discontinuous transmission command
  • a second command wherein the first device stops the second timer after receiving the second command and enters discontinuous transmission of a second discontinuous transmission cycle length, and the second command may represent It is a DTRX long discontinuous transmission command (Long DTRX Command), and the second command can also make the first device enter the energy storage state or mode as soon as possible.
  • the second configuration information obtained by the second device may also include relevant parameters of the corresponding discontinuous transmission mechanism or mode in the first configuration information.
  • the second configuration information includes at least two of the following:
  • the length of time in the first mode the length of time in the first mode
  • the second configuration information is also used to configure other optional parameters, including at least one of the following:
  • the length of the second discontinuous transmission period wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period
  • a second timer related to the first non-continuous transmission period; wherein the second device receives a scheduling indication or data related to the communication transmission at the end of the period from the start to the end of the second timer In the case of transmission, switch to discontinuous transmission of the second discontinuous transmission cycle length;
  • a first command wherein the second device stops the first timer and switches to the second mode after receiving the first command;
  • the second command wherein the second device stops the second timer after receiving the second command, and enters discontinuous transmission of a second discontinuous transmission cycle length.
  • the first command and/or the second command received by the first device and the second device may be carried in a variety of ways.
  • the embodiments of this application only give some of the ways for illustration.
  • the first command and/or the second command are carried in at least one of the following ways:
  • MAC CE Media Access Control Element
  • Preamble Physical frame preamble sequence
  • the embodiments of the present application obtain the first configuration information, which is used to configure related parameters in the first mode and the second mode of discontinuous transmission, and according to the first mode
  • One configuration information performs energy harvesting operations or communicates with a second device, thereby reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thus reducing device power consumption.
  • step S210 includes:
  • the first configuration information is received from a network node.
  • the first configuration information received from the network node may be carried by RRC. It can be configured through the relevant commands in the relevant configuration message based on the Discontinuous Reception (DRX) configuration method in RRC in Long Term Evolution (LTE) and New Radio (NR) systems.
  • DRX Discontinuous Reception
  • NR New Radio
  • the RRC Discontinuous Transmission Configuration (RRC_DRX_config) signaling in the three configuration messages of Connection Reconfiguration, RRC Connection Setup or RRC Connection Reestablishment is used to configure the first configuration information or specifically for configuration New signaling of relevant parameters of the discontinuous transmission mechanism or mode, such as discontinuous transmission configuration (RRC_dtrx_config) signaling, is used to configure the first configuration information.
  • New RRC messages can also be introduced to configure relevant parameters of the discontinuous transmission mechanism or mode.
  • the first configuration information received from the network node may be carried by the MAC CE.
  • the existing MAC CE control unit list can be expanded to add instructions related to DTRX. Specifically, you can add MAC CE instructions corresponding to the above required parameters, or you can further add MAC CE instructions corresponding to the above optional parameters.
  • the first device for the first device that does not have an RRC layer or even a MAC layer, it can also be configured by a control command in the physical frame header in the PHY layer.
  • the physical frame adopts a structure design similar to the Protocol Data Unit (PPDU) in 802.11, including a preamble for synchronization, a header for carrying control information, and a payload.
  • PPDU Protocol Data Unit
  • the control information used to indicate relevant parameters of the discontinuous transmission mechanism or mode can also be used as part of the header field, including the required parameters in the above embodiment, and can also include the optional parameters in the above embodiment.
  • the method before receiving the first configuration information from the network node, the method further includes:
  • the first device sends device capability information or auxiliary information to the network node, the device capability information is used to indicate the energy storage capability and energy storage capacity supported by the first device, and the auxiliary information is used to indicate the Parameter configuration of discontinuous transmission expected by the first device.
  • the first device may report using terminal assistance information (User Equipment Assistance Information, UAI) similar to that in the NR system.
  • UAI User Equipment Assistance Information
  • DTRX preferenceConfig DTRX preference configuration
  • RRCReconfiguration RRC reconfiguration
  • the network node determines the discontinuous transmission mechanism or mode according to the received device capability information or auxiliary information. Then, the first configuration information is sent to the first device, and the discontinuous transmission mechanism or mode is entered.
  • the step S210 includes: the first device obtains the first configuration information through factory preconfiguration.
  • the relevant parameters of the discontinuous transmission mechanism or mode are built-in through the system's factory default configuration, and are reported to the network node through the terminal capability information.
  • the network node learns relevant parameters of the discontinuous transmission mechanism or mode supported by the first device based on the reported capability information, and enters the discontinuous transmission mechanism or mode.
  • the network node may include at least one of the following:
  • third-party network devices can respectively configure the first configuration to the first device information, and configure second configuration information to the second device.
  • accurate clock synchronization needs to be maintained between the network node and the first device.
  • a preamble sequence or a downlink pilot can be sent for synchronization at the beginning of each or every few communication phases. After the first device enters the communication state or mode, synchronization is performed first to ensure that the first device Synchronization performance in discontinuous transfer mode.
  • the network node can configure the parameters according to the energy storage capacity of the first device, the communication distance or the effective received signal quality, such as Reference Signal Received Power (RSRP). ), signal-to-noise ratio (SNR), etc., as well as energy conversion efficiency and other parameters are determined according to certain criteria.
  • RSRP Reference Signal Received Power
  • SNR signal-to-noise ratio
  • the network node may send a pilot for the first device to estimate the signal quality and feed it back to the network node.
  • the network node may configure the first device through the implementation manner as described above.
  • the second device obtaining the second configuration information includes:
  • the second configuration information is obtained through factory preconfiguration.
  • the method further includes:
  • the second device sends the first configuration information to the first device.
  • the received second configuration information or the sent first configuration information is carried by at least one of the following methods:
  • the method before the second device sends the first configuration information, the method further includes:
  • the device capability information is used to Indicates the energy storage capability and energy storage capacity supported by the first device
  • the auxiliary information is used to indicate the discontinuous transmission parameter configuration expected by the first device.
  • the manner in which the second device obtains the second configuration information is basically the same or similar to the manner in which the first device obtains the first configuration information in the above embodiment, and the repeated parts will not be described again here.
  • the embodiments of the present application receive the first configuration information from a network node or obtain the first configuration information through factory pre-configuration, so that different communication scenarios and energy storage capabilities can be used according to different communication scenarios and energy storage capabilities.
  • Flexible configuration of relevant parameters of discontinuous transmission reduces the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing equipment power consumption.
  • the execution subject may be a discontinuous transmission device.
  • a discontinuous transmission device performing a discontinuous transmission method is used as an example to illustrate the discontinuous transmission device provided by the embodiment of the present application.
  • the discontinuous transmission device includes: a first configuration module 501 and a first execution module 502.
  • the first configuration module 501 is used to obtain first configuration information, and the first configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission; wherein, in the first mode The discontinuous transmission device at least performs communication transmission, and the discontinuous transmission device in the second mode performs energy collection but does not perform communication transmission; the first execution module 502 is used to perform energy collection operations or communicate with others according to the first configuration information.
  • the second device performs communication transmission; wherein the discontinuous transmission device is a sending device for backscatter communication.
