WO2021145232A1 - 磁気ギヤード回転電機および製造方法 - Google Patents

磁気ギヤード回転電機および製造方法 Download PDF

Info

Publication number
WO2021145232A1
WO2021145232A1 PCT/JP2021/000070 JP2021000070W WO2021145232A1 WO 2021145232 A1 WO2021145232 A1 WO 2021145232A1 JP 2021000070 W JP2021000070 W JP 2021000070W WO 2021145232 A1 WO2021145232 A1 WO 2021145232A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
electric machine
rotary electric
pole piece
magnetic geared
Prior art date
Application number
PCT/JP2021/000070
Other languages
English (en)
French (fr)
Inventor
林 健太郎
丈夫 大平
湯下 篤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP21740742.8A priority Critical patent/EP4075646A4/en
Priority to CN202180009183.1A priority patent/CN114946110A/zh
Priority to US17/792,328 priority patent/US20230208271A1/en
Publication of WO2021145232A1 publication Critical patent/WO2021145232A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • H02K16/025Machines with one stator and two or more rotors with rotors and moving stators connected in a cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/005Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion using electro- or magnetostrictive actuation means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0283Materials; Material properties solids piezoelectric; electro- or magnetostrictive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/08Sensor arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to a magnetic geared rotary electric machine and a manufacturing method.
  • the present application claims priority over Japanese Patent Application No. 2020-005442 filed on January 16, 2020, the contents of which are incorporated herein by reference.
  • the magnetic geared rotary electric machine is provided with a plurality of pole pieces (magnet pieces) on a rotating low-speed rotor.
  • the pole piece is a beam-like structure in which both ends are pin-joined or rigidly joined to the support rings forming both ends of the low-speed rotor. Therefore, as the low-speed rotor rotates, the pole piece vibrates under the influence of the magnetic fields of the stator and the low-speed rotor. This vibration can cause damage to the pole piece and is a bottleneck in the durability of magnetic geared rotary machines.
  • An object of the present disclosure is to provide a magnetic geared rotary electric machine and a manufacturing method that solve the above-mentioned problems.
  • the magnetic geared rotary electric machine has a stator and a plurality of pole pieces arranged side by side in the circumferential direction, a low-speed rotor provided inside the stator, and a second magnet which is a magnet facing the pole piece.
  • a magnetic geared rotary electric machine including a high-speed rotor provided inside a low-speed rotor, which is provided on a pole piece and has a first piezoelectric element for converting vibration and an electric signal, and a first piezoelectric element. It is provided with a control unit which is connected to and suppresses the vibration of the pole piece based on the output voltage of the first piezoelectric element.
  • the method for manufacturing a magnetic geared rotary electric machine is a low-speed rotor having a stator and a plurality of pole pieces arranged side by side in the circumferential direction, provided inside the stator, and a magnet facing the pole piece.
  • a step of providing a piezoelectric element for converting vibration and an electric signal on a pole piece and a connection with the piezoelectric element It has a step of providing a control unit that suppresses vibration of the pole piece based on the output voltage of the piezoelectric element.
  • the durability of the magnetic geared rotary electric machine can be improved by attenuating the vibration of the low-speed rotor in the magnetic geared rotary electric machine.
  • FIG. 1 is a diagram showing a configuration of a magnetic geared rotary electric machine 10 according to the first embodiment.
  • the magnetic geared rotary electric machine 10 includes a stator 100, a low-speed rotor 200, a high-speed rotor 300, and a rotary shaft 400.
  • the stator 100, the low-speed rotor 200, and the high-speed rotor 300 are provided concentrically with respect to the rotating shaft 400.
  • Examples of the magnetic geared rotary electric machine 10 include a magnetic geared motor and a magnetic geared generator.
  • the stator 100 is arranged outside the low speed rotor 200 and the high speed rotor 300.
  • the stator 100 has a plurality of first magnets 101, which are magnets arranged side by side in the circumferential direction. Examples of the magnet include a permanent magnet and an electromagnet.
  • the stator 100 shown in FIG. 1 includes twelve first magnets 101, which are electromagnets. Although the number of parts may be described below with reference to FIG. 1, this is just an example, and the number of each part may be different in other embodiments.
  • the first magnet 101 is composed of an iron core (not shown) and a coil (not shown). A three-phase alternating current is supplied to the coil of the first magnet 101 from an external drive device (for example, an inverter) as a drive current.
  • the first magnet 101 is provided so that the polarities on the side facing the low speed rotor 200 are the same pole, for example, the S pole.
  • the low speed rotor 200 is arranged between the stator 100 and the high speed rotor 300.
  • FIG. 2 is a cross-sectional view of the magnetic geared rotary electric machine 10.
  • the low speed rotor 200 has a first support wheel 206A, a second support wheel 206B, and a plurality of pole pieces 201.
  • the low speed rotor 200 has 32 pole pieces 201.
  • the first support wheel 206A and the second support wheel 206B are disk-shaped members that support both ends of the low-speed rotor 200.
  • the first support wheel 206A and the second support wheel 206B are fixed to the rotation shaft 400 and rotate together with the rotation shaft 400.
  • the plurality of pole pieces 201 are arranged at equal intervals around the axis.
  • a magnet is provided on each pole piece 201.
  • the magnet provided on the pole piece 201 is provided so that the polarity on the side facing the stator 100 is the same pole as that of the first magnet 101, for example, the S pole.
  • Both ends of the plurality of pole pieces 201 are fixed to the first support wheel 206A and the second support wheel 206B by the fixture 202, respectively. If the fixture 202 is a pin, the pin is attached to the four corners of the pole piece 201.
  • the low speed rotor 200 includes a fixture 202A and a fixture 202B, which are two fixtures 202 for each pole piece 201. That is, the low speed rotor 200 includes 64 fixtures 202.
  • the pole piece 201 includes a first piezoelectric element 203 and a control unit 204.
  • the first piezoelectric element 203 is provided in the vicinity of the fixture 202 in the pole piece 201. More specifically, the first piezoelectric element 203 straddles a line segment connecting the two pins of the fixture 202A (or fixture 202B), and its center is located closer to the center of the pole piece 201 than the line segment. It is provided as follows. This position is the part of the pole piece 201 where the strain is most generated by the rotation of the low speed rotor 200.
  • the first piezoelectric element 203 is provided with two first piezoelectric elements 203, the first piezoelectric element 203A and the first piezoelectric element 203B, for each pole piece 201. That is, the low speed rotor 200 is provided with 64 first piezoelectric elements 203. The first piezoelectric element 203 converts the vibration of the pole piece 201 into an electric signal.
  • FIG. 3 is an example of a cross-sectional view of the magnetic geared rotary electric machine 10 when the magnetic geared rotary electric machine 10 operates. That is, FIG. 3 is an example of a cross-sectional view of the magnetic geared rotary electric machine 10 when the stator 100, the low-speed rotor 200, and the high-speed rotor 300 constituting the magnetic geared rotary electric machine 10 rotate.
  • FIG. 3 when the magnetic geared rotary electric machine 10 operates, in the pole piece 201, the central portion of the pole piece 201 separated from the fixture 202 by the magnetic force and the centrifugal force of the stator 100 and the high-speed rotor 300 is in the Z direction. Will be distorted. In this way, when the magnetic geared rotary electric machine 10 rotates, a force in the Z direction acts on the pole piece 201, so that the pole piece 201 vibrates in the + Z direction and the ⁇ Z direction.
  • the first piezoelectric element 203 is provided in the vicinity of the fixture 202 where the distortion is maximized, so that the first piezoelectric element 203 is vibrated due to the distortion.
  • the electrical signal to be converted can be maximized.
  • the first piezoelectric element 203 is provided in the vicinity of the fixture 202 as shown in FIG. 2, it can also be installed at another position where distortion of a predetermined value or more is estimated to occur.
  • the predetermined value is set to, for example, a value obtained by subtracting a predetermined margin from the maximum value in the magnitude of distortion estimated to occur in the pole piece 201.
  • the high speed rotor 300 is arranged inside the stator 100 and the low speed rotor 200.
  • the high-speed rotor 300 has a plurality of second magnets 301, which are magnets facing the first magnet 101.
  • Examples of the second magnet 301 include a second magnet 301S, which is a permanent magnet and has an S pole, and a second magnet 301N, which has an N pole.
  • the same number of second magnets 301S and second magnets 301N are provided.
  • the high-speed rotor 300 as shown in FIG. 1 includes four second magnets 301S and four second magnets 301N. Further, the second magnet 301N and the second magnet 301S are arranged so as to be arranged alternately.
  • the rotary shaft 400 is arranged inside the stator 100, the low speed rotor 200, and the high speed rotor 300.
  • the first piezoelectric element 203 is connected to the control unit 204 by the wiring 7.
  • the control unit 204 is connected to the first piezoelectric element 203 to form a closed circuit, and outputs a current so as to simulate a virtual impedance based on the output voltage which is an electric signal of the first piezoelectric element 203. do.
  • the closed circuit has the configuration as shown in FIG. Note that FIG. 4 shows an example in which the first piezoelectric element 203 is equivalently expressed using the equivalent resistance component Rp, the equivalent capacitance component Cp, and the equivalent AC voltage source Vp.
  • the equivalent circuit includes the equivalent capacitance component Cp.
