WO2021145450A1 - Uv ray-blocking particulate composition - Google Patents

Uv ray-blocking particulate composition Download PDF

Info

Publication number
WO2021145450A1
WO2021145450A1 PCT/JP2021/001363 JP2021001363W WO2021145450A1 WO 2021145450 A1 WO2021145450 A1 WO 2021145450A1 JP 2021001363 W JP2021001363 W JP 2021001363W WO 2021145450 A1 WO2021145450 A1 WO 2021145450A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
particulate composition
manufactured
clay mineral
mass
Prior art date
Application number
PCT/JP2021/001363
Other languages
French (fr)
Japanese (ja)
Inventor
睦洋 勝家
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2021145450A1 publication Critical patent/WO2021145450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a particulate composition for UV protection, which has an uneven structure on the surface and contains cellulose or a cellulose derivative and a clay mineral as main components, a method for producing the same, and a cosmetic product containing the composition.
  • UVB 280 to 320 nm
  • UVA 320 to 400 nm
  • UVA reaches the dermis under the skin and causes photoaging such as wrinkles, slackness, and decreased elasticity, and is said to have an adverse effect on cell membranes and genes. UVB is scattered and absorbed by the epidermis and causes inflammation such as sunburn on the skin. Is known to cause.
  • inorganic powders such as titanium dioxide and zinc oxide have been used as ultraviolet scattering agents, and organic compounds such as para-aminobenzoic acid (PABA) derivatives have been used as ultraviolet absorbers.
  • PABA para-aminobenzoic acid
  • the organic ultraviolet absorber has an excellent effect of absorbing ultraviolet rays, it is not stable because it is an organic compound, and the effect cannot be expected to be sustained.
  • the use of organic ultraviolet absorbers as cosmetic additives is restricted from the viewpoint of safety.
  • Inorganic UV scatterers have strong hiding power, whiten when applied to the skin, do not give a natural finish, and have high adhesion to the skin, so they squeak when blended in cosmetics. There was a problem that a favorable feeling could not be obtained. From the above issues, various reports have been made with the aim of maintaining the UV protection effect while reducing the amount of UV absorbers and UV scatterers (hereinafter collectively referred to as "UV protection agents”) in cosmetics as much as possible. Has been done.
  • Patent Document 1 there has been a report on an SPF booster agent capable of enhancing the ultraviolet shielding / absorbing effect of an ultraviolet protective agent by similarly scattering ultraviolet rays by using polyamide porous particles having an excellent visible light scattering effect (for example).
  • Patent Document 1 since the polyamide porous fine particles are plastic microbeads, there is a concern that they may pass through the sewage treatment and flow out into rivers and the ocean, be taken up by living organisms, and adversely affect the ecosystem. Since it is almost impossible to recover microbeads once they flow out into the environment, it has been particularly required in recent years to replace plastic microbeads with environmentally friendly materials such as natural materials (for example, cellulose). ..
  • a particulate composition for UV protection which has an uneven structure on the surface and contains cellulose or a cellulose derivative and a clay mineral as main components.
  • composition according to any one of (1) to (6) above which contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative.
  • the clay mineral is at least one selected from the group consisting of talc, kaolin, and mica.
  • It has an uneven structure on the surface and mainly contains cellulose or a cellulose derivative and a clay mineral, which includes a step of obtaining a dispersion liquid of cellulose or a cellulose derivative and a clay mineral and a step of spray-drying the obtained dispersion liquid.
  • a method for producing a particulate composition for UV protection as an ingredient (11) The production method according to (10) above, wherein the dispersion is obtained by physically pulverizing cellulose or a cellulose derivative and a clay mineral. (12) The production method according to (10) or (11) above, wherein the concentration of the solid content containing cellulose or a cellulose derivative and a clay mineral in the dispersion is 0.5 to 40% by mass. (13) The production method according to any one of (10) to (12) above, wherein the dispersion contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative. (14) A cosmetic product comprising the composition according to any one of (1) to (9) above, or the composition obtained by the production method according to any one of (10) to (13) above.
  • the particulate composition of the present invention is soft because it has an uneven structure on its surface (that is, because pores or voids are appropriately present), and is suitable for addition to cosmetics that come into direct contact with the skin.
  • the particulate composition of the present invention can enhance the protection effect when used in combination with an existing UV protection agent, so that the existing UV protection agent can be used. A reduction in quantity can also be expected.
  • (A) to (c) are scanning electron microscope (SEM) photographs of the particulate compositions of Examples 1 to 3 obtained in Evaluation Example 1, respectively.
  • (A) to (c) are field emission scanning electron microscope (FE-SEM) photographs of the particulate compositions of Examples 1 to 3 obtained in Evaluation Example 1, respectively.
  • the particulate composition of Example 1, microcrystalline cellulose (Comparative Example 1), and synthetic mica (Comparative Example 2) were used as evaluation particles.
  • Evaluation Example 6 in addition to the existing ultraviolet scattering agent, the particulate composition of Example 1, synthetic mica (Comparative Example 1), microcrystalline cellulose (Comparative Example 2), synthetic mica and microcrystalline cellulose were used as evaluation particles. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film of the O / W foundation sample prepared using each of the mixed samples (Comparative Example 3).
  • O / W prepared by using the particulate composition of Example 2, microcrystalline cellulose (Comparative Example 2), and talc (Comparative Example 4) as evaluation particles in addition to the existing ultraviolet scattering agent. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the foundation sample.
  • Evaluation Example 6 in addition to the existing ultraviolet scattering agent, O / prepared using the particulate composition of Example 3, microcrystalline cellulose (Comparative Example 2), and sericite (Comparative Example 5) as evaluation particles, respectively. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film
  • Evaluation Example 7 in addition to the existing ultraviolet absorber, the particulate composition of Example 1, synthetic mica (Comparative Example 1), microcrystalline cellulose (Comparative Example 2), synthetic mica and microcrystalline cellulose were used as evaluation particles. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film of the O / W foundation sample prepared using each of the mixed samples (Comparative Example 3) of.
  • Evaluation Example 7 O / W prepared by using the particulate composition of Example 2, microcrystalline cellulose (Comparative Example 2), and talc (Comparative Example 4) as evaluation particles in addition to the existing ultraviolet absorber. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the foundation sample.
  • the present invention relates to a particulate composition having a concavo-convex structure on the surface and containing cellulose or a cellulose derivative and a clay mineral as main components.
  • the present invention relates to a particulate composition having a wrinkled or fold-like uneven structure on the surface and containing cellulose or a cellulose derivative and a clay mineral as main components.
  • "Having a wrinkled or pleated uneven structure” means that when a magnified image of a particle is observed, the surface thereof is not smooth and has groove-like streaks having a wrinkled or pleated appearance. do.
  • the particulate composition of the present invention contains cellulose or a cellulose derivative as a main component.
  • the cellulose or cellulose derivative used in the present invention is a regenerated natural fiber such as wool, cotton, silk, hemp, pulp, rayon, polynosic, cupra (Bemberg (registered trademark)), lyocell (Tencel (registered trademark)), etc. Examples include those derived from fibers and cellulose produced by bacteria. Further, it may be derived from a cellulose composite fiber of a cellulosic fiber and a synthetic fiber (for example, a polyolefin fiber such as polyethylene or polypropylene).
  • Examples of the cellulose or cellulose derivative used in the present invention include those derived from natural fibers, for example, those derived from plants such as wood, bamboo, hemp, jute, kenaf, cotton, beet, and agricultural waste. , Hardwoods, softwoods or those derived from bamboo. Further, it is preferable to use a product obtained by partially depolymerizing ⁇ -cellulose obtained from such a fibrous plant with an acid and purifying it, for example, crystalline cellulose.
  • cellulose nanofibers as cellulose or a cellulose derivative.
  • Cellulose nanofiber (CNF) is a fiber obtained by defibrating cellulose fibers to a nano-size level, and is generally a fiber having a fiber width of about 4 to 200 nm and a fiber length of about 5 ⁇ m or more.
  • Such cellulose nanofibers can be prepared by a known method and can be obtained as a commercially available product. For example, it can be obtained from suppliers such as Daio Paper Corporation and Chuetsu Pulp & Paper Co., Ltd.
  • the particulate composition of the present invention also contains a clay mineral as a main component.
  • the clay mineral used in the present invention means a natural or synthetic layered silicate mineral, and is not particularly limited as long as it swells in water and can exchange ions. Examples include talc, kaolin, montmorillonite, kaolinite, sericite, muscovite, gold mica, synthetic mica, red mica, black mica and other mica, vermiculite, zeolite, bentonite, smectite, black. Examples include light, erite, glow kaolin, and the like.
  • At least one selected from the group consisting of talc, kaolin and mica is preferable from the viewpoint of combination with cellulose or a cellulose derivative and application of the particulate composition to cosmetics.
  • These clay minerals are available from suppliers as pharmaceutical or cosmetic additives.
  • the layered silicate mineral is contained as a main component of a clay mineral, and its content is usually 60% or more, preferably 75% or more, and most preferably 80% or more.
  • containing cellulose or cellulose derivative and clay mineral as main components means that the ratio (mass basis) of cellulose or cellulose derivative and clay mineral in the particulate composition is more than 50% by mass. do.
  • the ratio (mass basis) of cellulose or cellulose derivative to clay mineral is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the particulate composition of the present invention comprises only cellulose or a cellulose derivative and a clay mineral.
  • the blending ratio of the cellulose or the cellulose derivative and the clay mineral is not particularly limited as long as the effect of the present invention is obtained, but typically 0.1 to 20 to 1 part by mass of the cellulose or the cellulose derivative. It contains parts by mass, preferably 0.2 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass of clay mineral.
  • components other than cellulose or cellulose derivatives and clay minerals contained in the particulate composition include magnesium carbonate, calcium carbonate, aluminum silicate, barium silicate, calcium silicate, magnesium silicate, strontium silicate, and tungsten acid.
  • the particle size of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 0.5 to 500 ⁇ m, preferably in the range of 1 to 200 ⁇ m, and more preferably in the range of 2 to 2. It is distributed in the range of 100 ⁇ m, particularly preferably 5 to 80 ⁇ m, and the average particle size is, for example, in the range of 5 to 40 ⁇ m, preferably in the range of 5 to 30 ⁇ m.
  • the particle size means a value measured by a scattering type particle size distribution measuring device
  • the average particle size means an arithmetic mean diameter calculated from the obtained particle size distribution.
  • the porosity of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 5 to 60%, preferably in the range of 10 to 50%, and more preferably in the range of 15 to 15. It is in the range of 45%.
  • the porosity refers to the porosity (particle cross-sectional image) when a particle cross-sectional image obtained by using a scanning electron microscope or the like is used and the cross-sectional area (the area of the entire cross section in the particle cross-sectional image) is 100.
  • the porosity can be calculated in the same manner by using a method such as X-ray CT.
  • the porosity of the particulate composition of the present invention is in such a range, the softness of the particles can be maintained and excellent optical properties can be exhibited even during foundation formulation.
  • the hardness of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 0.1 to 50 MPa, preferably in the range of 0.1 to 40 MPa, more preferably 0. It is in the range of .5 to 30 MPa.
  • the hardness means a value measured by a microcompression tester, and is calculated from the following formula as the strength C (x) when the particle size is deformed by 10%.
  • P is the test force (N) when the particle size is deformed by 10%
  • is the pi
  • d is the particle size (mm)
  • C (x) is the 10% intensity (MPa).
  • the particulate composition of the present invention can be produced by a method including a step of obtaining a dispersion liquid of cellulose or a cellulose derivative and a clay mineral, and a step of spray-drying the obtained dispersion liquid.
  • the dispersion can be prepared by any method, and is obtained, for example, by mixing cellulose or a cellulose derivative, a clay mineral and a dispersion medium, and pulverizing the mixture.
  • a cellulose or cellulose derivative (or clay mineral) and a dispersion medium are mixed, and this is pulverized to obtain a cellulose or cellulose derivative (or clay mineral) dispersion liquid, and then the clay mineral (or cellulose or cellulose derivative). It can also be obtained by mixing the dispersion medium and further pulverizing the mixture.
  • the dispersion medium is preferably an aqueous medium, more preferably water, a water-miscible organic solvent or a mixture thereof.
  • water-miscible organic solvents include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone, nitriles such as acetonitrile, N-methylpyrrolidone and N-cyclohexylpyrrolidone. , N, N-dimethylacetamide, N, N-dimethylformamide and other amides, ⁇ -butyrolactone and other lactones, tetrahydrofuran and other ethers.
  • the dispersion medium is water or a mixture of water and alcohols having 1 to 4 carbon atoms.
  • the dispersion liquid is 0.1 to 20 parts by mass, preferably 0.2 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass with respect to 1 part by mass of cellulose or a cellulose derivative.
  • cellulose or a cellulose derivative Contains some clay minerals.
  • the concentration of the solid content containing cellulose or the cellulose derivative and the clay mineral in the dispersion is not particularly limited as long as it can be used in the subsequent spray drying step, but is, for example, 0.5 to 40% by mass, preferably 1 to 1 to 40% by mass. It is 35% by mass, more preferably 2 to 30% by mass.
  • the operation for obtaining the dispersion liquid is not particularly limited, and can be carried out by using the operation for obtaining the dispersion liquid known to those skilled in the art.
  • the dispersion is obtained by milling a cellulose or cellulose derivative and a clay mineral, preferably by physical milling.
  • Physical crushing refers to a mixture of cellulose or cellulose derivative and / or clay mineral and dispersion medium, a stirrer such as a magnetic stirrer or a stirring blade, a homogenizer such as a polytron, or an ultrasonic generator such as an ultrasonic crusher. It is carried out by applying a physical external force using a crusher such as a wet atomizing device (for example, Starburst; Sugino Machine Co., Ltd.).
  • a dispersion liquid may be obtained without performing the pulverization treatment.
  • a commercially available cellulose dispersion for example, a commercially available cellulose nanofiber dispersion may be used instead of the step of obtaining the cellulose or cellulose derivative dispersion.
  • the particulate composition of the present invention is obtained by spray-drying the obtained dispersion.
  • Spray drying is carried out using a known spray drying device such as an atomizer, a spray dryer, and a micro mist spray dryer.
  • the spray drying conditions are appropriately set according to the type of dispersion medium in the dispersion liquid, the type or concentration of cellulose or cellulose derivative, and are carried out, for example, at an inlet temperature of 150 to 300 ° C. and an outlet temperature of 0 to 150 ° C. ..
  • the particulate composition of the present invention has an uneven structure on its surface, is soft because it has an appropriate hardness and porosity, and has an effective UV protection ability, so that it comes into direct contact with the skin and protects against UV rays.
  • cosmetics include hair care products such as shampoos and conditioners, makeup bases, powder foundations, liquid foundations, BB creams, concealers, lipsticks, makeup cosmetics such as sunscreens, etc. It can be used as a scrubbing agent for enhancing the cleaning effect or as a light scattering agent for exhibiting the defocus effect.
  • the particulate composition of the present invention can enhance its protective effect when used in combination with an existing ultraviolet protective agent. Therefore, it can be expected that the amount of existing UV protection agent used will be reduced.
  • UV protective agents are roughly classified into UV absorbers and UV scatterers, but the particulate composition of the present invention can be used in combination with any type.
  • an ultraviolet protective agent is not particularly limited as long as it conforms to cosmetic standards, but examples of an ultraviolet absorber include paraaminobenzoic acid and its ester, and amyl paradimethylaminobenzoate.
  • Paraaminobenzoic acid derivatives such as, dihydroxydimethoxybenzophenone, benzophenone derivatives such as dihydroxybenzophenone, silicate hexyl paramethoxysilicate, mono-2-ethylhexanoate glyceryl salicylic acid, octyl salicylate, etc.
  • Salicylic acid derivatives such as homomentyl salicylate, dibenzoylmethane derivatives such as 4-tert-butyl-4'-methoxydibenzoylmethane, and hydantin derivatives such as dimethoxybenzilidendioxoimidazolidine propionate 2-ethylhexyl.
  • the ultraviolet scattering agent include titanium dioxide (TiO 2 ), zinc oxide (ZnO) and aluminum oxide (Al 2 O 3 ).
  • Reference: 5.14 kg of the dispersion obtained in Synthesis Example 1 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.).
  • the treatment amount was 9.6 kg / h
  • the spray pressure was 0.4 MPa
  • the inlet temperature was 250 ° C.
  • the outlet temperature was 98 ° C.
  • the cyclone differential pressure was 1.7 kPa.
  • the mixture was spray-dried to obtain 358 g of powder as the title particulate composition.
  • Reference: 7.95 kg of the dispersion obtained in Synthesis Example 2 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.).
  • the powder was spray-dried at a treatment amount of 8.5 kg / h, a spray pressure of 0.3 MPa, an inlet temperature of 250 ° C., an outlet temperature of 97 ° C., and a cyclone differential pressure of 1.7 kPa to obtain 1.32 kg of powder as the title particulate composition.
  • Reference: 15.80 kg of the dispersion obtained in Synthesis Example 3 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.).
  • the powder was spray-dried at a treatment amount of 9.2 kg / h, a spray pressure of 0.3 MPa, an inlet temperature of 250 ° C., an outlet temperature of 94 ° C., and a cyclone differential pressure of 1.7 kPa to obtain 2.71 kg of powder as the title particulate composition.
  • the prepared sample was formed into a film using an applicator to a thickness of 50 ⁇ m on a vertical black-and-white B type concealment test paper (manufactured by TP Giken Co., Ltd.) and dried overnight to prepare a film sample.
  • These film samples were evaluated for transmitted light with an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation).
  • UV-3600 ultraviolet-visible near-infrared spectrophotometer
  • the particulate composition obtained in Example 1 was used.
  • Comparative Example 1 microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was used, and as Comparative Example 2, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) was used with Example 1.
  • a film sample was prepared in the same manner.
  • the ultraviolet transmittance of the film sample using the particulate composition of the present invention was 50% or less, specifically about 35%.
  • the ultraviolet transmittance of the film sample using microcrystalline cellulose and synthetic mica was about 70%. The results are shown in FIG.
  • the rotation / revolution mixer Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used to stir and mix at 2000 rpm for 10 minutes, and defoamed at 2200 rpm for 2 minutes.
  • the prepared sample was formed into a film using an applicator to a thickness of 50 ⁇ m on a vertical black-and-white B type concealment test paper (manufactured by TP Giken Co., Ltd.) and dried overnight to prepare a film sample.
  • These film samples were evaluated for transmitted light with an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation).
  • UV-3600 ultraviolet-visible near-infrared spectrophotometer
  • Comparative Example 1 microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was used, and as Comparative Example 2, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) was used as Example 1 and A film sample was prepared in the same manner. The results are shown in FIG.
  • the particulate composition of the present invention enhanced the UV protection of titanium oxide.
  • Evaluation of average friction coefficient and fluctuation of average friction coefficient 0.05 g of ultrafine titanium oxide (ST-455WS, manufactured by Titan Kogyo Co., Ltd.) and 0.2 g of evaluation particles were weighed into a 10 mL vial, and the mixture was stirred and mixed with VORTEX3 (manufactured by IKA) for 1 minute.
  • VORTEX3 manufactured by IKA
  • microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) as Comparative Example 1
  • synthetic mica NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.
  • mica mica (manufactured by Nippon Koken Kogyo Co., Ltd.)) as Comparative Example 3.
  • Serisite FSE manufactured by Sanshin Mining Ind.
  • microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) was mixed at a mass ratio of 1: 4
  • microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and talc (MMR, manufactured by Asada Flour Milling Co., Ltd.) were mixed at a mass ratio of 1: 4.
  • a mixed sample as Comparative Example 6, a sample in which microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and mica (Serisite FSE, manufactured by Sanshin Mining Co., Ltd.) were mixed at a mass ratio of 1: 4.
  • the sample powder evenly on the artificial leather supplement (registered trademark) (manufactured by Idemitsu Technofine Co., Ltd.), and then use the friction tester KES-SE (manufactured by Katou Tech Co., Ltd.).
  • the average friction coefficient (MIU) and the fluctuation of the average friction coefficient (MMD) were evaluated.
  • MIU is an index showing the slipperiness felt when touching the surface of an object with a human finger, and the smaller the value, the slippery.
  • MMD is an index expressing the feeling of roughness felt when the surface of an object is touched by a human finger. The larger the MMD value, the more grainy it feels.
  • the produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 5a-5c.
  • a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm. The results of each sample are shown in Table 3.
  • the particulate compositions obtained in Examples 1 to 3 were used.
  • the produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 6a to 6c.
  • a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm.
  • the results of each sample are shown in Table 4.
  • the particulate composition of the present invention enhances the ultraviolet protection ability of titanium oxide, which is an inorganic ultraviolet scattering agent.
  • the particulate compositions obtained in Examples 1 to 3 were used.
  • the produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 7a-7c.
  • a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm.
  • the results of each sample are shown in Table 5.
  • the particulate composition of the present invention enhanced the UV protection ability of ethylhexyl methoxycinnamate, which is an organic UV absorber.
  • the particulate compositions obtained in Examples 1 to 3 were used.
  • the particulate composition of the present invention is mainly composed of a natural material and has an uneven structure on its surface (that is, because pores or voids are appropriately present), so that it is soft and can be added to cosmetics that come into direct contact with the skin. Suitable for.
  • the particulate composition of the present invention can enhance the protection effect when used in combination with an existing UV protection agent, so that the existing UV protection agent can be used. A reduction in quantity can also be expected.