  • the first configuration information includes at least two of the following:
  • the length of time in the first mode the length of time in the first mode
  • the first configuration information is also used to configure at least one of the following:
  • a first timer wherein the discontinuous transmission device performs communication transmission with the second device during the operation of the first timer, and the first timer is scheduled by the communication received within the discontinuous transmission period.
  • the command triggers the activation;
  • the length of the second discontinuous transmission period wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period
  • discontinuous transmission device receives a scheduling indication related to the communication transmission at the end of the period from the start to the end of the second timer; or In the case of data transmission, switch to discontinuous transmission of the second discontinuous transmission cycle length;
  • a first command wherein the discontinuous transmission device stops the first timer and switches to the second mode after receiving the first command;
  • the second command wherein the discontinuous transmission device stops the second timer after receiving the second command, and enters the discontinuous transmission of the second discontinuous transmission period length.
  • the first command and/or the second command are carried in at least one of the following ways:
  • the discontinuous transmission device performs communication transmission with the second device when the first device is in the first mode.
  • the second device needs to provide a radio frequency carrier signal to the first device so that The first device performs backscatter transmission; or, when in the first mode, communicates with the second device and performs energy harvesting;
  • the discontinuous transmission device performs energy harvesting when in the second mode.
  • the second device is a device that supports performing the following operations:
  • the embodiments of the present application obtain the first configuration information, which is used to configure related parameters in the first mode and the second mode of discontinuous transmission, and according to the first mode
  • One configuration information performs energy harvesting operations or communicates with a second device, thereby reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thus reducing device power consumption.
  • the first configuration module 501 is used to:
  • the network node includes at least one of the following:
  • the first configuration information received from the network node is carried in at least one of the following ways:
  • the first configuration module 501 is also configured to send device capability information or auxiliary information to the network node, where the device capability information is used to indicate the energy storage capability and energy storage capacity supported by the discontinuous transmission device.
  • the auxiliary information is used to indicate the parameter configuration of discontinuous transmission expected by the discontinuous transmission device.
  • the embodiments of the present application receive the first configuration information from a network node or obtain the first configuration information through factory pre-configuration, so that different communication scenarios and energy storage capabilities can be used according to different communication scenarios and energy storage capabilities.
  • Flexible configuration of relevant parameters of discontinuous transmission reduces the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing equipment power consumption.
  • the discontinuous transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network-affiliated storage devices, etc.
  • Storage Network Attached Storage, NAS), etc. are not specifically limited in the embodiments of this application.
  • the discontinuous transmission device provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 2 to 4, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • an embodiment of the present application provides a discontinuous transmission method.
  • the execution subject of the method is the first device.
  • the method can be executed by software or hardware installed on the first device.
  • the method includes the following steps.
  • the second device obtains second configuration information.
  • the second configuration information is used to configure related parameters in the first mode of discontinuous transmission and the second mode for the second device; wherein, in the first mode The second device at least performs communication and transmission with the first device.
  • the second device also needs to provide a radio frequency carrier signal to the first device to enable the first device to perform backscattering transmission; in the second mode The second device in the mode sends a radio frequency signal for energy harvesting to the first device;
  • the second device performs communication transmission with the first device or sends a radio frequency signal to the first device according to the second configuration information; wherein the first device is a sending device for backscatter communication.
  • the second device is a device that supports performing the following operations:
  • the second configuration information includes at least two of the following:
  • the length of time in the first mode the length of time in the first mode
  • the second configuration information is also used to configure at least one of the following:
  • the length of the second discontinuous transmission period wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period
  • a second timer related to the first non-continuous transmission period; wherein the second device receives a scheduling indication or data related to the communication transmission at the end of the period from the start to the end of the second timer In the case of transmission, switch to discontinuous transmission of the second discontinuous transmission cycle length;
  • a first command wherein the second device stops the first timer and switches to the second mode after receiving the first command;
  • the second command wherein the second device stops the second timer after receiving the second command, and enters discontinuous transmission of a second discontinuous transmission cycle length.
  • the first command and/or the second command are carried in at least one of the following ways:
  • the second configuration information is used to configure relevant parameters in the first mode and second mode of discontinuous transmission for the second device, and communicate or transmit to the first device according to the second configuration information.
  • the first device sends radio frequency signals, thereby reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing device power consumption.
  • step S610 includes:
  • the second configuration information is obtained through factory preconfiguration.
  • the method further includes:
  • the second device sends the first configuration information to the first device.
  • the received second configuration information or the sent first configuration information is carried by at least one of the following methods:
  • the method before the second device sends the first configuration information, the method further includes:
  • the device capability information is used to indicate the energy storage capability and energy storage capacity supported by the first device.
  • the auxiliary information is used to indicate that the first device desires Discontinuous transmission parameter configuration.
  • the embodiments of the present application receive the first configuration information from a network node or obtain the first configuration information through factory pre-configuration, so that different communication scenarios and energy storage capabilities can be used according to different communication scenarios and energy storage capabilities.
  • Flexible configuration of relevant parameters of discontinuous transmission reduces the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing equipment power consumption.
  • the execution subject may be a discontinuous transmission device.
  • a discontinuous transmission device performing a discontinuous transmission method is used as an example to illustrate the discontinuous transmission device provided by the embodiment of the present application.
  • the discontinuous transmission device includes: a second configuration module 701 and a second execution module 702.
  • the second configuration module 701 is used to obtain second configuration information, and the second configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission; wherein, in the first mode The discontinuous transmission device performs communication and transmission with at least the first device, and at the same time provides the first device with a radio frequency carrier for backscatter transmission; the discontinuous transmission device in the second mode sends a signal to the first device for energy collection. radio frequency signal; the second execution module 702 is configured to communicate with the first device or send a radio frequency signal to the first device according to the second configuration information; wherein the first device is a reverse Sending equipment for scatter communications.
  • the discontinuous transmission device is a device that supports performing the following operations:
  • the second configuration information includes at least two of the following:
  • the length of time in the first mode the length of time in the first mode
  • the second configuration information is also used to configure at least one of the following:
  • discontinuous transmission device communicates and transmits with the first device during the operation of the first timer
  • the length of the second discontinuous transmission period wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period
  • discontinuous transmission device receives a scheduling indication related to the communication transmission at the end of the period from the start to the end of the second timer; or In the case of data transmission, switch to discontinuous transmission of the second discontinuous transmission cycle length;
  • a first command wherein the discontinuous transmission device stops the first timer and switches to the second mode after receiving the first command;
  • the second command wherein the discontinuous transmission device stops the second timer after receiving the second command, and enters the discontinuous transmission of the second discontinuous transmission cycle length.
  • the first command and/or the second command are carried in at least one of the following ways:
  • the embodiments of the present application obtain the second configuration information, which is used to configure related parameters in the first mode and the second mode of discontinuous transmission, and according to the first mode
  • the second configuration information is communicated and transmitted with the first device or a radio frequency signal is sent to the first device, thereby reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thus Reduce device power consumption.
  • the second configuration module 701 is used to:
  • the second configuration information is obtained through factory preconfiguration.
  • the second configuration module 701 is also configured to send the first configuration information to the first device.