  • the first piezoelectric element 203 can be expressed as an equivalent circuit in which the equivalent resistance component Rp, the equivalent capacitance component Cp, and the equivalent AC voltage source Vp are connected in series.
  • the control unit 204 operates so that the closed circuit composed of the first piezoelectric element 203 and the control unit 204 behaves as a resonance circuit that resonates at the natural frequency of the pole piece 201. Specifically, in a closed circuit as shown in FIG. 4, vibration damping is possible by setting the inside of the control unit 204 to an appropriate impedance state with respect to the impedance (particularly the equivalent capacitance component Cp) of the first piezoelectric element 203. It becomes.
  • the impedance virtually simulated inside the control unit 204 is referred to as a virtual impedance.
  • the control unit 204 adjusts the output current so as to simulate the desired impedance as a virtual impedance. That is, by adjusting the output current, the internal impedance of the control unit 204 when viewed from the outside is adjusted.
  • the output of the current is realized by, for example, a current source (for example, a voltage controlled current source).
  • the control unit 204 includes a controller 211 and a pseudo-inductance circuit 212.
  • the controller 211 estimates the equivalent capacitance component Cp of the first piezoelectric element 203 based on the output voltage of the first piezoelectric element 203.
  • the controller 211 outputs a current to the pseudo-inductance circuit 212 so that the equivalent capacitance component Cp in the estimated first piezoelectric element 203 and the virtual impedance form a resonance circuit having a resonance frequency equal to the natural frequency of the pole piece 201.
  • the controller 211 causes the pseudo-inductance circuit 212 to output a current so as to realize a virtual impedance including an appropriate inductance component Lv.
  • an LC series resonant circuit is constructed by adjusting the virtual impedance.
  • the pseudo-inductance circuit 212 outputs a current so that the virtual impedance constitutes the LR shunt circuit as shown in FIG.
  • the RLC parallel circuit is constructed. In this way, by forming the parallel circuit of the two first piezoelectric elements 203A and the first piezoelectric element 203B, the inductance value required for the circuit can be reduced, and the inductance component Lv can be miniaturized.
  • the inductance component Lv of the virtual impedance is adjusted so that the resonance frequency fr in the RLC parallel circuit and the natural frequency fn of the pole piece 201 become equal. That is, the inductance component Lv of the virtual impedance is set so that the following relational expression holds.
  • fn is a natural frequency (natural frequency) and is preset according to the member (pole piece 201) to be vibration-damped.
  • 2Cp is 2Cp which is the sum of the equivalent capacitance component Cp of the first piezoelectric element 203A and the equivalent capacitance component Cp of the first piezoelectric element 203B.
  • the equivalent capacitance component Cp of the first piezoelectric element 203A and the first piezoelectric element 203B is estimated by the method described later.
  • the inductance component Lv is specified using the equation (1).
  • the reactance component of the closed circuit can be set to 0 (or reduced) at the resonance frequency (and around the resonance frequency), and the vibration energy is efficiently used as thermal energy in the resistance component (Rp or Rv). Can be consumed in. Therefore, vibration control can be performed.
  • the vibration damping method using the resonance circuit it is possible to effectively suppress the vibration around the resonance frequency and the resonance frequency.
  • the passive element realizes the inductance value, the element may become large, but the inductance component Lp is realized as a virtual impedance. As a result, it is possible to suppress the increase in size. Further, although the accuracy of the passive element varies, the accuracy can be expected to be improved because the inductance component Lp is virtually realized.
  • FIG. 6 is a diagram showing a configuration example of the pseudo-inductance circuit 212.
  • the pseudo-inductance circuit 212 includes a current source (voltage control current source) 23, a voltage follower (instrumentation amplifier) 24, and an LPF (low-pass filter) 25.
  • the pseudo-inductance circuit 212 constitutes a closed circuit with the first piezoelectric element 203.
  • the input terminal of the pseudo-inductance circuit 212 is connected to the input end of the current source 23 and the input end of the voltage follower 24.
  • the output end of the voltage follower 24 is connected to the input end of the LPF25.
  • the output end of the LPF 25 is connected to the controller 211. That is, the controller 211 acquires a signal of a low frequency component of the output voltage of the piezoelectric element.
  • the output end of the current source 23 is connected to the output terminal of the pseudo-inductance circuit 212.
  • the output current of the current source 23 is controlled by the controller 211.
  • FIG. 7 is a diagram showing an example of the relationship between the equivalent capacitance component Cp and the temperature in the first piezoelectric element 203. As shown in FIG. 7, the equivalent capacitance component Cp tends to increase as the temperature rises. In order to grasp an appropriate equivalent capacitance component Cp according to the usage environment, the control unit 204 estimates the equivalent capacitance component Cp.
  • the current output unit 9 is provided in parallel with the control unit 204.
  • the current output unit 9 outputs a predetermined additional current. That is, the current output unit 9 is a current source, and an additional current for estimating the equivalent capacitance component Cp is passed through the closed circuit.
  • the control unit 204 estimates the equivalent capacitance component Cp based on the current flowing through the first piezoelectric element 203A and the output voltage of the first piezoelectric element 203A when the additional current is supplied to the first piezoelectric element 203A. do.
  • the current output unit 9 is provided in the same manner as described above, and a predetermined load current is output.
  • the current output unit 9 outputs an additional current having a frequency different from the current (vibration damping current) output by the control unit 204.
  • the frequency of the additional current is set to a value lower than the frequency of the damping current.
  • the frequency of the damping current and the frequency of the additional current are provided with a difference so that the frequency component of the additional current can be separated by, for example, a low-pass filter or a bandpass filter.
  • the frequency of the additional current may be set to a value higher than the frequency of the damping current.
  • the control unit 204 can estimate the equivalent capacitance component Cp based on the additional current and the output voltage of the first piezoelectric element 203 corresponding to the additional current. For example, in the circuit of FIG. 8, if the additional current is is and the output voltage of the first piezoelectric element 203 corresponding to the additional current is is va, the following equation (2) holds. Therefore, the equivalent capacitance component Cp of the first piezoelectric element 203 can be estimated based on the relationship of the equation (2).
  • the vibration damping and the estimation of the equivalent capacitance component Cp can be performed in parallel, and the estimated equivalent capacitance component Cp can be reflected in the vibration damping (parallel processing). Further, the vibration damping and the estimation of the equivalent capacitance component Cp may be executed in a time-division manner (serial processing).
  • FIG. 9 is a flowchart showing an example of the procedure of the vibration damping process according to the present embodiment.
  • the flow shown in FIG. 9 is repeatedly executed at a predetermined control cycle, for example, when the vibration damping target is in operation. Even if the vibration damping target is not operating (for example, it is stopped), if the structure on which the vibration damping target is mounted (for example, the magnetic geared rotary electric machine 10) is operating, FIG. 9 shows.
  • the process may be repeatedly executed at a predetermined control cycle.
  • the output voltage of the first piezoelectric element 203 is acquired (S101).
  • the output voltage is the output voltage of the first piezoelectric element 203 corresponding to the additional current.
  • the equivalent capacitance component Cp is estimated based on the additional current and the output voltage of the first piezoelectric element 203 corresponding to the additional current (S102).
  • the equivalent capacitance component Cp is estimated using the equation (2).
  • the inductance component (L value) in the virtual impedance is calculated based on the estimated equivalent capacitance component Cp (S103).
  • the inductance component Lv is calculated using the equation (1).
  • the impedance (virtual impedance) of the RL shunt circuit is set so that the calculated inductance component Lv is used as the reactance component (S104).
  • the optimum value of the resistance (Rv) of the RL shunt circuit is calculated, for example, based on the same concept as the fixed point theory of a dynamic vibration absorber.
  • the magnetic geared rotary electric machine 10 When the magnetic geared rotary electric machine 10 is a magnetic geared motor, the high-speed rotor 300 rotates as the low-speed rotor 200 rotates. On the other hand, when the magnetic geared rotary electric machine 10 is a magnetic geared generator, the low-speed rotor 200 rotates as the high-speed rotor 300 rotates. As described above, the operation of the magnetic geared rotary electric machine 10 differs depending on whether the magnetic geared motor 10 is a magnetic geared motor or a magnetic geared generator, but vibration of the pole piece 201 due to rotation of the low-speed rotor 200 occurs in any case.
  • the vibration of the pole piece 201 can be dampened in both the case where the magnetic geared rotary electric machine 10 is a magnetic geared motor and the case where the magnetic geared rotary electric machine 10 is a magnetic geared generator.
  • the magnetic geared rotary electric machine 10 has a stator 100 and a plurality of pole pieces 201 arranged side by side in the circumferential direction, and faces the low-speed rotor 200 provided inside the stator 100 and the pole piece 201.
