WO2021145119A1 - 回転電機、及び車載電動機システム - Google Patents
回転電機、及び車載電動機システム Download PDFInfo
- Publication number
- WO2021145119A1 WO2021145119A1 PCT/JP2020/046661 JP2020046661W WO2021145119A1 WO 2021145119 A1 WO2021145119 A1 WO 2021145119A1 JP 2020046661 W JP2020046661 W JP 2020046661W WO 2021145119 A1 WO2021145119 A1 WO 2021145119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- electric machine
- rotary electric
- peripheral side
- space portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/006—Structural association of a motor or generator with the drive train of a motor vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to a rotary electric machine, and particularly to a permanent magnet type brushless motor suitable for use in an electric variable valve timing device for automobiles.
- valve timing devices eVTCs
- VTCs valve timing devices
- Patent Document 1 is a prior art of a brushless motor that requires high response.
- the invention described in Patent Document 1 relates to an electric device having a rotor and a stator rotatably supported around a rotation axis, and the rotor has at least one permanent magnet.
- the rotor has a magnetic field focusing region and a magnetic field non-magnetic field region in a rotor body alternately parallel to the rotation axis.
- the brushless motor disclosed in Patent Document 1 has a lot of room for improvement in terms of improving the response speed.
- the present invention provides a motor capable of reducing low inertia and suppressing an increase in magnetic resistance and a decrease in torque.
- a typical example of the invention disclosed in the present application is as follows. That is, it is a rotary electric machine and includes a stator on which a coil is wound and a rotor rotatably supported on the inner peripheral side of the stator.
- the core has a magnet mounted on the core, and the core includes a magnet insertion hole into which the magnet is mounted, a first magnet stop portion provided on the q-axis side of the magnet in the magnet insertion hole, and the said.
- the distance between the magnet accommodating portion provided between the first magnet fixing portions on both sides of the magnet insertion hole, the first space portion communicating with the magnet insertion hole, and the magnet is equal to or less than the thickness of the magnet, and the magnetic pole
- a second space portion having a long central radial length and formed on the inner peripheral side of the magnet and a convex shape on the inner peripheral side of the q-axis of the magnet are formed between the second space portion and the magnet. It is characterized by having a third space portion to be formed.
- low inertia can be reduced while suppressing an increase in magnetic resistance and a decrease in torque. Issues, configurations and effects other than those mentioned above will be clarified by the description of the following examples.
- FIG. 9 is a cross-sectional view of a permanent magnet type rotary electric machine having a thickness H of an umbrella-shaped core multiplied by 1.5, which is shown in FIG. It is a figure which shows the change of torque and inertia in the configuration of FIG. 9A and FIG. 9B. It is a figure which shows the structure which the magnet and the 3rd space part are in a close distance. It is a figure which shows the structure which the magnet and the 3rd space part are at a distant distance. It is a figure which shows the change of torque and inertia by the distance between a magnet and a 3rd space part. It is a figure which shows the case where the 3rd space part has a shape which obstructs the flow of magnetic flux.
- FIG. 9A and FIG. It is a figure which shows the change of torque and inertia in the structure of FIG. 9A and FIG. It is a figure which shows the structure when the magnet and the 2nd space part are distant. It is a figure which shows the change of torque and inertia in the configuration of FIG. 9A and FIG. It is sectional drawing of 1/4 circumference in the rotating plane of the permanent magnet type rotary electric machine of 3rd Example. It is sectional drawing of 1/4 circumference in the rotating plane of the permanent magnet type rotary electric machine of 4th Example. It is a figure which shows the change of the average torque and both amplitudes by the magnetic pole arc radius of 4th Example. It is a figure which shows the change of the minimum torque by the magnetic pole arc radius of 4th Example. It is sectional drawing of 1/4 circumference in the rotating plane of the one-character type embedded permanent magnet type rotary electric machine of 1st Example.
- FIG. 1 is an in-plane cross-sectional view of the permanent magnet type rotary electric machine 1 of the first embodiment
- FIG. 2 is an enlarged view of a quarter circumference of the rotary electric machine shown in FIG.
- a substantially annular stator (stator) 10 is arranged on the outer peripheral side, and a substantially cylindrical rotor (rotor) 20 is arranged on the inner peripheral side. It is a permanent magnet type rotary electric machine 1 having 12 slots of poles.
- An air gap 30 is provided between the stator 10 and the rotor 20.
- the stator 10 has a stator core 100, a core back 110, and a plurality of windings 140, and is arranged so as to face the rotor 20 via an air gap 30.
- the stator 10 is manufactured as follows, for example. First, a plurality of radial teeth 130 are formed on the inner peripheral side of a stator core laminated body in which an integrally punched core material of an electromagnetic steel plate or a soft magnetic metal plate is laminated. Next, a conducting wire is installed on each tooth 130 to form a winding 140, and then the winding 140 is formed by shrink fitting or press fitting into a housing (not shown) to integrate the winding 140. In this way, the stator 10 is manufactured.
- the rotor 20 has a rotor core 200 which is an iron core in which a soft magnetic metal plate such as an electromagnetic steel plate is laminated, and a shaft 300 which is a rotation shaft.
- the outer peripheral contour of the rotor core 200 is a perfect circle, and an eight-pole magnetic pole portion 220 is provided on the outer circumference of the rotor core 200 in the circumferential direction.
- Each of the magnetic poles 220 has one magnet insertion hole 201 that is long in the circumferential direction.
- Magnet stop portions 211 are formed on the inner peripheral sides of both ends of the magnet insertion hole 201, a magnet accommodating portion 212 is formed in the magnet insertion hole 201 between the magnet stop portions 211, and one magnet accommodating portion 212 has one.
- the magnet 210 is arranged.
- the rotor 20 has a first space portion 213 communicating with the magnet insertion hole 201 on the outer peripheral side of the magnet stopping portion 211, and a bridge portion 242 is provided on the outer peripheral side of the first space portion 213.
- An umbrella-shaped core 230 is formed on the outer peripheral side of the magnet accommodating portion 212.
- a second space portion 261 having a distance from the magnet 210 inside the magnet 210 that is equal to or less than the thickness of the magnet 210 and having the longest radial length at the center of the magnetic pole portion 220 is formed. Further, it is located between the second space portion 261 and the magnet 210 on the inner peripheral side of the magnet 210, and a convex third space portion 262 is formed on the inner peripheral side of the q-axis 250.
- the outer peripheral shape of the magnetic pole portion 220 in the first embodiment is cylindrical, and its radius coincides with the radius of the rotor 20.
- the magnet 210 has a shape in which the distance between the magnets 210 of the adjacent magnetic poles is short, the magnet 210 is long in the circumferential direction, and high torque can be easily obtained. Therefore, the response can be enhanced by the high torque.
- the third space portion 262 having a convex shape on the inner peripheral side of the q-axis 250 does not obstruct the flow of magnetic flux connecting the two magnets 210 arranged on the two adjacent magnetic pole portions 220, and the rotor core.
- the sum of the minimum width of the core on the outer peripheral side from the third space portion 262 and the minimum width of the core between the third space portion 262 and the second space portion 261 is about 0.57 times the magnet width / 2. I have to. This ratio is preferably 0.5 times or more.
- first space portion 213, the second space portion 261 and the third space portion 262 reduces inertia and enhances responsiveness.
- the effect of each space portion will be described in the second embodiment.
- FIG. 3 is a cross-sectional view of the permanent magnet type rotary electric machine 1 of the second embodiment with a circumference of 1/4 in the rotating surface, and corresponds to FIG. 2 described in the first embodiment. A part of the description in common with the first embodiment will be omitted.
- the radial thickness of the umbrella-shaped core 230 is the radius of gyration ⁇ (1-cos (magnetic pole pitch angle / 2)) ⁇ 0.55 + bridge width. Smaller.
- the intersection of a straight line parallel to the center line of the magnetic pole portion from the point closest to the center of the magnetic pole portion of the magnet stop portion 211 and the inner circumference of the umbrella-shaped core 230 is defined as a point R. Further, a similar point facing the point R of the adjacent magnetic pole is referred to as a point R'.
- the groove space portion 222 that is open to the outer circumference of the rotor on the outer circumference of the q-axis and has a wider circumferential width toward the outer circumference side.
- the groove space 222 reduces inertia without reducing torque.
- the outer peripheral shape of the magnetic pole portion 220 in the second embodiment is cylindrical within the range of the umbrella-shaped core 230 and D / 2 closer to the point R than the point Q, and the radius thereof is the radius of the rotor 20. Match.