Abstract

The purpose of the present invention is to provide a cosmetic powder that has excellent UV-blocking capability and can also be used in combination with a conventional UV-blocking agent to improve the use sensation thereof and to enhance the UV-blocking capability thereof. Provided is a particulate composition having a rugged structure on the surface thereof, and containing as main components: cellulose or a cellulose derivative; and a clay mineral. Also provided is a method for producing said particulate composition. Such particulate composition is soft, has a good use sensation and excellent UV-blocking capability, and in particular, exhibits the superior effect of enhancing the UV-blocking capability when mixed in a cosmetic containing a conventional UV-blocking agent. The particulate composition, therefore, is useful as a cosmetic.

Description

紫外線防御用粒子状組成物Particulate composition for UV protection
 本発明は、表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物を主成分として含む、紫外線防御用粒子状組成物、その製造方法、及び該組成物を含む化粧品に関する。 The present invention relates to a particulate composition for UV protection, which has an uneven structure on the surface and contains cellulose or a cellulose derivative and a clay mineral as main components, a method for producing the same, and a cosmetic product containing the composition.
 地上に到達する太陽光線中で、波長280~400nmの紫外線の光量は約6%を占め、特に短波長側の280~320nm(以下、UVBと記す)は約0.5%、長波長側の320~400nm(以下、UVAと記す)は約5.5%である。UVAは皮下の真皮にまで達し、皺、弛み、弾力性の低下など光老化の原因となり、細胞膜や遺伝子に悪影響を与えると言われ、UVBは表皮で散乱・吸収されて皮膚にサンバーン等の炎症を引き起こすことが知られている。 In the sunlight reaching the ground, the amount of ultraviolet rays having a wavelength of 280 to 400 nm occupies about 6%, and in particular, 280 to 320 nm (hereinafter referred to as UVB) on the short wavelength side is about 0.5%, which is on the long wavelength side. 320 to 400 nm (hereinafter referred to as UVA) is about 5.5%. UVA reaches the dermis under the skin and causes photoaging such as wrinkles, slackness, and decreased elasticity, and is said to have an adverse effect on cell membranes and genes. UVB is scattered and absorbed by the epidermis and causes inflammation such as sunburn on the skin. Is known to cause.
 こうした紫外線から肌を防御する日焼け止め化粧品には、紫外線散乱剤として二酸化チタン、酸化亜鉛等の無機粉体が、紫外線吸収剤としてパラアミノ安息香酸(PABA)誘導体などの有機化合物が用いられてきた。 In sunscreen cosmetics that protect the skin from such ultraviolet rays, inorganic powders such as titanium dioxide and zinc oxide have been used as ultraviolet scattering agents, and organic compounds such as para-aminobenzoic acid (PABA) derivatives have been used as ultraviolet absorbers.
 しかし、有機系の紫外線吸収剤は紫外線の吸収効果には優れるものの、有機化合物であることから安定性に乏しく、効果の持続は期待できない。また、有機系の紫外線吸収剤の化粧品添加剤としての使用は、安全性の観点から配合制限が設けられている。
 無機系の紫外線散乱剤は、隠ぺい力が強く、皮膚に塗布した際に白浮きし、自然な仕上がりが得られず、加えて、皮膚への付着力が高いため、化粧品に配合した際に軋むなど、好ましい感触が得られないという課題があった。
 上記の課題から、化粧品中の紫外線吸収剤及び紫外線散乱剤(以下、まとめて「紫外線防御剤」と記す)の配合量をできるだけ減らしつつ、紫外線防御効果を維持することを目的として、様々な報告がなされてきた。
However, although the organic ultraviolet absorber has an excellent effect of absorbing ultraviolet rays, it is not stable because it is an organic compound, and the effect cannot be expected to be sustained. In addition, the use of organic ultraviolet absorbers as cosmetic additives is restricted from the viewpoint of safety.
Inorganic UV scatterers have strong hiding power, whiten when applied to the skin, do not give a natural finish, and have high adhesion to the skin, so they squeak when blended in cosmetics. There was a problem that a favorable feeling could not be obtained.
From the above issues, various reports have been made with the aim of maintaining the UV protection effect while reducing the amount of UV absorbers and UV scatterers (hereinafter collectively referred to as "UV protection agents") in cosmetics as much as possible. Has been done.
 中でも、可視光散乱効果に優れるポリアミド多孔質粒子を用いることで、紫外線も同様に散乱し、紫外線防御剤の紫外線遮蔽・吸収効果を増強することの出来るSPFブースター剤に関する報告がなされている(例えば、特許文献1参照)。しかしながら、このポリアミド多孔質微粒子はプラスチック製のマイクロビーズであるため、下水処理を通り抜けて河川や海洋に流出し、生物に取り込まれ生態系へ悪影響を及ぼすことが懸念される。マイクロビーズは一旦環境に流出するとその回収がほとんど不可能であるため、プラスチック製のマイクロビーズを、天然素材などの環境にやさしい素材(例えば、セルロース等)で代替することが近年特に求められている。 Among them, there has been a report on an SPF booster agent capable of enhancing the ultraviolet shielding / absorbing effect of an ultraviolet protective agent by similarly scattering ultraviolet rays by using polyamide porous particles having an excellent visible light scattering effect (for example). , Patent Document 1). However, since the polyamide porous fine particles are plastic microbeads, there is a concern that they may pass through the sewage treatment and flow out into rivers and the ocean, be taken up by living organisms, and adversely affect the ecosystem. Since it is almost impossible to recover microbeads once they flow out into the environment, it has been particularly required in recent years to replace plastic microbeads with environmentally friendly materials such as natural materials (for example, cellulose). ..
 本発明者らはこれまでに、セルロース又はセルロース誘導体と粘土鉱物とを主成分として含む粒子が、使用感に優れ、かつ、光散乱性を有することから、化粧品に配合した際のデフォーカス効果に優れることを見出している(例えば、特許文献2参照)。 Since the particles containing cellulose or a cellulose derivative and a clay mineral as main components have excellent usability and light scattering properties, the present inventors have been able to obtain a defocusing effect when blended in cosmetics. It has been found to be excellent (see, for example, Patent Document 2).
国際公開公報第2012/161084号International Publication No. 2012/161084 特願2018-170746号Japanese Patent Application No. 2018-170746
 これまで、セルロースもしくはセルロース誘導体と粘土鉱物とを主成分として含む粒子が、紫外光の散乱効果を有するか否かは明らかとされていなかった。また、紫外線防御剤には有機系と無機系が存在するが、有機系には安全性や安定性の課題が、無機系には使用感や仕上がりに課題がそれぞれあった。 Until now, it has not been clarified whether or not particles containing cellulose or a cellulose derivative and clay minerals as main components have an ultraviolet light scattering effect. In addition, there are organic and inorganic UV protection agents, but the organic has problems in safety and stability, and the inorganic has problems in usability and finish.
 本発明者らは鋭意検討した結果、セルロースもしくはセルロース誘導体と粘土鉱物とを主成分として含む粒子が、効果的な紫外線防御能を示し、かつ、既存の紫外線防御剤と併用することでその防御効果を増強し、使用感や仕上がりも改善できることを見出し、本発明を完成させた。本発明は以下のとおりである。 As a result of diligent studies by the present inventors, particles containing cellulose or a cellulose derivative and a clay mineral as main components show an effective UV protection ability, and when used in combination with an existing UV protection agent, the protection effect is exhibited. The present invention has been completed by finding that it is possible to improve the feeling of use and the finish. The present invention is as follows.
(1) 表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物とを主成分として含む、紫外線防御用粒子状組成物。
(2) 表面に皺状又は襞状の凹凸構造を有する、上記(1)に記載の組成物。
(3) 空隙率が5~60%の範囲にある、上記(1)又は(2)に記載の組成物。
(4) 粒径が0.5~500μmの範囲にある、上記(1)~(3)のいずれかに記載の組成物。
(5) 硬度が0.1~50MPaの範囲にある、上記(1)~(4)のいずれかに記載の組成物。
(6) 紫外線透過率が50%以下の範囲にある、上記(1)~(5)のいずれかに記載の組成物。
(7) セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部の粘土鉱物を含む、上記(1)~(6)のいずれかに記載の組成物。
(8) セルロースが、結晶セルロースである、上記(1)~(7)のいずれかに記載の組成物。
(9) 粘土鉱物が、タルク、カオリン、及びマイカからなる群より選択される少なくとも1種である、上記(1)~(8)のいずれかに記載の組成物。
(10) セルロース又はセルロース誘導体と粘土鉱物との分散液を得る工程と、得られた分散液を噴霧乾燥する工程を含む、表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物とを主成分とする紫外線防御用粒子状組成物の製造方法。
(11) 分散液が、セルロース又はセルロース誘導体と粘土鉱物との物理的な粉砕により得られる、上記(10)に記載の製造方法。
(12) 分散液におけるセルロース又はセルロース誘導体と粘土鉱物を含む固形分の濃度が、0.5~40質量%である、上記(10)又は(11)に記載の製造方法。
(13) 分散液が、セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部の粘土鉱物を含む、上記(10)~(12)のいずれかに記載の製造方法。
(14) 上記(1)~(9)のいずれかに記載の組成物、あるいは上記(10)~(13)のいずれかに記載の製造方法により得られる組成物を含む、化粧品。
(1) A particulate composition for UV protection, which has an uneven structure on the surface and contains cellulose or a cellulose derivative and a clay mineral as main components.
(2) The composition according to (1) above, which has a wrinkle-like or fold-like uneven structure on the surface.
(3) The composition according to (1) or (2) above, wherein the porosity is in the range of 5 to 60%.
(4) The composition according to any one of (1) to (3) above, which has a particle size in the range of 0.5 to 500 μm.
(5) The composition according to any one of (1) to (4) above, which has a hardness in the range of 0.1 to 50 MPa.
(6) The composition according to any one of (1) to (5) above, wherein the ultraviolet transmittance is in the range of 50% or less.
(7) The composition according to any one of (1) to (6) above, which contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative.
(8) The composition according to any one of (1) to (7) above, wherein the cellulose is crystalline cellulose.
(9) The composition according to any one of (1) to (8) above, wherein the clay mineral is at least one selected from the group consisting of talc, kaolin, and mica.
(10) It has an uneven structure on the surface and mainly contains cellulose or a cellulose derivative and a clay mineral, which includes a step of obtaining a dispersion liquid of cellulose or a cellulose derivative and a clay mineral and a step of spray-drying the obtained dispersion liquid. A method for producing a particulate composition for UV protection as an ingredient.
(11) The production method according to (10) above, wherein the dispersion is obtained by physically pulverizing cellulose or a cellulose derivative and a clay mineral.
(12) The production method according to (10) or (11) above, wherein the concentration of the solid content containing cellulose or a cellulose derivative and a clay mineral in the dispersion is 0.5 to 40% by mass.
(13) The production method according to any one of (10) to (12) above, wherein the dispersion contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative.
(14) A cosmetic product comprising the composition according to any one of (1) to (9) above, or the composition obtained by the production method according to any one of (10) to (13) above.
 本発明の粒子状組成物は、その表面に凹凸構造を有することから(すなわち、孔又は空隙が適度に存在することから)柔らかく、肌に直接触れる化粧品への添加に適している。本発明の粒子状組成物はまた、効果的な紫外線防御能を示すことに加え、既存の紫外線防御剤と併用することでその防御効果を増強することができるため、既存の紫外線防御剤の使用量の低減も期待できる。 The particulate composition of the present invention is soft because it has an uneven structure on its surface (that is, because pores or voids are appropriately present), and is suitable for addition to cosmetics that come into direct contact with the skin. In addition to exhibiting an effective UV protection ability, the particulate composition of the present invention can enhance the protection effect when used in combination with an existing UV protection agent, so that the existing UV protection agent can be used. A reduction in quantity can also be expected.
(a)乃至(c)は、それぞれ、評価例1で得られた実施例1乃至3の粒子状組成物の走査型電子顕微鏡(SEM)写真である。(A) to (c) are scanning electron microscope (SEM) photographs of the particulate compositions of Examples 1 to 3 obtained in Evaluation Example 1, respectively. (a)乃至(c)は、それぞれ、評価例1で得られた実施例1乃至3の粒子状組成物の電界放出形走査電子顕微鏡(FE-SEM)写真である。(A) to (c) are field emission scanning electron microscope (FE-SEM) photographs of the particulate compositions of Examples 1 to 3 obtained in Evaluation Example 1, respectively. 評価例2において行った、評価粒子として実施例1の粒子状組成物、微結晶セルロース(比較例1)、及び合成マイカ(比較例2)を用いて調製した各フィルムサンプルの透過光評価の結果を示したグラフである。Results of transmitted light evaluation of each film sample prepared in Evaluation Example 2 using the particulate composition of Example 1, microcrystalline cellulose (Comparative Example 1), and synthetic mica (Comparative Example 2) as evaluation particles. It is a graph showing. 評価例3において行った、既存の紫外線散乱剤である酸化チタンに加えて、評価粒子として実施例1の粒子状組成物、微結晶セルロース(比較例1)、及び合成マイカ(比較例2)を用いて調製した各フィルムサンプルの透過光評価の結果を示したグラフである。In addition to the existing ultraviolet scattering agent titanium oxide used in Evaluation Example 3, the particulate composition of Example 1, microcrystalline cellulose (Comparative Example 1), and synthetic mica (Comparative Example 2) were used as evaluation particles. It is a graph which showed the result of the transmitted light evaluation of each film sample prepared by using. 評価例5において、評価粒子として実施例1の粒子状組成物及び合成マイカ(比較例1)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 5, the results of transmitted light evaluation of a film sample obtained by forming an O / W foundation sample prepared by using the particulate composition of Example 1 and synthetic mica (Comparative Example 1) as evaluation particles are shown. It is a graph. 評価例5において、評価粒子として実施例2の粒子状組成物及びタルク(比較例2)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。A graph showing the results of transmitted light evaluation of a film sample obtained by forming an O / W foundation sample prepared by using the particulate composition of Example 2 and talc (Comparative Example 2) as evaluation particles in Evaluation Example 5. Is. 評価例5において、評価粒子として実施例3の粒子状組成物及びセリサイト(比較例3)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 5, the results of transmitted light evaluation of a film sample obtained by forming an O / W foundation sample prepared by using the particulate composition of Example 3 and sericite (Comparative Example 3) as evaluation particles are shown. It is a graph. 評価例6において、既存の紫外線散乱剤に加えて、評価粒子として実施例1の粒子状組成物、合成マイカ(比較例1)、微結晶セルロース(比較例2)及び合成マイカと微結晶セルロースとの混合サンプル(比較例3)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 6, in addition to the existing ultraviolet scattering agent, the particulate composition of Example 1, synthetic mica (Comparative Example 1), microcrystalline cellulose (Comparative Example 2), synthetic mica and microcrystalline cellulose were used as evaluation particles. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film of the O / W foundation sample prepared using each of the mixed samples (Comparative Example 3). 評価例6において、既存の紫外線散乱剤に加えて、評価粒子として実施例2の粒子状組成物、微結晶セルロース(比較例2)及びタルク(比較例4)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 6, O / W prepared by using the particulate composition of Example 2, microcrystalline cellulose (Comparative Example 2), and talc (Comparative Example 4) as evaluation particles in addition to the existing ultraviolet scattering agent. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the foundation sample. 評価例6において、既存の紫外線散乱剤に加えて、評価粒子として実施例3の粒子状組成物、微結晶セルロース(比較例2)及びセリサイト(比較例5)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 6, in addition to the existing ultraviolet scattering agent, O / prepared using the particulate composition of Example 3, microcrystalline cellulose (Comparative Example 2), and sericite (Comparative Example 5) as evaluation particles, respectively. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film | film of the W foundation sample. 評価例7において、既存の紫外線吸収剤に加えて、評価粒子として実施例1の粒子状組成物、合成マイカ(比較例1)、微結晶セルロース(比較例2)及び合成マイカと微結晶セルロースとの混合サンプル(比較例3)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 7, in addition to the existing ultraviolet absorber, the particulate composition of Example 1, synthetic mica (Comparative Example 1), microcrystalline cellulose (Comparative Example 2), synthetic mica and microcrystalline cellulose were used as evaluation particles. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film of the O / W foundation sample prepared using each of the mixed samples (Comparative Example 3) of. 評価例7において、既存の紫外線吸収剤に加えて、評価粒子として実施例2の粒子状組成物、微結晶セルロース(比較例2)及びタルク(比較例4)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 7, O / W prepared by using the particulate composition of Example 2, microcrystalline cellulose (Comparative Example 2), and talc (Comparative Example 4) as evaluation particles in addition to the existing ultraviolet absorber. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the foundation sample. 評価例7において、既存の紫外線吸収剤に加えて、評価粒子として実施例3の粒子状組成物、微結晶セルロース(比較例2)及びセリサイト(比較例5)をそれぞれ用いて調製したO/Wファンデーションサンプルを製膜したフィルムサンプルの透過光評価の結果を示したグラフである。In Evaluation Example 7, in addition to the existing ultraviolet absorber, O / prepared using the particulate composition of Example 3, microcrystalline cellulose (Comparative Example 2), and sericite (Comparative Example 5) as evaluation particles, respectively. It is a graph which showed the result of the transmitted light evaluation of the film sample which formed the film | film of the W foundation sample.
<粒子状組成物>
 本発明は、表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物を主成分として含む、粒子状組成物に関する。好ましくは、本発明は、表面に皺状又は襞状の凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物を主成分として含む、粒子状組成物に関する。「皺状又は襞状の凹凸構造を有する」とは、粒子の拡大像を観察した際に、その表面が平滑ではなく、皺状又は襞状の外観を有する溝状の筋目を有することを意味する。
<Particulate composition>
The present invention relates to a particulate composition having a concavo-convex structure on the surface and containing cellulose or a cellulose derivative and a clay mineral as main components. Preferably, the present invention relates to a particulate composition having a wrinkled or fold-like uneven structure on the surface and containing cellulose or a cellulose derivative and a clay mineral as main components. "Having a wrinkled or pleated uneven structure" means that when a magnified image of a particle is observed, the surface thereof is not smooth and has groove-like streaks having a wrinkled or pleated appearance. do.
 本発明の粒子状組成物は、セルロース又はセルロース誘導体を主成分として含む。本発明で使用されるセルロース又はセルロース誘導体は、羊毛、綿、絹、麻、パルプ等の天然繊維、レーヨン、ポリノジック、キュプラ(ベンベルグ(登録商標))、リヨセル(テンセル(登録商標))等の再生繊維に由来するもの、あるいはバクテリアが生産するセルロースが挙げられる。またセルロース繊維と合成繊維(例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維)のセルロース複合繊維に由来するものであってもよい。 The particulate composition of the present invention contains cellulose or a cellulose derivative as a main component. The cellulose or cellulose derivative used in the present invention is a regenerated natural fiber such as wool, cotton, silk, hemp, pulp, rayon, polynosic, cupra (Bemberg (registered trademark)), lyocell (Tencel (registered trademark)), etc. Examples include those derived from fibers and cellulose produced by bacteria. Further, it may be derived from a cellulose composite fiber of a cellulosic fiber and a synthetic fiber (for example, a polyolefin fiber such as polyethylene or polypropylene).
 本発明で使用するセルロース又はセルロース誘導体としては、天然繊維に由来するもの、例えば、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物等の植物に由来するものが挙げられ、特に、広葉樹、針葉樹又は竹に由来するものが挙げられる。また、このような繊維性植物から得られたα-セルロースを酸で部分的に解重合して精製したもの、例えば、結晶セルロースを用いることが好ましい。 Examples of the cellulose or cellulose derivative used in the present invention include those derived from natural fibers, for example, those derived from plants such as wood, bamboo, hemp, jute, kenaf, cotton, beet, and agricultural waste. , Hardwoods, softwoods or those derived from bamboo. Further, it is preferable to use a product obtained by partially depolymerizing α-cellulose obtained from such a fibrous plant with an acid and purifying it, for example, crystalline cellulose.
 また本発明では、セルロース又はセルロース誘導体として、セルロースナノファイバーを用いることが好ましい。「セルロースナノファイバー(CNF)」とは、セルロース繊維をナノサイズレベルまで解繊処理することにより得られる繊維であり、一般に、繊維幅約4~200nm、繊維長約5μm以上の繊維である。このようなセルロースナノファイバーは、公知の方法により調製でき、また市販品として入手できる。例えば、大王製紙(株)や中越パルプ工業(株)等の供給業者より入手できる。 Further, in the present invention, it is preferable to use cellulose nanofibers as cellulose or a cellulose derivative. "Cellulose nanofiber (CNF)" is a fiber obtained by defibrating cellulose fibers to a nano-size level, and is generally a fiber having a fiber width of about 4 to 200 nm and a fiber length of about 5 μm or more. Such cellulose nanofibers can be prepared by a known method and can be obtained as a commercially available product. For example, it can be obtained from suppliers such as Daio Paper Corporation and Chuetsu Pulp & Paper Co., Ltd.
 本発明の粒子状組成物はまた、粘土鉱物を主成分として含む。本発明で使用する粘土鉱物とは、天然又は合成の層状ケイ酸塩鉱物を意味し、水に膨潤し、かつイオン交換可能なものであれば特に限定されるものではない。例としては、タルク、カオリン、モンモリロナイト、カオリナイト、セリサイト(絹雲母)、白雲母、金雲母、合成雲母、紅雲母および黒雲母等の雲母(マイカ)、バーミキュライト、ゼオライト、ベントナイト、スメクタイト、クロライト、イライト、グローコナイト、等が挙げられる。中でもセルロース又はセルロース誘導体との組合せや粒子状組成物の化粧品への適用の観点から、タルク、カオリン及びマイカからなる群より選択される少なくとも1種が好ましい。これらの粘土鉱物は、医薬品用又は化粧品用添加剤として、供給業者より入手できる。 The particulate composition of the present invention also contains a clay mineral as a main component. The clay mineral used in the present invention means a natural or synthetic layered silicate mineral, and is not particularly limited as long as it swells in water and can exchange ions. Examples include talc, kaolin, montmorillonite, kaolinite, sericite, muscovite, gold mica, synthetic mica, red mica, black mica and other mica, vermiculite, zeolite, bentonite, smectite, black. Examples include light, erite, glow kaolin, and the like. Among them, at least one selected from the group consisting of talc, kaolin and mica is preferable from the viewpoint of combination with cellulose or a cellulose derivative and application of the particulate composition to cosmetics. These clay minerals are available from suppliers as pharmaceutical or cosmetic additives.
 上記層状ケイ酸塩鉱物は、粘土鉱物の主成分として含まれ、通常その含有量は60%以上、好ましくは75%以上、最も好ましくは80%以上である。 The layered silicate mineral is contained as a main component of a clay mineral, and its content is usually 60% or more, preferably 75% or more, and most preferably 80% or more.
 本発明において「セルロース又はセルロース誘導体と粘土鉱物とを主成分として含む」とは、粒子状組成物に占めるセルロース又はセルロース誘導体と粘土鉱物の割合(質量基準)が50質量%超であることを意味する。セルロース又はセルロース誘導体と粘土鉱物の割合(質量基準)は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上である。最も好適な態様では、本発明の粒子状組成物はセルロース又はセルロース誘導体と粘土鉱物のみからなる。 In the present invention, "containing cellulose or cellulose derivative and clay mineral as main components" means that the ratio (mass basis) of cellulose or cellulose derivative and clay mineral in the particulate composition is more than 50% by mass. do. The ratio (mass basis) of cellulose or cellulose derivative to clay mineral is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more. In the most preferred embodiment, the particulate composition of the present invention comprises only cellulose or a cellulose derivative and a clay mineral.
 本発明において、セルロース又はセルロース誘導体と粘土鉱物との配合比は、本発明の効果を奏する限り特に限定はないが、典型的には、セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部、好ましくは0.2~20質量部、より好ましくは0.5~15質量部、特に好ましくは1~10質量部の粘土鉱物を含む。 In the present invention, the blending ratio of the cellulose or the cellulose derivative and the clay mineral is not particularly limited as long as the effect of the present invention is obtained, but typically 0.1 to 20 to 1 part by mass of the cellulose or the cellulose derivative. It contains parts by mass, preferably 0.2 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass of clay mineral.
 粒子状組成物に含まれるセルロース又はセルロース誘導体および粘土鉱物以外の成分としては、例えば、炭酸マグネシウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸ストロンチウム、タングステン酸金属塩、硫酸バリウム、焼成硫酸カルシウム、リン酸カルシウム、弗素アパタイト、ヒドロキシアパタイト、セラミックパウダー、金属石鹸(例えば、ミリスチン酸亜鉛、パルミチン酸カルシウム、ステアリン酸アルミニウム)、ベンガラ、黄酸化鉄、黒酸化鉄、群青、紺青、カーボンブラック、酸化チタン、微粒子および超微粒子酸化チタン、酸化亜鉛、微粒子および超微粒子酸化亜鉛、アルミナ、シリカ、煙霧状シリカ(超微粒子無水ケイ酸)、雲母チタン、魚鱗箔、窒化ホウ素、ホトクロミック顔料、合成フッ素金雲母、微粒子複合粉体、金、アルミニウム等の各種の大きさ・形状の無機粉体、および、これらをハイドロジェンシリコーン、環状ハイドロジェンシリコーン等のシリコーン若しくはその他のシラン若しくはチタンカップリング剤等の各種表面処理剤で処理を行って疎水化若しくは親水化した粉体等が挙げられる。 Examples of components other than cellulose or cellulose derivatives and clay minerals contained in the particulate composition include magnesium carbonate, calcium carbonate, aluminum silicate, barium silicate, calcium silicate, magnesium silicate, strontium silicate, and tungsten acid. Metal salts, barium sulfate, calcined calcium sulfate, calcium phosphate, fluoroapatite, hydroxyapatite, ceramic powder, metal soap (eg zinc myristate, calcium palmitate, aluminum stearate), red iron oxide, iron yellow oxide, black iron oxide, ultramarine , Navy blue, carbon black, titanium oxide, fine particles and ultrafine particles of titanium oxide, zinc oxide, fine particles and ultrafine particles of zinc oxide, alumina, silica, fuming silica (ultrafine particles anhydrous silicic acid), mica titanium, fish scale foil, boron nitride, Photochromic pigments, synthetic fluorine gold mica, fine particle composite powder, inorganic powders of various sizes and shapes such as gold and aluminum, and silicones such as hydrogen silicone and cyclic hydrogen silicone or other silanes. Examples thereof include powders that have been treated with various surface treatment agents such as titanium coupling agents to make them hydrophobic or hydrophilic.
 本発明の粒子状組成物の粒径は、粒子状組成物の所望の用途に応じて適宜設定できるが、例えば0.5~500μmの範囲、好ましくは1~200μmの範囲、より好ましくは2~100μm、特に好ましくは5~80μmの範囲に分布し、また平均粒子径は、例えば5~40μmの範囲、好ましくは5~30μmの範囲にある。なお、本発明において粒径とは、散乱式粒子径分布測定装置で測定した値を意味し、平均粒子径とは、得られた粒度分布より算出される算術平均径を意味する。 The particle size of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 0.5 to 500 μm, preferably in the range of 1 to 200 μm, and more preferably in the range of 2 to 2. It is distributed in the range of 100 μm, particularly preferably 5 to 80 μm, and the average particle size is, for example, in the range of 5 to 40 μm, preferably in the range of 5 to 30 μm. In the present invention, the particle size means a value measured by a scattering type particle size distribution measuring device, and the average particle size means an arithmetic mean diameter calculated from the obtained particle size distribution.
 本発明の粒子状組成物の空隙率は、粒子状組成物の所望の用途に応じて適宜設定できるが、例えば5~60%の範囲、好ましくは10~50%の範囲、より好ましくは15~45%の範囲にある。なお、本発明において空隙率とは、走査型電子顕微鏡等を用いて得られる粒子断面像を用い、断面積(粒子断面像における断面全体の面積)を100としたときの空隙面積(粒子断面像における空隙部分の面積の総和)の割合を百分率で示した値を意味し、平均空隙率とは、得られた空隙率の算術平均値を意味する。X線CTなどの手法を用いても同様に空隙率を算出することが可能である。本発明の粒子状組成物の空隙率がこのような範囲にあることで、粒子の柔らさが保たれると共に、ファンデーション処方中においても優れた光学特性を示すことができる。 The porosity of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 5 to 60%, preferably in the range of 10 to 50%, and more preferably in the range of 15 to 15. It is in the range of 45%. In the present invention, the porosity refers to the porosity (particle cross-sectional image) when a particle cross-sectional image obtained by using a scanning electron microscope or the like is used and the cross-sectional area (the area of the entire cross section in the particle cross-sectional image) is 100. It means a value which shows the ratio of the total area of the porosity) as a percentage, and the average porosity means the arithmetic mean value of the obtained porosity. The porosity can be calculated in the same manner by using a method such as X-ray CT. When the porosity of the particulate composition of the present invention is in such a range, the softness of the particles can be maintained and excellent optical properties can be exhibited even during foundation formulation.
 本発明の粒子状組成物の硬度は、粒子状組成物の所望の用途に応じて適宜設定できるが、例えば0.1~50MPaの範囲、好ましくは0.1~40MPaの範囲、より好ましくは0.5~30MPaの範囲にある。なお、本発明において硬度とは、微小圧縮試験機で測定した値を意味し、粒子径が10%変形したときの強度C(x)として、下記式から算出した。 The hardness of the particulate composition of the present invention can be appropriately set according to the desired use of the particulate composition, and is, for example, in the range of 0.1 to 50 MPa, preferably in the range of 0.1 to 40 MPa, more preferably 0. It is in the range of .5 to 30 MPa. In the present invention, the hardness means a value measured by a microcompression tester, and is calculated from the following formula as the strength C (x) when the particle size is deformed by 10%.
Figure JPOXMLDOC01-appb-M000001