  • a magnetic geared rotary electric machine 10 having a plurality of second magnets 301, which are magnets, and a high-speed rotor 300 provided inside a low-speed rotor 200, which is provided on a pole piece 201 and converts vibration and an electric signal.
  • the first piezoelectric element 203 is connected to the first piezoelectric element 203, and a control unit 204 that suppresses the vibration of the pole piece 201 based on the output voltage of the first piezoelectric element 203 is provided.
  • the magnetic geared rotary electric machine 10 attenuates the vibration of the pole piece 201 of the low speed rotor 200 in the magnetic geared rotary electric machine 10. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • a plurality of first magnets 101 which are magnets arranged side by side in the circumferential direction, are arranged on the stator 100 or between the stator 100 and the low-speed rotor 200, and the first magnets The 101 and the second magnet 301 face each other.
  • the magnetic geared rotary electric machine 10 attenuates the vibration of the pole piece 201 of the low-speed rotor 200 of the magnetic geared rotary electric machine 10 having the first magnet 101 on the stator 100. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the first piezoelectric element 203 of the magnetic geared rotary electric machine 10 is provided in the vicinity of the fixture 202 for fixing the pole piece 201 and the low-speed rotor 200.
  • the first piezoelectric element 203 is provided in the vicinity of the fixture 202, which is a place where the distortion of the pole piece 201 becomes large.
  • the magnetic geared rotary electric machine 10 can improve the vibration damping effect of the first piezoelectric element 203.
  • the magnetic geared rotary electric machine 10 includes an electric circuit connected to the first piezoelectric element 203 to form a closed circuit, and the control unit 204 has an electric circuit based on an electric signal output from the first piezoelectric element 203. It is controlled to behave as a reactor that cancels the capacitance component of the first piezoelectric element 203 at the resonance frequency of the pole piece 201.
  • the magnetic geared rotary electric machine 10 controls vibration according to the resonance frequency of the pole piece 201, which affects the durability of the pole piece 201. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • a second piezoelectric element 205 is provided on the pole piece 201 of the magnetic geared rotary electric machine 10 according to the second embodiment, and the magnetic geared rotary electric machine 10 uses the second piezoelectric element 205 to suppress vibration of the pole piece 201. conduct.
  • FIG. 10 is a diagram showing a configuration of a magnetic geared rotary electric machine 10 according to a second embodiment.
  • a second piezoelectric element 205 is provided in addition to the first piezoelectric element 203.
  • the first piezoelectric element 203 sends an electric signal to the controller 211 of the control unit 204 based on the vibration of the pole piece 201.
  • the controller 211 receives an electric signal from the first piezoelectric element 203 and sends the electric signal to the second piezoelectric element 205 based on a preset value.
  • the second piezoelectric element 205 receives an electric signal from the controller 211 and converts it into vibration to suppress the vibration of the pole piece 201.
  • the magnetic geared rotary electric machine 10 is provided with a second piezoelectric element 205 provided on the pole piece 201 and converting the vibration of the pole piece with an electric signal, and the control unit 204 is provided with the first piezoelectric element 203. Outputs an electric signal to the second piezoelectric element 205 based on the electric signal output by.
  • the second piezoelectric element 205 controls the pole piece 201 based on the electric signal converted by the first piezoelectric element 203. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the magnetic geared rotary electric machine 10 is implemented in such a manner that the fixture 202 and the pole piece 201 are sandwiched instead of the first support ring 206A and the second support wheel 206B. be able to. As a result, the magnetic geared rotary electric machine 10 can be manufactured without providing the fixture 202 and the like.
  • first piezoelectric element 203 and the second piezoelectric element 205 may be provided inside the pole piece 201 instead of the surface of the pole piece 201. That is, the first piezoelectric element 203 and the second piezoelectric element 205 embedded in the pole piece 201 may be used.
  • FIG. 12 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
  • the controller 211 described above is mounted on the computer 1100.
  • the operation of each processing unit described above is stored in the storage 1130 in the form of a program.
  • the processor 1110 reads a program from the storage 1130, expands it into the main memory 1120, and executes the above processing according to the program. Further, the processor 1110 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 1120 according to the program.
  • the program may be for realizing a part of the functions exerted on the computer 1100.
  • the program may exert its function in combination with another program already stored in the storage 1130, or in combination with another program mounted on another device.
  • the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 1130 include magnetic disks, magneto-optical disks, semiconductor memories, and the like.
  • the storage 1130 may be internal media directly connected to the bus of computer 1100, or external media connected to the computer via interface 1140 or a communication line.
  • this program is distributed to the computer 1100 via a communication line, the distributed computer 1100 may expand the program in the main memory 1120 and execute the above processing.
  • storage 1130 is a non-temporary tangible storage medium.
  • the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the storage 1130.
  • difference file difference program
  • the magnetic geared rotary electric machine 10 has a stator 100, a plurality of pole pieces 201 arranged side by side in the circumferential direction, a low-speed rotor 200 provided inside the stator 100, and a pole piece 201.
  • a magnetic geared rotary electric machine 10 having a plurality of second magnets 301, which are magnets opposed to the two magnets, and a high-speed rotor 300 provided inside the low-speed rotor 200, which is provided on the pole piece 201 and has vibration and electric signals.
  • first piezoelectric element 203 that converts the above
  • control unit 204 that is connected to the first piezoelectric element 203 and suppresses vibration of the pole piece 201 based on the output voltage of the first piezoelectric element 203.
  • the magnetic geared rotary electric machine 10 attenuates the vibration of the pole piece 201 of the low speed rotor 200 in the magnetic geared rotary electric machine 10. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • a plurality of first magnets 101 which are magnets arranged side by side in the circumferential direction, are arranged on the stator 100 or between the stator 100 and the low-speed rotor 200.
  • the first magnet 101 and the second magnet 301 face each other.
  • the magnetic geared rotary electric machine 10 attenuates the vibration of the pole piece 201 of the low-speed rotor 200 of the magnetic geared rotary electric machine 10 having the first magnet 101 on the stator 100. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the first piezoelectric element 203 of the magnetic geared rotary electric machine 10 is provided in the vicinity of the fixture 202 for fixing the pole piece 201 and the low-speed rotor 200.
  • the first piezoelectric element 203 is provided in the vicinity of the fixture 202, which is a place where the distortion of the pole piece 201 becomes large.
  • the magnetic geared rotary electric machine 10 can improve the vibration damping effect of the first piezoelectric element 203.
  • the magnetic geared rotary electric machine 10 includes an electric circuit connected to the first piezoelectric element 203 to form a closed circuit, and the control unit 204 is based on an electric signal output by the first piezoelectric element 203.
  • the electric circuit is controlled to behave as a reactor that cancels the capacitance component of the first piezoelectric element 203 at the resonance frequency of the pole piece 201.
  • the magnetic geared rotary electric machine 10 controls vibration according to the resonance frequency of the pole piece 201, which affects the durability of the pole piece 201. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the magnetic geared rotary electric machine 10 is provided with a second piezoelectric element 205 provided on the pole piece 201 and converting the vibration of the pole piece with an electric signal, and the control unit 204 is provided with the first piezoelectric element. Based on the electric signal output by 203, the electric signal is output to the second piezoelectric element 205.
  • the second piezoelectric element 205 controls the pole piece 201 based on the electric signal converted by the first piezoelectric element 203. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the manufacturing method according to the present disclosure has a stator 100 and a plurality of pole pieces 201 arranged side by side in the circumferential direction, and faces the low-speed rotor 200 provided inside the stator 100 and the pole piece 201.
  • a magnetic geared rotary electric machine 10 having a plurality of second magnets 301 which are magnets and provided inside a low-speed rotor 200, a piezoelectric element 203 that converts vibration and an electric signal into a pole piece 201.
  • a step of providing a control unit 204 which is connected to the piezoelectric element 203 and suppresses vibration of the pole piece 201 based on the output voltage of the piezoelectric element.
  • the user of the manufacturing method can attenuate the vibration of the pole piece 201 of the low-speed rotor 200 in the magnetic geared rotary electric machine 10 by using the manufacturing method. Thereby, the durability of the magnetic geared rotary electric machine 10 can be improved.
  • the present disclosure relates to a magnetic geared rotary electric machine and a manufacturing method. According to the present disclosure, the durability of the magnetic geared rotary electric machine can be improved by attenuating the vibration of the low-speed rotor in the magnetic geared rotary electric machine.