  • the received second configuration information or the sent first configuration information is carried by at least one of the following methods:
  • the second configuration module 701 is also configured to receive device capability information or auxiliary information from the first device, where the device capability information is used to indicate the energy storage capability and energy storage capacity supported by the first device.
  • the auxiliary information is used to indicate the discontinuous transmission parameter configuration expected by the first device.
  • the embodiments of this application receive the The first configuration information may be obtained through factory pre-configuration, so that relevant parameters of discontinuous transmission can be flexibly configured according to different communication scenarios and energy storage capabilities, reducing the transmission of backscatter communications.
  • the device blindly detects the number of detections of data transmission scheduling information, signaling and synchronization information, thus reducing device power consumption.
  • the discontinuous transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the discontinuous transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 800, which includes a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, for example.
  • the communication device 800 is a terminal, when the program or instruction is executed by the processor 801, each step of the above discontinuous transmission method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each step of the above discontinuous transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to perform energy collection operations or communicate with a second device according to the first configuration information, and the communication interface is used to obtain the first configuration information.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 9 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 900 includes but is not limited to: an antenna unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, etc. At least some parts.
  • the terminal 900 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 910 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the input unit 904 may include a graphics processing unit (GPU) 9041 and a microphone 9042.
  • the GPU 9041 is used for recording data generated by an image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the image data obtained from still pictures or videos is processed.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and at least one of other input devices 9072 .
  • Touch panel 9071 also known as touch screen.
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 9072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the antenna unit 901 can transmit it to the processor 910 for processing; in addition, the antenna unit 901 can send uplink data to the network side device.
  • the antenna unit 901 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 909 may include volatile memory or nonvolatile memory, or memory 909 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 910 may include one or more processing units; optionally, the processor 910 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 910.
  • the antenna unit 901 is used to obtain first configuration information, and the first configuration information is used to configure related parameters in the first mode and the second mode of discontinuous transmission; wherein, the terminal in the first mode At least communication transmission is performed, and the terminal in the second mode performs energy collection without communication transmission.
  • the processor 910 is configured to perform an energy collection operation or perform communication transmission with a second device according to the first configuration information; wherein the terminal is a sending device for backscatter communication.
  • the first configuration information includes at least two of the following:
  • the length of time in the first mode the length of time in the first mode
  • the first configuration information is also used to configure at least one of the following:
  • a first timer wherein the terminal performs communication transmission with the second device during the running of the first timer, and the first timer is scheduled by the communication received within the discontinuous transmission period.
  • the command triggers the activation;
  • the length of the second discontinuous transmission period wherein the length of the second discontinuous transmission period is greater than the length of the first discontinuous transmission period
  • a second timer related to the first non-continuous transmission period; wherein the terminal receives a scheduling indication related to the communication transmission or a data transmission at the end of the period from the start to the end of the second timer.
  • switch to discontinuous transmission of the second discontinuous transmission cycle length
  • a first command wherein the terminal stops the first timer and switches to the second mode after receiving the first command;
  • the second command wherein, after receiving the second command, the terminal stops the second timer and enters discontinuous transmission of a second discontinuous transmission cycle length.
