WO2021145474A1 - 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법 - Google Patents

다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법 Download PDF

Info

Publication number
WO2021145474A1
WO2021145474A1 PCT/KR2020/000663 KR2020000663W WO2021145474A1 WO 2021145474 A1 WO2021145474 A1 WO 2021145474A1 KR 2020000663 W KR2020000663 W KR 2020000663W WO 2021145474 A1 WO2021145474 A1 WO 2021145474A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless
seamless tube
stress
tube
cladding
Prior art date
Application number
PCT/KR2020/000663
Other languages
English (en)
French (fr)
Inventor
장준호
반치범
김지현
Original Assignee
국제희토류금속 주식회사
부산대학교 산학협력단
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국제희토류금속 주식회사, 부산대학교 산학협력단, 울산과학기술원 filed Critical 국제희토류금속 주식회사
Priority to PCT/KR2020/000663 priority Critical patent/WO2021145474A1/ko
Publication of WO2021145474A1 publication Critical patent/WO2021145474A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a multi-structure seamless cladding pipe, and more particularly, to prevent cracks caused during subsequent processing by removing different stresses for each part of the inner and outer surfaces generated during manufacturing of the multi-structure seamless cladding pipe It relates to a new method of cleaning the inner and outer surfaces of a multi-structure seamless cladding and stress relieving method that allows the inner surface or outer surface of the seamless cladding to be cleaned as well.
  • a seamless tube unlike a welded tube, is not made by bending a steel plate to join a seam, but by using a roll from a steel ingot to make a hollow tube using a mandrel, which means a seamless steel tube.
  • Such a seamless tube structure is used for various purposes, and in particular, it is mainly applied to structures that can sufficiently withstand high temperatures, such as a nuclear fuel cladding tube.
  • a stress deviation occurs in the process of performing the pilger operation of the seamless cladding due to the difference in physical properties between dissimilar metals.
  • the stress remaining on the inner and outer surfaces of the cladding increased the probability of cracking during post-processing.
  • the present invention removes different stresses for each part of the inner and outer surfaces generated during the manufacture of multi-structure seamless cladding to prevent cracks caused during subsequent processing, while also cleaning the inner or outer surfaces of the seamless cladding.
  • An object of the present invention is to provide a new method for cleaning the inner and outer surfaces of a multi-structure seamless cladding and to relieve stress.
  • the method comprising: a perforating step of perforating the center of the prepared billet material and forming a seamless tube; a coating layer forming step of forming one or two or more coating layers on the inner circumferential surface or the outer circumferential surface of the molded seamless tube; a pilger step of inserting the seamless tube in which the coating layer is formed into a pilger device to perform a pilger operation; an outer stress removing step of removing residual stress on the outer surface of the pilgered seamless tube; An inner surface stress removing step of removing residual stress on the inner surface of the seamless tube; characterized in that it is performed sequentially.
  • the external stress relieving step and the inner stress relieving step are characterized in that the fine particles made of glass are high-speed jetted to the outer or inner surface with high-pressure air.
  • the inner stress removing step includes a one-side closing process of closing either side of the open both sides of the seamless tube with a cover having a vacuum hole formed therein, and inserting a plug for closing by inserting a plug into the other side of the seamless tube Process, a vacuum process of evacuating the air in the inner space of the seamless tube through the vacuum hole, and glass through the outer surface of the plug while entering the plug until it reaches one side of the seamless tube It is characterized in that it proceeds including a short process of high-speed jetting of fine particles made of high-pressure air.
  • the plug is taken out from the inside of the seamless tube and the cover is removed so that both sides of the seamless tube are opened, and then high-pressure air is forced through either side of the seamless tube. It is characterized in that the residue discharge process of discharging the residue remaining in the seamless tube by spraying is further progressed.
  • the plug is formed with a plunger part having an empty pipe inside, and a tubular body that is extended to the tip of the plunger part and expanded compared to the plunger part, and the tip is closed, and a plurality of particles pass through the circumferential surface It is characterized in that it comprises a head portion made through the hole.
  • the method for cleaning the inner and outer surfaces of the multi-structure seamless cladding and stress relieving method of the present invention continuously performs the pilger step immediately after heating the seamless tube 20 and before the temperature drop of the seamless tube 20 is made. By performing the rolling, it has the effect of being able to prevent breakage or physical property deformation of each coating layer 30 during rolling due to temperature change.
  • the method of cleaning the inner and outer surfaces of the multi-structure seamless cladding and stress relieving method of the present invention is a method performed by high-speed jetting fine glass balls with high-pressure air toward each surface, not only surface stress but also various foreign substances present on the surface It has the effect of being able to achieve the improvement of the surface roughness as well as the removal can be made additionally.
  • the method for cleaning the inner and outer surfaces of the multi-structure seamless cladding and stress relieving method of the present invention makes the inside of the seamless tube to be evacuated during the stress relieving operation on the inner surface of the seamless tube, so that fine glass balls are removed.
  • the process of spraying into the inner surface of the seamless tube it is possible to uniformly spray over the entire area without being inclined to either side, and thus has the effect of smoothly removing the residual stress of the inner surface.
  • FIG. 1 is a schematic diagram showing an apparatus for manufacturing a multi-structure seamless cladding according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a manufacturing process of a multi-structure seamless cladding according to an embodiment of the present invention
  • 3 to 5 are state diagrams illustrating the manufacturing process of a multi-structure seamless cladding pipe according to an embodiment of the present invention
  • FIG. 6 is a state diagram illustrating a stress relief process for the outer surface of a multi-structure seamless cladding according to an embodiment of the present invention
  • FIG. 7 and 8 are state diagrams illustrating the stress relief process for the inner surface of the multi-structure seamless cladding according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an apparatus for manufacturing a multi-structure seamless cladding according to an embodiment of the present invention.
  • the apparatus for manufacturing a multi-structure seamless cladding pipe is largely a drilling device 100, a coating device 200, a heating device 300, and a pilger device 400. and a primary stress relieving device and a secondary stress relieving device, and in particular, after performing the pilger operation by the pilger device 400 , the primary stress relief operation by the first stress relief device 600 , and It is possible to remove the residual surface stress on the inner and outer surfaces of the seamless cladding while the secondary stress relief operation by the secondary stress relief device 700 is sequentially performed.
  • the drilling device 100 is a device for drilling the billet material (10).
  • Such a drilling device 100 may be a conventional drilling machine and boring machine.
  • the coating device 200 is a device provided to form the coating layer 30 on the inner or outer surface of the perforated billet material (hereinafter, referred to as “seamless tube”) 20 .
  • the covering layer 30 may be a layer formed by a conventional deposition process, or may be formed as a tube made of a hollow shape separate from the seamless tube 20 .
  • the above-described coating device 200 is an example of an apparatus formed by overlay welding, so that coating layers of different dissimilar metals are grown on the seamless tube 20 .
  • the coating layer 30 by forming the coating layer 30 by overlay welding, it is possible not only to improve abrasion resistance and corrosion resistance, but also to provide a seamless tube 20 to the external environment when heated in a heating device 300 to be described later. Oxidation that may occur as a result of exposure can be reduced.
  • the heating device 300 is a device provided to heat the seamless tube 20 on which the plurality of coating layers 30 are formed before the pilger operation.
  • Such a heating device 30 is configured by installing a coil-type induction heater 320 inside a pipe-type duct 310 whose circumferential surface is closed with forward and backward opening, and thus the seamless tube 20 is the It allows sequential heating by the induction heater 320 while passing through the duct 310 .
  • argon (Ar) gas is injected to the inlet side and the outlet side of the heating device 300 to prevent oxygen from flowing into the duct 310 of the heating device 30, so that the seamless tube 20 ) to prevent oxidation of the coating layer 30 due to oxygen during heating.
  • the pilger device 400 is a device for expanding the pipe (or axial pipe) by rolling the seamless tube 20 coated with the plurality of coating layers 30 .
  • Such a pilger device 400 includes a pilger mill including a plurality of dies 410 and a mandrel 420 .
  • the pilger device 400 is located on the same horizontal line as the duct 310 of the heating device 300 and is installed to form an in-line arrangement, and the seamless tube 20 is a conveyor ( It is suggested that the induction heater 320 and the pilger device 400 are configured to pass continuously by using 510 and 520 .
  • the seamless tube 20 is directly provided to the pilger device 400 immediately after being heated while passing through the induction heater 320 of the heating device 300 so that the pilger operation is continuously performed. This is to prevent the breakage of each coated layer 30 and to ensure stable rolling without stressing the seamless tube 20 .
  • the primary stress relief device 600 is a device provided to remove residual stress on the outer surface of the seamless tube 20 .
  • This primary stress relief device 600 injects fine hard particles to the outer surface of the seamless tube 20 in a state in which the seamless tube 20 is positioned in the chamber 610 closed from the external environment, thereby providing a fine impact. It is made so that the residual stress on the surface can be removed by repeatedly applying. At this time, it is suggested that the fine hard particles are made of glass balls 601, and the primary stress relieving device 600 is a device for performing a shot blasting operation of high-speed jetting the glass balls 601 using high-pressure air. is provided as This is as shown in FIGS. 1 and 6 attached thereto.
  • the secondary stress relief device 700 is a device provided to remove residual stress on the inner surface of the seamless tube 20 .
  • Such a secondary stress relieving device 700 is made so that the residual stress on the surface can be removed by repeatedly applying fine impacts by spraying fine hard particles to the inner surface of the seamless tube 20 .
  • the fine hard particles are made of a glass ball 701
  • the secondary stress relief device 700 uses a plug 710 that is movably installed along the inside of the seamless tube 20 . is carried out
  • the plug 710 has a plunger portion 711 formed of an empty pipe, and a tubular body that is enlarged compared to the plunger portion 711 while extending at the tip of the plunger portion 711, and the tip end is formed to be closed and the peripheral surface includes a head portion 712 through which a plurality of particle passage holes 713 are penetrated. This is as shown in FIGS. 1 and 7 attached thereto.
  • the secondary stress relief device 700 further includes a cover 720 .
  • the cover 720 is a stopper that closes any one of the open sides of the seamless tube 20 , and a vacuum hole 721 is formed in the cover 720 .
  • the cover 720 may be a pre-made individual product as shown in the embodiment, but a structure formed by applying silicon or paraffin to close the open side of the corresponding seamless tube 20 using silicon or paraffin. could be
  • FIG. 2 is a flowchart illustrating a manufacturing process of a multi-structure seamless cladding including cleaning of inner and outer surfaces and stress relieving processes according to an embodiment of the present invention.
  • the method for manufacturing a multi-structure seamless cladding tube includes a material preparation step (S100), a drilling step (S200), a coating layer forming step (S300), a tube heating step (S400), and a pilger
  • the step S500 and the stress relief step are sequentially performed, and in particular, the addition of the stress relief steps S600 and S700 before performing the post-processing operation of the multi-structure seamless tube 20 made through the pilger step. This is done to prevent peeling or cracking between each coating layer that occurs during post-treatment.
  • the material preparation step (S100) of preparing the billet material 10 is performed.
  • Such a billet material 10 is provided in the form of a round bar or a block as shown in FIG. 3, and is formed of a metal material such as a zirconium alloy.
  • the portion to be drilled in the drilling step (S200) is formed to have an inner diameter in consideration of the thickness of the coating layer (30). This is as shown in the attached FIG. 4 .
  • the thickness and inner diameter of the seamless tube 20 is adjusted to the set dimensions through a separate machining or rolling operation after the drilling by the drilling step (S200) is completed.
  • the coating layer forming step (S300) of forming one or two or more of the plurality of coating layers 30 as shown in FIG. 5 attached to the inner peripheral surface or the outer peripheral surface of the molded seamless tube 20 is performed.
  • the coating layer 30 may be made of ceramic, silicon, or composite fiber.
  • the plurality of coating layers 30 are formed by sequentially coating the coating layers 30 of different dissimilar metals by overlay welding by the coating device 200 .
  • a rolling operation of primarily adjusting the dimensions of the inner and outer diameters of the perforated seamless tube 20 before performing the coating layer forming step (S300) may be additionally performed. That is, by additionally performing such a rolling operation, the amount of abrupt dimensional change during the pilger step (S500) performed after the coating layer forming step (S300) can be reduced, so that each coating layer (30) formed during the coating layer forming step (S300) In order to prevent further damage, in this case, the rolling operation is performed by cold rolling to prevent a change in the physical properties of the seamless tube 20 .
  • the tube heating step ( S400 ) of heating the seamless tube 20 on which the coating layer 30 is formed and the pilger step ( S500 ) of rolling the heated seamless tube 20 are successively performed.
  • the stress applied to the 20 was minimized, and in particular, the heating of the seamless tube 20 and the rolling of the heated tube 20 were continuously performed, so that the coating layer 30 caused by a sudden temperature change. ) to prevent damage.
  • the rigidity of the material can be improved.
  • the heating control of the induction heater 320 is performed so that the extraction temperature of the seamless tube is in a temperature range of 800 to 900°C.
  • the tube heating step (S400) is performed in a temperature range of less than 800 ° C.
  • the tube heating step If (S400) is performed in a temperature range exceeding 900 ° C., since there is a risk that a change in the physical properties of each coating layer 30 may be caused, the heating of the seamless tube 20 is performed in a temperature range of 800 to 900 ° C.
  • argon gas is sprayed to the inlet side of the induction heater 320 and the outlet side of the induction heater 320 so that the seamless tube 20 is While passing through the induction heater 320, it is possible to prevent oxygen from flowing into the seamless tube 20 while being heated.
  • the external stress removing step ( S600 ) of removing the residual stress on the outer surface of the seamless tube 20 thus worked is performed.
  • This external stress removing step (S600) is a fine glass ball 601 toward the entire outer surface of the seamless tube 20 in a state in which the seamless tube 20 is placed in the chamber 610 blocked from the external environment. It is performed by high-speed jetting with high-pressure air.
  • the internal stress removing step (S700) of removing the residual stress on the inner surface of the seamless tube 20 is performed.
  • This inner stress removing step (S700) is performed by high-speed spraying of fine glass balls 701 on the inner surface of the seamless tube 20 in a state in which the inside of the seamless tube 20 is evacuated.
  • the vacuuming of the inside of the seamless tube 20 closes either side of the open both sides of the seamless tube 20 with a cover 720 in which a vacuum hole 721 is formed, and the seamless tube In the other side of (20), the plug 710 is inserted and closed, and then the air in the inner space of the seamless tube 20 is discharged through the vacuum hole 721 to vacuum it.
  • the reason for vacuuming the inside of the seamless tube 20 before performing the short process is that the fine glass balls 701 sprayed into the inner surface of the seamless tube 20 do not lean to one side and cover the entire area. This is so that it can be sprayed evenly.
  • the plug 710 is taken out from the inside of the seamless tube 20 and the cover 720 is separated so that both sides of the seamless tube 20 are opened, and then the seam Residues remaining in the seamless tube 20 by forcibly injecting high-pressure air through either side of the less tube 20 (lubricating oil remaining in the seamless tube after pilgering and fine glass balls)
  • a process of discharging residues for discharging fine foreign substances removed from the inner surface of the less tube) is additionally performed.
  • the method for cleaning the inner and outer surfaces of the multi-structure seamless cladding and stress relieving method of the present invention removes fine particles made of glass balls 601 and 701 after pilgering the multi-structure seamless cladding into the outer surface of the seamless tube 20 and By spraying each on the inner surface to remove residual stress, cracks can be prevented from occurring during a post-process (eg, a heat treatment process, etc.).
  • a post-process eg, a heat treatment process, etc.
  • the temperature of the seamless tube 20 is lowered immediately after the pilger step (S500) is heated of the seamless tube 20.
  • the inner and outer surface cleaning and stress relief method of the multi-structure seamless cladding tube of the present invention is a method performed by high-speed jetting of fine glass balls 601 and 701 with high-pressure air toward the inner and outer surfaces of the seamless tube 20.
  • the stress as well as the removal of various foreign substances present on the surface it is possible to further improve the surface roughness.
  • the method for cleaning the inner and outer surfaces of the multi-structure seamless cladding and stress relieving method of the present invention is performed in a state in which the inside of the seamless tube 20 is evacuated when the stress relieving operation on the inner surface of the seamless tube 20 is performed.
  • the fine glass balls 601 and 701 can be uniformly sprayed over the entire area without being drawn to either side in the process of being sprayed into the inner surface of the seamless tube 20, so that the residual stress on the inner surface can be smoothly removed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 심레스 튜브를 가열한 상태로 필거장치를 이용하여 필거 작업을 수행한 후 상기 1차 응력 제거장치에 의한 1차 응력 제거 작업 및 2차 응력 제거장치에 의한 2차 응력 제거 작업이 순차적으로 수행되면서 심레스 피복관의 내외면에 대한 잔류 표면응력을 제거할 수 있도록 한 것이다.

Description

다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법
본 발명은 다중 구조 심레스 피복관에 관한 것으로써, 더욱 상세하게는 다중 구조 심레스 피복관의 제조시 발생되는 내외면의 각 부위별 서로 다른 응력을 제거하여 이후 공정시 야기되는 크랙을 방지할 수 있도록 하면서도 심레스 피복관의 내면 또는, 외면에 대한 표면 클리닝도 함께 이루어질 수 있도록 한 새로운 방법의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법에 관한 것이다.
일반적으로 심레스 튜브는 웰디드 튜브와는 달리 강판을 굽혀 이음매를 접합하여 만든 것이 아니라 강괴에서 롤(roll)을 써서 심봉을 이용하여 중공관을 만든 것으로 이음매가 없는 강관을 의미한다.
이와 같은 심레스 튜브의 구조는 다양한 용도로 사용되고 있으며, 특히 핵연료 피복관과 같은 고온에서 충분히 견딜수 있는 구조물 등에 주로 적용되고 있다.
한편, 상기 핵연료 피복관의 경우 심레스 튜브의 내외측에 탄화규소 섬유나 세라믹, 지르코늄 합금 등과 같은 다양한 피복을 다중 구조로 형성함으로써 고온에서의 기계적 강도와 열전달 효율의 향상 및 부식저항성의 향상을 얻을 수 있도록 하고 있으며, 이에 관련하여는 등록특허 제10-1526305호, 등록특허 제10-1595436호, 특허공보 특1992-0009646호 등에 기재된 바와 같다.
그러나, 전술된 종래 기술에 따른 핵연료 피복관과 같은 다중 구조 심레스 피복관은 심레스 튜브를 미리 설정된 치수로 가공한 후 각 피복층을 형성함에 따라 해당 심레스 피복관의 내외경에 대한 치수를 정밀하게 맞추기가 매우 어려웠던 단점이 있었다.
물론, 필거 작업을 통해 심레스 피복관의 내외경에 대한 치수를 정밀하게 성형하는 것이 가능할 수는 있다.
하지만, 이러한 필거 작업은 급격한 치수 변화로 인해 필거 작업 후 각 피복층에 다양한 응력이 잔존하게 되며, 이렇게 각 피복층에 잔존하는 응력으로 인해 후공정 작업(예컨대, 열처리 작업 등)에서 크랙이 발생되었던 문제점이 있었다.
즉, 심레스 피복관과 재질 및 특성이 서로 다른 피복층의 경우 이종 금속간 물성치 차이로 인해 상기 심레6스 피복관의 필거 작업을 수행하는 과정에서 응력의 편차가 발생되고, 이러한 응력의 편차로 인한 심레스 피복관의 내외면에 잔류하게 되는 응력이 후공정시 크랙 발생 확률을 상승시켰던 것이다.
또한, 필거 작업을 이용하여 제조된 심레스 피복관의 경우 해당 심레스 피복관의 내주면에 형성되는 다층의 코팅층에 다양한 이물질이 잔존할 수밖에 없다는 단점이 있다.
본 발명은 다중 구조 심레스 피복관의 제조시 발생되는 내외면의 각 부위별 서로 다른 응력을 제거하여 이후 공정시 야기되는 크랙을 방지할 수 있도록 하면서도 심레스 피복관의 내면 또는, 외면에 대한 표면 클리닝도 함께 이루어질 수 있도록 한 새로운 방법의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법을 제공하는데 있다.
상기한 목적을 달성하기 위한 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법에 따르면 준비된 빌렛 소재의 중앙을 천공하여 심레스 튜브로 성형하는 천공단계; 상기 성형된 심레스 튜브의 내주면 혹은, 외주면에 하나 혹은, 둘 이상 복수의 피복층을 성형하는 피복층 성형단계; 상기 피복층이 성형된 심레스 튜브를 필거장치에 투입하여 필거 작업을 수행하는 필거단계; 상기 필거 작업된 심레스 튜브의 외면에 대한 잔류 응력을 제거하는 외면 응력 제거단계; 상기 심레스 튜브의 내면에 대한 잔류 응력을 제거하는 내면 응력 제거단계;가 순차적으로 이루어짐을 특징으로 한다.
여기서, 상기 외면 응력 제거단계 및 내면 응력 제거단계는 유리로 이루어진 미세 입자를 고압공기로 상기 외면 혹은, 내면에 고속 분사하여 수행됨을 특징으로 한다.
또한, 상기 내면 응력 제거단계는 상기 심레스 튜브의 개방된 양측 중 어느 한 측을 진공홀이 형성된 덮개로 폐쇄하는 일측 폐쇄과정과, 상기 심레스 튜브의 다른 한 측으로 플러그를 삽입하여 폐쇄하는 플러그 삽입과정과, 상기 진공홀을 통해 상기 심레스 튜브의 내측 공간의 공기를 배출하여 진공화하는 진공과정과, 상기 플러그를 상기 심레스 튜브 내의 어느 일측에 도달하기까지 진입하면서 해당 플러그의 외면을 통해 유리로 이루어진 미세 입자를 고압공기로 고속 분사하는 쇼트과정을 포함하여 진행됨을 특징으로 한다.
또한, 상기 쇼트과정의 수행후에는 상기 플러그를 심레스 튜브의 내부로부터 취출함과 더불어 덮개를 분리하여 심레스 튜브의 양측이 개방되도록 한 후 상기 심레스 튜브의 어느 한 측을 통해 고압 공기를 강제 분사하여 해당 심레스 튜브 내에 잔존하는 잔재물을 배출하는 잔재물 배출과정이 더 진행됨을 특징으로 한다.
또한, 상기 플러그는 내부가 빈 파이프로 형성되는 플런저부와, 상기 플런저부의 선단에 연장 형성되면서 플런저부에 비해서는 확관된 관체로 형성됨과 더불어 선단은 폐쇄되도록 형성되며, 둘레면에는 다수의 입자 통과홀이 관통되어 이루어진 헤드부를 포함하여 이루어짐을 특징으로 한다.
이상에서와 같이, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 다중 구조 심레스 피복관에 대한 필거 작업 후 유리볼로 이루어진 미세 입자를 해당 심레스 피복관의 외면 및 내면에 각각 분사하여 잔류 응력을 제거함으로써 후공정시 크랙 발생이 방지될 수 있게 된 효과를 가진다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 필거단계가 심레스 튜브(20)의 가열이 이루어진 직후 해당 심레스 튜브(20)의 온도 저하가 이루어지기 전에 연속적으로 압연하여 수행되도록 함으로써 온도 변화로 인한 압연시의 각 피복층(30)에 대한 파단이나 물성 변형이 방지될 수 있게 된 효과를 가진다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 미세한 유리볼을 고압공기로 각 표면을 향해 고속 분사하여 수행되는 방식이기 때문에 표면 응력뿐 아니라 표면에 존재하는 각종 이물질의 제거가 추가로 이루어질 수 있음과 더불어 표면 조도의 향상을 이룰 수 있게 된 효과를 가진다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 심레스 튜브의 내면에 대한 응력 제거 작업시 해당 심레스 튜브의 내부를 진공화한 상태로 수행되도록 함으로써 미세 유리볼이 심레스 튜브 내면으로 분사되는 과정에서 어느 한 측으로 쏠리지 않고 전 부위에 걸쳐 균일하게 분사될 수 있게 되어 내면의 잔류 응력을 원활히 제거할 수 있게 된 효과를 가진다.
도 1은 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조를 위한 장치를 설명하기 위해 개략화하여 나타낸 구성도
도 2는 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조 과정을 설명하기 위해 나타낸 순서도
도 3 내지 도 5는 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조 과정을 설명하기 위해 나타낸 상태도
도 6은 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 외면에 대한 응력 제거 과정을 설명하기 위해 나타낸 상태도
도 7 및 도 8은 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 내면에 대한 응력 제거 과정을 설명하기 위해 나타낸 상태도
이하, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법에 대한 바람직한 실시예를 첨부된 도 1 내지 도 8을 참조하여 설명하도록 한다.
먼저, 첨부된 도 1은 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조를 위한 장치를 설명하기 위해 개략화하여 나타낸 구성도이다.
이에 도시된 바와 같이 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조를 위한 장치는 크게 천공장치(100)와, 피복장치(200)와, 가열장치(300)와, 필거장치(400)와, 1차 응력 제거장치 및 2차 응력 제거장치를 포함하여 이루어지며, 특히 상기 필거장치(400)에 의한 필거 작업의 수행 후 상기 1차 응력 제거장치(600)에 의한 1차 응력 제거 작업 및 2차 응력 제거장치(700)에 의한 2차 응력 제거 작업이 순차적으로 수행되면서 심레스 피복관의 내외면에 대한 잔류 표면응력을 제거할 수 있도록 한 것이다.
이를 각 구성별로 더욱 상세히 설명하면 다음과 같다.
먼저, 상기 천공장치(100)는 빌렛 소재(10)를 천공하기 위한 장치이다.
이와 같은 천공장치(100)는 통상의 드릴링기기 및 보링기기가 될 수 있다.
다음으로, 상기 피복장치(200)는 상기 천공된 빌렛 소재(이하, “심레스 튜브”라 함)(20)의 내면 혹은, 외면에 피복층(30)을 형성하도록 제공되는 장치이다.
이때, 상기 피복층(30)은 통상의 증착 과정에 의해 형성되는 층일 수도 있고, 심레스 튜브(20)와는 별도의 중공 형상으로 만들어진 관으로 형성될 수도 있다.
본 발명의 실시예에서는 상기한 피복장치(200)가 오버레이용접(overlay welded)으로써 서로 다른 이종 금속의 피복층이 심레스 튜브(20)에 육성되도록 하여 형성하는 장치임을 그 예로 한다.
특히, 상기 오버레이용접으로써 피복층(30)을 육성 형성하도록 함에 따라 내마모 및 내부식성의 향상을 이룰 수 있을 뿐 아니라 후술될 가열장치(300)에서의 가열시 심레스 튜브(20)가 외부 환경에 노출될 수 있음에 따라 발생될 수 있는 산화 현상이 저감될 수 있게 된다.
다음으로, 상기 가열장치(300)는 상기 복수의 피복층(30)이 형성된 심레스 튜브(20)를 필거 작업전 가열하기 위해 제공되는 장치이다.
즉, 상기한 가열장치(300)에 의한 필거 작업 전의 심레스 튜브(20)에 대한 가열을 통해 각 피복층(30)이 급격한 치수 변화에도 불구하고 파단 혹은, 박리되는 현상이 방지될 수 있도록 한 것이다.
이와 같은 가열장치(30)는 전후로 개방됨과 더불어 둘레면은 폐쇄된 파이프 형의 덕트(310) 내부에 코일형의 인덕션히터(320)를 설치하여 구성되며, 이로써 상기 심레스 튜브(20)가 상기 덕트(310) 내부를 통과하는 도중 인덕션히터(320)에 의한 순차적인 가열이 이루어질 수 있도록 한다.
특히, 상기한 가열장치(300)의 입구측 및 출구측으로는 아르곤(Ar) 가스가 분사되도록 하여 상기 가열장치(30)의 덕트(310) 내부로 산소가 유입됨을 방지하여 상기 심레스 튜브(20)의 가열 도중 산소로 인한 피복층(30)의 산화 현상이 방지될 수 있도록 한다.
다음으로, 상기 필거장치(400)는 복수의 피복층(30)이 피복된 심레스 튜브(20)를 압연하여 확관(또는, 축관)되도록 하는 장치이다.
이와 같은 필거장치(400)는 복수의 다이스(410)와 맨드렐(420)을 포함하는 필거밀로 이루어진다.
특히, 본 발명의 실시예에서는 상기 필거장치(400)가 상기 가열장치(300)의 덕트(310)와 동일한 수평선상에 위치되면서 인라인 배치를 이루도록 설치됨과 더불어 상기 심레스 튜브(20)는 컨베이어(510,520)를 이용하여 상기 인덕션히터(320)와 필거장치(400)를 연속하여 통과하도록 구성됨을 제시한다.
즉, 심레스 튜브(20)가 가열장치(300)의 인덕션히터(320)를 통과하면서 가열된 직후 곧장 필거장치(400)로 제공되어 필거 작업이 연속하여 수행되도록 함으로써 심레스 튜브(20)에 피복된 각 피복층(30)의 파단 현상을 방지하면서도 심레스 튜브(20)에 스트레스를 주지않고 안정적인 압연이 이루어질 수 있도록 한 것이다.
다음으로, 상기 1차 응력 제거장치(600)는 심레스 튜브(20)의 외면에 대한 잔류 응력을 제거하기 위해 제공되는 장치이다.
이와 같은 1차 응력 제거장치(600)는 외부 환경으로부터 폐쇄된 챔버(610) 내에 심레스 튜브(20)를 위치시킨 상태에서 해당 심레스 튜브(20)의 외면으로 미세한 경질입자를 분사하여 미세한 충격을 반복하여 가함으로써 표면의 잔류 응력이 제거될 수 있도록 이루어진다. 이때, 상기 미세한 경질입자는 유리볼(601)로 이루어짐을 제시하며, 상기 1차 응력 제거장치(600)는 고압공기를 이용하여 상기 유리볼(601)을 고속 분사하는 쇼트 블라스트 작업을 수행하는 장치로 제공된다. 이에 대하여는 첨부된 도 1 및 도 6에 도시된 바와 같다.
다음으로, 상기 2차 응력 제거장치(700)는 심레스 튜브(20)의 내면에 대한 잔류 응력을 제거하기 위해 제공되는 장치이다.
이와 같은 2차 응력 제거장치(700)는 상기 심레스 튜브(20)의 내면으로 미세한 경질입자를 분사하여 미세한 충격을 반복하여 가함으로써 표면의 잔류 응력이 제거될 수 있도록 이루어진다. 이때, 상기 미세한 경질입자는 유리볼(701)로 이루어짐을 제시하며, 상기 2차 응력 제거장치(700)는 상기 심레스 튜브(20) 내부를 따라 이동 가능하게 설치되는 플러그(710)를 이용하여 수행된다.
여기서, 상기 플러그(710)는 내부가 빈 파이프로 형성되는 플런저부(711)와, 상기 플런저부(711)의 선단에 연장 형성되면서 플런저부(711)에 비해서는 확관된 관체로 형성됨과 더불어 선단은 폐쇄되도록 형성되며 둘레면에는 다수의 입자 통과홀(713)이 관통되어 이루어진 헤드부(712)를 포함하여 이루어진다. 이에 대하여는 첨부된 도 1 및 도 7에 도시된 바와 같다.
또한, 상기 2차 응력 제거장치(700)는 덮개(720)를 더 포함하여 이루어진다.
상기 덮개(720)는 상기 심레스 튜브(20)의 개방된 양측 중 어느 한 측을 폐쇄하는 마개이며, 이러한 덮개(720)에는 진공홀(721)이 형성되어 이루어진다. 이때 상기 덮개(720)는 실시예로 도시되는 바와 같이 미리 만들어진 개별 제품이 될 수 있지만, 실리콘이나 파라핀 등을 이용하여 해당 심레스 튜브(20)의 개방된 일측을 폐쇄하도록 도포하여 형성되는 구조물이 될 수도 있다.
하기에서는, 전술된 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조 과정을 각 순서대로 더욱 상세히 설명하도록 한다.
첨부된 도 2는 본 발명의 실시예에 따른 내외면 표면 클리닝 및 응력 제거 과정을 포함하는 다중 구조 심레스 피복관의 제조 과정을 설명하기 위해 나타낸 순서도이다.
이에 따르면 본 발명의 실시예에 따른 다중 구조 심레스 피복관의 제조방법은 소재 준비단계(S100)와, 천공단계(S200)와, 피복층 성형단계(S300)와, 튜브 가열단계(S400)와, 필거단계(S500)와, 응력 제거단계가 순차적으로 수행되어 이루어지며, 특히 상기 필거단계를 거쳐 만들어진 다중 구조 심레스 튜브(20)의 후처리 작업을 수행하기 전에 응력 제거단계(S600,S700)의 추가 수행을 통해 후처리 작업시 발생되는 각 코팅층 간의 박리나 균열 발생을 방지할 수 있도록 한 것이다.
이를 첨부된 도 2의 순서도 및 도 3 내지 도 8의 상태도를 참조하여 각 과정별로 더욱 상세히 설명하면 다음과 같다.
먼저, 빌렛 소재(10)를 준비하는 소재 준비단계(S100)가 수행된다.
이와 같은 빌렛 소재(10)는 첨부된 도 3과 같은 환봉 형태 혹은, 블럭 형태로 제공되며, 지르코늄 합금과 같은 금속 재질로 형성된다.
그리고, 상기한 빌렛 소재(10)가 준비되면 상기 준비된 빌렛 소재(10)의 중앙을 천공하여 심레스 튜브(20)로 성형하는 천공단계(S200)를 수행한다.
이때, 상기 천공단계(S200)에서 천공되는 부위는 피복층(30)의 두께를 고려한 내경을 갖도록 형성된다. 이는 첨부된 도 4에 도시된 바와 같다.
물론, 상기 천공단계(S200)에 의한 천공이 완료된 후 별도의 기계 가공이나 압연 작업을 통해 심레스 튜브(20)의 두께 및 내경을 설정된 치수로 맞추도록 함이 더욱 바람직하다.
다음으로, 상기 성형된 심레스 튜브(20)의 내주면 혹은, 외주면에 첨부된 도 5와 같이 하나 혹은, 둘 이상 복수의 피복층(30)을 성형하는 피복층 성형단계(S300)가 수행된다.
이때, 상기 피복층(30)은 세라믹이나, 실리콘, 복합 섬유 등이 될 수 있다.
또한, 상기한 복수의 피복층(30)은 피복장치(200)에 의한 오버레이용접으로 서로 다른 이종 금속의 피복층(30)을 순차적으로 피복함으로써 성형된다.
한편, 천공단계(S200)의 완료 후 상기 피복층 성형단계(S300)를 수행하기 전에 천공된 심레스 튜브(20)의 내외경에 대한 치수를 일차적으로 조절하는 압연작업이 추가로 수행될 수가 있다. 즉, 이러한 압연작업의 추가 수행을 통해 차후 피복층 성형단계(S300) 후 수행하는 필거단계(S500)시 급격한 치수 변화량을 감소시킬 수 있도록 하여 피복층 성형단계(S300)시 성형되는 각 피복층(30)의 손상이 더욱 방지되도록 하며, 이의 경우 상기 압연작업은 냉간 압연으로 수행함으로써 해당 심레스 튜브(20)의 물성 변화를 방지할 수 있도록 한다.
다음으로, 상기 피복층(30)이 성형된 심레스 튜브(20)를 가열시키는 튜브 가열단계(S400) 및 가열된 심레스 튜브(20)를 압연하는 필거단계(S500)가 연속하여 수행된다.
즉, 필거단계(S500)에 의한 필거 작업이 냉간으로 수행하는 것이 아니라 열간으로 수행될 수 있도록 함으로써 피복층(30)을 이루는 다중의 이종 소재 간 파단 발생이 방지될 수 있도록 하면서도 필거 작업 중 심레스 튜브(20)에 제공되는 스트레스를 최소화할 수 있도록 하였으며, 특히 상기 심레스 튜브(20)의 가열과 이 가열된 튜브(20)의 압연이 연속적으로 이루어지도록 함으로써 급격한 온도 변화로 인해 야기되는 피복층(30)의 손상 발생이 방지될 수 있도록 한 것이다.
뿐만 아니라, 열간 필거 작업의 수행에 의해 심레스 튜브(20)에 가해지는 스트레스를 최소화할 수 있음에 따라 소재의 강성을 향상시킬 수 있게 된다.
상기한 튜브 가열단계(S400)는 심레스 튜브의 취출 온도가 800~900℃ 사이의 온도 범위를 이루도록 상기 인덕션히터(320)의 가열 제어가 이루어지도록 한다. 이때 상기 튜브 가열단계(S400)가 상기 800℃ 미만의 온도 범위로 수행될 경우 각 피복층(30)이 충분히 가열되지 못함에 따라 각 피복층(30)의 파단이 발생될 우려가 있고, 상기 튜브 가열단계(S400)가 900℃를 초과한 온도 범위로 수행될 경우 각 피복층(30)의 물성 변화가 야기될 우려가 있기 때문에 심레스 튜브(20)의 가열이 800~900℃ 사이의 온도 범위로 수행되도록 하여 각 피복층(30) 간의 파단이 방지되도록 하면서도 각 피복층(30)의 물성 변화가 방지될 수 있도록 한 것이다.
이와 함께, 상기한 인덕션히터(320)를 이용한 심레스 튜브를 가열하는 도중에는 상기 인덕션히터(320)의 입구측 및 인덕션히터(320)의 출구측으로 아르곤 가스를 분사하여 상기 심레스 튜브(20)가 인덕션히터(320)를 통과하면서 가열되는 도중 상기 심레스 튜브(20)로 산소가 유입됨을 방지할 수 있도록 한다.
다음으로, 상기 필거단계(S500)를 통한 필거 작업이 완료되면 이렇게 작업된 심레스 튜브(20)의 외면에 대한 잔류 응력을 제거하는 외면 응력 제거단계(S600)가 진행된다.
이러한 외면 응력 제거단계(S600)는 외부 환경으로부터 차단된 챔버(610) 내에 심레스 튜브(20)를 안치시킨 상태에서 상기 심레스 튜브(20)의 외면 전 부위를 향해 미세한 유리볼(601)을 고압공기로 고속 분사함으로써 수행된다.
즉, 상기한 외면 응력 제거단계(S600)의 수행에 의해 전술된 필거 작업시 각 피복층(30)별로 물성치가 서로 다름에 따른 응력의 편차로 심레스 튜브(20)의 외면에 발생된 잔류 응력이 제거된다.
그리고, 상기 과정에 의한 외면 응력 제거단계(S600)가 완료되면 상기 심레스 튜브(20)의 내면에 대한 잔류 응력을 제거하는 내면 응력 제거단계(S700)가 수행된다.
이와 같은 내면 응력 제거단계(S700)는 심레스 튜브(20)의 내부를 진공화시킨 상태로 해당 심레스 튜브(20) 내면에 미세한 유리볼(701)을 고속 분사함으로써 수행된다.
상기 심레스 튜브(20)의 내부에 대한 진공화는 상기 심레스 튜브(20)의 개방된 양측 중 어느 한 측을 진공홀(721)이 형성된 덮개(720)로 폐쇄함과 더불어 상기 심레스 튜브(20)의 다른 한 측으로는 플러그(710)를 삽입하여 폐쇄한 다음 상기 진공홀(721)을 통해 상기 심레스 튜브(20)의 내측 공간의 공기를 배출하여 진공화함으로써 진행된다.
이후, 상기 플러그(710)를 상기 심레스 튜브(20) 내의 어느 일측에 도달하기까지 진입하면서 해당 플러그(710)의 외면을 통해 미세한 유리볼(701)을 고압공기로 고속 분사하는 쇼트과정을 수행함으로써 상기 심레스 튜브(20)의 내면에 대한 잔류 응력을 제거한다.
이때, 상기 쇼트과정의 수행 전 상기 심레스 튜브(20)의 내부를 진공화하는 이유는 상기 심레스 튜브(20) 내면으로 분사되는 미세한 유리볼(701)이 어느 한 측으로 쏠리지 않고 전 부위에 걸쳐 균일하게 분사될 수 있도록 하기 위함이다.
또한, 상기 쇼트과정의 수행후에는 상기 플러그(710)를 심레스 튜브(20)의 내부로부터 취출함과 더불어 덮개(720)를 분리하여 심레스 튜브(20)의 양측이 개방되도록 한 후 상기 심레스 튜브(20)의 어느 한 측을 통해 고압 공기를 강제 분사하여 해당 심레스 튜브(20) 내에 잔존하는 잔재물(필거작업 후 심레스 튜브 내부에 잔존하는 윤활유 및 미세한 유리볼의 분사에 의해 상기 심레스 튜브 내면으로부터 제거되는 미세 이물질 등)을 배출하는 잔재물 배출과정이 추가로 수행된다.
결국, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 다중 구조 심레스 피복관에 대한 필거 작업 후 유리볼(601,701)로 이루어진 미세 입자를 해당 심레스 튜브(20)의 외면 및 내면에 각각 분사하여 잔류 응력을 제거함으로써 후공정(예컨대, 열처리 공정 등)시 크랙 발생이 방지될 수 있게 된다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 필거단계(S500)가 심레스 튜브(20)의 가열이 이루어진 직후 해당 심레스 튜브(20)의 온도 저하가 이루어지기 전에 연속적으로 압연하여 수행되도록 함으로써 온도 변화로 인한 압연시의 각 피복층(30)에 대한 파단이나 물성 변형이 방지될 수 있게 된다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 미세한 유리볼(601,701)을 고압공기로 심레스 튜브(20)의 내외면을 향해 고속 분사하여 수행되는 방식이기 때문에 표면 응력뿐 아니라 표면에 존재하는 각종 이물질의 제거가 추가로 이루어질 수 있음과 더불어 표면 조도 역시 향상시킬 수 있게 된다.
또한, 본 발명의 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법은 심레스 튜브(20)의 내면에 대한 응력 제거 작업시 해당 심레스 튜브(20)의 내부를 진공화한 상태로 수행되도록 함으로써 미세 유리볼(601,701)이 심레스 튜브(20) 내면으로 분사되는 과정에서 어느 한 측으로 쏠리지 않고 전 부위에 걸쳐 균일하게 분사될 수 있게 되어 내면의 잔류 응력을 원활히 제거할 수 있게 된다.

Claims (5)

  1. 심레스 튜브의 내주면 혹은, 외주면에 하나 혹은, 둘 이상 복수의 피복층을 성형하는 피복층 성형단계;
    상기 피복층이 성형된 심레스 튜브를 필거장치에 투입하여 필거 작업을 수행하는 필거단계;
    상기 필거 작업된 심레스 튜브의 외면에 대한 잔류 응력을 제거하는 외면 응력 제거단계;
    상기 심레스 튜브의 내면에 대한 잔류 응력을 제거하는 내면 응력 제거단계;가 순차적으로 이루어짐을 특징으로 하는 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법.
  2. 제 1 항에 있어서,
    상기 외면 응력 제거단계 및 내면 응력 제거단계는
    유리로 이루어진 미세 입자를 고압공기로 상기 외면 혹은, 내면에 고속 분사하여 수행됨을 특징으로 하는 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법.
  3. 제 1 항 또는, 제 2 항에 있어서,
    상기 내면 응력 제거단계는
    상기 심레스 튜브의 개방된 양측 중 어느 한 측을 진공홀이 형성된 덮개로 폐쇄하는 일측 폐쇄과정과,
    상기 심레스 튜브의 다른 한 측으로 플러그를 삽입하여 폐쇄하는 플러그 삽입과정과,
    상기 진공홀을 통해 상기 심레스 튜브의 내측 공간의 공기를 배출하여 진공화하는 진공과정과,
    상기 플러그를 상기 심레스 튜브 내의 어느 일측에 도달하기까지 진입하면서 해당 플러그의 외면을 통해 유리로 이루어진 미세 입자를 고압공기로 고속 분사하는 쇼트과정을 포함하여 진행됨을 특징으로 하는 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법.
  4. 제 3 항에 있어서,
    상기 쇼트과정의 수행후에는 상기 플러그를 심레스 튜브의 내부로부터 취출함과 더불어 덮개를 분리하여 심레스 튜브의 양측이 개방되도록 한 후 상기 심레스 튜브의 어느 한 측을 통해 고압 공기를 강제 분사하여 해당 심레스 튜브 내에 잔존하는 잔재물을 배출하는 잔재물 배출과정이 더 진행됨을 특징으로 하는 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법.
  5. 제 3 항에 있어서,
    상기 플러그는
    내부가 빈 파이프로 형성되는 플런저부와,
    상기 플런저부의 선단에 연장 형성되면서 플런저부에 비해서는 확관된 관체로 형성됨과 더불어 선단은 폐쇄되도록 형성되며, 둘레면에는 다수의 입자 통과홀이 관통되어 이루어진 헤드부를 포함하여 이루어짐을 특징으로 하는 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법.
PCT/KR2020/000663 2020-01-14 2020-01-14 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법 WO2021145474A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/000663 WO2021145474A1 (ko) 2020-01-14 2020-01-14 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/000663 WO2021145474A1 (ko) 2020-01-14 2020-01-14 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법

Publications (1)

Publication Number Publication Date
WO2021145474A1 true WO2021145474A1 (ko) 2021-07-22

Family

ID=76864534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000663 WO2021145474A1 (ko) 2020-01-14 2020-01-14 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법

Country Status (1)

Country Link
WO (1) WO2021145474A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821887A (ja) * 1994-03-21 1996-01-23 General Electric Co <Ge> 被覆管を製造する方法
CN101169215A (zh) * 2006-10-25 2008-04-30 白日忠 纳米涂层防护管及其涂敷制造工艺
KR20100105996A (ko) * 2009-03-23 2010-10-01 주식회사 케이시알 저장용기용 내부코팅장치
KR20130087626A (ko) * 2007-03-14 2013-08-06 니혼 하츠쵸 가부시키가이샤 심레스 강관의 제조방법
KR20200064755A (ko) * 2018-11-29 2020-06-08 국제희토류금속 주식회사 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821887A (ja) * 1994-03-21 1996-01-23 General Electric Co <Ge> 被覆管を製造する方法
CN101169215A (zh) * 2006-10-25 2008-04-30 白日忠 纳米涂层防护管及其涂敷制造工艺
KR20130087626A (ko) * 2007-03-14 2013-08-06 니혼 하츠쵸 가부시키가이샤 심레스 강관의 제조방법
KR20100105996A (ko) * 2009-03-23 2010-10-01 주식회사 케이시알 저장용기용 내부코팅장치
KR20200064755A (ko) * 2018-11-29 2020-06-08 국제희토류금속 주식회사 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법

Similar Documents

Publication Publication Date Title
US8082768B2 (en) Piercing and rolling plug, method of regenerating such piercing and rolling plug, and equipment line for regenerating such piercing and rolling plug
US3670400A (en) Process and apparatus for fabricating a hot worked metal layer from atomized metal particles
WO2010100968A1 (ja) プラグ、穿孔圧延機、およびそれを用いた継目無管の製造方法
WO2021145474A1 (ko) 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법
US5711826A (en) Functionally gradient cladding for nuclear fuel rods
CN113510216B (zh) 一种铌钨合金环形件锻造成形方法
JP2013226565A (ja) 穿孔圧延用プラグの製造設備
JP5610101B1 (ja) 熱間製管用プラグ
KR102182138B1 (ko) 다중 구조 심레스 피복관의 내외면 표면 클리닝 및 응력 제거방법
WO2012003691A1 (zh) 一种行星轧管机及铜合金管的行星轧制方法
CN116921492B (zh) 一种厚壁钛合金管材的制备方法
KR102024350B1 (ko) 다중 구조 심레스 피복관의 제조방법
JP2003225701A (ja) 継目無鋼管の連続圧延装置
MX2014012498A (es) Metodo para producir punzon para perforacion mediante laminacion.
CN111069332A (zh) 一种小径薄壁钼及钼合金管的制备方法
CN215799754U (zh) 一种退火机用预热机构
KR100494458B1 (ko) 핵연료봉용피복제조방법
CN112877656B (zh) 一种锆管靶及生产方法
WO2021015409A1 (ko) 스테이브 및 스테이브의 제조방법
CN217757564U (zh) 一种淬火炉炉内内窥装置
CN213388766U (zh) 一种rh浸渍管用镁尖晶石砖结构
JPH01205850A (ja) 継目無金属管の製造方法
RU2632501C1 (ru) Способ получения композиционных изделий с внутренней полостью сваркой взрывом
JPH08224611A (ja) 継目無鋼管の浸炭防止方法
CN112756342A (zh) 一种大卷重内螺纹铜管内壁除油的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20914729

Country of ref document: EP

Kind code of ref document: A1