(式中、Pは粒子径の10%変形時の試験力(N)、πは円周率、dは粒子径(mm)、C(x)は10%強度(MPa)を示す。)
 本発明の粒子状組成物の硬度がこのような範囲にあることで、粒子の柔らさが保たれると共に、優れた光学特性を示すことができる。
Figure JPOXMLDOC01-appb-M000001

(In the formula, P is the test force (N) when the particle size is deformed by 10%, π is the pi, d is the particle size (mm), and C (x) is the 10% intensity (MPa).)
When the hardness of the particulate composition of the present invention is in such a range, the softness of the particles can be maintained and excellent optical properties can be exhibited.
<粒子状組成物の製造方法>
 本発明の粒子状組成物は、セルロース又はセルロース誘導体と粘土鉱物との分散液を得る工程と、得られた分散液を噴霧乾燥する工程を含む方法により製造できる。
<Manufacturing method of particulate composition>
The particulate composition of the present invention can be produced by a method including a step of obtaining a dispersion liquid of cellulose or a cellulose derivative and a clay mineral, and a step of spray-drying the obtained dispersion liquid.
 本発明の製造方法に係る分散液において、セルロース又はセルロース誘導体や粘土鉱物の例と好ましい態様は上述のとおりである。分散液は、任意の方法で調製することができ、例えば、セルロース又はセルロース誘導体、粘土鉱物および分散媒を混合し、これを粉砕処理することにより得られる。あるいは、先ずセルロース若しくはセルロース誘導体(又は粘土鉱物)と分散媒を混合し、これを粉砕処理し、セルロース若しくはセルロース誘導体(又は粘土鉱物)分散液を得た後に、粘土鉱物(又はセルロース若しくはセルロース誘導体)と分散媒を混合して、さらに粉砕処理をすることにより得ることもできる。分散媒は、好ましくは水性媒体であり、より好ましくは水、水混和性有機溶媒又はその混合物である。水混和性有機溶媒の例としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等の炭素数1~4のアルコール類、アセトン等のケトン類、アセトニトリル等のニトリル類、N-メチルピロリドン、N-シクロヘキシルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、γ-ブチロラクトン等のラクトン、テトラヒドロフラン等のエーテル類が挙げられる。最も好適な態様では、分散媒は水であるか、又は水と炭素数1~4のアルコール類の混合物である。 Examples and preferred embodiments of cellulose or cellulose derivatives and clay minerals in the dispersion according to the production method of the present invention are as described above. The dispersion can be prepared by any method, and is obtained, for example, by mixing cellulose or a cellulose derivative, a clay mineral and a dispersion medium, and pulverizing the mixture. Alternatively, first, a cellulose or cellulose derivative (or clay mineral) and a dispersion medium are mixed, and this is pulverized to obtain a cellulose or cellulose derivative (or clay mineral) dispersion liquid, and then the clay mineral (or cellulose or cellulose derivative). It can also be obtained by mixing the dispersion medium and further pulverizing the mixture. The dispersion medium is preferably an aqueous medium, more preferably water, a water-miscible organic solvent or a mixture thereof. Examples of water-miscible organic solvents include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone, nitriles such as acetonitrile, N-methylpyrrolidone and N-cyclohexylpyrrolidone. , N, N-dimethylacetamide, N, N-dimethylformamide and other amides, γ-butyrolactone and other lactones, tetrahydrofuran and other ethers. In the most preferred embodiment, the dispersion medium is water or a mixture of water and alcohols having 1 to 4 carbon atoms.
 分散液は、セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部、好ましくは0.2~20質量部、より好ましくは0.5~15質量部、特に好ましくは1~10質量部の粘土鉱物を含む。また分散液におけるセルロース又はセルロース誘導体および粘土鉱物を含む固形分の濃度は、続く噴霧乾燥工程に使用できる範囲であれば特に限定されないが、例えば0.5~40質量%であり、好ましくは1~35質量%であり、より好ましくは2~30質量%である。 The dispersion liquid is 0.1 to 20 parts by mass, preferably 0.2 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass with respect to 1 part by mass of cellulose or a cellulose derivative. Contains some clay minerals. The concentration of the solid content containing cellulose or the cellulose derivative and the clay mineral in the dispersion is not particularly limited as long as it can be used in the subsequent spray drying step, but is, for example, 0.5 to 40% by mass, preferably 1 to 1 to 40% by mass. It is 35% by mass, more preferably 2 to 30% by mass.
 分散液を得る操作に、特に限定はなく、当業者に公知の分散液を得る操作を用いて実施できる。典型的には、分散液は、セルロース又はセルロース誘導体と粘土鉱物の粉砕処理により得られ、好ましくは物理的な粉砕により得られる。物理的な粉砕とは、セルロース又はセルロース誘導体および/又は粘土鉱物と分散媒の混合物に、マグネチックスターラー、撹拌翼等の攪拌装置、ポリトロン等のホモジナイザー、超音波破砕機等の超音波発生機器、湿式微粒化装置(例えば、スターバースト;(株)スギノマシン)等の粉砕機を用いて物理的な外力を与えることにより実施される。ただし、市販のセルロース又はセルロース誘導体および/又は粘土鉱物が十分に粉砕されているものであれば、粉砕処理を行わずに分散液を得てもよい。また本発明の製造方法では、セルロース又はセルロース誘導体分散液を得る工程に代えて、市販のセルロース分散液、例えば市販のセルロースナノファイバーの分散液を用いてもよい。 The operation for obtaining the dispersion liquid is not particularly limited, and can be carried out by using the operation for obtaining the dispersion liquid known to those skilled in the art. Typically, the dispersion is obtained by milling a cellulose or cellulose derivative and a clay mineral, preferably by physical milling. Physical crushing refers to a mixture of cellulose or cellulose derivative and / or clay mineral and dispersion medium, a stirrer such as a magnetic stirrer or a stirring blade, a homogenizer such as a polytron, or an ultrasonic generator such as an ultrasonic crusher. It is carried out by applying a physical external force using a crusher such as a wet atomizing device (for example, Starburst; Sugino Machine Co., Ltd.). However, if a commercially available cellulose or cellulose derivative and / or clay mineral is sufficiently pulverized, a dispersion liquid may be obtained without performing the pulverization treatment. Further, in the production method of the present invention, a commercially available cellulose dispersion, for example, a commercially available cellulose nanofiber dispersion may be used instead of the step of obtaining the cellulose or cellulose derivative dispersion.
 本発明の粒子状組成物は、得られた分散液を噴霧乾燥することにより得られる。噴霧乾燥は、アトマイザー、スプレードライヤー、マイクロミストスプレードライヤー等、公知の噴霧乾燥装置を用いて実施される。噴霧乾燥条件は、分散液における分散媒の種類、セルロース又はセルロース誘導体の種類又は濃度等に応じて適宜設定されるが、例えば、入口温度150~300℃、出口温度0~150℃で実施される。 The particulate composition of the present invention is obtained by spray-drying the obtained dispersion. Spray drying is carried out using a known spray drying device such as an atomizer, a spray dryer, and a micro mist spray dryer. The spray drying conditions are appropriately set according to the type of dispersion medium in the dispersion liquid, the type or concentration of cellulose or cellulose derivative, and are carried out, for example, at an inlet temperature of 150 to 300 ° C. and an outlet temperature of 0 to 150 ° C. ..
<化粧品>
 本発明の粒子状組成物は、その表面に凹凸構造を有し、適切な硬度と空隙率を有することから柔らかく、また効果的な紫外線防御能を有することから、肌に直接触れ、かつ紫外線防御効果が要求される化粧品への添加に適している。そのような化粧品の例としては、シャンプー、コンディショナー等のヘアケア製品、化粧下地、パウダーファンデーション、リキッドファンデーション、BBクリーム、コンシーラー、口紅、日焼け止め等のメーキャップ化粧品等が挙げられ、これらにおいて、マッサージ効果や洗浄効果を増強するためのスクラブ剤として、又はデフォーカス効果を発現させるための光散乱剤として使用できる。
<Cosmetics>
The particulate composition of the present invention has an uneven structure on its surface, is soft because it has an appropriate hardness and porosity, and has an effective UV protection ability, so that it comes into direct contact with the skin and protects against UV rays. Suitable for addition to cosmetics that require an effect. Examples of such cosmetics include hair care products such as shampoos and conditioners, makeup bases, powder foundations, liquid foundations, BB creams, concealers, lipsticks, makeup cosmetics such as sunscreens, etc. It can be used as a scrubbing agent for enhancing the cleaning effect or as a light scattering agent for exhibiting the defocus effect.
 本発明の粒子状組成物は、既存の紫外線防御剤と併用することでその防御効果を増強することができる。そのため、既存の紫外線防御剤の使用量の低減も期待できる。一般に、紫外線防御剤は、紫外線吸収剤および紫外線散乱剤に大別されるが、本発明の粒子状組成物は、いずれのタイプとも併用可能である。そのような紫外線防御剤は、例えば日本であれば、化粧品基準に適合するものであれば特に限定はないが、紫外線吸収剤の例としては、パラアミノ安息香酸及びそのエステル、パラジメチルアミノ安息香酸アミルなどのパラアミノ安息香酸誘導体、ジヒドロキシジメトキシベンゾフェノン、ジヒドロキシベンゾフェノンなどのベンゾフェノン誘導体、パラメトキシケイ皮酸2―エチルヘキシル、ジパラメトキシケイ皮酸モノ-2-エチルヘキサン酸グリセリルなどのケイ皮酸誘導体、サリチル酸オクチル、サリチル酸ホモメンチルなどのサリチル酸誘導体、4-tert-ブチル-4’-メトキシジベンゾイルメタンなどのジベンゾイルメタン誘導体、及びジメトキシベンジリデンジオキソイミダゾリジンプロピオン酸2―エチルヘキシルなどのヒダントイン誘導体を挙げることができ、紫外線散乱剤の例としては、二酸化チタン(TiO)、酸化亜鉛(ZnO)及び酸化アルミニウム(Al)などを挙げることができる。 The particulate composition of the present invention can enhance its protective effect when used in combination with an existing ultraviolet protective agent. Therefore, it can be expected that the amount of existing UV protection agent used will be reduced. Generally, UV protective agents are roughly classified into UV absorbers and UV scatterers, but the particulate composition of the present invention can be used in combination with any type. In Japan, for example, such an ultraviolet protective agent is not particularly limited as long as it conforms to cosmetic standards, but examples of an ultraviolet absorber include paraaminobenzoic acid and its ester, and amyl paradimethylaminobenzoate. Paraaminobenzoic acid derivatives such as, dihydroxydimethoxybenzophenone, benzophenone derivatives such as dihydroxybenzophenone, silicate hexyl paramethoxysilicate, mono-2-ethylhexanoate glyceryl salicylic acid, octyl salicylate, etc. , Salicylic acid derivatives such as homomentyl salicylate, dibenzoylmethane derivatives such as 4-tert-butyl-4'-methoxydibenzoylmethane, and hydantin derivatives such as dimethoxybenzilidendioxoimidazolidine propionate 2-ethylhexyl. Examples of the ultraviolet scattering agent include titanium dioxide (TiO 2 ), zinc oxide (ZnO) and aluminum oxide (Al 2 O 3 ).
[参考合成例1:20質量%微結晶セルロース及び合成マイカ分散液]
 微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)7.2kg、合成マイカ(NK-8G、日本光研工業(株)製)28.8kgをイオン交換水144kgに分散させた後、湿式微粒化装置スターバースト((株)スギノマシン製)にて150MPaで2回粉砕処理を行い、表題の20質量%微結晶セルロース及び合成マイカ分散液を得た。
[Reference Synthesis Example 1: 20% by Mass Microcrystalline Cellulose and Synthetic Mica Dispersion]
After dispersing 7.2 kg of microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and 28.8 kg of synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) in 144 kg of ion-exchanged water. The wet atomizer Starburst Co., Ltd. (manufactured by Sugino Machine Co., Ltd.) was used to grind the mixture twice at 150 MPa to obtain the title 20% by mass microcrystalline cellulose and synthetic mica dispersion.
[参考合成例2:20質量%微結晶セルロース及びタルク分散液]
 タルク(MMR、浅田製粉(株)製)4.0kgをイオン交換水20kgに分散させた後、湿式微粒化装置スターバースト((株)スギノマシン製)にて150MPaで2回粉砕処理を行った。そこへ、微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)1.0kgを加え、さらに2回粉砕処理を行うことで、表題の20質量%微結晶セルロース及びタルク分散液を得た。
[Reference Synthesis Example 2: 20% by Mass Microcrystalline Cellulose and Talc Dispersion]
After 4.0 kg of talc (MMR, manufactured by Asada Flour Milling Co., Ltd.) was dispersed in 20 kg of ion-exchanged water, it was pulverized twice at 150 MPa with a wet atomizer Starburst (manufactured by Sugino Machine Limited). .. 1.0 kg of microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was added thereto, and the mixture was further pulverized twice to obtain the title 20% by mass microcrystalline cellulose and talc dispersion. ..
[参考合成例3:20質量%微結晶セルロース及びマイカ分散液]
 マイカ(セリサイトFSE、三信鉱工(株)製)4.0kgをイオン交換水20kgに分散させた後、湿式微粒化装置スターバースト((株)スギノマシン製)にて150MPaで4回粉砕処理を行った。そこへ、微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)1.0kgを加え、さらに2回粉砕処理を行うことで、表題の20質量%微結晶セルロース及びマイカ分散液を得た。
