WO2021144972A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2021144972A1
WO2021144972A1 PCT/JP2020/001544 JP2020001544W WO2021144972A1 WO 2021144972 A1 WO2021144972 A1 WO 2021144972A1 JP 2020001544 W JP2020001544 W JP 2020001544W WO 2021144972 A1 WO2021144972 A1 WO 2021144972A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
window
delay
communication device
parameters
Prior art date
Application number
PCT/JP2020/001544
Other languages
English (en)
French (fr)
Inventor
邦彦 手島
大輔 平塚
拓人 新井
アニール ウメシュ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP20914135.7A priority Critical patent/EP4093078A4/en
Priority to PCT/JP2020/001544 priority patent/WO2021144972A1/ja
Priority to CN202080091865.7A priority patent/CN114930927A/zh
Priority to BR112022013334A priority patent/BR112022013334A2/pt
Priority to KR1020227024825A priority patent/KR20220129004A/ko
Priority to US17/758,943 priority patent/US20230239824A1/en
Priority to JP2021570610A priority patent/JPWO2021144972A5/ja
Publication of WO2021144972A1 publication Critical patent/WO2021144972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a communication device corresponding to a front hall interface.
  • the O-RAN (Radio Access Network) Alliance was established with the aim of promoting the openness and intelligentization of radio access networks (RAN) in the 5G era, and today many businesses / vendors have joined and discussed. There is.
  • RAN Radio Access Network
  • O-RAN Distributed Unit O-DU
  • O-RAN Radio Unit O-RU
  • O-RAN Distributed Unit O-DU
  • O-RU O-RAN Radio Unit
  • O-DU is a logical node that mainly hosts the wireless link control layer (RLC), medium access control layer (MAC), and PHY-High layer based on the lower layer functional.
  • the O-RU is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • Non-Patent Document 1 In O-RAN, strict timing accuracy is required because the function sharing points of O-DU / O-RU are placed in the physical (PHY) layer. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method (Non-Patent Document 1).
  • ORAN-WG4.CUS.0-v02.00 O-RAN Fronthaul Working Group, Control, User and Synchronization Plane Specification, O-RAN Alliance, August 2019
  • NMS Network Management System
  • an object of the present invention is to provide a communication device capable of appropriately performing delay management of a front hall (FH) using an NMS. ..
  • One aspect of the present disclosure is a communication device, wherein the communication device constitutes a management node that manages at least one of a first base station and a second base station provided on the front hall. At least one of the reception window and the transmission window used in the first base station based on the acquisition unit that acquires the delay profile of the two base stations, the delay profile of the second base station, and the delay parameters defined in the front hall.
  • the gist is to include a control unit for determining the window parameter used for the identification, and a notification unit for notifying the first base station of the window parameter.
  • One aspect of the present disclosure is a communication device, wherein the communication device constitutes a first base station that executes communication with a second base station on a front hall, and the first base station and the second base station. Based on the acquisition unit that acquires the window parameters used for specifying at least one of the reception window and the transmission window used in the first base station from the management node that manages at least one of the above, and the window parameters.
  • a control unit for setting at least one of a reception window and a transmission window is provided, and the window parameters are managed based on the delay profile of the second base station and the delay parameters defined in the front hall.
  • the gist is that it is decided at the node.
  • One aspect of the present disclosure is a communication device, wherein the communication device constitutes a first base station that executes communication with a second base station on a front hall, and from the second base station to the second base station.
  • An acquisition unit that acquires a delay profile of a station and acquires a delay parameter defined in the front hall from a management node that manages at least one of the first base station and the second base station, and the first 2. It is a gist to include a control unit for setting at least one of a reception window and a transmission window used in the first base station based on the delay profile of the base station and the delay parameters.
  • One aspect of the present disclosure is a communication device, wherein the communication device constitutes a management node that manages at least one of a first base station and a second base station provided on the front hall.
  • a notification unit for notifying one base station of the delay parameter defined in the front hall is provided, and the delay parameter is used in the reception window and transmission used in the first base station together with the delay profile of the second base station.
  • the gist is that it is used to set at least one of the windows.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • FIG. 2 is a diagram showing an example of an internal configuration of the gNB 100 that employs the front hole (FH) interface according to the embodiment.
  • FIG. 3 is a diagram showing a network that employs the FH interface according to the embodiment.
  • FIG. 4A is a diagram showing a configuration example (without an intermediate device) of the front hole according to the embodiment.
  • FIG. 4B is a diagram showing a configuration example of the front hole according to the embodiment (with an intermediate device and an FHM configuration).
  • FIG. 4C is a diagram showing a configuration example of a front hole according to the embodiment (with an intermediate device and a cascade configuration).
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • FIG. 2 is a diagram showing an example of an internal configuration of the gNB 100 that employs the front hole (FH) interface according to the embodiment.
  • FIG. 3 is a diagram showing
  • FIG. 5 is a functional block configuration diagram of the NMS 300 according to the embodiment.
  • FIG. 6 is a functional block configuration diagram of the O-DU 110 according to the embodiment.
  • FIG. 7 is a functional block configuration diagram of the O-RU 120 according to the embodiment.
  • FIG. 8 is a diagram showing an example of delay management of a front hole in UL according to the embodiment.
  • FIG. 9 is a diagram showing an example of delay management of the front hole in the DL according to the embodiment.
  • FIG. 10 is a diagram showing an example of the O-RU delay profile according to the embodiment.
  • FIG. 11 is a diagram showing an example of window parameters according to the embodiment.
  • FIG. 12 is a sequence diagram for explaining the first procedure according to the embodiment.
  • FIG. 13 is a sequence diagram for explaining the second procedure according to the embodiment.
  • FIG. 14 is a sequence diagram for explaining the third procedure according to the embodiment.
  • FIG. 15 is a diagram showing an example of the hardware configuration of O-DU110, O-RU120 and N
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, User Equipment 200, hereinafter, UE200). )including.
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 User Equipment 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as a network.
  • GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G.
  • the gNB100 and UE200 include Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC), which communicates simultaneously between the UE and multiple NG-RAN Nodes.
  • Massive MIMO which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • DC dual connectivity
  • the gNB100 adopts the front hole (FH) interface specified by O-RAN.
  • FIG. 2 shows an example of the internal configuration of the gNB100 that employs a front hole (FH) interface.
  • the gNB100 includes an O-DU110 (O-RAN Distributed Unit) and an O-RU120 (O-RAN Radio Unit).
  • O-DU110 and O-RU120 are functionally separated within the physical (PHY) layer defined by 3GPP.
  • the O-DU110 may be called an O-RAN distribution unit.
  • the O-DU110 is a logical node that mainly hosts a wireless link control layer (RLC), a medium access control layer (MAC), and a PHY-High layer based on the lower layer functional.
  • the O-DU110 is provided on the side closer to the NG-RAN20 with respect to the O-RU120.
  • the side closer to NG-RAN20 may be referred to as the RAN side.
  • the O-RU120 may be called an O-RAN radio unit.
  • the O-RU120 is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • the O-RU120 is provided on the side away from the NG-RAN20 with respect to the O-DU110.
  • the side away from the NG-RAN 20 may be referred to as the radio (air) side.
  • the PHY-High layer is the part of PHY processing on the O-DU110 side of the front hole interface, such as Forward Error Correction (FEC) encoding / decoding, scrambling, modulation / demodulation, etc.
  • FEC Forward Error Correction
  • the PHY-Low layer is the part of PHY processing on the O-RU120 side of the front hole interface, such as Fast Fourier Transform (FFT) / iFFT, digital beamforming, Physical Random Access Channel (PRACH) extraction and filtering.
  • FFT Fast Fourier Transform
  • PRACH Physical Random Access Channel
  • O-CU is an abbreviation for O-RANControlUnit, which is a logical node that hosts PacketDataConvergenceProtocol (PDCP), RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and other control functions. ..
  • PDCP PacketDataConvergenceProtocol
  • RRC RadioResourceControl
  • SDAP ServiceDataAdaptationProtocol
  • the front hall (FH) may be interpreted as a line between the baseband processing unit of a wireless base station (base station device) and the wireless device, and an optical fiber or the like is used.
  • FIG. 3 shows a network that employs the FH interface according to the embodiment.
  • the network includes an NMS (Network Management System) 300, an O-DU110, and an O-RU120.
  • NMS Network Management System
  • NMS300 is an example of a management node that manages at least one of O-DU110 and O-RU120.
  • the NMS300 is an example of a non-real-time RIC (RAN Intelligent Controller).
  • the NMS300 may be installed in the core network.
  • the NMS 300 may have an FH delay management function.
  • the interface between the NMS300 and the O-DU110 may be referred to as the A1 interface between the non-real-time RIC and the real-time RIC (eg, gNB100).
  • the O-DU110 may be called an O-RAN distribution unit.
  • the O-DU110 is provided on the FH and is an example of a first base station that executes communication with the O-RU120 on the FH.
  • O-DU110 is provided on the RAN side of O-RU120.
  • the network need only have one or more O-DU110s.
  • O-DU110A and O-DU110B are provided in FIG. 3, a case in which O-DU110A and O-DU110B are provided is illustrated as O-DU110.
  • O-DU110A and O-DU110B may be provided by different vendors or operators.
  • the O-RU120 may be called an O-RAN radio unit.
  • the O-RU120 is provided on the FH and is an example of a second base station that executes communication with the O-DU110 on the FH.