- the angle at which the center of the magnet 210 is seen is about (magnetic pole pitch angle ⁇ 2/3), and the shape is such that the magnet 210 can be brought closer to the stator 10 than in the first embodiment.
- the radial thickness-bridge width of the umbrella-shaped core 230 is 0.45 times the radius of gyration ⁇ (1-cos (magnetic pole pitch angle / 2)), and the first It is smaller than 0.68 times the shape of FIG. 2 of the embodiment.
- the torque / magnet usage amount is 1.1 times that of the first embodiment. This is because the decrease in torque is slower than the decrease in magnet width, and the thickness of the umbrella-shaped core 230 is thin, and the torque is larger when the magnet 210 is closer to the stator 10.
- the torque decreases as the thickness of the umbrella-shaped core 230 increases, but the radial thickness of the umbrella-shaped core 230-the bridge width is within 0.55 times the radius of gyration x (1-cos (magnetic pole pitch angle / 2)). If there is, it will be reduced by 1.5% or less with respect to the shape of FIG.
- the radial thickness of the umbrella-shaped core 230-the bridge width is the radius of gyration ⁇ (1-cos (magnetic pole pitch angle / 2). )) Is within 0.55 times.
- a three-dimensional magnetic field analysis simulation is used to evaluate the following motor characteristics.
- the magnet width is reduced and the magnet 210 approaches the stator 10, and the second space portion 261 Is increased toward the outer peripheral side, so that the rotor core 200 is thinned particularly on the outer peripheral side. Therefore, the inertia ratio based on the case where the cylindrical rotor core 200 has no space except for the magnet 210 is reduced by 5.1% as compared with the first embodiment.
- the positional relationship and shape of the second space portion 261 and the third space portion 262 are the same as those in the first embodiment. The effects of each space will be described below.
- FIG. 4A is a cross-sectional view of the permanent magnet type rotary electric machine 1 provided with the first space portion 213 and the groove space portion 222 in a 1/4 circumference in the rotating surface
- FIG. 4B shows the first space portion 213 and the groove space
- FIG. 4C is a cross-sectional view of a 1/4 circumference in the rotating surface of the permanent magnet type rotary electric machine 1 provided with the portion 222 and the second space portion 261.
- FIG. 4C shows the first space portion 213 and the groove space of the second embodiment.
- FIG. 5 is a diagram showing a change in inertia with respect to the rotor radius
- FIG. 6 is a diagram showing a change in torque with a constant rotor radius depending on the presence or absence of a space
- FIG. 7 is a diagram showing a change in rotor radius with respect to the inertia
- FIG. 8 is a diagram showing a change in torque with a constant inertia depending on the presence or absence of a space portion.
- the vertical axis is the inertia ratio (that is, space / grooved inertia / space / grooveless inertia) based on the case where the cylindrical rotor core 200 has no space except for the magnet 210, and the rotor radius / reference radius is set. It is a figure which shows the influence of the presence / absence of a space part when it is taken on the horizontal axis.
- the inertia tends to decrease relatively due to the presence of the first space portion 213 and the groove space portion 222, but the change in the relative ratio is small.
- the second space portion 261 is present, the inertia ratio decreases as the radius increases.
- the inertia ratio is further reduced, and as the radius is increased, the inertia ratio is also reduced.
- the inertia ratio is reduced to 65% near the reference radius, which can increase the response speed.
- the influence of the presence or absence of the space portion on the torque ratio near the reference radius has a small effect on the torque. Even if the second space portion 261 is present, the decrease in torque can be ignored because the width of the magnetic path through which the magnetic flux flows between the adjacent magnets is wide.
- the decrease in torque is small, 0.4%, because the magnetic path width is secured and the increase in the magnetic resistance is suppressed by the configuration of the second embodiment. It is suppressed. In this way, the decrease in torque can be suppressed to a small extent, and the inertia can be reduced by 10% only in the third space portion 262, so that the response speed can be increased.
- the inertia ratio based on the inertia of the reference radius is taken on the horizontal axis.
- the rotor radius / reference radius that is, the space / grooved rotor radius / space / grooveless rotor radius
- the ratio at which the rotor radius can be increased is shown in each case of the presence or absence of space and groove as compared with the form without space and groove.
- the rotor radius increases slightly due to the presence of the first space portion 213 and the groove space portion 222.
- the rotor radius increases as the inertia ratio increases. This is because the magnet 210 is located on the outer peripheral side, so that the radial length of the second space portion 261 is increased and the inertia is easily reduced, and the rotor radius is easily increased with the same inertia.
- the presence of the third space portion 262 further increases the rotor radius, and the radius increases as the inertia ratio increases. The rotor radius is increased by 17% near the reference radius, which can increase the torque.
- FIG. 8 is an explanatory diagram showing the torque increase due to the presence of the space portion in the same inertia with reference to the structure of FIG. 4A.
- the presence of the space allows the rotor radius to increase with the same inertia, and increasing the rotor radius allows the torque to increase. Therefore, the torque increase is shown in FIG. From FIG. 8, the second space portion 261 can increase the torque by 9% with the same inertia, and the third space portion 262 can further increase the torque by 7% with the same inertia. As a result, the response speed can be increased.
- the position is on the inner peripheral side of the magnet 210 and between the second space portion 261 and the magnet 210, and on the inner peripheral side of the q-axis 250.
- a high response speed can be realized by the convex third space portion 262.
- the inertia is reduced and the torque is increased, so that the response speed can be increased. Further, it can be seen that the configuration of this embodiment has a large effect because the inertia reduction due to the third space portion 262 is large due to the difference in inertia between the first embodiment and the second embodiment.
- FIG. 9A is a cross-sectional view of the permanent magnet type rotary electric machine 1 of the second embodiment with a circumference of 1/4 in the rotating surface
- FIG. 9B shows a thickness H of the umbrella-shaped core 230 shown in FIG. 9A of 1.5. It is sectional drawing of the doubled permanent magnet type rotary electric machine 1 with 1/4 circumference in the rotating plane.
- FIG. 10 is a diagram showing changes in torque and inertia in the configurations of FIGS. 9A and 9B, with reference to FIG. 9A.
- the torque is reduced by 5% by increasing the thickness of the umbrella-shaped core 230 by 1.5 times. This is because the distance between the magnet 210 and the stator 10 increases due to the increase in the thickness of the umbrella-shaped core 230, and the magnetic flux leakage inside the rotor increases. Inertia also increased by 3.4%. The reason for this is an increase in the outer peripheral side rotor core due to an increase in the thickness of the umbrella-shaped core 230, and a retreat of the second space portion 261 and the third space portion 262 to the inner peripheral side. From this, it was shown that the magnet position is preferably close to the stator 10 in order to achieve both high torque and low inertia.
- the thickness-bridge width of the umbrella-shaped core 230 in FIG. 9B is 0.77 times the radius of gyration ⁇ (1-cos (magnetic pole pitch angle / 2)). Therefore, if the thickness of the umbrella-shaped core-the bridge width is 0.55 times the radius of gyration x (1-cos (magnetic pole pitch angle / 2)), the torque reduction will be about 1.5% due to proportional distribution. Obviously.
- the rotary electric machine targeted by the present invention is for small size and low output, the temperature rise due to the magnet eddy current due to the thin thickness of the umbrella-shaped core 230 does not matter. Therefore, a thin umbrella-shaped core 230 can be used.
- FIG. 11A is a diagram showing a configuration in which the magnet 210 and the third space portion 262 are located at a short distance D3, and FIG. 11B shows a configuration in which the magnet 210 and the third space portion 262 are located at a long distance D3 ⁇ 5.9.
- the distance between the magnet 210 and the third space portion 262 is 5.9 times that of FIG. 11A.
- FIG. 12 is a diagram showing changes in torque and inertia depending on the distance between the magnet 210 and the third space portion 262.
- FIG. 12 shows the torque ratio and the inertia ratio with reference to FIG.
- FIG. 13 is a diagram showing a configuration in which the third space portion 262 in FIG. 9A has a shape inverted inside and outside, and the distance between the second space portion 261 and the third space portion 262 is reduced by the inversion. Further, FIG. 13 is a diagram showing a case where the third space portion has a shape that obstructs the flow of magnetic flux.
- FIG. 14 is a diagram showing changes in torque and inertia in the configurations of FIGS. 9A and 13 and is based on FIG. 9A. And the change of inertia. As shown in FIG.