  • the first command and/or the second command are carried in at least one of the following ways:
  • the terminal performs communication and transmission with the second device when in the first mode, or performs communication and transmission with the second device and performs energy harvesting when in the first mode;
  • the terminal collects energy when in the second mode.
  • the second device is a device that supports performing the following operations:
  • the embodiments of the present application reduce the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication, thereby reducing the power consumption of the device.
  • the antenna unit 901 is used for:
  • the network node includes at least one of the following:
  • the first configuration information received from the network node is carried in at least one of the following ways:
  • the antenna unit 901 is also used to send device capability information or auxiliary information to the network node.
  • the device capability information is used to indicate the energy storage capability and energy storage capacity supported by the terminal.
  • the auxiliary information Parameter configuration used to indicate discontinuous transmission expected by the terminal.
  • the embodiments of this application can flexibly configure the relevant parameters of discontinuous transmission according to different communication scenarios and energy storage capabilities, reducing the number of blind detections of data transmission scheduling information, signaling and synchronization information by the sending device of backscatter communication. , thus reducing device power consumption.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor Used to communicate with the first device or send radio frequency signals to the first device according to the second configuration information, and the communication interface is used to obtain the second configuration information.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1000 includes: an antenna 101 , a radio frequency device 102 , a baseband device 103 , a processor 104 and a memory 105 .
  • the antenna 101 is connected to the radio frequency device 102 .
  • the radio frequency device 102 receives information through the antenna 101 and sends the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be sent and sends it to the radio frequency device 102.
  • the radio frequency device 102 processes the received information and then sends it out through the antenna 101.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 103, which includes a baseband processor.
  • the baseband device 103 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 106, which is, for example, a common public radio interface (CPRI).
  • a network interface 106 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1000 in this embodiment of the present invention also includes: instructions or programs stored in the memory 105 and executable on the processor 104.
  • the processor 104 calls the instructions or programs in the memory 105 to execute each of the steps shown in Figure 7. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above discontinuous transmission method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiments of the discontinuous transmission method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above discontinuous transmission method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • the embodiment of the present application also provides a discontinuous transmission system, including: a first device and a second device
  • the first device may be configured to perform the steps of the discontinuous transmission method as described above
  • the second device may be configured to perform the steps of the discontinuous transmission method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种非连续传输方法、装置、终端及网络侧设备,属于移动通信领域,本申请实施例的非连续传输方法包括:第一设备获取第一配置信息,所述第一配置信息用于为所述第一设备配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第一设备至少进行通信传输,处于所述第二模式下的第一设备进行能量采集而不进行通信传输;所述第一设备根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述第一设备为反向散射通信的发送设备。

Description

非连续传输方法、装置、终端及网络侧设备
交叉引用
本发明要求在2022年05月20日提交中国专利局、申请号为202210550743.0、发明名称为“非连续传输方法、装置、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于移动通信技术领域,具体涉及一种非连续传输方法、装置、终端及网络侧设备。
背景技术
在反向散射通信(Backscatter Communication,BSC)系统,例如射频识别(Radio Frequency Identification,RFID)系统中,网络设备给反射散射通信的发送设备发送连续波与发送命令的时间是不固定的,而是约定了时间窗,导致反向散射通信的发送设备需要不停的盲检选择(Select)、查询(Query)或确认(Acknowledge character,ACK)等控制命令,从而增加了反射散射通信的发送设备的检测复杂度以及功耗。
发明内容
本申请实施例提供一种非连续传输方法、装置、终端及网络侧设备,能够解决由于需要不停的盲检增加了反射散射通信的发送设备的检测复杂度以及功耗的问题。
第一方面,提供了一种非连续传输方法,应用于第一设备,该方法包括:
第一设备获取第一配置信息,所述第一配置信息用于为所述第一设备配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第一设备至少进行通信传输,处于所述第二模式下的第一设备进行能量采集而不进行通信传输;
所述第一设备根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述第一设备为反向散射通信的发送设备。
第二方面,提供了一种非连续传输的装置,包括:
第一配置模块,用于获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少进行通信传输,处于所述第二模式下的非连续传输装置进行能量采集而不进行通信传输;
第一执行模块,用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述非连续传输装置为反向散射通信的发送设备。
第三方面,提供了一种非连续传输方法,应用于第二设备,该方法包括:
第二设备获取第二配置信息,所述第二配置信息用于为所述第二设备配 置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第二设备至少与第一设备进行通信传输,处于所述第二模式下的第二设备向所述第一设备发送用于能量采集的射频信号;
所述第二设备根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
第四方面,提供了一种非连续传输装置,包括:
第二配置模块,用于获取第二配置信息,所述第二配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少与第一设备进行通信传输,处于所述第二模式下的非连续传输装置向所述第一设备发送用于能量采集的射频信号;
第二执行模块,用于根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输,所述通信接口用于获取第一配置信息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号,所述通信接口用于获取第二配置信息。
第九方面,提供了一种非连续传输系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的非连续传输方法的步骤,所述第二设备可用于执行如第三方面所述的非连续传输方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的非连续传输方法,或实现如第三方面所述的非连续传输方法的步骤。
在本申请实施例中,通过获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数,并根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输,从而降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的一种非连续传输方法的流程示意图;
图3是本申请实施例提供的一种非连续传输周期的示意图;
图4是本申请实施例提供的另一种非连续传输方法的流程示意图;
图5是本申请实施例提供的一种非连续传输装置的结构示意图;
图6是本申请实施例提供的另一种非连续传输方法的流程示意图;
图7是本申请实施例提供的另一种非连续传输装置的结构示意图;
图8是本申请实施例提供的一种通信设备结构示意图;
图9为实现本申请实施例的一种终端的结构示意图;
图10为实现本申请实施例的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目 的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能 (Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的非连续传输方法、装置、终端及网络侧设备进行详细地说明。
如图2所示,本申请实施例提供了一种非连续传输方法,该方法的执行主体为第一设备,换言之,该方法可以由安装在第一设备的软件或硬件来执行。所述方法包括以下步骤。
S210、第一设备获取第一配置信息,所述第一配置信息用于为所述第一设备配置非连续传输(Discontinuous Transmission and Reception,DTRX)的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第一设备至少进行通信传输,处于所述第二模式下的第一设备进行能量采集而不进行通信传输。
S220、所述第一设备根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述第一设备为反向散射通信的发送设备。
应理解的是,所述第一设备为反向散射通信的发送设备,所述第一设备可以为蜂窝网络化、低成本、低功耗甚至零功耗无源设备,例如物联网系统中的无源化设备或者RFID系统中的标签设备,其核心是需要摆脱传统设备对电池或电源的依赖。
由于第一设备包含微控制单元(Microcontroller Unit,MCU)、开关芯片、调制电路等器件,即使芯片具有低功耗特性,也需要几百毫伏甚至几伏的启动电压。反向散射通信的发送设备通过能量采集电路对环境中的能量进行能量采集操作,例如基于电磁感应原理,对环境中射频信号进行能量采集操作。另外,环境中的太阳能、光能、机械能、热能都可以作为第一设备的能量来源。受限于能量采集电路硬件限制,第一设备进行能量采集的效率普遍较低,因此需要能量采集电路工作一段时间才能储备足够的能量进行通信。
应理解的是,本申请实施例针对反向散射通信或者无源通信设备引入了一种非连续传输机制或模式。如图3所示,预先定义了DTRX周期(dtrx Cycle)及在每个DTRX周期内包含的第一模式和第二模式两个时间段。其中,所述第一模式所对应的时间段也可以称为通信阶段(Communication Duration)或通信状态,所述第二模式所对应的时间段也可以称为储能阶段(Charging Duration)或储能状态。
在通信阶段,所述第一设备处于第一模式,即处于通信状态或模式,所述第一设备在处于所述第一模式时可以与第二设备进行通信传输,所述第一设备处于第一模式时第二设备需要给第一设备提供射频载波信号以使得第一设备进行反向散射传输;或者,所述第一设备在处于所述第一模式时既可以与所述第二设备进行通信传输并可以进行能量采集。
在储能阶段,所述第一设备处于第二模式,即处于储能状态或模式,所述第一设备在处于所述第二模式时仅能进行能量采集,而无法与所述第二设备进行通信传输。
应理解的是,所述第一设备与第二设备进行通信传输具体可以包括与通信相关的同步、数据传输和指令或信令传输等。
在一种实施方式中,所述第二设备为支持执行以下操作的设备:
为所述第一设备提供用于能量采集的射频信号和反向散射载波信号;
与所述第一设备进行通信传输。
所述第二设备可以为接入网设备、中继设备、终端设备和读写器设备等。
所述第一设备通过获取第一配置信息对所述非连续传输机制或模式的相关参数进行配置,从而实现在非连续传输机制或模式下与第二设备的通信传输以及能量采集。
相应地,所述第二设备通过获取第二配置信息对所述非连续传输机制或模式的相关参数进行配置,从而实现在非连续传输机制或模式下与第一设备的通信传输以及射频信号和反向散射载波信号的发送。
所述第一配置信息中包含的非连续传输机制或模式的相关参数可以多种多样,在一种实施方式中,所述第一配置信息至少包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度,具体可以表示为DTRX通信阶段计时器(dtrx Communication Timer);
在所述非连续传输周期中,处于所述第二模式下的时间长度,具体可以表示为DTRX储能阶段计时器(dtrx Charging Timer)。
上述参数中的任意两项参数或三项参数可以为所述第一配置信息中的必选参数。
在另一种实施方式中,所述第一配置信息还用于配置其它可选参数,包括以下至少一项:
第一计时器;其中,所述第一设备在所述第一计时器运行期间可以与第二设备进行通信传输,所述第一计时器由在所述非连续传输周期内接收到的通信调度指令触发开启,所述第一计时器可以表示为DTRX非激活计时器(dtrx Inactivity Timer)。第一设备在接收到一个继续通信业务的指令或指示信息还需要继续进行数据传输或指令传输的时间长度,所述第一计时器在接收到继续通信业务指令或指示信息结束后的第一个时间单位内启动或重启,启动或重启后在非激活计时器(Inactivity Timer)内所述第一设备可以继续可以进行数据传输或指令传输;
第一非连续传输周期的长度,所述第一非连续传输周期可以表示为短DTRX周期长度(dtrx Short Cycle);
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度,所述第二非连续传输周期可以表示为长DTRX周期长度(dtrx Long Cycle);
与所述第一非连续传输周期相关的第二计时器;其中,所述第一设备在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输,所述 第二计时器可以表示为DTRX短周期计时器(dtrx Short Cycle Timer);
第一命令;其中,所述第一设备在接收到所述第一命令后停止所述第一计时器,并切换到第二模式,所述第一命令可以表示为DTRX非连续传输命令(DTRX Command),通过第一命令可以使第一设备尽快进入到储能状态或模式;
第二命令;其中,所述第一设备在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输,所述第二命令可以表示为DTRX长非连续传输命令(Long DTRX Command),通过所述第二命令也同样可以使所述第一设备尽快进入到储能状态或模式。
相应地,所述第二设备获取到的第二配置信息中也同样可以包含所述第一配置信息中相对应的非连续传输机制或模式的相关参数。
在一种实施方式中,所述第二配置信息包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度;
在所述非连续传输周期中,处于所述第二模式下的时间长度。
在另一种实施方式中,所述第二配置信息还用于配置其它可选参数,包括以下至少一项:
第一计时器;其中,所述第二设备在所述第一计时器运行期间与第一设备进行通信传输;
第一非连续传输周期的长度;
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
与所述第一非连续传输周期相关的第二计时器;其中,所述第二设备在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
第一命令;其中,所述第二设备在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
第二命令;其中,所述第二设备在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
所述第一设备和第二设备接收到的所述第一命令和/第二命令可以由多种方式承载,本申请实施例仅给出了部分方式用于举例说明,在一种实施方式中,所述第一命令和/或第二命令由以下方式至少之一承载:
媒体接入控制单元(Medium Access Control Control Element,MAC CE);
物理帧前导序列(Preamble)。
由上述实施例的技术方案可知,本申请实施例通过获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数,并根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输,从而降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
基于上述实施例,所述第一配置信息的获取方式可以多种多样,在一种实施方式中,步骤S210包括:
从网络节点接收所述第一配置信息。
在一种实施方式中,若所述第一设备支持无线资源控制(Radio Resource Control,RRC)协议,则从所述网络节点接收的第一配置信息可以由RRC承载。可以基于长期演进技术(Long Term Evolution,LTE)和新空口(New Radio,NR)系统中的RRC中的非连续接收(Discontinuous Reception,DRX)配置方法,通过相关配置消息中的相关命令来配置,例如连接重配置(ConnectionReconfiguration)、RRC连接设置(RRCConnection Setup)或RRC连接重建(RRCconnectionReestablishment)这三条配置消息中的RRC非连续传输配置(RRC_DRX_config)信令来配置所述第一配置信息或者专门为了配置非连续传输机制或模式的相关参数的新的信令,例如非连续传输配置(RRC_dtrx_config)信令来配置所述第一配置信息。还可以引入新的RRC消息来配置非连续传输机制或模式的相关参数。
在另一种实施方式中,对于没有RRC层而支持物理层(Physical Layer,PHY)或MAC层的第一设备,从所述网络节点接收的第一配置信息可以由MAC CE承载。在一种实施方式中,可以扩展已有的MAC CE控制单元列表,增加与DTRX相关的指令。具体可以增加与上述必选参数对应的MAC CE指令,也可以进一步增加与上述可选参数对应的MAC CE指令。
在另一种实施方式中,对于没有RRC层甚至没有MAC层的第一设备,还可以由PHY层中的物理帧头中的控制命令来进行配置。在一种实施方式中,物理帧中采用类似802.11中的协议数据单元(Presentation Protocol Data Unit,PPDU)结构设计,包括preamble用于同步、信头Header用于承载控制信息,以及负载Payload。其中,用于指示非连续传输机制或模式的相关参数的控制信息也可以作为Header域中的一部分,包括上述实施例中的必选参数,也可以包括本上述实施例中的可选参数。
在另一种实施方式中,如图4所示,在从网络节点接收所述第一配置信息之前,所述方法还包括:
所述第一设备向所述网络节点发送设备能力信息或辅助信息,所述设备能力信息用于指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输的参数配置。在一种实施方式中,所述第一设备可以采用类似于NR系统中的终端辅助信息(User Equipment Assistance Information,UAI)来上报。
为了支持所述UAI的上报,首先需要在现有的RRC重配置(RRCReconfiguration)过程中增加DTRX偏好配置(dtrx_PreferenceConfig)用于配置第一设备可以基于UAI上报期望配置的相关参数;其次需要在UAI消息中增加DTRX偏好(dtrx_Preference)用于支持所述第一设备上报期望配置的相关参数。其中dtrx_Preference包括上述实施方式中的必选参数,还可以包括述实施方式中的可选参数。
网络节点根据接收到的设备能力信息或辅助信息,确定所述非连续传输的机制或模式。再向所述第一设备发送第一配置信息,并进入非连续传输的机制或模式。
在另一种实施方式中,所述步骤S210包括:所述第一设备通过出厂预配置方式获取所述第一配置信息。
通过系统出厂默认配置的方式内置非连续传输的机制或模式的相关参数,并通过终端能力信息上报给网络节点。网络节点再根据上报的能力信息获知第一设备支持的非连续传输的机制或模式的相关参数,并进入非连续传输的机制或模式。
应理解的是,所述网络节点可以包括以下至少之一:
所述第二设备;
除所述第一设备和第二设备外的其它网络设备,即除第一设备和第二设备外的第三方网络设备,所述第三方网络设备可以分别向所述第一设备配置第一配置信息,并向所述第二设备配置第二配置信息。
在一种实施方式中,所述网络节点与第一设备之间需要维持准确的时钟同步。在一种实施方式中,可以在每个或每隔几个通信阶段最开始就发送前导序列或下行导频进行同步,第一设备进入通信状态或模式之后先进行同步,以保证第一设备在非连续传输模式下的同步性能。
应理解的是,对于非连续传输机制或模式的相关参数的配置,网络节点可以根据第一设备的储能能力、通信距离或有效接收信号质量,例如参考信号接收功率(Reference Signal Received Power,RSRP)、信噪比(Signal Noise Ratio,SNR)等,以及能量转化效率等参数根据一定准则进行确定。例如,网络节点可以发送导频用于第一设备估计信号质量并反馈给网络节点。网络节点在确定非连续传输机制或模式的相关参数之后,可通过如上所述的实施方式对第一设备进行配置。
相应地,在一种实施方式中,所述第二设备获取第二配置信息包括:
从除所述第一设备和第二设备外的其它网络节点接收所述第二配置信息;
或者,通过出厂预配置方式获取所述第二配置信息。
在一种实施方式中,在所述第二设备获取第二配置信息之后,所述方法还包括:
所述第二设备向所述第一设备发送所述第一配置信息。
在一种实施方式中,接收的第二配置信息或发送的第一配置信息由以下方式至少之一承载:
RRC;
MAC CE;
物理帧前导序列。
在一种实施方式中,在所述第二设备发送所述第一配置信息之前,所述方法还包括:
从所述第一设备接收设备能力信息或辅助信息,所述设备能力信息用于 指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输参数配置。
应理解的是,所述第二设备获取第二配置信息的方式与上述实施例中第一设备获取第一配置信息的方式基本相同或相近,重复部分此处不再赘述。
由上述实施例的技术方案可知,本申请实施例通过从网络节点接收所述第一配置信息或者,通过出厂预配置方式获取所述第一配置信息,从而可以根据不同的通信场景和储能能力对非连续传输的相关参数进行灵活的配置,降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
本申请实施例提供的非连续传输方法,执行主体可以为非连续传输装置。本申请实施例中以非连续传输装置执行非连续传输方法为例,说明本申请实施例提供的非连续传输装置。
如图5所示,所述非连续传输装置包括:第一配置模块501和第一执行模块502。
所述第一配置模块501用于获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少进行通信传输,处于所述第二模式下的非连续传输装置进行能量采集而不进行通信传输;第一执行模块502用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述非连续传输装置为反向散射通信的发送设备。
可选地,所述第一配置信息包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度;
在所述非连续传输周期中,处于所述第二模式下的时间长度。
可选地,所述第一配置信息还用于配置以下至少一项:
第一计时器;其中,所述非连续传输装置在所述第一计时器运行期间与第二设备进行通信传输,所述第一计时器由在所述非连续传输周期内接收到的通信调度指令触发开启;
第一非连续传输周期的长度;
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
与所述第一非连续传输周期相关的第二计时器;其中,所述非连续传输装置在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
第一命令;其中,所述非连续传输装置在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
第二命令;其中,所述非连续传输装置在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
可选地,所述第一命令和/或第二命令由以下方式至少之一承载:
MAC CE;
物理帧前导序列。
可选地,所述非连续传输装置在处于所述第一模式时与第二设备进行通信传输,所述第一设备处于第一模式时第二设备需要给第一设备提供射频载波信号以使得第一设备进行反向散射传输;或者,在处于所述第一模式时与所述第二设备进行通信传输并进行能量采集;
所述非连续传输装置在处于所述第二模式时进行能量采集。
可选地,所述第二设备为支持执行以下操作的设备:
为所述非连续传输装置提供用于能量采集的射频信号和反向散射载波信号;
与所述非连续传输装置进行通信传输。
由上述实施例的技术方案可知,本申请实施例通过获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数,并根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输,从而降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
基于上述实施例,可选地,所述第一配置模块501用于:
从网络节点接收所述第一配置信息;
或者,通过出厂预配置方式获取所述第一配置信息;
其中,所述网络节点包括以下至少之一:
所述第二设备;
除所述非连续传输装置和第二设备外的其它网络设备。
可选地,从所述网络节点接收的第一配置信息由以下方式至少之一承载:
RRC;
MAC CE;
物理帧前导序列。
可选地,所述第一配置模块501还用于向所述网络节点发送设备能力信息或辅助信息,所述设备能力信息用于指示所述非连续传输装置支持的储能能力、储能容量,所述辅助信息用于指示所述非连续传输装置期望的非连续传输的参数配置。
由上述实施例的技术方案可知,本申请实施例通过从网络节点接收所述第一配置信息或者,通过出厂预配置方式获取所述第一配置信息,从而可以根据不同的通信场景和储能能力对非连续传输的相关参数进行灵活的配置,降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
本申请实施例中的非连续传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存 储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的非连续传输装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图6所示,本申请实施例提供了一种非连续传输方法,该方法的执行主体为第一设备,换言之,该方法可以由安装在第一设备的软件或硬件来执行。所述方法包括以下步骤。
S610、第二设备获取第二配置信息,所述第二配置信息用于为所述第二设备配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第二设备至少与第一设备进行通信传输,处于所述第一模式时第二设备还需要给第一设备提供射频载波信号以使得第一设备进行反向散射传输;处于所述第二模式下的第二设备向所述第一设备发送用于能量采集的射频信号;
S620、所述第二设备根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
可选地,所述第二设备为支持执行以下操作的设备:
为所述第一设备提供用于能量采集的射频信号和反向散射载波信号;
与所述第一设备进行通信传输。
可选地,所述第二配置信息包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度;
在所述非连续传输周期中,处于所述第二模式下的时间长度。
可选地,所述第二配置信息还用于配置以下至少一项:
第一计时器;其中,所述第二设备在所述第一计时器运行期间与第一设备进行通信传输;
第一非连续传输周期的长度;
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
与所述第一非连续传输周期相关的第二计时器;其中,所述第二设备在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
第一命令;其中,所述第二设备在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
第二命令;其中,所述第二设备在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
可选地,所述第一命令和/或第二命令由以下方式至少之一承载:
MAC CE;
物理帧前导序列。
由上述实施例的技术方案可知,本申请实施例通过获取第二配置信息, 所述第二配置信息用于为所述第二设备配置非连续传输的第一模式和第二模式下的相关参数,并根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号,从而降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
基于上述实施例,可选地,步骤S610包括:
从除所述第一设备和第二设备外的其它网络节点接收所述第二配置信息;
或者,通过出厂预配置方式获取所述第二配置信息。
可选地,在获取第二配置信息之后,所述方法还包括:
所述第二设备向所述第一设备发送所述第一配置信息。
可选地,接收的第二配置信息或发送的第一配置信息由以下方式至少之一承载:
RRC;
MAC CE;
物理帧前导序列。
可选地,在所述第二设备发送所述第一配置信息之前,所述方法还包括:
从所述第一设备接收设备能力信息或辅助信息,所述设备能力信息用于指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输参数配置。
由上述实施例的技术方案可知,本申请实施例通过从网络节点接收所述第一配置信息或者,通过出厂预配置方式获取所述第一配置信息,从而可以根据不同的通信场景和储能能力对非连续传输的相关参数进行灵活的配置,降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
本申请实施例提供的非连续传输方法,执行主体可以为非连续传输装置。本申请实施例中以非连续传输装置执行非连续传输方法为例,说明本申请实施例提供的非连续传输装置。
如图7所示,所述非连续传输装置包括:第二配置模块701和第二执行模块702。
所述第二配置模块701用于获取第二配置信息,所述第二配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少与第一设备进行通信传输,同时为第一设备提供反向散射传输的射频载波;处于所述第二模式下的非连续传输装置向所述第一设备发送用于能量采集的射频信号;所述第二执行模块702用于根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
可选地,所述非连续传输装置为支持执行以下操作的设备:
为所述第一设备提供用于能量采集的射频信号和反向散射载波信号;
与所述第一设备进行通信传输。
可选地,所述第二配置信息包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度;
在所述非连续传输周期中,处于所述第二模式下的时间长度。
可选地,所述第二配置信息还用于配置以下至少一项:
第一计时器;其中,所述第非连续传输装置在所述第一计时器运行期间与第一设备进行通信传输;
第一非连续传输周期的长度;
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
与所述第一非连续传输周期相关的第二计时器;其中,所述非连续传输装置在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
第一命令;其中,所述非连续传输装置在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
第二命令;其中,所述非连续传输装置在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
可选地,所述第一命令和/或第二命令由以下方式至少之一承载:
MAC CE;
物理帧前导序列。
由上述实施例的技术方案可知,本申请实施例通过获取第二配置信息,所述第二配置信息用于配置非连续传输的第一模式和第二模式下的相关参数,并根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号,从而降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
基于上述实施例,可选地,第二配置模块701用于:
从除所述第一设备和非连续传输装置外的其它网络节点接收所述第二配置信息;
或者,通过出厂预配置方式获取所述第二配置信息。
可选地,所述第二配置模块701还用于向所述第一设备发送所述第一配置信息。
可选地,接收的第二配置信息或发送的第一配置信息由以下方式至少之一承载:
RRC;
MAC CE;
物理帧前导序列。
可选地,所述第二配置模块701还用于从所述第一设备接收设备能力信息或辅助信息,所述设备能力信息用于指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输参数配置。
由上述实施例的技术方案可知,本申请实施例通过从网络节点接收所述 第一配置信息或者,通过出厂预配置方式获取所述第一配置信息,从而可以根据不同的通信场景和储能能力对非连续传输的相关参数进行灵活的配置,降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
本申请实施例中的非连续传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的非连续传输装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述非连续传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述非连续传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输,通信接口用于获取第一配置信息。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:天线单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909以及处理器910等中的至少部分部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理单元(Graphics Processing Unit,GPU)9041和麦克风9042,GPU9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072中的至少一种。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。 其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,天线单元901接收来自网络侧设备的下行数据后,可以传输给处理器910进行处理;另外,天线单元901可以向网络侧设备发送上行数据。通常,天线单元901包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括易失性存储器或非易失性存储器,或者,存储器909可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器909包括但不限于这些和任意其它适合类型的存储器。
处理器910可包括一个或多个处理单元;可选的,处理器910集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,天线单元901,用于获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的终端至少进行通信传输,处于所述第二模式下的终端进行能量采集而不进行通信传输。
处理器910,用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述终端为反向散射通信的发送设备。
可选地,所述第一配置信息包括以下至少两项:
所述非连续传输周期的长度;
在所述非连续传输周期中,处于所述第一模式下的时间长度;
在所述非连续传输周期中,处于所述第二模式下的时间长度。
可选地,所述第一配置信息还用于配置以下至少一项:
第一计时器;其中,所述终端在所述第一计时器运行期间与第二设备进行通信传输,所述第一计时器由在所述非连续传输周期内接收到的通信调度 指令触发开启;
第一非连续传输周期的长度;
第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
与所述第一非连续传输周期相关的第二计时器;其中,所述终端在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
第一命令;其中,所述终端在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
第二命令;其中,所述终端在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
可选地,所述第一命令和/或第二命令由以下方式至少之一承载:
MAC CE;
物理帧前导序列。
可选地,所述终端在处于所述第一模式时与第二设备进行通信传输,或者,在处于所述第一模式时与所述第二设备进行通信传输并进行能量采集;
所述终端在处于所述第二模式时进行能量采集。
可选地,所述第二设备为支持执行以下操作的设备:
为所述终端提供用于能量采集的射频信号和反向散射载波信号;
与所述终端进行通信传输。
本申请实施例降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
基于上述实施例,可选地,所述天线单元901用于:
从网络节点接收所述第一配置信息;
或者,通过出厂预配置方式获取所述第一配置信息;
其中,所述网络节点包括以下至少之一:
所述第二设备;
除所述终端和第二设备外的其它网络设备。
可选地,从所述网络节点接收的第一配置信息由以下方式至少之一承载:
RRC;
MAC CE;
物理帧前导序列。
可选地,所述天线单元901还用于向所述网络节点发送设备能力信息或辅助信息,所述设备能力信息用于指示所述终端支持的储能能力、储能容量,所述辅助信息用于指示所述终端期望的非连续传输的参数配置。
本申请实施例可以根据不同的通信场景和储能能力对非连续传输的相关参数进行灵活的配置,降低了反向散射通信的发送设备盲检数据传输调度信息、信令及同步信息的检测次数,因而降低设备功耗。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器 用于根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号,通信接口用于获取第二配置信息。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络侧设备1000包括:天线101、射频装置102、基带装置103、处理器104和存储器105。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置103中实现,该基带装置103包括基带处理器。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1000还包括:存储在存储器105上并可在处理器104上运行的指令或程序,处理器104调用存储器105中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述非连续传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述非连续传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述非连续传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种非连续传输系统,包括:第一设备及第二设 备,所述第一设备可用于执行如上所述的非连续传输方法的步骤,所述第二设备可用于执行如上所述的非连续传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (23)

  1. 一种非连续传输方法,其中,包括:
    第一设备获取第一配置信息,所述第一配置信息用于为所述第一设备配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第一设备至少进行通信传输,处于所述第二模式下的第一设备进行能量采集而不进行通信传输;
    所述第一设备根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述第一设备为反向散射通信的发送设备。
  2. 根据权利要求1所述的方法,其中,所述第一配置信息包括以下至少两项:
    所述非连续传输周期的长度;
    在所述非连续传输周期中,处于所述第一模式下的时间长度;
    在所述非连续传输周期中,处于所述第二模式下的时间长度。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息还用于配置以下至少一项:
    第一计时器;其中,所述第一设备在所述第一计时器运行期间与第二设备进行通信传输,所述第一计时器由在所述非连续传输周期内接收到的通信调度指令触发开启;
    第一非连续传输周期的长度;
    第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
    与所述第一非连续传输周期相关的第二计时器;其中,所述第一设备在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
    第一命令;其中,所述第一设备在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
    第二命令;其中,所述第一设备在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
  4. 根据权利要求3所述的方法,其中,所述第一命令和/或第二命令由以下方式至少之一承载:
    MAC CE;
    物理帧前导序列。
  5. 根据权利要求1所述的方法,其中,所述获取第一配置信息包括:
    从网络节点接收所述第一配置信息;
    或者,通过出厂预配置方式获取所述第一配置信息;
    其中,所述网络节点包括以下至少之一:
    所述第二设备;
    除所述第一设备和第二设备外的其它网络设备。
  6. 根据权利要求5所述的方法,其中,从所述网络节点接收的第一配置信息由以下方式至少之一承载:
    RRC;
    MAC CE;
    物理帧前导序列。
  7. 根据权利要求6所述的方法,其中,在从网络节点接收所述第一配置信息之前,所述方法还包括:
    向所述网络节点发送设备能力信息或辅助信息,所述设备能力信息用于指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输的参数配置。