Abstract

磁気ギヤード回転電機は、ステータと、円周方向に並んで配置されたポールピースを複数有し、ステータの内側に設けられる低速ロータと、ポールピースに対向する磁石である第2磁石を複数有し、低速ロータの内側に設けられる高速ロータと、を備える磁気ギヤード回転電機であって、ポールピースに設けられ、振動と電気信号とを変換する第1圧電素子と、第1圧電素子と接続され、第1圧電素子の出力電圧に基づいて、ポールピースの振動を抑制させる制御部と、を備える。

Description

磁気ギヤード回転電機および製造方法
 本開示は、磁気ギヤード回転電機および製造方法に関する。
 本願は、2020年1月16日に出願された特願2020-005442号に対して優先権を主張し、その内容をここに援用する。
 風力発電機など、比較的低速な回転から電力を取り出す場合、増速機などの動力伝達機構を介して発電機を回転させる方法が知られている(例えば、特許文献1)。他方、動力伝達機構は複数の歯車を備えるため、これを発電機に適用することは発電機の大型化につながる。そのため、近年、動力伝達機構と発電機の組み合わせに代えて、より小型の磁気ギヤード回転電機の採用が検討されている。
特開2005-091103号公報
 磁気ギヤード回転電機には回転する低速ロータにポールピース(磁石片)が複数設けられる。ポールピースは低速ロータの両端をなす支持輪にその両端をピン接合または剛接合された梁状の構造物である。そのため、低速ロータの回転に伴い、ステータおよび低速ロータの磁場の影響を受けてポールピースが振動する。この振動は、ポールピースの破損を招く可能性があり、磁気ギヤード回転電機の耐久性のボトルネックとなっている。
 本開示の目的は、上述した課題を解決する磁気ギヤード回転電機および製造方法を提供することにある。
 本開示に係る磁気ギヤード回転電機は、ステータと、円周方向に並んで配置されたポールピースを複数有し、ステータの内側に設けられる低速ロータと、ポールピースに対向する磁石である第2磁石を複数有し、低速ロータの内側に設けられる高速ロータと、を備える磁気ギヤード回転電機であって、ポールピースに設けられ、振動と電気信号とを変換する第1圧電素子と、第1圧電素子と接続され、第1圧電素子の出力電圧に基づいて、ポールピースの振動を抑制させる制御部と、を備える。
 本開示に係る磁気ギヤード回転電機の製造方法は、ステータと、円周方向に並んで配置されたポールピースを複数有し、ステータの内側に設けられる低速ロータと、ポールピースに対向する磁石である第2磁石を複数有し、低速ロータの内側に設けられる高速ロータと、を備える磁気ギヤード回転電機において、ポールピースに、振動と電気信号とを変換する圧電素子を設けるステップと、圧電素子と接続され、圧電素子の出力電圧に基づいて、ポールピースの振動を抑制させる制御部を設けるステップと、を有する。
 上記態様のうち少なくとも1つの態様によれば、磁気ギヤード回転電機における低速ロータの振動を減衰させることにより、磁気ギヤード回転電機の耐久性を向上させることができる。
一実施形態に係る磁気ギヤード回転電機の構成を示す図である。 一実施形態に係る磁気ギヤード回転電機が動作する時の磁気ギヤード回転電機の断面図である。 一実施形態に係る磁気ギヤード回転電機が動作する時の磁気ギヤード回転電機の断面図の一例である。 一実施形態に係る圧電素子及び制御部を示す図である。 一実施形態に係る圧電素子及び制御部を示す図である。 一実施形態に係る疑似インダクタンス回路を示す図である。 一実施形態に係る温度と容量値を示すグラフである。 一実施形態に係る圧電素子及び制御部を示す図である。 一実施形態に係るフローチャートを示す図である。 一実施形態に係る磁気ギヤード回転電機が動作する時の磁気ギヤード回転電機の断面図である。 一実施形態に係る磁気ギヤード回転電機が動作する時の磁気ギヤード回転電機の断面図である。 少なくとも一実施形態に係るコンピュータの構成を示す概略ブロック図である。
[第1の実施形態]
(磁気ギヤード回転電機の構成)
 以下、図面を参照しながら第1実施形態について詳しく説明する。図1は、第1の実施形態に係る磁気ギヤード回転電機10の構成を示す図である。磁気ギヤード回転電機10は、ステータ100と、低速ロータ200と、高速ロータ300と、回転軸400と、を備える。ステータ100、低速ロータ200、高速ロータ300は、回転軸400を中心とした同心状に設けられている。
 磁気ギヤード回転電機10の例としては、磁気ギヤードモーターと、磁気ギヤード発電機と、が挙げられる。
 ステータ100は、低速ロータ200及び高速ロータ300の外側に配置されている。ステータ100は、円周方向に並んで配置された磁石である第1磁石101を複数有する。上記磁石の例としては、永久磁石と、電磁石と、が挙げられる。例えば、図1に示すステータ100は、電磁石である第1磁石101を12個備える。
 なお、以下、図1を参照しながら部品の点数を説明することがあるが、あくまで一例であり、他の実施形態においては各部品の数が異なっていても良い。第1磁石101は、図示しない鉄芯と図示しないコイルから構成させる。第1磁石101のコイルには、駆動電流として三相交流電流が外部の駆動装置(例えばインバータ)から供給される。第1磁石101は、低速ロータ200に対向する側の極性が同一極、例えばS極となるように設けられる。
 低速ロータ200は、ステータ100と高速ロータ300との間に配置されている。図2は、磁気ギヤード回転電機10の断面図である。低速ロータ200は、第1支持輪206Aと、第2支持輪206Bと、複数のポールピース201と、を有する。例えば、低速ロータ200は、ポールピース201を32個有する。第1支持輪206Aおよび第2支持輪206Bは、低速ロータ200の両端を支持する円盤状の部材である。第1支持輪206Aおよび第2支持輪206Bは、回転軸400に固定され、回転軸400と共に回転する。
 複数のポールピース201は、軸回りに等間隔に配置される。各ポールピース201には磁石が設けられる。ポールピース201に設けられる磁石は、ステータ100と対向する側の極性が、第1磁石101と同一極、例えばS極となるように設けられる。複数のポールピース201は、それぞれその両端が固定具202によって第1支持輪206Aおよび第2支持輪206Bに固定される。固定具202がピンである場合、当該ピンはポールピース201の四隅に取り付けられる。低速ロータ200は、ポールピース201毎に2つの固定具202である固定具202A及び固定具202Bを備える。すなわち、低速ロータ200は、64個の固定具202を備える。
 ポールピース201は、第1圧電素子203および制御部204を備える。第1圧電素子203は、ポールピース201のうち固定具202の近傍に設けられる。より具体的には、第1圧電素子203は、固定具202A(または固定具202B)の2つのピンを結ぶ線分をまたいで、その中心が当該線分よりポールピース201の中央寄りに位置するように設けられる。この位置は、ポールピース201のうち、低速ロータ200の回転によって最もひずみが大きく生じる箇所である。第1圧電素子203は、ポールピース201毎に2つの第1圧電素子203である第1圧電素子203A及び第1圧電素子203Bが設けられる。すなわち、低速ロータ200には、64個の第1圧電素子203が設けられる。第1圧電素子203は、ポールピース201の振動と電気信号とを変換する。
 図3は、磁気ギヤード回転電機10が動作する時の磁気ギヤード回転電機10の断面図の一例である。すなわち、図3は、磁気ギヤード回転電機10を構成するステータ100と、低速ロータ200と、高速ロータ300とが回転するときの磁気ギヤード回転電機10の断面図の一例である。図3に示すように、磁気ギヤード回転電機10が動作する場合、ポールピース201は、ステータ100および高速ロータ300の磁力ならびに遠心力により固定具202から離れているポールピース201の中央部がZ方向に歪むことになる。このように、磁気ギヤード回転電機10が回転する場合、ポールピース201にはZ方向の力が作用することで、ポールピース201は+Z方向と-Z方向に振動することとなる。
 図3のように、ポールピース201に歪みが生じた場合、当該歪みが最大となる固定具202の近傍に第1圧電素子203を設けることにより、第1圧電素子203が当該歪みを伴う振動から変換する電気信号を最大化することができる。第1圧電素子203は、図2のように固定具202の近傍に設けられているが、所定値以上の歪みが発生すると推定される他の位置に設置することもできる。所定値は、例えば、ポールピース201に発生すると推定される歪みの大きさにおいて、最大値から所定のマージンを減算した値に設定される。
 高速ロータ300は、ステータ100及び低速ロータ200の内側に配置される。高速ロータ300は、第1磁石101に対向する磁石である第2磁石301を、複数有する。第2磁石301の例としては、永久磁石であり、S極を有する第2磁石301Sと、N極を有する第2磁石301Nとが挙げられる。第2磁石301Sと、第2磁石301Nは、同数が設けられる。例えば、図1のような高速ロータ300は、第2磁石301Sを4つ、第2磁石301Nを4つ、備えている。また、第2磁石301Nと第2磁石301Sは交互に並ぶように配置される。
 回転軸400は、ステータ100、低速ロータ200及び高速ロータ300の内側に配置される。
 第1圧電素子203は、配線7によって制御部204と接続されている。制御部204は、第1圧電素子203と接続されて閉回路を構成しており、第1圧電素子203の電気信号である出力電圧に基づいて、仮想的なインピーダンスを模擬するように電流を出力する。具体的には、第1圧電素子203を、等価回路を用いて表すと、閉回路は、図4のような構成となる。なお、図4では第1圧電素子203を等価抵抗成分Rpと等価容量成分Cpと等価交流電圧源Vpを用いて等価表現した例を示している。第1圧電素子203は、容量成分を含むため、等価回路には等価容量成分Cpが含まれる。第1圧電素子203は、等価抵抗成分Rp、等価容量成分Cp、および等価交流電圧源Vpを直列に接続された等価回路として表現できる。
 制御部204は、第1圧電素子203と制御部204とで構成する閉回路が、ポールピース201の固有周波数で共振する共振回路として振る舞うように動作する。具体的には、図4のような閉回路において、第1圧電素子203のインピーダンス(特に等価容量成分Cp)に対して、制御部204の内部を適切なインピーダンス状態とすることで制振が可能となる。以下、制御部204の内部において仮想的に模擬したインピーダンスを仮想インピーダンスという。
 制御部204では、所望のインピーダンスを仮想インピーダンスとして模擬するように、出力する電流を調整する。すなわち、出力する電流を調整することによって、制御部204を外部から見たときの内部インピーダンスを調整している。電流の出力は、例えば電流源(例えば電圧制御電流源)などによって実現される。
 制御部204は、コントローラ211と、疑似インダクタンス回路212とを備える。本実施形態においてコントローラ211は、第1圧電素子203の出力電圧に基づいて第1圧電素子203の等価容量成分Cpを推定する。コントローラ211は、推定される第1圧電素子203における等価容量成分Cpと、仮想インピーダンスとが、ポールピース201の固有周波数と等しい共振周波数の共振回路を構成するように疑似インダクタンス回路212に電流を出力させる。すなわち、コントローラ211は、適切なインダクタンス成分Lvを含む仮想インピーダンスを実現するように疑似インダクタンス回路212に電流を出力させる。閉回路では、仮想インピーダンスを調整してLC直列共振回路が構成される。
 具体的には、疑似インダクタンス回路212は、図5のように仮想インピーダンスがLRシャント回路を構成するように電流を出力する。図5のような閉回路が構成されることによって、RLC並列回路が構成される。このように、2つの第1圧電素子203Aと第1圧電素子203Bにかかる並列回路にすることにより、回路に必要なインダクタンス値を下げることができ、インダクタンス成分Lvを小型化することができる。
 そして、RLC並列回路における共振周波数frと、ポールピース201の固有周波数fnとが等しくなるように、仮想インピーダンスのインダクタンス成分Lvを調整する。すなわち、以下の関係式が成り立つように仮想インピーダンスのインダクタンス成分Lvが設定される。
Figure JPOXMLDOC01-appb-M000001
 (1)式において、fnは固有周波数(固有振動数)であり、制振対象の部材(ポールピース201)に応じて予め設定されている。また、(1)式において、2Cpは第1圧電素子203Aの等価容量成分Cpと第1圧電素子203Bの等価容量成分Cpとの加算した値である2Cpである。第1圧電素子203Aと第1圧電素子203Bの等価容量成分Cpについては、後述する方法により推定される。(1)式を用いてインダクタンス成分Lvが特定される。
 このように、仮想インピーダンスにおけるインダクタンス成分Lvが決定されることによって、第1圧電素子203と制御部204とにおける閉回路で制振対象の固有振動数に応じた共振回路を構成することができる。このため、共振周波数(及び共振周波数周りを含む)において閉回路のリアクタンス成分を0とすること(または低減すること)ができ、抵抗成分(RpやRv)において振動のエネルギーを熱エネルギーとして効率的に消費することができる。このため制振を行うことができる。
 すなわち、共振回路を利用した制振方法では、共振周波数及び共振周波数の周りにおいて効果的に制振を行うことが可能となる。制振対象の固有振動数に対して大きなインダクタンス値が必要となる場合には、受動素子で該インダクタンス値を実現すると素子が大型化する可能性があるが、仮想インピーダンスとしてインダクタンス成分Lpを実現することにより大型化の抑制を図ることができる。また、受動素子では精度ばらつきがあるが、仮想的にインダクタンス成分Lpを実現するため、精度の向上が期待できる。
 ここで、疑似インダクタンス回路212の構成例について説明する。図6は疑似インダクタンス回路212の構成例を示す図である。
 疑似インダクタンス回路212は、電流源(電圧制御電流源)23と、ボルテージフォロワ(インスツルメンテーションアンプ)24と、LPF(ローパスフィルタ)25とを備える。疑似インダクタンス回路212は、第1圧電素子203と閉回路を構成する。
 疑似インダクタンス回路212の入力端子は、電流源23の入力端およびボルテージフォロワ24の入力端に接続される。ボルテージフォロワ24の出力端は、LPF25の入力端に接続される。LPF25の出力端は、コントローラ211に接続される。すなわち、コントローラ211は、圧電素子の出力電圧の低周波成分の信号を取得する。電流源23の出力端は、疑似インダクタンス回路212の出力端子に接続される。電流源23の出力電流はコントローラ211によって制御される。
 第1圧電素子203との閉回路が共振回路を構成するためには、疑似インダクタンス回路212は、式(1)に基づくインダクタンス成分Lvを有するようにふるまう必要がある。すなわち、コントローラ211は、第1圧電素子203の出力電圧v1が疑似インダクタンス回路212に入力されたときに、疑似インダクタンス回路212に電流i1=Y1v1(ただし、アドミタンスY1=-j/ωL)を出力させることで、第1圧電素子203と疑似インダクタンス回路212との閉回路が共振回路を構成することとなる。
 すなわち、コントローラ211は、第1圧電素子203の容量を推定し、当該容量に基づいて疑似インダクタンス回路212が実現すべきアドミタンスY1を満たすように、電流i1を算出する。
 次に、制御部204における第1圧電素子203の等価容量成分Cpの推定方法の一例について説明する。共振回路を構成するためには、等価容量成分Cpを推定する必要がある。しかしながら、第1圧電素子203は、温度等の使用環境によって特性が変化する場合があり、等価容量成分Cpも変化する場合がある。図7は、第1圧電素子203における等価容量成分Cpと温度との関係の一例を示した図である。図7のように、等価容量成分Cpは温度の上昇に伴って増加する傾向にある。使用環境に応じて適切な等価容量成分Cpを把握するために、制御部204では、等価容量成分Cpを推定している。
 このため、図8に示すように、第1圧電素子203Aと制御部204とで構成される回路において、制御部204に並列に電流出力部9が設けられる。電流出力部9は、所定の付加電流を出力する。すなわち、電流出力部9は、電流源であり、閉回路に等価容量成分Cp推定用の付加電流を流す。制御部204では、付加電流が第1圧電素子203Aに供給されている場合において、第1圧電素子203Aを流れる電流と、第1圧電素子203Aの出力電圧とに基づいて、等価容量成分Cpを推定する。第1圧電素子203Bと制御部204とで構成される回路においても上記と同様に電流出力部9が設けられて、所定の負荷電流を出力する。
 具体的には、電流出力部9は、制御部204が出力する電流(制振用電流)と異なる周波数の付加電流を出力する。例えば、付加電流の周波数は制振用電流の周波数より低い値に設定される。制振用電流の周波数と付加電流の周波数とは、例えばローパスフィルタやバンドパスフィルタ等によって、付加電流の周波数成分を分離可能なように差が設けられている。なお、付加電流の周波数を制振用電流の周波数より高い値に設定することとしてもよい。
 すなわち、図8の回路において、付加電流と、付加電流に対応した第1圧電素子203の出力電圧とを、他の電流電圧成分と分離することができる。このため、制御部204は、付加電流と、付加電流に対応した第1圧電素子203の出力電圧とに基づいて等価容量成分Cpを推定することができる。例えば、図8の回路において、付加電流をisとし、付加電流isに対応した第1圧電素子203の出力電圧をvaとすると、以下の(2)式の関係が成り立つ。このため、(2)式の関係に基づいて、第1圧電素子203の等価容量成分Cpが推定できる。
Figure JPOXMLDOC01-appb-M000002
 制振用の電流と区別して付加電流を流すことで、制振を行っている間においても等価容量成分Cpを推定することが可能となる。すなわち、制振と等価容量成分Cpの推定とを並列して行い、推定した等価容量成分Cpを制振に反映することができる(パラレル処理)。また、制振と等価容量成分Cpの推定とを時分割して実行することとしてもよい(シリアル処理)。
(制振システムによる処理の流れ)
 次に、上述の制振システムによる制振処理の一例について図9を参照して説明する。図9は、本実施形態に係る制振処理の手順の一例を示すフローチャートである。図9に示すフローは、例えば、制振対象が稼働している場合において所定の制御周期で繰り返し実行される。なお、制振対象が稼働していなくても(例えば停止している等)、制振対象が搭載された構造体(例えば磁気ギヤード回転電機10)が稼働している場合には、図9の処理を所定の制御周期で繰り返し実行することとしても良い。
 まず、第1圧電素子203の出力電圧を取得する(S101)。なお、出力電圧は、付加電流に対応した第1圧電素子203の出力電圧となる。
 次に、付加電流と、付加電流に対応した第1圧電素子203の出力電圧とに基づいて等価容量成分Cpを推定する(S102)。S102では、例えば、(2)式を用いて等価容量成分Cpが推定される。
 次に、推定した等価容量成分Cpに基づいて、仮想インピーダンスにおけるインダクタンス成分(L値)を算出する(S103)。S103では、例えば、(1)式を用いてインダクタンス成分Lvが算出される。
 次に、算出したインダクタンス成分Lvをリアクタンス成分とするように、RLシャント回路のインピーダンス(仮想インピーダンス)を設定する(S104)。なお、RLシャント回路のレジスタンス(Rv)は、例えば、動吸振器の定点理論と同様の考え方により最適値が計算される。
 次に、設定した仮想インピーダンスを実現する電流値を算出する(S105)。その後、電流源23を制御して算出した電流値を出力させる(S106)。
 磁気ギヤード回転電機10が磁気ギヤードモーターである場合は、低速ロータ200の回転に伴い、高速ロータ300が回転する。他方、磁気ギヤード回転電機10が磁気ギヤード発電機である場合は、高速ロータ300の回転に伴い、低速ロータ200が回転する。このように、磁気ギヤード回転電機10が、磁気ギヤードモーターである場合と磁気ギヤード発電機である場合とで動作は異なるが、低速ロータ200の回転によるポールピース201の振動は何れの場合も生じる。上記の磁気ギヤード回転電機10の動作により、磁気ギヤード回転電機10が磁気ギヤードモーターである場合と磁気ギヤード発電機である場合の何れの場合においても、ポールピース201の振動を減衰させることができる。
(作用・効果)
 本開示に係る磁気ギヤード回転電機10は、ステータ100と、円周方向に並んで配置されたポールピース201を複数有し、ステータ100の内側に設けられる低速ロータ200と、ポールピース201に対向する磁石である第2磁石301を複数有し、低速ロータ200の内側に設けられる高速ロータ300と、を備える磁気ギヤード回転電機10であって、ポールピース201に設けられ、振動と電気信号とを変換する第1圧電素子203と、第1圧電素子203と接続され、第1圧電素子203の出力電圧に基づいて、ポールピース201の振動を抑制させる制御部204と、を備える。
 磁気ギヤード回転電機10は、磁気ギヤード回転電機10における低速ロータ200のポールピース201の振動を減衰させる。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 また、磁気ギヤード回転電機10は、円周方向に並んで配置された磁石である複数の第1磁石101が、ステータ100上、又はステータ100と低速ロータ200との間に配置され、第1磁石101と第2磁石301とは対向する。
 磁気ギヤード回転電機10は、ステータ100に第1磁石101を備える磁気ギヤード回転電機10の低速ロータ200のポールピース201の振動を減衰させる。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 また、磁気ギヤード回転電機10の第1圧電素子203は、ポールピース201と低速ロータ200とを固定する固定具202の近傍に設けられる。
 第1圧電素子203は、ポールピース201の歪みが大きくなる場所である固定具202の近傍に設けられる。これにより、磁気ギヤード回転電機10は、第1圧電素子203による制振効果を向上させることができる。
 また、磁気ギヤード回転電機10は、第1圧電素子203と接続されて閉回路を構成する電気回路を備え、制御部204は、第1圧電素子203が出力する電気信号に基づいて、電気回路がポールピース201の共振周波数において第1圧電素子203の容量成分を打ち消すリアクタンスとして振る舞うように制御する。
 磁気ギヤード回転電機10は、ポールピース201の耐久性に影響を与えるポールピース201の共振周波数に合わせて制振を行う。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
[第2の実施形態]
 次に、第2の実施形態に係る磁気ギヤード回転電機10について説明する。第2の実施形態に係る磁気ギヤード回転電機10のポールピース201には、第2圧電素子205が設けられ、磁気ギヤード回転電機10は、第2圧電素子205を用いてポールピース201の制振を行う。
 図10は、第2の実施形態に係る磁気ギヤード回転電機10の構成を示す図である。図10に示すように、第1圧電素子203に加えて、第2圧電素子205を備える。
 第1圧電素子203は、ポールピース201の振動に基づいて、電気信号を制御部204のコントローラ211に送る。コントローラ211は、予め設定された値に基づいて、第1圧電素子203から電気信号を受け入れて、第2圧電素子205に電気信号を送る。第2圧電素子205は、コントローラ211から電気信号を受け入れて、振動に変換することにより、ポールピース201の振動を制振する。すなわち、ポールピース201が+Z方向に振動する場合は、第2圧電素子205は-Z方向に振動し、ポールピース201が-Z方向に振動する場合は、第2圧電素子205は+Z方向に振動する。
(作用・効果)
 本開示に係る磁気ギヤード回転電機10には、ポールピース201に設けられ、当該ポールピースの振動と電気信号とを変換する第2圧電素子205が設けられ、制御部204は、第1圧電素子203が出力する電気信号に基づいて、第2圧電素子205に電気信号を出力する。
 磁気ギヤード回転電機10は、第1圧電素子203が変換した電気信号に基づいて第2圧電素子205がポールピース201の制振を行う。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
[他の実施形態]
 上記において、磁気ギヤード回転電機10の実施形態を説明したが、以下のような形態において実施することもできる。
 例えば、磁気ギヤード回転電機10は、図11に示すように、第1支持輪206Aと第2支持輪206Bを備える代わりに、固定具202と、ポールピース201とが挟み込まれるような態様において実施することができる。これにより、固定具202等を備えることなく、磁気ギヤード回転電機10を製造することができる。
 また、第1圧電素子203及び第2圧電素子205は、ポールピース201の表面ではなく、ポールピース201の内部に備えても良い。すなわち、ポールピース201に埋め込まれた形の第1圧電素子203及び第2圧電素子205であっても良い。
 図12は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ1100は、プロセッサ1110、メインメモリ1120、ストレージ1130、インタフェース1140を備える。
 上述のコントローラ211は、コンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ1120に確保する。
 プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ1100は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
 ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インタフェース1140または通信回線を介してコンピュータに接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ1130は、一時的でない有形の記憶媒体である。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
[付記]
 各実施形態に記載の磁気ギヤード回転電機10は、例えば以下のように把握される。
 (1)本開示に係る磁気ギヤード回転電機10は、ステータ100と、円周方向に並んで配置されたポールピース201を複数有し、ステータ100の内側に設けられる低速ロータ200と、ポールピース201に対向する磁石である第2磁石301を複数有し、低速ロータ200の内側に設けられる高速ロータ300と、を備える磁気ギヤード回転電機10であって、ポールピース201に設けられ、振動と電気信号とを変換する第1圧電素子203と、第1圧電素子203と接続され、第1圧電素子203の出力電圧に基づいて、ポールピース201の振動を抑制させる制御部204と、を備える。
 磁気ギヤード回転電機10は、磁気ギヤード回転電機10における低速ロータ200のポールピース201の振動を減衰させる。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 (2)また、磁気ギヤード回転電機10は、円周方向に並んで配置された磁石である複数の第1磁石101が、ステータ100上、又はステータ100と低速ロータ200との間に配置され、第1磁石101と第2磁石301とは対向する。
 磁気ギヤード回転電機10は、ステータ100に第1磁石101を備える磁気ギヤード回転電機10の低速ロータ200のポールピース201の振動を減衰させる。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 (3)また、磁気ギヤード回転電機10の第1圧電素子203は、ポールピース201と低速ロータ200とを固定する固定具202の近傍に設けられる。
 第1圧電素子203は、ポールピース201の歪みが大きくなる場所である固定具202の近傍に設けられる。これにより、磁気ギヤード回転電機10は、第1圧電素子203による制振効果を向上させることができる。
 (4)また、磁気ギヤード回転電機10は、第1圧電素子203と接続されて閉回路を構成する電気回路を備え、制御部204は、第1圧電素子203が出力する電気信号に基づいて、電気回路がポールピース201の共振周波数において第1圧電素子203の容量成分を打ち消すリアクタンスとして振る舞うように制御する。
 磁気ギヤード回転電機10は、ポールピース201の耐久性に影響を与えるポールピース201の共振周波数に合わせて制振を行う。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 (5)また、磁気ギヤード回転電機10には、ポールピース201に設けられ、当該ポールピースの振動と電気信号とを変換する第2圧電素子205が設けられ、制御部204は、第1圧電素子203が出力する電気信号に基づいて、第2圧電素子205に電気信号を出力する。
 磁気ギヤード回転電機10は、第1圧電素子203が変換した電気信号に基づいて第2圧電素子205がポールピース201の制振を行う。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 (6)本開示に係る製造方法は、ステータ100と、円周方向に並んで配置されたポールピース201を複数有し、ステータ100の内側に設けられる低速ロータ200と、ポールピース201に対向する磁石である第2磁石301を複数有し、低速ロータ200の内側に設けられる高速ロータ300と、を備える磁気ギヤード回転電機10において、ポールピース201に、振動と電気信号とを変換する圧電素子203を設けるステップと、圧電素子203と接続され、圧電素子の出力電圧に基づいて、ポールピース201の振動を抑制させる制御部204を設けるステップと、を有する。
 製造方法のユーザは、製造方法を用いることにより、磁気ギヤード回転電機10における低速ロータ200のポールピース201の振動を減衰させることができる。これにより、磁気ギヤード回転電機10の耐久性を向上させることができる。
 本開示は、磁気ギヤード回転電機および製造方法に関する。
 本開示によれば、磁気ギヤード回転電機における低速ロータの振動を減衰させることにより、磁気ギヤード回転電機の耐久性を向上させることができる。
 7 配線
 9 電流出力部
 23 電流源
 24 ボルテージフォロワ
 25 LPF
 10 磁気ギヤード回転電機
 100 ステータ
 101 第1磁石
 200 低速ロータ
 201 ポールピース
 202 固定具
 203 第1圧電素子
 204 制御部
 205 第2圧電素子
 206 支持輪
 211 コントローラ
 212 疑似インダクタンス回路
 300 高速ロータ
 301 第2磁石
 400 回転軸
 1100 コンピュータ
 1110 プロセッサ
 1120 メインメモリ
 1130 ストレージ
 1140 インタフェース
 Rp 等価抵抗成分
 Rv レジスタンス
 Cp 等価容量成分
 Lv インダクタンス成分
 fr 共振周波数
 fn 固有周波数
 v1 出力電圧
 va 出力電圧
 Vp 等価交流電圧源
 Y1 アドミタンス
 i1 電流
 is 付加電流

Claims (6)

  1.  ステータと、円周方向に並んで配置されたポールピースを複数有し、前記ステータの内側に設けられる低速ロータと、前記ポールピースに対向する磁石である第2磁石を複数有し、前記低速ロータの内側に設けられる高速ロータと、を備える磁気ギヤード回転電機であって、
     前記ポールピースに設けられ、振動と電気信号とを変換する第1圧電素子と、
     前記第1圧電素子と接続され、前記第1圧電素子の出力電圧に基づいて、前記ポールピースの振動を抑制させる制御部と、
     を備える磁気ギヤード回転電機。
  2.  前記円周方向に並んで配置された磁石である複数の第1磁石が、前記ステータ上、又は前記ステータと前記低速ロータとの間に配置され、
     前記第1磁石と前記第2磁石とは対向する
     請求項1に記載の磁気ギヤード回転電機。
  3.  前記第1圧電素子は、前記ポールピースと前記低速ロータとを固定する固定具の近傍に設けられる
     請求項1又は請求項2に記載の磁気ギヤード回転電機。
  4.  前記第1圧電素子と接続されて閉回路を構成する電気回路を備え、
     前記制御部は、前記第1圧電素子が出力する前記電気信号に基づいて、前記電気回路が前記ポールピースの共振周波数において前記第1圧電素子の容量成分を打ち消すリアクタンスとして振る舞うように制御する、
     請求項1乃至請求項3のいずれか一項に記載の磁気ギヤード回転電機。
  5.  前記ポールピースに設けられ、当該ポールピースの振動と電気信号とを変換する第2圧電素子が設けられ、
     前記制御部は、前記第1圧電素子が出力する前記電気信号に基づいて、前記第2圧電素子に電気信号を出力する
     請求項1乃至請求項4のいずれか一項に記載の磁気ギヤード回転電機。
  6.  ステータと、円周方向に並んで配置されたポールピースを複数有し、前記ステータの内側に設けられる低速ロータと、前記ポールピースに対向する磁石である第2磁石を複数有し、前記低速ロータの内側に設けられる高速ロータと、を備える磁気ギヤード回転電機において、
     前記ポールピースに、振動と電気信号とを変換する圧電素子を設けるステップと、
     前記圧電素子と接続され、前記圧電素子の出力電圧に基づいて、前記ポールピースの振動を抑制させる制御部を設けるステップと、
     を有する製造方法。
PCT/JP2021/000070 2020-01-16 2021-01-05 磁気ギヤード回転電機および製造方法 WO2021145232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21740742.8A EP4075646A4 (en) 2020-01-16 2021-01-05 MAGNETIC GEAR ROTATING ELECTRIC MACHINE AND METHOD OF MAKING IT
CN202180009183.1A CN114946110A (zh) 2020-01-16 2021-01-05 磁齿轮旋转电机以及制造方法
US17/792,328 US20230208271A1 (en) 2020-01-16 2021-01-05 Magnetic geared rotating electrical machine and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020005442A JP7346312B2 (ja) 2020-01-16 2020-01-16 磁気ギヤード回転電機および製造方法。
JP2020-005442 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021145232A1 true WO2021145232A1 (ja) 2021-07-22

Family

ID=76863756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000070 WO2021145232A1 (ja) 2020-01-16 2021-01-05 磁気ギヤード回転電機および製造方法

Country Status (5)

Country Link
US (1) US20230208271A1 (ja)
EP (1) EP4075646A4 (ja)
JP (1) JP7346312B2 (ja)
CN (1) CN114946110A (ja)
WO (1) WO2021145232A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813185B2 (ja) * 1987-02-12 1996-02-07 株式会社東芝 超電導回転子のバランス調整装置
JP2002369450A (ja) * 2001-06-01 2002-12-20 Toshiba Tec Corp 電気器具
US20040068349A1 (en) * 2002-10-07 2004-04-08 Huageng Luo Method and apparatus for rotary machine vibration control
JP2007166771A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp ステータ
US20150289056A1 (en) * 2014-04-08 2015-10-08 Airbus Defence and Space GmbH Noise reduction system, a method and a helicopter
CN207336013U (zh) * 2017-07-27 2018-05-08 湖南科技大学 双转子系统耦合不对中模拟装置
JP2020005442A (ja) 2018-06-29 2020-01-09 株式会社東芝 回転電機の回転子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0800463D0 (en) 2008-01-11 2008-02-20 Magnomatics Ltd Magnetic drive systems
JP5286373B2 (ja) 2011-01-28 2013-09-11 株式会社日立製作所 磁気歯車
CN103370561B (zh) 2011-02-21 2016-04-27 株式会社日立制作所 磁齿轮机构
NL2006686C2 (en) * 2011-04-29 2012-10-30 Micro Turbine Technology B V An integral method for vibration compensation and misalignment prevention in rotor dynamic systems.
JP2017507639A (ja) * 2014-02-11 2017-03-16 マグノマティックス リミテッドMagnomatics Limited 磁気歯車装置およびトルク脈動の伝達を低減する方法
DE102014213446A1 (de) * 2014-07-10 2016-01-14 Em-Motive Gmbh Verfahren und Vorrichtung zum Betreiben einer elektronisch kommutierten elektrischen Maschine
CN206759250U (zh) * 2017-05-16 2017-12-15 浙江大学 一种通过压电元件对电机定子齿切向振动主动控制的结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813185B2 (ja) * 1987-02-12 1996-02-07 株式会社東芝 超電導回転子のバランス調整装置
JP2002369450A (ja) * 2001-06-01 2002-12-20 Toshiba Tec Corp 電気器具
US20040068349A1 (en) * 2002-10-07 2004-04-08 Huageng Luo Method and apparatus for rotary machine vibration control
JP2007166771A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp ステータ
US20150289056A1 (en) * 2014-04-08 2015-10-08 Airbus Defence and Space GmbH Noise reduction system, a method and a helicopter
CN207336013U (zh) * 2017-07-27 2018-05-08 湖南科技大学 双转子系统耦合不对中模拟装置
JP2020005442A (ja) 2018-06-29 2020-01-09 株式会社東芝 回転電機の回転子

Also Published As

Publication number Publication date
JP7346312B2 (ja) 2023-09-19
JP2021113566A (ja) 2021-08-05
CN114946110A (zh) 2022-08-26
US20230208271A1 (en) 2023-06-29
EP4075646A1 (en) 2022-10-19
EP4075646A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
Yu et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester
KR101695021B1 (ko) 회전체의 비틀림 모드의 주파수 조정 방법 및 시스템
JP5571365B2 (ja) 捩りモード減衰装置
Srinivas et al. Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads
Yan et al. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation
Hendijanizadeh et al. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion
Ma et al. A novel black and white box method for diagnosis and reduction of abnormal noise of hub permanent-magnet synchronous motors for electric vehicles
WO2021253694A1 (zh) 永磁电机的控制方法、装置、动力系统及电动汽车
WO2021145232A1 (ja) 磁気ギヤード回転電機および製造方法
Berg et al. A novel magnetic lead screw active suspension system for vehicles
CN105276051A (zh) 磁粒子摆动吸振单元及方法、组合装置、电磁阻尼发电机构
Sugimoto et al. A vibration reduction method of one-axis actively position regulated single-drive bearingless motor with repulsive passive magnetic bearings
Toh et al. Electronic resonant frequency tuning of a marine energy harvester
Erofeev et al. Electromechanic installations vibration acceleration protection system
Molokanov et al. Dynamic model of coaxial magnetic planetary gear
JP2016061377A (ja) ダイナミックダンパ制御装置
Modaresahmadi et al. Vibration analysis of the first stage of a multi-stage coaxial magnetic gearbox
Cao et al. Magnetic field analytical solution and electromagnetic force calculation of coreless stator axial-flux permanent-magnet machines
Stadler et al. Radial self-stabilizing reluctance magnetic bearing
CN106814316B (zh) 微型电机的抖动检测处理系统及方法
Hao et al. Free vibration of the electromechanical integrated magnetic gear system
Liu et al. Modal analysis and linear static structure analysis of linear switched reluctance motor
Szolc¹ et al. Suppression and control of torsional vibrations of the turbo-generator shaft-lines using rotary magneto-rheological dampers
CN109245634A (zh) 一种变转动惯量永磁同步电机控制方法
Ermolaev et al. Analysis of mechanical power flow in an electric drive operating under vibration conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021740742

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE