WO2012003691A1 - 一种行星轧管机及铜合金管的行星轧制方法 - Google Patents

一种行星轧管机及铜合金管的行星轧制方法 Download PDF

Info

Publication number
WO2012003691A1
WO2012003691A1 PCT/CN2010/079099 CN2010079099W WO2012003691A1 WO 2012003691 A1 WO2012003691 A1 WO 2012003691A1 CN 2010079099 W CN2010079099 W CN 2010079099W WO 2012003691 A1 WO2012003691 A1 WO 2012003691A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary
induction
slow cooling
rolling
copper alloy
Prior art date
Application number
PCT/CN2010/079099
Other languages
English (en)
French (fr)
Inventor
赵学龙
陈玉良
曹建国
魏连运
楼娜
胡小旭
王斌
狄大江
黄登科
刘永
刘海军
Original Assignee
Zhao Xuelong
Chen Yuliang
Cao Jianguo
Wei Lianyun
Lou Na
Hu Xiaoxu
Wang Bin
Di Dajiang
Huang Dengke
Liu Yong
Liu Haijun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhao Xuelong, Chen Yuliang, Cao Jianguo, Wei Lianyun, Lou Na, Hu Xiaoxu, Wang Bin, Di Dajiang, Huang Dengke, Liu Yong, Liu Haijun filed Critical Zhao Xuelong
Publication of WO2012003691A1 publication Critical patent/WO2012003691A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes

Definitions

  • the invention belongs to the technical field of non-ferrous metal processing and manufacturing, and particularly relates to a planetary rolling method for rolling a copper alloy tube and a copper alloy tube. Background technique
  • the copper tube casting and rolling production technology is a short-flow, continuous copper tube processing technology developed in the 1980s. It is specially developed for the copper tube processing of the large-scale continuous production of copper tubes for air-conditioning and refrigeration. the way. Since copper has a high heat transfer coefficient, it does not need to be heated when rolling with a planetary tube mill. By relying on deformation during rolling and a large amount of heat energy generated during high friction, the temperature of the billet rises to 700 ° C, causing the tube blank to occur. Dynamic recovery, recrystallization or grain refinement, the rolled tube blank can be directly subjected to subsequent stretching without annealing. Compared with the traditional extrusion technology, the production efficiency can be greatly improved by the casting and rolling production technology. .
  • the current copper tube rolled by the planetary tube mill has the following disadvantages: 1.
  • the copper alloy has a significant decrease in heat transfer performance compared to copper, and the room temperature deformation resistance, work hardening and deformation stress increase significantly, relying on rolling.
  • the heat generated by deformation and friction has been difficult to achieve the expected processing requirements.
  • Local overheating during tube deformation causes the tube blank to bond with the roll, and the alloy tube is over-fired and cracked. The insufficient temperature produces hardening stress under the action of large processing volume.
  • the cooling system of the pipe machine has been improved, but the thermal deformation process of the alloy pipe still cannot meet the process requirements, and it is difficult to achieve uniform dynamic recovery.
  • the cooling method of the improved cooling system also has shortcomings, which cannot meet the subsequent cold-rolled pipe. Or continuous cold working performance requirements such as stretching processes, there is an urgent need in the industry for an efficient, continuous production equipment to meet the production requirements of high quality copper alloy tubes. Summary of the invention
  • the problem to be solved by the invention is to provide a planetary rolling method for a new planetary tube rolling mill and a copper alloy tube, which can replace the extrusion process and the horizontal continuous casting machine, the straightening milling machine and the continuous stretching machine, and the continuous cutting on line.
  • the cooperation of machines and the like enables the automation, continuous and short-flow production of high-quality copper alloy tubes.
  • a new type of planetary tube rolling mill comprising a feeding mechanism for conveying a hollow slab, a planetary host for casting and rolling a hollow slab, and a roller set in the planetary main machine And a rolling die quick cooling mechanism, characterized in that: the discharging end of the feeding mechanism and the planet main Description
  • An induction preheating mechanism for preheating the hollow slab is disposed between the feeding ends of the machine, and the discharging end of the planetary main body is sequentially provided with an induction soaking mechanism and a slow cooling mechanism, and the pipe after the rolling cold cooling is The induction soaking mechanism is again heated and slow cooling is achieved by the slow cooling mechanism.
  • the discharge end of the induction preheating mechanism is sealingly connected with the feeding end of the planetary host, and the feeding end of the induction heat equalizing mechanism is sealingly connected with the discharging end of the planetary host, and the discharging of the induction heat collecting mechanism is inductively
  • the end is sealingly connected with the feeding end of the slow cooling mechanism;
  • the induction preheating mechanism, the induction soaking mechanism and the slow cooling mechanism are respectively respectively provided with air supply means for charging the inside of the mechanism with the shielding gas.
  • the induction preheating mechanism is a closed whole formed by a plurality of independent induction heaters connected by a roller, and the induction heater is provided with a heating induction coil;
  • the induction heat equalizer is composed of a plurality of independent inductions.
  • the heater is connected by a roller to form a closed whole body, and the induction heater is provided with a heating inductor.
  • the slow cooling mechanism is a double-layer cylinder composed of a small-diameter steel sleeve and a large-diameter steel sleeve, and the inner cavity of the small-diameter steel sleeve is passed through the rolled pipe, and between the small-diameter steel sleeve and the large-diameter steel sleeve For the annular compartment for the cooling water to pass through, the cooling water exchanges indirect heat with the pipe through the small-diameter steel sleeve to realize the slow cold-cutting of the pipe.
  • a partition plate with a through hole is arranged to divide the slow cooling mechanism into a first-stage slow cooling section and a second-stage slow cooling section, and a sealing curtain is arranged on the upper ring wall of the through-hole hole.
  • the length of the secondary slow cooling section is smaller than the length of the first grade slow cooling section; the portion of the small diameter steel sleeve located in the secondary slow cooling section is uniformly distributed with a plurality of inclined water spray holes along the circumferential direction thereof, and along the
  • the small-diameter steel sleeve is axially arranged with one or more sets of water spray holes.
  • the cooling water with a temperature of 40-60 ° C after slow cooling directly sprays the pipe from the first-stage slow-cooling section in the form of small water column, so that the temperature is highest.
  • the 300 ° C drops below 60 ° C.
  • the feeding mechanism comprises a conveying table, a rack for placing the hollow billet, and a sorting device for feeding the hollow billet into the conveying table, and the front end of the conveying table is connected to the feeding end of the induction preheating mechanism
  • the propeller is provided with a propulsion mechanism for advancing the hollow billet.
  • the propulsion mechanism comprises a core rod with a mandrel, an pushing head for pushing the core rod forward, and a pushing cart for pushing the hollow billet forward; in the preheating state of the hollow billet, the core rod body is located in the induction
  • the portion of the preheating mechanism has at least one groove having a length not less than the entire length of the induction preheating mechanism in the axial direction thereof, and the groove is filled with an insulating material.
  • the pusher head feeds the core rod with the mandrel into the hollow cast slab and feeds it to the roller set of the planetary mainframe together with the hollow cast slab, and then pushes the hollow cast slab by the push-pull trolley to make the hook speed pass the induction preheating Each induction heater within the facility.
  • the present invention also proposes a method for rolling a copper alloy tube using the above-described rolling mill, which is characterized in that it comprises the following steps:
  • the in-situ preheating mechanism and the planetary host jointly complete the rolling of the hollow slab under the protective atmosphere to obtain a copper alloy tube, the preheating temperature of the hollow slab is 300-700 ° C, and the rolling temperature is 600-1100 ° C ;
  • the rolling step speed of the hollow slab in the step a is 10-2000 mm/min.
  • the slow cooling process in the step e is: firstly, the soaked copper alloy tube is slowly cooled to below 300 ° C by the first stage slow cooling section, and then the copper alloy tube is finally cooled by the secondary slow cooling section. Up to 60 °C.
  • Setting the induction soaking mechanism can eliminate the deformation stress caused by the incomplete recrystallization of the deformed pipe and the residual stress caused by the self-cooling of the planetary mainframe after the large processing rate of the planetary mainframe is in time to make the pipe harden after rolling;
  • the segmental slow cooling method gradually cools the pipe to ensure that the pipe reaches the cooling temperature required by the process within the specified slow cooling time without causing the cooling stress and hardening of the pipe.
  • the hardness of the copper alloy pipe is HV5 after the completion of the whole process. When it reaches 80 or less, the continuous cold working performance requirements of the subsequent cold rolling pipe or the drawing process are satisfied, thereby achieving the casting and rolling production of the copper alloy pipe.
  • the hollow slab is preheated, rolled, and rolled during the soaking and rolling cooling process under nitrogen protection conditions.
  • the inner and outer surfaces of the processed pipe are bright and non-oxidized during the whole working process;
  • the rolled coffin has excellent internal and external structure and surface quality, and does not require physical and chemical surface treatment such as acid washing, and can be directly processed.
  • the rolling mill provided by the invention can replace the extrusion process with the horizontal continuous casting machine, the straightening and milling machine, the continuous stretching machine and the online continuous cutting machine, etc., to realize the automatic, continuous and short copper alloy tube.
  • Process production improve the material yield and production efficiency of pipes, and achieve the goal of reducing energy consumption and production costs.
  • Figure 1 is a structural view of the whole machine of the present invention
  • FIG. 2 is a structural view of an induction preheating mechanism of the present invention
  • Figure 3 is a structural view of the induction heat equalizing mechanism of the present invention.
  • Figure 4 is a structural view of the slow cooling mechanism of the present invention.
  • Figure 5 is an enlarged view of B of Figure 4.
  • Figure 6 is a structural view of a core rod of the present invention.
  • Figure 7 is a cross-sectional view taken along line A-A of Figure 6. detailed description
  • the present invention firstly proposes a novel planetary tube rolling mill, which comprises a feeding mechanism for conveying a hollow slab, a planetary host 1 for casting and rolling a hollow slab, and a roller in the planetary main unit 1.
  • the group 11 and the rolling die quick cooling mechanism, between the discharge end of the feeding mechanism and the feeding end of the planetary host 1 is provided with an induction preheating mechanism 2 for preheating the hollow cast slab, and the planetary host 1 is discharged
  • the material end is sequentially provided with an induction soaking mechanism 3 and a slow cooling mechanism 4, and the pipe after the rolling rapid cooling is heated again by the induction soaking mechanism 3 Description
  • Slow cooling is achieved by the slow cooling mechanism 4 described.
  • the induction preheating mechanism 2 is a closed whole formed by four independent induction heaters 21 connected by a roller 23, and the induction heater 21 is provided with a heating induction coil 22; an induction soaking mechanism 3 is a closed whole formed by three independent induction heaters 31 connected by a idler 33, and a heating induction coil 32 is provided in the induction heater.
  • the number of induction heaters 21, 31 should be determined according to the actual heating requirements of the workpiece.
  • the above embodiment is only a relatively common structure.
  • the slow cooling mechanism 4 is a double-layered cylinder composed of a small-diameter steel sleeve 43 and a large-diameter steel sleeve 42, and the inner cavity 430 of the small-diameter steel sleeve 43 is passed through the rolled pipe, and the small-diameter steel sleeve 43 Between the large diameter steel sleeve 42 and the annular compartment 44 for the cooling water to pass through, the cooling water exchanges indirect heat with the pipe through the small diameter steel sleeve 43 to achieve slow cooling of the pipe.
  • the inner cavity 430 of the small-diameter steel sleeve 43 is provided with a partition 431 with a through hole to divide the slow cooling mechanism 4 into a first-stage slow cooling section 40 and a second-stage slow cooling section 41, and a sealing curtain 432 is arranged on the upper wall of the through-hole hole wall,
  • the length of the stage slow cooling section 41 is less than the length of the primary slow cooling section 40.
  • the temperature of the pipe heated by the induction soaking mechanism 3 is 450-750 ° C, and is cooled to below 300 ° C in the first stage slow cooling section 40; the portion of the small diameter steel sleeve 43 located in the secondary slow cooling section 41 is along the circumference thereof
  • the direction is evenly distributed with a plurality of water spray holes 433 arranged obliquely, and one or more sets of spray holes 433 are axially arranged along the small diameter steel sleeve 43.
  • the cooling water having a temperature of 40 to 60 ° C is slowly cooled in the form of small water columns. Directly spray the tubing from the primary slow cooling section 40 to reduce the temperature from the highest 300 ° C to below 60 ° C.
  • the water spray hole 433 can also be replaced by a ring-shaped water tank.
  • the water pipe from the primary slow cooling section 40 is directly sprayed in the form of a water curtain, and the water for cooling uses a net circulating water without impurities.
  • the discharge end of the induction preheating mechanism 2 is sealingly connected with the feeding end of the planetary host 1 , and the feeding end of the induction heat equalizing mechanism 3 is sealingly connected with the discharging end of the planetary host 1 to sense the soaking mechanism 3
  • the discharge end is sealingly connected to the feeding end of the slow cooling mechanism 4;
  • the induction preheating mechanism 2, the induction soaking mechanism 3 and the slow cooling mechanism 4 are respectively provided with air supply means for charging the inside of the mechanism with a shielding gas.
  • the feeding mechanism comprises a conveying table 5, a rack 6 for placing the hollow billet 8, and a sorting device 9 for feeding the hollow billet 8 to the conveying table 5, the front end of which is connected to the feeding end of the induction preheating mechanism 2
  • the propeller 5 has a propulsion mechanism for advancing the hollow billet 8 at the tail end.
  • the propulsion mechanism includes a core rod 7 with a mandrel 70, an urging head 72 for advancing the core rod 7, and a pushing cart 71 for advancing the hollow slab 8; the urging head 72 will have a core rod 7 with a mandrel 70
  • the hollow cast slab 8 is fed into the hollow slab 8 and lifted into the roll set 11 of the planetary main unit 1 , and then pushed by the push cart 71 to pass the hollow slab 8 through the induction preheating mechanism 2
  • Each induction heater 21 As shown in FIG. 6 and FIG. 7, in the preheating state of the hollow cast slab 8, the portion of the stem 7 in the induction preheating mechanism 2 is opened along the axial direction thereof by at least one length not less than the overall length of the induction preheating mechanism 2.
  • the trench 73 is filled with an insulating material.
  • This special insulation treatment is applied to the core rod 7, which can avoid the unevenness of the temperature inside and outside the tube blank due to the eddy current effect when the low and medium frequency induction is applied, and the temperature rise, redness or melting of the core rod 7 in the tube blank, ensuring The rolling is carried out normally.
  • the present invention also utilizes the above-described tube rolling mill to propose a planetary rolling method for a copper alloy tube, comprising the following steps:
  • the in-situ preheating mechanism and the planetary host jointly complete the rolling of the hollow slab under the protective atmosphere to obtain a copper alloy tube, the preheating temperature of the hollow slab is 300-700 ° C, and the rolling temperature is 600-1100 ° C ;
  • the cooled copper alloy tube is heated again by the induction soaking mechanism to 350-750 ° C under a protective atmosphere; e, the slow cooling of the copper alloy tube is completed by the slow cooling mechanism.
  • the rolling step speed of the hollow slab in step a is 10-2000 mm/min; the slow cooling process in step e is: firstly, the soaked copper alloy tube is slowly cooled to 300° by the first stage slow cooling section. Below C, the copper alloy tube is finally cooled to below 60 °C by the secondary slow cooling section.
  • the copper alloy hollow slab having a diameter of 80-100mm and a wall thickness of 8-15mm is processed into a diameter of 40-65mm by the induction preheating mechanism 2, the planetary host 1, the induction soaking mechanism 3, and the slow cooling mechanism 4, respectively.
  • the copper alloy tube with a thickness of 2-4mm, the surface of the processed copper alloy tube is bright and has a hardness of HV5 80, which satisfies the performance and quality requirements of its subsequent direct cold processing.
  • a milling machine Before the work, a milling machine can be installed on the side of the whole machine to remove the skin of the hollow cast slab 8.
  • the copper alloy hollow slab 8 after the milling process is placed on the rack 6, the core rod 7 Returning to the rear limit position; at the beginning of the work, the sorting device 9 sends a hollow cast slab 8 to the transfer table 5, and the pusher 72 pushes the core rod 7 with the mandrel 70 into the inner hole of the hollow cast slab 8.
  • the portion of the hollow core rod having the groove 73 is also placed in the induction preheating mechanism 2; the induction preheating mechanism 2 heats the hollow cast slab 8 to make it rapid
  • the push-up trolley 71 continuously advances the hollow cast slab 8 , and the hollow cast slab 8 is plastically deformed under the high-speed rotary rolling of the planetary main assembly 1 roll set 11 , and the friction heat of the roll set 11 is rotated and rolled.
  • the deformation heat of the hollow slab 8 causes the working temperature of the hollow slab 8 to be continuously increased to 600-1100 ° C, which reaches the recrystallization or recovery softening temperature of the copper alloy, and reduces the deformation resistance of the copper alloy.
  • Copper alloy hollow slab 8 A large number of deformations of thickness and diameter complete the processing of the hollow cast slab 8 to the thin-walled copper alloy tube, and at the same time, the rolled copper alloy tube is cooled to below 60 ° C by the rolling die-cooling mechanism in the planetary main unit 1 .
  • the cold-drawn copper alloy tube is passed into the induction soaking mechanism 3, and the induction soaking mechanism 3 is used for secondary heating to raise the temperature of the copper alloy tube to 350-750 ° C.
  • the heated copper alloy tube is cooled by a slow cooling mechanism. 4 After final cooling to below 60 ° C, the copper alloy tube cooled by the slow cooling mechanism 4 can be interrupted by the online interrupting machine and then transferred to the next step of cold working or directly crimped into a coil by a crimping mechanism to carry out multi-rack series continuous stretching. . After the copper alloy hollow billet 8 is finished, it is sequentially circulated into the rolling of the next copper alloy hollow billet 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)

Abstract

一种行星轧管机包括用于输送空心铸坯的送料机构、用于轧制空心铸坯的行星主机(1),其内设有轧辊组(11)及轧模速冷机构、设置于送料机构的出料端与行星主机(1)的进料端之间用于对空心铸坯进行预加热的感应预热机构(2)、以及依次设置于行星主机(1)的出料端处的感应均热机构(3)及缓冷机构(4),轧制速冷后的管材由感应均热机构(3)再次加热并由缓冷机构(4)缓慢冷却。一种铜合金管的行星轧制方法包括以下步骤:对空心铸坯表面进行机械加工,由感应预热机构(2)进行预热,用行星主机(1)进行轧制,由轧模速冷机构快速冷却,最后在保护气氛下由感应均热机构(3)再次加热并由缓冷机构(4)缓慢冷却。

Description

说 明 书 一种行星轧管机及铜合金管的行星轧制方法 技术领域
本发明属于有色金属加工制造技术领域, 尤其涉及一种轧制铜合金管的行 星轧管机及铜合金管的行星轧制方法。 背景技术
紫铜管铸轧生产技术是 20世纪 80年代开发的一种短流程、 连续化铜管加 工技术, 特别针对空调制冷用紫铜管的规模化连续生产的需求而发展的一种紫 铜管加工方式。 由于紫铜具有高的传热系数, 利用行星轧管机轧制时无需加热, 依靠轧制过程中的变形和高摩擦时产生的大量热能, 管坯温度升高至 700°C, 使 管坯发生了动态回复、 再结晶或是晶粒细化, 轧制后的管坯可直接进行后续的 拉伸, 且无需退火, 相比传统的挤压技术, 利用铸轧生产技术可使生产效率大 幅提高。
为了提高紫铜的强度、 硬度、 耐腐性等性能使其能适应特殊的工作环境, 在紫铜中加入了锌、 铝、 锡、 镍、 铁、 锰、 硅及铅元素中的一种或多种形成铜 合金, 目前行星轧管机所轧制的铜合金管存在如下缺点: 1、 由于铜合金相比紫 铜其传热性能大幅下降, 室温变形抗力、 加工硬化以及变形应力明显增加, 依 靠轧制变形和摩擦产生的热量已难以达到预期的加工要求, 管坯变形时局部过 热造成管坯与轧辊粘结、 合金管过烧开裂等现象, 而温度不够的部分在大加工 量作用下产生硬化应力开裂等导致轧制失败。 2、 轧制过程在瞬间产生大加工率 变形, 在轧制模具自身润滑冷却的作用下使变形后的高温合金管在极短时间内 被冷却到 60°C以下甚至室温, 大变形和急冷所产生的应力使轧后的铜合金管发 硬, 变脆, 影响后续拉伸工序的可加工性和管材性能, 难以实现铜合金管的短 流程和自动连续化生产。中国国家知识产权局分别于 2001年 01月 17日及 2008 年 10月 22日公开的"三辊行星轧管机"与"一种行星轧管机的冷却装置 "的两篇专 利中针对传统轧管机的冷却系统进行了改进, 但合金管的热变形过程仍无法满 足工艺要求, 难以实现均匀的动态回复; 其改进后的冷却系统的冷却方式也存 在不足之处, 无法满足后续冷轧管或拉伸工序等的连续冷加工性能要求, 行业 内迫切需要一种高效、 连续化生产设备, 来满足高质量铜合金管的生产要求。 发明内容
本发明所要解决的问题就是提供一种新型行星轧管机及铜合金管的行星轧 制方法, 可替代挤压工序与水平连铸机、 矫直铣面机与连续拉伸机、 在线连续 切割机等的配合, 实现高质量铜合金管的自动化、 连续化、 短流程生产。
为解决上述技术方案, 本发明采用如下技术方案: 一种新型行星轧管机, 包括用于输送空心铸坯的送料机构、 用于铸轧空心铸坯的行星主机, 行星主机 内设有轧辊组及轧模速冷机构, 其特征在于: 所述送料机构的出料端与行星主 说 明 书
机的进料端之间设有对空心铸坯进行预加热的感应预热机构, 所述行星主机的 出料端依次设有感应均热机构及缓冷机构, 轧制速冷后的管材由所述的感应均 热机构再次加热并由所述的缓冷机构实现缓慢冷却。
进一步的, 所述感应预热机构的出料端与行星主机的进料端密封连接, 所 述感应均热机构的进料端与行星主机的出料端密封连接, 感应均热机构的出料 端与所述缓冷机构的进料端密封连接; 所述的感应预热机构、 感应均热机构及 缓冷机构上分别安装有送气装置用于向机构内部充入保护气。 保证空心铸坯的 预加热、 轧制过程, 轧制后管材的均热、 缓冷过程始终是在一个封闭的、 充满 保护气氛的环境中进行, 与空气隔绝, 防止氧化。
进一步的, 所述的感应预热机构是由若干个独立的感应加热器通过托辊连 接形成的封闭整体, 感应加热器内设有加热用电感线圈; 感应均热机枸由若干 个独立的感应加热器通过托辊连接形成的封闭整体, 感应加热器内设有加热用 电感线圈。
进一步的, 所述的缓冷机构是由小径钢套与大径钢套构成的双层筒体, 小 径钢套的内腔供轧制后的管材通过, 小径钢套与大径钢套之间为供冷却水通入 的环状隔腔, 冷却水通过小径钢套与管材进行间接的热量交换, 实现对管材的 缓慢冷去口。
^ "进一歩的, 所述小径钢套的内腔设置一带通孔的隔板将缓冷机构分为一级 缓冷段与二级缓冷段, 通孔孔壁上环设有密封帘, 所述二级缓冷段的长度小于 一级缓冷段的长度; 所述小径钢套位于二级缓冷段内的部分沿其圆周方向均布 有若干个倾斜设置的喷水孔, 且沿小径钢套轴向设置一组或多组喷水孔。 缓冷 后温度在 40~60°C的冷却水以小水柱形式直接喷淋从一级缓冷段过来的管材,使 其温度由最高的 300°C降至 60°C以下。
进一步的, 所述的送料机构包括输送台、 放置空心铸坯的料架以及用于将 空心铸坯送入输送台的分选装置, 所述输送台的前端连接感应预热机构的进料 端, 输送台尾部设有推动空心铸坯前进的推进机构。
进一歩的, 所述推进机构包括带有芯棒的芯杆、 推动芯杆前进的顶推头及 推动空心铸坯前进的顶推小车; 在空心铸坯预热状态下, 芯杆杆体位于感应预 热机构内的部分沿其轴向开有至少一条长度不小于感应预热机构整体长度的沟 槽, 沟槽内填充有绝缘材料。 顶推头将带有芯棒的芯杆送入空心铸坯内并顶住 空心铸坯一起送至行星主机的轧辊组内, 而后由顶推小车推动空心铸坯使其勾 速通过感应预热机构内的每个感应加热器。
为解决上述技术问题, 本发明还利用上述轧管机提出了一种铜合金管的行 星轧制方法, 其特征在于包括如下步骤:
a、 对空心铸坯表面进行机械加工, 去掉表层缺陷;
b、 由感应预热机构与行星主机在保护气氛下共同完成对空心铸坯的轧制, 得到铜合金管, 空心铸坯预热温度为 300-700°C, 轧制温度为 600-1100°C ;
c、 由行星主机的轧模速冷机构对铜合金管进行快速冷却;
d、冷却后的铜合金管由感应均热机构在保护气氛下再次加热到 350-750°C ; e、 由缓冷机构完成对铜合金管的缓慢冷却。 说 明 书
进一步的, 所述歩骤 a中空心铸坯的轧制步进速度为 10-2000mm/min。 进一步的, 所述步骤 e 中的缓冷过程为: 先由一级缓冷段将均热后的铜合 金管缓慢冷却至 300°C以下, 再由二级缓冷段将铜合金管最终冷却至 60 °C以下。
本发明的有益效果:
1、 由于采用感应预热机构对轧制前的空心铸坯进行预加热, 再结合轧制变 形与摩擦产生的热量保证空心铸坯达到均匀的动态回复甚至再结晶温度, 消除 轧制过程中管材的过烧开裂、 应力开裂的现象, 提高成品率。
2、 设置感应均热机构能及时消除行星主机大加工率变形管材不完全再结晶 形成的变形应力以及行星主机大加工率变形后自身冷却造成的残余应力使轧后 管材变硬的现象; 结合两段式的缓冷方式对管材进行逐渐冷却, 能保证管材在 规定的缓冷时间内达到工艺要求的冷却温度, 而不会产生管材冷却应力和硬化 的, 整个加工过程完成后铜合金管硬度 HV5达到 80以下, 满足了后续冷轧管 或拉伸工序等的连续冷加工性能要求, 从而实现铜合金管的铸轧生产。
3、 对轧管机的芯杆采取了特殊的绝缘处理, 避免了施加低、 中频感应时由 于涡流效应引起管坯内外温度的不均匀性和管坯内芯杆的温度升高、 发红或熔 化等情况, 确保了轧制的正常进行。
4、 空心铸坯在轧制前预热、 轧制、 轧制后的均热及缓冷冷却过程中均在氮 气保护条件下进行, 整个工作过程中被加工的管材内外表面光亮, 无氧化; 轧 制后的棺材具有优良的内外组织结构和表面质量, 不需酸水洗等物理化学表面 处理, 可直接进行后续的加工处理。
5、 本发明所提供的轧管机可替代挤压工序与水平连铸机、 矫直铣面机与连 续拉伸机及在线连续切割机等配合, 实现铜合金管的自动、 连续化、 短流程生 产, 提高管材的成材率和生产效率, 达到降低能源消耗和生产成本的目的。 附图说明
下面结合附图对本发明做进一步的说明:
图 1为本发明的整机结构图;
图 2为本发明的感应预热机构结构图;
图 3为本发明的感应均热机构结构图;
图 4为本发明的缓冷机构结构图;
图 5为图 4的 B处放大图;
图 6为本发明的芯杆结构图;
图 7为图 6的 A-A剖面图。 具体实施方式
如图 1所示, 本发明首先提出了一种新型行星轧管机, 它包括用于输送空 心铸坯的送料机构、用于铸轧空心铸坯的行星主机 1,行星主机 1内设有轧辊组 11及轧模速冷机构, 所述送料机构的出料端与行星主机 1的进料端之间设有对 空心铸坯进行预加热的感应预热机构 2,所述行星主机 1的出料端依次设有感应 均热机构 3及缓冷机构 4,轧制速冷后的管材由所述的感应均热机构 3再次加热 说 明 书
并由所述的缓冷机构 4实现缓慢冷却。
参照图 2、 图 3, 感应预热机构 2是由四个独立的感应加热器 21通过托辊 23连接形成的封闭整体, 感应加热器 21 内设有加热用电感线圈 22; 感应均热 机构 3是由三个独立的感应加热器 31通过托辊 33连接形成的封闭整体, 感应 加热器内设有加热用电感线圈 32。感应加热器 21、 31数量应根据实际工件的加 热要求而定, 上述实施方式只是较为常用的结构。
参照图 4、 图 5, 缓冷机构 4是由小径钢套 43与大径钢套 42构成的双层筒 体, 小径钢套 43的内腔 430供轧制后的管材通过, 小径钢套 43与大径钢套 42 之间为供冷却水通入的环状隔腔 44,冷却水通过小径钢套 43与管材进行间接的 热量交换, 实现对管材的缓慢冷却。 小径钢套 43的内腔 430设置一带通孔的隔 板 431将缓冷机构 4分为一级缓冷段 40与二级缓冷段 41,通孔孔壁上环设有密 封帘 432, 二级缓冷段 41的长度小于一级缓冷段 40的长度。 经感应均热机构 3 加热后的管材温度为 450-750 °C,在一级缓冷段 40内冷却到 300 °C以下; 小径钢 套 43位于二级缓冷段 41 内的部分沿其圆周方向均布有若干个倾斜设置的喷水 孔 433,且沿小径钢套 43轴向设置一组或多组喷水孔 433,缓冷后温度在 40~60°C 的冷却水以小水柱形式直接喷淋从一级缓冷段 40过来的管材, 使其温度由最高 的 300°C降至 60°C以下。 喷水孔 433也可以由环形水槽来代替, 冷却时以水帘 状形式直接喷淋从一级缓冷段 40过来的管材, 冷却用的水采用无杂质的净循环 水。
所述感应预热机构 2的出料端与行星主机 1的进料端密封连接, 所述感应 均热机构 3的进料端与行星主机 1的出料端密封连接, 感应均热机构 3的出料 端与所述缓冷机构 4的进料端密封连接; 感应预热机构 2、感应均热机构 3及缓 冷机构 4上分别安装有送气装置用于向机构内部充入保护气。 保证空心铸坯的 预加热、 轧制过程, 轧制后管材的均热、 缓冷过程始终是在一个封闭的、 充满 保护气氛的环境中进行, 与空气隔绝, 防止氧化。
送料机构包括输送台 5、放置空心铸坯 8的料架 6以及用于将空心铸坯 8送 入输送台 5的分选装置 9,输送台 5的前端连接感应预热机构 2的进料端, 输送 台 5尾部设有推动空心铸坯 8前进的推进机构。 推进机构包括带有芯棒 70的芯 杆 7、 推动芯杆 7前进的顶推头 72及推动空心铸坯 8前进的顶推小车 71 ; 顶推 头 72将带有芯棒 70的芯杆 7送入空心铸坯 8内并顶住空心铸坯 8—起送至行 星主机 1的轧辊组 11内, 而后由顶推小车 71推动空心铸坯 8使其勾速通过感 应预热机构 2内的每个感应加热器 21。 如图 6、 图 7所示, 在空心铸坯 8预热 状态下, 芯杆 7杆体位于感应预热机构 2内的部分沿其轴向开有至少一条长度 不小于感应预热机构 2整体长度的沟槽 73,沟槽 73内填充有绝缘材料。对芯杆 7采用这种特殊的绝缘处理,可以避免施加低、中频感应时由于涡流效应引起管 坯内外温度的不均匀性和管坯内芯杆 7 的温度升高、 发红或熔化, 确保了轧制 的正常进行。
本发明还利用了上述轧管机提出了一种铜合金管的行星轧制方法, 包括如 下步骤:
a、 对空心铸坯表面进行机械加工, 去掉表层缺陷; 说 明 书
b、 由感应预热机构与行星主机在保护气氛下共同完成对空心铸坯的轧制, 得到铜合金管, 空心铸坯预热温度为 300-700°C, 轧制温度为 600-1100°C ;
c、 由行星主机的轧模速冷机构对铜合金管进行快速冷却;
d、冷却后的铜合金管由感应均热机构在保护气氛下再次加热到 350-750°C ; e、 由缓冷机构完成对铜合金管的缓慢冷却。
歩骤 a中空心铸坯的轧制步进速度为 10-2000mm/min;歩骤 e中的缓冷过程 为:先由一级缓冷段将均热后的铜合金管缓慢冷却至 300°C以下, 再由二级缓冷 段将铜合金管最终冷却至 60 °C以下。直径 80-100mm,壁厚 8-15mm的铜合金空 心铸坯一次性依次通过感应预热机构 2、 行星主机 1、 感应均热机构 3、 缓冷机 构 4后加工成直径为 40-65mm, 壁厚为 2-4mm的铜合金管, 加工后的铜合金管 表面光亮, 硬度 HV5 80, 满足其后续直接冷加工的性能和质量要求。
具体操作步骤如下: 工作前, 在整机一侧可设置一台铣面机将去除空心铸 坯 8的表皮, 铣面加工后的铜合金空心铸坯 8放置于料架 6上, 芯杆 7退回到 后极限位置; 工作开始, 分选装置 9将一支空心铸坯 8送到输送台 5, 顶推头 72推动带有芯棒 70的芯杆 7穿入空心铸坯 8的内孔中直至芯棒 70进入行星主 机 1的轧辊组 11内, 同时也使空心芯杆 Ί上开有沟槽 73的部位处于感应预热 机构 2内; 感应预热机构 2加热空心铸坯 8使其迅速升温到 300-700°C, 顶推小 车 71持续推进空心铸坯 8,空心铸坯 8在行星主机 1轧辊组 11的高速旋转轧制 下发生塑性变形, 轧辊组 11旋转轧制的摩擦热与空心铸坯 8的变形热使空心铸 坯 8轧制变形时的工作温度继续升高到 600-1100°C, 达到了铜合金的再结晶或 回复软化温度, 降低了铜合金的变形抗力, 实现了铜合金空心铸坯 8 的壁厚和 直径的大量变形, 完成了空心铸坯 8到薄壁铜合金管的加工, 与此同时, 轧制 后的铜合金管通过行星主机 1内的轧模速冷机构冷却到 60°C以下。 冷去后的铜 合金管通入感应均热机构 3, 感应均热机构 3对其进行二次加热, 使铜合金管温 度升至 350-750°C,加热后的铜合金管由缓冷机构 4最终冷却至 60°C以下,缓冷 机构 4冷却后的铜合金管可由在线中断机列中断后转至下一工序冷加工或经过 卷曲机构在线直接卷曲成盘卷进行多机架串联连续拉伸。该支铜合金空心铸坯 8 工作结束后, 依次循环进入下一支铜合金空心铸坯 8的轧制。
除上述优选实施例外, 本发明还有其他的实施方式, 本领域技术人员可以 根据本发明作出各种改变和变形, 只要不脱离本发明的精神, 均应属于本发明 所附权利要求所定义的范围。

Claims

权 利 要 求 书
、 一种新型行星轧管机, 包括用于输送空心铸坯的送料机构、 用于铸轧空心 铸坯的行星主机 (1), 行星主机 (1) 内设有轧辊组 (11) 及轧模速冷机 构, 其特征在于: 所述送料机构的出料端与行星主机 (1) 的进料端之间 设有对空心铸坯进行预加热的感应预热机构 (2), 所述行星主机 (1) 的 出料端依次设有感应均热机构 (3) 及缓冷机构 (4), 轧制速冷后的管材 由所述的感应均热机构 (3)再次加热并由所述的缓冷机构 (4)实现缓慢 冷却。
、 根据权利要求 1所述的一种新型行星轧管机, 其特征在于: 所述感应预热 机构 (2) 的出料端与行星主机(1) 的进料端密封连接, 所述感应均热机 构 (3) 的进料端与行星主机(1) 的出料端密封连接, 感应均热机构 (3) 的出料端与所述缓冷机构 (4) 的进料端密封连接; 所述的感应预热机构
(2)、 感应均热机构 (3)及缓冷机构 (4)上分别安装有送气装置用于向 机构内部充入保护气。
、 根据权利要求 1或 2所述的一种新型行星轧管机, 其特征在于: 所述的感 应预热机构 (2) 是由若干个独立的感应加热器 (21) 通过托辊 (23) 连 接形成的封闭整体, 感应加热器 (21) 内设有加热用电感线圈 (22); 所 述的感应均热机构(3)是由若干个独立的感应加热器(31)通过托辊(33) 连接形成的封闭整体, 感应加热器 (31) 内设有加热用电感线圈 (32)。 、 根据权利要求 1或 2所述的一种新型行星轧管机, 其特征在于: 所述的缓 冷机构 (4) 是由小径钢套 (43) 与大径钢套 (42) 构成的双层筒体, 小 径钢套 (43) 的内腔 (430) 供轧制后的管材通过, 小径钢套 (43) 与大 径钢套 (42) 之间为供冷却水通入的环状隔腔 (44), 冷却水通过小径钢 套 (43) 与管材进行间接的热量交换, 实现对管材的缓慢冷却。 权 利 要 求 书
、 根据权利要求 4所述的一种新型行星轧管机, 其特征在于: 所述小径钢套
(43) 的内腔 (430) 设置一带通孔的隔板 (431) 将缓冷机构 (4) 分为 一级缓冷段(40)与二级缓冷段(41), 通孔孔壁上环设有密封帘 (432), 所述二级缓冷段(41) 的长度小于一级缓冷段(40) 的长度; 所述小径钢 套 (43)位于二级缓冷段(41) 内的部分沿其圆周方向均布有若干个倾斜 设置的喷水孔 (433), 且沿小径钢套 (43) 轴向设置一组或多组喷水孔。 、 根据权利要求 1或 2所述的一种新型行星轧管机, 其特征在于: 所述的送 料机构包括输送台 (5)、 放置空心铸坯(8) 的料架 (6) 以及用于将空心 铸坯 (8) 送入输送台 (5) 的分选装置 (9), 所述输送台 (5) 的前端连 接感应预热机构 (2) 的进料端, 输送台 (5)尾部设有推动空心铸坯(8) 前进的推进机构。
、 根据权利要求 6所述的一种新型行星轧管机, 其特征在于: 所述推进机构 包括带有芯棒 (70) 的芯杆 (7)、 推动芯杆 (7) 前进的顶推头 (72) 及 推动空心铸坯(8)前进的顶推小车 (71); 在空心铸坯(8)预热状态下, 芯杆(7)杆体位于感应预热机构 (2) 内的部分沿其轴向开有至少一条长 度不小于感应预热机构 (2)整体长度的沟槽 (73), 沟槽 (73) 内填充有 绝缘材料。
、 一种铜合金管的行星轧制方法, 其特征在于包括如下步骤:
a、 对空心铸坯表面进行机械加工, 去掉表层缺陷;
b、 由感应预热机构与行星主机在保护气氛下共同完成对空心铸坯的轧 制, 得到铜合金管, 空心铸坯预热温度为 200-700°C, 轧制温度为 500-1100°C;
c、 由行星主机的轧模速冷机构对铜合金管进行快速冷却; 权 利 要 求 书
d、 冷却后的铜合金管由感应均热机构在保护气氛下再次加热到 350-750 °C ;
e、 由缓冷机构完成对铜合金管的缓慢冷却。
、 根据权利要求 8所述的一种铜合金管的行星轧制方法, 其特征在于: 所述 步骤 a中空心铸坯的轧制步进速度为 10-2000mm/min。
、 根据权利要求 8所述的一种铜合金管的行星轧制方法, 其特征在于: 所述 步骤 e中的缓冷过程为: 先由一级缓冷段将均热后的铜合金管缓慢冷却至 300°C以下, 再由二级缓冷段将铜合金管最终冷却至 60°C以下。
PCT/CN2010/079099 2010-07-06 2010-11-24 一种行星轧管机及铜合金管的行星轧制方法 WO2012003691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010224476 CN101912880B (zh) 2010-07-06 2010-07-06 一种新型行星轧管机
CN201010224476.5 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012003691A1 true WO2012003691A1 (zh) 2012-01-12

Family

ID=43320599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079099 WO2012003691A1 (zh) 2010-07-06 2010-11-24 一种行星轧管机及铜合金管的行星轧制方法

Country Status (2)

Country Link
CN (1) CN101912880B (zh)
WO (1) WO2012003691A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551397B (zh) * 2013-10-21 2015-11-04 中冶赛迪上海工程技术有限公司 一种轧制生产线控温装置工艺设备
CN105564942A (zh) * 2016-02-26 2016-05-11 无锡市积嘉精密机械厂 一种磁性送料预热机
CN106391709B (zh) * 2016-12-20 2019-01-04 广东海亮铜业有限公司 连续轧制行星轧机
CN107052706B (zh) * 2017-04-10 2019-09-20 无锡隆达金属材料有限公司 大盘重HNi65-5镍黄铜管的生产工艺
CN113996659B (zh) * 2020-07-27 2023-09-29 大冶特殊钢有限公司 一种实用于Assel轧管机的喂钢方法
CN112620388B (zh) * 2020-12-01 2022-08-02 中色科技股份有限公司 一种铜合金管在线连续轧制退火拉伸生产线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2414854Y (zh) * 2000-03-08 2001-01-17 常州市兴荣管业有限公司 三辊行星轧管机
CN1390677A (zh) * 2002-07-24 2003-01-15 江苏兴荣高新科技股份有限公司 温加工制造铜及铜合金管的方法
CN2569933Y (zh) * 2002-07-24 2003-09-03 江苏兴荣高新科技股份有限公司 多辊行星轧管机
CN201711338U (zh) * 2010-07-06 2011-01-19 浙江海亮股份有限公司 一种新型行星轧管机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3136381A1 (de) * 1981-09-14 1983-04-14 Kocks Technik Gmbh & Co, 4010 Hilden Walzwerksanlage zur herstellung nahtloser rohre
JPS58215209A (ja) * 1982-06-07 1983-12-14 Kawasaki Heavy Ind Ltd 継目なし管製造用遊星型傾斜ロ−ル圧延機のマンドレル装置
CN2414857Y (zh) * 1999-08-25 2001-01-17 杨子衡 热轧盘料无酸洗拉拔高压研抛装置
CN1221337C (zh) * 2003-08-06 2005-10-05 江苏兴荣高新科技股份有限公司 一种制造铜及铜合金管的热轧方法
CN100566916C (zh) * 2005-12-13 2009-12-09 金龙精密铜管集团股份有限公司 铜或铜合金管的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2414854Y (zh) * 2000-03-08 2001-01-17 常州市兴荣管业有限公司 三辊行星轧管机
CN1390677A (zh) * 2002-07-24 2003-01-15 江苏兴荣高新科技股份有限公司 温加工制造铜及铜合金管的方法
CN2569933Y (zh) * 2002-07-24 2003-09-03 江苏兴荣高新科技股份有限公司 多辊行星轧管机
CN201711338U (zh) * 2010-07-06 2011-01-19 浙江海亮股份有限公司 一种新型行星轧管机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU,SHANYOU.: "Heat Treatment for Copper Alloy", SHANGHAI NONFERROUS METALS, vol. 6, no. 2, April 1985 (1985-04-01), pages 50 - 53 *

Also Published As

Publication number Publication date
CN101912880B (zh) 2012-12-12
CN101912880A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
CN106583491B (zh) 一种Cr-Ni-Mo-Nb镍基合金无缝管的制造方法
CN103045837B (zh) 一种双相不锈钢无缝管的制造方法
WO2012003691A1 (zh) 一种行星轧管机及铜合金管的行星轧制方法
CN106493187A (zh) 一种大口径厚壁钛及其合金无缝管材的低成本制造方法
CN105420651B (zh) 一种大口径厚壁无缝锆管材的制造方法
CN102463272A (zh) 一种小口径镍基合金薄壁管材的短流程制备方法
CN101176882A (zh) 一种高强钛合金管材的加工工艺
CN102274854A (zh) 超级奥氏体不锈钢管制造工艺
CN105499920B (zh) 一种大口径厚壁无缝铌管材的制造方法
CN101704035A (zh) 一种高强钛合金薄壁管材的加工方法
CN102371288A (zh) 一种高精度高强钛合金无缝管材的制备方法
CN110170543A (zh) 一种钛合金无缝管短流程加工方法
CN110899335A (zh) 一种小口径海洋用钛合金无缝管的短流程制造方法
CN104174807B (zh) 一种大口径钛厚壁管材的制造方法
CN112877656B (zh) 一种锆管靶及生产方法
CN102179672A (zh) 一种不锈钢抗菌管的加工工艺
CN201711338U (zh) 一种新型行星轧管机
CN110014106B (zh) 大规格钛合金空心坯料制备方法
CN114635023A (zh) 一种马氏体耐热钢坯料的生产方法
CN106391713A (zh) 一种金属管材的芯棒轧制方法
CN104475615A (zh) 一种双金属复合翅片管的制备方法
CN102513400B (zh) 一种用模铸空心钢锭锻制合金无缝钢管的方法
CN210172215U (zh) 实现铜管连续生产的设备
CN105983825A (zh) 一种矩形钢管加工工艺
CN104607560A (zh) 大口径双金属复合管材制造工艺及扩径成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854350

Country of ref document: EP

Kind code of ref document: A1