  8. 根据权利要求1所述的方法,其中,所述第一设备在处于所述第一模式时与第二设备进行通信传输,或者,在处于所述第一模式时与所述第二设备进行通信传输并进行能量采集;
    所述第一设备在处于所述第二模式时进行能量采集。
  9. 根据权利要求1所述的方法,其中,所述第二设备为支持执行以下操作的设备:
    为所述第一设备提供用于能量采集的射频信号和反向散射载波信号;
    与所述第一设备进行通信传输。
  10. 一种非连续传输装置,其中,包括:
    第一配置模块,用于获取第一配置信息,所述第一配置信息用于配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少进行通信传输,处于所述第二模式下的非连续传输装置进行能量采集而不进行通信传输;
    第一执行模块,用于根据所述第一配置信息进行能量采集操作或与第二设备进行通信传输;其中,所述非连续传输装置为反向散射通信的发送设备。
  11. 一种非连续传输方法,其中,包括:
    第二设备获取第二配置信息,所述第二配置信息用于为所述第二设备配置非连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的第二设备至少与第一设备进行通信传输,处于所述第二模式下的第二设备向所述第一设备发送用于能量采集的射频信号;
    所述第二设备根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
  12. 根据权利要求11所述的方法,其中,所述第二配置信息包括以下至少两项:
    所述非连续传输周期的长度;
    在所述非连续传输周期中,处于所述第一模式下的时间长度;
    在所述非连续传输周期中,处于所述第二模式下的时间长度。
  13. 根据权利要求12所述的方法,其中,所述第二配置信息还用于配置 以下至少一项:
    第一计时器;其中,所述第二设备在所述第一计时器运行期间与第一设备进行通信传输;
    第一非连续传输周期的长度;
    第二非连续传输周期的长度;其中,所述第二非连续传输周期的长度大于所述第一非连续传输周期的长度;
    与所述第一非连续传输周期相关的第二计时器;其中,所述第二设备在从所述第二计时器的开启到结束期间末接收到与所述通信传输相关的调度指示或数据传输的情况下切换到第二非连续传输周期长度的非连续传输;
    第一命令;其中,所述第二设备在接收到所述第一命令后停止所述第一计时器,并切换到第二模式;
    第二命令;其中,所述第二设备在接收到所述第二命令后停止所述第二计时器,并进入到第二非连续传输周期长度的非连续传输。
  14. 根据权利要求13所述的方法,其中,所述第一命令和/或第二命令由以下方式至少之一承载:
    MAC CE;
    物理帧前导序列。
  15. 根据权利要求11所述的方法,其中,所述获取第二配置信息包括:
    从除所述第一设备和第二设备外的其它网络节点接收所述第二配置信息;
    或者,通过出厂预配置方式获取所述第二配置信息。
  16. 根据权利要求11所述的方法,其中,在获取第二配置信息之后,所述方法还包括:
    所述第二设备向所述第一设备发送所述第一配置信息。
  17. 根据权利要求15或16所述的方法,其中,接收的第二配置信息或发送的第一配置信息由以下方式至少之一承载:
    RRC;
    MAC CE;
    物理帧前导序列。
  18. 根据权利要求16所述的方法,其中,在所述第二设备发送所述第一配置信息之前,所述方法还包括:
    从所述第一设备接收设备能力信息或辅助信息,所述设备能力信息用于指示所述第一设备支持的储能能力、储能容量,所述辅助信息用于指示所述第一设备期望的非连续传输参数配置。
  19. 根据权利要求11所述的方法,其中,所述第二设备为支持执行以下操作的设备:
    为所述第一设备提供用于能量采集的射频信号和反向散射载波信号;
    与所述第一设备进行通信传输。
  20. 一种非连续传输装置,其中,包括:
    第二配置模块,用于获取第二配置信息,所述第二配置信息用于配置非 连续传输的第一模式和第二模式下的相关参数;其中,处于所述第一模式下的非连续传输装置至少与第一设备进行通信传输,处于所述第二模式下的非连续传输装置向所述第一设备发送用于能量采集的射频信号;
    第二执行模块,用于根据所述第二配置信息与所述第一设备进行通信传输或向所述第一设备发送射频信号;其中,所述第一设备为反向散射通信的发送设备。
  21. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9任一项所述的非连续传输方法的步骤。
  22. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求11至19任一项所述的非连续传输方法的步骤。
  23. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-9任一项所述的非连续传输方法,或者实现如权利要求11至19任一项所述的非连续传输方法的步骤。
PCT/CN2023/095011 2022-05-20 2023-05-18 非连续传输方法、装置、终端及网络侧设备 WO2023222076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210550743.0A CN117156608A (zh) 2022-05-20 2022-05-20 非连续传输方法、装置、终端及网络侧设备
CN202210550743.0 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023222076A1 true WO2023222076A1 (zh) 2023-11-23

Family

ID=88834655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095011 WO2023222076A1 (zh) 2022-05-20 2023-05-18 非连续传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117156608A (zh)
WO (1) WO2023222076A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343216A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 物联网数据传输方法、装置、终端设备及可读存储介质
CN112888051A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 用于非授权频段的drx的方法和终端装置
WO2021146962A1 (zh) * 2020-01-21 2021-07-29 Oppo广东移动通信有限公司 非连续接收参数的处理方法、存储介质和处理
CN113228799A (zh) * 2018-09-27 2021-08-06 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN113841440A (zh) * 2019-05-17 2021-12-24 Idac控股公司 用于能量收集的波形设计和信令的方法和装置
CN114080065A (zh) * 2020-08-10 2022-02-22 维沃移动通信有限公司 非连续发送方法、信号发送处理方法及相关设备
CN115884253A (zh) * 2021-09-29 2023-03-31 维沃移动通信有限公司 反向散射通信方法、装置及通信设备
CN115942373A (zh) * 2021-09-29 2023-04-07 维沃移动通信有限公司 信息传输方法、装置、终端设备及网络侧设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228799A (zh) * 2018-09-27 2021-08-06 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN111343216A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 物联网数据传输方法、装置、终端设备及可读存储介质
CN113841440A (zh) * 2019-05-17 2021-12-24 Idac控股公司 用于能量收集的波形设计和信令的方法和装置
CN112888051A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 用于非授权频段的drx的方法和终端装置
WO2021146962A1 (zh) * 2020-01-21 2021-07-29 Oppo广东移动通信有限公司 非连续接收参数的处理方法、存储介质和处理
CN114080065A (zh) * 2020-08-10 2022-02-22 维沃移动通信有限公司 非连续发送方法、信号发送处理方法及相关设备
CN115884253A (zh) * 2021-09-29 2023-03-31 维沃移动通信有限公司 反向散射通信方法、装置及通信设备
CN115942373A (zh) * 2021-09-29 2023-04-07 维沃移动通信有限公司 信息传输方法、装置、终端设备及网络侧设备

Also Published As

Publication number Publication date
CN117156608A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2024002339A1 (zh) 唤醒信号监听方法、装置、电子设备、网络设备及介质
WO2023222076A1 (zh) 非连续传输方法、装置、终端及网络侧设备
WO2023221909A1 (zh) 信号处理方法、终端及网络侧设备
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024027554A1 (zh) 定位处理方法、装置、设备和可读存储介质
WO2024017156A1 (zh) Lp-wus的监听和发送方法、终端及网络侧设备
WO2023216984A1 (zh) 信号监听方法、配置方法、装置、终端及网络侧设备
WO2024032489A1 (zh) Prs接收方法及装置、终端
WO2024067508A1 (zh) 小区同步方法、装置、终端、网络侧设备及存储介质
WO2023169397A1 (zh) 非连续接收drx参数配置方法、装置、终端及网络侧设备
WO2023185845A1 (zh) 通信方法、装置及相关设备
WO2024037514A1 (zh) 信息传输方法、装置及通信设备
WO2024088160A1 (zh) 延迟唤醒终端的指示方法、装置及设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2023169571A1 (zh) 唤醒信号接收方法、装置、终端及网络侧设备
WO2024055998A1 (zh) 网络侧状态转换的方法、终端及网络侧设备
WO2024027678A1 (zh) 扩展非连续接收的配置方法及装置、通信设备
WO2023179472A1 (zh) 信息发送方法、信息接收方法、发送端及接收端
WO2023217092A1 (zh) 监听方法、装置、终端、网络侧设备及可读存储介质
WO2024119415A1 (zh) 唤醒信号接收发送方法和装置
WO2023216985A1 (zh) 信号监听方法、配置方法、装置、终端及网络侧设备
WO2024140575A1 (zh) 信号监听方法、终端及网络侧设备
WO2024169808A1 (zh) 工作状态转换方法、装置、终端及网络侧设备
WO2023198108A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023198122A1 (zh) 资源配置方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807027

Country of ref document: EP

Kind code of ref document: A1