- the torque was greatly reduced to 13% due to the reversal of the third space portion 262 in the convex direction of the q-axis. This is because the magnetic path width between the second space portion 261 and the third space portion 262 is reduced and the magnetic resistance is increased. Inertia increased slightly to 0.8%. This is because the outer peripheral side of the third space portion 262 has moved to the inner circumference. From this, it was shown that the third space portion 262 should be convex toward the inner peripheral side of the q-axis 250 rather than convex toward the outer peripheral side of the q-axis in order to realize high torque and low inertia.
- the sum of the minimum width of the core on the outer peripheral side from the third space portion 262 and the minimum width of the core between the third space portion 262 and the second space portion 261 is 0.36 times the magnet width / 2. Yes, in the case of FIG. 9A, it is 0.53 times. Therefore, if this ratio is 0.5 times, the torque decrease is about 2% due to the proportional distribution. As described above, this ratio is preferably 0.5 times or more.
- FIG. 15 is a diagram showing a configuration when the magnet 210 and the second space portion 261 are far from each other, whereas FIG. 9A shows the distance between the second space portion 261 and the magnet 210, which is 0.75 times the magnet thickness. , FIG. 15 is 1.75 times larger.
- FIG. 16 is a diagram showing changes in torque and inertia in the configurations of FIGS. 9A and 15.
- the presence of the third space portion 262 can reduce the inertia and the circumferential width of the second space portion 261 on the outer peripheral side, so that the second space portion does not reduce the torque. It is possible to reduce the distance between the 261 and the magnet 210.
- the distance between the second space portion 261 and the magnet 210 can be made smaller than the width of the magnet 210, and the inertia can be reduced. Further, it is preferable that the distance between the second space portion 261 and the magnet 210 is equal to or less than the width of the magnet 210.
- the inner circumference of the q-axis 250 is located between the second space portion 261 and the magnet 210 on the inner circumference side of the magnet 210.
- the convex third space portion 262 By having the convex third space portion 262 on the side, a high response speed can be realized.
- FIGS. 9A, 13 and 14 it is necessary to have a convex shape on the inner circumference rather than a convex shape on the outer circumference of the q-axis, and a magnetic path width of 0.5 times or more the magnet width / 2 is required. Was shown.
- FIGS. 9A, 9B, and 10 the thinner the thickness of the umbrella-shaped core 230, the greater the effect, and from FIGS.
- the permanent magnet type rotary electric machine 1 of this embodiment When the permanent magnet type rotary electric machine 1 of this embodiment is used for the eVTC, the optimum control of the opening / closing timing of the intake / exhaust valve of the engine becomes easy according to the engine speed and the load. This makes it possible to improve engine output and fuel efficiency. Further, the adoption of the permanent magnet type rotary electric machine 1 of this embodiment is not limited to the automobile field, and can be applied to an industrial type rotary electric machine that requires responsiveness.
- FIG. 17 is a cross-sectional view of the permanent magnet type rotary electric machine 1 of the third embodiment with a circumference of 1/4 in the rotating surface, and corresponds to FIG. 2 described in the first embodiment. A part of the description in common with the first embodiment will be omitted.
- the permanent magnet type rotary electric machine 1 described in the first embodiment is an embedded permanent magnet type rotary electric machine, but the permanent magnet type rotary electric machine 1 in this embodiment is a surface permanent magnet type rotary electric machine.
- a magnet 210 is provided on the outer periphery of the rotor core 200, magnet stoppers 211 are provided on both sides of the magnet 210 in the circumferential direction, a non-magnetic metal tube 235 that covers the outer periphery of the magnet 210 and is continuous in the circumferential direction, and a magnet stopper 211 on the outer periphery.
- the distance between the first space 213 separated by the magnet 210 and the metal tube 235 and the magnet 210 inside the magnet 210 is less than or equal to the magnet thickness, and the second space 261 has the longest radial length at the center of the magnetic pole. It is located between the second space portion 261 and the magnet 210 on the inner peripheral side of the magnet 210, and has a convex third space portion 262 on the inner peripheral side of the q-axis 250.
- the magnet 210 in the third embodiment has a shape called a D-shape in the cross section inside the rotating surface, and in this embodiment, the inner circumference is a straight line and the outer circumference is an arc with a large circumferential length. I have to. Since the amount of magnet used in this shape is about 60% higher than that in the second embodiment, a higher torque can be obtained than in the second embodiment. However, the amount of torque / magnet used is 30% smaller than that of the second embodiment. Further, since the second space portion 261 and the third space portion 262 move to the inner peripheral side due to the thickness of the magnet 210, the inertia is based on the case where the cylindrical rotor core 200 has no space except for the magnet 210. Inertia ratio is 3.4%, which is larger than that of the second embodiment.
- the positional relationship and shape of the second space portion 261 and the third space portion 262 are the same as those in the first embodiment. Therefore, even in the surface permanent magnet type rotary electric machine, the inertia is reduced by the third space portion 262 as in the description of FIGS. 4A to 16.
- FIG. 18 is a cross-sectional view of the permanent magnet type rotary electric machine 1 of the fourth embodiment with a circumference of 1/4 in the rotating surface, and corresponds to FIG. 2 described in the first embodiment. A part of the description in common with the first embodiment will be omitted.
- the permanent magnet type rotary electric machine 1 of the first embodiment is a single-character type embedded permanent magnet type rotary electric machine 1 having one magnet 210 on the magnetic pole portion 220, but the fourth embodiment As shown in FIG. 18, the permanent magnet type rotary electric machine 1 has two magnets 210A and 210B on the magnetic pole portion 220, and the angle formed by the outer peripheral side surfaces of the two magnets 210A and 210B is a reverse V larger than 180 degrees. It is an embedded permanent magnet type rotary electric machine 1 having a character arrangement.
- the rotor core 200 has one magnet insertion hole 201 long in the circumferential direction, a magnet accommodating portion 212 provided between two magnet fixing portions 211 at both ends of the magnet insertion hole 201, and an outer circumference of the magnet accommodating portion 212. It has an umbrella-shaped core 230 on the side.
- the radius of the magnetic pole arc 219 of the umbrella-shaped core 230 is smaller than the radius of gyration 218 of the rotor 20, and two magnets 210A and 210B are arranged in the magnet insertion hole 201, and the angle formed by the outer peripheral side surfaces of the two magnets 210A and 210B. Consists of an inverted V-shape arrangement greater than 180 degrees.
- the rotor core 200 has a magnet stop portion B215 on the inner peripheral side of the center of the umbrella-shaped core 230 and a first space portion B214 on the inner peripheral side of the magnet stop portion B215.
- the arc radius of the magnetic pole portion 220 in the fourth embodiment is smaller than the turning radius of the rotor 20, which may cause a decrease in torque, but the torque is increased by extending the magnet width to the magnetic pole end portion. .. Further, by making the arc radius of the magnetic pole portion 220 smaller than the turning radius of the rotor 20, the pulsation of the torque can be reduced, so that the minimum value of the pulsating torque can be increased.
- the motor does not start rotating unless the torque for rotating the rotor 20 is generated against the load, so it is necessary to make the minimum value of the pulsating torque larger than the required starting torque.
- the inventor has found that the minimum value of the pulsating torque can be increased by making the arc radius of the magnetic pole portion 220 smaller than the turning radius of the rotor 20. That is, with this configuration, the response from the start can be speeded up.
- the positional relationship and shape of the second space portion 261 and the third space portion 262 are the same as those in the first embodiment. Therefore, in the embedded permanent magnet type rotary electric machine of the fourth embodiment, the presence of the third space portion 262 reduces the inertia as described in FIGS. 4A to 16.
- FIG. 19 is a diagram showing changes in the average torque and both amplitudes depending on the radius of the magnetic pole arc of the fourth embodiment, with the average torque / (average torque at the radius of the magnetic pole arc) and both amplitudes / average torque as the vertical axis.
- the horizontal axis is the radius of the arc of the magnetic pole / the radius of rotation.
- both amplitude ratios (both amplitudes / average torque) indicate the magnitude of torque pulsation.
- FIG. 20 is a diagram showing a change in the minimum torque depending on the magnetic pole arc radius of the fourth embodiment, with the maximum value of the minimum torque / minimum torque being the vertical axis and the magnetic pole arc radius / turning radius being the horizontal axis.
- the angle formed by the outer peripheral side surfaces of the two magnets 210A and 210B is 180 degrees, so that the one-character type embedded permanent magnet type rotating electric machine as shown in FIG. 21 Is equivalent to.
- the average torque decreases as the radius of the magnetic pole arc decreases.
- the two-amplitude ratio was about 0.2 (see FIG. 19).
- the fourth embodiment is the same as the second embodiment except for the rotor structure, but when the fourth embodiment and the second embodiment, which use a large amount of magnets, are compared, the magnetic pole arc radius / turning radius is 0. At 6.6 or higher, the average torque in the fourth embodiment was larger than that in the second embodiment. Further, the minimum value of the pulsating torque became larger than that of the second embodiment when the maximum value of the minimum torque / minimum torque was 0.91 or more. From this, it can be said that the fourth embodiment has higher performance than the second embodiment when the magnetic pole arc radius / turning radius is 0.6 to 0.95.
- the reference is when there is no space portion in the cylindrical rotor core 200 except for the magnets 210A and 210B.
- Inertia increased by 8.2% in terms of the inertia ratio. Therefore, it is preferable to use a range of magnetic pole arc radius / turning radius of 0.65 to 0.9, which is within 3% of the maximum value in FIG. 20 and a large torque can be obtained.
- each embodiment of the present invention is superior to the conventional configuration in that torque reduction is suppressed, inertia is reduced, and response is improved, and it has been shown to be effective. That is, the structure of the permanent magnet type rotary electric machine 1 described in each embodiment is effective for increasing the response.
- the permanent magnet type rotary electric machine 1 of this embodiment when used for the eVTC, the optimum control of the opening / closing timing of the intake / exhaust valve of the engine becomes easy according to the engine speed and the load. This makes it possible to improve output and fuel efficiency. Furthermore, the adoption of the permanent magnet type rotary electric machine 1 of this embodiment is not limited to the automobile field, and can be applied to an industrial rotary electric machine that requires responsiveness.
- the present invention is not limited to the above-described embodiment, and includes various modifications and equivalent configurations within the scope of the attached claims.
- the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the described configurations.
- a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
- the configuration of another embodiment may be added to the configuration of one embodiment.
- other configurations may be added / deleted / replaced with respect to a part of the configurations of each embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
磁気抵抗増加とトルク低下を抑制しつつ、ロータイナーシャを低減する。 コイルが巻装されるステータと、ステータの内周側に回転可能に軸支されるロータとを備える回転電機であって、ロータは、軟磁性金属で形成されるコアと、コアに装着される磁石とを有し、コアは、磁石が装着される磁石挿入孔と、磁石挿入孔において、磁石のq軸側に設けられる第1磁石止め部と、磁石挿入孔の両側の第1磁石止め部の間に設けられる磁石収容部と、磁石挿入孔と連通する第1空間部と、前記磁石との距離が前記磁石の厚み以下であり、磁極中央の径方向長さが長く、磁石より内周側に形成される第2空間部と、磁石のq軸内周側に凸形状であり、第2空間部と磁石の間に形成される第3空間部とを有する。
Description
本発明は、回転電機に関し、特に、自動車用電動可変バルブタイミング装置への使用に好適な永久磁石式のブラシレスモータに関する。
近年の自動車は、油圧システムから電動システムへの移行や、ハイブリッド自動車、電気自動車の市場拡大によって、エンジンの吸排気弁の開閉タイミングをエンジンの回転数と負荷に応じて最適な値に変化させる可変バルブタイミング装置(eVTC)の電動化が進展している。可変バルブタイミング装置の電動化によって、油圧式におけるエンジンが冷えた状態の油の流動性低下や低回転領域の油圧低下による作動しにくさが解消され、さらに出力や燃費の向上が可能になるためである。
エンジン回転数と負荷に応じて、エンジンの吸排気弁の開閉タイミングを制御する際には、eVTCの応答が速いほど最適な制御を実施しやすいため、eVTCに用いられる電気モータには高応答が求められる。
高応答を求めるブラシレスモータの先行技術として、特許文献1がある。特許文献1に記載された発明は、回転軸を中心に回転可能に支承されたロータとステータとを有する電気機器に関し、該ロータは少なくとも1つの永久磁石を有する。前記ロータはロータ本体に、前記回転軸に対して平行に交番的に、磁界集束領域と無磁界領域とを有するものである。
特許文献1に開示されたブラシレスモータは、応答速度の向上に関して改良の余地が多く残されている。本発明では、ロータイナーシャを低減するとともに、磁気抵抗増加とトルク低下を抑制できるモータを提供する。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、回転電機であって、コイルが巻装されるステータと、前記ステータの内周側に回転可能に軸支されるロータとを備え、前記ロータは、軟磁性金属で形成されるコアと、前記コアに装着される磁石とを有し、前記コアは、前記磁石が装着される磁石挿入孔と、前記磁石挿入孔において、前記磁石のq軸側に設けられる第1磁石止め部と、前記磁石挿入孔の両側の前記第1磁石止め部の間に設けられる磁石収容部と、前記磁石挿入孔と連通する第1空間部と、前記磁石との距離が前記磁石の厚み以下であり、磁極中央の径方向長さが長く、前記磁石より内周側に形成される第2空間部と、前記磁石のq軸内周側に凸形状であり、前記第2空間部と前記磁石の間に形成される第3空間部とを有することを特徴とする。
本発明によれば、磁気抵抗増加とトルク低下を抑制しつつ、ロータイナーシャを低減できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
本発明の実施例について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同一の構成要素については、同一の符号を付して説明を省略する。
