WO2021143897A1 - 参数信息确定方法、通信节点和存储介质 - Google Patents

参数信息确定方法、通信节点和存储介质 Download PDF

Info

Publication number
WO2021143897A1
WO2021143897A1 PCT/CN2021/072406 CN2021072406W WO2021143897A1 WO 2021143897 A1 WO2021143897 A1 WO 2021143897A1 CN 2021072406 W CN2021072406 W CN 2021072406W WO 2021143897 A1 WO2021143897 A1 WO 2021143897A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
type
parameters
transmission mode
group
Prior art date
Application number
PCT/CN2021/072406
Other languages
English (en)
French (fr)
Inventor
张淑娟
鲁照华
蒋创新
高波
吴昊
何震
姚珂
邵诗佳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3165049A priority Critical patent/CA3165049A1/en
Priority to JP2022544035A priority patent/JP7451725B2/ja
Priority to US17/793,621 priority patent/US20230091578A1/en
Priority to EP21740668.5A priority patent/EP4093079A4/en
Publication of WO2021143897A1 publication Critical patent/WO2021143897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • This application relates to the field of wireless communication networks, for example, to a method for determining parameter information, a communication node, and a storage medium.
  • a feature of beam communication is that both parties to and from wireless signals need to perform beam training in real time and perform real-time beam updates.
  • the real-time beam update consumes a lot of signaling information.
  • the beam update may not be dynamically updated through physical signaling, but is notified according to high-level signaling. At this time, the speed of the beam update is also a problem.
  • the present application provides a method for determining parameter information, a communication node, and a storage medium to reduce signaling overhead during beam update and reduce beam switching delay.
  • the embodiment of the present application provides a method for determining parameter information, including:
  • the first parameter of the first type element according to the second parameter of the second type element, where the number of the first parameter of the first type element is N, and the number of the second parameter of the second type element is M, M , N is a positive integer greater than or equal to 1, where the elements include one of the following: channel, signal, and one item in a mapping table.
  • An embodiment of the present application also provides a communication node, including a processor and a memory, and the processor is configured to run program instructions stored in the memory to execute the above-mentioned method for determining parameter information.
  • the embodiment of the present application also provides a computer-readable storage medium, which implements the above-mentioned method for determining parameter information when the program is executed by a processor.
  • FIG. 1 is a flowchart of determining parameter information provided by an embodiment
  • Figure 2 is a schematic diagram of two first parameter TCI states corresponding to two DMRS port groups
  • Figure 3 is a schematic diagram of two repeated transmissions corresponding to different TCIs in a slot
  • Figure 4 is a schematic diagram of the mapping relationship between 4 repeated transmissions in 4 slots and 2 TCIs;
  • Figure 5 is a schematic diagram of two frequency domain resources corresponding to two TCIs
  • FIG. 6 is a schematic diagram of spatial filter information on two time domain resources of a Physical Uplink Control Channel (PUCCH) respectively obtained according to TCI on two frequency domain resources in a CORESET;
  • PUCCH Physical Uplink Control Channel
  • FIG. 7 is a schematic diagram of the spatial filter information of PUCCH obtained according to CORESET.
  • FIG. 8 is a schematic diagram of spatial filter information on different time domain resources of a PUCCH obtained according to the lowest CORESET in different CORESET groups;
  • FIG. 9 is a schematic diagram of the spatial filter information on different time domain resources of a PUCCH respectively obtained according to the lowest two CORESETs in a CORESET group;
  • FIG. 10 is a schematic diagram of obtaining the last N-M time domain resources of the PUSCH according to the second parameter with the largest index of the first element;
  • FIG. 11 is a schematic diagram of obtaining first parameters on different time domain resources of PUSCH according to second parameters of the lowest PUCCH resource in different PUCCH groups;
  • FIG. 12 is a schematic diagram of obtaining first parameters on different time domain resources of PUSCH according to the second parameters of the lowest two PUCCH resources in the same PUCCH group;
  • FIG. 13 is a first schematic diagram of CSI-RS1 with a scheduling interval less than a predetermined threshold and CSI-RS2 and PDSCH1 with a scheduling interval greater than the predetermined threshold;
  • FIG. 14 is a second schematic diagram of CSI-RS1 with a scheduling interval less than a predetermined threshold and CSI-RS2 and PDSCH1 with a scheduling interval greater than the predetermined threshold;
  • FIG. 15 is a schematic diagram of obtaining the first parameter of PDSCH/AP-CSI-RS according to the lowest CORESET in the most recent slot;
  • FIG. 16 is a schematic structural diagram of a communication node provided by an embodiment.
  • an embodiment of the present application provides a method for determining parameter information.
  • the second parameter of the second type element is used to obtain the first parameter of the first type element, so that the first parameter It shares a notification signaling or determination method with the second parameter, and the first parameter is also updated after the second parameter is updated, so that the signaling overhead and the beam switching delay can be reduced.
  • this application considers how to obtain the beam information of the first-type element in a multi-beam scenario. Using the method described in this application, it supports multi-beam transmission while reducing signaling overhead and beam switching delay. Robustness or spectral efficiency.
  • obtaining information 1 based on information 2 includes one of the following methods: information 2 is included in the obtaining parameters of information 1 and information 1 is information 2. Among them, information 1 and information 2 are the first parameter, the second parameter, the third parameter, or the fourth parameter.
  • the frequency domain bandwidth includes one of the following: serving cell, bandwidth part, and physical resource block (PRB) set.
  • PRB physical resource block
  • the channel includes at least one of the following: a control channel, a data channel, a random access channel, and so on.
  • the signal includes at least one of the following: measurement reference signal, synchronization signal, random access signal, phase tracking signal, demodulation reference signal, etc.
  • high-level signaling includes physical layer signaling and signaling other than Downlink Control Information (DCI).
  • high-level signaling includes radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • One or more of the access control layer control element (Medium Access Control-Control Element, MAC-CE) signaling.
  • Fig. 1 is a flow chart for determining parameter information provided in an embodiment. As shown in Fig. 1, the method provided in this embodiment includes the following steps.
  • Step S1010 Obtain the first parameter of the element of the second type according to the second parameter of the element of the second type, wherein the number of the first parameter of the element of the first type is N, and the number of the second parameter of the element of the second type is M, M, and N are positive integers greater than or equal to 1.
  • the method for determining parameter information provided in this embodiment is applied to a communication node in a mobile communication network, such as a terminal or a base station.
  • the first-type elements and the second-type elements in the embodiments of the present application are any kind of information sent or received by the mobile communication network.
  • the first-type elements and the second-type elements include channels, signals, and one of a mapping table. item.
  • the elements of the first type and the elements of the second type respectively include multiple parameters, wherein the number of the first parameter of the element of the first type is N, and the number of the second parameter of the element of the second type is M. Both M and N are positive integers greater than or equal to 1.
  • an item in a mapping table represents a codepoint in the mapping table.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes one of the following: obtaining the index of the first type element according to the second parameter with the index of the second type element being i is The first parameter of i, where i ⁇ 0,1,...,M-1 ⁇ ; in the M second parameters, determine the second parameter corresponding to each of the N first parameters , Each first parameter is obtained according to the second parameter corresponding to it.
  • the index of each of the N first parameters of the first type element in the N first parameters is obtained according to the following information: the fourth parameter of the first type element corresponding to the first parameter.
  • the index of each second parameter in the M second parameters of the second type element in the M second parameters is obtained according to one of the following information: the fourth parameter of the second type element corresponding to the second parameter; notify M In the signaling of the second parameter, the sequence of the M second parameters; the group information of the second type of element.
  • obtaining the first parameter of the element of the first type according to the second parameter of the element of the second type includes: obtaining the first parameter of the element of the first type according to the second parameter of more than one element of the second type. More than one second-type element includes more than one second-type element in the second-type element group; more than one second-type element belongs to the same second-type element group; the second-type element includes one in the mapping table In the case of an item, more than one element of the second type includes multiple items in the mapping table; in the case of an element of the second type including an item in the mapping table, more than one element of the second type includes a mapping Multiple items in the table.
  • each of the N first parameters of the first type element is obtained according to the second parameter corresponding to the first parameter, wherein the N first parameters and the number of the first type element are determined according to at least one of the following information
  • the second parameters of the second-type elements correspond to the index of the second-type element, the index of the second-type element group, the number of the second parameter of a second-type element, and the M of a second-type element
  • the number N of first parameters of an element of the first type is greater than the number M of second parameters of an element of the second type.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes: in a case where N is greater than M, obtaining the first type element according to the M second parameters of the second type element The M first parameters of, and the remaining NM first parameters are obtained according to the third parameter; wherein, the third parameter is obtained according to signaling information or a predetermined rule.
  • the third parameter satisfies one of the following characteristics: there is no correspondence between the third parameter and the second type of element; the third parameter corresponds to the third type of element, where the third type of element and the second type of element are different elements, or the first The three types of elements and the second type of elements are different types of elements.
  • N is less than or equal to M min , where M min includes one of the following: the minimum number of second parameters of a second type element; within a period of time, the second parameters of all second type elements constitute The minimum value of the total number of different second parameters in the set; the minimum value of the total number of different second parameters in a set consisting of the second parameters of all the second type elements in a frequency domain bandwidth within a period of time ; N is less than or equal to M max , where M max includes one of the following: the maximum number of the second parameter of a second type element; within a period of time, the set of second parameters of all the second type elements is different The maximum value of the total number of second parameters; the maximum value of the total number of different second parameters in a set of the second parameters of all the second-type elements in a frequency domain bandwidth within a period of time; N is less than or equal to M.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes: in a case where N is greater than M, obtaining the first type element according to the M second parameters of the second type element Obtain the remaining NM first parameters of the first type element according to the predetermined item second parameter among the M second parameters of the second type element.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes: determining the fourth parameter of the first type element according to one of the following methods: when N is greater than M, the first parameter The N fourth parameters of the class element are re-divided into M fourth parameters; the division of the fourth parameter corresponding to the first class element is determined according to the M value; wherein each fourth parameter corresponds to a first parameter, and the fourth parameter includes the following At least one of: DMRS port group, time domain resource group, frequency domain resource group, one transmission opportunity of the element.
  • obtaining the first parameter of the element of the second type according to the second parameter of the element of the second type includes at least one of the following: when N is less than or equal to M, obtaining according to the second parameter of the element of the second type The first parameter of the element of the first type; when N is greater than M, the first parameter of the element of the first type is obtained according to the third parameter of the element of the third type.
  • the value of N is obtained according to at least one of the following information; the information notified in the downlink control information for scheduling the first type of element; the value of M; the maximum number of second parameters in the plurality of second type elements Value; the minimum value of the number of second parameters in multiple elements of the second type.
  • the mapping table includes the mapping relationship between the bit field value and the indication content in the physical downlink control information.
  • the mapping table includes at least one of the following: the transmission configuration in the DCI indicates the mapping relationship between the TCI indicator field and the TCI state of the PDSCH; and the mapping table between the SRI indicator field in the DCI and the SRI of the PUSCH.
  • the elements of the second type satisfy the following conditions: the elements of the second type include elements that meet the predetermined characteristics among the elements whose number M of the second parameter is greater than or equal to the value of N
  • the N first parameters of the first type of element are obtained according to the M second parameters of the second type of element. If N and M are greater than 1, then N first parameters need to be specified And M second parameters, so that the first parameter with index i is obtained according to the second parameter corresponding to it.
  • Solution 1 The sender and receiver are scheduled (such as the terminal and the base station), when the first parameter of the first type of element is obtained according to the second parameter of the second type of element, N is less than or equal to M, and the index of the first type of element is i
  • the corresponding relationship between the N first parameters of the first type element and the M second parameters of the second type element is established through signaling information or predetermined rules, and the first parameter with index i is based on the first parameter with which the corresponding relationship exists. Two parameters are obtained.
  • more than one element of the second type includes elements of the second type in more than one group. Or more than one element of the second type belongs to the same element group of the second type.
  • the second-type element group is acquired according to one of the following methods: the second-type element included in the second-type element group is notified through signaling information; the second-type elements in a second-type element group are associated with the same group information ; The time domain resources and/or frequency domain resources occupied by the second-type elements in a second-type element group meet the predetermined characteristics, and the group information of the second-type elements is determined according to the group information of the control channel for scheduling the second-type elements. For example, elements of the second type falling in a time unit constitute a group, and elements of the second type falling in the same frequency domain resource group constitute a group.
  • Solution 3 When N is greater than M, the M second parameters of the first type element are obtained according to the M second parameters of the second type element, and the remaining NM second parameters of the first type element are obtained according to the third parameter.
  • the three parameters are obtained according to signaling information or predetermined rules.
  • the third parameter corresponds to the third type of element, where the third type of element and the second type of element are different elements, or different types of elements.
  • the second type of element is the control channel
  • the third type of element is the data channel.
  • Solution 5 The terminal and the base station agree that when the first parameter of the first type element is obtained according to the second parameter of the second type element, N is less than or equal to M min , where M min includes one of the following: a second type The minimum number of second parameters of an element; within a period of time, the minimum total number of different second parameters in the set of second parameters of all elements of the second type; within a period of time, all the second parameters in a frequency domain The minimum value of the total number of different second parameters in the set formed by the second parameters of the elements of the second type.
  • M min includes one of the following: a second type The minimum number of second parameters of an element; within a period of time, the minimum total number of different second parameters in the set of second parameters of all elements of the second type; within a period of time, all the second parameters in a frequency domain The minimum value of the total number of different second parameters in the set formed by the second parameters of the elements of the second type.
  • Solution 6 The terminal and the base station agree that when the first parameter of the first type element is obtained according to the second parameter of the second type element, N is less than or equal to M max , where M max includes one of the following: a second type element The maximum number of second parameters of the second parameter; within a period of time, the total number of different second parameters in the set of second parameters of all elements of the second type; within a period of time, all the second parameters in a frequency domain bandwidth The maximum value of the total number of different second parameters in the set formed by the second parameters of the two types of elements.
  • M max includes one of the following: a second type element The maximum number of second parameters of the second parameter; within a period of time, the total number of different second parameters in the set of second parameters of all elements of the second type; within a period of time, all the second parameters in a frequency domain bandwidth The maximum value of the total number of different second parameters in the set formed by the second parameters of the two types of elements.
  • Solution 7 When N is greater than M, the M first parameters of the first type element are obtained according to the M second parameters of the second type element, and the remaining NM first parameters of the first type element are obtained according to the M second parameters
  • One second parameter that satisfies the predetermined characteristic is acquired, for example, the remaining NM first parameters of the first-type element are acquired according to the second parameter with the largest index among the M second parameters.
  • the remaining N-M second parameters of the element of the first type are obtained according to the second parameter with the smallest index among the M second parameters. That is, the fourth parameters corresponding to the N-M first parameters are combined into one fourth parameter, and the first parameter corresponding to the combined fourth parameter is obtained according to the second parameter with the largest (or smallest) index among the M second parameters.
  • N is obtained from M.
  • Solution 9 When N is less than or equal to M, obtain the first parameter of the first type element according to the second parameter of the second type element, and when N is greater than M, obtain the first type element according to the third parameter of the third type element The first parameter.
  • N is notified in the signaling information for configuring or scheduling the first type of element. If the above schemes 1, 5, 6, 7, and 8 are used, it can also be called N obtaining according to M. At this time, when configuring or scheduling the first element The value of N may not be configured in the signaling information of a type of element.
  • the N first parameters of the first type element correspond to the N fourth parameters of the first type element, where the fourth parameter includes at least one of the following: a demodulation reference signal (Demodulation Reference Signal, DMRS) port group, Time domain resource group, frequency domain resource group, transmission opportunities for the first type of element.
  • DMRS Demodulation Reference Signal
  • N first parameters correspond to N DMRS port groups
  • each DMRS port group corresponds to a first parameter
  • N DMRS port groups correspond to channels occupying the same time-frequency resources.
  • multiple pre-coding resource block groups (Pre-coding RB Group, PRG) get two first parameters, TCI1 and TCI2, where TCI is the transmission configuration indication (Transmission Configuration Indication), and the two first parameters correspond to 2 DMRS port groups.
  • N first parameters correspond to N resource groups, and each resource group corresponds to one first parameter.
  • the resources included in a resource group corresponding to a first parameter may be continuous resources or non-continuous resources.
  • N resource groups correspond to at least N repeated transmissions of the first type of element, that is, a resource group may include the first type of element
  • One or more repeated transmissions, or multiple resource groups include one transmission opportunity of the first type of element, where the resources include one or more of time domain resources and frequency domain resources.
  • the resource group is a time domain resource group, as shown in Figure 3 and Figure 4.
  • Figure 3 is a schematic diagram of two repeated transmissions corresponding to different TCIs in a slot (slot), and Figure 4 shows 4 repeated transmissions in 4 slots. Schematic diagram of the mapping relationship between two TCIs.
  • the two first parameter TCI states (TCI state) in Figure 3 correspond to two time domain resource groups in one slot
  • the two first parameter TCI states in Figure 4 correspond to 2 of the four slots.
  • Time domain resource group, the time domain resource group corresponding to TCI state1 is ⁇ transmission opportunity 1, transmission opportunity 2 ⁇
  • the time domain resource group corresponding to TCI state2 is ⁇ Transmission opportunity 3, transmission opportunity 4 ⁇ , where the channel is repeatedly transmitted in multiple transmission opportunities.
  • the resource group is a frequency domain resource group
  • FIG. 5 is a schematic diagram of two frequency domain resources corresponding to two TCIs.
  • Two TCI states correspond to two frequency domain resource groups.
  • the frequency domain resource group corresponding to TCI state1 ie, the first TCI state in Figure 5
  • TCI state2 ie, Figure 5
  • the second TCI state corresponds to the frequency domain resource group ⁇ PRG2, PRG4 ⁇ , where PRG (Precoding Resource block Group) is a precoding resource block group.
  • PRG Precoding Resource block Group
  • the channels in the same PRG have the same precoding
  • the channels in different PRGs have the same precoding
  • the precoding is the same or different.
  • one second parameter corresponds to more than one first parameter.
  • one DMRS port group in FIG. 2 corresponds to two TCI states, and at this time, two DMRS port groups in FIG. 2 correspond to four.
  • TCI state, or each time domain resource in a time domain resource group in Figures 3 to 4 corresponds to 2 TCI states, which will cause the 2 time domain resource groups in Figures 3 to 4 to correspond to a total of 4 The first TCI state.
  • each frequency domain resource in a frequency domain resource group in FIG. 5 corresponds to 2 TCI states, which will result in a total of 4 TCI states corresponding to the 2 frequency domain resource groups in FIG. 5.
  • the time domain resource corresponding to ⁇ transmission opportunity 1, transmission opportunity 2 ⁇ is called a time domain resource group. If the fourth parameter is a transmission opportunity, transmission opportunity 1 and transmission opportunity 2 correspond to 2.
  • the four parameters correspond to one or more first parameters.
  • the M second parameters of the element of the second type correspond to the M fourth parameters of the element of the second type.
  • M second parameters correspond to M DMRS port groups, and each DMRS port group corresponds to one second parameter.
  • M second parameters correspond to M resource groups, and each resource group corresponds to one second parameter.
  • the resources included in a resource group corresponding to a second parameter may be continuous resources or non-continuous resources.
  • M resource groups correspond to at least M repeated transmissions of the second type of element, that is, a resource group may include the second type of element
  • One or more repeated transmissions, or M frequency domain resource groups correspond to one repeated transmission of the second type of element, where the resources include one or more of time domain resources and frequency domain resources. This embodiment does not exclude that one fourth parameter corresponds to more than one second parameter, and one second parameter corresponds to one or more fourth parameters.
  • the index of each first parameter in the N first parameters of the N first parameters of the element of the first type is obtained according to the N fourth parameters corresponding to the element of the first type.
  • N first parameters correspond to N time domain resource groups
  • the index of each first parameter in the N first parameters in the N first parameters is in the N first parameter according to the index of the time domain resource group corresponding to the first parameter.
  • the indexes of the time domain resource groups in the N time domain resource groups may be obtained according to the order of the time domain positions of the start time domain symbols included in the N time domain resource groups, and the time domain resources with the later start positions The larger the index of the group.
  • the index of each second parameter in the M second parameters of the second type element in the M second parameters is obtained according to one of the following methods: in the signaling of the second parameter, the order of the second parameter ; Get the index of the M fourth parameters of the second type element corresponding to the second type element.
  • M second parameters correspond to M frequency domain resource groups, and the index of each second parameter in the M second parameters in the M second parameters is based on the frequency domain resource group corresponding to the second parameter. Get the index in the frequency domain resource group.
  • the indexes of the frequency domain resource groups in the M frequency domain resource groups may be obtained according to the order of the starting frequency domain resource positions included in the M frequency domain resource groups, and the frequency domain resource group with the larger starting frequency domain position The larger the index.
  • the order of the M second parameters in the signaling that informs the second parameter includes M second parameters corresponding to a mapping relationship in the TCI state mapping table.
  • the index of the second parameter is obtained in the order in. For example, the index at the first position is 0, and the index at the second position is 1.
  • the foregoing is the corresponding relationship between the a-th parameter and the fourth parameter.
  • the a-th parameter includes the above-mentioned first parameter and/or the second parameter, that is, a includes one and/or two, which is not excluded in the embodiment of the present application.
  • the parameter and/or the second parameter include a fourth parameter, such as the DMRS port group parameter of the first type of element (ie the first parameter, where the DMRS port group parameter includes at least one of the following: the division parameter of the DMRS port group, and the parameter of the DMRS port group Number parameters, etc.) are obtained according to the DMRS port group parameters of the second type element (ie, the second parameter), where the number of DMRS port groups for the first type element is N, and the number of DMRS port groups for the second type element is M.
  • the frequency domain resource group parameter of the element of the first type i.e. the first parameter
  • the frequency domain resource group parameter of the element of the second type i.e.
  • the second parameter where the number of frequency domain resource groups of the element of the first type is N,
  • the number of DMRS port groups of the second type of element is M.
  • the number of repeated transmissions of the elements of the first type is obtained according to the number of repeated transmissions of the elements of the second type.
  • the a-th parameter when the a-th element includes a downlink element, includes at least one of the following parameters: quasi co-location parameter, transmission mode, demodulation reference signal DMRS port group, time domain resource group, frequency domain Resource group, the transmission opportunity of the downlink element.
  • the quasi co-location parameter includes one of the following: quasi co-location reference signal, quasi co-location assumption, TCI, where the quasi co-location assumption includes at least one of the following assumptions: Doppler frequency Doppler shift, Doppler spread, average delay, delay spread, average gain, Spatial Rx parameter, and other channel characteristic parameters.
  • a includes one and/or two, that is, the a-th parameter includes one or more of the first parameter and the second parameter.
  • the DMRS ports in a downlink DMRS port group meet the quasi co-location relationship, and the DMRSs of different DMRS port groups do not meet the quasi co-location relationship, or on the same time-frequency resource, the DMRS in a DMRS port group
  • the ports meet the quasi co-location relationship, and the DMRSs of different DMRS port groups do not meet the quasi co-location relationship.
  • the DMRS ports of the same DMRS port group may not meet the quasi co-location relationship.
  • the same DMRS port group can correspond to different TCI states in different PRB sets (and/or different time domain resource groups).
  • the downlink elements include one of the following: downlink channel; downlink signal; one item of the TCI state mapping table of PDSCH.
  • the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) TCI state mapping table is shown in Table 1:
  • the TCI state of the PDSCH is obtained by scheduling the code point (codepoint) value indicated in the TCI indicator field in the Physical Downlink Control Channel (PDCCH) of the PDSCH, and referring to Table 1.
  • codepoint code point
  • PDCH Physical Downlink Control Channel
  • the a-th parameter when the a-th type element includes an uplink element, the a-th parameter includes at least one of the following parameters: spatial parameter, power parameter, transmission mode, DMRS port group, time domain resource group, frequency domain resource group , The transmission opportunity of the uplink element, where the spatial parameters include one of the following: spatial relationship information, and spatial transmission filter parameters.
  • the spatial relationship information of one of the uplink elements includes the uplink reference signal or the downlink reference signal.
  • the spatial relationship information includes the uplink reference signal (including the random access signal)
  • the spatial transmission filter of the uplink element is based on the uplink reference signal in the spatial relationship information.
  • the spatial transmission filter of the signal is obtained; when the spatial relationship information includes the downlink reference signal (including the synchronization signal), the spatial transmission filter of the uplink element is obtained according to the spatial reception filter of the downlink reference signal in the spatial relationship information.
  • a includes one and/or two, that is, the a-th parameter includes one or more of the above-mentioned first parameter and second parameter.
  • the DMRS ports in the DMRS port group of one uplink channel correspond to the same spatial parameter, and the DMRS of different DMRS port groups correspond to different spatial parameters, or on the same time-frequency resource, the DMRS ports in a DMRS port group DMRS ports correspond to the same spatial parameter, and DMRSs of different DMRS port groups correspond to different spatial parameters.
  • the same DMRS port group may not correspond to the same spatial parameters.
  • the uplink element includes one of the following: uplink channel, uplink signal, and one item in the SRS Resource Indicator (SRI) mapping table of the uplink PUSCH.
  • SRI mapping table of PUSCH is shown in Table 2:
  • the sounding reference signal (Sounding Reference Signal, SRS) of the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) is obtained by scheduling the codepoint value indicated in the SRI indicator field in the PDCCH of the PUSCH, and referring to Table 2, which is The number of layers corresponding to the PUSCH is an SRI mapping table of layer 1, where the number of layers of the PUSCH is obtained through the DMRS port indication field in the DCI.
  • the PUSCH SRI mapping table can also combine the SRI mapping tables in all layers into one mapping table.
  • Table 3 is the result of combining the mapping tables with the number of layers of 2 and the number of layers of 1. In Table 3, The number of layers is obtained according to the DMRS indication field, so in the SRI mapping table, the SRI codepoint values of layer 1 and layer 2 overlap.
  • One item in the SRI mapping table includes a row in Table 2 or Table 3, that is, a row corresponding to a codepoint.
  • the power parameter of the uplink element includes at least one of the following parameters: target power p0, path loss factor alpha, and path loss reference signal (pathloss Reference Signal).
  • the transmission mode of the uplink element includes the correspondence between the N fifth parameters of the uplink element and at least N fourth parameters of the uplink element , where each of the N fifth parameters of the uplink element corresponds to one or more fourth parameters, and each of the N fourth parameters of the uplink element corresponds to one or more fifth parameters,
  • the fifth parameter includes one or more of spatial parameters and power parameters
  • the fourth parameter includes one or more of DMRS port groups, time domain resource groups, frequency domain resource groups, and repeated transmission opportunities of elements.
  • the transmission mode of the downlink element includes the correspondence between N quasi co-location parameters of the downlink element and at least N fourth parameters of the downlink element , wherein each of the N quasi co-location parameters of the downlink element corresponds to one or more fourth parameters, and each fourth parameter of the downlink element corresponds to one or more quasi co-location parameters, and the fourth parameter includes One or more of the DMRS port group, time domain resource group, and frequency domain resource group, as shown in Figures 2 to 5.
  • the transmission mode of the uplink element includes one or more of the following transmission modes:
  • the N fifth parameters of the uplink element correspond to N DMRS port groups, where each fifth parameter of the N fifth parameters corresponds to a DMRS port group, and different DMRS port groups correspond to different fifth parameters.
  • the N DMRS port groups correspond to a redundancy version of a transmission block, and a redundancy version is mapped in all DMRS ports included in the N DMRS port groups first, then the frequency domain is mapped, and then the time domain is mapped.
  • the N fifth parameters of the uplink element correspond to N DMRS port groups, where each fifth parameter of the N fifth parameters corresponds to a DMRS port group, and different DMRS port groups correspond to different fifth parameters.
  • N DMRS port groups correspond to N redundancy versions of a transmission block. The N redundancy versions can be the same redundancy version. In each DMRS port group in the N DMRS port groups, a redundancy version is mapped first Then frequency domain mapping, and then time domain mapping, the same transmission block is repeatedly transmitted in N DMRS port groups.
  • the N fifth parameters of the uplink element correspond to N frequency domain resource groups, and each of the N fifth parameters corresponds to a frequency domain resource group.
  • Different frequency domain resource groups correspond to different frequency domain resource groups.
  • Five parameters, N frequency domain resource groups correspond to a redundant version of a transport block. A redundant version is mapped to all frequency domain resources included in the N frequency domain resource groups first, then frequency domain mapping, and then time Domain mapping.
  • N*A frequency domain resource groups corresponding to the N fifth parameters of the uplink element where each fifth parameter of the N fifth parameters corresponds to A frequency domain resource groups, and A different frequency domains Resource groups correspond to different fifth parameters, N*A frequency domain resource groups correspond to at least N*A redundancy versions of a transport block, and N*A redundancy versions can be the same or different Redundant version, in each frequency domain resource group of the N*A frequency domain resource groups, a redundant version is mapped first, then frequency domain, and then time domain, that is, the same transmission block is in N*A Repeated transmission in a frequency domain resource group.
  • the number of frequency domain resource groups corresponding to each of the N fifth parameters is A.
  • this embodiment does not rule out that different fifth parameters correspond to The number of frequency domain resource groups is different.
  • the N fifth parameters of the uplink element correspond to N time domain resource groups, and each of the N fifth parameters corresponds to a time domain resource group.
  • Different time domain resource groups correspond to different time domain resource groups.
  • Five parameters, N time-domain resource groups correspond to a redundant version of a transport block. A redundant version is mapped to all frequency-domain resources included in the N time-domain resource groups first, then frequency-domain mapping, and then time Domain mapping; where N time domain resource groups are included in a time unit, such as a slot.
  • N*A time domain resource groups corresponding to the N fifth parameters of the uplink element where each fifth parameter of the N fifth parameters corresponds to A time domain resource groups, and A different time domains Resource groups correspond to different fifth parameters.
  • N*A time domain resource groups correspond to at least N*A redundancy versions of a transmission block.
  • N*A redundancy versions can be the same or different. Redundant version, in each time domain resource group in N*A time domain resource groups, a redundant version is mapped first, then frequency domain, and then time domain, that is, the same transmission block is in N*A
  • the number of time-domain resource groups corresponding to each fifth parameter in the N fifth parameters is A.
  • this embodiment does not rule out that different fifth parameters correspond to The number of time domain resource groups is different.
  • N*A time domain resource groups are included in a time unit, such as a slot.
  • the N fifth parameters of the uplink element correspond to N time domain resource groups, and each of the N fifth parameters corresponds to a time domain resource group.
  • Different time domain resource groups correspond to different time domain resource groups.
  • Five parameters, N time-domain resource groups correspond to a redundant version of a transport block. A redundant version is mapped to all frequency-domain resources included in the N time-domain resource groups first, then frequency-domain mapping, and then time Domain mapping; where N time domain resource groups are included in N time units, such as N slots, and each time unit includes a time domain resource group.
  • the N fifth parameters of the uplink element correspond to N*A time domain resource groups, where each of the N fifth parameters corresponds to A time domain resource groups, and A different time domain resources
  • the groups correspond to different fifth parameters.
  • the N*A time domain resource groups correspond to at least N*A redundancy versions of a transmission block.
  • the N*A redundancy versions can be the same redundancy version or different redundancy versions.
  • a redundant version is mapped first, then frequency domain, and then time domain, that is, the same transmission block is in N*A Repeated transmission in the time domain resource group.
  • the number of time domain resource groups corresponding to each of the N fifth parameters is A.
  • this embodiment does not rule out that different fifth parameters correspond to The number of time domain resource groups is different.
  • N*A time domain resource groups are included in N*A time units, such as N*A slots.
  • the transmission mode of the uplink element may also include the combined transmission mode of the above transmission modes 1a to 4a.
  • the transmission mode of the downlink element may also include the above-mentioned transmission modes 1a to 4b, and the combined transmission mode of 1a to 4a.
  • the uplink element is replaced with a downlink element
  • the fifth parameter is replaced with a quasi co-location parameter.
  • the downlink element includes CORESET
  • the transmission block is replaced with DCI information included in CORESET, or the transmission block is replaced with DCI modulation symbols included in CORESET.
  • acquiring the first parameter of the first type element according to the second parameter of the second type element includes at least one of the following: determining the first transmission mode of the first type element according to the second transmission mode of the second type element ; The value of N is determined according to the value of M; the number of fourth parameters of the first type of element is determined by the number of fourth parameters of the second type of element; the number of repeated transmissions of the first type of element is determined by the number of repeated transmissions of the second type of element Determine; where the fourth parameter includes one of the following: DMRS port group, time domain resource group, frequency domain resource group, a transmission opportunity of the element.
  • acquiring the first transmission mode of the first type element according to the second transmission mode of the second type element includes one of the following:
  • the N value is obtained according to the M value; the first transmission mode is the same as the second transmission mode; the transmission mode set to which the first transmission mode belongs is obtained according to the second transmission mode, and one of the transmission mode sets includes one or more transmission modes; first The type of the fourth parameter corresponding to the first parameter in the transmission mode is the same as the type of the fourth parameter corresponding to the second parameter in the second transmission mode; wherein the second transmission mode of the second type element includes the M-th of the second type element.
  • the mapping relationship between the second parameter and the X fourth parameters, X is a positive integer, or the second transmission mode includes the repeated transmission mode of the second type of element; the first transmission mode of the first type of element includes the N of the first type of element
  • the mapping relationship between the first parameter and the Y fourth parameters, Y is a positive integer, or the first transmission mode includes the repeated transmission mode of the first type of element.
  • the first transmission mode of the second type element is any of the transmission modes 3a to 4b
  • the first transmission mode cannot be any of the transmission modes 1a to 2b
  • the type of the four parameters is the same as the type of the fourth parameter corresponding to the second parameter in the second transmission mode.
  • M second parameters correspond to M time domain resource groups
  • N in the first transmission mode, N
  • the first parameter corresponds to N time-domain resource groups
  • the number of fourth parameters corresponding to the elements of the first type is obtained according to the number of fourth parameters corresponding to the elements of the second type.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element further includes at least one of the following: N first parameters of the first type element correspond to X fourth parameters, where Each of the N first parameters corresponds to one or more fourth parameters, or each of the X fourth parameters corresponds to one or more first parameters; M elements of the second type The second parameter corresponds to Y fourth parameters, where each of the M second parameters corresponds to one or more fourth parameters, or each of the Y fourth parameters corresponds to one or more The second parameter; the fourth parameter is one of the following: DMRS port group, time domain resource group, frequency domain resource group, one transmission opportunity of the element.
  • the transmission mode of the element of the first type is based on the transmission of one of the more than one element of the second type.
  • Mode acquisition or the transmission mode of the element of the first type is obtained according to the transmission mode of more than one element of the second type.
  • the first parameter of the element of the first type is acquired according to the second parameter of the element of the second type, including one or more of the following scenarios:
  • the first parameter of the uplink element (that is, the element of the first type) is obtained according to the second parameter of the downlink element (the element of the second type), where the first parameter includes at least one of the following parameters: spatial parameter, power parameter , Transmission mode, and the second parameter includes at least one of the following parameters: quasi co-location parameters, transmission mode, wherein the number of spatial parameters of uplink elements is N, and the number of quasi co-location parameters of downlink elements is M.
  • the following takes the first parameter including the spatial parameter, and the spatial parameter of the uplink element is obtained according to the quasi co-location parameter of the downlink element as an example.
  • the method described below can be similarly adapted to the power parameter of the uplink element according to the quasi co-location parameter of the downlink element. To obtain the scene, just replace the space parameter described below with the power parameter.
  • the uplink element satisfies at least one of the following characteristics: the first parameter is not configured for the uplink element through signaling information; the uplink element includes the PUSCH scheduled by DCI format 0_0, where the PUCCH is not configured in the frequency domain bandwidth where the PUSCH is located; the uplink element is located At least one spatial parameter is configured in the frequency domain bandwidth; the center carrier of the frequency domain bandwidth where the uplink element is located is greater than a predetermined value; the number of sets of uplink measurement reference signals of the frequency domain bandwidth where the uplink element is located is greater than the predetermined value; the uplink where the uplink element is located In the downlink frequency domain bandwidth corresponding to the frequency domain bandwidth, at least one quasi co-located reference signal of the associated spatial reception parameter is configured or activated.
  • the uplink elements include uplink channels or signals, such as PUCCH, PUSCH, SRS, Physical Random Access Channel (PRACH), or uplink elements include one item of the PUSCH SRI mapping table.
  • uplink channels or signals such as PUCCH, PUSCH, SRS, Physical Random Access Channel (PRACH), or uplink elements include one item of the PUSCH SRI mapping table.
  • the downlink elements include downlink channels or signals, such as CORESET, PDSCH, channel state information reference signal (Channel State Information-Reference Signal, CSI-RS), synchronization signal and physical broadcast channel (Physical Broadcast Channel, PBCH) block ( Synchronization Signal and PBCH block, SSB), or the downlink element includes one item in the TCI state mapping table.
  • CORESET Channel State Information-Reference Signal
  • PDSCH Downlink Control Signal
  • CSI-RS Channel State Information-Reference Signal
  • PBCH Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal and PBCH block
  • acquiring the first parameter of the uplink element according to the second parameter of the downlink element includes one or more of the following scenarios:
  • the first parameter of the upstream element is obtained according to the second parameter of the CORESET (ie, the second type of element) with the lowest CORESET identifier (CORESET-ID) in the downstream bandwidth, as shown in Figure 6, which is a PUCCH
  • the spatial filter information on the two time domain resources is obtained according to the schematic diagram of the TCI on the two frequency domain resources in a CORESET
  • the first parameter of PUCCH1 is obtained according to the second parameter of CORESET1
  • the first parameter of PUCCH1 is The number N is 2, corresponding to the 2 time domain resource groups of PUCCH1, and the 2 time domain resource groups are in slot(n) and slot(n+1) respectively.
  • CORESET Control Resource Set, control resource set
  • CORESET Control Resource Set, control resource set
  • Scenario 1-2 Obtain the first parameter of the uplink element according to the second parameter of the CORESET (ie, the second type element) where the PDCCH for scheduling the uplink element is located, where the uplink element (ie, the first type element) has a corresponding PDCCH for scheduling it .
  • the first parameter of the uplink element is obtained according to the predetermined TCI state (ie the second parameter), where the predetermined TCI state (ie the second parameter) includes one of the following: PDSCH configuration in the downlink frequency domain bandwidth or activated TCI In the state set, one or more TCI states with the lowest TCI state index; TCI states corresponding to one or more codepoints, where one codepoint corresponds to one or more TCI states (ie M TCI states), at this time M is equal to one codepoint The number of corresponding TCI states. Codepoint is the codepoint in the TCI state mapping table.
  • the TCI state mapping table is the TCI state mapping table activated by MAC-CE for the PDSCH of the downlink frequency domain bandwidth.
  • the mapping table is the TCI indication field in the DCI.
  • the mapping relationship between the codepoint and the TCI state is shown in Table 1, where the codepoint corresponds to the bit field value of the TCI indication field in the DCI.
  • the TCI state mapping table is called the parameters of the PDSCH (that is, the second element).
  • the PDSCH base station may not send it. If the PDSCH is sent, the TCI state parameter of the PDSCH can be indicated by the TCI state mapping table and the TCI indicated in the DCI.
  • Domain acquisition at this time, the first parameter of the first-type element is acquired according to the second parameter of the second-type element, which can also be referred to as the first parameter of the first-type element is acquired according to the second parameter.
  • CORESET is not configured in the downlink frequency domain bandwidth corresponding to the uplink frequency domain bandwidth where the uplink element is located.
  • the spatial parameter corresponding to an item in the SRI mapping table of the PUSCH is obtained according to the TCI state corresponding to an item in the TCI state mapping table of the PDSCH.
  • the spatial relationship information corresponding to an SRI codepoint in Table 2 or Table 3 is obtained according to the TCI state corresponding to a TCI state copepoint in Table 1. That is, for example, the base station does not notify the SRI mapping table relationship of Table 2 or Table 3 through signaling, but only establishes the mapping relationship of Table 1 through signaling information, and then establishes Table 2 (or Table 3) according to Table 1, such as in Table 1.
  • the first 4 of the codepoints corresponding to the TCI state of the codepoint equal to 1 constitute the SRI mapping table with the DMRS layer number equal to 1, as shown in Table 4.
  • the SRI indicates layer 1 and the SRI codepoint value is equal to 00
  • the first two of the codepoints whose number of TCI states corresponding to the codepoint in Table 1 are equal to 2 constitute the SRI mapping table with the number of DMRS layers equal to 2, as shown in Table 5.
  • TCI codepoint value TCI state 00 000 TCI state1 01 011 TCI state 3 10 100 TCI state 4 11 101 TCI state 8
  • TCI codepoint value TCI state 00 001 TCI state 2
  • TCI state 8 01 010 TCI state 4 TCI state 19
  • the first parameter of the uplink element is obtained according to the second parameter of the PDSCH.
  • the second parameter is a quasi co-location parameter and the time interval between the PDCCH and PDSCH of the scheduled PDSCH is less than a predetermined threshold
  • the second parameter of the PDSCH is not obtained according to the second parameter indicated in the PDCCH for scheduling the PDSCH, but according to one of the following three types of quasi co-location parameters, the quasi co-location parameter of the PDSCH whose scheduling interval is less than a predetermined value is obtained:
  • Information 1 The quasi co-location parameter of the CORESET with the lowest CORESET-ID in the CORESET of the associated detection search space in the slot closest to the PDSCH;
  • Information 2 The corresponding TCI state in the TCI state mapping table is 2 in the codepoint Information 3: The quasi-co-location parameter of the CORESET with the lowest CORESET-ID in the associated detection search space in the slot closest to the PDSCH and belonging to the predetermined CORESET group.
  • the quasi co-location parameters of the PDSCH whose scheduling interval is less than a predetermined value is determined according to the number of CORESET groups and the maximum number of TCI states corresponding to a codepoint in the TCI state mapping table z
  • the number of CORESET groups is 2
  • information three is used, when the number of CORESET groups is 1 and the z value is equal to 1, information one is used, and when the number of CORESET groups is 1 and the z value is greater than 1, information two is used.
  • the quasi co-location parameter will also be indicated in the PDCCH for scheduling the PDSCH, but this quasi co-location parameter is not used for PDSCH reception.
  • the quasi co-location parameter indicated in the PDCCH is information four.
  • the first parameter of the uplink element is obtained according to the second parameter of the PDSCH and the second parameter includes the quasi co-location parameter, at this time, it is necessary to determine whether the first parameter of the uplink element is based on the above information one to four.
  • One way is to use which one of information 1 to information 3 to receive the PDSCH, and which one is used to obtain the first parameter of the uplink element; the other way is regardless of which one of information 1 to information 3 is used to receive the PDSCH.
  • the first parameter of the upstream element is obtained according to information four.
  • the number of TCI states is equal to the number of DMRS layers of PUSCH, and each TCI state corresponds to a DMRS layer.
  • one item in the SRI mapping table ie one row in Table 4-Table 5
  • the number N of corresponding spatial parameters is represented by the number of DMRS layers, that is, the number N of the first parameter is equal to the number of DMRS layers.
  • the number of DMRS groups where N is equal to the PUSCH is not ruled out, and the DMRS in a DMRS group obtain their spatial information according to the same TCI state.
  • the number of DMRS groups is obtained according to the signaling information notified by the base station, or according to the information of the Code Division Multiplexing (CDM) group in which the DMRS is located.
  • the number N of the first parameter is equal to the DMRS The number of port groups.
  • PDSCH and PUSCH share a table as shown in Table 1, or PUSCH uses the first predetermined number of items in Table 1.
  • the number N of the first parameter of the upstream element is required to be less than or equal to the second parameter of the CORESET (that is, the second type of element) with the lowest CORESET-ID in the aforementioned downstream frequency domain bandwidth.
  • the number M is changed scenario 1-1 to the following rule: the first parameter of the upstream element is required to be obtained according to the second parameter of the CORESET (ie, the second type of element) with the lowest CORESET-ID in the CORESET set that satisfies the predetermined characteristics in the downstream frequency domain bandwidth ,
  • the predetermined characteristic includes that the second parameter of CORESET is greater than or equal to N.
  • Figure 7 is a schematic diagram of the PUCCH spatial filter information obtained according to CORESET.
  • the number of second parameters of CORESET1 is 1, and the number of second parameters of CORESET2 is 2. If the number of first parameters of PUCCH is If N is 1, the first parameter of PUCCH is obtained according to the second parameter of CORESET1. If the number of first parameters of PUCCH N is 2, then the first parameter of PUCCH is obtained according to the second parameter of CORESET2, that is, the CORESET index is the lowest at this time. And the CORESET with the second parameter greater than or equal to 2 is CORESET2 instead of CORESET1.
  • the number M of the second parameters of the CORESET where the PDCCH for scheduling the uplink element is required is greater than or equal to the number N of the first parameter of the uplink element.
  • the number M of TCI states corresponding to a codepoint is required to be greater than or equal to the number N of the first parameter of the uplink element.
  • the number N of DMRS layers (or the number N of DMRS groups) of uplink elements is less than or equal to the number M of TCI states corresponding to one codepoint.
  • more than one downstream element at this time includes downstream elements associated with multiple CORESET groups.
  • the first parameter of the upstream element is obtained according to the second parameter of CORESET in multiple CORESET groups.
  • Figure 8 is a schematic diagram of the spatial filter information on different time domain resources of a PUCCH obtained according to the lowest CORESET in different CORESET groups. Different time domain resource groups of a PUCCH correspond to different first parameters. The first parameter of the first time resource group is acquired according to the second parameter of the lowest CORESET in the CORESET group 1, and the first parameter of the second time resource group is acquired according to the second parameter of the lowest CORESET in the CORESET group 2.
  • more than one downstream element includes multiple downstream elements associated with the same CORESET group.
  • the first parameter of the upstream element is obtained according to the second parameters of multiple CORESETs in the same CORESET group.
  • Figure 9 is a schematic diagram of the spatial filter information on different time domain resources of a PUCCH obtained according to the lowest two CORESETs in a CORESET group. Different time domain resources of a PUCCH correspond to different first parameters. , Wherein the first parameter of the first time resource is obtained according to the second parameter of the lowest CORESET in the CORESET group 1, and the first parameter of the second time resource is obtained according to the second parameter of the second lowest CORESET in the CORESET group 1.
  • whether the more than one downlink element includes the downlink element associated with multiple CORESET groups or the multiple downlink elements of the same CORESET group may be obtained according to signaling information or a predetermined rule. That is, whether to obtain the first parameter of the PUCCH in the manner of Figure 8 or to obtain the first parameter of the PUCCH in the manner of Figure 9, it can be obtained according to the signaling information or a predetermined rule. For example, in the case of a CORESET group, it is obtained in the manner of Figure 9 , When there are two CORESET groups, it is obtained as shown in Figure 8.
  • the PDCCH for scheduling uplink elements is associated with multiple CORESETs, or multiple CORESETs include the PDCCH for scheduling uplink elements.
  • a PDCCH is repeatedly transmitted in multiple CORESETs, or multiple CORESETs respectively include scheduling Part of the PDCCH of the uplink element.
  • multiple CORESETs belong to one CORESET group, or multiple CORESETs are required to include CORESETs belonging to different CORESET groups, and it is determined whether multiple CORESETs belong to one CORESET group or multiple CORESET groups according to signaling information or predetermined rules.
  • the first parameter of the uplink element is obtained based on the TCI state corresponding to more than one codepoint.
  • more than one codepoint corresponds to the same TCI state mapping table, for example, one TCI state mapping table
  • the lowest and second lowest codepoint, or more than one codepoint includes codepoints corresponding to different TCI state mapping tables, where different TCI state mapping tables correspond to different CORESET groups of the same frequency domain bandwidth, for example, more than one codepoint includes each TCI state The lowest one or more codepoints in the mapping table.
  • scenario 1-4 when the number of DMRS layers N (or the number of DMRS end groups N) is greater than the number of TCI states corresponding to a codepoit, it is similar to scenario 1-3, which is based on more than one codepoint.
  • the TCI state obtains the first parameter of the uplink element.
  • the M first parameters among the N first parameters of the uplink element are obtained according to the M second parameters of the second type element, and the remaining NM first parameters among the N first parameters of the uplink element are obtained according to the third parameter.
  • Parameter acquisition where the third parameter includes parameters configured by RRC signaling or MAC-CE signaling or DCI signaling, where the third parameter is a dedicated parameter, such as a parameter specifically configured for the NM first parameters of the uplink element, or There is a corresponding relationship between the third parameter and the second type of element.
  • the M first parameters are obtained according to which second parameter of the second type element
  • the NM first parameters are obtained according to Which second type of element corresponds to the third parameter to obtain, where the second parameter is the transmission parameter of the second type of element, and the third parameter is not the parameter required for the transmission of the second type of element, for example, in scene 1-1 and scene 1- In 2, there is a quasi co-location relationship between the second parameter and the DMRS of CORESET, but there is no restriction on the quasi co-location relationship between the third parameter and the DMRS of CORESET.
  • the third parameter is a parameter activated by the MAC-CE.
  • the third parameter includes a predetermined TCI state, where the predetermined TCI state includes one of the following: in the TCI state set configured or activated for the PDSCH in the downlink frequency domain bandwidth, the TCI state index The lowest one or more TCI states; the predetermined item TCI state corresponding to one or more codepoints in the TCI state mapping table.
  • the downlink frequency domain bandwidth includes the downlink frequency domain bandwidth corresponding to the uplink frequency domain bandwidth where the uplink element is located.
  • the predetermined item TCI state included in the predetermined item codepoint in the TCI state mapping table is acquired, where the predetermined item TCI state includes the predetermined item acquisition of multiple TCI states included in the predetermined item codepoint, for example, the predetermined item TCI state includes the predetermined item codepoint includes The second TCI state among multiple TCI states is obtained.
  • the TCI state mapping table of PDSCH is shown in Table 6, and the predetermined item codepoint includes one of the following:
  • the lowest codepoint is a codepoint with a value of 0, such as codepoint '00' in Table 1.
  • Another first parameter of the upstream element is obtained according to the second TCI state corresponding to codepoint '00', that is, according to TCI state 2 Obtain.
  • the predetermined characteristic codepoint includes the codepoint in the second parameter that contains the second type of element in the codepoint.
  • the second parameter is TCI state 1
  • Table 1 there are codepints '10' and '11', and then take the lowest of these two, that is, codepoint '10'.
  • the predetermined characteristic codepoint includes the number of corresponding TCI states in the codepoint that meets the predetermined characteristics. For example, if the number of TCI states is greater than 1, then the TCI state mapping is first searched for In the table, the corresponding number of TCI state codepoints is greater than 1, as shown in Table 1, there are codepint'00','10','11', and then take the lowest of these three, that is, codepoint'00'.
  • the first parameter according to the second item TCI state in the TCI state corresponding to the aforementioned codepoint that is, the predetermined item TCI state. If the predetermined item TCI state is not included in the predetermined item codepoint at this time, if the aforementioned codepoint The number of TCI states corresponding to '00' or codepoint '10' is 1, then the fourth parameter part corresponding to the NM first parameters of the uplink element is not sent. For example, if N first parameters correspond to N time domain resource groups, then NM time domain resource groups after not sending uplink elements. Or the N-M first parameters of the uplink element are all based on the second parameter with the largest (or smallest) index among the M second parameters.
  • the fourth parameters corresponding to the N first parameters are divided into M fourth parameters, and the first parameter corresponding to each fourth parameter is obtained according to one second parameter of the M second parameters.
  • N first parameters correspond to N time domain resource groups, then the N time domain resource groups are divided into M time domain resource groups at this time.
  • one first parameter corresponds to one DMRS port group (or one DMRS port), and two second parameters correspond to two frequency domain resource groups, then one first parameter corresponds to two frequency domain resource groups.
  • a parameter is obtained according to the second parameter corresponding to the frequency domain resource group with an index of 0 among the two frequency domain resources.
  • the number N of the first parameter of the above-mentioned uplink element (that is, the above-mentioned first-type element) is required to be less than or equal to M_max, where M_max includes one of the following: one The maximum value of the second parameter of CORESET; the maximum value of the total number of different second parameters in the set of all the second parameters of CORESET in a period of time; the second parameter of all CORESETs in a frequency domain bandwidth in a period of time The maximum value of the total number of different second parameters in the set of parameters; the number of second parameters of a CORESET; the total number of different second parameters in the set of all the second parameters of CORESET in a period of time ; The total number of different second parameters in the set of all the second parameters of CORESET in a frequency domain bandwidth within a period of time.
  • N first parameters correspond to N time domain resource groups
  • M second parameters correspond to M frequency domain resource groups
  • the first M of the N time domain resource groups The M first parameters of the time domain resource groups are obtained sequentially according to the second parameters corresponding to the M frequency domain resource groups, that is, the first parameter of the jth time domain resource group of the uplink element is obtained according to the jth parameter of the element element of the second type.
  • the first parameter of the time domain resource group is obtained according to the second parameter with the largest index (or the smallest index) among the M second parameters, as shown in FIG.
  • the second time domain resource and the third time domain resource are acquired according to the second parameter whose index is 1.
  • N first parameters correspond to N time domain resource groups
  • M second parameters correspond to M frequency domain resource groups.
  • the N time domain resource groups are divided Are M time domain resource groups, each time domain resource group corresponds to a first parameter, and the first parameter of the jth time domain resource group of the uplink element is based on the first parameter of the jth frequency domain resource group of the second type of element. Two parameters are obtained, that is, N is obtained according to the value of M at this time.
  • the uplink element includes 3 time-domain resource groups, namely ⁇ OFDM1,OFDM2 ⁇ , ⁇ OFDM3,OFDM4 ⁇ , ⁇ OFDM5,OFDM6 ⁇ , then ⁇ OFDM1,OFDM2 ⁇ , ⁇ OFDM3,OFDM4 ⁇ can be combined into one
  • the time domain resource group ⁇ OFDM1, OFDM2, OFDM3, OFDM4 ⁇ , ⁇ OFDM1, OFDM2, OFDM6, OFDM6 ⁇ is obtained according to the second parameter with index 0, and ⁇ OFDM4, OFDM5 ⁇ is obtained according to the second parameter with index 1.
  • the three time domain resource groups into two time domain resource resource groups ⁇ OFDM1, OFDM2, OFDM3 ⁇ and ⁇ OFDM4, OFDM5, OFDM6 ⁇ .
  • the first parameter of the first time domain resource group is based on the index of 0.
  • the second parameter is acquired, and the first parameter of the second time domain resource group is acquired according to the second parameter whose index is 1.
  • TCI state in the TCI state mapping table configured for the PDSCH in the downlink frequency domain bandwidth corresponding to the uplink frequency domain bandwidth where the uplink element is located for example, according to the TCI state mapping table
  • the TCI state corresponding to the lowest codepoint among the multiple codepoints with the largest number of TCI states obtains the first parameter.
  • Scenario 1-2, Scenario 1-3, Scenario 1-4 can all adopt the method of Scheme 9, which will not be repeated here.
  • the foregoing obtaining the first parameter of the uplink element according to the second parameter of the downlink element includes obtaining the first parameter of the uplink element according to the second parameter of the associated space receiving parameter of the downlink element; wherein the first parameter includes the following parameters At least one of: a space parameter, a power parameter, and a transmission mode, and the second parameter includes at least one of the following parameters: a quasi co-location parameter, and a transmission mode.
  • the first parameter of the uplink element is obtained according to the second parameter of the associated space receiving parameter of the downlink element; otherwise, the second quasi-common parameter is obtained according to the associated second parameter of the downlink element.
  • the second parameter of the address hypothesis obtains the first parameter of the uplink element, where the second quasi co-location hypothesis includes at least one of the following hypotheses: Doppler frequency shift, Doppler spread, average delay, delay spread, and average gain.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes: obtaining the first parameter of the first uplink element according to the second parameter of the second uplink element; wherein the first parameter and/or The second parameter includes at least one of the following parameters: a space parameter, a power parameter, and a transmission mode.
  • obtaining the first parameter of the first type element according to the second parameter of the second type element includes: obtaining the first parameter of the first downlink element according to the second parameter of the second downlink element; wherein the first parameter and/ Or the second parameter includes at least one of the following parameters: a quasi co-location parameter, and a transmission mode.
  • acquiring the second parameter of the element of the second type according to the first parameter of the element of the first type includes: The transmission mode of the downlink element obtains the transmission mode of the uplink element, for example, the transmission mode of the uplink element is obtained according to at least one of the following: the transmission mode of the CORESET with the lowest CORESET-ID in scenario 1-1; in scenario 1-2, the uplink element is scheduled The transmission mode of the CORESET where the PDCCH is located; in scenario 1-3, the transmission mode of the PDSCH corresponding to the TCI state corresponding to the predetermined item codepoint; in scenario 1-4, the transmission mode corresponding to a codepoint in the TCI state mapping table of the PDSCH.
  • the mapping relationship between the N fifth parameters and the fourth parameter of the above uplink element is determined according to the mapping relationship between the M second parameters and the fourth parameter of the CORESET with the lowest CORESET-ID, Or the number of the fourth parameter of the upstream element is determined by the number of the fourth parameter of the CORESET with the lowest CORESET-ID; or the number of the fifth parameter of the upstream element is determined by the number of the second parameter of the CORESET with the lowest CORESET-ID The number is determined.
  • the first parameter of the uplink element is obtained according to the second parameter of the downlink element.
  • the above solution can also be used in a scenario in which the second parameter of the downlink element is obtained according to the first parameter of the uplink element.
  • Scenario 2 The first parameter of the first uplink element (i.e., the element of the first type) is obtained according to the second parameter of the second uplink element (the element of the second type).
  • the first parameter and/or the second parameter include at least one of the following parameters: spatial parameter, power parameter, transmission mode; optionally, the second uplink element includes the PUCCH resource index in the frequency domain bandwidth where the first uplink element is located
  • the first uplink element includes one of the following: a PUSCH scheduled by DCI 0_0, and the PUCCH is configured in the uplink frequency domain bandwidth where the PUSCH is located; there is no SRS configured with the first parameter.
  • the first uplink element and the second uplink element are in the same frequency domain bandwidth.
  • the number N of the first parameters of the PUSCH (or SRS without the first parameter configured) scheduled by DCI 0_0 is required to be less than or equal to the PUCCH with the lowest PUCCH resource in the frequency domain bandwidth where the PUSCH is located.
  • the number N of the first parameter of the PUSCH (or SRS without the first parameter configured) scheduled by DCI 0_0 is obtained according to the second parameter of the L PUCCH resources with the lowest PUCCH resource index in the frequency domain bandwidth where the PUSCH is located ,
  • L is a positive integer greater than or equal to 1.
  • the L PUCCH resources include PUCCH resource groups belonging to different PUCCH resource groups, for example, the L PUCCH resources include L1 PUCCH resources with the lowest resource index in the first PUCCH resource group and the second PUCCH resource group with the lowest resource index.
  • L2 PUCCH resources, where L1 and L2 are positive integers greater than or equal to 1, as shown in Figure 11, and/or L1+L2 L.
  • PUCCH resources in one PUCCH resource group are associated with the same group index, and different PUCCH resource groups are associated with different group indexes, and the group index includes the PUCCH resource group index and/or the CORESET group index corresponding to the PUCCH.
  • whether the L PUCCH resource groups belong to one PUCCH resource group or multiple PUCCH resource groups is obtained according to the signaling information and/or predetermined rules. That is, according to the signaling information and/or predetermined rules, it is determined whether to acquire the first parameter of the PUSCH according to the method of FIG. 11 or FIG. 12.
  • the M first parameters of the N first parameters of the PUSCH (or SRS without the first parameter configured) scheduled by DCI 0_0 are obtained according to the above M second parameters of the PUCCH resource with the lowest PUCCH resource index ,
  • the remaining NM first parameters of the PUSCH are acquired according to the third parameter, where the third parameter is acquired according to signaling information and/or a predetermined rule, for example, the signaling information includes one or more of RRC, MAC-CE, and DCI.
  • the third parameter is specifically configured for the NM first parameters of the PUSCH, and the PUCCH resource with the lowest PUCCH resource index is not used for transmission.
  • the third parameter is associated with the third type of element, for example, it is acquired according to the CORESET (that is, the third type of element) parameter that belongs to a predetermined frequency domain bandwidth and satisfies predetermined characteristics.
  • the third parameter is acquired according to the parameter of the CORESET (that is, the third type element) where the DCI0_0 of the scheduling PUSCH is located.
  • the number N of the first parameters of the PUSCH scheduled by DCI0_0 (or the SRS without the first parameter) is less than or equal to M_max
  • M_max is one of the following: the maximum number of the second parameters of a PUCCH M_max; the maximum value of the total number of second parameters activated for all PUCCHs in a period of time is M_max; the maximum value of the total number of second parameters activated for all PUCCHs in the predetermined bandwidth in a period of time; in a period of time
  • M_total the total number of second parameters activated for all PUCCHs; the total number of second parameters activated for all PUCCHs in a predetermined bandwidth within a period of time.
  • N 3
  • M 3
  • N first parameters correspond to N time domain resource groups of the first type of element
  • M second parameters correspond to M time domain resource groups of the second type of element
  • the N time-domain resource combinations are combined into a time-domain resource group, and the first parameter of a time-domain resource group is obtained according to the M second parameters of the second-type element.
  • N first parameters correspond to N time domain resource groups of the first type of element
  • M second parameters correspond to M time domain resource groups of the second type of element
  • the first parameter of the PUSCH scheduled by DCI0_0 is obtained according to the second parameter of one or more PUCCHs with the lowest PUCCH resource index
  • the first parameter of the PUSCH scheduled by DCI0_0 is obtained according to the third type of element, where the third type of element does not include one or more of the PUCCH resource indexes with the lowest.
  • N is a parameter configured in the signaling information for configuring PUSCH (or SRS).
  • PUSCH or SRS
  • the N value is not configured in the configuration information of SRS
  • the N value is obtained according to the method in the above solution.
  • the second type is obtained according to the first parameter of the first type of element.
  • the second parameter of the element includes obtaining the second transmission mode of the second uplink element according to the first transmission mode of the first downlink element, such as obtaining the PUSCH scheduled by DCI 0_0 according to the second transmission mode of the PUCCH with the lowest PUCCH index.
  • the mapping relationship between the N first parameters and the fourth parameter of the PUSCH is determined according to the mapping relationship between the M second parameters and the fourth parameter of the PUCCH, or the fourth parameter of the PUSCH
  • the number is determined according to the number of the fourth parameter of the PUCCH; or the number N of the first parameter of the PUSCH is determined according to the number M of the second parameter of the PUCCH.
  • the first parameter of the first downlink element is obtained according to the second parameter of the second downlink element, where the number of the first parameter of the PDSCH is N, the second parameter of the second type of element is M, and the first parameter is And/or the second parameter includes at least one of the following parameters: a quasi co-location parameter, and a transmission mode.
  • the downlink element includes at least one of the following: a downlink channel, a downlink signal, and a codepoint in the TCI state mapping table of the PDSCH.
  • the elements of the first type and the elements of the second type are in the same frequency domain bandwidth, where the frequency domain bandwidth includes one of the following: serving cell, carrier, component carrier, part Bandwidth Part (BWP), a continuous collection of PRBs.
  • the acquisition of the first parameter of the first downlink element according to the second parameter of the second downlink element includes at least one of the following situations:
  • Scenario 3-1 The first parameter of PDSCH/AP-CSI-RS (Aperiodic-Channel State ndication-Reference Signal) is based on the associated detection search space in the slot set that includes CORESET and is closest to PDSCH/AP-CSI-RS and The second parameter of the CORESET (that is, the second type element) with the lowest CORESET index is obtained.
  • the first parameter of PDSCH/AP-CSI-RS (Aperiodic-Channel State ndication-Reference Signal) is based on the associated detection search space in the slot set that includes CORESET and is closest to PDSCH/AP-CSI-RS and
  • the second parameter of the CORESET that is, the second type element
  • the PDSCH/AP-CSI-RS satisfies the following characteristics: the frequency domain bandwidth where the PDSCH/AP-CSI-RS is located is configured with at least one quasi co-located reference signal of the correlation space reception parameter and the PDSCH/AP-CSI-RS is scheduled The time interval between the PDCCH and PDSCH/AP-CSI-RS is less than a predetermined threshold.
  • the first parameter of the PDSCH/AP-CSI-RS is acquired according to the second parameter of the CORESET (that is, the second type element) where the PDCCH for scheduling the PDSCH/AP-CSI-RS is located.
  • the PDSCH/AP-CSI-RS satisfies the following characteristics: the PDCCH for scheduling the PDSCH/AP-CSI-RS does not include the indication information of the quasi co-location parameters of the PDSCH/AP-CSI-RS; PDSCH/AP-CSI-RS
  • the frequency domain bandwidth where the RS is located is configured with at least one quasi co-located reference signal of the associated space reception parameter; the time interval between the PDSCH/AP-CSI-RS PDCCH and the PDSCH/AP-CSI-RS is greater than or equal to a predetermined threshold.
  • Scenario 3-3 Obtain the first parameter of PDSCH/AP-CSI-RS according to the predetermined item TCI state (ie the second parameter) in the TCI state mapping table in the frequency domain bandwidth where the PDSCH/AP-CSI-RS is located, optional
  • PDSCH/AP-CSI-RS meets the following characteristics: PDCCH and PDSCH/AP-CSI-RS for scheduling PDSCH/AP-CSI-RS are in different frequency domain bandwidths (or the frequency domain where PDSCH/AP-CSI-RS is located)
  • the maximum number of TCI states corresponding to a codepoint in the TCI state mapping table activated for PDSCH/AP-CSI-RS in the bandwidth is 2); the frequency domain bandwidth where PDSCH/AP-CSI-RS is located has at least one correlation space configured
  • the quasi co-located reference signal of the receiving parameter; the time interval between the PDCCH for scheduling the PDSCH/AP-CSI-RS and the PDSCH/AP-CSI-RS is less than a predetermined threshold.
  • Scenario 3-4 When the intersection of the time domain resources between the first downlink element and the second downlink element whose scheduling interval is less than the first predetermined threshold is not empty, the first parameter of the first downlink element is based on the second The second parameter acquisition of the downlink element, where the second downlink element includes at least one of the following: periodic downlink elements, semi-persistent downlink elements, aperiodic downlink elements with a scheduling interval greater than or equal to a second predetermined threshold, CORESET, synchronization signal, where When both the first downlink element and the second downlink element are PDSCH, the first predetermined threshold is equal to the second predetermined threshold.
  • the first predetermined threshold is the first value
  • the first predetermined threshold is the second value
  • Figure 13 is the first schematic diagram of CSI-RS1 with a scheduling interval less than a predetermined threshold and CSI-RS2 and PDSCH1 with a scheduling interval greater than the predetermined threshold.
  • Figure 14 is a CSI-RS1 with a scheduling interval less than the predetermined threshold.
  • the scheduling interval of CSI-RS1 is less than the first predetermined threshold
  • CSI-RS2 is a periodic CSI-RS
  • the scheduling interval of PDSCH1 is greater than or equal to the second predetermined threshold.
  • the first parameter of CSI-RS1 is obtained according to which of the second parameters of CSI-RS2 and PDSCH1, or how the first parameter of CSI-RS1 is obtained according to the second parameters of CSI-RS2 and PDSCH1.
  • the above-mentioned TCI state mapping table is a TCI state mapping table activated by the MAC-CE command for the PDSCH in the frequency domain bandwidth where the PDSCH/AP-CSI-RS is located, as shown in Table 1.
  • N is required to be less than or equal to M
  • the number N of the first parameter of PDSCH/AP-CSI-RS is less than or equal to the number of quasi co-location parameters of CORESET with the lowest CORESET index Number M, as shown in Figure 15.
  • Figure 15 is a schematic diagram of the first parameter of PDSCH/AP-CSI-RS obtained according to the lowest CORESET in the nearest slot.
  • the CORESET in the slot nearest to PDSCH/AP-CSI-RS is slot( CORESET2 in n+1), the number of quasi co-location parameters of CORESET2 is 1, then the number of quasi co-location parameters of PDSCH/AP-CSI-RS cannot be greater than one.
  • the number of the first parameters of the PDSCH/AP-CSI-RS is less than or equal to the number M of the second parameters of the CORESET where the PDSCH/AP-CSI-RS is scheduled.
  • the number of first parameters of PDSCH/AP-CSI-RS is less than or equal to the number of predetermined item TCI state.
  • the number N of first parameters of PDSCH/AP-CSI-RS whose scheduling interval is less than the first predetermined threshold is less than or equal to the number of second parameters of the second downlink element whose time-domain intersection is not empty. Count M.
  • the PDSCH/AP-CSI-RS is obtained according to the first parameter of the N COERSET with the lowest index closest to the PDSCH/AP-CSI-RS The second parameter.
  • the transmission modes of N CORESETs are different, and the transmission mode of PDSCH/AP-CSI-RS can only be one, the transmission mode of one of the N CORESETs is determined according to the transmission mode of CORESET.
  • the transmission mode for example, determines the transmission mode of the PDSCH/AP-CSI-RS according to the transmission mode of the CORESET indexed by the lowest CORESET among the N CORESETs. Or the PDSCH/AP-CSI-RS transmission mode is determined together according to the N CORESET transmission modes.
  • the first parameter of PDSCH/AP-CSI-RS is obtained according to more than one TCI state, where more than one TCI state belongs to one TCI state mapping table, or more than one TCI state includes belonging to Different TCI state mapping tables, where different TCI state mapping tables correspond to a PDSCH in a frequency domain bandwidth, and different TCI state mapping tables correspond to different CORESET groups.
  • more than one TCI state includes one of the following: multiple TCI states with the lowest TCI state index activated by MAC-CE; TCI states corresponding to one or more codepoints with the lowest codepoint in the MAC-CE activated TCI state mapping table;
  • the TCI state mapping table activated by MAC-CE the TCI state corresponding to the one or more codepoints with the lowest index in the codepoint set with the corresponding TCI state meeting the predetermined characteristics, and the codepoints with the corresponding TCI state meeting the predetermined characteristics include one of the following : The number of corresponding TCI states is greater than the codepoint of the predetermined value; the corresponding TCI state includes the codepoint of the predetermined TCI state.
  • the first parameter of the first downlink element PDSCH/AP-CSI-RS whose scheduling interval is less than the first predetermined threshold is obtained according to more than one second downlink element, for example, and the first downlink element PDSCH/
  • the quasi-common PDSCH/AP-CSI-RS of the first downlink element is obtained according to the second parameter of more than one second downlink element Address reference signal.
  • the intersection of time domain resources occupied by more than one second downlink element is not empty.
  • the first parameter of CSI-RS1 is obtained according to CSI-RS2 and PDSCH1 together.
  • the TCI state of CSI-RS1 with an index of 0 is obtained according to the TCI state of CSI-RS2, and the index of CSI-RS1 is The TCI state of 1 is obtained according to the TCI state of PDSCH1.
  • the second parameter of the second downlink element of the same group is obtained according to the second parameter of the first downlink element
  • the first parameter is still obtained according to the second parameter of the second downlink element of different groups, and may be obtained according to the signaling information or a predetermined rule.
  • the number M of the second parameter of the CORESET with the lowest COERSET-ID in scenario 3-1 is 1, or the number M of the second parameter of CORESET where the PDCCH is located in scenario 3-2 is 1.
  • the number N of quasi co-location parameters of PDSCH/AP-CSI-RS is 2.
  • the quasi co-location parameters with index 0 of PDSCH/AP-CSI-RS are based on the CORESET of the lowest COERSET-ID (or scheduling PDSCH/
  • the quasi co-location parameter of the CORESET where the PDCCH of the AP-CSI-RS is located is determined, and the quasi co-location parameter with index 1 of the PDSCH/AP-CSI-RS is obtained according to the third parameter, where the third parameter includes RRC signaling or MAC -Parameters configured by CE signaling, for example, the third parameter is a proprietary parameter, such as a parameter specifically configured for the remaining NM first parameters of PDSCH/AP-CSI-RS in scenario 3-1 or scenario 3-2, Or there is a corresponding relationship between the third parameter and CORESET.
  • the M first parameters are obtained according to which CORESET second parameter
  • the NM first parameters are obtained according to which The third parameter corresponding to CORESET is obtained.
  • One of the second parameters of CORESET is the transmission parameter of CORESET
  • the third parameter is not a parameter required for CORESET transmission.
  • the third parameter is a parameter activated by MAC-CE.
  • the third parameter is the predetermined item TCI state corresponding to the predetermined item codepoint in the TCI state mapping table activated by MAC-CE, where the predetermined item TCI state includes the predetermined item codepoint.
  • the predetermined item TCI state includes the second TCI state among the multiple TCI states included in the predetermined item codepoint, and the predetermined item codepoint includes one of the following:
  • the lowest codepoint that is, the codepoint with a value of 0, such as codepoint '00' in Table 1.
  • Another first parameter of PDSCH/AP-CSI-RS is obtained according to the second TCI state corresponding to codepoint '00', namely Obtained according to TCI state 2.
  • the predetermined characteristics include the codepoint in the second parameter of the second type element in the codepoint, such as the above CORESET (including the lowest codepoint in Scenario 3-1).
  • TCI stat is TCI state 1, that is, the second parameter is TCI state 1, then first look for TCI state mapping table Including the codepoint of TCI state 1, as shown in Table 1, there are codepints '10' and '11', and then the lowest of these two is taken, that is, codepoint '10'.
  • the predetermined characteristics include the number of TCI states contained in the codepoint that meets the predetermined characteristics. For example, if the number of TCI states is greater than 1, then the TCI state mapping table is first searched for It includes codepoints with TCI states greater than 1. As shown in Table 1, there are codepints '00', '10', and '11', and then take the lowest of these three, that is, codepoint '00'.
  • the NM state of the PDSCH/AP-CSI-RS The fourth parameter part corresponding to one parameter is not sent.
  • N first parameters correspond to N time domain resource groups
  • NM time domain resource groups after PDSCH/AP-CSI-RS are not sent.
  • the N-M first parameters of the PDSCH/AP-CSI-RS are all one of the M second parameters.
  • the fourth parameters corresponding to the N first parameters are divided into M fourth parameters, and the first parameter corresponding to each fourth parameter is obtained according to the M second parameters.
  • N first parameters correspond to N time domain resource groups, then the N time domain resource groups are divided into M time domain resource groups at this time.
  • the number of TCI states in CSI-RS1 is less than or equal to the minimum value of the number of TCI states in CSI-RS2 and PDSCH1.
  • the TCI state of CSI-RS1 is obtained according to the TCI state of the downlink element that is the minimum of the number of TCI states in CSI-RS2 and PDSCH1.
  • the number of TCI states of CSI-RS2 is 1, and the number of TCI states of PDSCH1 is 1.
  • the number is 2
  • the TCI state of CSI-RS1 is obtained according to the TCI state of CSI-RS2.
  • the number of TCI states in CSI-RS1 is less than or equal to the maximum number of TCI states in CSI-RS2 and PDSCH1.
  • the TCI state of CSI-RS1 is obtained according to the TCI state of the downlink element that is the maximum number of TCI states in CSI-RS2 and PDSCH1.
  • the number of TCI states of CSI-RS2 is 1, and the number of TCI states of PDSCH1 is 1.
  • the number is 2
  • the TCI state of CSI-RS1 is obtained according to the TCI state of PDSCH1.
  • N 3
  • M 2
  • N first parameters correspond to N time domain resource groups of PDSCH/AP-CSI-RS
  • M second parameters correspond to M frequency domains of type 2 elements Resource group
  • the parameter is obtained according to the second parameter with the largest index (or the smallest index) among the M second parameters.
  • N 3
  • M 2
  • N first parameters correspond to N time domain resource groups of PDSCH/AP-CSI-RS
  • M second parameters correspond to M frequency domains of type 2 elements Resource group
  • the first parameter of the element of the first type is obtained according to the second parameter of the above-mentioned element of the second type.
  • the first parameter of the element of the third type is obtained according to the third parameter of the third element.
  • the third type of element is different from the above-mentioned second type of element.
  • the third type of element does not include the aforementioned CORESET with the lowest CORESET-ID.
  • the third type of element does not include the CORESET where the PDCCH for scheduling the PDSCH/AP-CSI-RS is located.
  • the third type of element does not include the foregoing predetermined item TCI state.
  • the third type of element does not include the second downstream element described above.
  • the second parameter is obtained according to the first parameter of the first type of element.
  • the second parameter of the class element includes acquiring the second transmission mode of the second downlink element according to the first transmission mode of the first downlink element, for example, according to the transmission mode of COREST with the lowest CORESET-ID in scenario 3-1 Acquire the PDSCH/AP-CSI-RS transmission mode with the scheduling interval less than the predetermined threshold, and the mapping relationship between the N first parameters and the fourth parameter of the PDSCH/AP-CSI-RS with the scheduling interval less than the predetermined threshold is based on the foregoing The mapping relationship between the M second parameters and the fourth parameters of COREST with the lowest CORESET-ID is determined, or the number of the fourth parameters of PDSCH/AP-CSI-RS whose scheduling interval is less than the predetermined threshold is determined according to the above lowest CORESET The number of the fourth parameter of COREST of ID is determined
  • the first parameter of the first type element is obtained according to the second parameter of the second type element, so that the first parameter and the second parameter share a notification signaling or determination method, and the second parameter After the update, the first parameter is also updated.
  • the elements include one of the following: channel, signal, and one item in the mapping table.
  • the first parameter and the second parameter include beam information, the purpose of quickly switching beams can be achieved.
  • this application considers how to obtain the beam information of the first-type element in a multi-beam scenario. Using the method of this application, while reducing signaling overhead and beam switching delay, it supports multi-beam transmission and improves link robustness. Robustness or spectral efficiency.
  • FIG. 16 is a schematic structural diagram of a communication node provided by an embodiment.
  • the communication node includes a processor 161, a memory 162, a transmitter 163, and a receiver 164; the number of processors 161 in the communication node can be It is one or more.
  • One processor 161 is taken as an example in FIG. 16; the processor 161 and the memory 162, the transmitter 163 and the receiver 164 in the communication node can be connected through a bus or other methods. In FIG. Connect as an example.
  • the memory 162 can be configured to store software programs, computer-executable programs, and modules.
  • the processor 161 executes the software programs, instructions, and modules stored in the memory 162 to complete at least one functional application and data processing of the communication node, that is, to implement the above-mentioned method for determining parameter information.
  • the memory 162 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the communication node, and the like.
  • the memory 162 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the transmitter 163 is a module or a combination of devices capable of transmitting radio frequency signals into space, for example, a combination of radio frequency transmitters, antennas, and other devices.
  • the receiver 164 is a module or a combination of devices capable of receiving radio frequency signals from space, for example, a combination of radio frequency receivers, antennas, and other devices.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • a method for determining parameter information is executed.
  • the method includes: according to a second type of element Parameters Get the first parameter of the first type of element, where the number of the first parameter of the first type of element is N, and the number of the second parameter of the second type of element is M, M, and N are greater than or equal to 1.
  • a positive integer, where the elements include one of the following: channel, signal, one item in a mapping table.
  • the term user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD), etc..
  • Computer-readable media can include non-transitory storage media.
  • the data processor can be any suitable for the local technical environment.
  • Types such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs), programmable logic devices (Field-Programmable Gate Array) , FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种参数信息确定方法、通信节点和存储介质。一种参数信息确定方法包括:根据第二类元素的第二参数获取第一类元素的第一参数,其中,第一类元素的第一参数的个数为N,第二类元素的第二参数的个数为M,M和N均为大于或等于1的正整数;其中,所述元素包括如下之一:信道,信号,一个映射表格中的一项。

Description

参数信息确定方法、通信节点和存储介质
本申请要求在2020年01月17日提交中国专利局、申请号为202010055584.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络领域,例如涉及一种参数信息确定方法、通信节点和存储介质。
背景技术
波束通信的一个特点是,无线信号的收发双方要实时进行波束训练,进行实时地波束更新。而实时波束更新会消耗大量的信令信息。同时为了保证波束更新的可靠性,波束更新可能不是通过物理信令动态更新,而是根据高层信令通知,此时,波束更新的速度也是个问题。
发明内容
本申请提供一种参数信息确定方法、通信节点和存储介质,降低波束更新时的信令开销和降低波束切换时延。
本申请实施例提供一种参数信息确定方法,包括:
根据第二类元素的第二参数获取第一类元素的第一参数,其中,第一类元素的第一参数的个数为N,第二类元素的第二参数的个数为M,M,N为大于或等于1的正整数,其中,元素包括如下之一:信道,信号,一个映射表格中的一项。
本申请实施例还提供一种通信节点,包括处理器和存储器,处理器用于运行储存在存储器里的程序指令以执行上述的参数信息确定方法。
本申请实施例还提供一种计算机可读存储介质,该程序被处理器执行时实现上述的参数信息确定方法。
附图说明
图1为一实施例提供的一种参数信息确定的流程图;
图2为2个第一参数TCI state对应2个DMRS端口组的示意图;
图3为一个时隙(slot)内两处重复传输对应不同TCI的示意图;
图4为4个slot中的4次重复传输和2个TCI之间的映射关系的示意图;
图5为2个频域资源对应2个TCI的示意图;
图6为一个物理上行控制信道(Physical Uplink Control Channel,PUCCH)的2个时域资源上空间滤波器信息分别根据一个CORESET中的2个频域资源上的TCI获取的示意图;
图7为PUCCH的空间滤波器信息根据CORESET获取的示意图;
图8为一个PUCCH的不同时域资源上的空间滤波器信息分别根据不同CORESET组中的最低CORESET获取的示意图;
图9为一个PUCCH的不同时域资源上的空间滤波器信息分别根据一个CORESET组中的最低2个CORESET获取的示意图;
图10为PUSCH的后N-M个时域资源根据第一元素的索引最大的第二参数获取的示意图;
图11为PUSCH的不同时域资源上的第一参数分别根据不同PUCCH组中的最低PUCCH资源的第二参数获取的示意图;
图12为PUSCH的不同时域资源上的第一参数分别根据同一PUCCH组中的最低2个PUCCH资源的第二参数获取的示意图;
图13为调度间隔小于预定阈值的CSI-RS1和调度间隔大于预定阈值CSI-RS2和PDSCH1的第一种示意图;
图14为调度间隔小于预定阈值的CSI-RS1和调度间隔大于预定阈值CSI-RS2和PDSCH1的第二种示意图;
图15为PDSCH/AP-CSI-RS的第一参数根据最近slot中的最低CORESET获取的示意图;
图16为一实施例提供的一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
为了降低波束更新时的信令开销,提高波束更新速度,本申请实施例提供一种参数信息确定方法,采用第二类元素的第二参数获取第一类元素的第一参数,从而第一参数和第二参数共享一个通知信令或确定方法,第二参数更新之后第一参数也跟着更新,那么就可以降低信令开销和降低波束切换时延。同时本申请考虑了多波束场景下,如何获取第一类元素的波束信息,采用本申请所述的方法,在降低信令开销和降低波束切换时延的同时,支持多波束传输,提 高链路的鲁棒性或频谱效率。
在本申请实施例中,根据信息2获取信息1包括如下方式之一:信息1的获取参数中包括信息2、信息1就是信息2。其中信息1和信息2为第一参数、第二参数、第三参数或第四参数。
在本申请实施例中,频域带宽包括如下之一:服务小区,带宽部分,物理资源块集合(Physical Resource Block,PRB)集合。
在本申请实施例中,信道包括如下至少之一:控制信道,数据信道,随机接入信道等。信号包括如下至少之一:测量参考信号,同步信号,随机接入信号,相位跟踪信号,解调参考信号等。
在本申请实施例中,高层信令包括物理层信令下行控制信息(Downlink Control Information,DCI)之外的信令,比如高层信令包括无线资源控制(Radio Resource Control,RRC)信令,介质访问控制层控制元素(Medium Access Control-Control Element,MAC-CE)信令中的一种或多种。
图1为一实施例提供的一种参数信息确定的流程图,如图1所示,本实施例提供的方法包括如下步骤。
步骤S1010,根据第二类元素的第二参数获取第一类元素的第一参数,其中,第一类元素的第一参数的个数为N,第二类元素的第二参数的个数为M,M,N为大于或等于1的正整数。
本实施例提供的参数信息确定方法应用于移动通信网络中的通信节点,例如终端或者基站。本申请实施例中的第一类元素和第二类元素为移动通信网络发送或接收的任一种信息,例如,第一类元素和第二类元素包括信道,信号,一个映射表格中的一项。第一类元素和第二类元素分别包括多个参数,其中第一类元素的第一参数的个数为N,第二类元素的第二参数的个数为M。M和N均为大于或等于1的正整数。其中,一个映射表格中的一项表示映射表格中的一个编码点(codepoint)。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括如下之一:根据第二类元素的索引为i的第二参数获取第一类元素的索引为i的第一参数,其中,i∈{0,1,...,M-1};在M个第二参数中,确定N个第一参数中的每个第一参数对应的第二参数,每个第一参数根据与其存在对应关系的第二参数获取。第一类元素的N个第一参数中的每个第一参数在N个第一参数中的索引根据如下信息获取:第一参数对应的第一类元素的第四参数。第二类元素的M个第二参数中的每个第二参数在M个第二参数中的索引根据如下信息之一获取:第二参数对应的第二类元素的第四参数;通知M个第二参数的信令中, M个第二参数的排列顺序;第二类元素的组信息。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括:根据多于一个第二类元素的第二参数获取第一类元素的第一参数。多于一个第二类元素包括多于一个第二类元素组中的第二类元素;多于一个第二类元素属于同一个第二类元素组;在第二类元素包括映射表格中的一项的情况下,多于一个的第二类元素包括多个映射表格中的多项;在第二类元素包括映射表格中的一项的情况下,多于一个的第二类元素包括一个映射表格中的多项。还包括如下之一:通过信令信息或预定规则得到,多于一个第二类元素属于一个组或属于多个组;通过信令信息或预定规则得到,多于一个的第二类元素对应一个映射表格或对应多个映射表格。第一类元素的N个第一参数中的每个第一参数根据与其存在对应关系的第二参数获取,其中根据如下信息中的至少之一确定第一类元素的N个第一参数与多个第二类元素的第二参数之间的对应关系:第二类元素的索引,第二类元素组的索引,一个第二类元素的第二参数的个数,一个第二类元素的M个第二参数中的每个第二参数在M个第二参数中的索引。一个第一类元素的第一参数的个数N大于一个第二类元素的第二参数的个数M。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括:在N大于M的情况下,根据第二类元素的M个第二参数获取第一类元素的M个第一参数,根据第三参数获取剩余N-M个第一参数;其中,第三参数根据信令信息或预定规则获取。第三参数满足如下特征之一:第三参数和第二类元素之间不存在对应关系;第三参数对应第三类元素,其中第三类元素和第二类元素是不同的元素,或第三类元素和第二类元素是不同类型的元素。
在一实施例中,N小于或等于M min,其中,M min包括如下之一:一个第二类元素的第二参数的最小个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值;N小于或等于M max,其中,M max包括如下之一:一个第二类元素的第二参数的最大个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值;N小于或等于M。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括:在N大于M的情况下,根据第二类元素的M个第二参数获取第一类元素的前M个第一参数,根据第二类元素的M个第二参数中预定项第二参数获取第一类元素的剩余后N-M个第一参数。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包 括:根据如下方式之一确定第一类元素的第四参数:当N大于M时,将第一类元素的N个第四参数重新划分为M个第四参数;根据M值确定第一类元素对应的第四参数的划分;其中每个第四参数对应一个第一参数,第四参数包括如下至少之一:DMRS端口组,时域资源组,频域资源组,元素的一次传输机会。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括如下至少之一:在N小于或等于M的情况下,根据第二类元素的第二参数获取第一类元素的第一参数;在N大于M的情况下,根据第三类元素的第三参数获取第一类元素的第一参数。
在一实施例中,根据如下信息中的至少之一获取N值;调度第一类元素的下行控制信息中通知的信息;M值;多个第二类元素中的第二参数个数的最大值;多个第二类元素中的第二参数个数的最小值。
在一实施例中,映射表格包括物理下行控制信息中的比特域值和指示内容之间的映射关系。映射表格包括如下至少之一:DCI中的传输配置指示TCI指示域与PDSCH的TCI state之间的映射关系;DCI中的SRI指示域与PUSCH的SRI之间的映射表格。
在一实施例中,第二类元素满足如下条件:第二类元素包括第二参数的个数M大于或等于N值的元素中满足预定特征的元素
例如:当N和M相等的时候,根据第二类元素的M个第二参数获取第一类元素的N个第一参数,如果此时N,M大于1,则需要规定N个第一参数和M个第二参数之间的对应关系,从而索引为i的第一参数根据与其对应的第二参数获取。
当N和M不相等的时候,需要确定第一类元素的第一参数的获取方法,为此可以采用如下方案中的一种或多种获取:
方案1:收发双方预定(比如终端和基站预定),当第一类元素的第一参数根据第二类元素的第二参数获取的时候,N小于或者等于M,第一类元素的索引为i的第一参数根据第二类元素的索引为i的第二参数获取,其中i=0,1,...,M-1或i∈{0,1,...,M-1}。或者通过信令信息或预定规则建立第一类元素的N个第一参数和第二类元素的M个第二参数之间的对应关系,索引为i的第一参数根据与其存在对应关系的第二参数获取。
方案2:N大于M的时候,根据多于一个的第二类元素的第二参数获取第一类元素的第一参数。例如根据
Figure PCTCN2021072406-appb-000001
个第二类元素的第二参数获取第一类元素的第一参数。其中
Figure PCTCN2021072406-appb-000002
表示N/M向上取整。可选地,将
Figure PCTCN2021072406-appb-000003
个第二类元素的第二参数,先令第二类元素索引不变,第一参数索引递增,然后再将第二类元 素索引递增的顺序,得到
Figure PCTCN2021072406-appb-000004
个第二参数,然后根据索引为j的第二参数得到第一类元素的索引为j的第一参数,j=0,1,...,N-1。或者建立第一参数和第二参数之间的对应关系,索引为j的第一参数根据与其存在对应关系的第二参数获取。上述是假设多个第二类元素中每个第二类元素的第二参数的个数都为M,本实施例也不排除各个第二类元素的个数不同的情况。比如N=2,M=1,根据两个第二类元素的第二参数得到一个第一类元素的2个第二参数,其中第一类元素的索引为p的第一参数根据索引为p的第二类元素的第二参数获取,p=1,2。或者N=4,M=2,根据两个第二类元素的第二参数得到一个第一类元素的4个第二参数,其中按照[索引为0的第二类元素的索引为0的第二参数,索引为0的第二类元素的索引为1的第二参数,索引为1的第二类元素的索引为0的第二参数,索引为1的第二类元素的索引为1的第二参数]的顺序得到4个第二参数的索引,然后索引为j的第一参数根据索引为j的第二参数获取,其中,j=0,1,2,3。
可选地,多于一个第二类元素包括多于一个组中的第二类元素。或者多于一个第二类元素属于同一个第二类元素组。
可选地,可以通过信令信息或预定规则得到,多于一个第二类元素包括多于一个组中的第二类元素,还是多于一个第二类元素属于同一个第二类元素组。
可选地,第二类元素组根据如下方式之一获取:通过信令信息通知第二类元素组包括的第二类元素;一个第二类元素组中的第二类元素关联相同的组信息;一个第二类元素组中的第二类元素占有的时域资源和/或频域资源满足预定特征,根据调度第二类元素的控制信道的组信息确定第二类元素的组信息。比如落在一个时间单元中的第二类元素构成一个组,落在相同频域资源组中的第二类元素构成一个组。
方案3:N大于M的时候,第一类元素的M个第二参数根据第二类元素的M个第二参数获取,第一类元素其余的N-M个第二参数根据第三参数,其中第三参数根据信令信息或预定规则得到。
可选地,第三参数和第二类元素之间不存在对应关系。或第三参数对应第三类元素,其中第三类元素和第二类元素是不同的元素,或不同类型的元素。比如第二类元素是控制信道,第三类元素是数据信道。
方案4:N小于M的时候,根据信令信息和/或预定规则,确定第一类元素的N个第一参数根据第二类元素的M个第二参数中的N个第二参数获取,比如根据第二类元素中的前N个第二参数获取第一类元素的N个第一参数。比如索引为j的第一参数根据索引为j的第二参数获取,j=0,1,...,N-1。
方案5:终端和基站约定,当第一类元素的第一参数根据第二类元素的第二 参数获取的时候,N小于或等于M min,其中,M min包括如下之一:一个第二类元素的第二参数的最小个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值。
方案6:终端和基站约定,当第一类元素的第一参数根据第二类元素的第二参数获取的时候,N小于或等于M max,其中M max包括如下之一:一个第二类元素的第二参数的最大个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值。
方案7:N大于M的时候,第一类元素的M个第一参数根据第二类元素的M个第二参数获取,第一类元素其余的N-M个第一参数根据M个第二参数中满足预定特征的一个第二参数获取,比如第一类元素其余的N-M个第一参数根据M个第二参数中索引最大的第二参数获取。或者第一类元素其余的N-M个第二参数根据M个第二参数中索引最小的第二参数获取。也即将N-M个第一参数对应的第四参数合并为一个第四参数,合并后的第四参数对应的第一参数根据M个第二参数中的索引最大(或最小)的第二参数获取。此时也可以称为N根据M获取。
方案8:N大于M的时候,第一类元素的N个第一参数重新进行划分,形成M个第四参数,然后第一类元素的M个第四参数对应的N个第一参数根据第二类元素的M个第二参数获取。此时也可以称为N根据M获取。
方案9:N小于或者等于M的时候,根据第二类元素的第二参数获取第一类元素的第一参数,N大于M的时候,根据第三类元素的第三参数获取第一类元素的第一参数。
上述方案中,N是配置或调度第一类元素的信令信息中通知的,如果采用上述方案1,5,6,7,8也可以称为N根据M获取,此时在配置或调度第一类元素的信令信息中可以不配置N值。
可选地,第一类元素的N个第一参数对应第一类元素的N个第四参数,其中第四参数包括如下至少之一:解调参考信号(Demodulation Reference Signal,DMRS)端口组,时域资源组,频域资源组,第一类元素的传输机会。比如N个第一参数对应N个DMRS端口组,每个DMRS端口组对应一个第一参数,N个DMRS端口组对应信道占有相同的时频资源,如图2所示,图2为2个第一参数TCI state对应2个DMRS端口组的示意图。在图2中,多个预编码资源块组(Pre-coding RB Group,PRG)得到2个第一参数,TCI1和TCI2,其中TCI为传输配置指示(Transmission Configuration Indication),2个第一参数对应2 个DMRS端口组。
或N个第一参数对应N个资源组,每个资源组对应一个第一参数。一个第一参数对应的资源组中包括的资源可以是连续的资源,或非连续的资源,N个资源组对应第一类元素的至少N次重复传输,即一个资源组可能包括第一类元素的一次或多次重复传输,或者多个资源组包括第一类元素的一次传输机会,其中资源包括时域资源和频域资源中的一种或多种。比如资源组是时域资源组,如图3和图4所示,图3为一个时隙(slot)内两处重复传输对应不同TCI的示意图,图4为4个slot中的4次重复传输和2个TCI之间的映射关系的示意图。图3中2个第一参数TCI状态(TCI state)(即图中的TCI)对应一个slot中的2个时域资源组,图4中2个第一参数TCI state对应4个slot中的2个时域资源组,TCI state1(即图4中的TCI1)对应的时域资源组为{传输机会1,传输机会2},TCI state2(即图4中的TCI2)对应的时域资源组为{传输机会3,传输机会4},其中信道在多个传输机会中重复传输。
比如资源组是频域资源组,图5为2个频域资源对应2个TCI的示意图。2个TCI state对应2个频域资源组,如图5所示,TCI state1(即图5中的第一TCI state)对应的频域资源组为{PRG1,PRG3},TCI state2(即图5中的第二TCI state)对应的频域资源组为{PRG2,PRG4},其中PRG(Precoding Resource block Group)为预编码资源块组,相同PRG中的信道的预编码相同,不同PRG中信道的预编码相同或不同。
本申请实施例也不排除一个第二参数对应多于一个的第一参数,比如图2中的一个DMRS端口组对应2个TCI state,此时图2中的2个DMRS端口组就对应4个TCI state,或者图3~图4中的一个时域资源组中的每个时域资源上对应2个TCI state,从而会导致图3~图4中的2个时域资源组总共对应4个第TCI state。或者图5中的一个频域资源组中每个频域资源上对应2个TCI state,从而会导致图5中的2个频域资源组总共对应4个TCI state。在上述图4的描述中,{传输机会1,传输机会2}对应的时域资源称为一个时域资源组,如果上述第四参数为传输机会的时候,传输机会1和传输机会2对应2个时域资源组,所以此时就是第一类元素的N个第一参数对应第一类元素的至少N个第四参数,每个第一参数对应一个或者多个第四参数,每个第四参数对应一个或者多个第一参数。
类似地,第二类元素的M个第二参数对应第二类元素的M个第四参数。比如M个第二参数对应M个DMRS端口组,每个DMRS端口组对应一个第二参数。或M个第二参数对应M个资源组,每个资源组对应一个第二参数。一个第二参数对应的资源组中包括的资源可以是连续的资源,或非连续的资源,M个 资源组对应第二类元素的至少M次重复传输,即一个资源组可能包括第二类元素的一次或多次重复传输,或者M个频域资源组对应第二类元素的一次重复传输,其中资源包括时域资源和频域资源中的一种或多种。本实施例也不排除一个第四参数对应多于一个的第二参数,一个第二参数对应一个或者多个第四参数。
可选地,第一类元素的N个第一参数中的每个第一参数在N个第一参数中的索引根据第一类元素对应的N个第四参数获取。比如N个第一参数对应N个时域资源组,则N个第一参数中的每个第一参数在N个第一参数中的索引根据该第一参数对应的时域资源组在N个时域资源组中的索引获取。比如第j个时域资源组对应的第一参数的索引为j,其中j=0,1,...,N-1。可选地,N个时域资源组中的时域资源组的索引可以根据N个时域资源组中包括的起始时域符号的时域位置顺序得到,起始位置越后的时域资源组的索引越大。
类似地,第二类元素的M个第二参数中的每个第二参数在M个第二参数中的索引根据如下方式之一得到:通知第二参数的信令中,第二参数的顺序;第二类元素对应的第二类元素的M个第四参数的索引获取。比如M个第二参数对应M个频域资源组,则M个第二参数中的每个第二参数在M个第二参数中的索引根据该第二参数对应的频域资源组在M个频域资源组中的索引获取。比如第j个频域资源组对应的第二参数的索引为j,其中j=0,1,...,M-1。可选地,M个频域资源组中的频域资源组的索引可以根据M个频域资源组中包括的起始频域资源位置顺序得到,起始频域位置越大的频域资源组的索引越大。或者通知第二参数的信令中M个第二参数的顺序,比如第二参数包括TCI state映射表格中的一项映射关系对应的M个第二参数,则根据M个第二参数在一项中的顺序得到第二参数的索引,比如位于第一个位置的索引为0,位于第二位置的索引为1。
上述是第a参数和第四参数之间存在对应关系,其中第a参数包括上述第一参数和/或第二参数,即a包括一和/或二,本申请实施例也不排除,第一参数和/或第二参数包括第四参数,比如第一类元素的DMRS端口组参数(即第一参数,其中DMRS端口组参数包括如下至少之一:DMRS端口组的划分参数,DMRS端口组的个数参数等)根据第二类元素的DMRS端口组参数(即第二参数)获取,其中第一类元素的DMRS端口组的个数为N,第二类元素的DMRS端口组的个数为M。或者第一类元素的频域资源组参数(即第一参数)根据第二类元素的DMRS端口组参数(即第二参数),其中第一类元素的频域资源组的个数为N,第二类元素的DMRS端口组的个数为M。或者第一类元素的重复传输次数根据第二类元素的重复传输次数获取。
可选地,第a类元素包括下行元素的情况下,第a参数包括如下参数中的至 少之一:准共址参数,传输模式,解调参考信号DMRS端口组,时域资源组,频域资源组,下行元素的传输机会,其中准共址参数包括如下之一:准共址参考信号,准共址假设,TCI,其中准共址假设包括关于如下至少之一的假设:多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均延迟(average delay),延迟扩展(delay spread),平均增益(average gain),空间接收参数(Spatial Rx parameter),其他信道特性参数。其中,a包括一和/或二,即第a参数包括第一参数和第二参数中的一种或多种。可选地,一个下行DMRS端口组中的DMRS端口满足准共址关系,不同DMRS端口组的DMRS之间不满足准共址关系,或者在相同的时频资源上,一个DMRS端口组中的DMRS端口满足准共址关系,不同DMRS端口组的DMRS之间不满足准共址关系,在不同的时频资源上,同一个DMRS端口组的DMRS端口之间可以不满足准共址关系。比如同一个DMRS端口组在不同的PRB集合中(和/或不同的时域资源组)可以对应不同的TCI state。其中下行元素包括如下之一:下行信道;下行信号;PDSCH的TCI state映射表格的一项。其中物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的TCI state映射表格如表1所示:
表1
Figure PCTCN2021072406-appb-000005
Figure PCTCN2021072406-appb-000006
其中PDSCH的TCI state通过调度PDSCH的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的TCI指示域中指示的代码点(codepoint)值,并参照表1得到。
可选地,当第a类元素包括上行元素的情况下,第a参数包括如下参数中的至少之一:空间参数,功率参数,传输模式,DMRS端口组,时域资源组,频域资源组,上行元素的传输机会,其中空间参数包括如下之一:空间关系信息,空间发送滤波器参数。其中一个上行元素的空间关系信息包括上行参考信号或下行参考信号,当空间关系信息中包括上行参考信号(包括随机接入信号)时,上行元素的空间发送滤波器根据空间关系信息中的上行参考信号的空间发送滤波器获取;当空间关系信息中包括下行参考信号(包括同步信号)时,上行元素的空间发送滤波器根据空间关系信息中的下行参考信号的空间接收滤波器获取。其中,a包括一和/或二,即第a参数包括上述第一参数和第二参数中的一种或多种。可选地,此时一个上行信道的DMRS端口组中的DMRS端口对应同一个空间参数,不同DMRS端口组的DMRS对应不同的空间参数,或者在相同的时频资源上,一个DMRS端口组中的DMRS端口对应同一个空间参数,不同DMRS端口组的DMRS之间对应不同的空间参数。在不同的时频资源上,同一个DMRS端口组可以不对应相同的空间参数。其中上行元素包括如下之一:上行信道,上行信号,上行PUSCH的探测参考信号资源指示(SRS Resource Indicator,SRI)映射表中的一项。其中PUSCH的SRI映射表格如表2所示:
表2
SRI codepoint值 SRI
00 SRS 0
01 SRS 1
10 SRS 2
11 SRS 3
其中物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的探测参考信号(Sounding Reference Signal,SRS)通过调度PUSCH的PDCCH中的SRI指示域中指示的codepoint值,并参照表2得到,表2中是对应PUSCH的层数为1层的SRI的映射表格,其中PUSCH的层数通过DCI中的DMRS端口指示域获取。PUSCH的SRI映射表格也可以将所有层情况下的SRI映射表格合并为一个映射表格,其中表3是将层数为2层和层数为1层的映射表格合起来的效果,表3中,层数是根据DMRS指示域获取的,所以在SRI映射表格中,1层和2层的SRI codepoint值有重叠的部分。
表3
SRI codepoint值 SRI
00 SRS 0
01 SRS 1
10 SRS 2
11 SRS 3
00 SRI0,SRI1
01 SRI0,SRI2
10 SRI0,SRI3
11 SRI1,SRI2
100 SRI1,SRI3
101 SRI2,SRI3
其中SRI映射表格中的一项包括表2或表3中的一行,即一个codepoint对应的一行。
可选地,上行元素的功率参数包括如下参数中的至少之一:目标功率p0, 路径损耗因子alpha,路损参考信号(pathloss Reference Signal)。
可选地,上述第一类元素和/或第二类元素如果为上行元素,上行元素的传输模式包括上行元素的N个第五参数和上行元素的至少N个第四参数之间的对应关系,其中上行元素的N个第五参数中的每个第五参数对应一个或者多个第四参数,上行元素的N个第四参数中的每个第四参数对应一个或者多个第五参数,第五参数包括空间参数和功率参数中的一种或多种,第四参数包括DMRS端口组,时域资源组,频域资源组,元素的重复传输机会中的一种或多种。
类似地,上述第一类元素和/或第二类元素如果为下行元素,下行元素的传输模式包括下行元素的N个准共址参数和下行元素的至少N个第四参数之间的对应关系,其中下行元素的N个准共址参数中的每个准共址参数对应一个或者多个第四参数,下行元素的每个第四参数对应一个或者多个准共址参数,第四参数包括DMRS端口组,时域资源组,频域资源组中的一种或多种,如图2~图5所示。
上行元素的传输模式包括如下传输模式中的一种或多种:
传输模式1a:上行元素的N个第五参数对应N个DMRS端口组,其中N个第五参数中的每个第五参数对应一个DMRS端口组,不同的DMRS端口组对应不同的第五参数,N个DMRS端口组对应一个传输块的一个的冗余版本,一个冗余版本在N个DMRS端口组包括的所有DMRS端口中先层映射然后再频域映射,然后再时域映射。
传输模式1b:上行元素的N个第五参数对应N个DMRS端口组,其中N个第五参数中的每个第五参数对应一个DMRS端口组,不同的DMRS端口组对应不同的第五参数,N个DMRS端口组对应一个传输块的N个冗余版本,N个冗余版本可以是相同的冗余版本,N个DMRS端口组中的每个DMRS端口组中,一个冗余版本先层映射然后再频域映射,然后再时域映射,同一个传输块在N个DMRS端口组中重复传输。
传输模式2a:上行元素的N个第五参数对应N个频域资源组,其中N个第五参数中的每个第五参数对应一个频域资源组,不同的频域资源组对应不同的第五参数,N个频域资源组对应一个传输块的一个的冗余版本,一个冗余版本在N个频域资源组包括的所有频域资源中先层映射然后再频域映射,然后再时域映射。
传输模式2b:上行元素的N个第五参数对应的N*A个频域资源组,其中N个第五参数中的每个第五参数对应A个频域资源组,不同的A个频域资源组对应不同的第五参数,N*A个频域资源组对应一个传输块的至少N*A个冗余版本, N*A个冗余版本可以是相同的冗余版本也可以是不同的冗余版本,N*A个频域资源组中的每个频域资源组中,一个冗余版本先层映射然后再频域映射,然后再时域映射,即同一个传输块在N*A个频域资源组中重复传输,上述为了简单,N个第五参数中的每个第五参数对应的频域资源组个数都为A,当然本实施例也不排除,不同第五参数对应的频域资源组个数不同的情况。
传输模式3a:上行元素的N个第五参数对应N个时域资源组,其中N个第五参数中的每个第五参数对应一个时域资源组,不同的时域资源组对应不同的第五参数,N个时域资源组对应一个传输块的一个的冗余版本,一个冗余版本在N个时域资源组包括的所有频域资源中先层映射然后再频域映射,然后再时域映射;其中N个时域资源组包括在一个时间单元中,比如一个slot中。
传输模式3b:上行元素的N个第五参数对应的N*A个时域资源组,其中N个第五参数中的每个第五参数对应A个时域资源组,不同的A个时域资源组对应不同的第五参数,N*A个时域资源组对应一个传输块的至少N*A个冗余版本,N*A个冗余版本可以是相同的冗余版本也可以是不同的冗余版本,N*A个时域资源组中的每个时域资源组中,一个冗余版本先层映射然后再频域映射,然后再时域映射,即同一个传输块在N*A个时域资源组中重复传输,上述为了简单,N个第五参数中的每个第五参数对应的时域资源组个数都为A,当然本实施例也不排除,不同第五参数对应的时域资源组个数不同的情况。其中N*A个时域资源组包括在一个时间单元中,比如一个slot中。
传输模式4a:上行元素的N个第五参数对应N个时域资源组,其中N个第五参数中的每个第五参数对应一个时域资源组,不同的时域资源组对应不同的第五参数,N个时域资源组对应一个传输块的一个的冗余版本,一个冗余版本在N个时域资源组包括的所有频域资源中先层映射然后再频域映射,然后再时域映射;其中N个时域资源组包括在N个时间单元中,比如N个slot中,每个时间单元中包括一个时域资源组。
传输模式4b:上行元素的N个第五参数对应N*A个时域资源组,其中N个第五参数中的每个第五参数对应A个时域资源组,不同的A个时域资源组对应不同的第五参数,N*A个时域资源组对应一个传输块的至少N*A个冗余版本,N*A个冗余版本可以是相同的冗余版本也可以是不同的冗余版本,N*A个时域资源组中的每个时域资源组中,一个冗余版本先层映射然后再频域映射,然后再时域映射,即同一个传输块在N*A个时域资源组中重复传输,上述为了简单,N个第五参数中的每个第五参数对应的时域资源组个数都为A,当然本实施例也不排除,不同第五参数对应的时域资源组个数不同的情况。其中N*A个时域资源组包括在N*A个时间单元中,比如N*A个slot中。
上行元素的传输模式,还可以包括上面传输模式1a~4a的组合传输模式。
类似地,第一类元素或第二类元素为下行元素的情况下,下行元素的传输模式也可以包括上述传输模式1a~4b,以及1a~4a的组合传输模式,区别在于将上述传输模式1a~4b的描述中,将上行元素替换为下行元素,第五参数替换为准共址参数。可选地,下行元素包括CORESET的时候,传输块替换为CORESET中包括的DCI信息,或者传输块替换为CORESET中包括的DCI调制符号。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数包括如下至少之一:根据第二类元素的第二传输模式确定第一类元素的第一传输模式;N值根据M值确定;第一类元素的第四参数的个数根据第二类元素的第四参数的个数确定;第一类元素的重复传输次数根据第二类元素的重复传输次数确定;其中第四参数包括如下之一:DMRS端口组,时域资源组,频域资源组,元素的一次传输机会。
可选地,上述各种场景中,上述第一类元素的第一传输模式根据第二类元素的第二传输模式获取包括如下之一:
N值根据M值获取;第一传输模式和第二传输模式相同;根据第二传输模式得到第一传输模式所属的传输模式集合,其中一个传输模式集合中包括一个或者多个传输模式;第一传输模式中第一参数对应的第四参数的类型和第二传输模式中第二参数对应的第四参数的类型相同;其中第二类元素的第二传输模式包括第二类元素的M个第二参数和X个第四参数之间的映射关系,X为正整数,或第二传输模式包括第二类元素的重复传输模式;第一类元素的第一传输模式包括第一类元素的N第一参数和Y个第四参数之间的映射关系,Y为正整数,或第一传输模式包括第一类元素的重复传输模式。比如第二类元素的第二传输模式为传输模式3a~4b中的任意一个时,第一传输模式不能为传输模式1a~2b中的任意一种;第一传输模式中第一参数对应的第四参数的类型和第二传输模式中第二参数对应的第四参数的类型相同,比如第二传输模式中M个第二参数对应M个时域资源组,则第一传输模式中,N个第一参数对应N个时域资源组;第一类元素对应的第四参数的个数根据第二类元素对应的第四参数的个数获取。
在一实施例中,根据第二类元素的第二参数获取第一类元素的第一参数,还包括如下至少之一:第一类元素的N个第一参数对应X个第四参数,其中N个第一参数中的每个第一参数对应一个或者多个第四参数,或者X个第四参数中的每个第四参数对应一个或者多个第一参数;第二类元素的M个第二参数对应Y个第四参数,其中M个第二参数中的每个第二参数对应一个或者多个第四参数,或者Y个第四参数中的每个第四参数对应一个或者多个第二参数;其中 第四参数如下之一:DMRS端口组,时域资源组,频域资源组,元素的一次传输机会。
可选地,如果第一类元素的第一参数根据多于一个的第二类元素获取,第一类元素的传输模式根据多于一个的第二类元素中的其中一个第二类元素的传输模式获取。或者第一类元素的传输模式根据多于一个的第二类元素中的传输模式获取。
第一类元素的第一参数根据第二类元素的第二参数获取包括如下场景中的一种或多种:
场景一:上行元素(即第一类元素)的第一参数根据下行元素(即第二类元素)的第二参数获取,其中第一参数包括如下参数中的至少之一:空间参数,功率参数,传输模式,第二参数包括如下参数中的至少之一:准共址参数,传输模式,其中上行元素的空间参数的个数为N,下行元素的准共址参数的个数为M。下面以第一参数包括空间参数,上行元素的空间参数根据下行元素的准共址参数获取为例进行讲述,下面讲述的方法可以类似地适应于上行元素的功率参数根据下行元素的准共址参数获取的场景,只是把下面讲述中的空间参数替换为功率参数就可以。
上行元素满足如下特征中的至少之一:没有通过信令信息为上行元素配置第一参数;上行元素包括DCI format 0_0调度的PUSCH,其中PUSCH所在的频域带宽中没有配置PUCCH;上行元素所在的频域带宽中至少配置了一个空间参数;上行元素所在的频域带宽的中心载波大于预定值;上行元素所在的频域带宽的上行测量参考信号的集合个数大于预定值;上行元素所在的上行频域带宽对应的下行频域带宽中,至少配置或激活了一个关联空间接收参数的准共址参考信号。
可选地,上行元素包括上行信道或信号,比如包括PUCCH,PUSCH,SRS,物理随机接入信道(Physical Random Access Channel,PRACH),或上行元素包括PUSCH的SRI映射表格的一项。
可选地,下行元素包括下行信道或信号,比如CORESET,PDSCH,信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),同步信号和物理广播信道(Physical Broadcast Channel,PBCH)块(Synchronization Signal and PBCH block,SSB),或下行元素包括TCI state映射表格中的一项。
可选地,上行元素的第一参数根据下行元素的第二参数获取包括如下场景中的一种或多种:
场景一-1:,上行元素的第一参数根据下行带宽中CORESET标识 (CORESET-ID)最低的CORESET(即第二类元素)的第二参数获取,如图6所示,图6为一个PUCCH的2个时域资源上空间滤波器信息分别根据一个CORESET中的2个频域资源上的TCI获取的示意图,PUCCH1的第一参数根据CORESET1的第二参数获取,其中PUCCH1的第一参数的个数N为2,对应PUCCH1的2个时域资源组,2个时域资源组分别在slot(n)和slot(n+1)中,CORESET1的第二参数的个数M为2,对应CORESET1的不同频域资源。可选地,上行元素所在的上行频域带宽对应的下行频域带宽中,配置了CORESET(Control Resource Set,控制资源集合)。
场景一-2:根据调度上行元素的PDCCH所在的CORESET(即第二类元素)的第二参数获取上行元素的第一参数,其中上行元素(即第一类元素)有对应的调度它的PDCCH。
场景一-3:上行元素的第一参数根据预定TCI state(即第二参数)获取,其中预定TCI state(即第二参数)包括如下之一:下行频域带宽中的PDSCH配置或激活的TCI state集合中,TCI state索引最低的一个或者多个TCI state;一个或者多个codepoint对应的TCI state,其中一个codepoint对应一个或者多个TCI state(即M个TCI state),此时M等于一个codepoint对应的TCI state的个数,codepoint是TCI state映射表格中的codepoint,TCI state映射表格是MAC-CE为该下行频域带宽的PDSCH激活的TCI state映射表格,映射表格是DCI中的TCI指示域codepoint和TCI state之间的映射关系,如表1所示,其中codepoint对应DCI中TCI指示域的比特域值。此时将TCI state映射表格称为是PDSCH(即第二类元素)的参数,PDSCH基站可能没有发送,如果PDSCH发送,PDSCH的TCI state参数就可以根据TCI state映射表格和DCI中指示的TCI指示域获取,此时第一类元素的第一参数根据第二类元素的第二参数获取也可以称为第一类元素的第一参数根据第二参数获取。可选地,此时上行元素所在的上行频域带宽对应的下行频域带宽中,没有配置CORESET。
场景一-4:PUSCH的SRI映射表格中的一项对应的空间参数根据PDSCH的TCI state映射表格中的一项对应的TCI state获取。如表2或表3中一个SRI codepoint对应的空间关系信息根据表1中的一个TCI state copepoint对应的TCI state获取。即比如基站不通过信令通知表2或表3的SRI映射表格关系,而是只通过信令信息建立表1的映射关系,然后根据表1建立表2(或表3),比如表1中codepoint对应的TCI state个数等于1的codepoint中前4个构成DMRS层数等于1的SRI映射表格,如表4所示,当SRI指示为1层且SRI codepoint值等于00,则PUSCH的空间参数根据TCI state1中包括的准共址参考信号获取,可选地根据TCI state1中关联空间接收参数的准共址参考信号获取。表1中codepoint对应的TCI state个数等于2的codepoint中前2个构成DMRS层数等 于2的SRI映射表格,如表5所示。
表4
SRI codepoint值 TCI codepoint值 TCI state
00 000 TCI state1
01 011 TCI state 3
10 100 TCI state 4
11 101 TCI state 8
表5
SRI codepoint值 TCI codepoint值 TCI state
00 001 TCI state 2,TCI state8
01 010 TCI state 4,TCI state19
场景一-5:上行元素的第一参数根据PDSCH的第二参数获取,可选地,当第二参数是准共址参数且调度PDSCH的PDCCH和PDSCH之间的时间间隔小于预定阈值的情况下,PDSCH的第二参数不是根据调度PDSCH的PDCCH中指示的第二参数获取的,而是根据如下三种准共址参数之一获取调度间隔小于预定值的PDSCH的准共址参数:
信息一:距离PDSCH最近的slot中的关联检测搜索空间的CORESET中的具有最低CORESET-ID的CORESET的准共址参数;信息二:TCI state映射表格中对应的TCI state个数为2的codepoint中的最低codepoint;信息三:距离PDSCH最近的slot中的关联检测搜索空间且属于预定CORESET组的CORESET中具有最低CORESET-ID的CORESET的准共址参数。
可选地,采用上述三种信息中的哪一种获取调度间隔小于预定值的PDSCH的准共址参数根据CORESET组个数和TCI state映射表格中一个codepoint对应的TCI state的最大个数z确定,当CORESET组个数为2的时候,则采用信息三,当CORESET组个数为1且z值等于1则采用信息一,当CORESET组个数为1且z值大于1则采用信息二。但是此时调度PDSCH的PDCCH中也会指示准共址参数,只是这个准共址参数不用于PDSCH的接收,我们称PDCCH中指 示的准共址参数为信息四。可选地,上行元素的第一参数根据PDSCH的第二参数获取且第二参数包括准共址参数的情况下,此时需要确定上行元素的第一参数是根据上述信息一~信息四中哪一个获取。一种方式是PDSCH的接收采用信息一~信息三中的哪一个,则上行元素的第一参数根据哪一个获取,另一种方式是不管PDSCH的接收采用信息一~信息三中的哪一个,上行元素的第一参数都是根据信息四获取的。
在表4和表5中,TCI state的个数等于PUSCH的DMRS的层数,每个TCI state对应一个DMRS层,此时SRI映射表格中的一项(即表4-表5中的一行)对应空间参数的个数N通过DMRS的层数表示,即第一参数的个数N等于DMRS层数。在本实施例中也不排除N等于PUSCH的DMRS组的个数,一个DMRS组中的DMRS根据同一个TCI state获取其空间信息。可选地,DMRS组的个数根据基站通知的信令信息获取,或者根据DMRS所在的码分复用(Code Division Multiplexing,CDM)组的信息获取,此时第一参数的个数N等于DMRS端口组的个数。可选地,此时PDSCH和PUSCH共用一张表格如表1所示,或者PUSCH采用表1中的前预定个数项。
如果采用方案1,在场景一-1中就要求上行元素的第一参数个数N小于或者等于上述下行频域带宽中具有最低CORESET-ID的CORESET(即第二类元素)的第二参数的个数M。或者将场景一-1改为如下规则:要求上行元素的第一参数根据下行频域带宽中满足预定特征的CORESET集合中具有最低CORESET-ID的CORESET(即第二类元素)的第二参数获取,预定特征包括CORESET的第二参数大于或者等于N。如图7所示,图7为PUCCH的空间滤波器信息根据CORESET获取的示意图,CORESET1的第二参数个数为1,CORESET2的第二参数的个数为2,如果PUCCH的第一参数个数N为1,则PUCCH的第一参数根据CORESET1的第二参数获取,如果PUCCH的第一参数个数N为2,则PUCCH的第一参数根据CORESET2的第二参数获取,即此时CORESET索引最低且第二参数个数大于或者等于2的CORESET为CORESET2,而不是CORESET1。
在场景一-2中,要求调度上行元素的PDCCH所在的CORESET的第二参数的个数M大于或者等于上行元素的第一参数的个数N。
在场景一-3中,要求一个codepoint对应的TCI state的个数M大于或者等于上行元素的第一参数的个数N。
在场景一-4中,上行元素的DMRS层数N(或DMRS组的个数N)小于或等于一个codepoint对应的TCI state的个数M。
如果采用方案2,在场景一-1中,此时多于一个的下行元素包括关联多个 CORESET组的下行元素。比如根据多个CORESET组中的CORESET的第二参数获取上行元素的第一参数。如图8所示,图8为一个PUCCH的不同时域资源上的空间滤波器信息分别根据不同CORESET组中的最低CORESET获取的示意图,一个PUCCH的不同时域资源组对应不同的第一参数,其中第一时间资源组的第一参数根据CORESET组1中的最低CORESET的第二参数获取,第二时间资源组的第一参数根据属于CORESET组2中的最低CORESET的第二参数获取。或者此时多于一个的下行元素包括关联同一个CORESET组的多个下行元素。比如根据同一CORESET组中的多个CORESET的第二参数获取上行元素的第一参数。如图9所示,图9为一个PUCCH的不同时域资源上的空间滤波器信息分别根据一个CORESET组中的最低2个CORESET获取的示意图,一个PUCCH的不同时域资源对应不同的第一参数,其中第一时间资源的第一参数根据CORESET组1中的最低CORESET的第二参数获取,第二时间资源的第一参数根据CORESET组1中的次低CORESET的第二参数获取。
可选地,多于一个的下行元素包括关联多个CORESET组的下行元素还是包括同一个CORESET组的多个下行元素,可以根据信令信息或者预定规则得到。即是以图8的方式获取PUCCH的第一参数,还是以图9的方式获取PUCCH的第一参数,可以根据信令信息或者预定规则得到,比如一个CORESET组的时候就以图9的方式获取,两个CORESET组的时候就以图8的方式获取。
在场景一-2中,此时调度上行元素的PDCCH关联多个CORESET,或者多个CORESET中都包括调度上行元素的PDCCH,比如一个PDCCH在多个CORESET中重复传输,或多个CORESET分别包括调度上行元素的PDCCH的一部分。可选地多个CORESET属于一个CORESET组,或者要求多个CORESET包括属于不同CORESET组的CORESET,根据信令信息或预定规则确定多个CORESET属于一个CORESET组还是多个CORESET组。
在场景一-3中,此时基于多于一个codepoint对应的TCI state获取上行元素的第一参数,可选地,多于一个codepoint对应同一个TCI state映射表格,比如是一个TCI state映射表格的最低和次低codepoint,或者多于一个codepoint包括对应不同TCI state映射表格的codepoint,其中不同TCI state映射表格分别对应同一个频域带宽的不同CORESET组,比如多于一个的codepoint包括每个TCI state映射表格中的最低的一个或者多个codepoint。
在场景一-4中,DMRS的层数N(或DMRS端组个数N)大于一个codepoit对应的TCI state的个数的情况下,和场景一-3类似,此时基于多于一个codepoint对应的TCI state获取上行元素的第一参数。
如果采用方案3,上行元素的N个第一参数中M个第一参数根据第二类元 素的M个第二参数获取,上行元素的N个第一参数中其余N-M个第一参数根据第三参数获取,其中第三参数包括RRC信令或MAC-CE信令或DCI信令配置的参数,其中第三参数是专有参数,比如为上行元素的N-M个第一参数专门配置的参数,或者第三参数和第二类元素之间存在对应关系,上述上行元素的N个第一参数中的M个第一参数根据哪个第二类元素的第二参数获取,则N-M个第一参数就根据哪个第二类元素对应的第三参数获取,其中第二参数是第二类元素的传输参数,而第三参数不是第二类元素传输所需要的参数,比如在场景一-1和场景一-2中,第二参数和CORESET的DMRS之间存在准共址关系,但是第三参数和CORESET的DMRS之间没有准共址关系的限定。
或者第三参数为MAC-CE激活的参数,比如第三参数包括预定TCI state,其中预定TCI state包括如下之一:为下行频域带宽中的PDSCH配置或激活的TCI state集合中,TCI state索引最低的一个或者多个TCI state;TCI state映射表格中的一个或者多个codepoint对应的预定项TCI state。可选地,下行频域带宽包括上行元素所在的上行频域带宽对应的下行频域带宽。比如N=2,M=1,PUCCH(即上行元素)的2个第一参数中的1个第一参数根据上述第二类元素的第二参数获取,PUCCH的另一个第一参数根据PDSCH的TCI state映射表格中预定项codepoint中包括的预定项TCI state获取,其中预定项TCI state包括预定项codepoint中包括的多个TCI state中的预定项获取,比如预定项TCI state包括预定项codepoint中包括的多个TCI state中的第二个TCI state获取,假设PDSCH的TCI state映射表格如表6所示,预定项codepoint包括如下之一:
A.最低codepoint,即值为0的codepoint,比如表1中的codepoint‘00’,上行元素的另一个第一参数根据codepoint‘00’对应的第二个TCI state获取,即根据根据TCI state 2获取。
B.根据TCI state映射表格中满足预定特征的codepoint中的最低codepoint,预定特征codepoint包括codepoint中包含第二类元素的1个第二参数中的codepoint,比如第二参数为TCI state 1,则首先寻找TCI state映射表格中包括TCI state 1的codepoint,如表1所示,有codepint‘10’和’11’,然后取这2个中的最低,即codepoint‘10’。
C.根据TCI state映射表格中满足预定特征的codepoint中的最低codepoint,预定特征codepoint包括codepoint中对应的TCI state的个数满足预定特征,比如TCI state的个数大于1,则首先寻找TCI state映射表格中对应的TCI state个数大于1的codepoint,如表1所示,有codepint‘00’,’10’,’11’,然后取这3个中的最低,即codepoint‘00’。
表6
Figure PCTCN2021072406-appb-000007
找到上述预定项codepoint之后,根据上述codepoint对应的TCI state中的第二项TCI state(即预定项TCI state)获取第一参数,如果此时预定项codepoint中不包括预定项TCI state,如果上述codepoint‘00’或codepoint‘10’对应的TCI state个数为1,则上行元素的N-M个第一参数对应的第四参数部分不发送,比如N个第一参数对应N个时域资源组,就不发送上行元素后N-M个时域资源组。或者上行元素的N-M个第一参数都根据M个第二参数中的索引最大(或最小的)的第二参数。或者将N个第一参数对应的第四参数划分为M个第四参数,每个第四参数对应的第一参数分别根据M个第二参数中的一个第二参数获取获取。比如N个第一参数对应N个时域资源组,则此时将N个时域资源组划分为M个时域资源组。
如果采用方案4,比如N=1,M=2,1个第一参数对应1个DMRS端口组(或1个DMRS端口),2个第二参数对应2个频域资源组,则1个第一参数根据2个频域资源中索引为0的频域资源组对应的第二参数获取。
如果采用方案5,在场景一-1或场景一-2中,如果一个CORESET的第二参数的个数最小值为1,则要求上述上行元素(即上述第一类元素)的第一参数的个数N小于或等于1;在场景一-3中,如果一个TCI state映射表格中的一个codepoint对应的TCI state个数的最小值为1,则要求上述上行元素(即上述第一类元素)的第一参数的个数N小于或等于1。
如果采用方案6,在场景一-1或场景一-2中,要求上述上行元素(即上述第一类元素)的第一参数的个数N小于或等于M_max,其中M_max包括如下之 一:一个CORESET的第二参数的个数最大值;一段时间内所有CORESET的第二参数构成的集合中,不同第二参数的总个数的最大值;一段时间内一个频域带宽中所有CORESET的第二参数构成的集合中,不同第二参数的总个数的最大值;一个CORESET的第二参数的个数;一段时间内所有CORESET的第二参数构成的集合中,不同第二参数的总个数;一段时间内一个频域带宽中所有CORESET的第二参数构成的集合中,不同第二参数的总个数。
如果采用方案7,比如N=3,M=2,N个第一参数对应N个时域资源组,M个第二参数对应M个频域资源组,N个时域资源组中的前M个时域资源组的M个第一参数根据M个频域资源组对应的第二参数依次获取,即上行元素的第j个时域资源组的第一参数根据第二类元素元素的第j个频域资源组对应的第二参数获取,j=0,1,...,M-1,N个时域资源中的后N-M个时域资源组合并为一个时域资源组,合并后的时域资源组的第一参数根据M个第二参数中索引最大(或索引最小)的第二参数获取,如图10所示,图10为PUSCH的后N-M个时域资源根据第一元素的索引最大的第二参数获取的示意图,PUCCH/PUSCH的第一时域资源(即索引为0的时域资源组)的第一参数根据索引为0的第二参数获取,PUCCH/PUSCH的第二时域资源和第三时域资源根据索引为1的第二参数获取。
如果采用方案8,比如N=3,M=2,N个第一参数对应N个时域资源组,M个第二参数对应M个频域资源组,此时将N个时域资源组划分为M个时域资源组,每个时域资源组对应一个第一参数,上行元素的第j个时域资源组的第一参数根据第二类元素的第j个频域资源组对应的第二参数获取,即此时N根据M的值获取。比如上行元素包括3个时域资源组,分别是{OFDM1,OFDM2},{OFDM3,OFDM4},{OFDM5,OFDM6},则此时可以是{OFDM1,OFDM2},{OFDM3,OFDM4}合并为一个时域资源组{OFDM1,OFDM2,OFDM3,OFDM4},{OFDM1,OFDM2,OFDM6,OFDM6}根据索引为0的第二参数获取,{OFDM4,OFDM5}根据索引为1的第二参数获取。或者将3个时域资源组重新划分为{OFDM1,OFDM2,OFDM3}和{OFDM4,OFDM5,OFDM6}两个时域资源资源组,第一时域资源组的第一参数根据索引为0的第二参数获取,第二时域资源组的第一参数根据索引为1的第二参数获取。