[Reference Synthesis Example 3: 20% by Mass Microcrystalline Cellulose and Mica Dispersion]
After dispersing 4.0 kg of mica (Serisite FSE, manufactured by Sanshin Mining Co., Ltd.) in 20 kg of ion-exchanged water, it is pulverized four times at 150 MPa with a wet atomizer Starburst (manufactured by Sugino Machine Co., Ltd.). Was done. 1.0 kg of microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was added thereto, and the mixture was further pulverized twice to obtain the title 20% by mass microcrystalline cellulose and mica dispersion. ..
[実施例1:セルロース:合成マイカ=1:4 w/wの粒子状組成物]
 参考合成例1で得られた分散液5.14kgを、RJ-10ノズル(大川原化工機(株)製)を装着したRL-5型(大川原化工機(株)製)スプレードライヤーにて、原液処理量9.6kg/h、噴霧圧力0.4MPa、入口温度250℃、出口温度98℃、サイクロン差圧1.7kPaで噴霧乾燥し、表題粒子状組成物として358gの粉末を得た。
[Example 1: Cellulose: Synthetic mica = 1: 4 w / w particulate composition]
Reference: 5.14 kg of the dispersion obtained in Synthesis Example 1 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.). The treatment amount was 9.6 kg / h, the spray pressure was 0.4 MPa, the inlet temperature was 250 ° C., the outlet temperature was 98 ° C., and the cyclone differential pressure was 1.7 kPa. The mixture was spray-dried to obtain 358 g of powder as the title particulate composition.
[実施例2:セルロース:タルク=1:4 w/wの粒子状組成物]
 参考合成例2で得られた分散液7.95kgを、RJ-10ノズル(大川原化工機(株)製)を装着したRL-5型(大川原化工機(株)製)スプレードライヤーにて、原液処理量8.5kg/h、噴霧圧力0.3MPa、入口温度250℃、出口温度97℃、サイクロン差圧1.7kPaで噴霧乾燥し、表題粒子状組成物として1.32kgの粉末を得た。
[Example 2: Cellulose: Talc = 1: 4 w / w particulate composition]
Reference: 7.95 kg of the dispersion obtained in Synthesis Example 2 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.). The powder was spray-dried at a treatment amount of 8.5 kg / h, a spray pressure of 0.3 MPa, an inlet temperature of 250 ° C., an outlet temperature of 97 ° C., and a cyclone differential pressure of 1.7 kPa to obtain 1.32 kg of powder as the title particulate composition.
[実施例3:セルロース:マイカ=1:4 w/wの粒子状組成物]
 参考合成例3で得られた分散液15.80kgを、RJ-10ノズル(大川原化工機(株)製)を装着したRL-5型(大川原化工機(株)製)スプレードライヤーにて、原液処理量9.2kg/h、噴霧圧力0.3MPa、入口温度250℃、出口温度94℃、サイクロン差圧1.7kPaで噴霧乾燥し、表題粒子状組成物として2.71kgの粉末を得た。
[Example 3: Cellulose: mica = 1: 4 w / w particulate composition]
Reference: 15.80 kg of the dispersion obtained in Synthesis Example 3 is used as a stock solution with an RL-5 type (Okawara Kakohki Co., Ltd.) spray dryer equipped with an RJ-10 nozzle (Okawara Kakohki Co., Ltd.). The powder was spray-dried at a treatment amount of 9.2 kg / h, a spray pressure of 0.3 MPa, an inlet temperature of 250 ° C., an outlet temperature of 94 ° C., and a cyclone differential pressure of 1.7 kPa to obtain 2.71 kg of powder as the title particulate composition.
[評価例1:粒子の形態観察]
 実施例1乃至3で得られた粒子状組成物をカーボンテープに貼付し、走査型電子顕微鏡Miniscope(登録商標)TM3000((株)日立ハイテクノロジーズ製)を用いて形態観察を実施した。粒子状組成物の形態観察結果を図1(a)乃至(c)に示した。また実施例1乃至3で得られた粒子状組成物をそれぞれカーボンテープに貼付し、電界放出形走査電子顕微鏡JSM-7400F(日本電子(株)製)を用いて、加速電圧0.7kV又は1.0kV、電流量10μVにて、形態観察を実施した。粒子の形態観察結果を、それぞれ図2(a)乃至(c)に示した。
[Evaluation example 1: Observation of particle morphology]
The particulate composition obtained in Examples 1 to 3 was attached to a carbon tape, and morphological observation was carried out using a scanning electron microscope Miniscope (registered trademark) TM3000 (manufactured by Hitachi High-Technologies Corporation). The morphological observation results of the particulate composition are shown in FIGS. 1 (a) to 1 (c). Further, the particulate compositions obtained in Examples 1 to 3 were attached to carbon tapes, respectively, and an acceleration voltage of 0.7 kV or 1 was used using a field emission scanning electron microscope JSM-7400F (manufactured by JEOL Ltd.). Morphological observation was carried out at 0.0 kV and a current amount of 10 μV. The morphological observation results of the particles are shown in FIGS. 2 (a) to 2 (c), respectively.
[評価例2:紫外線防御能の評価]
 シリコーンゴムKE-1300T(信越化学工業(株)製)8.55g、硬化剤CAT-1300(信越化学工業(株)製)0.95gを20mLバイアルへ秤量し、評価粒子0.5gを添加した。その後、自転・公転ミキサー泡とり練太郎ARE-310型((株)シンキー製)により、2000rpmで10分間攪拌混合し、2200rpmで2分間脱泡した。調製したサンプルを、アプリケーターを用いて50μm厚で隠蔽率試験紙タテ白黒Bタイプ(TP技研(株)製)上に製膜し、一晩乾燥させることでフィルムサンプルを作製した。これらのフィルムサンプルを、紫外可視近赤外分光光度計UV-3600((株)島津製作所製)にて透過光評価を行った。評価粒子として、実施例1で得られた粒子状組成物を用いた。また、比較例1として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)、比較例2として合成マイカ(NK-8G、日本光研工業(株)製)を用いて実施例1と同様にフィルムサンプルを調製した。本発明の粒子状組成物を用いたフィルムサンプルの紫外線透過率は50%以下、具体的には約35%であった。一方、微結晶セルロース及び合成マイカを用いたフィルムサンプルの紫外線透過率は約70%であった。結果を図3に示した。
[Evaluation example 2: Evaluation of UV protection ability]
8.55 g of silicone rubber KE-1300T (manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.95 g of curing agent CAT-1300 (manufactured by Shin-Etsu Chemical Co., Ltd.) were weighed into a 20 mL vial, and 0.5 g of evaluation particles were added. .. Then, the rotation / revolution mixer Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used to stir and mix at 2000 rpm for 10 minutes, and defoamed at 2200 rpm for 2 minutes. The prepared sample was formed into a film using an applicator to a thickness of 50 μm on a vertical black-and-white B type concealment test paper (manufactured by TP Giken Co., Ltd.) and dried overnight to prepare a film sample. These film samples were evaluated for transmitted light with an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation). As the evaluation particles, the particulate composition obtained in Example 1 was used. Further, as Comparative Example 1, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was used, and as Comparative Example 2, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) was used with Example 1. A film sample was prepared in the same manner. The ultraviolet transmittance of the film sample using the particulate composition of the present invention was 50% or less, specifically about 35%. On the other hand, the ultraviolet transmittance of the film sample using microcrystalline cellulose and synthetic mica was about 70%. The results are shown in FIG.
[評価例3:紫外線防御能増強効果の評価]
 シリコーンゴムKE-1300T(信越化学工業(株)製)8.55g、硬化剤CAT-1300(信越化学工業(株)製)0.95g(w/w)を20mLバイアルへ秤量し、そこへ超微粒子酸化チタンST-455WS(チタン工業(株)製)0.05g、評価粒子0.5gを添加した。その後、自転・公転ミキサー泡とり練太郎ARE-310型((株)シンキー製)により、2000rpmで10分間攪拌混合し、2200rpmで2分間脱泡した。調製したサンプルを、アプリケーターを用いて50μm厚で隠蔽率試験紙タテ白黒Bタイプ(TP技研(株)製)上に製膜し、一晩乾燥させることでフィルムサンプルを作製した。これらのフィルムサンプルを、紫外可視近赤外分光光度計UV-3600((株)島津製作所製)にて透過光評価を行った。評価粒子として、実施例1で得られた粒子状組成物を用いた。また、比較例1として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)、比較例2として合成マイカ(NK-8G、日本光研工業(株)製)を用いて実施例1と同様にフィルムサンプルを調製した。結果を図4に示した。本発明の粒子状組成物は、酸化チタンの紫外線防御能を増強していた。
[Evaluation example 3: Evaluation of UV protection ability enhancing effect]
Weigh silicone rubber KE-1300T (manufactured by Shin-Etsu Chemical Co., Ltd.) 8.55 g and curing agent CAT-1300 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.95 g (w / w) into a 20 mL vial, and superimpose it there. Fine particle titanium oxide ST-455WS (manufactured by Titanium Industry Co., Ltd.) 0.05 g and evaluation particles 0.5 g were added. Then, the rotation / revolution mixer Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used to stir and mix at 2000 rpm for 10 minutes, and defoamed at 2200 rpm for 2 minutes. The prepared sample was formed into a film using an applicator to a thickness of 50 μm on a vertical black-and-white B type concealment test paper (manufactured by TP Giken Co., Ltd.) and dried overnight to prepare a film sample. These film samples were evaluated for transmitted light with an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation). As the evaluation particles, the particulate composition obtained in Example 1 was used. Further, as Comparative Example 1, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) was used, and as Comparative Example 2, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) was used as Example 1 and A film sample was prepared in the same manner. The results are shown in FIG. The particulate composition of the present invention enhanced the UV protection of titanium oxide.
[評価例4:平均摩擦係数と平均摩擦係数の変動の評価]
 超微粒子酸化チタン(ST-455WS、チタン工業(株)製)0.05g、評価粒子0.2gを10mLバイアルへ秤量し、VORTEX3(IKA社製)にて1分間攪拌混合した。評価粒子として、実施例1乃至3で得られた粒子状組成物を用いた。また、比較例1として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)、比較例2として合成マイカ(NK-8G、日本光研工業(株)製)、比較例3としてマイカ(セリサイトFSE、三信鉱工(株)製)、比較例4として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)と合成マイカ(NK-8G、日本光研工業(株)製)を質量比1:4で混合したサンプル、比較例5として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)とタルク(MMR、浅田製粉(株)製)を質量比1:4で混合したサンプル、比較例6として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)とマイカ(セリサイトFSE、三信鉱工(株)製)を質量比1:4で混合したサンプルを用いた。調製した各サンプル15mgを秤量し、人工皮革サプラーレ(登録商標)(出光テクノファイン(株)製)上にサンプル粉末を均一に塗布後、摩擦感テスターKES-SE(カトーテック(株)製)にて平均摩擦係数(MIU)と平均摩擦係数の変動(MMD)を評価した。なお、センサーは10mm角シリコンワイヤーを用い、測定距離を20mm、静荷重を25gf、測定速度を1.0mm/sec、接触面幅を10mmに設定した。各サンプルの結果を表1に示した。MIUは、人の指で物体の表面を触るときに感じる滑りやすさを表す指標であり、値が小さいほど滑りやすい。MMDは、人の指で物体の表面を触るときに感じるざらつき感を表す指標である。MMDの数値が大きいほど、ざらつきを感じる。
[Evaluation example 4: Evaluation of average friction coefficient and fluctuation of average friction coefficient]
0.05 g of ultrafine titanium oxide (ST-455WS, manufactured by Titan Kogyo Co., Ltd.) and 0.2 g of evaluation particles were weighed into a 10 mL vial, and the mixture was stirred and mixed with VORTEX3 (manufactured by IKA) for 1 minute. As the evaluation particles, the particulate compositions obtained in Examples 1 to 3 were used. In addition, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) as Comparative Example 1, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) as Comparative Example 2, and mica (Mica (manufactured by Nippon Koken Kogyo Co., Ltd.)) as Comparative Example 3. Serisite FSE, manufactured by Sanshin Mining Ind. Co., Ltd., as Comparative Example 4, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) Was mixed at a mass ratio of 1: 4, and as Comparative Example 5, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and talc (MMR, manufactured by Asada Flour Milling Co., Ltd.) were mixed at a mass ratio of 1: 4. A mixed sample, as Comparative Example 6, a sample in which microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and mica (Serisite FSE, manufactured by Sanshin Mining Co., Ltd.) were mixed at a mass ratio of 1: 4. Using. Weigh 15 mg of each prepared sample, apply the sample powder evenly on the artificial leather supplement (registered trademark) (manufactured by Idemitsu Technofine Co., Ltd.), and then use the friction tester KES-SE (manufactured by Katou Tech Co., Ltd.). The average friction coefficient (MIU) and the fluctuation of the average friction coefficient (MMD) were evaluated. A 10 mm square silicon wire was used as the sensor, the measurement distance was set to 20 mm, the static load was set to 25 gf, the measurement speed was set to 1.0 mm / sec, and the contact surface width was set to 10 mm. The results of each sample are shown in Table 1. MIU is an index showing the slipperiness felt when touching the surface of an object with a human finger, and the smaller the value, the slippery. MMD is an index expressing the feeling of roughness felt when the surface of an object is touched by a human finger. The larger the MMD value, the more grainy it feels.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価例5:紫外線防御能の評価]
