WO2021146918A1 - 交通信号灯控制方法、装置、计算机设备和存储介质 - Google Patents

交通信号灯控制方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021146918A1
WO2021146918A1 PCT/CN2020/073506 CN2020073506W WO2021146918A1 WO 2021146918 A1 WO2021146918 A1 WO 2021146918A1 CN 2020073506 W CN2020073506 W CN 2020073506W WO 2021146918 A1 WO2021146918 A1 WO 2021146918A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target
distance
parking line
lane
Prior art date
Application number
PCT/CN2020/073506
Other languages
English (en)
French (fr)
Inventor
李经伟
Original Assignee
深圳元戎启行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳元戎启行科技有限公司 filed Critical 深圳元戎启行科技有限公司
Priority to CN202080003158.8A priority Critical patent/CN113874923B/zh
Priority to PCT/CN2020/073506 priority patent/WO2021146918A1/zh
Publication of WO2021146918A1 publication Critical patent/WO2021146918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • This application relates to the field of automatic driving simulation simulation technology, in particular to a traffic signal light control method, device, computer equipment and storage medium.
  • Autonomous driving simulation technology is a technology that simulates various situations that may be encountered in real driving through a computer. It can accurately simulate the real street scene and provide a reliable and inexpensive simulation test platform for the automatic driving system.
  • a fixed change cycle is usually set for the simulated traffic signal lights, so that the traffic signal lights can realize the periodic change of the signal lights of different colors according to the preset time interval, that is, the state of the traditional traffic signal lights only depends on the time. related.
  • the traffic signal When the traffic signal is in a passable state, the traffic signal will not adjust its state even if there is no driving vehicle at the intersection, causing the traffic signal in the conflicting direction to be in the forbidden state, causing the intersection of the conflicting direction to be blocked, and there is no reasonable allocation of lane resources, resulting in a waste of resources .
  • the embodiments of the present application provide a traffic signal light control method, device, computer equipment, and storage medium, and the technical solutions are as follows:
  • a method for controlling traffic signal lights including:
  • the high-precision map includes lanes, parking lines, and traffic lights; the lanes, parking lines, and traffic lights have an association relationship, and the parking lines carry location information ;
  • the state of the target traffic signal is adjusted according to the distance between the vehicle and the target stop line.
  • a traffic signal light control device including:
  • the simulation scene building module is used to obtain a high-precision map, and build a simulation scene according to the high-precision map.
  • the high-precision map includes lanes, parking lines, and traffic lights; the lanes, parking lines, and traffic lights have an association relationship,
  • the parking line carries position information;
  • a location information acquisition module configured to acquire location information of the vehicle during the driving process of the vehicle in the simulation scene
  • the relationship determination module is configured to determine the driving lane of the vehicle according to the position information of the vehicle, and determine the target parking line and the target traffic signal corresponding to the driving lane of the vehicle according to the association relationship;
  • a distance calculation module configured to calculate the distance between the vehicle and the target parking line according to the location information of the vehicle and the location information of the target parking line;
  • the traffic signal light state conversion module is used to adjust the state of the target traffic light according to the distance between the vehicle and the target parking line.
  • a computer device includes a memory and a processor, and a computer program is stored in the memory.
  • the processor implements the steps in the foregoing method embodiments when the computer program is executed.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • the above-mentioned traffic signal control method, device, computer equipment and storage medium obtain high-precision maps and build simulation scenes based on the high-precision maps.
  • the high-precision maps include lanes, parking lines, and traffic lights; lanes, parking lines, and traffic lights are related
  • the parking line carries position information; during the driving process of the vehicle in the simulation scene, the position information of the vehicle is obtained; the driving lane of the vehicle is determined according to the position information of the vehicle, and the target parking line corresponding to the driving lane of the vehicle is determined according to the association relationship.
  • Target traffic lights calculate the distance between the vehicle and the target parking line according to the location information of the vehicle and the location information of the target parking line; adjust the state of the corresponding traffic lights according to the distance between the vehicle and the target parking line, and improve lane allocation Reasonableness and reduce waste of resources.
  • Fig. 1 is a schematic diagram of an application environment of a traffic signal light control method in an embodiment
  • Figure 2 is a schematic flow chart of a traffic signal light control method in an embodiment
  • FIG. 3 is a schematic diagram of a comparison of calculation methods for the distance between a vehicle and a target parking line in an embodiment
  • FIG. 4 is a schematic diagram of a method for calculating the driving distance of a vehicle in a target driving section in an embodiment
  • FIG. 5 is a schematic flowchart of a method for controlling traffic lights in another embodiment
  • Figure 6 is a structural block diagram of a traffic signal light control device in an embodiment
  • Fig. 7 is a schematic diagram of the internal structure of a computer device in an embodiment.
  • the traffic signal light control method provided in this application can be applied to the application environment as shown in FIG. 1.
  • the server 110 and the emulator terminal 120 communicate through a network.
  • the simulation scene of the simulator terminal includes a lane 122, a stop line 124, a traffic light 126, and a vehicle 128.
  • the server 110 stores a high-precision map, and the high-precision map includes a lane 122, a stop line 124, and a traffic signal 126.
  • the lane 122, the stop line 124, and the traffic signal light 126 have an associated relationship, and the stop line 124 carries position information.
  • the simulator terminal 120 obtains a high-precision map, and builds a simulation scene based on the high-precision map.
  • the simulator terminal 120 obtains the location information of the vehicle 128, determines the driving lane 122 of the vehicle 128 according to the location information of the vehicle 128, and according to the correlation between the lane 122, the stop line 124 and the traffic light 126 , Determine the target stop line 124 and the target traffic light 126 corresponding to the driving lane 122 of the vehicle 128.
  • the simulator terminal 120 calculates the distance between the vehicle 128 and the target parking line 124 according to the location information of the vehicle 128 and the location information of the target parking line 124.
  • the simulator terminal 120 adjusts the state of the target traffic light 126 according to the distance between the vehicle 128 and the target parking line 124.
  • the server 110 may be a single server or a server cluster, and the simulator terminal 120 may be a smart phone, a tablet computer, a wearable device, a personal digital assistant, and the like.
  • a traffic signal light control method is provided. Taking the method applied to the simulator terminal in FIG. 1 as an example for description, the method includes the following steps:
  • Step 202 Obtain a high-precision map, and build a simulation scene based on the high-precision map.
  • the high-precision map includes lanes, parking lines, and traffic lights. The lanes, parking lines, and traffic lights are related, and the parking lines carry location information.
  • the high-precision map refers to a high-precision, finely defined map whose accuracy is accurate to the centimeter level. Compared with traditional maps with meter-level accuracy, high-precision maps can distinguish each lane; and include various traffic elements in a traffic scene, such as lanes, stop lines, and traffic lights. Traffic signal lights are signal lights that direct traffic operation, and are generally composed of red, green, and yellow lights. Red light means no traffic, green light means passable, and yellow light means warning.
  • the on-board sensor of the unmanned vehicle can collect data on real roads to obtain high-precision map data, including lane data, parking line data, and traffic signal data.
  • the unmanned vehicle sends high-precision map data to the server, and generates a high-precision map file on the server.
  • the simulator terminal obtains a high-precision map file to establish the association relationship between lanes, stop lines, and traffic lights, that is, mark each lane with the parking line on it, and mark each parking line with what it must comply with. traffic light.
  • the simulator terminal builds a simulation scene according to the high-precision map after the association relationship is established.
  • the server may establish an association relationship between lanes, parking lines, and traffic lights, and generate a high-precision map file after the association relationship is established.
  • the simulator terminal directly obtains the high-precision map file after the association relationship is established, and builds a simulation scene according to the high-precision map after the association relationship is established.
  • Step 204 Acquire location information of the vehicle during the driving process of the vehicle in the simulation scene.
  • the simulation scene is constructed by the simulator terminal based on the high-precision map after the association relationship is established.
  • the simulation scene includes lanes, stop lines and traffic lights, and there is an association relationship between lanes, stop lines and traffic lights.
  • the simulator terminal obtains the location information of the vehicle.
  • the location information of the vehicle includes information such as the location coordinates and direction of the vehicle.
  • Step 206 Determine the driving lane of the vehicle according to the position information of the vehicle, and determine the target parking line and the target traffic signal corresponding to the driving lane of the vehicle according to the association relationship.
  • the driving lane is the lane where the vehicle is currently driving.
  • the simulator terminal can determine the lane in which the vehicle is currently driving, that is, the driving lane, according to the location information of the vehicle. According to the correlation between the lane, the stop line and the traffic signal, the simulator terminal can determine the target parking line and the target traffic signal corresponding to the driving lane.
  • the target stop line is the stop line on the driving lane
  • the target traffic signal is the traffic signal that the target stop line needs to follow. That is, when the vehicle travels near the target parking line in the driving lane, the driving state of the vehicle needs to be adjusted according to the state of the target traffic light. For example, when the vehicle is near the target stop line and the target traffic light is in the forbidden state (red light), the vehicle must stop driving until the target traffic light is in the passable state (green light).
  • Step 208 According to the location information of the vehicle and the location information of the target parking line, the distance between the vehicle and the target parking line is calculated.
  • the position information of the target parking line includes the position coordinates and direction of the target parking line.
  • the location information of each parking line and the lane driving direction of each lane are stored in the high-precision map. Therefore, after the simulator terminal obtains the location information of the vehicle, it can be based on the lane driving direction of the driving lane. Calculate the distance between the vehicle and the target parking line based on the location information of the vehicle and the location information of the target parking line.
  • Step 210 Adjust the state of the target traffic signal light according to the distance between the vehicle and the target stop line.
  • the state of the target traffic light includes a passable state (green light) and a prohibited state (red light).
  • the simulator terminal can delimit a parking line monitoring area near each parking line. After calculating the distance between the vehicle and the target parking line, the simulator terminal can determine whether the vehicle is within the monitoring domain of the target parking line according to the distance between the vehicle and the target parking line, so as to adjust the state of the target traffic light. For example, when the vehicle is in the monitoring domain of the target parking line, adjust the state of the target traffic signal to a passable state, so that the vehicle can pass smoothly; when the vehicle is not in the monitoring domain of the target parking line, adjust the state of the target traffic signal to The state of prohibition of traffic prevents the occupation of lane resources and waste of resources.
  • the target traffic signal light may be an inductive traffic signal light.
  • Inductive signal lights can determine whether the vehicle is within the monitoring domain of the target parking line according to the distance between the vehicle and the target parking line, so as to adjust its own state.
  • the state of the target traffic signal light may also include a warning state (yellow light).
  • the above traffic signal control method uses a high-precision map to build a simulation scene based on the high-precision map.
  • the high-precision map includes lanes, parking lines, and traffic lights; the lanes, parking lines, and traffic lights are related, and the parking lines carry location information;
  • obtain the position information of the vehicle obtain the position information of the vehicle; determine the driving lane of the vehicle according to the position information of the vehicle, and determine the target parking line and the target traffic signal corresponding to the driving lane of the vehicle according to the association relationship; according to the position of the vehicle
  • the information and the location information of the target parking line are calculated to obtain the distance between the vehicle and the target parking line; the state of the corresponding traffic signal is adjusted according to the distance between the vehicle and the target parking line, the rationality of lane allocation is improved, and the waste of resources is reduced.
  • the driving lane includes the driving direction of the lane and the center line of the lane.
  • Step 208 includes: dividing the driving lane according to the road type of the driving lane to obtain multiple driving sections, and each driving section includes the section boundary line; The intersection of the center line and the boundary line of each section is taken as the section boundary point, and the section boundary point set is obtained, and any section boundary point in the section boundary point set is used as a reference point.
  • the section boundary point carries position information; based on the driving direction of the lane, according to the location of the vehicle Information and the position information of the reference point, calculate the distance from the vehicle to the reference point; based on the driving direction of the lane, according to the position information of the target parking line and the position information of the reference point, calculate the distance from the target parking line to the reference point; calculate the distance from the vehicle to the reference point
  • the difference between the distance between the reference point and the distance between the target parking line and the reference point is the distance between the vehicle and the target parking line.
  • the road types of driving lanes include straight lanes and curved lanes.
  • the distance between the vehicle and the target parking line calculated directly based on the position coordinates of the vehicle and the target parking line is inaccurate. Therefore, the simulator terminal needs to divide the driving lanes to obtain multiple driving sections. Using the driving sections, the distance between the vehicle and the target parking line can be calculated more accurately.
  • the simulator terminal may divide the driving lane according to the road type of the driving lane to obtain multiple driving sections, and each driving section includes a section boundary line.
  • the simulator terminal takes the intersection of the lane end point of the driving lane and the boundary line of each section as the section boundary point, and obtains a set of section boundary points.
  • the simulator terminal calculates the distance between the vehicle and the target parking line, it can use any interval boundary point in the interval boundary point set as a reference point.
  • the section boundary points carry position information, including the position coordinates of the section boundary points and the distance from the section boundary point to the starting position of the lane.
  • the simulator terminal can calculate the distance from the vehicle to the reference point according to the position information of the vehicle and the position information of the reference point, and calculate the target parking according to the position information of the target parking line and the position information of the reference point. The distance from the line to the reference point. After that, the simulator terminal calculates the difference between the distance from the vehicle to the reference point and the distance from the target parking line to the reference point to obtain the distance from the vehicle to the target parking line.
  • the driving lane includes the starting position of the lane
  • the position information carried by the section boundary point includes the position coordinates of the section boundary point and the distance from the section boundary point to the starting position of the lane
  • the position information of the vehicle includes the position coordinates of the vehicle.
  • the distance from the vehicle to the reference point is calculated according to the position information of the vehicle and the position information of the reference point, including: determining the vehicle's target driving range according to the vehicle's position coordinates, and determining the vehicle's target according to the vehicle's target driving range Section boundary point; according to the vehicle's position coordinates and the vehicle's target section boundary point position coordinates, calculate the vehicle's travel distance in the vehicle's target travel area; according to the vehicle's travel distance in the vehicle's target travel area and the vehicle's target
  • the distance between the boundary point of the section and the starting position of the lane is calculated, and the distance between the vehicle and the starting position of the lane is calculated; the difference between the distance between the vehicle and the starting position of the lane and the distance between the reference point and the starting position of the lane is calculated to obtain the distance between the vehicle and the starting position of the lane.
  • the distance of the reference point is calculated according to the position information of the vehicle and the position information of the reference point, including: determining the vehicle's target
  • a driving section includes two section boundary points, which can be divided into section lower boundary points and section upper boundary points based on the driving direction of the lane.
  • the starting position of the lane is located at the starting position of the driving lane. Based on the driving direction of the lane, the starting position of the lane is the lower boundary point of the first driving section.
  • the simulator terminal may determine the interval boundary point closest to the vehicle according to the position coordinates of the vehicle.
  • the boundary point of a certain section connects two adjacent driving sections, which can be the upper boundary point of the previous section or the lower boundary point of the next section. Therefore, the simulator terminal can first obtain the vehicle position line segment according to the vehicle's position coordinates and the position coordinates of the boundary point of the interval closest to the vehicle, and then connect the upper and lower interval boundary points of two adjacent driving intervals to obtain two Calculate the projection of the vehicle position line segment on the center line segment of the two lanes, and determine the target driving range of the vehicle according to the positive and negative values of the projection, so as to obtain the boundary point of the vehicle target range.
  • point m is the location of the vehicle
  • point c is the interval boundary point closest to point m
  • point c can be the upper boundary point of the travel interval (b, c), or The lower boundary point of the driving interval (c, d).
  • the simulator terminal may calculate the driving distance of the vehicle in the target driving section of the vehicle according to the position coordinates of the vehicle and the position coordinates of the lower boundary point of the target section of the vehicle.
  • the simulator terminal adds the distance traveled by the vehicle in the vehicle's target travel interval and the distance from the lower boundary point of the vehicle's target area to the starting position of the lane to calculate the distance from the vehicle to the starting position of the lane.
  • the simulator terminal can calculate the length of the target driving range and the vehicle in the target driving range of the vehicle according to the position coordinates of the vehicle and the position coordinates of the boundary point on the target section of the vehicle. The difference between the distance traveled.
  • the simulator terminal can subtract the aforementioned difference from the distance from the upper boundary point of the vehicle's target section to the starting position of the lane, thereby calculating the distance from the vehicle to the starting position of the lane.
  • the simulator terminal obtains the distance from the vehicle to the reference point by calculating the difference between the distance from the vehicle to the starting position of the lane and the distance from the reference point to the starting position of the lane.
  • the starting position of the lane may be used as a reference point.
  • calculating the travel distance of the vehicle in the target travel section of the vehicle includes: projecting the position coordinates of the vehicle onto the center line of the lane, and calculating Obtain the position coordinates of the projection point of the vehicle; according to the position coordinates of the projection point of the vehicle and the position coordinates of the boundary point of the target section of the vehicle, the travel distance of the vehicle in the target travel section of the vehicle is calculated.
  • the simulator terminal connects the upper and lower boundary points of the target section of the vehicle to obtain the lane center line segment corresponding to the target travel section.
  • the simulator terminal projects the position coordinates of the vehicle onto the lane center line segment corresponding to the target travel interval, and the position coordinates of the projection point of the vehicle can be calculated.
  • the simulator terminal subtracts the position coordinates of the lower boundary point of the target section of the vehicle from the position coordinates of the projection point of the vehicle, thereby calculating the travel distance of the vehicle in the target driving section of the vehicle.
  • the simulator terminal subtracts the position coordinates of the vehicle’s projection point from the position coordinates of the boundary point on the target section of the vehicle, thereby calculating the section length of the target driving section and the target of the vehicle in the vehicle. The difference between the driving distances in the driving range.
  • the target parking line includes the midpoint of the target parking line
  • the position information of the target parking line includes the position coordinates of the midpoint of the target parking line, based on the driving direction of the lane, according to the position information of the target parking line and the position information of the reference point.
  • Calculate the distance from the target parking line to the reference point including: determining the target driving range of the midpoint of the target parking line according to the position coordinates of the midpoint of the target parking line, and determining the midpoint of the target parking line according to the target driving range of the midpoint of the target parking line
  • the boundary point of the target section according to the position coordinates of the midpoint of the target parking line and the position coordinates of the boundary point of the target section of the midpoint of the target parking line, the driving of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line is calculated Distance: According to the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line and the distance from the boundary point of the target section of the midpoint of the target parking line to the starting position of the lane, the target parking line midpoint to the lane is calculated The distance from the starting position; calculate the difference between the distance from the midpoint of the target parking line to the starting position of the lane and the distance from the reference
  • the midpoint of the target parking line is located on the target parking line and is the center point of the target parking line.
  • the simulator terminal can calculate the distance from the target parking line to the reference point according to the position coordinates of the midpoint of the target parking line and the position coordinates of the reference point.
  • the calculation method is the same as that of the distance from the vehicle to the reference point. Do repeat.
  • the driving of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line is calculated.
  • the distance includes: projecting the position coordinates of the midpoint of the target parking line onto the center line of the lane, and calculating the position coordinates of the projection point of the midpoint of the target parking line; according to the position coordinates of the projection point of the midpoint of the target parking line and the center of the target parking line The position coordinates of the boundary point of the target section of the point are calculated, and the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the parking line is calculated.
  • the simulator terminal can calculate the driving of the target parking line midpoint in the target driving range of the target parking line midpoint according to the position coordinates of the target parking line midpoint and the target interval boundary point of the target parking line midpoint.
  • the calculation method of the distance is the same as the calculation method of the distance traveled by the vehicle in the target travel section of the vehicle, and will not be repeated here.
  • the distance between the vehicle and the target parking line is calculated by separately calculating the distance from the vehicle to the reference point and the distance from the target parking line to the reference point, so as to avoid directly using the vehicle and the target parking in a curved lane
  • the position coordinates of the line calculate the error caused by the distance between the vehicle and the target parking line, which improves the accuracy of calculating the distance between the vehicle and the target parking line.
  • step 210 includes: when the distance between the vehicle and the target parking line is less than a preset distance threshold, adjusting the state of the target traffic signal to a passable state; when the distance between the vehicle and the target parking line is When the distance is greater than the preset distance threshold, the state of the target traffic signal light is adjusted to a no-passing state.
  • the preset distance threshold is used to delimit the monitoring area of the parking line.
  • the simulator terminal can adjust the state of the target traffic signal light to a passable state.
  • the distance between the vehicle and the target parking line is greater than the preset distance threshold, it means that the vehicle is located outside the monitoring domain of the target parking line and does not need to pass through the traffic intersection controlled by the target traffic light.
  • the simulator terminal can The state of the target traffic light is adjusted to the prohibited state.
  • the target traffic signal light may be an inductive traffic signal light, which can sense whether there is a vehicle in the monitoring area of the target parking line. When there is a vehicle in the monitoring area of the target parking line, the inductive traffic light can adjust its state to a passable state; when there is no vehicle in the monitoring area of the target parking line, the inductive traffic light can adjust its state to prohibited Traffic status.
  • adjusting the state of the target traffic signal to a no-passing state includes: when the distance between the vehicle and the target parking line is greater than the preset distance threshold When the distance threshold is set, the state of the target traffic light is adjusted to the warning state; after a certain time interval, the warning state is changed to the forbidden state.
  • the state of the traffic light can be changed from the passable state to the warning state.
  • the state of the target traffic light is changed from the warning state to the forbidden state.
  • the state of the target traffic signal when the vehicle is located in the monitoring domain of the target parking line, the state of the target traffic signal is adjusted to the passable state.
  • the state of the target traffic signal is first adjusted to In the warning state, after a certain time interval, the target traffic light is changed to a prohibited state, which ensures the reasonableness of lane allocation and avoids multiple vehicles in the monitoring area of the target stop line, and the state of the target traffic light is prohibited Communication status, causing traffic jams to occur.
  • the method further includes: acquiring the traffic conditions of each lane in the simulation scene, and determining the priority level of each traffic signal light according to the traffic conditions of each lane.
  • Step 210 includes: obtaining the priority level of the traffic signal that conflicts with the direction of the target traffic signal; when the priority level of the traffic signal conflicting with the direction is higher than the target traffic signal, adjusting the state of the target traffic signal according to the state of the traffic signal conflicting in the direction; When the priority level of the traffic signal with conflicting directions is lower than the target traffic signal, the state of the target traffic signal is adjusted according to the distance between the vehicle and the target stop line.
  • the traffic signal that conflicts with the direction of the target traffic signal refers to the traffic signal on the lane that conflicts with the direction of the driving lane. For example, at a cross traffic intersection, vehicles in the horizontal and straight lanes cannot drive at the same time, otherwise it will happen. Crash.
  • the simulator terminal obtains the traffic conditions of each lane in the simulation scene, and determines the priority level of each traffic signal according to the traffic conditions of each lane.
  • the lane in the horizontal direction can lead to the school, and the lane in the straight direction can lead to the shopping mall.
  • the traffic light of the lane in the horizontal direction can be set as the first priority during the time period of going to school, and it will go straight in other time periods.
  • the traffic signal of the lane of the direction is set as the first priority.
  • the simulator terminal can obtain the priority level of the traffic signal that conflicts with the direction of the target traffic signal.
  • the priority level of the traffic signal that conflicts with the direction is lower than the target traffic signal, it can be directly based on the distance between the vehicle and the target stop line. Adjust the status of the target traffic light.
  • adjusting the state of the target traffic signal according to the state of the traffic signal with the direction conflict includes: obtaining the state of the traffic signal with the direction conflict; When the state of the conflicting traffic light is passable or warning state, the state of the target traffic light is adjusted to the forbidden state; when the state of the conflicting traffic light is the forbidden state, the state of the target traffic light is adjusted to the passable state. Traffic status.
  • the simulator terminal needs to check the conflicting traffic signal before adjusting the state of the target traffic signal according to the distance between the vehicle and the target stop line. status.
  • the simulator terminal obtains the status of the traffic signal with a direction conflict.
  • the target traffic signal should be set The state is adjusted to the forbidden state to avoid accidents, and the state of the target traffic signal can be adjusted to the passable state until the state of the traffic signal that conflicts with the direction is the forbidden state.
  • the target traffic signal light may be an inductive traffic signal light
  • the inductive traffic signal light can view the state of the traffic signal lamp with a direction conflict, and adjust its state according to the state of the traffic signal lamp with a direction conflict.
  • the priority level of the traffic lights in each lane is determined.
  • the priority level of the traffic signal is higher than the target traffic signal, when the state of the traffic signal conflicting with the direction is prohibited, the state of the target traffic signal can be adjusted to the passable state to avoid car accidents and improve lane traffic.
  • the safety because the priority of the traffic signal lights of each lane is determined according to the traffic conditions of the lane, therefore, the rationality of the allocation of lane resources is also ensured.
  • another method for controlling traffic lights is provided. Taking the method applied to the simulator terminal in FIG. 1 as an example for description, the method includes the following steps:
  • Step 502 Obtain a high-precision map, and build a simulation scene based on the high-precision map.
  • the high-precision map includes lanes, parking lines, and traffic lights. The lanes, parking lines, and traffic lights are related, and the parking lines carry location information;
  • Step 504 Acquire location information of the vehicle during the driving process of the vehicle in the simulation scene
  • Step 506 Determine the driving lane of the vehicle according to the position information of the vehicle, and determine the target parking line and the target traffic signal corresponding to the driving lane of the vehicle according to the association relationship;
  • Step 508 Divide the driving lane according to the road type of the driving lane to obtain multiple driving sections, and each driving section includes the section boundary line; the intersection of the lane center line and the section boundary line is taken as the section boundary point, and the section boundary point is carried Location information, the location information of the section boundary point includes the position coordinates of the section boundary point and the distance from the section boundary point to the starting position of the lane;
  • Step 510 Determine the boundary point of the target section of the vehicle and the target travel section of the vehicle according to the position coordinates of the vehicle;
  • Step 512 Project the connection line between the boundary point of the target section of the vehicle and the vehicle onto the target travel section of the vehicle, and calculate the vehicle in the target travel section of the vehicle according to the position coordinates of the vehicle and the position coordinates of the boundary point of the target section of the vehicle Driving distance
  • Step 514 Add the travel distance of the vehicle in the vehicle's target travel interval and the distance from the lower boundary point of the vehicle's target area to the starting position of the lane to obtain the distance from the vehicle to the starting position of the lane;
  • Step 516 Obtain the midpoint of the target parking line, and determine the target section boundary point of the midpoint of the target parking line and the target driving section of the midpoint of the target parking line according to the position coordinates of the midpoint of the target parking line;
  • Step 518 Project the connecting line of the target section boundary point between the midpoint of the target parking line and the midpoint of the target parking line onto the target driving section of the midpoint of the target parking line, according to the position coordinates of the midpoint of the target parking line and The position coordinates of the boundary point of the target section of the midpoint of the target parking line are calculated, and the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line is calculated;
  • Step 520 Add the driving distance in the target driving section where the midpoint of the target parking line is at the midpoint of the target parking line and the distance from the lower boundary point of the target section at the midpoint of the target parking line to the starting position of the lane to obtain the target The distance from the stop line to the starting position of the lane;
  • Step 522 Calculate the difference between the distance between the vehicle and the starting position of the lane and the distance between the target parking line and the starting position of the lane to obtain the distance between the vehicle and the target parking line;
  • Step 524 Obtain the traffic condition of each lane in the simulation scene, and determine the priority level of each traffic signal light according to the traffic condition of each lane;
  • Step 526 When the distance between the vehicle and the target parking line is greater than the preset distance threshold, adjust the state of the target traffic light to a warning state; after a certain time interval, change the warning state to a no-passing state;
  • Step 528 When the distance between the vehicle and the target stop line is less than the preset distance threshold, obtain the priority level of the traffic signal that conflicts with the direction of the target traffic signal;
  • Step 530 When the priority level of the traffic signal lamp with conflicting directions is lower than the target traffic signal lamp, adjust the state of the target traffic signal lamp to a passable state;
  • Step 532 when the priority level of the traffic signal lamp with the conflicting direction is higher than the target traffic signal, obtain the state of the traffic signal with the conflicting direction;
  • Step 534 When the state of the traffic signal lamp with the conflicting direction is the passable state or the warning state, the state of the target traffic signal lamp is adjusted to the forbidden state;
  • step 536 when the state of the traffic signal lamp with the conflicting direction is a state of forbidden to pass, the state of the target traffic signal is adjusted to a state of passable.
  • the distance between the vehicle and the starting position of the lane and the distance between the target parking line and the starting position of the lane respectively by calculating the distance between the vehicle and the starting position of the lane and the distance between the target parking line and the starting position of the lane respectively, the distance between the lane and the target parking line is obtained, and the distance between the vehicle and the target parking line is avoided in a curved lane.
  • the position coordinates of the target parking line calculate the error of the distance, improve the accuracy of calculating the distance between the lane and the target parking line, and then adjust the state of the target traffic signal according to the distance between the lane and the target parking line;
  • the traffic conditions determine the priority of the traffic lights in each lane.
  • the vehicle When the distance between the vehicle and the target parking line is less than the distance threshold (the vehicle is located in the monitoring area of the target parking line), first check the priority and status of the traffic lights with conflicting directions.
  • the priority level of the traffic signal with conflicting directions is higher than that of the target traffic signal, when the state of the traffic signal with conflicting directions is forbidden, the state of the target traffic signal can be adjusted to the passable state to avoid car accidents and improve
  • the rationality of the allocation of lane resources is also ensured.
  • steps in the flowcharts of FIGS. 2 and 5 are displayed in sequence as indicated by the arrows, these steps are not necessarily executed in sequence in the order indicated by the arrows. Unless specifically stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least part of the steps in Figures 2 and 5 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. These sub-steps or The execution order of the stages is not necessarily carried out sequentially, but may be executed alternately or alternately with other steps or at least part of other steps or sub-steps or stages.
  • a traffic signal light control device 600 including: a simulation scene building module 602, a position information acquisition module 604, a relationship determination module 606, a distance calculation module 608, and a traffic light state conversion Module 610. in:
  • the simulation scene building module 602 is used to obtain a high-precision map, and build a simulation scene according to the high-precision map.
  • the high-precision map includes lanes, parking lines, and traffic lights; the lanes, parking lines, and traffic lights have an association relationship ,
  • the parking line carries location information;
  • the location information acquisition module 604 is configured to acquire location information of the vehicle during the driving process of the vehicle in the simulation scene;
  • the relationship determination module 606 is configured to determine the driving lane of the vehicle according to the position information of the vehicle, and determine the target parking line and the target traffic signal corresponding to the driving lane of the vehicle according to the association relationship;
  • the distance calculation module 608 is configured to calculate the distance between the vehicle and the target parking line according to the location information of the vehicle and the location information of the target parking line;
  • the traffic signal light state conversion module 610 is configured to adjust the state of the target traffic light according to the distance between the vehicle and the target parking line.
  • the distance calculation module 608 is also used to divide the driving lane according to the road type of the driving lane to obtain multiple driving sections.
  • Each driving section includes the section boundary line; and the distance between the center line of the lane and the boundary line of each section is obtained. The intersection is used as the section boundary point to obtain the section boundary point set, and any section boundary point in the section boundary point set is used as a reference point.
  • the section boundary point carries position information; based on the driving direction of the lane, according to the position information of the vehicle and the position information of the reference point , Calculate the distance from the vehicle to the reference point; based on the driving direction of the lane, according to the location information of the target parking line and the location information of the reference point, calculate the distance from the target parking line to the reference point; calculate the distance from the vehicle to the reference point and target parking
  • the difference between the distance between the line and the reference point is the distance between the vehicle and the target parking line.
  • the distance calculation module 608 is also used to determine the target travel interval of the vehicle according to the position coordinates of the vehicle, and determine the boundary point of the target interval of the vehicle according to the target travel interval of the vehicle; according to the position coordinates of the vehicle and the boundary of the target interval of the vehicle The position coordinates of the points are calculated to obtain the driving distance of the vehicle in the target driving range of the vehicle; according to the driving distance of the vehicle in the target driving range of the vehicle and the distance from the boundary point of the target interval of the vehicle to the starting position of the lane, the vehicle to the The distance between the starting position of the lane; the difference between the distance between the vehicle and the starting position of the lane and the distance between the reference point and the starting position of the lane is calculated to obtain the distance from the vehicle to the reference point.
  • the distance calculation module 608 is also used to project the position coordinates of the vehicle onto the center line of the lane to calculate the position coordinates of the projection point of the vehicle; according to the position coordinates of the projection point of the vehicle and the boundary point of the target interval of the vehicle The location coordinates are calculated to get the distance traveled by the vehicle in the target travel range of the vehicle.
  • the distance calculation module 608 is further configured to determine the target driving range of the midpoint of the target parking line according to the position coordinates of the midpoint of the target parking line, and determine the target driving range of the midpoint of the target parking line according to the target driving range of the midpoint of the target parking line.
  • the boundary point of the target section according to the position coordinates of the midpoint of the target parking line and the position coordinates of the boundary point of the target section of the midpoint of the target parking line, the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line is calculated ;According to the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the target parking line and the distance from the boundary point of the target section of the midpoint of the target parking line to the starting position of the lane, the target parking line midpoint to the starting position of the lane is calculated The distance from the starting position; calculate the difference between the distance from the midpoint of the target parking line to the starting position of the lane and the distance from the reference point to the starting position of the lane to obtain the distance from the target parking line to the reference point.
  • the distance calculation module 608 is also used to project the position coordinates of the midpoint of the target parking line onto the center line of the lane, and calculate the position coordinates of the projection point of the midpoint of the target parking line; according to the projection of the midpoint of the target parking line The position coordinates of the point and the position coordinates of the boundary point of the target section of the midpoint of the target parking line are calculated to obtain the driving distance of the midpoint of the target parking line in the target driving section of the midpoint of the parking line.
  • the traffic signal light state conversion module 610 is also used to adjust the state of the target traffic signal light to a passable state when the distance between the vehicle and the target parking line is less than a preset distance threshold; When the distance between the lines is greater than the preset distance threshold, the state of the target traffic signal light is adjusted to a no-passing state.
  • the traffic signal light state conversion module 610 is further used to adjust the state of the target traffic light to the warning state when the distance between the vehicle and the target parking line is greater than the preset distance threshold; after a certain time interval, Change the warning state to the prohibited state.
  • the traffic light state conversion module 610 is also used to obtain the priority level of the traffic light that conflicts with the direction of the target traffic light; when the priority level of the traffic light that conflicts with the direction is higher than the priority of the target traffic light, according to the direction of the traffic conflicting traffic light
  • the state of the signal lamp adjusts the state of the target traffic signal; when the priority level of the traffic signal with conflicting directions is lower than the target traffic signal, the state of the target traffic signal is adjusted according to the distance between the vehicle and the target stop line.
  • the traffic signal light state conversion module 610 is also used to obtain the state of the traffic signal lamp with a direction conflict; when the state of the traffic signal lamp with a direction conflict is a passable state or a warning state, the state of the target traffic signal is adjusted to a prohibited state. Passing status: When the state of the traffic signal light that conflicts with the direction is forbidden, the state of the target traffic light is adjusted to the passable state.
  • the various modules in the above-mentioned traffic signal light control device can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the steps corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 7.
  • the computer equipment includes a processor, a memory, a network interface, a display screen and an input device connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores a step system and a computer program.
  • the internal memory provides an environment for the operation of the step system and the computer program in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a traffic signal light control method.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, a trackball or a touch pad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • FIG. 7 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the steps in the foregoing method embodiments when executing the computer program.
  • a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the steps in the foregoing method embodiments.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Abstract

一种交通信号灯控制方法、装置、计算机设备和存储介质,所述方法包括:获取高精度地图,根据高精度地图搭建仿真场景,高精度地图中包括车道、停车线和交通信号灯;车道、停车线和交通信号灯存在关联关系,停车线携带位置信息(S202);在仿真场景内车辆的行驶过程中,获取车辆的位置信息(S204);根据车辆的位置信息确定车辆的行驶车道,根据关联关系,确定车辆的行驶车道对应的目标停车线和目标交通信号灯(S206);根据车辆的位置信息和目标停车线的位置信息,计算得到车辆与目标停车线之间的距离(S208);根据车辆与目标停车线之间的距离调整目标交通信号灯的状态(S210)。

Description

交通信号灯控制方法、装置、计算机设备和存储介质 技术领域
本申请涉及自动驾驶仿真模拟技术领域,特别是涉及一种交通信号灯控制方法、装置、计算机设备和存储介质。
背景技术
自动驾驶仿真模拟技术是通过计算机对现实驾驶中可能遇到的各种情形进行仿真模拟的技术,可以准确地模拟真实的街景,为自动驾驶系统提供可靠、廉价的模拟测试平台。
传统的自动驾驶仿真模拟技术中,通常对仿真交通信号灯设置固定的变化周期,使得交通信号灯根据预设的时间间隔来实现不同颜色的信号灯的周期性变化,即传统的交通信号灯的状态只与时间有关。当交通信号灯为可通行状态时,即使路口无行驶车辆,交通信号灯也不会调整状态,导致冲突方向的交通信号灯为禁止通行状态,使得冲突方向的路口堵塞,没有合理分配车道资源,造成资源浪费。
发明内容
本申请实施例提供一种交通信号灯控制方法、装置、计算机设备和存储介质,所述技术方案如下:
一种交通信号灯控制方法,包括:
获取高精度地图,根据所述高精度地图搭建仿真场景,所述高精度地图中包括车道、停车线和交通信号灯;所述车道、停车线和交通信号灯存在关联关系,所述停车线携带位置信息;
在所述仿真场景内车辆的行驶过程中,获取所述车辆的位置信息;
根据所述车辆的位置信息确定所述车辆的行驶车道,根据所述关联关系,确定所述车辆的行驶车道对应的目标停车线和目标交通信号灯;
根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离;
根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
一种交通信号灯控制装置,包括:
仿真场景搭建模块,用于获取高精度地图,根据所述高精度地图搭建仿真场景,所述高精度地图中包括车道、停车线和交通信号灯;所述车道、停车线和交通信号灯存在关联 关系,所述停车线携带位置信息;
位置信息获取模块,用于在所述仿真场景内车辆的行驶过程中,获取所述车辆的位置信息;
关系确定模块,用于根据所述车辆的位置信息确定所述车辆的行驶车道,根据所述关联关系,确定所述车辆的行驶车道对应的目标停车线和目标交通信号灯;
距离计算模块,用于根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离;
交通信号灯状态转换模块,用于根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
上述交通信号灯控制方法、装置、计算机设备和存储介质,通过获取高精度地图,根据高精度地图搭建仿真场景,高精度地图中包括车道、停车线和交通信号灯;车道、停车线和交通信号灯存在关联关系,停车线携带位置信息;在仿真场景内车辆的行驶过程中,获取车辆的位置信息;根据车辆的位置信息确定车辆的行驶车道,根据关联关系,确定车辆的行驶车道对应的目标停车线和目标交通信号灯;根据车辆的位置信息和目标停车线的位置信息,计算得到车辆与目标停车线之间的距离;根据车辆与目标停车线之间的距离调整对应的交通信号灯的状态,提高车道分配的合理性,减少资源浪费。
附图说明
图1为一个实施例中交通信号灯控制方法的应用环境示意图;
图2为一个实施例中交通信号灯控制方法的流程示意图;
图3为一个实施例中车辆与目标停车线之间的距离计算方法对比示意图;
图4为一个实施例中车辆在目标行驶区间内的行驶距离计算方法的示意图;
图5为另一个实施例中交通信号灯控制方法的流程示意图;
图6为一个实施例中交通信号灯控制装置的结构框图;
图7为一个实施例中计算机设备的内部结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并 不用于限定本申请。
本申请提供的交通信号灯控制方法,可以应用于如图1所示的应用环境中。其中,服务器110和模拟器终端120通过网络进行通信。模拟器终端的仿真场景中包括车道122、停车线124、交通信号灯126和车辆128。服务器110中存储有高精度地图,高精度地图包括车道122、停车线124和交通信号灯126。其中,车道122、停车线124和交通信号灯126存在关联关系,停车线124携带位置信息。模拟器终端120获取高精度地图,根据高精度地图搭建仿真场景。在仿真场景内车辆128的行驶过程中,模拟器终端120获取车辆128的位置信息,根据车辆128的位置信息确定车辆128的行驶车道122,根据车道122、停车线124和交通信号灯126的关联关系,确定车辆128的行驶车道122对应的目标停车线124和目标交通信号灯126。模拟器终端120根据车辆128的位置信息和目标停车线124的位置信息,计算得到车辆128和目标停车线124之间的距离。模拟器终端120根据车辆128和目标停车线124之间的距离调整目标交通信号灯126的状态。其中,服务器110可以是单个服务器也可以是服务器集群,模拟器终端120可为智能手机、平板电脑、穿戴式设备、个人数字助理等。
在一个实施例中,如图2所示,提供了一种交通信号灯控制方法,以该方法应用于图1中的模拟器终端为例进行说明,包括以下步骤:
步骤202,获取高精度地图,根据高精度地图搭建仿真场景,高精度地图中包括车道、停车线和交通信号灯,车道、停车线和交通信号灯存在关联关系,停车线携带位置信息。
其中,高精度地图是指高精度、精细化定义的地图,其精度精确到厘米级。相对于传统的、精度为米级的地图,高精度地图可以区分各个车道;并且包含交通场景中的各种交通要素,例如车道、停车线和交通信号灯。交通信号灯是指挥交通运行的信号灯,一般由红灯、绿灯、黄灯组成。红灯表示禁止通行,绿灯表示可通行,黄灯表示示警。
具体地,无人车的车载传感器可以对现实道路进行数据采集,得到高精度地图数据,包括车道数据、停车线数据和交通信号灯数据。无人车将高精度地图数据发送至服务器,在服务器上生成高精度地图文件。
进一步地,模拟器终端获取高精度地图文件,建立车道、停车线和交通信号灯之间的关联关系,即为每条车道标注位于其上的停车线,为每条停车线标注其所须遵守的交通信号灯。模拟器终端根据建立关联关系后的高精度地图搭建仿真场景。
在其他实施例中,服务器可以在得到高精度地图数据之后,建立车道、停车线和交通信号灯之间的关联关系,生成建立关联关系后的高精度地图文件。模拟器终端直接获取建立关联关系后的高精度地图文件,根据建立关联关系后的高精度地图搭建仿真场景。
步骤204,在仿真场景内车辆的行驶过程中,获取车辆的位置信息。
其中,仿真场景是模拟器终端根据建立关联关系后的高精度地图搭建得到的。仿真场 景内包括车道、停车线和交通信号灯,车道、停车线和交通信号灯存在关联关系。
具体地,在仿真场景内,在车辆的行驶过程中,模拟器终端获取得到车辆的位置信息。车辆的位置信息包括车辆的位置坐标、方向等信息。
步骤206,根据车辆的位置信息确定车辆的行驶车道,根据关联关系,确定车辆的行驶车道对应的目标停车线和目标交通信号灯。
其中,行驶车道是车辆当前行驶的车道。
具体地,模拟器终端在获取得到车辆的位置信息之后,根据车辆的位置信息,可以确定车辆当前行驶的车道,即行驶车道。根据车道、停车线和交通信号灯之间的关联关系,模拟器终端可以确定行驶车道对应的目标停车线和目标交通信号灯。目标停车线为行驶车道上的停车线,目标交通信号灯为目标停车线需要遵守的交通信号灯。即,当车辆在行驶车道中行驶到目标停车线附近时,需要根据目标交通信号灯的状态来调整车辆的行驶状态。例如,当车辆行驶到目标停车线附近,目标交通信号灯的状态为禁止通行状态(红灯)时,车辆必须停止行驶,直至目标交通信号灯的状态为可通行状态(绿灯)。
步骤208,根据车辆的位置信息和目标停车线的位置信息,计算得到车辆与目标停车线之间的距离。
其中,目标停车线的位置信息包括目标停车线的位置坐标和方向。
具体地,高精度地图中存储有每条停车线的位置信息和每条车道的车道行驶方向,所以,在模拟器终端获取到车辆的位置信息之后,可以基于行驶车道的车道行驶方向,根据车辆的位置信息和目标停车线的位置信息,计算得到车辆与目标停车线之间的距离。
步骤210,根据车辆与目标停车线之间的距离调整目标交通信号灯的状态。
其中,目标交通信号灯的状态包括可通行状态(绿灯)和禁止通行状态(红灯)。
具体地,模拟器终端可以在每条停车线的附近划定停车线监测域。计算得到车辆与目标停车线之间的距离之后,模拟器终端可以根据车辆与目标停车线之间的距离,判断车辆是否在目标停车线的监测域内,以此来调整目标交通信号灯的状态。例如,当车辆在目标停车线的监测域内时,将目标交通信号灯的状态调整至可通行状态,以使车辆顺利通行;当车辆不在目标停车线的监测域内时,将目标交通信号灯的状态调整至禁止通行状态,防止占用车道资源,造成资源浪费。
在一个实施例中,目标交通信号灯可以是感应式交通信号灯。感应式信号灯可以根据车辆与目标停车线之间的距离,判断车辆是否在目标停车线的监测域内,以此来调整自身的状态。
在一个实施例中,目标交通信号灯的状态还可以包括示警状态(黄灯)。
上述交通信号灯控制方法,通过获取高精度地图,根据高精度地图搭建仿真场景,高精度地图中包括车道、停车线和交通信号灯;车道、停车线和交通信号灯存在关联关系, 停车线携带位置信息;在仿真场景内车辆的行驶过程中,获取车辆的位置信息;根据车辆的位置信息确定车辆的行驶车道,根据关联关系,确定车辆的行驶车道对应的目标停车线和目标交通信号灯;根据车辆的位置信息和目标停车线的位置信息,计算得到车辆与目标停车线之间的距离;根据车辆与目标停车线之间的距离调整对应的交通信号灯的状态,提高车道分配的合理性,减少资源浪费。
在一个实施例中,行驶车道包括车道行驶方向和车道中线,步骤208包括:根据行驶车道的道路类型,对行驶车道进行区域划分,得到多个行驶区间,各行驶区间包括区间边界线;将车道中线与各区间边界线的交点作为区间边界点,得到区间边界点集合,将区间边界点集合中任意一个区间边界点作为参考点,区间边界点携带位置信息;基于车道行驶方向,根据车辆的位置信息和参考点的位置信息,计算得到车辆到参考点的距离;基于车道行驶方向,根据目标停车线的位置信息和参考点的位置信息,计算得到目标停车线到参考点的距离;计算车辆到参考点的距离和目标停车线到参考点的距离之间的差值,得到车辆与目标停车线的距离。
其中,行驶车道的道路类型包括直行车道和弯曲车道。如图3所示,当行驶车道为弯曲车道时,直接根据车辆的位置坐标和目标停车线的位置坐标计算得到的车辆与目标停车线之间的距离是不准确的。因此,模拟器终端需要对行驶车道进行区域划分,得到多个行驶区间,利用行驶区间,可以更加准确地计算车辆与目标停车线之间的距离。
具体地,模拟器终端可以根据行驶车道的道路类型,对行驶车道进行区域划分,得到多个行驶区间,各行驶区间包括区间边界线。模拟器终端将行驶车道的车道终点和各区间边界线的交点作为区间边界点,得到区间边界点集合。模拟器终端在计算车辆与目标停车线之间的距离时,可以将区间边界点集合中任意一个区间边界点作为参考点。区间边界点携带位置信息,包括区间边界点的位置坐标和区间边界点到车道起始位置的距离。
进一步地,基于车道行驶方向,模拟器终端可以根据车辆的位置信息和参考点的位置信息,计算得到车辆到参考点的距离,根据目标停车线的位置信息和参考点的位置信息计算得到目标停车线到参考点的距离。之后,模拟器终端再计算车辆到参考点的距离和目标停车线到参考点的距离之间的差值,得到车辆到目标停车线的距离。
在一个实施例中,行驶车道包括车道起始位置,区间边界点携带的位置信息包括区间边界点的位置坐标和区间边界点到车道起始位置的距离,车辆的位置信息包括车辆的位置坐标,基于车道行驶方向,根据车辆的位置信息和参考点的位置信息,计算得到车辆到参考点的距离,包括:根据车辆的位置坐标确定车辆的目标行驶区间,根据车辆的目标行驶区间确定车辆的目标区间边界点;根据车辆的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离;根据车辆在车辆的目标行驶区间内的行驶距离和车辆的目标区间边界点到车道起始位置的距离,计算得到车辆到车道起始 位置的距离;计算车辆到车道起始位置的距离和参考点到车道起始位置的距离之间的差值,得到车辆到参考点的距离。
其中,一个行驶区间包括两个区间边界点,以车道行驶方向为准,可以将其分为区间下边界点和区间上边界点。车道起始位置位于行驶车道的起始位置上,基于车道行驶方向,车道起始位置为第一个行驶区间的区间下边界点。
具体地,模拟器终端可以根据车辆的位置坐标确定与车辆距离最近的区间边界点。而某一个区间边界点连接两个相邻的行驶区间,可以是上一个区间的区间上边界点,也可以是下一个区间的区间下边界点。所以,模拟器终端可以先根据车辆的位置坐标以及与车辆距离最近的区间边界点的位置坐标,得出车辆位置线段,再分别将两个相邻的行驶区间的上下区间边界点连接,得到两条车道中线线段,计算车辆位置线段在两条车道中线线段上的投影,根据投影的正负值,确定车辆的目标行驶区间,从而得到车辆目标区间边界点。
例如,如图4所示,点m为车辆所在的位置,点c为与点m距离最近的区间边界点,而点c可以是行驶区间(b,c)的区间上边界点,也可以是行驶区间(c,d)的下边界点。所以,连接点m和点c,得到车辆位置向量
Figure PCTCN2020073506-appb-000001
,将点b和点c、点c和点d分别连接,得到车道中线向量
Figure PCTCN2020073506-appb-000002
和向量
Figure PCTCN2020073506-appb-000003
,分别计算
Figure PCTCN2020073506-appb-000004
Figure PCTCN2020073506-appb-000005
的值,可以得到
Figure PCTCN2020073506-appb-000006
的值为正,
Figure PCTCN2020073506-appb-000007
的值为负,因此,可以确定点m对应的车辆的目标行驶区间为行驶区间(b,c),目标区间下边界点为b,目标区间上边界点为c。
在一个实施例中,基于车道行驶方向,模拟器终端可以根据车辆的位置坐标和车辆的目标区间下边界点的位置坐标,可以计算得到车辆在车辆的目标行驶区间内的行驶距离。模拟器终端将车辆在车辆的目标行驶区间内的行驶距离和车辆的目标区间下边界点到车道起始位置的距离相加,从而计算得到车辆到车道起始位置的距离。
在一个实施例中,基于车道行驶方向,模拟器终端可以根据车辆的位置坐标和车辆的目标区间上边界点的位置坐标,可以计算得到目标行驶区间的区间长度与车辆在车辆的目标行驶区间内的行驶距离之间的差值。模拟器终端可以将车辆的目标区间上边界点到车道起始位置的距离减去上述差值,从而计算得到车辆到车道起始位置的距离。
进一步地,模拟器终端通过计算车辆到车道起始位置的距离和参考点到车道起始位置的距离之间的差值,得到车辆到参考点的距离。
在一个实施例中,可以将车道起始位置作为参考点。
在一个实施例中,根据车辆的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离,包括:将车辆的位置坐标投影到车道中线上,计算得到车辆的投影点的位置坐标;根据车辆的投影点的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离。
具体地,模拟器终端将车辆的目标区间上下两个边界点连接,得到目标行驶区间对应 的车道中线线段。模拟器终端将车辆的位置坐标投影到目标行驶区间对应的车道中线线段上,可以计算得到车辆的投影点的位置坐标。基于车道行驶方向,模拟器终端将车辆的投影点的位置坐标减去车辆的目标区间下边界点的位置坐标,从而计算得到车辆在车辆的目标行驶区间内的行驶距离。
在一个实施例中,基于车道行驶方向,模拟器终端将车辆的目标区间上边界点的位置坐标减去车辆的投影点的位置坐标,从而计算得到目标行驶区间的区间长度与车辆在车辆的目标行驶区间内的行驶距离之间的差值。
在一个实施例中,目标停车线包括目标停车线中点,目标停车线的位置信息包括目标停车线中点的位置坐标,基于车道行驶方向,根据目标停车线的位置信息和参考点的位置信息,计算得到目标停车线到参考点的距离,包括:根据目标停车线中点的位置坐标确定目标停车线中点的目标行驶区间,根据目标停车线中点的目标行驶区间确定目标停车线中点的目标区间边界点;根据目标停车线中点的位置坐标和目标停车线中点的目标区间边界点的位置坐标,计算得到目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离;根据目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离和目标停车线中点的目标区间边界点到车道起始位置的距离,计算得到目标停车线中点到车道起始位置的距离;计算目标停车线中点到车道起始位置的距离和参考点到车道起始位置的距离之间的差值,得到目标停车线到参考点的距离。
其中,目标停车线中点位于目标停车线上,是目标停车线的中心点。
具体地,模拟器终端可以根据目标停车线中点的位置坐标和参考点的位置坐标计算得到目标停车线到参考点的距离,计算方法与车辆到参考点的距离的计算方法相同,在此不做赘述。
在一个实施例中,根据目标停车线中点的位置坐标和目标停车线中点的目标区间边界点的位置坐标,计算得到目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离,包括:将目标停车线中点的位置坐标投影到车道中线上,计算得到目标停车线中点的投影点的位置坐标;根据目标停车线中点的投影点的位置坐标和目标停车线中点的目标区间边界点的位置坐标,计算得到目标停车线中点在停车线中点的目标行驶区间内的行驶距离。
具体地,模拟器终端可以根据目标停车线中点的位置坐标和目标停车线中点的目标区间边界点的位置坐标计算得到目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离,计算方法与车辆在车辆的目标行驶区间内的行驶距离的计算方法相同,在此不做赘述。
在本实施例中,通过分别计算车辆到参考点的距离和目标停车线到参考点的距离,从而计算得到车辆与目标停车线之间的距离,避免在弯曲车道中,直接利用车辆和目标停车线的位置坐标计算车辆与目标停车线之间的距离产生的误差,提高了计算车辆与目标停车 线之间的距离的准确性。
在一个实施例中,步骤210包括:当车辆与目标停车线之间的距离小于预设的距离阈值时,将目标交通信号灯的状态调整为可通行状态;当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为禁止通行状态。
其中,预设的距离阈值用于划定停车线的监测域。
具体地,当车辆与目标停车线之间的距离小于预设的距离阈值时,说明车辆位于目标停车线的监测域内,此时,模拟器终端可以将目标交通信号灯的状态调整为可通行状态。当车辆与目标停车线之间的距离大于预设的距离阈值时,说明车辆位于目标停车线的监测域外,还不需要经过目标交通信号灯控制的交通路口,为了避免资源浪费,模拟器终端可以将目标交通信号灯的状态调整至禁止通行状态。
在一个实施例中,目标交通信号灯可以是感应式交通信号灯,可以感应目标停车线的监测域内是否存在车辆。当目标停车线的监测域内存在车辆时,感应式交通信号灯可以将自身的状态调整为可通行状态;当目标停车线的监测域内不存在车辆时,感应式交通信号灯可以将自身的状态调整为禁止通行状态。
在一个实施例中,当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为禁止通行状态,包括:当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为示警状态;在一定时间间隔后,将示警状态变换为禁止通行状态。
具体地,在车辆经过目标交通信号灯控制的交通路口之后,在一定的时间间隔内,一直没有车辆位于目标停车线的监测域内,那么,可以将交通信号灯的状态由可通行状态变换为示警状态。在一定的时间间隔后,若目标停车线的监测域内仍然不存在车辆,那么,将目标交通信号灯的状态由示警状态变换为禁止通行状态。
在本实施例中,当车辆位于目标停车线的监测域内时,将目标交通信号灯的状态调整为可通行状态,当目标停车线的监测域内不存在车辆时,先将目标交通信号灯的状态调整为示警状态,在一定时间间隔后,将目标交通信号灯的转改调整为禁止通行状态,保证了车道分配的合理性,避免目标停车线的监测域内存在多辆车辆,而目标交通信号灯的状态为禁止通信状态,导致行车堵塞的情况发生。
在一个实施例中,方法还包括:获取仿真场景中各车道的交通情况,根据各车道的交通情况确定各交通信号灯的优先级别。步骤210包括:获取与目标交通信号灯方向冲突的交通信号灯的优先级别;当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,根据方向冲突的交通信号灯的状态调整目标交通信号灯的状态;当方向冲突的交通信号灯的优先级别低于目标交通信号灯时,根据车辆与目标停车线之间的距离调整目标交通信号灯的状态。
其中,与目标交通信号灯方向冲突的交通信号灯指的是与行驶车道方向冲突的车道上的交通信号灯,例如,在十字交通路口,横行方向和直行方向的车道上的车辆不能同时行驶,否则会发生撞车事件。
具体地,为了车道交通分配的进一步合理化,模拟器终端获取仿真场景内各车道的交通情况,根据各车道的交通情况确定各交通信号灯的优先级别。例如,横行方向的车道可以通往学校,直行方向的车道可以通往商场,那么,可以在上下学的时间段将横行方向的车道的交通信号灯设为第一优先级,在其他时间段将直行方向的车道的交通信号灯设为第一优先级。
进一步地,模拟器终端可以获取与目标交通信号灯方向冲突的交通信号灯的优先级别,当方向冲突的交通信号灯的优先级别低于目标交通信号灯时,可以直接根据车辆与目标停车线之间的距离来调整目标交通信号灯的状态。
在一个实施例中,当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,根据方向冲突的交通信号灯的状态调整目标交通信号灯的状态,包括:获取方向冲突的交通信号灯的状态;当方向冲突的交通信号灯的状态为可通行状态或示警状态时,将目标交通信号灯的状态调整为禁止通行状态;当方向冲突的交通信号灯的状态为禁止通行状态时,将目标交通信号灯的状态调整为可通行状态。
具体地,当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,模拟器终端在根据车辆与目标停车线之间的距离来调整目标交通信号灯的状态之前,还需要查看方向冲突的交通信号灯的状态。模拟器终端获取方向冲突的交通信号灯的状态,当方向冲突的交通信号灯的状态为可通行状态或示警状态时,即使车辆与目标停车线之间的距离小于距离阈值,也应该将目标交通信号灯的状态调整为禁止通行状态,避免发生意外,直至方向冲突的交通信号灯的状态为禁止通行状态时,才可以将目标交通信号灯的状态调整为可通行状态。
在一个实施例中,目标交通信号灯可以是感应式交通信号灯,感应式交通信号灯可以查看方向冲突的交通信号灯的状态,根据方向冲突的交通信号灯的状态调整自身的状态。
在本实施例中,根据车道的交通情况,确定各车道的交通信号灯的优先级别,当目标停车线的监测域内存在车辆时,需要先查看方向冲突的交通信号灯的优先级别和状态,当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,则当方向冲突的交通信号灯的状态为禁止通行状态时,才可以将目标交通信号灯的状态调整为可通行状态,避免发生车祸,提高了车道交通的安全性,由于各车道的交通信号灯的优先级别是根据车道的交通情况确定的,因此,还保证了车道资源分配的合理性。
在一个实施例中,如图5所示,提供了另一种交通信号灯控制方法,以该方法应用于图1中的模拟器终端为例进行说明,包括以下步骤:
步骤502,获取高精度地图,根据高精度地图搭建仿真场景,高精度地图中包括车道、停车线和交通信号灯,车道、停车线和交通信号灯存在关联关系,停车线携带位置信息;
步骤504,在仿真场景内车辆的行驶过程中,获取车辆的位置信息;
步骤506,根据车辆的位置信息确定车辆的行驶车道,根据关联关系,确定车辆的行驶车道对应的目标停车线和目标交通信号灯;
步骤508,根据行驶车道的道路类型,对行驶车道进行区域划分,得到多个行驶区间,各行驶区间包括区间边界线;将车道中线与各区间边界线的交点作为区间边界点,区间边界点携带位置信息,区间边界点的位置信息包括区间边界点的位置坐标和区间边界点到车道起始位置的距离;
步骤510,根据车辆的位置坐标确定车辆的目标区间边界点和车辆的目标行驶区间;
步骤512,将车辆与车辆的目标区间边界点的连线投影到车辆的目标行驶区间上,根据车辆的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离;
步骤514,将车辆在车辆的目标行驶区间内的行驶距离和车辆的目标区间下边界点到车道起始位置的距离相加,得到车辆到车道起始位置的距离;
步骤516,获取目标停车线的中点,根据目标停车线的中点的位置坐标确定目标停车线的中点的目标区间边界点和目标停车线的中点的目标行驶区间;
步骤518,将目标停车线的中点与目标停车线的中点的目标区间边界点的连线投影到目标停车线的中点的目标行驶区间上,根据目标停车线的中点的位置坐标和目标停车线的中点的目标区间边界点的位置坐标,计算得到目标停车线的中点在目标停车线的中点的目标行驶区间内的行驶距离;
步骤520,将目标停车线的中点在目标停车线的中点的目标行驶区间内的行驶距离和目标停车线的中点的目标区间下边界点到车道起始位置的距离相加,得到目标停车线到车道起始位置的距离;
步骤522,计算车辆到车道起始位置的距离和目标停车线到车道起始位置的距离之间的差值,得到车辆与目标停车线的距离;
步骤524,获取所述仿真场景中各车道的交通情况,根据所述各车道的交通情况确定各交通信号灯的优先级别;
步骤526,当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为示警状态;在一定时间间隔后,将示警状态变换为禁止通行状态;
步骤528,当车辆与目标停车线之间的距离小于预设的距离阈值时,获取与目标交通信号灯方向冲突的交通信号灯的优先级别;
步骤530,当方向冲突的交通信号灯的优先级别低于目标交通信号灯时,将目标交通 信号灯的状态调整至可通行状态;
步骤532,当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,获取方向冲突的交通信号灯的状态;
步骤534,当方向冲突的交通信号灯的状态为可通行状态或示警状态时,将目标交通信号灯的状态调整为禁止通行状态;
步骤536,当方向冲突的交通信号灯的状态为禁止通行状态时,将目标交通信号灯的状态调整为可通行状态。
在本实施例中,通过分别计算车辆到车道起始位置的距离和目标停车线到车道起始位置的距离,从而得到车道与目标停车线之间的距离,避免在弯曲车道中直接根据车辆和目标停车线的位置坐标计算距离产生的误差,提高计算车道与目标停车线之间的距离的准确性,再根据车道与目标停车线之间的距离来调整目标交通信号灯的状态;根据各车道的交通情况确定各车道的交通信号灯的优先级,当车辆与目标停车线之间的距离小于距离阈值(车辆位于目标停车线的监测域内)时,先查看方向冲突的交通信号灯的优先级别和状态,当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,则当方向冲突的交通信号灯的状态为禁止通行状态时,才可以将目标交通信号灯的状态调整为可通行状态,避免发生车祸,提高了车道交通的安全性,由于各车道的交通信号灯的优先级别是根据车道的交通情况确定的,因此,还保证了车道资源分配的合理性。
应该理解的是,虽然图2、图5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2、图5中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图6所示,提供了一种交通信号灯控制装置600,包括:仿真场景搭建模块602、位置信息获取模块604、关系确定模块606、距离计算模块608和交通信号灯状态转换模块610。其中:
仿真场景搭建模块602,用于获取高精度地图,根据所述高精度地图搭建仿真场景,所述高精度地图中包括车道、停车线和交通信号灯;所述车道、停车线和交通信号灯存在关联关系,所述停车线携带位置信息;
位置信息获取模块604,用于在所述仿真场景内车辆的行驶过程中,获取所述车辆的位置信息;
关系确定模块606,用于根据所述车辆的位置信息确定所述车辆的行驶车道,根据所 述关联关系,确定所述车辆的行驶车道对应的目标停车线和目标交通信号灯;
距离计算模块608,用于根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离;
交通信号灯状态转换模块610,用于根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
在一个实施例中,距离计算模块608还用于根据行驶车道的道路类型,对行驶车道进行区域划分,得到多个行驶区间,各行驶区间包括区间边界线;将车道中线与各区间边界线的交点作为区间边界点,得到区间边界点集合,将区间边界点集合中任意一个区间边界点作为参考点,区间边界点携带位置信息;基于车道行驶方向,根据车辆的位置信息和参考点的位置信息,计算得到车辆到参考点的距离;基于车道行驶方向,根据目标停车线的位置信息和参考点的位置信息,计算得到目标停车线到参考点的距离;计算车辆到参考点的距离和目标停车线到参考点的距离之间的差值,得到车辆与目标停车线的距离。
在一个实施例中,距离计算模块608还用于根据车辆的位置坐标确定车辆的目标行驶区间,根据车辆的目标行驶区间确定车辆的目标区间边界点;根据车辆的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离;根据车辆在车辆的目标行驶区间内的行驶距离和车辆的目标区间边界点到车道起始位置的距离,计算得到车辆到车道起始位置的距离;计算车辆到车道起始位置的距离和参考点到车道起始位置的距离之间的差值,得到车辆到参考点的距离。
在一个实施例中,距离计算模块608还用于将车辆的位置坐标投影到车道中线上,计算得到车辆的投影点的位置坐标;根据车辆的投影点的位置坐标和车辆的目标区间边界点的位置坐标,计算得到车辆在车辆的目标行驶区间内的行驶距离。
在一个实施例中,距离计算模块608还用于根据目标停车线中点的位置坐标确定目标停车线中点的目标行驶区间,根据目标停车线中点的目标行驶区间确定目标停车线中点的目标区间边界点;根据目标停车线中点的位置坐标和目标停车线中点的目标区间边界点的位置坐标,计算得到目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离;根据目标停车线中点在目标停车线中点的目标行驶区间内的行驶距离和目标停车线中点的目标区间边界点到车道起始位置的距离,计算得到目标停车线中点到车道起始位置的距离;计算目标停车线中点到车道起始位置的距离和参考点到车道起始位置的距离之间的差值,得到目标停车线到参考点的距离。
在一个实施例中,距离计算模块608还用于将目标停车线中点的位置坐标投影到车道中线上,计算得到目标停车线中点的投影点的位置坐标;根据目标停车线中点的投影点的位置坐标和目标停车线中点的目标区间边界点的位置坐标,计算得到目标停车线中点在停车线中点的目标行驶区间内的行驶距离。
在一个实施例中,交通信号灯状态转换模块610还用于当车辆与目标停车线之间的距离小于预设的距离阈值时,将目标交通信号灯的状态调整为可通行状态;当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为禁止通行状态。
在一个实施例中,交通信号灯状态转换模块610还用于当车辆与目标停车线之间的距离大于预设的距离阈值时,将目标交通信号灯的状态调整为示警状态;在一定时间间隔后,将示警状态变换为禁止通行状态。
在一个实施例中,交通信号灯状态转换模块610还用于获取与目标交通信号灯方向冲突的交通信号灯的优先级别;当方向冲突的交通信号灯的优先级别高于目标交通信号灯时,根据方向冲突的交通信号灯的状态调整目标交通信号灯的状态;方向冲突的交通信号灯的优先级别低于目标交通信号灯时,根据车辆与目标停车线之间的距离调整目标交通信号灯的状态。
在一个实施例中,交通信号灯状态转换模块610还用于获取方向冲突的交通信号灯的状态;当方向冲突的交通信号灯的状态为可通行状态或示警状态时,将目标交通信号灯的状态调整为禁止通行状态;当方向冲突的交通信号灯的状态为禁止通行状态时,将目标交通信号灯的状态调整为可通行状态。
关于交通信号灯控制装置的具体限定可以参见上文中对于交通信号灯控制方法的限定,在此不再赘述。上述交通信号灯控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的步骤。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有步骤系统和计算机程序。该内存储器为非易失性存储介质中的步骤系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种交通信号灯控制方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有 计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种交通信号灯控制方法,其特征在于,包括:
    获取高精度地图,根据所述高精度地图搭建仿真场景,所述高精度地图中包括车道、停车线和交通信号灯;所述车道、停车线和交通信号灯存在关联关系,所述停车线携带位置信息;
    在所述仿真场景内车辆的行驶过程中,获取所述车辆的位置信息;
    根据所述车辆的位置信息确定所述车辆的行驶车道,根据所述关联关系,确定所述车辆的行驶车道对应的目标停车线和目标交通信号灯;
    根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离;
    根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述行驶车道包括车道行驶方向和车道中线,所述根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离,包括:
    根据所述行驶车道的道路类型,对所述行驶车道进行区域划分,得到多个行驶区间,各所述行驶区间包括区间边界线;
    将所述车道中线与各所述区间边界线的交点作为区间边界点,得到区间边界点集合,将所述区间边界点集合中任意一个区间边界点作为参考点,所述区间边界点携带位置信息;
    基于所述车道行驶方向,根据所述车辆的位置信息和所述参考点的位置信息,计算得到所述车辆到所述参考点的距离;
    基于所述车道行驶方向,根据所述目标停车线的位置信息和所述参考点的位置信息,计算得到所述目标停车线到所述参考点的距离;
    计算所述车辆到所述参考点的距离和所述目标停车线到所述参考点的距离之间的差值,得到所述车辆与所述目标停车线的距离。
  3. 根据权利要求2所述的方法,其特征在于,所述行驶车道包括车道起始位置,所述区间边界点携带的位置信息包括所述区间边界点的位置坐标和所述区间边界点到所述车道起始位置的距离,所述车辆的位置信息包括所述车辆的位置坐标,所述基于所述车道行驶方向,根据所述车辆的位置信息和所述参考点的位置信息,计算得到所述车辆到所述参考点的距离,包括:
    根据所述车辆的位置坐标确定所述车辆的目标行驶区间,根据所述车辆的目标行驶区间确定所述车辆的目标区间边界点;
    根据所述车辆的位置坐标和所述车辆的目标区间边界点的位置坐标,计算得到所述车辆在所述车辆的目标行驶区间内的行驶距离;
    根据所述车辆在所述车辆的目标行驶区间内的行驶距离和所述车辆的目标区间边界点到所述车道起始位置的距离,计算得到所述车辆到所述车道起始位置的距离;
    计算所述车辆到所述车道起始位置的距离和所述参考点到所述车道起始位置的距离之间的差值,得到所述车辆到所述参考点的距离。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述车辆的位置坐标和所述车辆的目标区间边界点的位置坐标,计算得到所述车辆在所述车辆的目标行驶区间内的行驶距离,包括:
    将所述车辆的位置坐标投影到所述车道中线上,计算得到所述车辆的投影点的位置坐标;
    根据所述车辆的投影点的位置坐标和所述车辆的目标区间边界点的位置坐标,计算得到所述车辆在所述车辆的目标行驶区间内的行驶距离。
  5. 根据权利要求3所述的方法,其特征在于,所述目标停车线包括目标停车线中点,所述目标停车线的位置信息包括所述目标停车线中点的位置坐标,所述基于所述车道行驶方向,根据所述目标停车线的位置信息和所述参考点的位置信息,计算得到所述目标停车线到所述参考点的距离,包括:
    根据所述目标停车线中点的位置坐标确定所述目标停车线中点的目标行驶区间,根据所述目标停车线中点的目标行驶区间确定所述目标停车线中点的目标区间边界点;
    根据所述目标停车线中点的位置坐标和所述目标停车线中点的目标区间边界点的位置坐标,计算得到所述目标停车线中点在所述目标停车线中点的目标行驶区间内的行驶距离;
    根据所述目标停车线中点在所述目标停车线中点的目标行驶区间内的行驶距离和所述目标停车线中点的目标区间边界点到所述车道起始位置的距离,计算得到所述目标停车线中点到所述车道起始位置的距离;
    计算所述目标停车线中点到所述车道起始位置的距离和所述参考点到所述车道起始位置的距离之间的差值,得到所述目标停车线到所述参考点的距离。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述目标停车线中点的位置坐标和所述目标停车线中点的目标区间边界点的位置坐标,计算得到所述目标停车线中点在所述目标停车线中点的目标行驶区间内的行驶距离,包括:
    将所述目标停车线中点的位置坐标投影到所述车道中线上,计算得到所述目标停车线中点的投影点的位置坐标;
    根据所述目标停车线中点的投影点的位置坐标和所述目标停车线中点的目标区间边界点的位置坐标,计算得到所述目标停车线中点在所述停车线中点的目标行驶区间内的行驶距离。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态包括:
    当所述车辆与所述目标停车线之间的距离小于预设的距离阈值时,将所述目标交通信号灯的状态调整为可通行状态;
    当所述车辆与所述目标停车线之间的距离大于预设的距离阈值时,将所述目标交通信号灯的状态调整为禁止通行状态。
  8. 根据权利要求7所述的方法,其特征在于,所述当所述车辆与所述目标停车线之间的距离大于预设的距离阈值时,将所述目标交通信号灯的状态调整为禁止通行状态,包括:
    当所述车辆与所述目标停车线之间的距离大于预设的距离阈值时,将所述目标交通信号灯的状态调整为示警状态;
    在一定时间间隔后,将所述示警状态变换为禁止通行状态。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述仿真场景中各车道的交通情况,根据所述各车道的交通情况确定各交通信号灯的优先级别;
    所述根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态,包括:
    获取与所述目标交通信号灯方向冲突的交通信号灯的优先级别;
    当所述方向冲突的交通信号灯的优先级别高于所述目标交通信号灯时,根据所述方向冲突的交通信号灯的状态调整所述目标交通信号灯的状态;
    当所述方向冲突的交通信号灯的优先级别低于所述目标交通信号灯时,根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
  10. 根据权利要求9所述的方法,其特征在于,所述当所述方向冲突的交通信号灯的优先级别高于所述目标交通信号灯时,根据所述方向冲突的交通信号灯的状态调整所述目 标交通信号灯的状态,包括:
    获取方向冲突的交通信号灯的状态;
    当所述方向冲突的交通信号灯的状态为可通行状态或示警状态时,将所述目标交通信号灯的状态调整为禁止通行状态;
    当所述方向冲突的交通信号灯的状态为禁止通行状态时,将所述目标交通信号灯的状态调整为可通行状态。
  11. 一种交通信号灯控制装置,其特征在于,包括:
    仿真场景搭建模块,用于获取高精度地图,根据所述高精度地图搭建仿真场景,所述高精度地图中包括车道、停车线和交通信号灯;所述车道、停车线和交通信号灯存在关联关系,所述停车线携带位置信息;
    位置信息获取模块,用于在所述仿真场景内车辆的行驶过程中,获取所述车辆的位置信息;
    关系确定模块,用于根据所述车辆的位置信息确定所述车辆的行驶车道,根据所述关联关系,确定所述车辆的行驶车道对应的目标停车线和目标交通信号灯;
    距离计算模块,用于根据所述车辆的位置信息和所述目标停车线的位置信息,计算得到所述车辆与所述目标停车线之间的距离;
    交通信号灯状态转换模块,用于根据所述车辆与所述目标停车线之间的距离调整所述目标交通信号灯的状态。
  12. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至10中任一项所述方法的步骤。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的方法的步骤。
PCT/CN2020/073506 2020-01-21 2020-01-21 交通信号灯控制方法、装置、计算机设备和存储介质 WO2021146918A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080003158.8A CN113874923B (zh) 2020-01-21 2020-01-21 交通信号灯控制方法、装置、计算机设备和存储介质
PCT/CN2020/073506 WO2021146918A1 (zh) 2020-01-21 2020-01-21 交通信号灯控制方法、装置、计算机设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073506 WO2021146918A1 (zh) 2020-01-21 2020-01-21 交通信号灯控制方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021146918A1 true WO2021146918A1 (zh) 2021-07-29

Family

ID=76992006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073506 WO2021146918A1 (zh) 2020-01-21 2020-01-21 交通信号灯控制方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN113874923B (zh)
WO (1) WO2021146918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440049A (zh) * 2022-09-22 2022-12-06 中兴(温州)轨道通讯技术有限公司 一种tod综合区交通用智能化信号灯控制方法、系统及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547078A (zh) * 2022-09-23 2022-12-30 北京京东乾石科技有限公司 信息交互方法及装置、电子设备和计算机可读存储介质
CN117437581B (zh) * 2023-12-20 2024-03-01 神思电子技术股份有限公司 基于图像语义分割和视角缩放的机动车拥堵长度计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572006A (zh) * 2008-04-30 2009-11-04 奥城同立科技开发(北京)有限公司 交通信号灯控制方法
US20170178508A1 (en) * 2015-12-18 2017-06-22 Inventec (Beijing) Electronics Technology Co., Ltd. System Of Controlling Speed Of Vehicle By Collecting Information Of Vehicle And Intersection And Method Thereof
CN109003460A (zh) * 2018-08-10 2018-12-14 中国科学技术大学 红绿灯优化调度方法及系统
CN110533768A (zh) * 2019-08-18 2019-12-03 武汉中海庭数据技术有限公司 一种仿真交通场景生成方法及系统
CN110570671A (zh) * 2018-06-05 2019-12-13 上海博泰悦臻网络技术服务有限公司 交通信号灯提醒装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593434A (zh) * 2008-05-26 2009-12-02 奥城同立科技开发(北京)有限公司 根据拥堵情况进行交通路口优先放行控制的方法
CN102306451B (zh) * 2011-06-01 2014-02-05 电信科学技术研究院 交通灯控制方法、装置和系统
CN103400506B (zh) * 2013-07-30 2016-02-10 吴云肖 Led光地址发射器及车联网系统及电子地图绘制方法
CN104408948B (zh) * 2014-10-30 2017-02-15 生茂光电科技股份有限公司 基于车载gps的城市道路交通公交优先信号控制方法
CN104464313B (zh) * 2014-12-17 2016-08-24 南京莱斯信息技术股份有限公司 一种实施公交优先时的交通信号倒计时调整方法
CN105046987B (zh) * 2015-06-17 2017-07-07 苏州大学 一种基于强化学习的路面交通信号灯协调控制方法
JP6798779B2 (ja) * 2015-11-04 2020-12-09 トヨタ自動車株式会社 地図更新判定システム
CN105575139B (zh) * 2016-01-06 2018-02-16 中车南京浦镇车辆有限公司 有轨电车路口专用信号灯控制方法
CN107807542A (zh) * 2017-11-16 2018-03-16 北京北汽德奔汽车技术中心有限公司 自动驾驶仿真系统
CN107919022B (zh) * 2017-11-22 2020-06-12 浙江工业大学 一种动态时长分配的智能交通灯信号控制方法
CN108803607B (zh) * 2018-06-08 2021-06-01 北京领骏科技有限公司 一种用于自动驾驶的多功能仿真系统
CN110415330B (zh) * 2019-04-29 2020-05-29 当家移动绿色互联网技术集团有限公司 道路生成方法、装置、存储介质及电子设备
CN110189532B (zh) * 2019-06-25 2023-06-23 常熟理工学院 一种辅助特殊车辆通行的交通信号灯控制方法
CN110597711B (zh) * 2019-08-26 2023-02-10 湖南大学 一种基于场景和任务的自动驾驶测试用例生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572006A (zh) * 2008-04-30 2009-11-04 奥城同立科技开发(北京)有限公司 交通信号灯控制方法
US20170178508A1 (en) * 2015-12-18 2017-06-22 Inventec (Beijing) Electronics Technology Co., Ltd. System Of Controlling Speed Of Vehicle By Collecting Information Of Vehicle And Intersection And Method Thereof
CN110570671A (zh) * 2018-06-05 2019-12-13 上海博泰悦臻网络技术服务有限公司 交通信号灯提醒装置及方法
CN109003460A (zh) * 2018-08-10 2018-12-14 中国科学技术大学 红绿灯优化调度方法及系统
CN110533768A (zh) * 2019-08-18 2019-12-03 武汉中海庭数据技术有限公司 一种仿真交通场景生成方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440049A (zh) * 2022-09-22 2022-12-06 中兴(温州)轨道通讯技术有限公司 一种tod综合区交通用智能化信号灯控制方法、系统及装置

Also Published As

Publication number Publication date
CN113874923A (zh) 2021-12-31
CN113874923B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2021146918A1 (zh) 交通信号灯控制方法、装置、计算机设备和存储介质
EP3500944B1 (en) Adas horizon and vision supplemental v2x
KR102115109B1 (ko) 인터랙티브 텔레매틱스 시스템
CN112017447B (zh) 一种基于gps位置信息判定车辆逆行违规的方法及系统
US20190390963A1 (en) Enhancing navigation experience using v2x supplemental information
JP2023179580A (ja) V2xおよびセンサデータを使用するためのシステムおよび方法
US10198941B2 (en) Method and apparatus for evaluating traffic approaching a junction at a lane level
EP4089659A1 (en) Map updating method, apparatus and device
CN112009484A (zh) 用于确定驾驶辅助数据的方法和系统
CN112257954A (zh) 预测分段道路风险等级的方法、装置、系统及存储介质
US20230066476A1 (en) System and method for monitoring a vehicle
JP2022000801A (ja) 車両ナビゲーション方法、車両ナビゲーション装置、電子機器、記憶媒体、車両ナビゲーションシステム、クラウド制御プラットフォーム及びコンピュータプログラム
Malaghan et al. Modeling acceleration and deceleration rates for two-lane rural highways using global positioning system data
US20230349717A1 (en) Electronic map correction method, navigation information setting method, navigation method, and apparatus
JP2020030277A (ja) 地図データ、コンピュータ読取可能な記録媒体および地図データ生成装置
US11891069B2 (en) Grid-based road model with multiple layers
US11105652B2 (en) Information processing apparatus and automatic driving track management system
KR20180124552A (ko) 지정차로 주행 가이드 장치
CN116858274B (zh) 一种路径规划方法及装置
CN114427876B (zh) 一种交通看板关联关系的自动化检查方法及系统
US11398153B1 (en) System and method for determining a driving direction
Jegede A Camera-Only Based Approach to Traffic Parameter Estimation Using Mobile Observer Methods
Malaghan et al. Research Article Modeling Acceleration and Deceleration Rates for Two-Lane Rural Highways Using Global Positioning System Data
CN115610439A (zh) 道路减速带警示方法、装置、电子设备及存储介质
JP2016133875A (ja) 分析装置、分析方法および分析プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916035

Country of ref document: EP

Kind code of ref document: A1