(第1の実施例) 図1及び図2を用いて、本発明の第1の実施例のロータコア200を備える永久磁石式回転電機1の構成を説明する。図1は、第1の実施例の永久磁石式回転電機1の回転面内断面図であり、図2は、図1に示す回転電機の1/4周の拡大図である。
図1に示すように、永久磁石式回転電機1は、外周側に略環状のステータ(固定子)10を配置し、内周側に略円柱状のロータ(回転子)20を配置した、8極12スロット集中巻の永久磁石式回転電機1である。ステータ10とロータ20の間にはエアギャップ30が設けられている。ステータ10は、ステータコア100、コアバック110および複数の巻線140を有しており、エアギャップ30を介してロータ20と対向して配置されている。
ステータ10は、例えば次のように製造される。まず、電磁鋼板又は軟磁性金属板の一体打ち抜きコア材を積層したステータコア積層体で、内周側に放射状のティース130を複数形成する。次に、各ティース130に導線を設置して巻線140を形成した後、図示しないハウジングに焼嵌め又は圧入して一体化する。このようにして、ステータ10が製造される。
また、ロータ20は、電磁鋼板などの軟磁性金属板を積層した鉄心であるロータコア200と、回転軸となるシャフト300とを有する。ロータコア200は外周輪郭が真円であり、ロータコア200の外周には、周方向に8極の磁極部220が設けられている。磁極部220の各々は、周方向に長い一つの磁石挿入孔201を有する。磁石挿入孔201の両端の内周側には磁石止め部211が形成され、磁石止め部211の間の磁石挿入孔201には磁石収容部212が形成され、一つの磁石収容部212に一つの磁石210が配置される。
また、図2に示すように、ロータ20は、磁石止め部211の外周側に磁石挿入孔201と連通する第1空間部213を有し、第1空間部213の外周側にブリッジ部242を有する。また、磁石収容部212の外周側には傘状コア230が形成されている。また、磁石210より内側に磁石210との距離が磁石210の厚み以下であり、磁極部220の中央における径方向長さが最長の第2空間部261が形成されている。また、磁石210より内周側で、第2空間部261と磁石210の間の位置にあり、q軸250の内周側に凸形状の第3空間部262が形成されている。
ここで、第1の実施例における磁極部220の外周形状は円筒状であり、その半径はロータ20の半径と一致する。磁石210は、隣接する磁極の磁石210との間の距離が短く、周方向に長く、高トルクを得やすい形状になっている。このため、高トルクにより応答を高めることができる。
一方、第3空間部262がq軸250の内周側に凸形状であるのは、隣り合う二つの磁極部220に配置される二つの磁石210の間を結ぶ磁束の流れを妨げず、ロータコア200の磁気抵抗の増加を抑制して、磁気抵抗増加によるトルク低下を抑制するためである。このため、第3空間部262から外周側のコアの最小幅と、第3空間部262と第2空間部261の間のコアの最小幅の和は、磁石幅/2の約0.57倍にしている。この比は0.5倍以上であることが好ましい。
また、第1空間部213、第2空間部261及び第3空間部262の存在によって、イナーシャを低減して応答性を高めている。各空間部の効果については、第2の実施例において説明する。
(第2の実施例) 次に、図3を用いて、本発明の第2の実施例の永久磁石式回転電機1を説明する。図3は、第2の実施例の永久磁石式回転電機1の回転面内1/4周の断面図であり、第1の実施例で説明した図2と対応している。なお、第1の実施例と共通の部分は説明を一部省略する。
図3において、磁極部220の中心を見込む角度を磁極ピッチ角とすると、傘状コア230の径方向厚みは、回転半径×(1-cos(磁極ピッチ角/2))×0.55+ブリッジ幅より小さい。ここで、磁石止め部211の磁極部中央に最も近い点から磁極部中央線に平行な直線と、傘状コア230の内周との交点を点Rとする。また、隣接磁極の点Rに向かい合う同様の点を点R’とする。このとき、隣り合う磁石収容部212に向かい合う点Rと点R’のなす中心角をCとすると、C/(磁極ピッチ角/2)≒2/3になる。
また、第1空間部213と回転中心を結ぶ直線のq軸となす角度が最小になる点を点Qとすると、第1の空間部の点Qと中心を結ぶ直線と、点Rと中心を結ぶ直線のなす角をDとして、D/(磁極ピッチ角/2)≒2/9であり、点Qより点Rに近いD/2以内の範囲では、ブリッジ幅がほぼ一定である。また、q軸外周に回転子外周に開放されて外周側ほど周方向幅が広い溝空間部222を有する。溝空間部222によって、トルクを減らすことなくイナーシャを減らしている。
また、第1空間部213と回転中心を結ぶ直線のq軸となす角度が最小になる点を点Qとすると、第1の空間部の点Qと中心を結ぶ直線と、点Rと中心を結ぶ直線のなす角をDとして、D/(磁極ピッチ角/2)≒2/9であり、点Qより点Rに近いD/2以内の範囲では、ブリッジ幅がほぼ一定である。また、q軸外周に回転子外周に開放されて外周側ほど周方向幅が広い溝空間部222を有する。溝空間部222によって、トルクを減らすことなくイナーシャを減らしている。
ここで、第2の実施例における磁極部220の外周形状は、傘状コア230と点Qより点Rに近いD/2以内の範囲では、円筒状であり、その半径はロータ20の半径と一致する。磁石210の中心を見込む角度は(磁極ピッチ角×2/3)程度になっており、第1の実施例よりも磁石210をステータ10に近づけられる形状になっている。第2の実施例の図3の形状では、傘状コア230の径方向厚み-ブリッジ幅は、回転半径×(1-cos(磁極ピッチ角/2))の0.45倍であり、第1の実施例の図2の形状の0.68倍よりも小さい。
ここで、三次元磁場解析シミュレーションによってモータ特性を評価すると、トルク/磁石使用量は、第1の実施例の1.1倍である。これは、磁石幅の減少よりトルクの減少が緩やかなためであり、傘状コア230の厚さが薄く、磁石210がステータ10に近い方がトルクが大きいためある。傘状コア230の厚みの増加によってトルクが減少するが、傘状コア230の径方向厚み-ブリッジ幅は、回転半径×(1-cos(磁極ピッチ角/2))の0.55倍以内であれば、図3の形状に対して1.5%以内の低下になるため、望ましくは、傘状コア230の径方向厚み-ブリッジ幅は、回転半径×(1-cos(磁極ピッチ角/2))の0.55倍以内である。以下のモータ特性の評価には、三次元磁場解析シミュレーションを用いる。
第2の実施例においては、第1空間部213が増大し、溝空間部222が追加されるのに加えて、磁石幅が減少して磁石210がステータ10に近づいて、第2空間部261が外周側に増大するため、ロータコア200が特に外周側で減肉される。このため、円筒ロータコア200に磁石210を除き空間部が存在しないときを基準としたイナーシャ比が、第1の実施例に比べて5.1%低減される。第2空間部261と第3空間部262の位置関係と形状については、第1の実施例と同様である。以下では、各空間部の効果について説明する。
ここで、第3空間部262の有無、溝空間部222の有無のロータイナーシャとトルクへの影響を図4A、図4B、図4C及び図5~図8を用いて説明する。図4Aは、第1空間部213と溝空間部222が設けられた永久磁石式回転電機1の回転面内1/4周の断面図であり、図4Bは、第1空間部213と溝空間部222と第2空間部261が設けられた永久磁石式回転電機1の回転面内1/4周の断面図であり、図4Cは、第2の実施例の第1空間部213と溝空間部222と第2空間部261と第3空間部262が設けられた永久磁石式回転電機1の回転面内1/4周の断面図である。図5は、ロータ半径に対するイナーシャの変化を示す図であり、図6は、空間部の有無によるロータ半径一定でのトルクの変化を示す図であり、図7は、イナーシャに対するロータ半径の変化を示す図であり、図8は、空間部の有無によるイナーシャ一定でのトルクの変化を示す図である。
図5は、円筒ロータコア200に磁石210を除き空間部が存在しないときを基準としたイナーシャ比(すなわち、空間・溝有イナーシャ/空間・溝無イナーシャ)を縦軸とし、ロータ半径/基準半径を横軸にとったときの、空間部の有無の影響を示す図である。ロータ半径が増加すると、第1空間部213と溝空間部222の存在により、イナーシャは相対的に減小傾向であるが相対比の変化は小さい。これに対して第2空間部261が存在すると、半径が増大するほどイナーシャ比は減少する。これは、磁石210が外周側にあるために第2空間部261の径方向長さが増加するためである。第3空間部262が存在すると、さらにイナーシャ比は減少し、半径が増大するほどイナーシャ比も減少する。イナーシャ比は、基準半径近くで65%に減少しており、応答速度を増加できる。一方、図6に示すように、基準半径近くのトルク比を空間部の有無による、トルクへの影響は小さい。第2空間部261が存在しても、隣接する磁石間の磁束が流れる磁路幅が広いためにトルクの低下は無視できる。また、第3空間部262が存在しても、第2の実施例の構成によって磁路幅を確保して磁気抵抗の増加を抑制しているため、トルクの低下は小さく、0.4%と抑制されている。このように、トルクの低下を小さく抑制でき、第3空間部262だけでイナーシャを10%低減できるため、応答速度を増加できる。
図7は、円筒ロータコア200に磁石210を除き空間部が存在しないときのイナーシャにおいて、基準半径のイナーシャを基準としたイナーシャ比を横軸にとっている。また、ロータ半径/基準半径(すなわち、空間・溝有ロータ半径/空間・溝無ロータ半径)を縦軸としており、空間部の有無の影響を示している。すなわち、あるモデルにおけるイナーシャを基準としてイナーシャを変化させたとき、空間・溝の有無の各場合に、空間・溝無しの形態と比べて、ロータ半径を増加できる比率を示す。太い破線で示すように、イナーシャ比が増加しても、第1空間部213と溝空間部222の存在によって、ロータ半径が小さく増加する。これに対して、細い破線で示すように、第2空間部261が存在すると、イナーシャ比が増大するとロータ半径が増加する。これは、磁石210が外周側にあるために第2空間部261の径方向長さが増加してイナーシャを低減しやすく、同じイナーシャでロータ半径を大きくしやすいためである。実線で示すように、第3空間部262が存在すると、さらにロータ半径は増加し、イナーシャ比が増大するほど半径も大きく増加する。ロータ半径は、基準半径近くで17%増加しており、トルクを増加できる。
図8は、同じイナーシャにおける、空間部の存在によるトルク増加を、図4Aの構造を基準として示した説明図である。空間部の存在によって同じイナーシャでロータ半径を増加でき、ロータ半径の増加によってトルク増加できる。このため、そのトルク増加を図8に示す。図8から、第2空間部261によって、同じイナーシャでトルクを9%増加でき、第3空間部262によって、同じイナーシャでトルクをさらに7%増加できる。これにより、応答速度を増加できる。
このように、図4A~図8を用いた説明から分かるように、磁石210より内周側にあって第2空間部261と磁石210の間の位置にあり、q軸250の内周側に凸形状の第3空間部262によって、高い応答速度を実現できる。
ここで、第2の実施例は、第1の実施例と比較すると、イナーシャが減少してトルクが増加するため、応答速度を高めることができる。また、第1の実施例と第2の実施例のイナーシャの差によって、第3空間部262によるイナーシャ低下が大きいため、本実施例の構成による効果が大きいことが分かる。
次に、図9A、図9B、図10を用いて、傘状コア230の厚さの影響を説明する。図9Aは、第2の実施例の永久磁石式回転電機1の回転面内1/4周の断面図であり、図9Bは、図9Aに示す傘状コア230の厚さHを1.5倍した永久磁石式回転電機1の回転面内1/4周の断面図である。図10は、図9Aと図9Bの構成におけるトルクとイナーシャの変化を示す図であり、図9Aを基準としている。
図10に示すように、傘状コア230の厚さの1.5倍増加によって、トルクが5%減少する。これは、傘状コア230の厚さ増加により、磁石210とステータ10の距離が増加し、ロータ内部の磁束漏れが増加するためである。また、イナーシャは3.4%増加した。この理由は、傘状コア230の厚さ増加による外周側ロータコアの増加と、第2空間部261と第3空間部262の内周側への後退である。このことから、高トルクと低イナーシャの両立のために、磁石位置がステータ10に近い方が好ましいことが示された。
また、図9Bの傘状コア230の厚さ-ブリッジ幅は、回転半径×(1-cos(磁極ピッチ角/2))の0.77倍である。従って、傘状コアの厚さ-ブリッジ幅が、回転半径×(1-cos(磁極ピッチ角/2))の0.55倍であれば、比例配分により、トルク低下が1.5%程度になる。
また、図9Bの傘状コア230の厚さ-ブリッジ幅は、回転半径×(1-cos(磁極ピッチ角/2))の0.77倍である。従って、傘状コアの厚さ-ブリッジ幅が、回転半径×(1-cos(磁極ピッチ角/2))の0.55倍であれば、比例配分により、トルク低下が1.5%程度になる。
ここで、本発明が対象とする回転電機は、小型、低出力用途であるため、傘状コア230の厚さが薄いことによる磁石渦電流による温度上昇は問題にならない。このため、薄い傘状コア230を使用できる。
次に、図11A、図11B及び図12を用いて、第3空間部262の磁石210との距離の影響を説明する。図11Aは、磁石210と第3空間部262が近い距離D3にある構成を示す図であり、図11Bは、磁石210と第3空間部262が遠い距離D3×5.9にある構成を示す図であり、磁石210と第3空間部262の距離は図11Aの5.9倍である。図12は、磁石210と第3空間部262の距離によるトルクとイナーシャの変化を示す図である。図12は、磁石210と第3空間部262の距離/D3を横軸として、図11Aを基準として、トルク比とイナーシャ比を示す。図12に示すように、磁石210と第3空間部262の距離/D3が増加して、第3空間部262が内周に移動すると、トルクは0.3%微増するのに対して、イナーシャは4%近く増加した。このことから、第3空間部262は可能な限り外周側にある方が、イナーシャが低下して高応答になることが示された。
次に、図9A、図13及び図14を用いて、第3空間部262のq軸上の凸方向の向きの影響を説明する。図13は、図9Aにおける第3空間部262を内側と外側で反転させた形状を有し、反転によって第2空間部261と第3空間部262の距離が縮小した構成を示す図である。また、図13は、第3の空間部が磁束の流れを妨げる形状になった場合を示す図である。図14は、図9Aと図13の構成におけるトルクとイナーシャの変化を示す図であり、図9Aを基準としており、第3空間部262のq軸凸方向の向きが内周か外周かによるトルクとイナーシャの変化を示す。図14に示すように、第3空間部262のq軸凸方向の反転によって、トルクは13%と大きく減少した。これは、第2空間部261と第3空間部262の間の磁路幅が減少して磁気抵抗が増加したためである。また、イナーシャは0.8%とわずかに増加した。これは、第3空間部262の外周側が内周に移ったためである。このことから、高トルクと低イナーシャの実現のために、第3空間部262はq軸外周側に凸であるよりq軸250の内周側に凸であるべきことが示された。
ここで、第3空間部262から外周側のコアの最小幅と、第3空間部262と第2空間部261の間のコアの最小幅の和は、磁石幅/2の0.36倍であり、図9Aの場合は、0.53倍である。従って、この比が0.5倍であれば、比例配分により、トルク低下が2%程度になる。このように、この比は0.5倍以上であることが好ましい。
ここで、第3空間部262から外周側のコアの最小幅と、第3空間部262と第2空間部261の間のコアの最小幅の和は、磁石幅/2の0.36倍であり、図9Aの場合は、0.53倍である。従って、この比が0.5倍であれば、比例配分により、トルク低下が2%程度になる。このように、この比は0.5倍以上であることが好ましい。
次に、図9A、図15、図16を用いて、第2空間部261と磁石210の距離の影響を説明する。図15は、磁石210と第2空間部261が遠い場合の構成を示す図であり、図9Aが第2空間部261と磁石210の距離磁石厚さの0.75倍であるのに対して、図15は1.75倍になっている。図16は、図9Aと図15の構成におけるトルクとイナーシャの変化を示す図である。
図16に示すように、第2空間部261と磁石210の距離が大きいと、トルク変化は無視できるが、イナーシャは10%増加した。これは、第2空間部261の外周側が内周に縮んだためである。このことから、低イナーシャのためには、第2空間部261と磁石210の距離はできるだけ小さい方がよいことが示された。本発明の構成では、第3空間部262の存在により、イナーシャを低下させて、かつ、第2空間部261の外周側の周方向幅を小さくできるため、トルクを低下させずに第2空間部261と磁石210の距離を小さくすることが可能である。このため、第2空間部261と磁石210の距離は磁石210の幅以下にできて、イナーシャを低減できる。また、第2空間部261と磁石210の距離は磁石210の幅以下にすることが好ましい。
このように、図4A~図8を用いた説明から分かるように、前記磁石210より内周側にあって前記第2空間部261と磁石210の間の位置にあり、q軸250の内周側に凸形状の第3空間部262を有することにより、高応答速度を実現できる。また、図9A、図13、図14から、q軸外周に凸形状であるより内周に凸形状である必要があり、磁石幅/2の0.5倍以上の磁路幅が必要であることが示された。また、図9A、図9B、図10から、傘状コア230の厚さは薄い方が効果が大きいこと、また、図11A、図11B、図12から、第3空間部262と磁石210石との距離が近い方が効果が大きいこと、また、図9A、図15、図16から、第2空間部261と磁石210との距離が近い方が効果が大きいことが示された。
これらのことから、本発明の構成により、効果的に高応答速度を実現できることがわかる。
なお、本実施例の永久磁石式回転電機1をeVTCに用いると、エンジン回転数と負荷に応じて、エンジンの吸排気弁の開閉タイミングの最適な制御が容易となる。これによって、エンジンの出力や燃費の向上が可能となる。さらに、本実施例の永久磁石式回転電機1の採用は自動車分野に限定されず、応答性が必要とされる産業用の式回転電機にも適用可能である。
(第3の実施例) 次に、図17を用いて、本発明の第3の実施例の永久磁石式回転電機1を説明する。図17は、第3の実施例の永久磁石式回転電機1の回転面内1/4周の断面図であり、第1の実施例で説明した図2と対応している。なお、第1の実施例と共通の部分は説明を一部省略する。
第1の実施例で説明した永久磁石式回転電機1は、埋め込み永久磁石型回転電機であるが、本実施例の永久磁石式回転電機1は、表面永久磁石型回転電機である。
ロータコア200の外周には磁石210と、磁石210の周方向両側に磁石止め部211と、磁石210の外周を覆って周方向に連続した非磁性の金属管235と、磁石止め部211の外周にあって磁石210と金属管235で区切られる第1空間部213と、磁石210より内側に磁石210との距離が磁石厚み以下であり、磁極中央の径方向長さが最長の第2空間部261と、磁石210より内周側で、第2空間部261と磁石210の間の位置にあり、q軸250の内周側に凸形状の第3空間部262とを有する。
ここで、第3の実施例における磁石210は、回転面内断面において、D型形状と呼ばれる形状になっており、本実施例では内周が直線で外周が円弧の周方向長さの大きい形状にしている。この形状は、磁石使用量が第2の実施例より60%程度多いために、第2の実施例より高トルクが得られる形状になっている。ただし、トルク/磁石使用量は第2の実施例より30%小さい。また、磁石210が厚いことによって、第2空間部261と第3空間部262が内周側に移動するため、イナーシャは、円筒ロータコア200に磁石210を除き空間部が存在しないときを基準としたイナーシャ比で見て3.4%第2の実施例より大きくなる。
第2空間部261と第3空間部262の位置関係と形状については、第1の実施例と同じである。このため、表面永久磁石型回転電機においても、第3空間部262によって、図4A~図16の説明と同様にイナーシャが低減される。
(第4の実施例) 次に、図18を用いて、本発明の第4の実施例の埋め込み永久磁石式回転電機1を説明する。図18は、第4の実施例の永久磁石式回転電機1の回転面内1/4周の断面図であり、第1の実施例で説明した図2と対応している。なお、第1の実施例と共通の部分は説明を一部省略する。
第1の実施例の永久磁石式回転電機1は、図2に示すように、磁極部220に一つの磁石210を有する一文字型の埋め込み永久磁石式回転電機1であるが、第4の実施例の永久磁石式回転電機1は、図18に示すように、磁極部220に二つの磁石210Aと210Bを有し、二つの磁石210A、210Bの外周側側面のなす角度が180度より大きい逆V字配置を有する埋め込み永久磁石式回転電機1である。
図18において、ロータコア200は、周方向に長い一つの磁石挿入孔201と、磁石挿入孔201の両端の二つの磁石止め部211の間に設けられる磁石収容部212と、磁石収容部212の外周側に傘状コア230とを有する。傘状コア230の磁極円弧219の半径は、ロータ20の回転半径218より小さく、磁石挿入孔201に二つの磁石210Aと210Bが配置されて、二つの磁石210A、210Bの外周側側面のなす角度が180度より大きい逆V字配置を構成する。また、ロータコア200は、傘状コア230の中央の内周側に磁石止め部B215と、磁石止め部B215の内周側に第1空間部B214とを有する。
ここで、第4の実施例における磁極部220の円弧半径は、ロータ20の回転半径より小さく、トルクが減少する要因となり得るが、磁石幅を磁極端部まで伸ばすことによってトルクを増加している。また、磁極部220の円弧半径をロータ20の回転半径より小さくすることによって、トルクの脈動を低減できるため、脈動トルクの最小値を大きくできる。
始動時には、負荷に対抗してロータ20を回転させるトルクを発生させないと、モータが回転を開始しないため、必要とされる始動時のトルクより脈動トルクの最小値を大きくする必要がある。発明者は、磁極部220の円弧半径をロータ20の回転半径より小さくすることによって、脈動トルクの最小値を大きくできることを見出した。すなわち、この構成により、始動からの応答を高速化できる。
また、第2空間部261と第3空間部262の位置関係と形状は、第1の実施例と同じである。このため、第4の実施例の埋め込み永久磁石型回転電機においては、第3空間部262の存在によって、図4A~図16の説明と同様にイナーシャが低減される。
ここで、図19~図21を用いて、本実施例の構成によって、脈動トルクの最小値を大きくできることを説明する。図19は、第4の実施例の磁極円弧半径による平均トルクと両振幅の変化を示す図であり、平均トルク/(磁極円弧半径での平均トルク)と両振幅/平均トルクを縦軸とし、磁極円弧半径/回転半径を横軸としている。図19において、両振幅比(両振幅/平均トルク)はトルク脈動の大きさを示す。図20は、第4の実施例の磁極円弧半径による最小トルクの変化を示す図であり、最小トルク/最小トルクの最大値を縦軸とし、磁極円弧半径/回転半径を横軸としている。ここで、磁極円弧半径と回転半径とが等しい場合は、二つの磁石210A、210Bの外周側側面のなす角度が180度になるため、図21に示すような一文字型の埋め込み永久磁石型回転電機と同等になる。
図19に示すように、磁極円弧半径が減少すると平均トルクは減少する。それと共に、トルク脈動が減少して、磁極円弧半径/回転半径=0.57で両振幅比が最小になった。
これに対して、トルクの最小値は、図20に示すように、磁極円弧半径の減少とともに増加し、磁極円弧半径/回転半径=0.75で最大になり、さらに磁極円弧半径が減少すると最小トルクが減少した。磁極円弧半径/回転半径=0.5のときの両振幅比は約0.2であった(図19参照)。
これに対して、トルクの最小値は、図20に示すように、磁極円弧半径の減少とともに増加し、磁極円弧半径/回転半径=0.75で最大になり、さらに磁極円弧半径が減少すると最小トルクが減少した。磁極円弧半径/回転半径=0.5のときの両振幅比は約0.2であった(図19参照)。
第4の実施例はロータ構造以外は第2の実施例と同一であるが、磁石使用量が多い第4の実施例と第2の実施例とを比較すると、磁極円弧半径/回転半径が0.6以上で、第4の実施例における平均トルクが第2の実施例より大きくなった。また、脈動トルクの最小値は、最小トルク/最小トルクの最大値が0.91以上のときに、第2の実施例より大きくなった。このことから、第4の実施例は、磁極円弧半径/回転半径が0.6~0.95のときに第2の実施例を超える性能であるといえる。ただし、磁石使用量が29%程度増加し、第2空間部261と第3空間部262が内周側に移動するため、円筒ロータコア200に磁石210A、210Bを除き空間部が存在しないときを基準としたイナーシャ比で見て、イナーシャが8.2%増加した。このため、好ましくは、図20において最大値から3%以内であって大きいトルクが得られる、磁極円弧半径/回転半径が0.65~0.9の範囲を用いるとよい。
以上説明したように、本発明の各実施例の構成は、トルク低下を抑制してイナーシャを低減して高応答化する点で従来構成より優れており、効果があることが示された。すなわち、各実施例で説明した永久磁石式回転電機1の構造は、高応答化に有効である。
また、本実施例の永久磁石式回転電機1をeVTCに用いると、エンジン回転数と負荷に応じて、エンジンの吸排気弁の開閉タイミングの最適な制御が容易になる。これによって、出力・燃費の向上が可能になる。さらには、本実施例の永久磁石式回転電機1の採用は自動車分野に限定されず、応答性が必要とされる産業用の回転電機にも適用可能である。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。
また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
1 永久磁石式回転電機
10 ステータ
20 ロータ
30 エアギャップ
100 ステータコア
110 コアバック
130 ティース
140 巻線
200 ロータコア
201 磁石挿入孔
210 磁石
211 磁石止め部
212 磁石収容部
213 第1空間部
214 第1空間部B
215 磁石止め部B
218 回転半径
219 磁極円弧
220 磁極部
222 溝空間部
230 傘状コア
235 金属管
242 ブリッジ部
261 第2空間部
262 第3空間部
250 q軸
300 シャフト
10 ステータ
20 ロータ
30 エアギャップ
100 ステータコア
110 コアバック
130 ティース
140 巻線
200 ロータコア
201 磁石挿入孔
210 磁石
211 磁石止め部
212 磁石収容部
213 第1空間部
214 第1空間部B
215 磁石止め部B
218 回転半径
219 磁極円弧
220 磁極部
222 溝空間部
230 傘状コア
235 金属管
242 ブリッジ部
261 第2空間部
262 第3空間部
250 q軸
300 シャフト
Claims (7)
- 回転電機であって、
コイルが巻装されるステータと、
前記ステータの内周側に回転可能に軸支されるロータとを備え、
前記ロータは、
軟磁性金属で形成されるコアと、
前記コアに装着される磁石とを有し、
前記コアは、
前記磁石が装着される磁石挿入孔と、
前記磁石挿入孔において、前記磁石のq軸側に設けられる第1磁石止め部と、
前記磁石挿入孔の両側の前記第1磁石止め部の間に設けられる磁石収容部と、
前記磁石挿入孔と連通する第1空間部と、
前記磁石との距離が前記磁石の厚み以下であり、磁極中央の径方向長さが長く、前記磁石より内周側に形成される第2空間部と、
前記磁石のq軸内周側に凸形状であり、前記第2空間部と前記磁石の間に形成される第3空間部とを有することを特徴とする回転電機。 - 請求項1に記載の回転電機であって、
前記磁石収容部は、周方向に長く形成されており、
前記第1空間部は、前記磁石挿入孔の両側の前記第1磁石止め部の外周側に形成され、
前記コアは、
前記第1空間部の外周側に設けられるブリッジ部と、
前記磁石収容部の外周側に設けられる傘状コア部とを有することを特徴とする回転電機。 - 請求項2に係る回転電機であって、
前記磁石止め部の磁極部中央に最も近い点から磁極部中央線に平行な直線と、前記傘状コア部の内周との交点を点Rとし、
隣接する磁極の点Rに向かい合う同じ点を点R’とし、
前記第1空間部の回転中心を結ぶ直線のq軸となす角度が最小になる点を点Qとして、
前記傘状コア部の径方向厚みは、回転半径×(1-cos(磁極ピッチ角/2))×0.55+ブリッジ部の幅より小さく、
隣接する前記磁石収容部が向かい合う点Rと点R’がなす中心角をCとして、C/(磁極ピッチ角/2)は略2/3であり、
前記第1空間部の点Qと中心を結ぶ直線と、前記点Rと中心を結ぶ直線とのなす角をDとして、D/(磁極ピッチ角/2)は略2/9であり、
前記点Qより前記点Rに近いD/2以内の範囲では、前記ブリッジ部の幅がほぼ一定であり、
前記磁石のq軸外周に前記コアの外周側に開放されて、外周側の周方向幅が広く形成される溝空間部を有することを特徴とする回転電機。 - 請求項1に記載の回転電機であって、
前記コアは、前記磁石の外周を覆って周方向に連続した金属管を有し、
前記磁石は、前記コアの外周側で前記金属管に接するように前記磁石挿入孔に装着され、
前記第1空間部は、前記第1磁石止め部の外周側に前記磁石と前記金属管の間に形成されることを特徴とする回転電機。 - 請求項1に記載の回転電機であって、
前記コアは、
前記第1空間部の外周側に設けられるブリッジ部と、
前記磁石収容部の外周側に設けられる傘状コア部と、
前記傘状コア部の中央の内周側に設けられる第2磁石止め部とを有し、
前記傘状コア部の円弧半径は前記ロータの回転半径より小さく、
前記第1空間部は、前記第2磁石止め部の内周側に形成され、
前記磁石挿入孔には、外周側側面の角度が180度より大きい逆V字に、二つの前記磁石が装着されることを特徴とする回転電機。 - 請求項1から5のいずれか一つに記載の回転電機において、
前記回転電機は、自動車の電動可変バルブタイミング装置用モータである回転電機。 - 請求項1から5のいずれか一つに記載の回転電機を備え、
前記回転電機を用いて、電動可変バルブタイミング装置を制御する車載電動機システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020005321.0T DE112020005321T5 (de) | 2020-01-14 | 2020-12-15 | Rotierende elektrische maschine und fahrzeuginternes motorsystem |
US17/786,626 US12107470B2 (en) | 2020-01-14 | 2020-12-15 | Rotary electric machine and in-vehicle motor system |
CN202080088340.8A CN114846725A (zh) | 2020-01-14 | 2020-12-15 | 旋转电机以及车载电动机系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-003747 | 2020-01-14 | ||
JP2020003747A JP7348086B2 (ja) | 2020-01-14 | 2020-01-14 | 回転電機、及び車載電動機システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021145119A1 true WO2021145119A1 (ja) | 2021-07-22 |
Family
ID=76864220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046661 WO2021145119A1 (ja) | 2020-01-14 | 2020-12-15 | 回転電機、及び車載電動機システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US12107470B2 (ja) |
JP (1) | JP7348086B2 (ja) |
CN (1) | CN114846725A (ja) |
DE (1) | DE112020005321T5 (ja) |
WO (1) | WO2021145119A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014107913A (ja) * | 2012-11-26 | 2014-06-09 | Honda Motor Co Ltd | 回転電機のロータ |
WO2014171133A1 (ja) * | 2013-04-16 | 2014-10-23 | 日本発條株式会社 | モータのロータ・コアに用いる磁性板及びその製造方法 |
JP2014233114A (ja) * | 2013-05-28 | 2014-12-11 | アスモ株式会社 | ロータ、モータ及び可変バルブタイミング装置 |
JP2016007136A (ja) * | 2013-03-25 | 2016-01-14 | パナソニックIpマネジメント株式会社 | 永久磁石埋込型電動機およびその製造方法 |
JP2017050956A (ja) * | 2015-09-01 | 2017-03-09 | 多摩川精機株式会社 | ロータのマグネット片固定構造 |
JP2017093059A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社安川電機 | 回転電機 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006006882A1 (de) | 2005-11-21 | 2007-05-24 | Robert Bosch Gmbh | Elektromaschine und Rotor für eine Elektromaschine |
CN107887994A (zh) * | 2016-09-30 | 2018-04-06 | 德昌电机(深圳)有限公司 | 电机及其转子 |
WO2018179063A1 (ja) * | 2017-03-27 | 2018-10-04 | 三菱電機株式会社 | 回転子、電動機、圧縮機、送風機、および空気調和装置 |
JP7299775B2 (ja) * | 2019-07-10 | 2023-06-28 | 株式会社ミクニ | 車載用ブラシレスモータ装置およびその製造方法 |
-
2020
- 2020-01-14 JP JP2020003747A patent/JP7348086B2/ja active Active
- 2020-12-15 CN CN202080088340.8A patent/CN114846725A/zh active Pending
- 2020-12-15 US US17/786,626 patent/US12107470B2/en active Active
- 2020-12-15 DE DE112020005321.0T patent/DE112020005321T5/de active Pending
- 2020-12-15 WO PCT/JP2020/046661 patent/WO2021145119A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014107913A (ja) * | 2012-11-26 | 2014-06-09 | Honda Motor Co Ltd | 回転電機のロータ |
JP2016007136A (ja) * | 2013-03-25 | 2016-01-14 | パナソニックIpマネジメント株式会社 | 永久磁石埋込型電動機およびその製造方法 |
WO2014171133A1 (ja) * | 2013-04-16 | 2014-10-23 | 日本発條株式会社 | モータのロータ・コアに用いる磁性板及びその製造方法 |
JP2014233114A (ja) * | 2013-05-28 | 2014-12-11 | アスモ株式会社 | ロータ、モータ及び可変バルブタイミング装置 |
JP2017050956A (ja) * | 2015-09-01 | 2017-03-09 | 多摩川精機株式会社 | ロータのマグネット片固定構造 |
JP2017093059A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社安川電機 | 回転電機 |
Also Published As
Publication number | Publication date |
---|---|
CN114846725A (zh) | 2022-08-02 |
JP2021112076A (ja) | 2021-08-02 |
US20230024138A1 (en) | 2023-01-26 |
JP7348086B2 (ja) | 2023-09-20 |
US12107470B2 (en) | 2024-10-01 |
DE112020005321T5 (de) | 2022-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7042127B2 (en) | Permanent magnet embedded motor | |
EP2015425B1 (en) | Permanent magnet rotating electrical machine and permanent magnet rotating electrical machine system | |
US20070252469A1 (en) | Embedded magnet type rotating electric machine | |
CN1148881A (zh) | 操作控制件的装置 | |
JP4791013B2 (ja) | ブラシレスモータ | |
JP2005253146A (ja) | 電動機 | |
JPWO2018037449A1 (ja) | コンシクエントポール型の回転子、電動機および空気調和機 | |
US5744893A (en) | Brushless motor stator design | |
EP1009091B1 (en) | Actuator device with valve | |
CN115001178A (zh) | 电机转子、电机和电动汽车 | |
WO2021145119A1 (ja) | 回転電機、及び車載電動機システム | |
JP4160299B2 (ja) | 磁気モータアッセンブリ用の磁石およびその製造方法 | |
JPH1066285A (ja) | 永久磁石電動機 | |
WO2016152559A1 (ja) | 回転駆動装置または回転駆動装置を備える遠心式ポンプ装置 | |
JP4848670B2 (ja) | 回転子、電動機、圧縮機、送風機、及び空気調和機 | |
KR101711511B1 (ko) | 자동차 연료펌프용 dc 모터 | |
JP2014107951A (ja) | モータ | |
JP4308378B2 (ja) | ブラシレスdcモータ | |
JP2005020940A (ja) | トルクモータ | |
US6933818B2 (en) | Torque motors | |
KR100514459B1 (ko) | 액츄에이터 | |
JP2008017645A (ja) | 永久磁石埋込型電動機 | |
JP3894464B2 (ja) | アクチュエータ | |
CN220356304U (zh) | 旋转角检测装置 | |
JP2013201810A (ja) | モータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20913537 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20913537 Country of ref document: EP Kind code of ref document: A1 |