WO2021145507A1 - 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름 - Google Patents

덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름 Download PDF

Info

Publication number
WO2021145507A1
WO2021145507A1 PCT/KR2020/003446 KR2020003446W WO2021145507A1 WO 2021145507 A1 WO2021145507 A1 WO 2021145507A1 KR 2020003446 W KR2020003446 W KR 2020003446W WO 2021145507 A1 WO2021145507 A1 WO 2021145507A1
Authority
WO
WIPO (PCT)
Prior art keywords
dendron
column
nano
liquid crystal
biaxial film
Prior art date
Application number
PCT/KR2020/003446
Other languages
English (en)
French (fr)
Inventor
정광운
최유진
윤원진
방극천
정다영
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2021145507A1 publication Critical patent/WO2021145507A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Definitions

  • the present invention relates to a nano-column having a dendron structure, a method for manufacturing a biaxial film using the same, and a biaxial film including the same, and more particularly, to a nano-column oriented in a nematic polymerizable liquid crystal and having a vertical optical axis. It relates to a nano-column having a dendron structure that can be formed to simplify the production process of an optical film to allow a continuous process, a method for manufacturing a biaxial film using the same, and a biaxial film including the same.
  • the most representative example is a cathode ray tube (CRT) used for a TV or a computer monitor.
  • CRT cathode ray tube
  • the current CRT is difficult to carry due to its volume and weight, consumes high power, and has many limitations in use due to high driving voltage. Therefore, various flat panel display devices are being developed to overcome the limitations.
  • LCD Liquid Crystal Display
  • FED Field Emission Display
  • ELD Electrode Display
  • VA Vertical Aligned
  • IPS In-Plane Switching
  • OCB Optically Compensated Bend
  • the compensation film is a film type as a core polarizing element for correcting the phase delay difference of liquid crystal according to the viewing angle, and is manufactured by laminating a biaxial stretching method or a uniaxial stretching film of a polymer (refer to Korean Patent Application Laid-Open No. 2007-0003660) .
  • a biaxial stretching method or a uniaxial stretching film of a polymer (refer to Korean Patent Application Laid-Open No. 2007-0003660) .
  • the optical efficiency is lowered due to the use of a separate film or the process of biaxial stretching.
  • the biaxial stretching method or the uniaxial stretching film is laminated, various problems occur in large area, processing characteristics, orientation, and flexibility.
  • the problem to be solved by the present invention is a method capable of producing an optical film having biaxial properties in a single process within a molecular unit without laminating a separate biaxial stretching method or a uniaxial film as a separate process.
  • the present invention is a nano-column for a biaxial film containing a nematic polymerizable liquid crystal, wherein the nano-column is a rod-shaped or disk-shaped dendron stacked according to hydrogen bonding or pi-pi interaction. It provides a nano-column for a biaxial film containing a nematic polymerizable liquid crystal, characterized in that the structure, wherein the dendron consists of a core (A)-linker (B)-dendron end (C).
  • the core (A) includes an aromatic group capable of pi-pi bonding with the core of an adjacent dendron, and when the dendron is rod-shaped, the core (A) is represented by Formula 1 below. which one
  • the core (A) is any one of the following formula (2).
  • R represents the linker-dendron end of the dendron
  • the linker (B) is any one selected from the following formula (3),
  • the dendron end (C) is any one selected from the following formula (4).
  • the present invention also comprises the steps of mixing the nano-column for the above-described biaxial film, and a nematic liquid crystal compound; aligning the nano-column and the liquid crystal material after the mixing; And it provides a method for producing a biaxial film using a nano-column, characterized in that it comprises the step of polymerizing the oriented liquid crystal material.
  • the alignment step is performed in a manner of physically stretching the nano-column and the liquid crystal material, and the nematic liquid crystal material is a nematic polymerizable mesogen.
  • the present invention also provides a nano-column for the above-mentioned biaxial film; and a mesogenic liquid crystal compound, wherein the nano-column and the mesogenic liquid crystal compound are oriented in the same direction, and the long axis direction of the dendron of the nano-column is perpendicular to the same direction.
  • nanocolumns having a dendron structure aligned in a nematic polymerizable liquid crystal are formed by photopolymerization. Therefore, it is possible to manufacture a film having optical biaxial properties in the molecular unit, unlike the prior art of laminating a separate film again.
  • a biaxial property in a molecular unit it has excellent orientation and high transmittance compared to a biaxial film manufactured by laminating a conventional uniaxial film or by a biaxial stretching process.
  • FIG. 1 is a conceptual diagram of an optical film implemented by nano-columns in a nematic polymerizable liquid crystal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a rod-shaped dendron structure according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the structure of a rod-shaped dendron according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a disk-shaped dendron according to an embodiment of the present invention.
  • FIG. 5 is a step diagram of a manufacturing process of a biaxial film according to an embodiment of the present invention.
  • 6 and 7 are results of NMR analysis and column structure analysis of rod-shaped dendron molecules according to an embodiment of the present invention, respectively.
  • the present invention implements molecular-level optical anisotropy through a nano-column structure formed in nematic polymerizable mesogen by self-assembly or the like.
  • the nano-columns are formed using rod-shaped and disk-shaped dendrons.
  • each moiety of the dendrons is stacked by pi-pi bonds and hydrogen bonds to self-assemble one nanocolumn.
  • the present invention implements molecular-level optical anisotropy through a nano-column structure formed in nematic polymerizable mesogen by self-assembly or the like.
  • the nano-columns are formed using rod-shaped and disk-shaped dendrons.
  • each moiety of the dendrons is stacked by pi-pi bonds and hydrogen bonds to self-assemble one nanocolumn.
  • dendron means a structure having two or more branched chains, and dendron properties are achieved by an alkyl chain at the terminal (hereinafter referred to as a dendron end).
  • FIG. 1 is a conceptual diagram of an optical film implemented by nano-columns in a nematic polymerizable liquid crystal according to an embodiment of the present invention.
  • FIG. 1 it has a nanocolumn in which at least two disk-shaped dendrons are stacked in a nematic reactive mesogen (Nematic RM), and the nanocolumn is stacked with dendrons composed of a core-linker-dendron end.
  • Nematic RM nematic reactive mesogen
  • the present invention self-assembles these nano-columns through hydrogen bonding and pi-pi interaction between each dendron, thereby eliminating the need for a separate column formation process, thereby making the process economical.
  • the dendron constituting the nano-column is mixed with the nematic polymerizable mesogen in a certain ratio, and forms a nano-column by hydrogen bonding under a specific temperature condition.
  • the dendrons interact with the nematic polymerizable liquid crystal to form a column with a nematic orientation, and each dendron forms a so-called orientation dimension (oriental order) perpendicular to the nematic orientation direction.
  • nematic polymerizable mesogen is used, but if the scope of the present invention is not limited thereto, all materials capable of realizing mesogen liquid crystal fall within the scope of the present invention.
  • FIG. 2 is a schematic diagram of a rod-shaped dendron structure according to an embodiment of the present invention.
  • the dendron is self-assembled by pi-pi bond and has a core (A) having an aromatic group in the center so that it can be stacked, and a hydrogen bond and a high wavelength band to absorb light. It may include a linker (B) that may be capable of, and a dendron end (C) consisting of an alkyl group.
  • the core (A) of the dendron may include an aromatic group (eg, a benzene group) capable of pi-pi interaction, in which case it is an atom capable of absorbing visible light. It may have nitrogen, sulfur or imine bonds.
  • aromatic group eg, a benzene group
  • the core (A) of the dendron may include an aromatic group (eg, a benzene group) capable of pi-pi interaction, in which case it is an atom capable of absorbing visible light. It may have nitrogen, sulfur or imine bonds.
  • Equation 1 is the molecular formula of the dendron core of the nano-column for preparing a biaxial film according to an embodiment of the present invention.
  • R is directly substituted with a linker (B) described below, and then a dendron end (C) having a dendron structure is bonded through the linker (B).
  • the dendron terminal (C) has a structure in which a linear alkyl chain or an alkyl chain in which an ionic group is substituted at the terminal is substituted with 1,3,5-benzonate.
  • Equation 3 is a chemical formula of a dendron terminal according to an embodiment of the present invention.
  • the number of carbon atoms of the alkyl chain group is 8 to 12, and if necessary, a polymerizable functional group may be introduced at the terminal thereof.
  • each core-linker-dendron end can hydrogen bond and pi-pi interact with the core-linker-dendron end of another dendron, and in this case, the most flexible alkyl group according to the chain length
  • the end of the dendron with is located at the outermost part of the column.
  • ions are introduced at the end of the dendron to induce repulsion between columns, and the distance between each unit dendron can be adjusted.
  • FIG. 3 is a view for explaining the structure of a rod-shaped dendron according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a disk-type dendron according to an embodiment of the present invention.
  • a disk-shaped dendron in the case of a disk-shaped dendron, it has a structure in which an aromatic group constituting a rod-shaped dendron is substituted with an aromatic group of a disk-shaped form, and the linker (B) connected to the core and the end of the dendron (C) are the cores. It is connected to each aromatic group (benzene group).
  • the following formula 4 is an example of a core compound of a disk-shaped dendron.
  • the core may contain nitrogen, sulfur, and imine, which are elements capable of absorbing visible light similar to the rod-shaped shape.
  • the compound used as the nematic polymerizable liquid crystal is a nematic reactive mesogen such as RM257, LC242, and the like, but the scope of the present invention is not limited thereto.
  • FIG. 5 is a step diagram of a manufacturing process of a biaxial film according to an embodiment of the present invention.
  • the above-described dendron and nematic polymerizable liquid crystal are mixed.
  • the mixing ratio of the dendron and the nematic polymerizable liquid crystal can be freely described according to the conditions of use of the biaxial film.
  • the content of dendron is high, the alignment property is deteriorated because the content of the liquid crystal is low, and when the content of dendron is low, the orientation increases, but refractive index and anisotropy may not be induced.
  • the appropriate amount of dendron is 30 to 45 wt%.
  • a shear force is applied at a specific temperature to align the nano-column and the nematic polymerized liquid crystal (eg, mesogen) in one direction.
  • a polymerization process is performed by forming conditions that can polymerize the liquid crystal material, such as ultraviolet rays, heat, acid, etc. to prepare a biaxial film.
  • an alignment film is coated on an ITO substrate, dried, and rubbed to prepare a substrate.
  • 70 wt% of a nematic polymerizable liquid crystal and 30 wt% of a rod-shaped dendron are mixed, placed on the substrate, and oriented by applying a shear force.
  • UV irradiation for 10 minutes can cure the composition to obtain a film.
  • 6 and 7 are results of NMR analysis and column structure analysis of rod-shaped dendron molecules according to an embodiment of the present invention, respectively.
  • the structure of the dendron compound consisting of the core-linker-dendron end can be confirmed through the NMR data result.
  • the column structure of the rod-shaped dendron can be confirmed.
  • the process of synthesizing the rod-shaped dendron is as follows. 4,4'-((2,3-dihydrothieno[3,4 -b][1,4]dithiine-5,7-diyl)bis(sulfanediyl)dianilne (0.2 g, 0.48 mmol) and 3,4,5 After dissolving -tris(dodecyloxy)benzoic acid (1.28 g, 1.89 mmol) in methyl chloride (MC), it was dissolved in a mixture with an excess of DIPC and a trace of DPTS, followed by stirring at 0° C. for 48 hours. It is extracted using methylene chloride, and purified by column chromatography using a developing solvent in which the ratio of hexane and ethyl acetate is 6:1 to obtain a final compound.
  • MC methyl chloride
  • the NMR analysis result of FIG. 6 is as follows.
  • the 2D WAXD analysis result of FIG. 7 is as follows.
  • the ratio of the peak with the lowest angle was 1: ⁇ 3: ⁇ 7, indicating that it was a hexagonal columnar phase, and assuming that 4 molecules were included in the calculated unit cell, the density was 1.08 g/cm 3 Able to know.
  • the core of the rod-shaped molecule is packed by hydrogen bonds to form a tetramer, forming a column in the shear direction.
  • a ⁇ is the absorbance in the direction parallel to the shear direction
  • a ⁇ is the absorbance in the direction perpendicular to the shear direction.
  • the dichroic ratio is the value obtained by dividing the absorbance in the parallel direction to the shear direction by the absorbance in the vertical direction in a specific absorption pick.
  • the peak of amide capable of hydrogen bonding of rod-shaped dendrons has a high dichoric ratio value of 2 or more, it can be seen that the column is formed perpendicular to the shear direction. This implies that a nano-column having an optical axis perpendicular to the direction of the nematic polymerizable liquid crystal can be used as a biaxial film.
  • Nanocolumns having a dendron structure according to the present invention, a method for manufacturing a biaxial film using the same, and a biaxial film including the same are applicable in the display industry.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal Substances (AREA)
  • Polarising Elements (AREA)