 評価に用いたO/Wファンデーションサンプル処方組成は下記表2の通りである。A、B欄の原料をそれぞれ約80℃に加熱し、ホモミキサーで7000rpm、3分間攪拌した。その後、プロペラ撹拌機にて300rpmで室温になるまで攪拌冷却した。室温に戻ったところでC欄の原料を添加し、さらに10分間攪拌を継続した。この処方9.5gに対し、評価粒子0.5gを添加し、自転・公転ミキサー泡とり練太郎ARE-310型((株)シンキー製)により、2000rpmで2分間攪拌混合し、2200rpmで2分間脱泡することで、O/Wファンデーションサンプルを得た。調製したサンプルを、アプリケーターを用いて100μm厚でポリエステルフィルム ルミラー(登録商標)T-60(厚み100μm)(東レ(株)製)上に製膜し、室温乾燥させることでフィルムサンプルを作製した。作製したフィルムサンプルに対し、紫外可視近赤外分光光度計UV-3600((株)島津製作所製)を用いて透過光評価を行った(ブランク:ポリエステルフィルム ルミラー(登録商標)T-60)。結果を図5a乃至図5cに示した。また得られたスペクトルデータの305~400nmのグラフから透過率の積分値を算出することで、紫外光透過率の定量比較も行った。各サンプルの結果を表3に示した。
 評価粒子として、実施例1乃至3で得られた粒子状組成物を用いた。また比較例1として合成マイカ(NK-8G、日本光研工業(株)製)、比較例2としてタルク(MMR、浅田製粉(株))、比較例3としてマイカ(セリサイトFSE、三信鉱工(株)製)を用いた。
[Evaluation example 5: Evaluation of UV protection ability]
The O / W foundation sample formulation composition used for the evaluation is shown in Table 2 below. The raw materials in columns A and B were heated to about 80 ° C., respectively, and stirred with a homomixer at 7000 rpm for 3 minutes. Then, it was stirred and cooled with a propeller stirrer at 300 rpm until it reached room temperature. When the temperature returned to room temperature, the raw material in column C was added, and stirring was continued for another 10 minutes. To 9.5 g of this formulation, 0.5 g of evaluation particles are added, and the mixture is stirred and mixed at 2000 rpm for 2 minutes with a rotation / revolution mixer Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) for 2 minutes at 2200 rpm. By defoaming, an O / W foundation sample was obtained. The prepared sample was formed into a film on a polyester film mirror (registered trademark) T-60 (thickness 100 μm) (manufactured by Toray Industries, Inc.) with a thickness of 100 μm using an applicator, and dried at room temperature to prepare a film sample. The produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 5a-5c. In addition, a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm. The results of each sample are shown in Table 3.
As the evaluation particles, the particulate compositions obtained in Examples 1 to 3 were used. In addition, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) as Comparative Example 1, talc (MMR, Asada Flour Milling Co., Ltd.) as Comparative Example 2, and mica (Serisite FSE, Sanshin Mining Co., Ltd.) as Comparative Example 3. (Manufactured by Co., Ltd.) was used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価例6:紫外線防御能増強効果の評価]
 評価に用いたO/Wファンデーションサンプル処方組成は前記表2の通りである。A、B欄の原料をそれぞれ約80℃に加熱し、ホモミキサーで7000rpm、3分間攪拌した。その後、プロペラ撹拌機にて300rpmで室温になるまで攪拌冷却した。室温に戻ったところでC欄の原料を添加し、さらに10分間攪拌を継続した。この処方9.45gに対し、評価粒子0.5g、超微粒子酸化チタンMT-500SA(テイカ(株)製)0.05gを添加し、自転・公転ミキサー泡とり練太郎ARE-310型((株)シンキー製)により、2000rpmで2分間攪拌混合し、2200rpmで2分間脱泡することで、O/Wファンデーションサンプルを得た。調製したサンプルを、アプリケーターを用いて100μm厚でポリエステルフィルム ルミラー(登録商標)T-60(厚み100μm)(東レ(株)製)上に製膜し、室温乾燥させることでフィルムサンプルを作製した。作製したフィルムサンプルに対し、紫外可視近赤外分光光度計UV-3600((株)島津製作所製)を用いて透過光評価を行った(ブランク:ポリエステルフィルム ルミラー(登録商標)T-60)。結果を図6a乃至図6cに示した。また、得られたスペクトルデータの305~400nmのグラフから透過率の積分値を算出することで、紫外光透過率の定量比較も行った。各サンプルの結果を表4に示した。本発明の粒子状組成物は、無機系の紫外線散乱剤である、酸化チタンの紫外線防御能を増強していた。
 評価粒子として、実施例1乃至3で得られた粒子状組成物を用いた。また比較例1として合成マイカ(NK-8G、日本光研工業(株)製)、比較例2として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)、比較例3として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)と合成マイカ(NK-8G、日本光研工業(株)製)を質量比1:4で混合したサンプル、比較例4としてタルク(MMR、浅田製粉(株)製)、比較例5としてマイカ(セリサイトFSE、三信鉱工(株))を用いた。
[Evaluation example 6: Evaluation of UV protection ability enhancing effect]
The O / W foundation sample formulation composition used for the evaluation is as shown in Table 2 above. The raw materials in columns A and B were heated to about 80 ° C., respectively, and stirred with a homomixer at 7000 rpm for 3 minutes. Then, it was stirred and cooled with a propeller stirrer at 300 rpm until it reached room temperature. When the temperature returned to room temperature, the raw material in column C was added, and stirring was continued for another 10 minutes. To 9.45 g of this formulation, 0.5 g of evaluation particles and 0.05 g of ultrafine titanium oxide MT-500SA (manufactured by TAYCA CORPORATION) were added, and a rotation / revolution mixer Awatori Rentaro ARE-310 type (Co., Ltd.) An O / W foundation sample was obtained by stirring and mixing at 2000 rpm for 2 minutes and defoaming at 2200 rpm for 2 minutes. The prepared sample was formed into a film on a polyester film mirror (registered trademark) T-60 (thickness 100 μm) (manufactured by Toray Industries, Inc.) with a thickness of 100 μm using an applicator, and dried at room temperature to prepare a film sample. The produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 6a to 6c. In addition, a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm. The results of each sample are shown in Table 4. The particulate composition of the present invention enhances the ultraviolet protection ability of titanium oxide, which is an inorganic ultraviolet scattering agent.
As the evaluation particles, the particulate compositions obtained in Examples 1 to 3 were used. In addition, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) as Comparative Example 1, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) as Comparative Example 2, and microcrystalline cellulose as Comparative Example 3. A sample in which (compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) are mixed at a mass ratio of 1: 4, and talc (MMR, Asada) as Comparative Example 4 Mica (Serisite FSE, Sanshin Mining Co., Ltd.) was used as Comparative Example 5 (manufactured by Flour Milling Co., Ltd.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価例7:紫外線防御能増強効果の評価]
 評価に用いたO/Wファンデーションサンプル処方組成は前記表2の通りである。A、B欄の原料をそれぞれ約80℃に加熱し、ホモミキサーで7000rpm、3分間攪拌した。その後、プロペラ撹拌機にて300rpmで室温になるまで攪拌冷却した。室温に戻ったところでC欄の原料を添加し、さらに10分間攪拌を継続した。この処方9.45gに対し、評価粒子0.5g、メトキシケイ皮酸エチルヘキシル(東京化成工業(株)製)0.05gを添加し、自転・公転ミキサー泡とり練太郎ARE-310型((株)シンキー製)により、2000rpmで2分間攪拌混合し、2200rpmで2分間脱泡することで、O/Wファンデーションサンプルを得た。調製したサンプルを、アプリケーターを用いて100μm厚でポリエステルフィルム ルミラー(登録商標)T-60(厚み100μm)(東レ(株)製)上に製膜し、室温乾燥させることでフィルムサンプルを作製した。作製したフィルムサンプルに対し、紫外可視近赤外分光光度計UV-3600((株)島津製作所製)を用いて透過光評価を行った(ブランク:ポリエステルフィルム ルミラー(登録商標)T-60)。結果を図7a乃至図7cに示した。また、得られたスペクトルデータの305~400nmのグラフから透過率の積分値を算出することで、紫外光透過率の定量比較も行った。各サンプルの結果を表5に示した。本発明の粒子状組成物は、有機系の紫外線吸収剤であるメトキシケイ皮酸エチルヘキシルの紫外線防御能を増強していた。
 評価粒子として、実施例1乃至3で得られた粒子状組成物を用いた。また比較例として1として合成マイカ(NK-8G、日本光研工業(株)製)、比較例2として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)、比較例3として微結晶セルロース(コンプレッセルM101、(株)伏見製薬所製)と合成マイカ(NK-8G、日本光研工業(株)製)を質量比1:4で混合したサンプル、比較例4としてタルク(MMR、浅田製粉(株)製)、比較例5としてマイカ(セリサイトFSE、三信鉱工(株)製)を用いた。
[Evaluation example 7: Evaluation of UV protection ability enhancing effect]
The O / W foundation sample formulation composition used for the evaluation is as shown in Table 2 above. The raw materials in columns A and B were heated to about 80 ° C., respectively, and stirred with a homomixer at 7000 rpm for 3 minutes. Then, it was stirred and cooled with a propeller stirrer at 300 rpm until it reached room temperature. When the temperature returned to room temperature, the raw material in column C was added, and stirring was continued for another 10 minutes. To 9.45 g of this formulation, 0.5 g of evaluation particles and 0.05 g of ethylhexyl methoxycinnamate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the rotation / revolution mixer Awatori Rentaro ARE-310 type (Co., Ltd.) An O / W foundation sample was obtained by stirring and mixing at 2000 rpm for 2 minutes and defoaming at 2200 rpm for 2 minutes. The prepared sample was formed into a film on a polyester film mirror (registered trademark) T-60 (thickness 100 μm) (manufactured by Toray Industries, Inc.) with a thickness of 100 μm using an applicator, and dried at room temperature to prepare a film sample. The produced film sample was evaluated for transmitted light using an ultraviolet-visible near-infrared spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) (blank: polyester film mirror (registered trademark) T-60). The results are shown in FIGS. 7a-7c. In addition, a quantitative comparison of the ultraviolet light transmittance was also performed by calculating the integrated value of the transmittance from the graph of the obtained spectrum data at 305 to 400 nm. The results of each sample are shown in Table 5. The particulate composition of the present invention enhanced the UV protection ability of ethylhexyl methoxycinnamate, which is an organic UV absorber.
As the evaluation particles, the particulate compositions obtained in Examples 1 to 3 were used. In addition, synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) as Comparative Example 1, microcrystalline cellulose (Compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) as Comparative Example 2, and microcrystals as Comparative Example 3. A sample in which cellulose (compressel M101, manufactured by Fushimi Pharmaceutical Co., Ltd.) and synthetic mica (NK-8G, manufactured by Nippon Koken Kogyo Co., Ltd.) are mixed at a mass ratio of 1: 4, and talc (MMR, MMR, manufactured as Comparative Example 4) Mica (Serisite FSE, manufactured by Sanshin Mining Co., Ltd.) was used as Comparative Example 5 (manufactured by Asada Flour Milling Co., Ltd.).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の粒子状組成物は、天然素材を主成分とし、かつその表面に凹凸構造を有することから(すなわち、孔又は空隙が適度に存在することから)柔らかく、肌に直接触れる化粧品への添加に適している。本発明の粒子状組成物はまた、効果的な紫外線防御能を示すことに加え、既存の紫外線防御剤と併用することでその防御効果を増強することができるため、既存の紫外線防御剤の使用量の低減も期待できる。 The particulate composition of the present invention is mainly composed of a natural material and has an uneven structure on its surface (that is, because pores or voids are appropriately present), so that it is soft and can be added to cosmetics that come into direct contact with the skin. Suitable for. In addition to exhibiting an effective UV protection ability, the particulate composition of the present invention can enhance the protection effect when used in combination with an existing UV protection agent, so that the existing UV protection agent can be used. A reduction in quantity can also be expected.

Claims (14)

  1.  表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物とを主成分として含む、紫外線防御用粒子状組成物。 A particulate composition for UV protection that has an uneven structure on the surface and contains cellulose or a cellulose derivative and clay minerals as main components.
  2.  表面に皺状又は襞状の凹凸構造を有する、請求項1に記載の組成物。 The composition according to claim 1, which has a wrinkle-like or fold-like uneven structure on the surface.
  3.  空隙率が5~60%の範囲にある、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the porosity is in the range of 5 to 60%.
  4.  粒径が0.5~500μmの範囲にある、請求項1~3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, wherein the particle size is in the range of 0.5 to 500 μm.
  5.  硬度が0.1~50MPaの範囲にある、請求項1~4のいずれかに記載の組成物。 The composition according to any one of claims 1 to 4, which has a hardness in the range of 0.1 to 50 MPa.
  6.  紫外線透過率が50%以下の範囲にある、請求項1~5のいずれかに記載の組成物。 The composition according to any one of claims 1 to 5, which has an ultraviolet transmittance in the range of 50% or less.
  7.  セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部の粘土鉱物を含む、請求項1~6のいずれかに記載の組成物。 The composition according to any one of claims 1 to 6, which contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative.
  8.  セルロースが、結晶セルロースである、請求項1~7のいずれかに記載の組成物。 The composition according to any one of claims 1 to 7, wherein the cellulose is crystalline cellulose.
  9.  粘土鉱物が、タルク、カオリン、及びマイカからなる群より選択される少なくとも1種である、請求項1~8のいずれかに記載の組成物。 The composition according to any one of claims 1 to 8, wherein the clay mineral is at least one selected from the group consisting of talc, kaolin, and mica.
  10.  セルロース又はセルロース誘導体と粘土鉱物との分散液を得る工程と、得られた分散液を噴霧乾燥する工程を含む、表面に凹凸構造を有し、セルロース又はセルロース誘導体と粘土鉱物とを主成分とする紫外線防御用粒子状組成物の製造方法。 It has an uneven structure on the surface and contains cellulose or a cellulose derivative and a clay mineral as main components, including a step of obtaining a dispersion liquid of cellulose or a cellulose derivative and a clay mineral, and a step of spray-drying the obtained dispersion liquid. A method for producing a particulate composition for UV protection.
  11.  分散液が、セルロース又はセルロース誘導体と粘土鉱物との物理的な粉砕により得られる、請求項10に記載の製造方法。 The production method according to claim 10, wherein the dispersion is obtained by physically pulverizing cellulose or a cellulose derivative and a clay mineral.
  12.  分散液におけるセルロース又はセルロース誘導体と粘土鉱物を含む固形分の濃度が、0.5~40質量%である、請求項10又は11に記載の製造方法。 The production method according to claim 10 or 11, wherein the concentration of the solid content containing cellulose or a cellulose derivative and a clay mineral in the dispersion is 0.5 to 40% by mass.
  13.  分散液が、セルロース又はセルロース誘導体1質量部に対し、0.1~20質量部の粘土鉱物を含む、請求項10~12のいずれかに記載の製造方法。 The production method according to any one of claims 10 to 12, wherein the dispersion liquid contains 0.1 to 20 parts by mass of clay mineral with respect to 1 part by mass of cellulose or a cellulose derivative.
  14.  請求項1~9のいずれかに記載の組成物、あるいは請求項10~13のいずれかに記載の製造方法により得られる組成物を含む、化粧品。 A cosmetic product containing the composition according to any one of claims 1 to 9 or the composition obtained by the production method according to any one of claims 10 to 13.
PCT/JP2021/001363 2020-01-17 2021-01-15 Uv ray-blocking particulate composition WO2021145450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-006019 2020-01-17
JP2020006019 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021145450A1 true WO2021145450A1 (en) 2021-07-22