  • O-RU120 is provided on the air side of O-DU110.
  • the network need only have one or more O-RU120s.
  • FIG. 3 illustrates a case where O-RU120A1, O-RU120A2, O-RU120A3, and O-RU120A4 are provided as O-RU120 on the air side of O-DU110A.
  • An example is shown in which O-RU120B1, O-RU120B2, and O-RU120B3 are provided as O-RU120 on the air side of O-DU110B.
  • O-RU120A1 to O-RU120A4 may be provided by different vendors or operators, and O-RU120B1 to O-RU120B3 may be provided by different vendors or operators. Further, O-RU120A1 to O-RU120A4 may be provided by a vendor or operator different from O-DU110A, and O-RU120B1 to O-RU120B3 may be provided by a vendor or operator different from O-DU110B. good.
  • the delay time of FH between O-DU110A and O-RU120A1 may be shorter than the delay time of FH between O-DU110A and O-RU120A2.
  • the FH delay time between O-DU110A and O-RU120A2 may be shorter than the FH delay time between O-DU110A and O-RU120A3.
  • the FH delay time between O-DU110A and O-RU120A3 may be shorter than the FH delay time between O-DU110A and O-RU120A4.
  • the FH delay time between O-DU110B and O-RU120B1 may be shorter than the FH delay time between O-DU110B and O-RU120B2.
  • the FH delay time between O-DU110B and O-RU120B2 may be shorter than the FH delay time between O-DU110B and O-RU120B3.
  • the signals shown below are communicated.
  • signals are communicated on a plurality of planes (for example, U / C / M / S-plane).
  • U-Plane is a protocol for transferring user data
  • C-Plane is a protocol for transferring control signals
  • M-Plane is a management plane that handles maintenance and monitoring signals
  • S-Plane is a protocol for realizing synchronization between devices.
  • the U-Plane signal includes a (DL) signal transmitted by the O-RU120 to the radio section and a (UL) signal received from the radio section, and is exchanged by a digital IQ signal.
  • U-Plane signals data such as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)
  • C-Plane RRC, Non-Access Stratum (NAS), etc.
  • U-Planes from the viewpoint of FH.
  • the C-Plane signal includes signals necessary for various controls related to transmission / reception of U-Plane signals (signals for notifying information related to radio resource mapping and beamforming of the corresponding U-Plane). It should be noted that the signal is completely different from the C-Plane (RRC, NAS, etc.) defined in 3GPP.
  • the M-Plane signal includes the signal necessary for the management of O-DU110 / O-RU120. For example, it is a signal for notifying various hardware (HW) capabilities of O-RU120 to O-RU120 and notifying various setting values from O-DU110 to O-RU120.
  • HW hardware
  • the S-Plane signal is a signal required for synchronous control between O-DU110 / O-RU120.
  • a procedure for setting at least one of the reception window and the transmission window of the O-DU110 will be described under such a background. As such a procedure, the following first to third steps can be considered.
  • the NMS300 acquires the delay profile of each O-RU120 (hereinafter referred to as the O-RU delay profile) from the O-DU110.
  • the NMS300 is based on the delay parameter defined by FH between O-DU110 and O-RU120 (hereinafter referred to as FH delay parameter) and the O-RU delay profile, and at least the receive window and transmit window used in O-DU110. Determine the window parameter used to identify any one.
  • the NMS300 notifies the O-DU110 of the window parameters.
  • the O-DU110 sets at least one of the receive window and the transmit window used in the O-DU110 based on the window parameters.
  • the O-DU110 acquires the O-RU delay profile from each O-RU120.
  • the O-DU110 acquires the FH delay parameter from the NMS300.
  • the O-DU110 sets at least one of the receive window and the transmit window used in the O-DU110 based on the O-RU delay profile and the FH delay parameter.
  • the NMS300 acquires the O-RU delay profile from each O-RU120.
  • the NMS300 determines the window parameter used to identify at least one of the receive window and the transmit window used in the O-DU110 based on the FH delay parameter and the O-RU delay profile.
  • the NMS300 notifies the O-DU110 of the window parameters.
  • the O-DU110 sets at least one of the receive window and the transmit window used in the O-DU110 based on the window parameters.
  • Shared Cell configuration In O-RAN, there is also a stationing method in which one cell is configured with multiple O-RUs, a configuration using a device (FHM: Fronthaul Multiplexing) that bundles O-RUs, and continuous O-RUs. A configuration (cascade configuration) for connecting is being studied. Collectively, these are called Shared Cell. In the network shown in FIG. 3, such a Shared Cell may be adopted.
  • FHM Fronthaul Multiplexing
  • FIGS. 4A to 4C show a configuration example of the front hall.
  • FIG. 4A is an example in which one cell is configured by 1O-RU.
  • FIGS. 4B and 4C show an example of the Shared Cell configuration.
  • FIG. 4B shows a configuration example using FHM130.
  • FIG. 4C shows an example in which O-RU130A is interposed between O-DU110 and O-RU120 and cascade-connected.
  • the FHM130 combines two FH signals from each O-RU120 and then transmits the two FH signals to the O-DU110.
  • the O-RU130A synthesizes the signal received by the O-RU130A (O-RU (1)) itself in the radio section and the FH signal received from the O-RU120 (O-RU (2)). Then send it to O-DU110.
  • FHM130 and O-RU130A are collectively referred to as intermediate device 130.
  • the name of the intermediate device may be called by another name.
  • the intermediate device 130 is provided on the air side of the O-DU110 and on the RAN side of the O-RU120.
  • the intermediate device 130 transfers the DL signal received from the O-DU110 to the O-RU120 for the downlink (DL).
  • the intermediate device 130 may further transmit the DL signal of the O-RU itself.
  • the intermediate device 130 For the uplink (UL), the intermediate device 130 synthesizes the UL signal received from the O-RU120 and transfers it to the O-DU110. In the case of O-RU cascade connection, the radio signal received by O-RU itself is also combined.
  • the O-DU110 can process signals as if one O-RU was connected.
  • FIG. 5 is a functional block configuration diagram of the NMS 300. As shown in FIG. 5, the NMS 300 includes a communication unit 310, an acquisition unit 330, a notification unit 350, and a control unit 370.
  • Communication unit 310 executes communication with O-DU110.
  • the communication unit 310 may execute communication with the O-RU 120.
  • the communication unit 310 executes communication of parameters used in setting the reception window and the transmission window used in the O-DU110.
  • Acquisition unit 330 acquires various parameters. For example, the acquisition unit 330 acquires the O-RU delay profile from the O-DU 110 in the first procedure described above. The acquisition unit 330 acquires the O-RU delay profile from the O-RU 120 in the third procedure described above.
  • Notification unit 350 notifies various parameters. For example, the notification unit 350 notifies the O-DU 110 of the window parameter in the second procedure described above.
  • Control unit 370 controls NMS300. For example, the control unit 370 determines the window parameter based on the FH delay parameter and the O-RU delay profile in the first step and the third step described above.
  • FIG. 6 is a functional block configuration diagram of the O-DU110.
  • the O-DU 110 includes a communication unit 111, an acquisition unit 113, a notification unit 115, and a control unit 117.
  • Communication unit 111 executes communication with O-RU120.
  • the communication unit 111 may execute communication with the NMS 300.
  • the communication unit 111 executes the communication of the signals of the various planes described above.
  • Acquisition unit 113 acquires various parameters. For example, the acquisition unit 113 acquires the O-RU delay profile from the O-RU 120 in the first to third steps described above. The acquisition unit 113 acquires the window parameters from the NMS 300 in the first procedure and the third procedure described above. The acquisition unit 113 acquires the FH delay parameter from the NMS 300 in the second procedure described above.
  • Notification unit 115 notifies various parameters. For example, the notification unit 115 notifies the NMS 300 of the O-RU delay profile in the first procedure described above.
  • Control unit 117 controls O-DU110. For example, the control unit 117 sets at least one of the reception window and the transmission window based on the window parameters in the first procedure and the third procedure described above. In the second procedure described above, the control unit 117 sets at least one of the reception window and the transmission window based on the O-RU delay profile and the FH delay parameter.
  • FIG. 7 is a functional block configuration diagram of O-RU120. As shown in FIG. 7, the O-RU120 includes a communication unit 121, an acquisition unit 123, a notification unit 125, and a control unit 127.
  • Communication unit 121 executes communication with O-DU110.
  • the communication unit 121 may execute communication with the NMS 300.
  • the communication unit 121 executes the communication of the signals of the various planes described above.
  • Acquisition unit 123 acquires various parameters.
  • the acquisition unit 123 acquires the parameters used in Software management from the O-DU110.
  • Software management is a procedure defined in Chapter 5 of ORAN-WG4.MP.0-v02.00.
  • Notification unit 125 notifies various parameters.
  • the notification unit 125 notifies the O-DU 110 of the O-RU delay profile in the first to third steps described above.
  • the notification unit 125 notifies the NMS 130 of the O-RU delay profile in the third procedure described above.
  • Control unit 127 controls O-RU120. For example, the control unit 127 sets at least one of the reception window and the transmission window.
  • the transmission window (Transmission window (UL)) of the O-RU120 can be defined by the parameters (Ta3_min, Ta3_max). That is, Transmission window (UL) can be expressed by the difference between Ta3_max and Ta3_min.
  • the parameters (Ta3_min, Ta3_max) may be interpreted as the measurement results from reception at the O-RU antenna to output at the O-RU port (R3).
  • Ta3_min and Ta3_max are examples of O-RU delay profiles. Ta3_min and Ta3_max may be different for each O-RU120.
  • the reception window (Reception window (UL)) of O-DU110 can be defined by the parameters (Ta4_min, Ta4_max). That is, Reception window (UL) can be expressed by the difference between Ta4_max and Ta4_min.
  • the parameters (Ta4_min, Ta4_max) may be interpreted as the measurement results from reception at the O-RU antenna to reception at the O-DU port (R4).
  • the parameters (Ta4_min, Ta4_max) may be measured by a delay measurement message (Measured Transport Method).
  • a parameter (T34_min) indicating the difference between Ta4_min and Ta3_min may be defined in advance.
  • a parameter (T34_max) indicating the difference between Ta4_max and Ta3_max may be defined in advance.
  • FH delay parameters are managed by NMS300.
  • T34_min and T34_max may be set for each use case of O-RAN.
  • T34_min and T34_max may be different for each O-DU110 and may be common to the O-DU110.
  • Ta4_min that defines Reception window (UL) should satisfy the condition that it is Ta3_min + T34_min or less for O-RU120 that exists on the air side of O-DU110.
  • Ta4_max that defines Reception window (UL) should satisfy the condition that it is Ta3_max + T34_max or more for O-RU120 that exists on the air side of O-DU110.
  • the NMS300 determines the window parameters so as to satisfy these conditions (window conditions).
  • the O-DU110 sets the Reception window (UL) so as to satisfy the window condition.
  • the Reception window (UL) can be determined by the O-RU delay profile (Ta3_min, Ta3_max) and the FH delay parameter (T34_min, T34_max). Window parameters may include Ta4_min and Ta4_max.
  • the transmission window (Transmission window (DL)) of the O-DU110 can be defined by the parameters (T1a_min_up, T1a_max_up).
  • Transmission window (DL) can be represented by the difference between T1a_max_up and T1a_min_up.
  • the parameters (T1a_min_up, T1a_max_up) may be interpreted as the measurement results from the output at the O-DU port (R1) to the wireless transmission.
  • the parameters (T1a_min_up, T1a_max_up) may be measured by a delay measurement message (Measured Transport Method).
  • the reception window (Reception window (DL)) of O-RU120 can be defined by the parameters (T2a_min_up, T2a_max_up).
  • Reception window (DL) can be represented by the difference between T2a_max_up and T2a_min_up.
  • the parameters (T2a_min_up, T2a_max_up) may be interpreted as measurement results from reception at the O-RU port (R2) to wireless transmission.
  • T2a_min_up and T2a_max_up are examples of O-RU delay profiles.
  • T2a_min_up and T2a_max_up may be different for each O-RU120.
  • a parameter (T12_min) indicating the difference between T1a_max_up and T2a_max_up may be defined in advance.
  • a parameter (T12_max) indicating the difference between T1a_min_up and T2a_min_up may be defined in advance.
  • FH delay parameters are managed by NMS300.
  • T12_min and T12_max may be set for each use case of O-RAN.
  • T12_min and T12_max may be different for each O-DU110 and may be common to the O-DU110.
  • T1a_min_up that defines Transmission window (DL) should satisfy the condition that it is T2a_min_up + T12_max or more for O-RU120 that exists on the air side of O-DU110.
  • T1a_max_up which defines Transmission window (DL) should satisfy the condition that the value is T2a_max_up + T12_min or less for O-RU120 existing on the air side of O-DU110.
  • the NMS300 determines the window parameters so as to satisfy these conditions (window conditions).
  • the O-DU110 sets the Transmission window (DL) so as to satisfy the window condition.
  • the Transmission window (DL) can be determined by the O-RU delay profile (T2a_min_up, T2a_max_up) and the FH delay parameter (T12_min, T12_max). Window parameters may include T1a_min_up and T1a_max_up.
  • T1a_min_cp_dl T1a_max_cp_dl
  • T2a_min_cp_dl T2a_max_cp_dl
  • Tcp_adv_dl T1a_min_cp_dl
  • T1a_min_cp_dl may be represented by T1a_min_up + Tcp_adv_dl
  • T1a_max_cp_dl may be represented by T1a_max_up + Tcp_adv_dl.
  • T2a_min_cp_dl may be represented by T2a_min_up + Tcp_adv_dl and T2a_max_cp_dl may be represented by T2a_max_up + Tcp_adv_dl.
  • T2a_min_cp_dl and T2a_max_cp_dl are examples of O-RU delay profile.
  • Tcp_adv_dl may be a value defined for each use case of O-RAN.
  • Tcp_adv_dl may be an example of an O-RU delay profile.
  • T1a_min_cp_dl and T1a_max_cp_dl may be examples of window parameters.
  • the O-RU delay profile (ro ru-delay-profile) includes T2a_min_up (ro t2a-min-up), T2a_max_up (ro t2a-max-up), and T2a_min_cp_dl (ro t2a-min-cp). -dl), T2a_max_cp_dl (ro t2a-max-cp-dl), Tcp_adv_dl (ro tcp-adv-dl), Ta3_min (ro ta3-min), Ta3_max (ro ta3-max) and the like may be included.
  • the O-RU delay profile includes parameters (T2a_min_cp_ul (ro t2a-min-cp-ul), T2a_max_cp_ul (ro t2a-)) used in the UL signal of the C-plane. max-cp-ul)) may be included.
  • T2a_min_cp_ul may be a value defined for each use case of O-RAN.
  • T2a_max_cp_ul may satisfy the condition that it is a value equal to or greater than T2a_min_cp_ul + (T12_max-T12_min) + O-DU Transmission Window.
  • the window parameter may be read as a delay profile for O-DU110 (O-DU delay profile).
  • the window parameters are T1a_min_up (rw t1a-min-up), T1a_max_up (rw t1a-max-up), T1a_min_cp_dl (rw t1a-min-cp-). dl), T1a_max_cp_dl (rw t1a-max-cp-dl), Ta4_min (rw ta4-min), Ta4_max (rw ta4-max) and the like may be included.
  • the window parameters are the parameters used in the UL signal of the C-plane (T1a_min_cp_ul (rw t1a-min-cp-ul), T1a_max_cp_ul (rw t1a-max-cp). -ul)) may be included. It is sufficient that T1a_min_cp_ul satisfies the condition that the value is T12_max + T2a_min_cp_ul or more. It is sufficient that T1a_max_cp_ul satisfies the condition that the value is T12_min + T2a_max_cp_ul or less.
  • step S10 the procedure of M-Plane connection establishment is executed between NMS300 and O-DU110.
  • step S11 the procedure of M-Plane connection establishment is executed between O-DU110 and O-RU120.
  • the procedure of M-Plane connection establishment is a procedure for setting M-Plane.
  • the O-RU120 transmits the O-RU delay profile to the O-DU110.
  • the O-RU delay profile includes the parameters shown in FIG. However, since the parameters related to C-plane can be calculated by O-DU110, they do not have to be included in the O-RU delay profile.
  • the O-DU110 sends the O-RU delay profile to the NMS300.
  • the O-RU delay profile includes the parameters shown in FIG.
  • the parameters related to C-plane can be calculated by O-DU110, they do not have to be included in the O-RU delay profile.
  • step S14 the NMS300 determines the window parameter used to identify at least one of the transmit window and the receive window used by the O-DU110 based on the O-RU delay profile and the FH delay parameter.
  • the NMS300 transmits the window parameters determined in step S14 to the O-DU110.
  • the window parameters include the parameters shown in FIG. However, since the parameters related to C-plane can be calculated by O-DU110, they do not have to be included in the window parameters.
  • the window parameters are determined to satisfy the window conditions.
  • step S16 the O-DU110 sets at least one of the send window and the receive window based on the window parameters.
  • step S17 the software management procedure is executed between O-DU110 and O-RU120.
  • the Software management procedure is a procedure for downloading, installing, and starting the desired software on the O-RU120 (see Chapter 5 of ORAN-WG4.MP.0-v02.00, etc.).
  • step S20 the procedure of M-Plane connection establishment is executed between NMS300 and O-DU110 in the same manner as in step S10.
  • step S21 the procedure of M-Plane connection establishment is executed between O-DU110 and O-RU120 as in step S21.
  • step S22 O-RU120 transmits an O-RU delay profile to O-DU110 in the same manner as in step S12.
  • step S23 the NMS300 sends the FH delay parameter to the O-DU110.
  • FH delay parameters include T12_min, T12_max, T34_min, T34_max.
  • the O-DU110 sets at least one of the transmit window and the receive window based on the O-RU delay profile and the FH delay parameter. For example, the O-DU110 sets the Reception window (UL) so as to satisfy the window condition. Similarly, the O-DU110 sets the Transmission window (DL) so as to satisfy the window condition.
  • step S25 the software management procedure is executed between O-DU110 and O-RU120 in the same manner as in step S17.
  • step S30 the procedure of M-Plane connection establishment is executed between NMS300 and O-DU110 in the same manner as in step S10.
  • step S31 the procedure of M-Plane connection establishment is executed between O-DU110 and O-RU120 as in step S11.
  • step S32 O-RU120 transmits an O-RU delay profile to O-DU110 in the same manner as in step S12.
  • the O-RU120 transmits the O-RU delay profile to the NMS300.
  • the O-RU delay profile includes the parameters shown in FIG.
  • the parameters related to C-plane can be calculated by O-DU110, they do not have to be included in the O-RU delay profile.
  • step S34 the NMS300 determines the window parameters based on the O-RU delay profile and the FH delay parameters, as in step S14.
  • step S35 the NMS300 transmits the window parameters determined in step S34 to the O-DU110 in the same manner as in step S15.
  • step S36 the O-DU 110 sets at least one of the transmit window and the receive window based on the window parameters, as in step S16.
  • step S37 the software management procedure is executed between O-DU110 and O-RU120 in the same manner as in step S17.
  • the NMS300 determines the window parameter based on the O-RU delay profile and the FH delay parameter (first step and third step). According to such a configuration, even in the case where the O-DU110 and the O-RU120 are provided by different vendors or operators, the transmission window or the reception window used in the O-DU110 can be appropriately set by the intervention of the NMS300. Can be set. This makes it possible to properly manage the delay of FH.
  • the O-DU110 sets the transmission window or the reception window based on the FH delay parameter and the O-RU delay profile acquired from the NMS300 (second step). According to such a configuration, even in the case where the O-DU110 and the O-RU120 are provided by different vendors or operators, the transmission window or the reception window used in the O-DU110 can be appropriately set by the intervention of the NMS300. Can be set. This makes it possible to properly manage the delay of FH.
  • the O-DU110 sets one of the transmission window and the reception window (hereinafter, simply a window) based on the window parameters acquired from the NMS300.
  • the NMS 300 may send a parameter that directly identifies the window to the O-DU 110 as a window parameter.
  • the NMS300 may send a parameter that indirectly identifies the window to the O-DU110 as a window parameter.
  • the parameter that indirectly identifies the window may be a parameter that specifies the range or condition that the window should satisfy.
  • the NMS300 acquires the O-RU delay parameter from the O-DU110 or O-RU120.
  • the O-RU delay parameter may include parameters for the U-plane without including parameters for the C-plane.
  • the window parameters notified from the NMS 300 to the O-DU 110 may include parameters related to the U-plane without including the parameters related to the C-plane.
  • notification of parameters already known by O-DU110 or parameters that can be calculated by O-DU110 may be omitted.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIGS. 5 and 6) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 110 O-DU 111 Communication unit 113 Acquisition unit 115 Notification unit 117 Control unit 120 O-RU 121 Communication unit 123 Acquisition unit 125 Notification unit 127 Control unit 130 Intermediate device (FHM) 130A O-RU 200 UE 300 NMS 310 Communication unit 330 Acquisition unit 350 Notification unit 370 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Eye Examination Apparatus (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