如果采用方案9,在场景一-1中,如果上行元素的第一参数的个数N小于或等于最低CORESET-ID的CORESET的第二参数的个数M的时候,根据最低CORESET-ID的第二参数获取上行元素的第一参数。当上行元素的第一参数的个数N大于最低CORESET-ID的CORESET的第二参数的个数M的时候,根据第三类元素获取第一参数,其中第三类元素不包括最低CORESET-ID的CORESET,比如第三类元素是PDSCH,根据上行元素所在的上行频域带宽对 应的下行频域带宽中为PDSCH配置的TCI state映射表格中的预定项TCI state获取,比如根据TCI state映射表格中TCI state个数最大的多个codepoint中的最低codepoint对应的TCI state获取第一参数。场景一-2,场景一-3,场景一-4都可以采用方案9的方法,此处不再赘述。
可选地,上述根据下行元素的第二参数获取上行元素的第一参数,包括根据下行元素的关联空间接收参数的第二参数获取上行元素的第一参数;其中第一参数包括如下参数中的至少之一:空间参数,功率参数,传输模式,第二参数包括如下参数中的至少之一:准共址参数,传输模式。或者当下行元素有对应于关联空间接收参数的第二参数的情况下,根据下行元素的关联空间接收参数的第二参数获取上行元素的第一参数,否则,根据下行元素的关联第二准共址假设的第二参数获取上行元素的第一参数,其中第二准共址假设包括如下假设至少之一:多普勒频移,多普勒扩展,平均延迟,延迟扩展,平均增益。
可选地,根据第二类元素的第二参数获取第一类元素的第一参数包括:根据第二上行元素的第二参数获取第一上行元素的第一参数;其中第一参数和/或第二参数包括如下参数中的至少之一:空间参数,功率参数,传输模式。
可选地,根据第二类元素的第二参数获取第一类元素的第一参数包括:根据第二下行元素的第二参数获取第一下行元素的第一参数;其中第一参数和/或第二参数包括如下参数中的至少之一:准共址参数,传输模式。
可选地,当第一参数包括上行元素的传输模式,第二参数包括下行元素的传输模式的情况下,上述根据第一类元素的第一参数获取第二类元素的第二参数包括,根据下行元素的传输模式获取上行元素的传输模式,比如根据如下至少之一获取上行元素的传输模式:场景一-1中的最低CORESET-ID的CORESET的传输模式;场景一-2中,调度上行元素的PDCCH所在的CORESET的传输模式;场景一-3中,关联预定项codepoint对应的TCI state的PDSCH的传输模式;场景一-4中,PDSCH的TCI state映射表格中一项codepoint对应的传输模式。在场景一-1中,上述上行元素的N个第五参数和第四参数之间的映射关系根据具有最低CORESET-ID的CORESET的M个第二参数和第四参数之间的映射关系确定,或者上行元素的第四参数的个数根据具有最低CORESET-ID的CORESET的第四参数的个数确定;或者上行元素的第五参数的个数根据具有最低CORESET-ID的CORESET的第二参数的个数确定。
在场景一中是上行元素的第一参数根据下行元素的第二参数获取,类似地,上述方案也可以用于下行元素的第二参数根据上行元素的第一参数获取的场景中。
场景二:第一上行元素(即第一类元素)的第一参数根据第二上行元素(即 第二类元素)的第二参数获取。
其中第一参数和/或第二参数包括如下参数中的至少之一:空间参数,功率参数,传输模式;可选地,第二上行元素包括第一上行元素所在的频域带宽中PUCCH资源索引最低的PUCCH,第一上行元素包括如下之一:DCI 0_0调度的PUSCH,且PUSCH所在的的上行频域带宽中配置了PUCCH;没有配置第一参数的SRS。可选地,第一上行元素和第二上行元素在相同的频域带宽中。
如果采用方案1,要求DCI 0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数的个数N小于或者等于PUSCH所在的频域带宽中具有最低PUCCH资源的PUCCH。
如果采用方案2,DCI 0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数的个数N根据PUSCH所在的频域带宽中PUCCH资源索引最低的L个PUCCH资源的第二参数获取,其中L为大于或者等于1的正整数。可选地,L个PUCCH资源包括属于不同PUCCH资源组的PUCCH资源组,比如L个PUCCH资源包括第一PUCCH资源组中资源索引最低的L1个PUCCH资源和第二PUCCH资源组中资源索引最低的L2个PUCCH资源,其中L1,L2是大于或者等于1的正整数,如图11所示,和/或L1+L2=L,图11为PUSCH的不同时域资源上的第一参数分别根据不同PUCCH组中的最低PUCCH资源的第二参数获取的示意图,其中L=2,L1=1,L2=1。或者当L大于1的时候,L个PUCCH资源属于同一个PUCCH资源组,比如L个PUCCH资源为同一PUCCH资源组中的PUCCH资源索引最低的L个PUCCH资源,如图12所示,图12为PUSCH的不同时域资源上的第一参数分别根据同一PUCCH组中的最低2个PUCCH资源的第二参数获取的示意图,其中L=2。可选地,一个PUCCH资源组中的PUCCH资源关联同一个组索引,不同PUCCH资源组关联不同的组索引,组索引包括PUCCH资源组索引和/或PUCCH对应的CORESET组索引。可选地,根据信令信息和/或预定规则得到L个PUCCH资源组属于一个PUCCH资源组,还是属于多个PUCCH资源组。即根据信令信息和/或预定规则确定是根据图11还是图12的方式获取PUSCH的第一参数。
如果采用方案3,DCI 0_0调度的PUSCH(或没有配置第一参数的SRS)的N个第一参数中的M个第一参数根据上述具有最低PUCCH资源索引的PUCCH资源的M个第二参数获取,PUSCH的其余N-M个第一参数根据第三参数获取,其中第三参数根据信令信息和/或预定规则获取,比如信令信息包括RRC,MAC-CE,DCI中的一种或多种。可选地,第三参数和最低PUCCH资源索引的PUCCH资源之间有对应关系,但是第三参数是专门为PUSCH的N-M个第一参数配置的,最低PUCCH资源索引的PUCCH资源的传输不采用第三参数。或者 第三参数和第三类元素有关联,比如根据属于预定频域带宽的满足预定特征的CORESET(即第三类元素)的参数获取。或者第三参数根据调度PUSCH的DCI0_0所在的CORESET(即第三类元素)的参数获取。
如果采用方案4,PUSCH的索引为j的第一参数根据PUCCH的索引为j的第二参数获取,其中j=0,1,...,M-1或j∈{0,1,...,N-1}。
如果采用方案5,如果一个PUCCH的第二参数的个数的最小值为M_min,上述DCI0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数的个数N小于或者等于M_min。
如果采用方案6,DCI0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数的个数N小于或者等于M_max,M_max为如下之一:一个PUCCH的第二参数的个数的最大值为M_max;一段时间内为所有PUCCH激活的第二参数的总个数的最大值为M_max;一段时间内为预定带宽中的所有PUCCH激活的第二参数的总个数的最大值;一段时间内为所有PUCCH激活的第二参数的总个数;一段时间内为预定带宽中的所有PUCCH激活的第二参数的总个数为M_total。
如果采用方案7,比如N=3,M=1,N个第一个参数对应第一类元素的N个时域资源组,M个第二参数对应第二类元素的M个时域资源组,则N个时域资源组合并为一个时域资源组,一个时域资源组的第一参数根据第二类元素的M个第二参数获取。
如果采用方案8,比如N=3,M=2,N个第一个参数对应第一类元素的N个时域资源组,M个第二参数对应第二类元素的M个时域资源组,则将N个时域资源组重新划分为M个时域资源组,索引为j个时域资源组对应的第一参数根据第二类元素的索引为j的第二参数获取,其中j=0,1,...,M-1,或j∈{0,1,...,N-1}。
如果采用方案9,当N小于或者等于M的时候,上述DCI0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数根据PUCCH资源索引最低的一个或者多个PUCCH的第二参数获取,当N大于M的时候,根据第三类元素获取DCI0_0调度的PUSCH(或没有配置第一参数的SRS)的第一参数,其中第三类元素不包括上述PUCCH资源索引最低的一个或者多个。
上述方案中,N是在配置PUSCH(或SRS)的信令信息中配置的参数,当采用上述方案1,4,5,6,7,8中的任意一个方案的时候,也可以在PUSCH(或SRS)的配置信息中不配置N值,N值根据上述方案中的方法获取。
可选地,当第一参数包括第一上行元素的第一传输模式,第二参数包括第二上行元素的第二传输模式的情况下,上述根据第一类元素的第一参数获取第 二类元素的第二参数包括,根据第一下行元素的第一传输模式获取第二上行元素的第二传输模式,比如根据上述具有最低PUCCH索引的PUCCH的第二传输模式获取DCI 0_0调度的PUSCH的第二传输模式,上述PUSCH的N个第一参数和第四参数之间的映射关系根据上述PUCCH的M个第二参数和第四参数之间的映射关系确定,或者上述PUSCH的第四参数的个数根据上述PUCCH的第四参数的个数确定;或者上述PUSCH的第一参数的个数N根据上述PUCCH的第二参数的个数M确定。
场景三,第一下行元素的第一参数根据第二下行元素的第二参数获取,其中PDSCH的第一参数的个数为N,第二类元素的第二参数为M,其中第一参数和/或第二参数包括如下参数中的至少之一:准共址参数,传输模式。
可选地,下行元素包括如下至少之一:下行信道,下行信号,PDSCH的TCI state映射表格中的一项codepoint。可选地,第一类元素和第二类元素在相同的频域带宽中,其中频域带宽包括如下之一:服务小区(serving cell),载波(carrier),成员载波(component carrier),部分带宽(Bandwidth Part,BWP),一段连续的PRB集合。第一下行元素的第一参数根据第二下行元素的第二参数获取包括如下情况至少之一:
场景三-1:PDSCH/AP-CSI-RS(Aperiodic-Channel State ndication-Reference Signal)的第一参数根据包括CORESET的slot集合中距离PDSCH/AP-CSI-RS最近的slot中关联检测搜索空间且具有最低CORESET索引的CORESET(即第二类元素)的第二参数获取。可选地,PDSCH/AP-CSI-RS满足如下特征:PDSCH/AP-CSI-RS所在的频域带宽至少配置了一个关联空间接收参数的准共址参考信号且调度PDSCH/AP-CSI-RS的PDCCH和PDSCH/AP-CSI-RS之间的时间间隔小于预定阈值。
场景三-2:PDSCH/AP-CSI-RS的第一参数根据调度PDSCH/AP-CSI-RS的PDCCH所在的CORESET(即第二类元素)的第二参数获取。可选地,PDSCH/AP-CSI-RS满足如下特征:调度PDSCH/AP-CSI-RS的PDCCH中不包括PDSCH/AP-CSI-RS的准共址参数的指示信息;PDSCH/AP-CSI-RS所在的频域带宽至少配置了一个关联空间接收参数的准共址参考信号;调度PDSCH/AP-CSI-RS的PDCCH和PDSCH/AP-CSI-RS之间的时间间隔大于或等于预定阈值。
场景三-3:根据PDSCH/AP-CSI-RS所在的频域带宽中的TCI state映射表格中预定项TCI state(即第二参数)获取PDSCH/AP-CSI-RS的第一参数,可选地,PDSCH/AP-CSI-RS满足如下特征:调度PDSCH/AP-CSI-RS的PDCCH和PDSCH/AP-CSI-RS在不同的频域带宽(或者PDSCH/AP-CSI-RS所在的频域带 宽中为PDSCH/AP-CSI-RS激活的TCI state映射表格中一项codepoint对应的TCI state的最大个数为2);PDSCH/AP-CSI-RS所在的频域带宽至少配置了一个关联空间接收参数的准共址参考信号;调度PDSCH/AP-CSI-RS的PDCCH和PDSCH/AP-CSI-RS之间的时间间隔小于预定阈值。
场景三-4:当调度间隔小于第一预定阈值的第一下行元素和第二下行元素之间的时域资源的交集非空的情况下,第一下行元素的第一参数根据第二下行元素的第二参数获取,其中第二下行元素包括如下至少之一:周期下行元素,半持续下行元素,调度间隔大于或等于第二预定阈值的非周期下行元素,CORESET,同步信号,其中当第一下行元素和第二下行元素都为PDSCH的时候,第一预定阈值等于第二预定阈值。当第一下行元素为PDSCH的时候,第一预定阈值是第一值,当第一下行元素为AP-CSI-RS的时候,第一预定阈值是第二值。如图13~图14所示,图13为调度间隔小于预定阈值的CSI-RS1和调度间隔大于预定阈值CSI-RS2和PDSCH1的第一种示意图,图14为调度间隔小于预定阈值的CSI-RS1和调度间隔大于预定阈值CSI-RS2和PDSCH1的第二种示意图,CSI-RS1的调度间隔小于第一预定阈值,CSI-RS2是周期CSI-RS,PDSCH1的调度间隔大于或者等于第二预定阈值。CSI-RS1的第一参数根据CSI-RS2和PDSCH1中的哪一个的第二参数获取,或CSI-RS1的第一参数如何根据CSI-RS2和PDSCH1的第二参数获取。上述TCI state映射表格是MAC-CE命令为PDSCH/AP-CSI-RS所在的频域带宽中的PDSCH激活的TCI state映射表格,如表1所示。
如果采用方案1:要求N小于或者等于M,在场景三-一中,PDSCH/AP-CSI-RS的第一参数的个数N小于或者等于具有最低CORESET索引的CORESET的准共址参数的个数M,如图15中,图15为PDSCH/AP-CSI-RS的第一参数根据最近slot中的最低CORESET获取的示意图,距离PDSCH/AP-CSI-RS最近的slot中的CORESET为slot(n+1)中的CORESET2,CORESET2的准共址参数个数为1,则PDSCH/AP-CSI-RS的准共址参数个数不能大于1。在场景三-2中PDSCH/AP-CSI-RS的第一参数的个数小于或者等于调度PDSCH/AP-CSI-RS所在的CORESET的第二参数的个数M。在场景三-3中,PDSCH/AP-CSI-RS的第一参数的个数小于或者等于预定项TCI state的个数。在场景三-4中,调度间隔小于第一预定阈值的PDSCH/AP-CSI-RS的第一参数的个数N小于或者等于与其时域交集非空的第二下行元素的第二参数的个数M。
如果采用方案2,在场景三-1中,比如N=3,M=1,根据距离PDSCH/AP-CSI-RS最近的索引最低的N个COERSET的第一参数获取PDSCH/AP-CSI-RS的第二参数。此时如果N个CORESET的传输模式不同,而PDSCH/AP-CSI-RS的传输模式只能是一种,则根据N个CORESET中的其中一 个CORESET的传输模式确定PDSCH/AP-CSI-RS的传输模式,比如根据N个CORESET中的最低CORESET索引的CORESET的传输模式确定PDSCH/AP-CSI-RS的传输模式。或者根据N个CORESET的传输模式一起确定PDSCH/AP-CSI-RS的传输模式。
在场景三-3中,根据多于一个的TCI state获取PDSCH/AP-CSI-RS的第一参数,其中多于一个的TCI state属于一个TCI state映射表格,或者多于一个的TCI state包括属于不同TCI state映射表格,其中不同TCI state映射表格对应一个频域带宽中的PDSCH,不同TCI state映射表格对应不同的CORESET组。比如多于一个的TCI state包括如下之一:MAC-CE激活的TCI state索引最低的多个TCI state;MAC-CE激活的TCI state映射表格中codepoint最低的一个或者多个codepoint对应的TCI state;MAC-CE激活的TCI state映射表格中,对应的TCI state满足预定特征的codepoint集合中,索引最低的一个或者多个codepoint对应的TCI state,其中对应的TCI state满足预定特征的codepoint包括如下之一:对应的TCI state的个数大于预定值的codepoint;对应的TCI state中包括预定TCI state的codepoint。
对于场景三-4,调度间隔小于第一预定阈值的第一下行元素PDSCH/AP-CSI-RS的第一参数根据多于一个的第二下行元素获取,比如和第一下行元素PDSCH/AP-CSI-RS时域有交集的第二下行元素有多个的情况下,根据多于一个的第二下行元素的第二参数获取第一下行元素PDSCH/AP-CSI-RS的准共址参考信号。可选地,多于一个的第二下行元素占有的时域资源交集非空。如图13~图14中,CSI-RS1的第一参数根据CSI-RS2和PDSCH1一起获取,比如CSI-RS1的索引为0的TCI state根据CSI-RS2的TCIstate获取获取,CSI-RS1的索引为1的TCI state根据PDSCH1的TCI state获取。可选地,要求CSI-RS2与PDSCH1属于相同的组,或者要求CSI-RS2与PDSCH1分别属于不同的组,究竟是根据相同组的第二下行元素的第二参数获取第一下行元素的第一参数,还是根据根据不同组的第二下行元素的第二参数获取第一下行元素的第一参数,可以根据信令信息或预定规则获取。
如果采用方案3,在场景三-1中的具有最低COERSET-ID的CORESET的第二参数的个数M为1或场景三-2中PDCCH所在的CORESET的第二参数的个数M为1,PDSCH/AP-CSI-RS的准共址参数的个数N为2,此时PDSCH/AP-CSI-RS的索引为0的准共址参数根据上述最低COERSET-ID的CORESET(或者调度PDSCH/AP-CSI-RS的PDCCH所在的CORESET)的准共址参数确定,PDSCH/AP-CSI-RS的索引为1的准共址参数根据第三参数获取,其中第三参数包括RRC信令或MAC-CE信令配置的参数,比如第三参数是专有参数,比如为场景三-1或场景三-2中的PDSCH/AP-CSI-RS的剩余的N-M个第 一参数专门配置的参数,或者第三参数和CORESET之间存在对应关系,PDSCH/AP-CSI-RS的N个第一参数中的M个第一参数根据哪个CORESET的第二参数获取,则N-M个第一参数就根据哪个CORESET对应的第三参数获取,其中一个CORESET的第二参数是CORESET的传输参数,而第三参数不是CORESET传输所需要的参数,比如第二参数和CORESET的DMRS之间存在准共址关系,但是第三参数和CORESET之间没有准共址关系的限定。或者第三参数为MAC-CE激活的参数,比如第三参数为MAC-CE激活的TCI state映射表格中的预定项codepoint对应的预定项TCI state,其中预定项TCI state包括预定项codepoint中包括的多个TCI state中的预定项获取,比如预定项TCI state包括预定项codepoint中包括的多个TCI state中的第二个TCI state获取,预定项codepoint包括如下之一:
A.最低codepoint,即值为0的codepoint,比如表1中的codepoint‘00’,PDSCH/AP-CSI-RS的另一个第一参数根据codepoint‘00’对应的第二个TCI state获取,即根据TCI state 2获取。
B.根据TCI state映射表格中满足预定特征的codepoint中的最低codepoint,预定特征包括codepoint中包含第二类元素的1个第二参数中的codepoint,比如上述CORESET(包括场景三-1中的最低CORESET-ID的CORESET,或场景三-2中调度PDSCH/AP-CSI-RS的PDCCH所在的CORESET)的TCI stat为TCI state 1,即第二参数为TCI state 1,则首先寻找TCI state映射表格中包括TCI state 1的codepoint,如表1所示,有codepint‘10’和’11’,然后取这2个中的最低,即codepoint‘10’。
C.根据TCI state映射表格中满足预定特征的codepoint中的最低codepoint,预定特征包括codepoint中包含的TCI state的个数满足预定特征,比如TCI state的个数大于1,则首先寻找TCI state映射表格中包括TCI state个数大于1的codepoint,如表1所示,有codepint‘00’,’10’,’11’,然后取这3个中的最低,即codepoint‘00’。
可选地,如果此时预定项codepoint中不包括预定项TCI state,比如上述codepoint‘00’或codepoint‘10’对应的TCI state个数为1,则PDSCH/AP-CSI-RS的N-M个第一参数对应的第四参数部分不发送,比如N个第一参数对应N个时域资源组,就不发送PDSCH/AP-CSI-RS后N-M个时域资源组。或者PDSCH/AP-CSI-RS的N-M个第一参数都为M个第二参数之一。或者将N个第一参数对应的第四参数划分为M个第四参数,每个第四参数对应的第一参数分别根据M个第二参数获取。比如N个第一参数对应N个时域资源组,则此时将N个时域资源组划分为M个时域资源组。
如果采用方案5,在场景三-4中,如图13~图14,CSI-RS1的TCI state的个数小于或者等于CSI-RS2和PDSCH1中TCI state个数的最小值。可选地,CSI-RS1的TCI state根据CSI-RS2和PDSCH1中TCI state个数的最小值的下行元素的TCI state获取,比如CSI-RS2的TCI state个数为1,PDSCH1的TCI state的个数为2,则CSI-RS1的TCI state根据CSI-RS2的TCI state获取。
如果采用方案6,在场景三-4中,如图13~图14,CSI-RS1的TCI state的个数小于或者等于CSI-RS2和PDSCH1中TCI state个数的最大值。可选地,CSI-RS1的TCI state根据CSI-RS2和PDSCH1中TCI state个数的最大值的下行元素的TCI state获取,比如CSI-RS2的TCI state个数为1,PDSCH1的TCI state的个数为2,则CSI-RS1的TCI state根据PDSCH1的TCI state获取。
如果采用方案7,比如N=3,M=2,N个第一参数对应PDSCH/AP-CSI-RS的N个时域资源组,M个第二参数对应第二类元素的M个频域资源组,则索引为j的时域资源组的第一参数根据索引为j的频域资源组的第二参数获取,其中j=0,1;最后N-M=1个时域资源组的第一参数根据M个第二参数中索引最大(或索引最小的)的第二参数获取。
如果采用方案8,比如N=3,M=2,N个第一参数对应PDSCH/AP-CSI-RS的N个时域资源组,M个第二参数对应第二类元素的M个频域资源组,则可以将N个时域资源组划分为M个时域资源组,则索引为j的时域资源组的第一参数根据索引为j的频域资源组的第二参数获取,其中j=0,1。
如果采用方案9,当N小于或者等于M的时候,根据上述第二类元素的第二参数获取第一类元素的第一参数,当N大于M的的时候,根据第三类元素的第三参数获取第一类元素的第一参数,第三类元素和上述第二类元素不同,在场景三-1中,第三类元素不包括上述具有最低CORESET-ID的CORESET,在场景三-2中,第三类元素不包括上述调度PDSCH/AP-CSI-RS的PDCCH所在的CORESET,在场景三-3中,第三类元素不包括上述预定项TCI state。在场景三-4中,第三类元素不包括上述第二下行元素。
可选地,当第一参数包括第一下行元素的第一传输模式,第二参数包括第二下行元素的第二传输模式的情况下,上述根据第一类元素的第一参数获取第二类元素的第二参数包括,根据第一下行元素的第一传输模式获取第二下行元素的第二传输模式,比如根据在场景三-1中,根据具有最低CORESET-ID的COREST的传输模式获取上述调度间隔小于预定阈值的PDSCH/AP-CSI-RS的传输模式,上述调度间隔小于预定阈值的PDSCH/AP-CSI-RS的N个第一参数和第四参数之间的映射关系根据上述具有最低CORESET-ID的COREST的M个第二参数和第四参数之间的映射关系确定,或者上述调度间隔小于预定阈值的 PDSCH/AP-CSI-RS的第四参数的个数根据上述最低CORESET-ID的COREST的第四参数的个数确定;或者上述调度间隔小于预定阈值的PDSCH/AP-CSI-RS的第一参数的个数N根据上述最低CORESET-ID的COREST的第二参数的个数M确定。
本申请实施例提供的参数信息确定方法,第一类元素的第一参数根据第二类元素的第二参数获取,从而第一参数和第二参数共享一个通知信令或确定方法,第二参数更新之后第一参数也跟着更新,其中元素包括如下之一:信道,信号,映射表格中一项,在第一参数和第二参数包括波束信息的情况下,就可以达到快速切换波束的目的,同时本申请考虑了多波束场景下,如何获取第一类元素的波束信息,采用本申请的方法,在降低信令开销和降低波束切换时延的同时,支持多波束传输,提高链路的鲁棒性或频谱效率。
图16为一实施例提供的一种通信节点的结构示意图,如图16所示,该通信节点包括处理器161、存储器162、发送器163和接收器164;通信节点中处理器161的数量可以是一个或多个,图16中以一个处理器161为例;通信节点中的处理器161和存储器162、发送器163和接收器164;可以通过总线或其他方式连接,图16中以通过总线连接为例。
存储器162作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。处理器161通过运行存储在存储器162中的软件程序、指令以及模块,从而完成通信节点至少一种功能应用以及数据处理,即实现上述的参数信息确定方法。
存储器162可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储器162可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
发送器163为能够将射频信号发射至空间中的模块或器件组合,例如包括射频发射机、天线以及其他器件的组合。接收器164为能够从空间中接收将射频信号的模块或器件组合,例如包括射频接收机、天线以及其他器件的组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种参数信息确定方法,该方法包括:根据第二类元素的第二参数获取第一类元素的第一参数,其中,第一类元素的第一参数的个数为N,第二类元素的第二参数的个数为M,M,N为大于或等于1的正整数,其中,元素包括如下之一:信道,信号,一个映射表格中的一项。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(InstructionSet Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (31)

  1. 一种参数信息确定方法,包括:
    根据第二类元素的第二参数获取第一类元素的第一参数,其中,所述第一类元素的第一参数的个数为N,所述第二类元素的第二参数的个数为M,M和N均为大于或等于1的正整数;
    其中,所述元素包括如下之一:信道,信号,一个映射表格中的一项。
  2. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括如下之一:
    根据所述第二类元素的索引为i的第二参数获取所述第一类元素的索引为i的第一参数,其中,i∈{0,1,...,M-1};
    在所述第二类元素的M个第二参数中,确定N个第一参数中的每个第一参数对应的第二参数,每个第一参数根据与所述每个第一参数存在对应关系的第二参数获取;
    在N小于或者等于M的情况下,根据所述第二类元素的前N个第二参数获取所述第一类元素的N个第一参数。
  3. 根据权利要求2所述的方法,其中,所述第一类元素的N个第一参数中的每个第一参数在所述N个第一参数中的索引根据如下信息获取:所述第一参数对应的所述第一类元素的第四参数。
  4. 根据权利要求2所述的方法,其中,所述第二类元素的M个第二参数中的每个第二参数在所述M个第二参数中的索引根据如下信息之一获取:
    所述第二参数对应的所述第二类元素的第四参数;
    通知所述M个第二参数的信令中,所述M个第二参数的排列顺序;
    所述第二类元素的组信息。
  5. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    根据多于一个第二类元素的第二参数获取所述第一类元素的第一参数。
  6. 根据权利要求5所述的方法,其中,所述多于一个第二类元素满足如下之一:
    所述多于一个第二类元素包括多于一个第二类元素组中的第二类元素;
    所述多于一个第二类元素属于同一个第二类元素组;
    在所述第二类元素包括所述映射表格中的一项的情况下,所述多于一个的 第二类元素包括多个映射表格中的多项;
    在所述第二类元素包括所述映射表格中的一项的情况下,所述多于一个的第二类元素包括所述映射表格中的多项。
  7. 根据权利要求6所述的方法,还包括如下之一:
    通过信令信息或预定规则得到,所述多于一个第二类元素属于一个组或属于多个组;
    通过信令信息或预定规则得到,所述多于一个的第二类元素对应一个映射表格或对应多个映射表格。
  8. 根据权利要求5所述的方法,其中,所述第一类元素的N个第一参数中的每个第一参数根据与所述每个第一参数存在对应关系的第二参数获取,其中,根据如下信息中的至少之一确定所述第一类元素的N个第一参数与多个第二类元素的第二参数之间的对应关系:所述第二类元素的索引,第二类元素组的索引,一个第二类元素的第二参数的个数,一个第二类元素的M个第二参数中的每个第二参数在所述M个第二参数中的索引。
  9. 根据权利要求5所述的方法,其中,一个第一类元素的第一参数的个数N大于一个第二类元素的第二参数的个数M。
  10. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    在N大于M的情况下,根据所述第二类元素的M个第二参数获取所述第一类元素的M个第一参数,根据第三参数获取剩余N-M个第一参数;
    其中,所述第三参数根据信令信息或预定规则获取。
  11. 根据权利要求10所述的方法,其中,所述第三参数满足如下特征之一:
    所述第三参数和所述第二类元素之间不存在对应关系;
    所述第三参数对应第三类元素,其中,所述第三类元素和所述第二类元素是不同的元素,或所述第三类元素和所述第二类元素是不同类型的元素。
  12. 根据权利要求1所述的方法,其中,N的值满足如下特征之一:
    N小于或等于M min,其中,M min包括如下之一:一个第二类元素的第二参数的最小个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最小值;
    N小于或等于M max,其中,M max包括如下之一:一个第二类元素的第二参 数的最大个数;一段时间内,所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值;一段时间内,一个频域带宽中所有第二类元素的第二参数构成的集合中,不同第二参数的总个数的最大值;
    N小于或等于M。
  13. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    在N大于M的情况下,根据所述第二类元素的M个第二参数获取所述第一类元素的前M个第一参数,根据所述第二类元素的M个第二参数中的预定项第二参数获取所述第一类元素的剩余后N-M个第一参数。
  14. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    根据如下方式之一确定所述第一类元素的第四参数:
    在N大于M的情况下,将所述第一类元素的N个第四参数重新划分为M个第四参数;
    根据M的值确定所述第一类元素对应的第四参数的划分;
    其中,每个第四参数对应一个第一参数,所述第四参数包括如下至少之一:解调参考信号DMRS端口组,时域资源组,频域资源组,所述元素的一次传输机会。
  15. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括如下至少之一:
    在N小于或等于M的情况下,根据所述第二类元素的第二参数获取所述第一类元素的第一参数;
    在N大于M的情况下,根据第三类元素的第三参数获取所述第一类元素的第一参数。
  16. 根据权利要求4、7、8中任一项所述的方法,其中,所述第二类元素的组信息根据如下方式之一获取:通过信令信息通知所述第二类元素组中包括的第二类元素;一个第二类元素组中的第二类元素关联相同的组信息;一个第二类元素组中的第二类元素占有的时域资源和频域资源中的至少之一满足预定特征;根据调度所述第二类元素的控制信道的组信息确定所述第二类元素的组信息。
  17. 根据权利要求1~15中任一项所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    根据下行元素的第二参数获取上行元素的第一参数;
    其中,所述第一参数包括如下参数中的至少之一:空间参数,功率参数,传输模式,所述第二参数包括如下参数中的至少之一:准共址参数,传输模式。
  18. 根据权利要求1~15中任一项所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    根据第二上行元素的第二参数获取第一上行元素的第一参数;
    其中,所述第一参数和所述第二参数中的至少之一包括如下参数中的至少之一:空间参数,功率参数,传输模式。
  19. 根据权利要求1~15中任一项所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括:
    根据第二下行元素的第二参数获取第一下行元素的第一参数;
    其中,所述第一参数和所述第二参数中的至少之一包括如下参数中的至少之一:准共址参数,传输模式。
  20. 根据权利要求1~15中任一项所述的方法,其中,在第a类元素包括下行元素的情况下,第a参数包括如下至少之一:准共址参数,传输模式,DMRS端口组,时域资源组,频域资源组,下行元素的传输机会;
    其中,a包括一和二中的至少之一。
  21. 根据权利要求1~15中任一项所述的方法,其中,在第a类元素包括上行元素的情况下,第a参数包括如下至少之一:空间参数,功率参数,传输模式,DMRS端口组,时域资源组,频域资源组,上行元素的传输机会;
    其中,a包括一和二中的至少之一。
  22. 根据权利要求1所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数包括如下至少之一:
    根据所述第二类元素的第二传输模式确定所述第一类元素的第一传输模式;
    N的值根据M的值确定;
    所述第一类元素的第四参数的个数根据所述第二类元素的第四参数的个数确定;
    所述第一类元素的重复传输次数根据所述第二类元素的重复传输次数确定;
    其中,所述第四参数包括如下之一:DMRS端口组,时域资源组,频域资源组,所述元素的一次传输机会。
  23. 根据权利要求22所述的方法,其中,所述根据所述第二类元素的第二传输模式确定所述第一类元素的第一传输模式,包括如下之一:
    所述第一传输模式和所述第二传输模式相同;
    根据所述第二传输模式得到所述第一传输模式所属的传输模式集合;
    所述第一传输模式中第一参数对应的第四参数的类型和所述第二传输模式中第二参数对应的第四参数的类型相同;
    其中,所述第二类元素的第二传输模式包括所述第二类元素的M个第二参数和X个第四参数之间的映射关系,X为正整数,或所述第二传输模式包括所述第二类元素的重复传输模式;
    所述第一类元素的第一传输模式包括所述第一类元素的N第一参数和Y个第四参数之间的映射关系,Y为正整数,或所述第一传输模式包括所述第一类元素的重复传输模式。
  24. 根据权利要求1~15中任一项所述的方法,其中,所述根据第二类元素的第二参数获取第一类元素的第一参数,包括如下至少之一:
    所述第一类元素的N个第一参数对应X个第四参数,其中,所述N个第一参数中的每个第一参数对应至少一个第四参数,或者所述X个第四参数中的每个第四参数对应至少一个第一参数;
    所述第二类元素的M个第二参数对应Y个第四参数,其中,所述M个第二参数中的每个第二参数对应至少一个第四参数,或者所述Y个第四参数中的每个第四参数对应至少一个第二参数;
    其中,所述第四参数包括如下之一:DMRS端口组,时域资源组,频域资源组,所述元素的一次传输机会。
  25. 根据权利要求1~15所述的方法,其中,根据如下信息中的至少之一获取N的值;
    调度所述第一类元素的下行控制信息DCI中通知的信息;
    M的值;
    多个第二类元素中的第二参数个数的最大值;
    多个第二类元素中的第二参数个数的最小值;
    配置或调度所述第一类元素的信令信息中通知的信息。
  26. 根据权利要求1~15所述的方法,其中,所述映射表格包括物理DCI中的比特域值和指示内容之间的映射关系。
  27. 根据权利要求26所述的方法,其中,所述映射表格包括如下至少之一:
    DCI中的传输配置指示TCI指示域与物理下行共享信道PDSCH的TCI state之间的映射关系;
    DCI中的探测参考信号资源指示SRI指示域与物理上行共享信道PUSCH的SRI之间的映射表格。
  28. 根据权利要求1所述的方法,其中,所述第二类元素满足如下条件:
    所述第二类元素包括第二参数的个数M大于或等于N的元素中满足预定特征的元素。
  29. 根据权利要求1所述的方法,其中,所述第二类元素满足如下特征:
    所述第二类元素包括第二参数的个数M大于或者等于N的元素中,索引最低的元素,所述第二类元素包括控制资源集合CORESET或物理上行控制信道PUCCH。
  30. 一种通信节点,包括处理器和存储器,其中,所述处理器设置为运行储存在所述存储器里的程序指令以执行根据权利要求1~29中任一项所述的参数信息确定方法。
  31. 一种计算机可读存储介质,存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1~29中任一项所述的参数信息确定方法。
PCT/CN2021/072406 2020-01-17 2021-01-18 参数信息确定方法、通信节点和存储介质 WO2021143897A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3165049A CA3165049A1 (en) 2020-01-17 2021-01-18 Parameter information determination method, communication node, and storage medium
JP2022544035A JP7451725B2 (ja) 2020-01-17 2021-01-18 パラメータ情報確定方法、通信ノードおよび記憶媒体
US17/793,621 US20230091578A1 (en) 2020-01-17 2021-01-18 Parameter information determination method, communication node, and storage medium
EP21740668.5A EP4093079A4 (en) 2020-01-17 2021-01-18 METHOD FOR DETERMINING PARAMETER INFORMATION, COMMUNICATION NODES AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010055584.8A CN111901808A (zh) 2020-01-17 2020-01-17 参数信息确定方法、通信节点和存储介质
CN202010055584.8 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021143897A1 true WO2021143897A1 (zh) 2021-07-22

Family

ID=73169762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072406 WO2021143897A1 (zh) 2020-01-17 2021-01-18 参数信息确定方法、通信节点和存储介质

Country Status (6)

Country Link
US (1) US20230091578A1 (zh)
EP (1) EP4093079A4 (zh)
JP (1) JP7451725B2 (zh)
CN (1) CN111901808A (zh)
CA (1) CA3165049A1 (zh)
WO (1) WO2021143897A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901808A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 参数信息确定方法、通信节点和存储介质
CN111867098A (zh) * 2020-04-10 2020-10-30 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190141692A1 (en) * 2017-11-07 2019-05-09 Qualcomm Incorporated Techniques and apparatuses for beam management to overcome maximum permissible exposure conditions
CN110536431A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种波束恢复方法、装置、终端及存储介质
WO2019233352A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
CN111901808A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 参数信息确定方法、通信节点和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11723049B2 (en) * 2017-11-15 2023-08-08 Interdigital Patent Holdings, Inc. Beam management in a wireless network
US10999036B2 (en) * 2018-02-14 2021-05-04 Electronics And Telecommunications Research Institute Method and apparatus for downlink communication in communication system
US11343037B2 (en) * 2018-02-16 2022-05-24 Qualcomm Incorporated Transmission configuration indication states with quasi-collocation groups
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
WO2020012662A1 (ja) * 2018-07-13 2020-01-16 株式会社Nttドコモ ユーザ端末及び基地局
CN110535609B (zh) * 2019-08-02 2023-11-24 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190141692A1 (en) * 2017-11-07 2019-05-09 Qualcomm Incorporated Techniques and apparatuses for beam management to overcome maximum permissible exposure conditions
WO2019233352A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
CN110536431A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种波束恢复方法、装置、终端及存储介质
CN111901808A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 参数信息确定方法、通信节点和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4093079A4

Also Published As

Publication number Publication date
CA3165049A1 (en) 2021-07-22
JP7451725B2 (ja) 2024-03-18
US20230091578A1 (en) 2023-03-23
CN111901808A (zh) 2020-11-06
JP2023510952A (ja) 2023-03-15
EP4093079A1 (en) 2022-11-23
EP4093079A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021063296A1 (zh) 信息确定、获取和传输方法、装置、设备和存储介质
US12010707B2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
WO2021073508A1 (zh) 传输方法、装置、第一通信节点、第二通信节点及介质
WO2021068807A1 (zh) 信息确定方法及装置、电子装置和存储介质
WO2019096022A1 (zh) 传输数据的方法和装置
US20210266868A1 (en) Method and apparatus for configuring dmrs information in v2x system
CN114270920A (zh) 无线通信系统中终端波束失败恢复操作指示方法及装置
JP7541581B2 (ja) 無線通信ネットワークにおける基準シグナリング設計および構成のためのシステムおよび方法
WO2021027849A1 (zh) 准共址假设的确定方法及装置、存储介质和电子装置
JP2021500779A (ja) 時間周波数リソースを決定するための方法およびデバイス
WO2021143901A1 (zh) 准共址信息获取方法、通信节点及存储介质
CN108289017B (zh) 信号接收、发送方法、控制信道的接收、发送方法及装置
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
US10165517B2 (en) Power allocation method and communications device
WO2021143897A1 (zh) 参数信息确定方法、通信节点和存储介质
WO2021203994A1 (zh) 一种参数的获取方法及装置、参数的确定方法及装置
WO2021208673A1 (zh) 空间参数确定方法及装置
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
US11917645B2 (en) Determination of start time of PDCCH monitoring occasion
CN114650548A (zh) 资源配置方法、装置、网络节点和存储介质
WO2021088917A1 (zh) 参考信号的位置确定方法、装置、通信节点和存储介质
WO2016169479A1 (zh) 一种数据传输方法及设备
CN118282597A (zh) 无线通信系统中的装置及由其执行方法
US20220338224A1 (en) Method and apparatus for configuring default beam in communication system
WO2018126965A1 (zh) 参考信号的资源确定方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3165049

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022544035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740668

Country of ref document: EP

Effective date: 20220817