Abstract

덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름에 관한 것으로서, 상기 덴드론 구조의 나노컬럼은 봉상형 또는 디스크형 덴드론을 이용하며, 덴드론 각각의 부분(Moiety)의 파이-파이 결합과 수소결합에 의하여 적층되어 자기조립 등에 의하여 네마틱 중합성 메조겐 내에 형성된다. 이로써 분자 단위의 광학적 이방성을 구현하며, 분자 단위의 배향성이 우수하고 높은 투과도를 갖는 광학적인 2축 특성을 갖는 필름 제조가 가능하다.

Description

덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름
본 발명은 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름에 관한 것으로, 보다 상세하게는 네마틱 중합성 액정 내에서 배향되며, 수직적인 광축을 갖는 나노컬럼을 형성시켜 광학필름의 생산공정을 간소화하여 연속공정이 가능한, 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름에 관한 것이다.
지금까지 사용되는 전자 디스플레이 중 가장 대표적인 것은 TV나 컴퓨터 모니터 등에 사용되고 있는 CRT(Cathode Ray Tube)를 들 수 있다. 그러나 현재 CRT는 그 부피나 중량 때문에 휴대가 곤란하고 소비전력이 높으며 높은 구동 전압으로 인한 사용상의 제약이 많은 편이기 때문에 그 한계를 극복하기 위한 다양한 평판 표시소자의 개발이 진행되고 있다. LCD(Liquid Crystal Display), FED(Field Emission Display), ELD(ElectroluminesceDisplay) 등이 대표적인 평판 표시소자들이며, 이중 현재 가장 대표적인 것이 LCD이다. 액정과 반도체 기술이 복합된 기술 집약적 품목인 LCD는 얇고, 가벼우며 소비 전력이 낮은 장점으로 인해 여타 다른 표시소자가 넘보기 힘든 강점이 있다.
고품질의 대형 LCD를 실현하기 위해서는 LCD의 광시야각, 고휘도, 높은 대조(Contrast), 고속응답 속도가 요구된다. 기존에는 광시야각 LCD로 디스코틱 액정(Discotic LC) 필름을 광학보상한 TN 방식이 널리 사용되어 왔는데 여전히 계조(Gradation) 반전이나 컬러 시프트(Color shift), 응답 속도 등의 문제를 안고 있다. 이러한 점에서 LCD의 시야각 특성에 대한 개선점은 고품질 LCD를 실현하는데 매우 중요한 과제이다.
최근에는 수직 배향 액정을 사용하는 VA(Vertically Aligned) 방식, 횡전계를 사용하는 IPS(In-Plane Switching) 방식, 그리고 Bend Aligned LC를 사용하는 OCB (Optically Compensated Bend)방식 등 새로운 액정 표시 방식이 개발되면서 LCD 시야각 특성은 비약적으로 발전하고 있다.
한편, 액정디스플레이 제조 공정에서 배향막 코팅 및 배향처리는 공정상 최대의 난제로 지목되고 있으며 배향막 종류의 개선뿐 아니라 배향방법에 있어서도 적극적인 개선 노력이 진행되고 있다. 뿐만 아니라, 최근 대형화면 TFT-LCD를 TV로서 상용화하기 위한 중요한 요구 특성 중의 하나로서 광 시야각화가 요구되고 있다. 시야각을 확대하기 위한 방법으로 보상 필름에 대한 연구와 함께 광 시야각용 구동방법에 대한 연구가 수행되고 있다.
보상 필름은 시야각에 따른 액정의 위상지연차이를 보정하기 위한 핵심적인 편광소자로써 필름형태이며, 고분자의 2축 연신방법 또는 1축 연신필름을 적층하여 제작하고 있다(대한민국 공개특허 2007-0003660 참조). 그러나 위와 같은 제작과정에서 별도의 필름을 사용하거나 2축 연신을 하는 공정상 광학 효율이 떨어지게 된다. 뿐만 아니라 2축 연신방법 또는 1축 연신필름을 적층하는 경우 대면적화, 가공 특성, 배향성 및 유연성 등에서 다양한 문제를 야기한다.
따라서, 본 발명이 해결하고자 하는 과제는 별도의 2축 연신 방법이나 1축 필름을 별도 공정으로 적층하지 않고, 분자 단위 내에서 하나의 공정으로 2축 특성을 갖는 광학 필름을 제조할 수 있는 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다
상기 과제를 해결하기 위하여, 본 발명은 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼으로, 상기 나노컬럼은 봉상형 또는 디스크형 덴드론이 수소결합 또는 파이-파이 상호작용에 따라 적층된 구조이며, 상기 덴드론이 코어(A)-링커(B)-덴드론 말단(C)으로 이루어지는 것을 특징으로 하는 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼을 제공한다.
본 발명의 일 실시예에서, 상기 코어(A)는 인접한 덴드론의 코어와 파이-파이 결합을 할 수 있는 방향족기를 포함하며, 상기 덴드론이 봉상형인 경우 상기 코어(A)는 하기 화학식 1 중 어느 하나이다.
Figure PCTKR2020003446-appb-I000001
(화학식 1)
본 발명의 일 실시예에서, 상상기 덴드론이 디스크형인 경우 상기 코어(A)는 하기 화학식 2 중 어느 하나이다.
Figure PCTKR2020003446-appb-I000002
(화학식 2)
(상기 화학식 1 및 화학식 2에서 R은 상기 덴드론의 링커-덴드론 말단을 나타냄)
본 발명의 일 실시예에서, 상기 링커(B)는 하기 화학식 3에서 선택된 어느 하나이며,
Figure PCTKR2020003446-appb-I000003
(화학식 3)
상기 덴드론 말단(C)은 하기 화학식 4에서 선택된 어느 하나이다.
Figure PCTKR2020003446-appb-I000004
(화학식 4)
(상기 화학식 4에서 n은 8 내지 12임)
본 발명은 또한 상술한 2축 필름용 나노컬럼과, 네마틱 액정 화합물을 혼합하는 단계; 상기 혼합하는 단계 후 상기 나노컬럼과 액정물질을 배향하는 단계; 및 상기 배향된 액정물질을 중합하는 단계를 포함하는 것을 특징으로 하는 나노컬럼을 이용한 2축필름 제조방법을 제공한다.
본 발명의 일 실시예에서, 상기 배향하는 단계는 상기 나노컬럼과 액정물질을 물리적으로 연신하는 방식으로 진행되며, 상기 네마틱 액정 물질은 네마틱 중합성 메조겐이다.
본 발명은 또한 상술한 2축 필름용 나노컬럼; 및 메조겐 액정 화합물을 포함하는 2축 필름을 제공하며, 상기 나노컬럼과 상기 메조겐 액정 화합물은 동일 방향으로 배향되며, 상기 나노컬럼의 덴드론의 장축 방향은 상기 동일 방향에 수직한다.
본 발명에 따르면, 네마틱 중합성 액정내에 배향된 덴드론 구조의 나노컬럼을 광중합 방식으로 형성시킨다. 따라서, 별도의 필름을 다시 적층하는 종래 기술과 달리 분자 단위에서 광학적인 2축 특성을 갖는 필름 제조가 가능하다. 또한 분자 단위에서의 2축 특성을 갖게 됨으로써 종래의 1축 필름을 적층시키거나 2축 연식 공정에 의하여 제조된 2축 필름에 비하여 배향성이 우수하고, 높은 투과도를 갖는다.
도 1은 본 발명의 일 실시예에 따른 네마틱 중합성 액정 내에서의 나노컬럼에 의하여 구현되는 광학 필름의 개념도이다.
도 2는 본 발명의 일 실시예에 따른 봉상형 덴드론 구조의 모식도이다.
도 3는 본 발명의 일 실시예에 따른 봉상형 덴드론의 구조를 설명하는 도면이다.
도 4는 본 발명의 일 실시예에 따른 디스크형 덴드론의 모식도이다.
도 5는 본 발명의 일 실시예에 따른 2축 필름의 제조공정의 단계도이다.
도 6 및 7은 각각 본 발명의 일 실시예에 따른 봉상형 덴드론 분자의 NMR 분석 결과, 컬럼 구조 분석 결과이다.
도 8 및 9는 봉상형 분자와 네마틱 중합성 액정(RM257)가의 배향성을 확인하기 위한 POM 이미지 및 polarized-dependent FT IR 분석결과이다.
이하, 본 발명에 따른 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름의 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 상술한 문제를 해결하기 위하여, 자기조립 등에 의하여 네마틱 중합성 메조겐 내에 형성된 나노컬럼 구조를 통하여 분자 단위의 광학적 이방성을 구현한다. 이를 위하여 상기 나노컬럼은 봉상형, 디스크형 덴드론을 이용하여 형성시키는데, 이때 덴드론 각각의 부분(Moiety)의 파이-파이결합과 수소결합에 의하여 적층되어 하나의 나노컬럼을 자기조립하게 된다.
이하, 본 발명에 따른 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름의 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 상술한 문제를 해결하기 위하여, 자기조립 등에 의하여 네마틱 중합성 메조겐 내에 형성된 나노컬럼 구조를 통하여 분자 단위의 광학적 이방성을 구현한다. 이를 위하여 상기 나노컬럼은 봉상형, 디스크형 덴드론을 이용하여 형성시키는데, 이때 덴드론 각각의 부분(Moiety)의 파이-파이결합과 수소결합에 의하여 적층되어 하나의 나노컬럼을 자기조립하게 된다.
본 명세서에서 덴드론은 2개 이상의 분지된 사슬을 갖는 구조를 의미하며, 덴드론 특성은 말단의 알킬사슬(이하 덴드론 말단이라 지칭함)에 의하여 달성된다.
도 1은 본 발명의 일 실시예에 따른 네마틱 중합성 액정 내에서의 나노컬럼에 의하여 구현되는 광학 필름의 개념도이다.
도 1을 참조하면, 네마틱 반응성 메조겐(Nematic RM) 내에서 디스크형 덴드론이 적어도 2개 이상 적층된 나노컬럼을 가지고 있으며, 나노칼럼은 코어-링커-덴드론 말단으로 이루어진 덴드론이 적층된 구조를 갖는다. 본 발명은 특히 이러한 나노컬럼을 각 덴드론간 수소결합 및 파이-파이 상호작용으로 자기조립시키며, 이로써 별도의 컬럼 형성 공정이 불필요해져 공정상 경제적이다.
본 발명에서 상기 나노컬럼을 이루는 덴드론은 네마틱 중합성 메조겐과 일정 비율로 혼합되며, 특정 온도 조건에서 수소결합에 의하여 나노컬럼을 이룬다.
이때 상기 덴드론은 네마틱 중합성 액정과 상호작용을 하면서 네마틱의 배향된 형태로 컬럼을 이루게 되며, 각 덴드론은 네마틱 배향방향과 수직교차하는 이른바 배향 차원(oriental order)을 형성한다.
본 발명의 일 실시예에서는 네마틱 중합성 메조겐을 사용하였으나, 본 발명의 범위는 이에 제한되지 않으면, 메조건 액정을 구현할 수 있는 모든 물질이 본 발명의 범위에 속한다.
도 2는 본 발명의 일 실시예에 따른 봉상형 덴드론 구조의 모식도이다.
도 2를 참조하면, 본 발명의 일 실시예에서 상기 덴드론은 파이-파이 결합으로 자기조립되어 적층될 수 있도록 중심의 방향족기를 갖는 코어(A)와, 수소결합과 높은 파장대의 빛을 흡수할 수 있는 링커(B), 그리고 알킬기로 이루어진 덴드론 말단(C)을 포함할 수 있다.
본 발명의 일 실시예에서 상기 덴드론의 코어(A)는 파이-파이 상호작용을 할 수 있는 방향족기(예를 들어 벤젠기)를 포함할 수 있으며, 이때 가시광선을 흡수할 수 있는 원자인 질소, 황 또는 이민 결합을 가질 수 있다.
하기 식 1은 본 발명의 일 실시예에 따른 2축 필름 제조용 나노컬럼의 덴드론 코어의 분자식이다.
Figure PCTKR2020003446-appb-I000005
(1)
상기 식에서 R은 하기 설명되는 링커(B)가 직접 치환되며, 이후 상기 링커(B)를 통하여 덴드론 구조를 갖는 덴드론 말단(C)이 결합된다.
본 발명에서 링커(linker, B)는 덴드론 구조의 알킬기와 코어를 연결하는 기능기로서, 하기 식 2의 분자 중 어느 하나일 수 있는데, 나노컬럼을 이루는데 필요한 수소결합이 가능하도록 아미드기를 포함할 수 있으며 필요에 따라서는 장파장을 흡수할 수 있는 이민(C=N)기를 더 포함할 수 있다.
Figure PCTKR2020003446-appb-I000006
(2)
덴드론 말단(C)은 선형 알킬사슬 또는 말단에 이온그룹이 치환된 알킬사슬이 1,3,5-벤조네이트에 치환된 구조를 갖는다.
하기 식 3은 본 발명의 일 실시예에 따른 덴드론 말단의 화학식이다.
Figure PCTKR2020003446-appb-I000007
(3)
상기 식 3에서 알킬사슬기의 탄소수는 8 내지 12이며, 필요에 따라서는 그 말단에 중합가능한 작용기를 도입할 수 있다.
상기 방식으로 형성된 덴드론은 각 코어-링커-덴드론 말단이 또 다른 덴드론의 코어-링커-덴드론 말단과 수소결합 및 파이-파이 상호작용을 할 수 있으며, 이때 사슬 길이에 의하여 가장 유연한 알킬기를 갖는 덴드론 말단이 컬럼의 가장 외측에 위치하게 된다.
본 발명의 일 실시예에서는 상기 덴드론 말단에 이온을 도입하여 컬럼간 반발을 유도, 각 단위 덴드론간의 간격을 조절할 수 있다.
도 3는 본 발명의 일 실시예에 따른 봉상형 덴드론의 구조를 설명하는 도면이다.
도 3을 참조하면, 상술한 구조의 봉상형 덴드론은 2-4개의 분자들이 모여 하나의 디스크를 형성하며, 이때 특정 방향으로 물리적 연신을 가하게 되면, 광축 방향으로 나노컬럼을 형성할 수 있다. 이때 컬럼의 장축 방향(X)과 컬럼내 분자의 긴축 방향(Y)은 수직을 형성하게 되어, 컬럼 방향으로는 이상굴절률(Extraordinary refractive index)을, 그의 수직 방향으로는 정상굴절률(Ordinary refractive index)을 갖게 된다.
하기 도 4는 본 발명의 일 실시예에 따른 디스크형 덴드론의 모식도이다.
도 4를 참조하면, 디스크형 덴드론의 경우, 상시 봉상형 덴드론을 이루는 방향족기를 디스크 형태의 방향족기로 치환시킨 구조를 가지며, 코어에 연결되는 링커(B)와 덴드론 말단(C)은 코어 각각의 방향족기(벤젠기)와 연결된다.
하기 식 4는 디스크형 덴드론의 코어 화합물의 예시이다. 이때 상기 코어에서는 봉상형과 유사하게 가시광선을 흡수할 수 있는 원소인 질소, 황, 이민이 포함될 수 있다.
Figure PCTKR2020003446-appb-I000008
(4)
본 발명의 일 실시예에서 네마틱 중합성 액정으로 사용된 화합물은 네마틱 반응성 메조겐으로 RM257, LC242 등이었으나, 본 발명의 범위는 이에 제한되지 않는다.
이하 상기 설명한 스택 구조의 나노컬럼을 형성할 수 있는 덴드론과 네마틱 반응성 메조겐을 이용한 2축 필름 제조방법을 보다 상세히 설명한다.
도 5는 본 발명의 일 실시예에 따른 2축 필름의 제조공정의 단계도이다.
도 5를 참조하면, 상술한 덴드론과 네마틱 중합성 액정을 혼합한다. 상기 덴드론과 네마틱 중합성 액정의 혼합비율은 2축 필름의 사용조건에 따라 자유로이 설명될 수 있다. 덴드론의 함량이 높은 경우에는 액정의 함유량이 낮기 때문에 배향성이 떨어지고, 덴드론의 함량이 낮은 경우에는 배향성은 증가하지만 굴절률과 이방성이 유도되지 않을 수 있다. 적정 덴드론의 함량은 30 ~ 45 wt% 이다.
이후 특정 온도에서 전단력을 가하여 나노컬럼과 네마틱 중합석 액정(예를 들어 메조겐)을 한 방향으로 배향시킨다. 이후 자외선, 열, 산 등과 같이 액정 물질을 중합시킬 수 있는 조건을 형성하여 중합 공정(polymerization)을 진행 2축 필름을 제조한다. 구체적으로 ITO 기판 위에 배향막을 코팅하고 건조시킨 후 러빙하여 기판을 준비한 후 네마틱 중합성 액정 70 wt%, 봉상형 덴드론을 30 wt%로 혼합하여 기판 위에 놓고 전단력을 가하여 배향한다. 70도에서 10분간 열처리 한 후 UV를 10분간 조사하여 조성물을 경화시켜 필름을 수득할 수 있다.
실험예
봉상형 덴드론 분자 분석
본 실험예에서는 실제 사용된 봉상형 덴드론 분자를 분석하였다.
도 6 및 7은 각각 본 발명의 일 실시예에 따른 봉상형 덴드론 분자의 NMR 분석 결과, 컬럼 구조 분석 결과이다.
도 6 및 7을 참조하면, 코어-링커-덴드론 말단으로 이루어진 덴드론 화합물 구조가 NMR 데이터 결과를 통하여 확인할 수 있다. 또한 봉상형 덴드론의 컬럼구조를 확인할 수 있다.
봉상형 덴드론의 합성과정은 다음과 같다. 4,4'-((2,3-dihydrothieno[3,4 -b][1,4]dithiine-5,7-diyl)bis(sulfanediyl)dianilne (0.2 g, 0.48 mmol)과 3,4,5-tris(dodecyloxy)benzoic acid (1.28 g, 1.89 mmol)을 메틸클로라이드 (MC)에 용해시킨 후, 과량의 DIPC와 미량의 DPTS와 함께 혼합물에 녹인 후 0℃ 에서 48시간 교반시킨다. 반응 후에 물과 메틸렌클로라이드를 이용하여 추출하고, 헥산과 에틸아세테이트의 비율을 6:1로 한 전개용매를 이용하여 컬럼크로마토그래피법으로 정제하여 최종 합성물을 얻을 수 있다.
도 6의 NMR 분석 결과는 다음과 같다.
1H-NMR (500 MHz, CDCl3) : δ = 8.14 (s, 2H), 7.54(d, 4H), 7.22 (m, 4H), 7.05 (s, 4H), 3.95 (m, 12H), 3.18 (s, 4H), 1.75 (m, 12H), 1.46 (m, 12H), 1.4 (m, 96H), 0.89 (t, 6H)
도 7의 2D WAXD 분석 결과는 다음과 같다.
가장 낮은 각도의 있는 피크의 비율이 1 : √3 : √7 인 것으로 보아 hexagonal columnar phase임을 알 수 있었고, 계산한 unit cell에 분자 4개가 포함되어 있다고 가정할 때, density는 1.08 g/cm3 임을 알 수 있다. 봉상형 분자의 core가 수소결합에 의해 packing을 하여 tetramer를 만들면서 전단 방향으로 컬럼을 이룬다.
배향성 확인 분석
본 실험예에서는 상술한 봉상형 덴드론 나노컬럼과 네마틱 중합성 액정(RM257)의 배향성 분석을 진행하였다.
도 8 및 9는 봉상형 분자와 네마틱 중합성 액정(RM257)가의 배향성을 확인하기 위한 POM 이미지 및 polarized-dependent FT IR 분석결과이다.
도 8을 참조하면, polarizer와 필름의 전단방향이 일치하게 놓았을 때, dark한 이미지를 얻었고 전단방향을 45도 회전하였을 때, 가장 밝은 휘도를 보였다. 이는 전단방향으로 혼합물이 높은 배향성을 가짐을 의미한다.
도 9는 FT-IR dichroism 분석을 통하여 분자 정렬상태를 파악한 결과이다.
dichoric ratio를 정의하기 위해 A는 전단방향에 평행한 방향의 흡수도이고 A는 전단방향에 수직한 방향의 흡수도이다. dichroic ratio는 특정 흡수 픽에서 전단방향의 평행한 방향의 흡수도를 수직한 방향의 흡수도로 나눈 값이다. 봉상형 덴드론의 수소결합을 할 수 있는 amide의 피크가 2이상의 높은 dichoric ratio값을 가진 것으로 보아 전단방향에 수직하게 컬럼을 형성하는 것을 알 수 있다. 이는 네마틱 중합성 액정방향에 수직적인 광축을 갖는 나노컬럼을 2축 필름으로 쓰일 수 있음을 내제한다.
본 발명에 따른 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름은 디스플레이 산업에서 이용가능성이 있다.

Claims (9)

  1. 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼으로
    상기 나노컬럼은 봉상형 또는 디스크형 덴드론이 수소결합 또는 파이-파이 상호작용에 따라 적층된 구조이며,
    상기 덴드론이 코어(A)-링커(B)-덴드론 말단(C)으로 이루어지는 것을 특징으로 하는 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼.
  2. 제 1항에 있어서,
    상기 코어(A)는 인접한 덴드론의 코어와 파이-파이 결합을 할 수 있는 방향족기를 포함하는 것을 특징으로 하는 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼.
  3. 재 2항에 있어서,
    상기 덴드론이 봉상형인 경우 상기 코어(A)는 하기 화학식 1 중 어느 하나이며,
    Figure PCTKR2020003446-appb-I000009
    (화학식 1)
    상기 덴드론이 디스크형인 경우 상기 코어(A)는 하기 화학식 2 중 어느 하나 인 것을 특징으로 하는 네마틱 중합성 액정을 포함하는 2축 필름용 나노컬럼.
    Figure PCTKR2020003446-appb-I000010
    (화학식 2)
    (상기 화학식 1 및 화학식 2에서 R은 상기 덴드론의 링커-덴드론 말단을 나타냄)
  4. 제 1항에 있어서,
    상기 링커(B)는 하기 화학식 3에서 선택된 어느 하나이며
    Figure PCTKR2020003446-appb-I000011
    (화학식 3)
    상기 덴드론 말단(C)은 하기 화학식 4에서 선택된 어느 하나인 것을 특징으로 하는 2축 필름용 나노컬럼.
    Figure PCTKR2020003446-appb-I000012
    (화학식 4)
    (상기 화학식 4에서 n은 8 내지 12임)
  5. 제 1항 내지 제 5항 중 어느 한 항에 따른 2축 필름용 나노컬럼과, 네마틱 액정 화합물을 혼합하는 단계;
    상기 혼합하는 단계 후 상기 나노컬럼과 액정물질을 배향하는 단계; 및
    상기 배향된 액정물질을 중합하는 단계를 포함하는 것을 특징으로 하는, 나노컬럼을 이용한 2축필름 제조방법.
  6. 제 5항에 있어서,
    상기 배향하는 단계는 상기 나노컬럼과 액정물질을 물리적으로 연신하는 방식으로 진행되는 것을 특징으로 하는 나노컬럼을 이용한 2축필름 제조방법.
  7. 제 5항에 있어서,
    상기 네마틱 액정 물질은 네마틱 중합성 메조겐인 것을 특징으로 하는 2축필름 제조방법.
  8. 제 1항 내지 제 5항 중 어느 한 항에 따른 2축 필름용 나노컬럼; 및
    메조겐 액정 화합물을 포함하는 2축 필름
  9. 제 8항에 있어서,
    상기 나노컬럼과 상기 메조겐 액정 화합물은 동일 방향으로 배향되며, 상기 나노컬럼의 덴드론의 장축 방향은 상기 동일 방향에 수직하는 것을 특징으로 하는 2축 필름.
PCT/KR2020/003446 2020-01-16 2020-03-12 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름 WO2021145507A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200005970A KR102281268B1 (ko) 2020-01-16 2020-01-16 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름
KR10-2020-0005970 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021145507A1 true WO2021145507A1 (ko) 2021-07-22

Family

ID=76863853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003446 WO2021145507A1 (ko) 2020-01-16 2020-03-12 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름

Country Status (2)

Country Link
KR (1) KR102281268B1 (ko)
WO (1) WO2021145507A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089767A (ko) * 2007-04-02 2008-10-08 삼성전자주식회사 메탈로센 코어를 가지는 덴드리머, 이를 이용한 유기메모리 소자 및 그의 제조방법
KR20140052160A (ko) * 2012-10-22 2014-05-07 전북대학교산학협력단 덴드론 형태의 액정화합물 및 그 제조방법
KR20150028950A (ko) * 2013-09-06 2015-03-17 엘지디스플레이 주식회사 내열성 액정 배향제, 액정 조성물 및 액정 표시 장치
KR20150035393A (ko) * 2013-09-25 2015-04-06 엘지디스플레이 주식회사 액정 수평 배향제, 수평 배향형 액정 조성물 및 수평 배향형 액정 표시 장치와 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089767A (ko) * 2007-04-02 2008-10-08 삼성전자주식회사 메탈로센 코어를 가지는 덴드리머, 이를 이용한 유기메모리 소자 및 그의 제조방법
KR20140052160A (ko) * 2012-10-22 2014-05-07 전북대학교산학협력단 덴드론 형태의 액정화합물 및 그 제조방법
KR20150028950A (ko) * 2013-09-06 2015-03-17 엘지디스플레이 주식회사 내열성 액정 배향제, 액정 조성물 및 액정 표시 장치
KR20150035393A (ko) * 2013-09-25 2015-04-06 엘지디스플레이 주식회사 액정 수평 배향제, 수평 배향형 액정 조성물 및 수평 배향형 액정 표시 장치와 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Dissertation", 1 January 2003, OHIO STATE UNIVERSITY, US, article TOMCIK, DENNIS JOHN: "Part I: Synthesis and Study of Helical Conformation in Chiral, Internally Hydrogen-Bonded Dendrons. Part II: Synthesis and Study of Liquid Crystalline Dendrimers", pages: 1 - 232, XP009529205 *

Also Published As

Publication number Publication date
KR102281268B1 (ko) 2021-07-23

Similar Documents

Publication Publication Date Title
US9828550B2 (en) Polymerizable composition and method for manufacturing liquid crystal device
CN104238169B (zh) 液晶显示元件以及该元件使用的基板
KR100459491B1 (ko) 트리아진 고리를 주쇄로 하는 감광성 고분자 액정배향제와 이를 이용한 액정 배향막, 이 배향막을 적용한액정 소자 및 이 배향막을 제조하는 방법
WO2013062366A1 (ko) 나노 액정층을 구비하는 횡전계 방식 액정표시소자
US20140009732A1 (en) Liquid crystal display and method of manufacturing the same
WO2003087261A1 (fr) Afficheur a cristaux liquides
EP1819648B1 (en) Photoreactive compound, liquid crystal alignment layer using the compound, method of manufacturing the alignment layer, and liquid crystal display device containing the alignment layer
WO2010098594A2 (en) Optical compensation film with hybrid arrangement of nematic liquid crystals consisting of connected mesogens with an angle and the method of manufacturing the same
CN110819360B (zh) 含有环戊基的环己烯基团的负性单体的液晶组合物及其液晶显示元件
JPH04500378A (ja) 強誘電性液晶ポリマー,それらの製造方法と電気光学的部品への使用
WO2012144874A2 (ko) 액정 조성물
CN105652499A (zh) 液晶组合物及液晶显示元件或显示器
WO2013025006A2 (ko) 중합성 액정 조성물
CN102732266B (zh) 用于液晶显示器的配向层材料
WO2021145507A1 (ko) 덴드론 구조의 나노컬럼, 이를 이용한 2축 필름 제조방법 및 이를 포함하는 2축 필름
CN103305235A (zh) 一种液晶面板及其配向膜、配向膜的制作方法
EP0732610A2 (en) Liquid crystal alignment layer and liquid crystal display device
CN102701983B (zh) 单体及应用其制造液晶显示面板的方法
KR100451442B1 (ko) 트리아진 고리를 주쇄로 하는 폴리유레아계 감광성 고분자액정 배향제와 이를 이용한 액정 배향막
KR0147616B1 (ko) 열방성 측쇄형 액정고분자 및 이를 배향막으로서 채용한 액정표시소자
CN109844629A (zh) 液晶取向剂、液晶取向膜、液晶元件及聚合体
JP6824941B2 (ja) 光学フィルム積層体とその製造方法及び該積層体を含む液晶表示パネル
CN1965264A (zh) 液晶器件及其制造方法
JPWO2020095516A1 (ja) 液晶配向剤及びその製造方法、液晶配向膜並びに液晶素子
WO2013032283A2 (ko) 액정셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913674

Country of ref document: EP

Kind code of ref document: A1