通信装置は、フロントホール上に設けられる第1基地局及び第2基地局の少なくともいずれか1つを管理する管理ノードを構成する。前記通信装置は、前記第2基地局の遅延プロファイルを取得する取得部と、前記第2基地局の遅延プロファイル及び前記フロントホールで定義される遅延パラメータに基づいて、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する制御部と、前記第1基地局に対して、前記ウインドウパラメータを通知する通知部と、を備える。

Description

通信装置
 本発明は、フロントホールインタフェースに対応した通信装置に関する。
 5G時代の無線アクセスネットワーク(RAN)のオープン化とインテリジェント化の推進を目的に、O-RAN(Radio Access Network) Allianceが設立され、今日では多くの事業者/ベンダが加盟し議論が行われている。
 O-RANでは複数のアーキテクチャが議論されており、その中の一つとして、異なるベンダ間のベースバンド処理部と無線部の相互接続を実現するオープンなフロントホール(FH)インタフェースが議論されている。
 具体的には、O-RANでは、レイヤ2機能、ベースバンド信号処理、及び無線信号処理を行う機能群としてO-RAN Distributed Unit(O-DU)及びO-RAN Radio Unit(O-RU)が定義されており、O-DUとO-RUと間のインタフェースとして議論されている。
 O-DUは、主として、下位層の機能(lower layer functional)に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。O-RUは、主として、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。
 O-RANでは、物理(PHY)レイヤ内にO-DU/O-RUの機能分担点が置かれているため、厳しいタイミング精度が求められる。このため、FHの遅延管理が行われており、その方法として送信ウインドウ、受信ウインドウが用いられている(非特許文献1)。
"ORAN-WG4.CUS.0-v02.00"、O-RAN Fronthaul Working Group、Control, User and Synchronization Plane Specification、O-RAN Alliance、2019年8月
 近年では、異なるベンダ/事業者によってO-DU/O-RUが提供されるケースを想定して、異なるベンダ/事業者によって提供されるO-DU/O-RUを管理するNMS(Network Management System)の検討が進められている。
 しかしながら、FHの遅延管理においてNMSが果たすべき機能が明確化されておらず、これを明確化する必要がある。
 そこで、本発明は、このような状況に鑑みてなされたものであり、NMSを用いてフロントホール(FH)の遅延管理を適切に行うことを可能とする通信装置を提供することを目的とする。
 本開示の一態様は、通信装置であって、前記通信装置は、フロントホール上に設けられる第1基地局及び第2基地局の少なくともいずれか1つを管理する管理ノードを構成し、前記第2基地局の遅延プロファイルを取得する取得部と、前記第2基地局の遅延プロファイル及び前記フロントホールで定義される遅延パラメータに基づいて、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する制御部と、前記第1基地局に対して、前記ウインドウパラメータを通知する通知部と、を備えることを要旨とする。
 本開示の一態様は、通信装置であって、前記通信装置は、フロントホール上において第2基地局と通信を実行する第1基地局を構成し、前記第1基地局及び前記第2基地局の少なくともいずれか1つを管理する管理ノードから、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれかの特定に用いるウインドウパラメータを取得する取得部と、前記ウインドウパラメータに基づいて、前記受信ウインドウ及び前記送信ウインドウの少なくともいずれか1つを設定する制御部と、を備え、前記ウインドウパラメータは、前記第2基地局の遅延プロファイル及び前記フロントホールで定義される遅延パラメータに基づいて前記管理ノードにおいて決定される、ことを要旨とする。
 本開示の一態様は、通信装置であって、前記通信装置は、フロントホール上において第2基地局と通信を実行する第1基地局を構成し、前記第2基地局から、前記第2基地局の遅延プロファイルを取得し、前記第1基地局及び前記第2基地局の少なくともいずれか1つを管理する管理ノードから、前記フロントホールで定義される遅延パラメータを取得する取得部と、前記第2基地局の遅延プロファイル及び前記遅延パラメータに基づいて、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する制御部と、を備えることを要旨とする。
 本開示の一態様は、通信装置であって、前記通信装置は、フロントホール上に設けられる第1基地局及び第2基地局の少なくともいずれか1つを管理する管理ノードを構成し、前記第1基地局に対して、前記フロントホールで定義される遅延パラメータを通知する通知部を備え、前記遅延パラメータは、前記第2基地局の遅延プロファイルとともに、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの設定に用いられる、ことを要旨とする。
図1は、実施形態に係る無線通信システム10の全体概略構成図である。 図2は、実施形態に係るフロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す図である。 図3は、実施形態に係るFHインタフェースを採用するネットワークを示す図である。 図4Aは、実施形態に係るフロントホールの構成例(中間装置なし)を示す図である。 図4Bは、実施形態に係るフロントホールの構成例(中間装置あり、FHM構成)を示す図である。 図4Cは、実施形態に係るフロントホールの構成例(中間装置あり、カスケード構成)を示す図である。 図5は、実施形態に係るNMS300の機能ブロック構成図である。 図6は、実施形態に係るO-DU110の機能ブロック構成図である。 図7は、実施形態に係るO-RU120の機能ブロック構成図である。 図8は、実施形態に係るULにおけるフロントホールの遅延管理例を示す図である。 図9は、実施形態に係るDLにおけるフロントホールの遅延管理例を示す図である。 図10は、実施形態に係るO-RU遅延プロファイルの一例を示す図である。 図11は、実施形態に係るウインドウパラメータの一例を示す図である。 図12は、実施形態に係る第1手順を説明するためのシーケンス図である。 図13は、実施形態に係る第2手順を説明するためのシーケンス図である。 図14は、実施形態に係る第3手順を説明するためのシーケンス図である。 図15は、O-DU110、O-RU120及びNMS300のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。実施形態では、無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単にネットワークと表現されてもよい。
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、実施形態では、gNB100は、O-RANによって規定されているフロントホール(FH)インタフェースを採用する。
 (2)フロントホールの構成
 図2は、フロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す。図2に示すように、gNB100は、O-DU110(O-RAN Distributed Unit)及びO-RU120(O-RAN Radio Unit)を含む。O-DU110とO-RU120とは、3GPPで規定されている物理(PHY)レイヤ内において機能的に分離(Function split)されている。
 O-DU110は、O-RAN分散ユニットと呼ばれてもよい。O-DU110は、主として、下位層の機能(lower layer functional)に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。ここで、O-DU110は、O-RU120に対してNG-RAN20に近い側に設けられる。以下において、NG-RAN20に近い側をRAN側と称することがある。
 O-RU120は、O-RAN無線ユニットと呼ばれてもよい。O-RU120は、主として、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。ここで、O-RU120は、O-DU110に対してNG-RAN20から離れた側に設けられる。以下において、NG-RAN20から離れた側を無線(air)側と称することがある。
 PHY-Highレイヤは、Forward Error Correction(FEC)エンコード/デコード、スクランブル、変調/復調など、フロントホールインタフェースのO-DU110側でのPHY処理の部分である。
 PHY-Lowレイヤは、Fast Fourier Transform(FFT)/iFFT、デジタルビームフォーミング、Physical Random Access Channel(PRACH)抽出及びフィルタリングなど、フロントホールインタフェースのO-RU120側でのPHY処理の部分である。
 O-CUは、O-RAN Control Unitの略であり、Packet Data Convergence Protocol(PDCP)、Radio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びその他の制御機能をホストする論理ノードである。
 なお、フロントホール(FH)は、無線基地局(基地局装置)のベースバンド処理部と無線装置間の回線と解釈されてもよく、光ファイバなどが用いられる。
 (3)ネットワーク構成
 図3は、実施形態に係るFHインタフェースを採用するネットワークを示す。図3に示すように、ネットワークは、NMS(Network Management System)300と、O-DU110と、O-RU120と、を有する。
 NMS300は、O-DU110及びO-RU120の少なくともいずれか1つを管理する管理ノードの一例である。NMS300は、非リアルタイムのRIC(RAN Intelligent Controller)の一例である。NMS300は、コアネットワークに設けられてもよい。実施形態では、NMS300は、FHの遅延管理機能を有してもよい。NMS300とO-DU110との間のインタフェースは、非リアルタイムのRICとリアルタイムRIC(例えば、gNB100)との間のA1インタフェースと称されてもよい。
 O-DU110は、上述したように、O-RAN分散ユニットと呼ばれてもよい。O-DU110は、FH上に設けられており、FH上においてO-RU120と通信を実行する第1基地局の一例である。O-DU110は、O-RU120よりもRAN側に設けられる。ネットワークは、1以上のO-DU110を有していればよい。図3では、O-DU110A及びO-DU110Bが設けられるケースがO-DU110として例示されている。O-DU110A及びO-DU110Bは、互いに異なるベンダ又は事業者によって提供されてもよい。
 O-RU120は、上述したように、O-RAN無線ユニットと呼ばれてもよい。O-RU120は、FH上に設けられており、FH上においてO-DU110と通信を実行する第2基地局の一例である。O-RU120は、O-DU110よりもair側に設けられる。ネットワークは、1以上のO-RU120を有していればよい。図3では、O-DU110Aよりもair側において、O-RU120A1、O-RU120A2、O-RU120A3、O-RU120A4がO-RU120として設けられるケースが例示されている。O-DU110Bよりもair側において、O-RU120B1、O-RU120B2、O-RU120B3がO-RU120として設けられるケースが例示されている。O-RU120A1~O-RU120A4は、互いに異なるベンダ又は事業者によって提供されてもよく、O-RU120B1~O-RU120B3は、互いに異なるベンダ又は事業者によって提供されてもよい。さらに、O-RU120A1~O-RU120A4は、O-DU110Aと異なるベンダ又は事業者によって提供されてもよく、O-RU120B1~O-RU120B3は、O-DU110Bと異なるベンダ又は事業者によって提供されてもよい。
 図3に示す例では、O-DU110AとO-RU120A1との間のFHの遅延時間は、O-DU110AとO-RU120A2との間のFHの遅延時間よりも短くてもよい。O-DU110AとO-RU120A2との間のFHの遅延時間は、O-DU110AとO-RU120A3との間のFHの遅延時間よりも短くてもよい。O-DU110AとO-RU120A3との間のFHの遅延時間は、O-DU110AとO-RU120A4との間のFHの遅延時間よりも短くてもよい。同様に、O-DU110BとO-RU120B1との間のFHの遅延時間は、O-DU110BとO-RU120B2との間のFHの遅延時間よりも短くてもよい。O-DU110BとO-RU120B2との間のFHの遅延時間は、O-DU110BとO-RU120B3との間のFHの遅延時間よりも短くてもよい。
 ここで、O-DU110とO-RU120と間のFHでは、以下に示す信号の通信が行われる。具体的には、O-DU110とO-RU120と間のFHでは、複数のプレーン(例えば、U/C/M/S-plane)における信号の通信が行われる。
 U-Planeは、ユーザデータを転送するためのプロトコルであり、C-Planeは、制御信号を転送するためのプロトコルである。M-Planeは、保守監視信号を扱うマネージメントプレーンであり、S-Planeは、装置間の同期(Synchronization)を実現するためのプロトコルである。
 具体的には、U-Plane信号は、O-RU120が無線区間に送信する(DL)、無線区間より受信する(UL)信号を含み、digital IQ signalでやり取りされる。なお、いわゆるU-Plane信号(User Datagram Protocol (UDP)及びTransmission Control Protocol (TCP)などのデータ)に加え、3GPPで定義されているC-Plane(RRC, Non-Access Stratum (NAS)など)も、FH観点では全てU-Planeとなることに留意する必要がある。
 C-Plane信号は、U-Plane信号の送受信に関する各種制御のために必要な信号(対応するU-Planeの無線リソースマッピング及びビームフォーミングに関わる情報を通知するための信号)を含む。なお、3GPPで定義されているC-Plane(RRC, NASなど)とは、完全に別の信号を指すことに留意する必要がある。
 M-Plane信号は、O-DU110/O-RU120の管理のために必要な信号を含む。例えば、O-RU120からO-RU120の各種ハードウェア(HW)能力を通知したり、O-DU110からO-RU120へ各種設定値を通知したりするための信号である。
 S-Plane信号は、O-DU110/O-RU120間の同期制御のために必要な信号である。
 実施形態では、このような背景下において、O-DU110の受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する手順について説明する。このような手順としては、以下に示す第1手順~第3手順が考えられる。
 第1手順では、NMS300は、各O-RU120の遅延プロファイル(以下、O-RU遅延プロファイル)をO-DU110から取得する。NMS300は、O-DU110とO-RU120との間のFHで定義される遅延パラメータ(以下、FH遅延パラメータ)及びO-RU遅延プロファイルに基づいて、O-DU110で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する。NMS300は、O-DU110に対してウインドウパラメータを通知する。O-DU110は、ウインドウパラメータに基づいて、O-DU110で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。
 第2手順では、O-DU110は、O-RU遅延プロファイルを各O-RU120から取得する。O-DU110は、FH遅延パラメータをNMS300から取得する。O-DU110は、O-RU遅延プロファイル及びFH遅延パラメータに基づいて、O-DU110で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。
 第3手順では、NMS300は、O-RU遅延プロファイルを各O-RU120から取得する。NMS300は、FH遅延パラメータ及びO-RU遅延プロファイルに基づいて、O-DU110で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する。NMS300は、O-DU110に対して、ウインドウパラメータを通知する。O-DU110は、ウインドウパラメータに基づいて、O-DU110で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。
 なお、O-RU遅延プロファイルは、FH遅延パラメータ及びウインドウパラメータの詳細については後述する(図8~図11を参照)。
 (4)Shared Cell構成
 O-RANでは、複数O-RUで1セルを構成する置局方法もあり、O-RUを束ねる装置(FHM:Fronthaul Multiplexing)を用いる構成、及び連続してO-RUを接続する構成(カスケード構成)が検討されている。これらを纏めてShared Cellと呼ばれている。図3に示すネットワークにおいていて、このようなShared Cellが採用されてもよい。
 図4A~図4Cは、フロントホールの構成例を示す。図4Aは、1O-RUで1セルを構成する例である。一方、図4B及び図4Cは、Shared Cell構成の例を示す。
 具体的には、図4Bは、FHM130を用いた構成例を示す。また、図4Cは、O-RU130AをO-DU110とO-RU120との間に介在させてカスケード接続した例を示す。
 図4Bの場合、FHM130は、それぞれのO-RU120からの2つのFH信号を合成(combine)した上で、O-DU110に送信する。
 図4Cの場合、O-RU130Aは、O-RU130A(O-RU(1))自身が無線区間で受信した信号と、O-RU120(O-RU(2))から受信したFH信号とを合成した上で、O-DU110に送信する。
 なお、以下の説明では、FHM130及びO-RU130Aを纏めて中間装置130と呼称する。但し、中間装置の名称は、別の名称で呼ばれても構わない。中間装置130は、O-DU110よりもair側に設けられており、O-RU120よりもRAN側に設けられる。
 このようなShared Cell構成の特徴としては、中間装置130は、下りリンク(DL)については、O-DU110から受信したDL信号をO-RU120に転送する。なお、O-RUのカスケード接続の場合には、中間装置130は、さらに当該O-RU自身のDL信号を送信してもよい。
 また、中間装置130は、上りリンク(UL)については、O-RU120から受信したUL信号を合成して、O-DU110に転送する。なお、O-RUのカスケード接続の場合には、さらにO-RU自身が受信した無線信号も合わせて合成する。
 このような特徴によって、O-DU110は、あたかも1つのO-RUが接続している場合と同様に信号処理が可能となる。
 (5)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、NMS300、O-DU110及びO-RU120の機能ブロック構成について説明する。
 (5.1)NMS300
 図5は、NMS300の機能ブロック構成図である。図5に示すように、NMS300は、通信部310、取得部330、通知部350及び制御部370を備える。
 通信部310は、O-DU110との間の通信を実行する。通信部310は、O-RU120との間の通信を実行してもよい。通信部310は、O-DU110で用いる受信ウインドウ及び送信ウインドウの設定で用いるパラメータの通信を実行する。
 取得部330は、各種パラメータを取得する。例えば、取得部330は、上述した第1手順においてO-RU遅延プロファイルをO-DU110から取得する。取得部330は、上述した第3手順においてO-RU遅延プロファイルをO-RU120から取得する。
 通知部350は、各種パラメータを通知する。例えば、通知部350は、上述した第2手順においてウインドウパラメータをO-DU110に通知する。
 制御部370は、NMS300を制御する。例えば、制御部370は、上述した第1手順及び第3手順において、FH遅延パラメータ及びO-RU遅延プロファイルに基づいてウインドウパラメータを決定する。
 (5.2)O-DU110
 図6は、O-DU110の機能ブロック構成図である。図6に示すように、O-DU110は、通信部111、取得部113、通知部115及び制御部117を備える。
 通信部111は、O-RU120と通信を実行する。通信部111は、NMS300と通信を実行してもよい。例えば、通信部111は、上述した各種プレーンの信号の通信を実行する。
 取得部113は、各種パラメータを取得する。例えば、取得部113は、上述した第1手順~第3手順において、O-RU遅延プロファイルをO-RU120から取得する。取得部113は、上述した第1手順及び第3手順において、ウインドウパラメータをNMS300から取得する。取得部113は、上述した第2手順において、FH遅延パラメータをNMS300から取得する。
 通知部115は、各種パラメータを通知する。例えば、通知部115は、上述した第1手順においてO-RU遅延プロファイルをNMS300に通知する。
 制御部117は、O-DU110を制御する。例えば、制御部117は、上述した第1手順及び第3手順において、ウインドウパラメータに基づいて受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。制御部117は、上述した第2手順において、O-RU遅延プロファイル及びFH遅延パラメータに基づいて受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。
 (5.3)O-RU120
 図7は、O-RU120の機能ブロック構成図である。図7に示すように、O-RU120は、通信部121、取得部123、通知部125及び制御部127を備える。
 通信部121は、O-DU110と通信を実行する。通信部121は、NMS300と通信を実行してもよい。例えば、通信部121は、上述した各種プレーンの信号の通信を実行する。
 取得部123は、各種パラメータを取得する。取得部123は、Software managementで用いるパラメータをO-DU110から取得する。Software managementは、ORAN-WG4.MP.0-v02.00のChapter 5などで定義される手順である。
 通知部125は、各種パラメータを通知する。通知部125は、上述した第1手順~第3手順において、O-RU遅延プロファイルをO-DU110に通知する。通知部125は、上述した第3手順において、O-RU遅延プロファイルをNMS130に通知する。
 制御部127は、O-RU120を制御する。例えば、制御部127は、受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する。
 (6)ウインドウの設定
 第1に、UL信号について図8を参照しながら説明する。
 図8に示すように、O-RU120の送信ウインドウ(Transmission window(UL))は、パラメータ(Ta3_min、Ta3_max)によって定義することができる。すなわち、Transmission window(UL)は、Ta3_maxとTa3_minとの差異によって表すことができる。パラメータ(Ta3_min、Ta3_max)は、O-RUアンテナでの受信からO-RUポート(R3)での出力までの測定結果と解釈されてもよい。Ta3_min及びTa3_maxは、O-RU遅延プロファイルの一例である。Ta3_min及びTa3_maxは、O-RU120毎に異なってもよい。
 一方で、O-DU110の受信ウインドウ(Reception window(UL))は、パラメータ(Ta4_min、Ta4_max)によって定義することができる。すなわち、Reception window(UL)は、Ta4_maxとTa4_minとの差異によって表すことができる。パラメータ(Ta4_min、Ta4_max)は、O-RUアンテナでの受信からO-DUポート(R4)での受信までの測定結果と解釈されてもよい。パラメータ(Ta4_min、Ta4_max)は、遅延測定メッセージによって測定されてもよい(Measured Transport Method)。
 ここで、上述したFH遅延パラメータとして、Ta4_minとTa3_minとの差異を示すパラメータ(T34_min)が予め定義されてもよい。上述したFH遅延パラメータとして、Ta4_maxとTa3_maxとの差異を示すパラメータ(T34_max)が予め定義されてもよい。FH遅延パラメータは、NMS300によって管理される。T34_min及びT34_maxは、O-RANのユースケース毎に定められてもよい。T34_min及びT34_maxは、O-DU110毎に異なっていてもよく、O-DU110に共通であってもよい。
 このような前提下において、Reception window(UL)を定義するTa4_minは、O-DU110よりもair側に存在するO-RU120について、Ta3_min+T34_min以下の値であるという条件を満たせばよい。Reception window(UL)を定義するTa4_maxは、O-DU110よりもair側に存在するO-RU120について、Ta3_max+T34_max以上の値であるという条件を満たせばよい。NMS300は、これらの条件(ウインドウ条件)を満たすようにウインドウパラメータを決定する。或いは、O-DU110は、ウインドウ条件を満たすようにReception window(UL)を設定する。
 このように、Reception window(UL)は、O-RU遅延プロファイル(Ta3_min、Ta3_max)及びFH遅延パラメータ(T34_min、T34_max)によって定めることができる。ウインドウパラメータは、Ta4_min及びTa4_maxを含んでもよい。
 第2に、DL信号について図9を参照しながら説明する。
 図9に示すように、O-DU110の送信ウインドウ(Transmission window(DL))は、パラメータ(T1a_min_up、T1a_max_up)によって定義することができる。Transmission window(DL)は、T1a_max_upとT1a_min_upとの差異によって表すことができる。パラメータ(T1a_min_up、T1a_max_up)は、O-DUポート(R1)での出力から無線送信までの測定結果と解釈されてもよい。パラメータ(T1a_min_up、T1a_max_up)は、遅延測定メッセージによって測定されてもよい(Measured Transport Method)。
 一方で、O-RU120の受信ウインドウ(Reception window(DL))は、パラメータ(T2a_min_up、T2a_max_up)によって定義することができる。Reception window(DL)は、T2a_max_upとT2a_min_upとの差異によって表すことができる。パラメータ(T2a_min_up、T2a_max_up)は、O-RUポート(R2)での受信から無線送信まで測定結果と解釈されてもよい。T2a_min_up及びT2a_max_upは、O-RU遅延プロファイルの一例である。T2a_min_up及びT2a_max_upは、O-RU120毎に異なってもよい。
 ここで、上述したFH遅延パラメータとして、T1a_max_upとT2a_max_upとの差異を示すパラメータ(T12_min)が予め定義されてもよい。上述したFH遅延パラメータとして、T1a_min_upとT2a_min_upとの差異を示すパラメータ(T12_max)が予め定義されてもよい。FH遅延パラメータは、NMS300によって管理される。T12_min及びT12_maxは、O-RANのユースケース毎に定められてもよい。T12_min及びT12_maxは、O-DU110毎に異なっていてもよく、O-DU110に共通であってもよい。
 このような前提下において、Transmission window(DL)を定義するT1a_min_upは、O-DU110よりもair側に存在するO-RU120について、T2a_min_up+T12_max以上の値であるという条件を満たせばよい。Transmission window(DL)を定義するT1a_max_upは、O-DU110よりもair側に存在するO-RU120について、T2a_max_up+T12_min以下の値であるという条件を満たせばよい。NMS300は、これらの条件(ウインドウ条件)を満たすようにウインドウパラメータを決定する。或いは、O-DU110は、ウインドウ条件を満たすようにTransmission window(DL)を設定する。
 このように、Transmission window(DL)は、O-RU遅延プロファイル(T2a_min_up、T2a_max_up)及びFH遅延パラメータ(T12_min、T12_max)によって定めることができる。ウインドウパラメータは、T1a_min_up及びT1a_max_upを含んでもよい。
 なお、”up”はU-Planeを意味する。C-PlaneのDL信号に関するパラメータは、T1a_min_cp_dl、T1a_max_cp_dl、T2a_min_cp_dl、T2a_max_cp_dl、Tcp_adv_dlを含んでもよい。このようなケースにおいて、”cp”はC-Planeを意味する。T1a_min_cp_dlは、T1a_min_up+Tcp_adv_dlによって表され、T1a_max_cp_dlは、T1a_max_up+Tcp_adv_dlによって表されてもよい。同様に、T2a_min_cp_dlは、T2a_min_up+Tcp_adv_dlによって表され、T2a_max_cp_dlは、T2a_max_up+Tcp_adv_dlによって表されてもよい。
 従って、C-PlaneのDL信号については、T2a_min_cp_dl及びT2a_max_cp_dlは、O-RU遅延プロファイルの一例である。Tcp_adv_dlは、O-RANのユースケース毎に定められる値であってもよい。Tcp_adv_dlは、O-RU遅延プロファイルの一例であってもよい。T1a_min_cp_dl及びT1a_max_cp_dlは、ウインドウパラメータの一例であってもよい。
 (7)パラメータ
 第1に、O-RU遅延プロファイルについて説明する。
 図10に示すように、O-RU遅延プロファイル(ro ru-delay-profile)は、T2a_min_up(ro t2a-min-up)、T2a_max_up(ro t2a-max-up)、T2a_min_cp_dl(ro t2a-min-cp-dl)、T2a_max_cp_dl(ro t2a-max-cp-dl)、Tcp_adv_dl(ro tcp-adv-dl)、Ta3_min(ro ta3-min)、Ta3_max(ro ta3-max)などを含んでもよい。
 なお、図8及び図9では説明を省略しているが、O-RU遅延プロファイルは、C-planeのUL信号で用いるパラメータ(T2a_min_cp_ul(ro t2a-min-cp-ul)、T2a_max_cp_ul(ro t2a-max-cp-ul))を含んでもよい。T2a_min_cp_ulは、O-RANのユースケース毎に定められる値であってもよい。T2a_max_cp_ulは、T2a_min_cp_ul+(T12_max-T12_min)+O-DU Transmission Window以上の値であるという条件を満たせばよい。
 第2に、ウインドウパラメータについて説明する。ウインドウパラメータは、O-DU110に関する遅延プロファイル(O-DU遅延プロファイル)と読み替えてもよい。
 図11に示すように、ウインドウパラメータ(rw O-DU-delay-profile)は、T1a_min_up(rw t1a-min-up)、T1a_max_up(rw t1a-max-up)、T1a_min_cp_dl(rw t1a-min-cp-dl)、T1a_max_cp_dl(rw t1a-max-cp-dl)、Ta4_min(rw ta4-min)、Ta4_max(rw ta4-max)などを含んでもよい。
 なお、図8及び図9では説明を省略しているが、ウインドウパラメータは、C-planeのUL信号で用いるパラメータ(T1a_min_cp_ul(rw t1a-min-cp-ul)、T1a_max_cp_ul(rw t1a-max-cp-ul))を含んでもよい。T1a_min_cp_ulは、T12_max+T2a_min_cp_ul以上の値であるという条件を満たせばよい。T1a_max_cp_ulは、T12_min+T2a_max_cp_ul以下の値であるという条件を満たせばよい。
 (8)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、上述した第1手順~第3手順について説明する。図12~図14では省略されているが、2以上のO-DU110が設けられていてもよく、2以上のO-RU120が設けられていてもよい。
 第1に、第1手順について図12を参照しながら説明する。
 図12に示すように、ステップS10において、NMS300とO-DU110との間でM-Plane connection establishmentの手順が実行される。ステップS11において、O-DU110とO-RU120との間でM-Plane connection establishmentの手順が実行される。M-Plane connection establishmentの手順は、M-Planeを設定するための手順である。
 ステップS12において、O-RU120は、O-RU遅延プロファイルをO-DU110に送信する。例えば、O-RU遅延プロファイルは、図10に示すパラメータを含む。但し、C-planeに関するパラメータは、O-DU110で演算可能であるため、O-RU遅延プロファイルに含まれなくてもよい。
 ステップS13において、O-DU110は、O-RU遅延プロファイルをNMS300に送信する。例えば、O-RU遅延プロファイルは、図10に示すパラメータを含む。但し、C-planeに関するパラメータは、O-DU110で演算可能であるため、O-RU遅延プロファイルに含まれなくてもよい。
 ステップS14において、NMS300は、O-RU遅延プロファイル及びFH遅延パラメータに基づいて、O-DU110が用いる送信ウインドウ及び受信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する。
 ステップS15において、NMS300は、ステップS14で決定されたウインドウパラメータをO-DU110に送信する。例えば、ウインドウパラメータは、図11に示すパラメータを含む。但し、C-planeに関するパラメータは、O-DU110で演算可能であるため、ウインドウパラメータに含まれなくてもよい。ウインドウパラメータは、ウインドウ条件を満たすように決定される。
 ステップS16において、O-DU110は、ウインドウパラメータに基づいて、送信ウインドウ及び受信ウインドウの少なくともいずれか1つを設定する。
 ステップS17において、O-DU110とO-RU120との間でSoftware managementの手順が実行される。Software managementの手順は、所望のソフトウェアがO-RU120でダウンロード、インストール及び起動されるようにする手順である(ORAN-WG4.MP.0-v02.00のChapter 5などを参照)。
 第2に、第2手順について図13を参照しながら説明する。
 図13に示すように、ステップS20において、ステップS10と同様に、NMS300とO-DU110との間でM-Plane connection establishmentの手順が実行される。ステップS21において、ステップS21と同様に、O-DU110とO-RU120との間でM-Plane connection establishmentの手順が実行される。
 ステップS22において、O-RU120は、ステップS12と同様に、O-RU遅延プロファイルをO-DU110に送信する。
 ステップS23において、NMS300は、FH遅延パラメータをO-DU110に送信する。FH遅延パラメータは、T12_min、T12_max、T34_min、T34_maxを含む。
 ステップS24において、O-DU110は、O-RU遅延プロファイル及びFH遅延パラメータに基づいて、送信ウインドウ及び受信ウインドウの少なくともいずれか1つを設定する。例えば、O-DU110は、ウインドウ条件を満たすようにReception window(UL)を設定する。同様に、O-DU110は、ウインドウ条件を満たすようにTransmission window(DL)を設定する。
 ステップS25において、ステップS17と同様に、O-DU110とO-RU120との間でSoftware managementの手順が実行される。
 第3に、第3手順について図14を参照しながら説明する。
 図14に示すように、ステップS30において、ステップS10と同様に、NMS300とO-DU110との間でM-Plane connection establishmentの手順が実行される。ステップS31において、ステップS11と同様に、O-DU110とO-RU120との間でM-Plane connection establishmentの手順が実行される。
 ステップS32において、O-RU120は、ステップS12と同様に、O-RU遅延プロファイルをO-DU110に送信する。
 ステップS33において、O-RU120は、O-RU遅延プロファイルをNMS300に送信する。例えば、O-RU遅延プロファイルは、図10に示すパラメータを含む。但し、C-planeに関するパラメータは、O-DU110で演算可能であるため、O-RU遅延プロファイルに含まれなくてもよい。
 ステップS34において、NMS300は、ステップS14と同様に、O-RU遅延プロファイル及びFH遅延パラメータに基づいてウインドウパラメータを決定する。
 ステップS35において、NMS300は、ステップS15と同様に、ステップS34で決定されたウインドウパラメータをO-DU110に送信する。
 ステップS36において、O-DU110は、ステップS16と同様に、ウインドウパラメータに基づいて、送信ウインドウ及び受信ウインドウの少なくともいずれか1つを設定する。
 ステップS37において、ステップS17と同様に、O-DU110とO-RU120との間でSoftware managementの手順が実行される。
 (9)作用・効果
 実施形態では、NMS300は、O-RU遅延プロファイル及びFH遅延パラメータに基づいてウインドウパラメータを決定する(第1手順及び第3手順)。このような構成によれば、O-DU110及びO-RU120が互いに異なるベンダ又は事業者によって提供されるケースにおいても、NMS300が介在することによって、O-DU110で用いる送信ウインドウ又は受信ウインドウを適切に設定することができる。これによって、FHの遅延管理を適切に行うことができる。
 実施形態では、O-DU110は、NMS300から取得するFH遅延パラメータ及びO-RU遅延プロファイルに基づいて送信ウインドウ又は受信ウインドウを設定する(第2手順)。このような構成によれば、O-DU110及びO-RU120が互いに異なるベンダ又は事業者によって提供されるケースにおいても、NMS300が介在することによって、O-DU110で用いる送信ウインドウ又は受信ウインドウを適切に設定することができる。これによって、FHの遅延管理を適切に行うことができる。
 [その他の実施形態]
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した第1手順及び第3手順では、O-DU110は、NMS300から取得するウインドウパラメータに基づいて送信ウインドウ及び受信ウインドウのいずれか1つ(以下、単にウインドウ)を設定する。このようなケースにおいて、NMS300は、ウインドウを直接的に特定するパラメータをウインドウパラメータとしてO-DU110に送信してもよい。NMS300は、ウインドウを間接的に特定するパラメータをウインドウパラメータとしてO-DU110に送信してもよい。ウインドウを間接的に特定するパラメータは、ウインドウが満たすべき範囲又は条件を指定するパラメータであってもよい。
 上述した第1手順及び第3手順では、NMS300は、O-RU遅延パラメータをO-DU110又はO-RU120から取得する。このようなケースにおいて、O-RU遅延パラメータは、C-planeに関するパラメータを含まずに、U-planeに関するパラメータを含んでもよい。さらに、NMS300からO-DU110に通知されるウインドウパラメータは、C-planeに関するパラメータを含まずに、U-planeに関するパラメータを含んでもよい。さらには、O-DU110が既に把握しているパラメータ又はO-DU110が演算可能なパラメータの通知については省略されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図5~7)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したO-DU110及び中間装置130(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図5,6参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 O-DU
 111 通信部
 113 取得部
 115 通知部
 117 制御部
 120 O-RU
 121 通信部
 123 取得部
 125 通知部
 127 制御部
 130 中間装置(FHM)
 130A O-RU
 200 UE
 300 NMS
 310 通信部
 330 取得部
 350 通知部
 370 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  通信装置であって、
     前記通信装置は、フロントホール上に設けられる第1基地局及び第2基地局の少なくともいずれか1つを管理する管理ノードを構成し、
     前記第2基地局の遅延プロファイルを取得する取得部と、
     前記第2基地局の遅延プロファイル及び前記フロントホールで定義される遅延パラメータに基づいて、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの特定に用いるウインドウパラメータを決定する制御部と、
     前記第1基地局に対して、前記ウインドウパラメータを通知する通知部と、を備える通信装置。
  2.  通信装置であって、
     前記通信装置は、フロントホール上において第2基地局と通信を実行する第1基地局を構成し、
     前記第1基地局及び前記第2基地局の少なくともいずれか1つを管理する管理ノードから、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれかの特定に用いるウインドウパラメータを取得する取得部と、
     前記ウインドウパラメータに基づいて、前記受信ウインドウ及び前記送信ウインドウの少なくともいずれか1つを設定する制御部と、を備え、
     前記ウインドウパラメータは、前記第2基地局の遅延プロファイル及び前記フロントホールで定義される遅延パラメータに基づいて前記管理ノードにおいて決定される、通信装置。
  3.  前記第2基地局の遅延プロファイルは、前記第1基地局及び前記第2基地局の少なくともいずれか1つから前記管理ノードに通知される、請求項1又は請求項2に記載の通信装置。
  4.  通信装置であって、
     前記通信装置は、フロントホール上において第2基地局と通信を実行する第1基地局を構成し、
     前記第2基地局から、前記第2基地局の遅延プロファイルを取得し、前記第1基地局及び前記第2基地局の少なくともいずれか1つを管理する管理ノードから、前記フロントホールで定義される遅延パラメータを取得する取得部と、
     前記第2基地局の遅延プロファイル及び前記遅延パラメータに基づいて、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つを設定する制御部と、を備える通信装置。
  5.  通信装置であって、
     前記通信装置は、フロントホール上に設けられる第1基地局及び第2基地局の少なくともいずれか1つを管理する管理ノードを構成し、
     前記第1基地局に対して、前記フロントホールで定義される遅延パラメータを通知する通知部を備え、
     前記遅延パラメータは、前記第2基地局の遅延プロファイルとともに、前記第1基地局で用いる受信ウインドウ及び送信ウインドウの少なくともいずれか1つの設定に用いられる、通信装置。
PCT/JP2020/001544 2020-01-17 2020-01-17 通信装置 WO2021144972A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20914135.7A EP4093078A4 (en) 2020-01-17 2020-01-17 COMMUNICATION DEVICE
PCT/JP2020/001544 WO2021144972A1 (ja) 2020-01-17 2020-01-17 通信装置
CN202080091865.7A CN114930927A (zh) 2020-01-17 2020-01-17 通信装置
BR112022013334A BR112022013334A2 (pt) 2020-01-17 2020-01-17 Dispositivo de comunicação
KR1020227024825A KR20220129004A (ko) 2020-01-17 2020-01-17 통신 장치
US17/758,943 US20230239824A1 (en) 2020-01-17 2020-01-17 Communication device
JP2021570610A JPWO2021144972A5 (ja) 2020-01-17 管理ノード、分散ユニット、無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001544 WO2021144972A1 (ja) 2020-01-17 2020-01-17 通信装置

Publications (1)

Publication Number Publication Date
WO2021144972A1 true WO2021144972A1 (ja) 2021-07-22

Family

ID=76864237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001544 WO2021144972A1 (ja) 2020-01-17 2020-01-17 通信装置

Country Status (6)

Country Link
US (1) US20230239824A1 (ja)
EP (1) EP4093078A4 (ja)
KR (1) KR20220129004A (ja)
CN (1) CN114930927A (ja)
BR (1) BR112022013334A2 (ja)
WO (1) WO2021144972A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4125287A1 (en) * 2021-07-26 2023-02-01 Mavenir Networks, Inc. Dynamic shared cell groups
WO2024043629A1 (ko) * 2022-08-22 2024-02-29 삼성전자주식회사 프론트홀 인터페이스에서 비-스케쥴링 레이어를 지시하기 위한 전자 장치 및 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"ORAN-WG4.CUS.0-v02.00", O-RAN FRONTHAUL WORKING GROUP, CONTROL, USER AND SYNCHRONIZATION PLANE SPECIFICATION, August 2019 (2019-08-01)
UMESH, ANIL ET AL.: "Overview of O-RAN Fronthaul Specifications", NTT DOCOMO TECHNICAL JOURNAL, vol. 27, no. 1, 30 April 2019 (2019-04-30), pages 46 - 59, XP055802879 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4125287A1 (en) * 2021-07-26 2023-02-01 Mavenir Networks, Inc. Dynamic shared cell groups
WO2024043629A1 (ko) * 2022-08-22 2024-02-29 삼성전자주식회사 프론트홀 인터페이스에서 비-스케쥴링 레이어를 지시하기 위한 전자 장치 및 방법

Also Published As

Publication number Publication date
JPWO2021144972A1 (ja) 2021-07-22
EP4093078A1 (en) 2022-11-23
CN114930927A (zh) 2022-08-19
US20230239824A1 (en) 2023-07-27
BR112022013334A2 (pt) 2022-09-06
KR20220129004A (ko) 2022-09-22
EP4093078A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7254860B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019224871A1 (ja) ユーザ端末及び無線通信方法
JP7313428B2 (ja) 端末、基地局、方法、及びシステム
JP7088934B2 (ja) 端末、無線通信方法及びシステム
WO2021144976A1 (ja) 通信装置
JP2023156440A (ja) 端末、基地局及び通信方法
US11943720B2 (en) User equipment and base station apparatus
WO2021144972A1 (ja) 通信装置
JP7407833B2 (ja) 通信装置
WO2021149110A1 (ja) 端末及び通信方法
WO2018124031A1 (ja) ユーザ端末及び無線通信方法
WO2021166044A1 (ja) 通信装置
WO2021192306A1 (ja) 端末
JP7170842B2 (ja) ユーザ装置及び基地局装置
WO2020171182A1 (ja) ユーザ装置及び基地局装置
EP4027721A1 (en) Terminal and communication method
RU2796969C1 (ru) Узел управления, распределенный блок, система радиосвязи и способ радиосвязи
JP7373559B2 (ja) ユーザ装置及び無線通信システム
JP7478233B2 (ja) 端末、基地局及び通信方法
JP7431849B2 (ja) 基地局、通信システム及び測定方法
WO2022153505A1 (ja) 端末及び無線基地局
WO2021191982A1 (ja) 端末
JP7438245B2 (ja) 端末及び通信方法
JP7273160B2 (ja) 端末、基地局及び通信方法
WO2021199388A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570610

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013334

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914135

Country of ref document: EP

Effective date: 20220817

ENP Entry into the national phase

Ref document number: 112022013334

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220704