Family

ID=76864661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001363 WO2021145450A1 (en) 2020-01-17 2021-01-15 Uv ray-blocking particulate composition

Country Status (2)

Country Link
TW (1) TW202139964A (en)
WO (1) WO2021145450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085087A1 (en) * 2022-10-18 2024-04-25 旭化成株式会社 Cellulose particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (en) * 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd Cellulose derivatives and production of the same
JP2005053807A (en) * 2003-08-01 2005-03-03 Daito Kasei Kogyo Kk Cosmetic pigment powder and method for producing the same, and cosmetic containing the cosmetic pigment powder
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
WO2014088072A1 (en) * 2012-12-07 2014-06-12 日本製紙株式会社 Carboxymethylated cellulose fiber
JP2014118521A (en) * 2012-12-18 2014-06-30 Kao Corp Method for producing cellulose nanofiber dispersion liquid
JP2017178888A (en) * 2016-03-31 2017-10-05 株式会社コーセー Easily-disintegratable granulated composition, method for producing the same and cosmetics containing the same
WO2019151486A1 (en) * 2018-02-01 2019-08-08 日産化学株式会社 Functional polysaccharide particle
WO2020054810A1 (en) * 2018-09-12 2020-03-19 日産化学株式会社 Functional complex polysaccharide particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (en) * 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd Cellulose derivatives and production of the same
JP2005053807A (en) * 2003-08-01 2005-03-03 Daito Kasei Kogyo Kk Cosmetic pigment powder and method for producing the same, and cosmetic containing the cosmetic pigment powder
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
WO2014088072A1 (en) * 2012-12-07 2014-06-12 日本製紙株式会社 Carboxymethylated cellulose fiber
JP2014118521A (en) * 2012-12-18 2014-06-30 Kao Corp Method for producing cellulose nanofiber dispersion liquid
JP2017178888A (en) * 2016-03-31 2017-10-05 株式会社コーセー Easily-disintegratable granulated composition, method for producing the same and cosmetics containing the same
WO2019151486A1 (en) * 2018-02-01 2019-08-08 日産化学株式会社 Functional polysaccharide particle
WO2020054810A1 (en) * 2018-09-12 2020-03-19 日産化学株式会社 Functional complex polysaccharide particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UETANI, KOJIRO ET AL.: "Structural control of nanocellulose by drop drying method", LECTURE ABSTRACTS OF THE 19TH ANNUAL MEETING OF THE CELLULOSE SOCIETY OF JAPAN, vol. 19, 1 July 2012 (2012-07-01), pages 108 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085087A1 (en) * 2022-10-18 2024-04-25 旭化成株式会社 Cellulose particles

Also Published As

Publication number Publication date
TW202139964A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR101148427B1 (en) Pulverulent composite for protecting UV and IR ray and cosmetic composition using the same
JP4105971B2 (en) Porous titanium oxide powder and method for producing the same
DE69733811T2 (en) PARTICULAR COMPOSITE MATERIAL FOR PROTECTION AGAINST UV RADIATION AND METHOD FOR THE PRODUCTION THEREOF
JP4994640B2 (en) UV-absorbing composite powder
US20090258072A1 (en) Large ultraviolet attenuating pigments
WO2021145450A1 (en) Uv ray-blocking particulate composition
KR20110062501A (en) Organic-inorganic composite powder, a preparation method thereof, and a use of the same
EP0782881A1 (en) Process for dispersing through high pressure homogenisation of pulverulent charges in a medium consisting of at least a fatty phase, compositions obtained and their utilisation
JP3848697B2 (en) Ultraviolet shielding composite fine particles, production method thereof and cosmetics
JP5955137B2 (en) Method for producing spherical titanium dioxide
JPH11158036A (en) Cosmetic and makeup
JP4178013B2 (en) Chestnut-shaped titanium oxide powder and method for producing the same
JP2006199645A (en) Powder cosmetic
KR20180067524A (en) A skin care composition comprising laitance boron nitride
WO2020054810A1 (en) Functional complex polysaccharide particle
JP5727783B2 (en) Powder cosmetics
JPH09249542A (en) Ultraviolet light screening agent and preparation for external use for skin having ultraviolet light screening effect
JP2004168913A (en) Ultraviolet absorbing composite powder
JPH1072318A (en) Humectant dispersion having ultraviolet-shielding function and cosmetic compounded with the dispersion
KR20120050951A (en) Pulverulent composite for protecting uv and ir ray and cosmetic composition using the same
JP3594721B2 (en) Surface-coated flaky powder, method for producing the same, and cosmetics incorporating the same
JP3492937B2 (en) Cosmetics
KR20120062150A (en) Surface modificaion of sericite and titanium dioxide
JP5446470B2 (en) Zinc oxide fine particle powder, sunscreen cosmetics
BR112021003598A2 (en) titanium dioxide dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP