WO2021143893A1 - 液压减振器以及轨道车辆 - Google Patents

液压减振器以及轨道车辆 Download PDF

Info

Publication number
WO2021143893A1
WO2021143893A1 PCT/CN2021/072368 CN2021072368W WO2021143893A1 WO 2021143893 A1 WO2021143893 A1 WO 2021143893A1 CN 2021072368 W CN2021072368 W CN 2021072368W WO 2021143893 A1 WO2021143893 A1 WO 2021143893A1
Authority
WO
WIPO (PCT)
Prior art keywords
end cover
damping
valve
hole
damping valve
Prior art date
Application number
PCT/CN2021/072368
Other languages
English (en)
French (fr)
Inventor
庞林春
陈春鹏
刘畅
方照根
周小智
陈超
Original Assignee
常州中车柴油机零部件有限公司
中车戚墅堰机车车辆工艺研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020105222.0U external-priority patent/CN211371124U/zh
Priority claimed from CN202010053099.7A external-priority patent/CN111255847B/zh
Priority claimed from CN202010053081.7A external-priority patent/CN111255848B/zh
Priority claimed from CN202010053060.5A external-priority patent/CN110873146B/zh
Priority claimed from CN202110000954.2A external-priority patent/CN114718975A/zh
Application filed by 常州中车柴油机零部件有限公司, 中车戚墅堰机车车辆工艺研究所有限公司 filed Critical 常州中车柴油机零部件有限公司
Publication of WO2021143893A1 publication Critical patent/WO2021143893A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement

Definitions

  • This application relates to the field of rail transit, and in particular, to a hydraulic shock absorber for rail vehicles.
  • the rail vehicle vibrates due to the excitement of track irregularities and insufficient roundness of the wheels, and there will be periodic swings in the lateral direction, and this kind of motion is called snaking motion.
  • the violent snake movement will aggravate the shaking of the vehicle, which will have an important impact on the safety of the rail vehicle and the comfort of passengers, and even cause the rail vehicle to derail in severe cases.
  • the hydraulic shock absorber can effectively suppress vibration and reduce the dissipated vibration energy, thereby improving the dynamic performance of the rail vehicle system.
  • the valve system of the current hydraulic shock absorber is complicated in design and noisy, and its damping effect still needs to be improved urgently, in order to increase the critical speed of the rail vehicle's meandering instability.
  • the present application provides an improved hydraulic shock absorber and rail vehicle to solve or at least alleviate the technical problem of the lack of vibration damping effect of the existing hydraulic shock absorber.
  • a hydraulic shock absorber which includes: a fluid storage cylinder; a hydraulic cylinder sleeved in the fluid storage cylinder; a piston rod assembly, which Passing through the fluid storage cylinder and the hydraulic cylinder, the first end of the piston rod assembly is set outside the fluid storage cylinder, and the second end of the piston rod assembly is set inside the hydraulic cylinder and driven along The hydraulic cylinder reciprocates in the longitudinal direction; wherein a piston assembly is provided at the second end of the piston rod assembly, which divides the hydraulic cylinder into a first chamber and a second chamber; the piston assembly includes a first chamber A damping valve group and a second damping valve group, the first damping valve group is driven by pressure to control the one-way stepped on and off from the first chamber to the second chamber, and the second damping valve group Driven by pressure to control the one-way graded on-off from the second chamber to the first chamber.
  • the first damping valve group includes: a first unloading valve, which has a first pressure that realizes one-way unloading Threshold; and a first damping valve, which has a first damping spool provided with a first orifice that is conductive, and the first damping spool has a second pressure threshold that is driven to a one-way unloading position; wherein, The second pressure threshold is greater than the first pressure threshold; and/or the second damping valve group includes: a second unloading valve having a third pressure threshold for unidirectional unloading; and a second damping valve, It has a second damping valve core provided with a conductive second orifice, and the second damping valve core has a fourth pressure threshold that is driven to a one-way unloading position; wherein the fourth pressure threshold is greater than the The third pressure threshold.
  • first unloading valve and the first damping valve are arranged on the piston assembly at a circumferential interval of 180° On; and/or the second unloading valve and the second damping valve are arranged on the piston assembly at an interval of 180° in the circumferential direction.
  • the first unloading valve, the first damping valve, the second unloading valve, and the first Two damping valves are arranged on the piston assembly in the opposite direction at 90° intervals in the circumferential direction.
  • the first damping hole is provided on the side wall of the first damping valve core and communicates with each other in the radial direction.
  • the inner side and the outer side of the first damping valve core; and/or the second orifice is provided on the side wall of the second damping valve core, and radially communicates the inner side and the outer side of the second damping valve core .
  • the change in the diameter of the first orifice corresponds to the change in the damping force at the low speed point of the first damping valve
  • the magnitude of the biasing force received by the first damping valve core corresponds to the change of the damping force at the high speed point of the first damping valve
  • the change in the diameter of the second damping hole corresponds to the change of the second damping valve
  • the hydraulic shock absorber includes: a hydraulic cylinder block; an end cover assembly, which is arranged on the first hydraulic cylinder block One end; and a bottom valve assembly, which is provided at the second end of the hydraulic cylinder body; wherein the piston rod assembly is inserted into the hydraulic cylinder body via the end cover assembly.
  • the end cap assembly includes: an end cap body; a first one-way valve, which is radially arranged at the end In the cover body and driven by pressure to control the one-way on-off of the hydraulic cylinder block to the fluid storage cylinder; and a diversion channel, which has a radial section and an axial section, and communicates with the first A one-way valve and the hydraulic cylinder block.
  • the end cover assembly includes an end cover body, an end cover damping valve, an end cover unloading valve, and a first one-way valve
  • the center of the end cover body is provided with a piston rod mounting hole axially penetrating both ends of the end cover body; the piston rod assembly and the piston rod mounting hole are sealed and slidingly connected; the inner end of the end cover body and the hydraulic cylinder Sealed connection; the end cover body is also provided with end cover damping valve mounting holes, end cover unloading valve mounting holes, and one-way valve mounting holes; the end cover damping valve mounting holes and end cover unloading valve mounting holes are both
  • the one-way valve mounting hole is a blind hole that opens on the inner end surface of the end cover body; the outer peripheral surface of the end cover body is provided with three mounting holes respectively connected to the end cover damping valve, The end cover unloading valve installation hole and the end cover oil hole of the one-way valve installation hole, and the end cover oil groove extending from the three
  • the end cover damping valve of the end cover assembly includes an end cover damping valve seat, an end cover damping valve core, The end cover damping spring and the first end cover valve nut; the end cover damping valve seat is fixed between the inner end of the end cover damping valve installation hole and the end cover oil hole; the end cover damping valve seat is provided with A third valve seat hole that penetrates the end cover damping valve seat in the axial direction; the end cover damping valve core is provided with a second T-shaped spool hole, and the second T-shaped spool hole includes a radially penetrating end cover damping The radial part of the valve core and the axial part communicating with the third valve seat hole of the end cover damping valve seat; the first end cover adjusting valve nut is threadedly connected with the outer end of the end cover damping valve installation hole.
  • the end cover unloading valve of the end cover assembly includes an end cover unloading valve seat and an end cover unloading valve seat arranged in sequence.
  • the end cover The unloading valve seat is provided with a fourth valve seat hole that penetrates the end cover unloading valve seat in the axial direction;
  • the end cover unloading valve core is adapted to form a surface seal with the end surface of the end cover unloading valve seat, thereby covering The fourth valve seat hole;
  • the second end cover valve nut is threadedly connected with the outer end of the end cover unloading valve installation hole.
  • the one-way valve mounting hole of the end cover body is a stepped hole, and the small end of the one-way valve mounting hole is connected to the end cover
  • the oil passage is in communication
  • the first one-way valve is installed inside the large end of the one-way valve installation hole;
  • the first one-way valve includes a first one-way valve core, a damping spring, and a one-way valve pre-tightening nut arranged in sequence;
  • the first one-way valve core contacts the step surface inside the one-way valve mounting hole to form a surface seal, and is suitable for covering the small end of the one-way valve mounting hole;
  • the large end of the valve installation hole is threaded;
  • the one-way valve pre-tightening nut is provided with a central through hole.
  • the piston rod mounting hole of the end cover body is equipped with a seal composed of a guide ring, a ster seal, and a skeleton oil seal. system.
  • a low pressure oil return groove is opened in the installation groove of the skeleton oil seal.
  • the outer end of the end cover damping valve core is provided with a cylindrical boss, and one end of the end cover damping spring is sleeved On the cylindrical boss; the inner end of the first end cover valve nut is provided with a groove for accommodating the other end of the end cover damping spring.
  • the end cover damping valve core is provided with a valve core oil outlet step on the end surface facing away from the end cover damping valve seat.
  • the spring support step; the cylindrical boss is arranged on the spring support step; the circumference of the spring support step is provided with an oil outlet groove communicating with the damping hole.
  • the end cover damping valve mounting hole, the end cover unloading valve mounting hole and the one-way valve mounting hole on the end cover body are gradually away from the piston rod mounting hole from the inner end surface to the outer end surface of the end cover.
  • the end cover damping valve includes: an end cover damping valve mounting hole, open at both ends, one end is the oil inlet, and the other One end is connected to the outside of the shock absorber; the end cover oil hole is connected to the end cover damping valve installation hole from the side and is close to the oil inlet end of the end cover damping valve installation hole; the end cover damping valve seat is fixed to the end cover damping valve installation hole The oil inlet end; the end cover damping valve seat is provided with a valve seat inner hole that penetrates the end cover damping valve seat in the axial direction; the end cover damping valve core is in clearance fit with the end cover damping valve installation hole, and the end cover damping valve core One end of the damping valve seat of the end cover is adapted to be attached to the end surface of the end cover damping valve seat to form a surface seal; the end cover damping valve core is provided with a central blind hole and a damping hole; One end surface of the damping
  • the aperture of the central blind hole on the end cap damping valve core is greater than 2.8 times the aperture of the damping hole.
  • the damping hole is a thin-walled hole with a length of 1 mm to 1.5 mm.
  • one end of the end cover damping valve core facing away from the end cover damping valve seat is provided with a protrusion connected to the end cover damping spring.
  • the first end cover valve nut is provided with a groove for accommodating the end cover damping spring.
  • the end cover of the damping valve core is sequentially provided with a valve core oil outlet step on one end surface facing away from the end cover damping valve seat And the spring support step; the boss connected with the end cover damping spring is arranged on the spring support step; the circumference of the spring support step is provided with an oil outlet groove communicating with the damping hole.
  • the bottom valve assembly includes: a bottom valve body; a third damping valve, which is arranged along the axis of the bottom valve body Inside the bottom valve body, it is driven by pressure to control the on-off of the damping from the hydraulic cylinder block to the fluid storage cylinder; the third damping valve has a third damping valve provided with a conducting third orifice
  • the third damping valve core has a fifth pressure threshold that is driven to a one-way unloading position; and a second one-way valve group, which is arranged on the bottom valve body around the third damping valve in the axial direction And is driven by pressure to control the one-way on-off from the fluid storage cylinder to the hydraulic cylinder block.
  • the third damping hole is provided on the side wall of the third damping valve core and communicates along the axis The inner and outer sides of the third damping valve core.
  • it further includes: a dust cover, which is sleeved on the fluid storage cylinder from the first end of the piston rod assembly And can reciprocate with the piston rod assembly.
  • it further includes an airbag assembly, which is sleeved outside the hydraulic cylinder.
  • the airbag assembly includes: an airbag, which is used to separate air and hydraulic fluid; a support ring, which is arranged on the hydraulic Outside the cylinder; and a clamp that fixes the first end and the second end of the airbag to the support ring.
  • the airbag assembly includes: an isolation frame and an airbag; the isolation frame is in the shape of a torus, and the isolation frame is provided with Several evenly distributed chambers, each chamber is provided with an airbag; the airbag is made of composite aluminum-plastic film, the composite aluminum-plastic film includes PET or nylon on the outer layer, aluminum foil on the middle layer, and aluminum foil on the inner layer. Layer of polypropylene.
  • the chamber in the isolation frame is separated by connecting ribs arranged between the outer wall and the inner wall of the isolation frame .
  • the isolation frame is made of ordinary carbon steel or oil- and high-temperature-resistant plastic.
  • a plurality of arc grooves are provided on the isolation frame.
  • the fluid storage cylinder includes: a storage cylinder; a top cover assembly, which is disposed on the first of the storage cylinder. And abutting against the end cover assembly; and a base assembly which is arranged at the second end of the storage cylinder and abuts against the bottom valve assembly.
  • the base assembly includes a base body, a first base damping valve, a second base damping valve, and a plug; the fluid The storage cylinder is sealed and fixed on the inner end of the base body; the center of the inner end of the base body is provided with a bottom valve mounting hole; the base body is provided with two damping valve mounting holes vertically arranged in a radial direction; the bottom valve The mounting hole communicates with the intersection of the two damping valve mounting holes; the base body is also provided with two base oil holes, and the two base oil holes respectively communicate with one end of the two damping valve mounting holes; the base body The inner end surface of the base is also provided with a base oil passage groove extending from the base oil hole to the inner end edge; one end of the bottom valve assembly is sealed in the bottom valve mounting hole, and the other end is sealed with the hydraulic cylinder; the first base damping The valve and the second base damping valve are respectively arranged at one end of the two damping valve installation holes
  • the first base damping valve includes a first base damping valve seat, a first base damping valve core, and a first base damping valve seat, which are arranged in sequence.
  • the first base damping valve seat is fixed in a damping valve installation hole, and is located between the bottom valve installation hole and the base oil hole;
  • the first base damping valve The seat is provided with a first valve seat hole that penetrates the first base damping valve seat in the axial direction;
  • the first base damping valve core is provided with a first T-shaped spool hole, and the first T-shaped spool hole includes an edge
  • the radial part penetrates the radial part of the first base damping valve core and the axial part communicating with the first valve seat hole of the first base damping valve seat;
  • the first base adjusting valve nut is threadedly connected with the damping valve installation hole.
  • the second base damping valve includes a second base damping valve seat, a second base damping valve core, and a second base damping valve seat, which are arranged in sequence.
  • the second base damping spring and the second base valve nut; the second base damping valve seat is fixed in another damping valve installation hole, and is located between the bottom valve installation hole and the oil through hole; the second base damping valve
  • the seat is provided with a second valve seat hole that penetrates the second base damping valve seat in the axial direction;
  • the second base damping valve core is adapted to form a surface seal with the end surface of the second base damping valve seat, thereby covering the first base damping valve seat.
  • Two valve seat holes; the second base valve adjusting nut is threadedly connected with the damping valve mounting hole.
  • it further includes: a first bellows, the first end of which abuts against the piston rod assembly, and the second end of which is fixed To the top cover assembly; when the piston rod assembly reciprocates, the first end of the first bellows slides relative to the piston rod assembly.
  • a rail vehicle which includes the hydraulic shock absorber as described above.
  • the first damping valve group and the second damping valve group are provided on the piston rod assembly to realize that when they are driven by pressure, they control the first chamber and the second chamber respectively.
  • the forward or reverse one-way graded on-off between the two chambers enables different corresponding conduction degrees to be provided when facing different pressures, and a better damping effect can be achieved under low-speed or high-speed conditions.
  • the hydraulic shock absorber has a simple structure, the piston valve system parts and the bottom valve valve system parts are designed in series, the manufacture and assembly are easier, and the processing cost is low; and the hydraulic fluid only moves on both sides of the piston assembly.
  • the effective distance is short, the compressible amount is small, and the stiffness is large; the tension and compression strokes, the oil passes through different valve systems, and the tension and compression damping force can be controlled separately; it has a wide range of adjustable force values and dynamic tension and compression. Good sex and other advantages.
  • the hydraulic shock absorber adopts a two-way circulating hydraulic flow path, the diameter of its piston rod assembly is no longer restricted by the size of the hydraulic cylinder, so the piston rod can also be designed to be thinner, which is conducive to the internal space layout of the hydraulic shock absorber .
  • Fig. 1 is an overall cross-sectional view of an embodiment of the hydraulic shock absorber of the present application.
  • Fig. 2 is a cross-sectional view of an embodiment of the piston assembly of the hydraulic shock absorber of the present application.
  • Fig. 3 is a cross-sectional view of an embodiment of the end cover assembly of the hydraulic shock absorber of the present application.
  • Fig. 4 is a cross-sectional view of an embodiment of the bottom valve assembly of the hydraulic shock absorber of the present application.
  • Fig. 5 is a cross-sectional view of an embodiment of the fluid storage cylinder of the hydraulic shock absorber of the present application.
  • Fig. 6 is a cross-sectional view of an embodiment of the airbag assembly of the hydraulic shock absorber of the present application.
  • Fig. 7 is a cross-sectional view of an embodiment of the piston rod assembly of the hydraulic shock absorber of the present application.
  • Fig. 8 is a cross-sectional view of an embodiment of the top cover assembly of the hydraulic shock absorber of the present application.
  • Fig. 9 is a schematic diagram of an oil circuit of an embodiment of the hydraulic shock absorber of the present application.
  • Fig. 10 is an overall cross-sectional view of another embodiment of the hydraulic shock absorber of the present application.
  • Fig. 11 is a cross-sectional view of another embodiment of the bottom valve assembly of the hydraulic shock absorber of the present application.
  • FIG. 12 is a cross-sectional view of the first base damping valve of another embodiment of the base assembly of the hydraulic shock absorber of the present application.
  • Fig. 13 is a cross-sectional view of another embodiment of the first base damping valve core of the hydraulic shock absorber of the present application.
  • Fig. 14 is a top view of another embodiment of the first base damping valve core of the hydraulic shock absorber of the present application.
  • 15 is a cross-sectional view of the second base damping valve of another embodiment of the base assembly of the hydraulic shock absorber of the present application.
  • Fig. 16 is a schematic structural view of another embodiment of the end cover assembly of the hydraulic shock absorber of the present application.
  • Fig. 17 is an A-A cross-sectional view of the end cap assembly in Fig. 16.
  • Fig. 18 is a rear view of the end cap assembly in Fig. 16.
  • Fig. 19 is a B-B cross-sectional view of the end cap assembly in Fig. 18.
  • 20 is a cross-sectional view of an embodiment of the piston assembly of the hydraulic shock absorber of the present application.
  • Fig. 21 is a cross-sectional view of another embodiment of the airbag assembly of the hydraulic shock absorber of the present application.
  • Fig. 22 is a top view of another embodiment of the airbag assembly of the hydraulic shock absorber of the present application.
  • Fig. 23 is a C-C cross-sectional view of the end cap assembly in Fig. 18.
  • Fig. 24 is a schematic structural view of another embodiment of the damping valve core of the hydraulic shock absorber of the present application.
  • Fig. 25 is a D-D cross-sectional view of the damping valve core in Fig. 24.
  • Fig. 26 is a schematic structural diagram of another embodiment of the damping valve of the present application.
  • FIG. 1 shows a cross-sectional view of the overall structure in an assembled state
  • Figs. 2 to 8 separately show the structural cross-sectional views of some parts. The structure will be described below in conjunction with these drawings.
  • the hydraulic shock absorber 100 generally includes a fluid storage cylinder 110 with a second end connected to a rubber joint 220, a hydraulic cylinder 120 sleeved in the fluid storage cylinder 110, and a piston rod assembly 130.
  • the piston rod assembly 130 is disposed through the fluid storage cylinder 110 and the hydraulic cylinder 120, wherein the first end 130a of the piston rod 131 is disposed outside the fluid storage cylinder 110, and is connected to the rubber joint 210 through the upper connecting ring 132; its second end 130b is arranged in the hydraulic cylinder 120 and is driven to reciprocate along the length of the hydraulic cylinder 120.
  • a piston assembly 140 is provided at the second end 130b of the piston rod assembly 130, which divides the hydraulic cylinder 120 into a first chamber 120c and a second chamber 120d; the piston assembly 140 includes a first damping valve group and a second damping valve group. Valve group, the first damping valve group is driven by pressure to control the one-way stepped on and off from the first chamber 120c to the second chamber 120d, that is, to control the hydraulic fluid to flow at different speeds according to the degree of pressure.
  • the first damping valve group with a degree of conduction for example, provides a lower degree of conduction of the first damping valve group when it is subjected to a damping force corresponding to a low speed point in a stretched state, and the first damping valve group is subjected to a high speed point in a stretched state.
  • damping force When damping force, it provides a greater degree of conduction of the first damping valve group; similarly, the second damping valve group is driven by pressure to control the one-way stepped on-off from the second chamber 120d to the first chamber 120c, namely Control the hydraulic fluid to flow through the second damping valve group with different degrees of conduction at different speeds according to the degree of pressure, such as when the compression state is subjected to the damping force corresponding to the low speed point, the second damping valve group is provided A lower degree of conduction, and a greater degree of conduction of the second damping valve group is provided when the damping force corresponding to the high speed point is experienced in the compressed state.
  • the effective distance is short, the compressible amount is small, and the stiffness is greater; in the stretching and compression strokes, the oil passes through different valve systems, which can realize the separate control of the tensile and compressive damping force, and has a wide range of adjustable force values. Good dynamic symmetry and other advantages.
  • each part of the hydraulic shock absorber will be introduced separately as follows.
  • some additional parts may be added, which are also exemplified below.
  • the piston assembly 140 includes a piston rod mounting hole 143 penetrating in the axial direction, so that the end of the piston rod assembly 130 can be inserted therein, so that the two can reciprocate in association.
  • the first damping valve group shown in the figure and the second damping valve group not shown are arranged around the piston rod mounting hole 143 in the circumferential direction.
  • the first damping valve group includes a first unloading valve 141 on the left and a first damping valve 142 on the right.
  • the first unloading valve 141 includes a first unloading valve core 1411 arranged close to the second chamber 120d of the hydraulic cylinder and a damping spring 1412 arranged close to the first chamber 120c of the hydraulic cylinder.
  • the damping spring 1412 abuts the first unloading valve core 1411 against the base of the piston assembly 140.
  • the first damping valve 142 includes a first damping valve core 1421 disposed near the second chamber 120d of the hydraulic cylinder and a damping spring 1423 disposed near the first chamber 120c of the hydraulic cylinder.
  • the first damping valve core 1421 is provided on the side wall
  • the inner and outer first damping holes 1422 are conducted in the radial direction, so that a small amount of hydraulic fluid can flow from the second chamber 120d to the first chamber 120c through the first damping holes 1422, and the radial arrangement of the holes is such that The oil in the valve is sprayed to the inner wall of the damping spring, and the oil is prevented from being directly sprayed to the oil through the hole, which improves the noise and reduces the generation of oil turbulence and bubbles.
  • damping spring 1423 abuts the first damping valve core 1421 against the base of the piston assembly 140, so that when the force applied to the first damping valve core 1421 reaches the second pressure threshold for damping conduction, it can overcome the damping spring The elastic force exerted by 1423 pushes the first damping valve core 1421 open to conduct the damping valve.
  • these thresholds can be adjusted so that the second pressure threshold is greater than the first pressure threshold, and the first pressure threshold is greater than the hydraulic fluid passing through the first damping
  • the damping force requirement of the hole 1422 that is, the conduction pressure requirement of the first unloading valve 141 is lower than the conduction pressure requirement of the first damping spool 1421, and the conduction pressure requirement of the first unloading valve 141 is higher than the hydraulic pressure requirement.
  • the pressure requirement of the fluid flowing through the first damping hole 1422 realizes the adjustment of the degree of conduction according to the different flow rates of the hydraulic fluid, thereby improving the buffering and damping effect.
  • the damping force at the low speed point can be achieved by controlling the aperture of the first damping hole 1422
  • the damping force at the middle speed point can be achieved by adjusting the spring stiffness and preload of the first unloading valve 141.
  • the damping force at the high speed point is The force can be achieved by adjusting the spring stiffness and preload of the first damping valve 142, thereby achieving precise control of the three-stage force value.
  • the four-stage damping force value can be accurately controlled, so the shock absorber structure also has better performance in the later stage. Expandability.
  • the second damping valve group can also adopt a similar arrangement, that is, it includes: a second unloading valve having a third pressure threshold for unidirectional unloading; and a second damping valve , It has a second damping valve core provided with a conductive second orifice, and the second damping valve core has a fourth pressure threshold that is driven to a one-way unloading position; wherein the fourth pressure threshold is greater than the third pressure threshold.
  • the second orifice therein is arranged on the side wall of the second damping valve core, and communicates with the inner side and the outer side of the second damping valve core in the radial direction.
  • the degree of conduction in the reverse direction of the hydraulic fluid will be adjusted according to the different flow rates of the hydraulic fluid, thereby also improving the buffering and damping effect.
  • serial numbers such as “first” and “second” mentioned in the text are only set for the purpose of facilitating identification and description, and do not constitute specific limitations on the characteristics of the valve.
  • these first valve parts and second valve parts, etc. can adopt similar structures or different structures, as long as they can achieve the functions mentioned in the text.
  • the first unloading valve 141 and the first damping valve 142 are arranged on the piston assembly 140 at a circumferential interval of 180°. Therefore, the cross-sectional view can better show the first damping valve.
  • the second unloading valve and the second damping valve are arranged on the piston assembly 140 at a circumferential interval of 180°, and are spaced apart from the first unloading valve 141 and the first damping valve 142.
  • the 90° reverse arrangement so the specific structure and arrangement are not shown in the figure, but the second damping valve group can be clearly understood in combination with the above description, and will not be repeated here. This evenly spaced arrangement makes it easier to process and produce, and the two-way flow distribution is more even.
  • the aforementioned damping valve in order to adapt to different damping requirements, its components can be adjusted and designed adaptively. During the adjustment process, it can be inferred that the change of the diameter of the first damping hole 1422 corresponds to the change of the damping force at the low speed point of the first damping valve 142, and the magnitude of the biasing force received by the first damping valve core 1421 corresponds to the first damping valve 142.
  • the change in the damping force at the high speed point of a damping valve 142; and the change in the diameter of the second orifice corresponds to the change in the damping force at the low speed point of the second damping valve, and the magnitude of the biasing force received by the second damping valve core corresponds to The change of the damping force at the high speed point of the second damping valve.
  • the hydraulic cylinder 120 shown in the figure includes: a hydraulic cylinder block 121; an end cover assembly 150 provided at the first end of the hydraulic cylinder block 121; and a bottom valve provided at the second end of the hydraulic cylinder block 121 Component 160.
  • the two components at both ends of the hydraulic cylinder body 121 can also be designed on the guide valves, so as to further improve the circulation circuit and flow stability of the hydraulic fluid in the hydraulic shock absorber.
  • the illustrated end cap assembly 150 includes an end cap main body 151.
  • the end cover main body 151 includes a piston rod mounting hole 154 penetrating in the axial direction, so that the end of the piston rod assembly 130 can be inserted therein, so that the two can reciprocate in association.
  • the first one-way valve 152 is arranged in the end cover body 151 along the radial direction, and is driven by pressure to control the one-way on-off of the fluid storage cylinder 110 to the hydraulic cylinder block 121.
  • the end cover body 151 is also provided with a diversion channel 153 having a radial section 1531 and an axial section 1532, and communicates with the first one-way valve 152 and the hydraulic cylinder 121.
  • the illustrated bottom valve assembly 160 includes a bottom valve body 161.
  • the bottom valve main body 161 has a third damping valve 162 arranged in the bottom valve main body 161 along its axis, which is driven by pressure to control the damping on and off of the hydraulic cylinder 121 to the fluid storage cylinder 110.
  • the third damping valve 162 includes a third damping valve core 1621 arranged close to the second chamber 120 d of the hydraulic cylinder 120, and a damping spring 1623 arranged close to the outside of the hydraulic cylinder 120.
  • a third damping hole 1622 is provided on the side wall of the third damping spool 1621, which guides the inner and outer sides of the third damping spool 1621 along the axis, so that a small amount of hydraulic fluid can pass through the third damping hole 1622.
  • the storage cylinder 110 flows to the hydraulic cylinder block 121.
  • the damping spring 1623 abuts the third damping valve core 1621 against the bottom valve body 161, so that when the force applied to the third damping valve core 1621 reaches the fifth pressure threshold for damping conduction, it can overcome the damping spring 1623
  • the applied elastic force pushes the third damping valve core 1621 open to conduct the damping valve, thereby realizing the adjustment of the degree of conduction according to the different flow rates of the hydraulic fluid, thereby improving the cushioning and damping effect.
  • the bottom valve body 161 is also provided with a second check valve group 163, which is arranged in the bottom valve body 161 around the third damping valve 162 in the axial direction, and is driven by pressure to control the flow of the fluid storage cylinder 110 to the hydraulic cylinder 121 One-way on and off.
  • the second one-way valve group 163 can be configured as a plurality of one-way valve holes arranged around the third damping valve 162, and these one-way valves can have similar or different structures, as long as they can realize one-way unloading in the same direction. That's it.
  • the illustrated one-way valve has a second one-way valve plate 1631 arranged close to the outside of the hydraulic cylinder 120 and a damping spring 1632 arranged in the second chamber 120 d of the hydraulic cylinder 120.
  • the damping spring 1632 abuts the second one-way valve plate 1631 against the bottom valve main body 161.
  • the elastic force pushes the second one-way valve plate 1631 open to conduct the one-way valve.
  • the illustrated fluid storage cylinder 110 includes a storage cylinder 111, a top cover assembly 112 and a base assembly 113.
  • the top cover assembly 112 is arranged at the first end 111 a of the storage cylinder 111 and abuts against the end cover assembly 150;
  • the base assembly 113 is arranged at the second end 111 b of the storage cylinder 111 and abuts against the bottom valve assembly 160. It can be seen that the arrangement of the pilot valve in the hydraulic shock absorber avoids the fluid storage cylinder 110 and does not need to occupy the space of the top cover assembly 112 and the base assembly 113, thus having outstanding economic benefits.
  • the flow of the hydraulic fluid is shown by the solid line in FIG. 9.
  • the squeezed hydraulic fluid will flow from the first chamber 120c to the second chamber 120d via the first damping valve group of the piston assembly 140.
  • the hydraulic fluid will flow from the first chamber 120c through the first orifice 1422 of the first damping valve 142 of the first damping valve group and the second orifice of the second damping valve 144 of the second damping valve group.
  • the hydraulic fluid in the fluid storage cylinder 110 will also be driven by pressure and flow to the second chamber 120d via the second one-way valve group 163 of the bottom valve assembly 160. At this time, when there is pressure, the hydraulic fluid will flow from the fluid storage cylinder 110 toward the second chamber 120d by pushing the valve holes of the multiple one-way valves in the second one-way valve group 163.
  • the flow of the hydraulic fluid is shown by the dashed line in FIG. 9.
  • the squeezed hydraulic fluid will flow from the second chamber 120d to the first chamber 120c via the second damping valve group of the piston assembly 140.
  • the hydraulic fluid will flow from the second chamber 120d through the second orifice of the second damping valve 144 of the second damping valve group and the first orifice 1422 of the first damping valve 142 of the first damping valve group.
  • the hydraulic fluid in the second chamber 120d will also be driven by pressure and flow through the third damping valve 162 of the bottom valve assembly 160, the fluid storage cylinder 110, and through the third check valve of the end cover assembly 150. 152 flows to the first chamber 120c.
  • the hydraulic fluid will flow from the second chamber 120d toward the fluid storage cylinder 110 through the third orifice 1622 of the third damping valve 162; or, if the fluid pressure is increased to be greater than the aforementioned pressure
  • the threshold is the fifth pressure threshold
  • the hydraulic fluid will push the third damping spool 1621 of the third damping valve 162 to achieve an extra ultra-high-speed flow from the second chamber 120d toward the fluid storage cylinder 110.
  • the hydraulic fluid entering the fluid storage cylinder 110 will continue to push the first one-way valve core 1521 of the first one-way valve 152 on the end cover assembly 150 to realize the first chamber facing the hydraulic cylinder 120 The flow of 120c.
  • the shock absorber further includes a dust cover 170, which is sleeved on the fluid storage cylinder 110 from the first end 130 a of the piston rod assembly 130 and can reciprocate with the piston rod assembly 130.
  • a dust cover 170 which is sleeved on the fluid storage cylinder 110 from the first end 130 a of the piston rod assembly 130 and can reciprocate with the piston rod assembly 130.
  • this arrangement provides a good dustproof effect for the hydraulic shock absorber.
  • a first bellows 190 may be additionally provided so that the first end 190 a abuts against the piston rod assembly 130 and the second end 190 b is fixed to the top cover assembly 112.
  • the first end 190a of the first bellows slides relative to the piston rod assembly 130.
  • This arrangement provides a further dustproof effect at the sliding fit gap between the piston rod 131 and the fluid storage cylinder.
  • a rubber ring 112 is additionally provided in the axial through hole of the top cover main body 1121 of the top cover assembly 112 for inserting the piston rod assembly, which is also arranged on the piston rod 131 and the fluid storage cylinder The sliding fit of the gap provides a further dustproof effect.
  • an airbag assembly 180 can also be provided for the shock absorber.
  • the airbag assembly 180 is set outside the hydraulic cylinder 120 for separating air and oil, preventing the generation of bubbles in the oil and prolonging the service life of the oil.
  • the airbag assembly 180 includes an airbag 181 and a support ring 182 arranged outside the hydraulic cylinder 120. The first end and the second end of the airbag are fixed to the support ring by a clamp 183 to realize the airbag assembly and The hydraulic cylinder 120 is fixed.
  • the airbag assembly of the hydraulic shock absorber of this embodiment includes an isolation frame 184 and an airbag 181.
  • the isolation frame 184 is in the shape of a ring sleeve and is made of ordinary carbon steel or oil-resistant and high-temperature resistant plastic. Between the outer wall and the inner wall of the isolation frame 184, eight semi-closed chambers evenly distributed are separated by connecting ribs. The eight semi-closed chambers are composed of two upper and lower layers, and each layer consists of four. An air bag 181 is provided in each chamber.
  • the airbag 181 is made of a composite aluminum-plastic film including PET or nylon on the outer layer, aluminum foil on the middle layer, and polypropylene on the inner layer.
  • the airbag 181 has good air tightness, stable structure, and no leakage.
  • a number of circular arc grooves 185 are provided on the isolation frame 184.
  • the circular arc grooves 185 have the function of eliminating air bubbles and can prevent the vibration of the shock absorber damping force caused by the air bubbles passing through the damping valve of the hydraulic shock absorber.
  • the airbag 181 is placed in the isolation frame 184, and the entire airbag assembly is installed in the oil storage cavity formed by the outer wall of the shock absorber hydraulic cylinder 120 and the inner wall of the fluid storage cylinder 110.
  • the shock absorber When the shock absorber is compressed, the oil in the pressure cylinder enters the oil storage cylinder, the oil in the oil storage cavity increases, the pressure increases, and the airbag 181 is compressed; when the shock absorber is stretched, the oil in the oil storage cylinder enters the pressure cylinder to store oil
  • the oil in the cavity is reduced, the pressure is reduced, and the airbag 181 expands, so that the oil and gas isolation during the tension and compression process can be realized.
  • isolation frame 184 of the airbag assembly can be provided with more or less chambers as required, and the size and inflation of the airbag 181 can also be provided with different specifications as required.
  • the isolation frame of the present invention is provided with a number of evenly distributed chambers, and each chamber is provided with an airbag, so that the airbags are separated from each other to prevent the airbags from overlapping; and the airbags are evenly distributed in the storage.
  • the oil and gas isolation is realized, and the service life of the airbag is increased.
  • the airbag of the present invention is made of composite aluminum plastic film, which has good air tightness, stable structure and no leakage.
  • the isolation frame of the present utility model is provided with a number of arc grooves, which have the effect of eliminating air bubbles, and can prevent air bubbles from passing through the damping valve of the hydraulic shock absorber to reduce vibration. The phenomenon of vibration of the damping force of the device.
  • the hydraulic shock absorber of this embodiment includes a base assembly 113, a fluid storage cylinder 110, a hydraulic cylinder 120, an end cover assembly 150, a piston assembly 140, a piston rod assembly 130, and rubber joints 210 and 220.
  • the fluid storage cylinder 110 is sealed and fixed to the inner end of the base assembly 113.
  • the hydraulic cylinder 120 is arranged in the fluid storage cylinder 110, and one end of the hydraulic cylinder 120 is sealed to the inner end of the base assembly 113.
  • the end cover assembly 150 is hermetically connected with the other ends of the hydraulic cylinder 120 and the fluid storage cylinder 110.
  • the piston assembly 140 is arranged in the hydraulic cylinder 120 and is connected to the inner wall of the hydraulic cylinder 120 in a sealing and sliding manner.
  • the piston rod assembly 130 penetrates the end cover assembly 150 and is connected to the end cover assembly 150 in a sealed and sliding manner.
  • the inner end of the piston rod assembly 130 is fixedly connected to the piston assembly 140.
  • Both the outer end of the piston rod assembly 130 and the outer end of the base assembly 113 are provided with rubber joints 210 and 220 fixedly connected to them.
  • the base assembly 113 includes a base body 114, a bottom valve assembly 160, a first base damping valve 115, a second base damping valve 116 and a plug 117.
  • the fluid storage cylinder 110 is sealed and fixed to the inner end of the base body 114, and the fixing method is preferably welding.
  • the center of the inner end of the base body 114 is provided with a bottom valve installation hole 1141.
  • the base body 114 is provided with two damping valve installation holes 1142 vertically arranged in the radial direction.
  • the bottom valve installation hole 1141 communicates with the intersection of the two damping valve installation holes 1142.
  • the base body 114 is also provided with two base oil through holes 1143, and the two base oil through holes 1143 respectively communicate with one end of the two damping valve installation holes 1142.
  • the inner end surface of the base body 114 is also provided with a base oil passage groove 1144 extending from the base oil hole 1143 to the inner end edge.
  • One end of the bottom valve assembly 160 is sealed in the bottom valve mounting hole 1141 through a sealing ring, and the other end is sealed to the hydraulic cylinder 120 through a sealing ring.
  • the first base damping valve 115 and the second base damping valve 1-4 are respectively arranged at one end of the two damping valve mounting holes 1142 connected to the base oil hole 1143, and the other ends of the two damping valve mounting holes 1142 pass through the plug 117. seal.
  • the bottom valve assembly 160 includes a bottom valve body 161, a second one-way valve plate 1631, a deflection spring 1632 and a pre-tightening nut 1633.
  • the inner end of the bottom valve body 161 is provided with an annular groove 1611, the center of the annular groove 1611 is a tubular portion 1612, and the tubular portion 1612 extends to both ends.
  • the second one-way valve plate 1631 is arranged in the annular groove 1611 of the valve body and sleeved on the tubular portion 1612.
  • the pre-tightening nut 1633 is detachably fixedly connected to the inner end of the tubular portion 1612.
  • the deflection spring 1632 is sleeved on the tubular portion 1612 and compressed between the second one-way valve plate 1631 and the pre-tightening nut 1633.
  • the outer end of the tubular portion 1612 is sealed and fixedly connected in the bottom valve installation hole 1141 of the base body 114.
  • the bottom surface of the annular groove 1611 is provided with a plurality of oil guide holes 1613 covered by the second one-way valve plate 1631, and the oil guide holes 1613 penetrate the bottom surface of the annular groove 1611 in the axial direction.
  • the first base damping valve 115 includes a first base damping valve seat 1151, a first base damping valve core 1152, a first base damping spring 1153, and a first base valve nut 1154 arranged in sequence.
  • the first base damping valve seat 1151 is fixed in a damping valve mounting hole 1142 and is located between the bottom valve mounting hole 1141 and the base oil hole 1143.
  • the first base damping valve seat 1151 is provided with a first valve seat hole that penetrates the first base damping valve seat 1151 in the axial direction.
  • the first base damping spool 1152 is provided with a first T-shaped spool hole 1152a.
  • the first T-shaped spool hole 1152a includes a radial portion penetrating the first base damping spool 1152 in the radial direction, and is connected to the first base damping spool 1152.
  • the first valve seat hole of the damping valve seat 1151 communicates with the axial portion.
  • the first base valve adjusting nut 1154 is threadedly connected with the damping valve installation hole 1142.
  • the diameter of the axial portion of the first T-shaped spool hole 1152a is greater than 2.8 times the diameter of the radial portion, ensuring that the amount of oil passing through the axial portion is greater than the amount of oil passing through the radial portion.
  • An end of the first base damping valve core 1152 facing away from the axial portion of the first T-shaped valve core hole 1152a is provided with a first cylindrical boss 1152b.
  • One end of the first base damping spring 1153 is sleeved on the first cylindrical boss 1152b.
  • An end of the first base valve nut 1154 facing the first base damping spring 1153 is provided with a groove for accommodating the first base damping spring 1153.
  • the end surface of the first base damping valve core 1152 facing away from the first base damping valve seat 1151 is sequentially provided with a valve core oil outlet step 1152c and a spring support step 1152d; the first cylindrical boss 1152b is provided on the spring support step 1152d.
  • the circumferential surface of the supporting step 1152d is provided with an oil outlet square groove 1152e communicating with the radial portion of the first T-shaped valve core hole 1152a.
  • the second base damping valve 116 includes a second base damping valve seat 1161, a second base damping valve core 1162, a second base damping spring 1163, and a second base regulating valve nut 1164 arranged in sequence.
  • the second base damping valve seat 1161 is fixed in the other damping valve installation hole 1142 and is located between the bottom valve installation hole 1141 and the oil through hole 1144.
  • the second base damping valve seat 1161 is provided with a second valve seat hole that penetrates the second base damping valve seat 1161 in the axial direction.
  • the second base damping valve core 1162 is adapted to form a surface seal with the end surface of the second base damping valve seat 1161, thereby covering the second valve seat hole.
  • the second base valve adjusting nut 1164 is threadedly connected with the damping valve mounting hole 1142.
  • the second base damping valve core 1162 is provided with a second cylindrical boss. One end of the second base damping spring 1163 is sleeved on the second cylindrical boss. An end of the second base valve nut 1164 facing the second base damping spring 1163 is provided with a groove for accommodating the second base damping spring 1163.
  • the base assembly 113 also includes a base valve cover 118.
  • the base valve cover 118 is detachably fixed at one end of the two damping valve installation holes 1142 where the base damping valve is installed.
  • the end cover assembly 150 includes an end cover body 151, an end cover damping valve 155, an end cover unloading valve 156, a first one-way valve 152 and a top cover assembly 112.
  • the center of the end cover main body 151 is provided with a piston rod mounting hole 154 that penetrates through both ends of the end cover main body 151 in the axial direction.
  • the piston rod assembly 130 is in a sealed sliding connection with the piston rod mounting hole 154.
  • the inner end of the end cover body 151 and the hydraulic cylinder 120 are hermetically connected by a sealing ring.
  • the top cover assembly 112 is fixed on the outer peripheral surface of the end cover main body 151 and is sealed and fixedly connected with the fluid storage cylinder 110, preferably a threaded connection.
  • the end cover main body 151 is also provided with an end cover damping valve installation hole 1511, an end cover unloading valve installation hole 1512, and a one-way valve installation hole 1513.
  • the end cover damping valve installation hole 1511 and the end cover unloading valve installation hole 1512 both penetrate through the two end surfaces of the end cover body 151.
  • the one-way valve installation hole 1513 is a blind hole that opens on the inner end surface of the end cover body 151.
  • the outer peripheral surface of the end cover main body 151 is provided with three end cover oil holes 1514 respectively communicating with the end cover damping valve mounting hole 1511, the end cover unloading valve mounting hole 1512 and the one-way valve mounting hole 1513, and the three end cover oil holes 1514 respectively.
  • the cover oil passage hole 1514 extends to the end cover oil passage groove 1515 on the inner end surface of the end cover body 151.
  • the end cover damping valve 155, the end cover unloading valve 156 and the first one-way valve 152 are installed in the end cover damping valve installation hole 1511, the end cover unloading valve installation hole 1512 and the one-way valve installation hole 1513, respectively.
  • the end cover damping valve mounting hole 1511, the end cover unloading valve mounting hole 1512, and the one-way valve mounting hole 1513 on the end cover body 151 are all gradually away from the piston rod mounting hole 154 from the inner end surface to the outer end surface of the end cover body 151 .
  • the end cover damping valve 155 of the end cover assembly 150 includes an end cover damping valve seat 1551, an end cover damping valve core 1552, an end cover damping spring 1553, and a first end cover adjusting nut 1554 arranged in sequence.
  • the end cover damping valve seat 1551 is fixed between the inner end of the end cover damping valve installation hole 1511 and the end cover oil through hole 1514.
  • the end cover damping valve seat 1551 is provided with a third valve seat hole that penetrates the end cover damping valve seat 1551 in the axial direction.
  • the structure of the end cover damping valve core 1552 is consistent with the structure of the first base damping valve core 1152.
  • the end cover damping valve core 1552 is provided with a second T-shaped spool hole.
  • the second T-shaped spool hole includes a radial portion penetrating the end cover damping valve core 1552 in the radial direction, and a connection with the end cover damping valve seat 1551.
  • the third valve seat hole communicates with the axial part.
  • the first end cover adjusting valve nut 1554 is threadedly connected with the outer end of the end cover damping valve installation hole 1511.
  • the diameter of the axial portion of the second T-shaped spool hole is greater than 2.8 times the diameter of the radial portion, ensuring that the amount of oil passing through the axial portion is greater than the amount of oil passing through the radial portion.
  • the outer end of the end cover damping valve core 1552 is provided with a third cylindrical boss, and one end of the end cover damping spring 1553 is sleeved on the third cylindrical boss.
  • the inner end of the first end cover adjusting valve nut 1554 is provided with a groove for accommodating the end cover damping spring 1553.
  • the end cover unloading valve 156 of the end cover assembly 150 includes an end cover unloading valve seat 1561, an end cover unloading valve core 1562, an end cover unloading spring 1563 and a second end cover regulating valve nut 1564 arranged in sequence.
  • the end cover unloading valve seat 1561 is fixed between the inner end of the end cover unloading valve installation hole 1512 and the end cover oil through hole 1514.
  • the end cover unloading valve seat 1561 is provided with a fourth valve seat hole that penetrates the end cover unloading valve seat 1561 in the axial direction.
  • the end cover unloading valve core 1562 is adapted to form a surface seal with the end surface of the end cover unloading valve seat 1561, thereby covering the fourth valve seat hole.
  • the second end cover regulating valve nut 1564 is threadedly connected with the outer end of the end cover unloading valve installation hole 1512.
  • Both the end cover unloading valve core 1562 and the second end cover adjusting valve nut 1564 are provided with grooves for accommodating the end cover unloading spring 1563.
  • the one-way valve mounting hole 1513 of the end cover body 151 is a stepped hole, the small end of the one-way valve mounting hole 1513 is connected to the end cover oil hole 1514, and the first one-way valve 152 is installed at the large end of the one-way valve mounting hole 1513 internal.
  • the first one-way valve 152 includes a first one-way valve core 1521, a damping spring 1522 and a one-way valve pre-tightening nut 1523 arranged in sequence.
  • the first one-way valve core 1521 contacts the stepped surface inside the one-way valve mounting hole 1513 to form a surface seal, and is suitable for covering the small end of the one-way valve mounting hole 1513.
  • the one-way valve pre-tightening nut 1523 is threadedly connected with the large end of the one-way valve mounting hole 1513.
  • the one-way valve pre-tightening nut 1523 is provided with a central through hole. Both the first one-way valve core 1521 and the one-way valve pre-tightening nut 1523 are provided with grooves for accommodating the damping spring 1522.
  • the first one-way valve 152 can ensure that the oil passes through the oil through hole, and after overcoming the pressure of the damping spring 1522 acting on the first one-way valve core 1521, it passes through the center of the one-way valve installation hole 1513 and the one-way valve pre-tightening nut 1523.
  • the hole realizes the one-way oil return, but the oil cannot realize the reverse flow.
  • the piston assembly 140 includes a piston 5-1 and a first unloading valve 141.
  • a piston rod mounting hole 143 is provided in the center of the piston 145.
  • the piston 145 is also provided with at least two unloading valve installation holes 146 arranged around the piston rod installation hole 143.
  • Each unloading valve installation hole 146 is equipped with a first unloading valve 141, and two adjacent unloading valves 141 are installed in each unloading valve installation hole 146.
  • the installation direction of the first unloading valve 141 in the loading valve installation hole 146 is opposite.
  • the first unloading valve 141 includes a first unloading valve seat 1413, an unloading valve core 1411, a damping spring 1412, and a piston adjusting valve nut 1414 which are arranged in sequence.
  • the first unloading valve seat 1413 is fixedly connected with one end of the unloading valve installation hole 146, and the piston adjusting valve nut 1414 is threadedly connected with the other end of the unloading valve installation hole 146.
  • the first unloading valve seat 1413 is provided with a fifth valve seat hole that penetrates the first unloading valve seat 1413 in the axial direction.
  • the first unloading valve core 1411 is suitable for covering the fifth valve seat hole.
  • the first unloading valve core 1411 is provided with a fourth cylindrical boss, one end of the damping spring 1412 is sleeved on the fourth cylindrical boss, and the piston regulating valve nut 1414 is provided with a damping The groove of the spring 1412.
  • the hydraulic shock absorber of this embodiment further includes a dust cover 170.
  • the dust cover 170 is fixed to the outer end of the piston rod assembly 130, and its edge extends in the axial direction toward the inner end of the piston rod assembly 130.
  • the damping process of the hydraulic shock absorber of this embodiment is: in the compression cycle, when the vehicle shakes and drives the piston assembly 140 to move to the right at a low speed, the oil in the right cavity of the hydraulic cylinder 120 passes through the tubular portion 1612 of the bottom valve assembly 160 , The first valve seat hole of the first base damping valve seat 1151, the first T-shaped valve core hole 1152a on the first base damping valve core 1152, and the base oil hole 1143 flow back to the fluid storage cylinder 110.
  • the first The base damping spool 1152 will not move under the preload of the first base damping spring 1153, only the orifice throttling produces damping force, because the radial portion of the first T-shaped spool hole 1152a is arranged in the radial direction Therefore, the oil sprayed from the first T-shaped valve core hole 1152a is directly blocked by the inner wall of the damping valve installation hole 1142, which greatly reduces the noise.
  • the damping force is mainly The damping force is generated by the opening throttling of the first base damping spool 1152.
  • the second base damping spool 1162 provided on the base body 114 opens. At this time, the damping force mainly comes from the two valves. Throttle opening.
  • the first unloading valve core 1411 of the first unloading valve 141 arranged on the right side of the first unloading valve core 1411 on the piston 145 opens to relieve the pressure, so as to prevent the shock absorber from being pressure-discharged.
  • the oil in the fluid storage cylinder 110 opens the first one-way valve core 1521 under the action of pressure, and flows into the left cavity of the hydraulic cylinder 120.
  • the flow through the end cover damping spool 1552 is relatively large.
  • the oil pressure compresses the end cover damping spring 1553 and causes the end cover damping spool 1552 to move and open.
  • the damping force mainly comes from The end cap damping spool 1552 is throttled to produce damping force.
  • the first unloading valve core 1411 of the first unloading valve 141 arranged on the left side of the piston 145 opens to relieve the pressure, so as to prevent the shock absorber from being At the same time, due to the negative pressure generated in the right cavity of the hydraulic cylinder 120, the oil in the fluid storage cylinder 110 opens the second one-way valve 1631 to flow into the right cavity of the hydraulic cylinder 120 under the action of pressure.
  • Both the base assembly and the end cover assembly of the present application are provided with a damping valve that can adjust the damping force from the outside.
  • the adjustment is very convenient without disassembling the entire shock absorber, which can greatly improve the adjustment of the damping force of the valve system. efficiency.
  • the first base damping spool of the present application is provided with a first T-shaped spool hole, and the end cap damping spool is provided with a second T-shaped spool hole, which can make the damping force value more stable, and due to the T-shaped valve
  • the core hole has a radial portion penetrating in the radial direction, so the oil spray direction can be changed, and the oil injection noise can be effectively reduced.
  • Both the base assembly and the end cover assembly of this application can realize three-level damping force adjustment, which can be applied to different types of shock absorbers.
  • the shock absorber vibrates, the high-pressure oil first passes through the first base/end cover damping
  • the T-shaped spool hole of the spool produces a primary damping force.
  • the first base/end cover damping spool compresses the first base/
  • the end cover damping spring makes the first base/end cover damping valve open, and at this time a secondary damping force is generated; when the vibration speed increases again, the oil pressure rises again, and the second base/end cover damping valve opens.
  • a three-stage damping force is generated to protect the shock absorber from damage due to excessive internal pressure.
  • the end cover one-way valve of the end cover assembly of the present application can ensure that the oil passes through the oil hole and overcomes the pressure of the one-way valve spring acting on the one-way valve core.
  • the central through hole of the tightening nut realizes one-way oil return, but the oil cannot realize reverse flow.
  • FIGS. 16 to 19 and FIGS. 23 to 25 introduce another embodiment of the end cover assembly of the hydraulic shock absorber according to the present application.
  • the end cover for the hydraulic shock absorber of this embodiment includes an end cover body 151, an end cover damping valve 155, an end cover unloading valve 156 and a first one-way valve 152.
  • the center of the end cover main body 151 is provided with a piston rod mounting hole 154 that penetrates through both ends of the end cover main body 151 in the axial direction.
  • the end cover main body 151 is also provided with an end cover damping valve installation hole 1511, an end cover unloading valve installation hole 1512, and a one-way valve installation hole 1513.
  • the end cover damping valve installation hole 1511 and the end cover unloading valve installation hole 1512 both penetrate through the two end surfaces of the end cover body 151.
  • the one-way valve installation hole 1513 is a blind hole that opens on the inner end surface of the end cover body 151.
  • the outer peripheral surface of the end cover main body 151 is provided with end cover oil holes 1514 corresponding to the end cover damping valve mounting holes 1511, the end cover unloading valve mounting holes 1512 and the one-way valve mounting holes 1513, and the end cover
  • the oil hole 1514 extends to the end cover oil through groove 1515 on the inner end surface of the end cover body 151.
  • the end cover damping valve mounting hole 1511, the end cover unloading valve mounting hole 1512 and the one-way valve mounting hole 1513 are all gradually away from the piston rod mounting hole 154 from the inner end surface to the outer end surface of the end cover.
  • the end cap damping valve 155 is installed in the end cap damping valve installation hole 1511
  • the end cap unloading valve 156 is installed in the end cap unloading valve installation hole 1512
  • the first one-way valve 152 is installed in the one-way valve installation hole 1513.
  • the piston rod mounting hole 154 of the end cover main body 151 is installed with a sealing system composed of a guide ring, a stem seal and a skeleton oil seal. See Figure 23.
  • the installation groove of the skeleton oil seal is provided with a low-pressure oil return groove 1516 to ensure that the oil in the low-pressure area of the seal does not leak, and to ensure the smooth return of the oil in the seal cavity.
  • the end cover damping valve 155 includes an end cover damping valve seat 1551, an end cover damping valve core 1552, an end cover damping spring 1551, and a first end cover adjusting nut 1554 that are arranged in sequence.
  • the end cover damping valve seat 1551 is fixed between the inner end of the end cover damping valve installation hole 1511 and the end cover oil through hole 1514.
  • the first end cover adjusting valve nut 1554 is threadedly connected with the outer end of the end cover damping valve installation hole 1511.
  • the end cover damping valve seat 1551 is provided with a first valve seat hole that penetrates the end cover damping valve seat 1551 in the axial direction.
  • the end cover damping valve core 1552 is provided with a central blind hole 1552a and a damping hole 1552b.
  • the central blind hole 1552a is provided on an end surface of the end cover damping valve core 1552 facing the end cover damping valve seat 1551 and communicates with the first valve seat hole.
  • the damping hole 1552b penetrates the end cover damping valve core 1552 in the radial direction and communicates with the central blind hole 1552a.
  • the aperture of the central blind hole 1552a is greater than 2.8 times the aperture of the orifice 1552b, ensuring that the amount of oil passing through the central blind hole 1552a is greater than the amount of oil passing through the orifice 1552b.
  • the outer end of the end cover damping valve core 1552 is provided with a cylindrical boss 1552c, and one end of the end cover damping spring 1551 is sleeved on the cylindrical boss 1552c.
  • the inner end of the first end cover adjusting valve nut 1554 is provided with a groove for accommodating the other end of the end cover damping spring 1551.
  • An end surface of the end cover damping valve core 1552 facing away from the end cover damping valve seat 1551 is sequentially provided with a valve core oil outlet step 1552d and a spring support step 1552e.
  • the cylindrical boss 1552c is provided on the spring support step 1552e.
  • the circumferential surface of the spring support step 1552e is provided with an oil outlet groove 1552f communicating with the damping hole 1552b.
  • the end cover unloading valve 156 includes an end cover unloading valve seat 1561, an end cover unloading valve core 1562, an end cover unloading spring 1563, and a second end cover valve adjusting nut 1564 arranged in sequence.
  • the end cover unloading valve seat 1561 is fixed between the inner end of the end cover unloading valve installation hole 1512 and the end cover oil through hole 1514.
  • the end cover unloading valve seat 1561 is provided with a second valve seat hole that penetrates the end cover unloading valve seat 1561 in the axial direction.
  • the end cover unloading valve core 1562 is adapted to form a surface seal with the end surface of the end cover unloading valve seat 1561 to cover the second valve seat hole.
  • the second end cover regulating valve nut 1564 is threadedly connected with the outer end of the end cover unloading valve installation hole 1512. Both the end cover unloading valve core 1562 and the second end cover adjusting valve nut 1564 are provided with grooves for accommodating the end cover unloading spring 1563.
  • the one-way valve mounting hole 1513 of the end cover body 151 is a stepped hole, the small end of the one-way valve mounting hole 1513 is connected to the end cover oil hole 1514, and the first one-way valve 152 is installed at the large end of the one-way valve mounting hole 1513 internal.
  • the first one-way valve 152 includes a first one-way valve core 1521, a damping spring 1522 and a one-way valve pre-tightening nut 1523 arranged in sequence.
  • the first one-way valve core 1521 contacts the stepped surface inside the one-way valve mounting hole 1513 to form a surface seal, and is suitable for covering the small end of the one-way valve mounting hole 1513.
  • the one-way valve pre-tightening nut 1523 is threadedly connected with the large end of the one-way valve mounting hole 1513.
  • the one-way valve pre-tightening nut 1523 is provided with a central through hole.
  • the first one-way valve core 1521 and the one-way valve pre-tightening nut 1523 are each provided with a groove for accommodating the damping spring 1522.
  • the first one-way valve 152 can ensure that the oil passes through the oil through hole, and after overcoming the pressure of the damping spring 1522 acting on the first one-way valve core 1521, it passes through the center of the one-way valve installation hole 1513 and the one-way valve pre-tightening nut 1523.
  • the hole realizes the one-way oil return, but the oil cannot realize the reverse flow.
  • the shock absorber vibrates, the high-pressure oil passes through the orifice 1552b to produce a first-level damping force.
  • the orifice 1552b alone is not enough to pass a larger flow of oil.
  • the high-pressure oil Under the action of, the end cover damping spool 1552 compresses the end cover damping spring 1551, and the end cover damping spool 1552 opens to generate a secondary damping force; when the speed is higher, under the action of the oil pressure, the end cover unloading spool 1562
  • the end cover unloading spring 1563 is compressed, and the shock absorber is unloaded.
  • damping valve installation hole and the unloading valve installation hole of the present invention both penetrate through the two end faces of the end cover body, and the valve can be adjusted directly without disassembling the shock absorber, and the adjustment is very convenient.
  • the damping valve core of the present invention is provided with a central blind hole and a damping hole.
  • the high-pressure oil generated when the shock absorber vibrates passes through the first valve seat hole and then generates a damping force through the damping hole of the damping valve core.
  • the high-pressure oil passes through the damping hole, it is directly sprayed to the inner wall of the damping valve installation hole, avoiding the situation that the high-pressure oil jet is directly sprayed into the oil inside the damping valve installation hole to generate noise.
  • the present invention can realize three-stage damping force adjustment, and is applicable to different types of shock absorbers.
  • the shock absorber vibrates, the high-pressure oil first passes through the orifice of the damping valve core to generate a first-stage damping force.
  • the damping spool compresses the damping spring to open the damping valve.
  • a secondary damping force is generated; when the vibration speed increases again, the oil pressure again As it rises, the unloading valve opens, and at this time a three-stage damping force is generated, thereby protecting the shock absorber from damage due to excessive internal pressure.
  • the one-way valve of the present invention can ensure that the oil passes through the oil through hole, after overcoming the pressure of the one-way valve spring acting on the one-way valve core, through the central through hole of the one-way valve installation hole and the one-way valve pre-tightening nut One-way oil return is realized, but the oil cannot flow in the opposite direction.
  • the adjustable damping valve for the hydraulic shock absorber of this embodiment includes an end cover damping valve installation hole 1511, an end cover oil hole 1514, an end cover damping valve seat 1551, an end cover damping valve core 1552, The first end cover adjusting nut 1554 and the end cover damping spring 1553.
  • the end cover damping valve installation hole 1511 is open at both ends, one end is the oil inlet end, and the other end is connected to the outside of the shock absorber.
  • the end cover oil hole 1514 communicates with the end cover damping valve installation hole 1511 from the side, and is close to the oil inlet end of the end cover damping valve installation hole 1511.
  • the end cover damping valve seat 1551 is fixed to the oil inlet end of the end cover damping valve installation hole 1511, such as H8/n7 interference fit into the oil inlet end of the end cover damping valve installation hole 1511.
  • the end cover damping valve seat 1551 is provided with a valve seat inner hole 1511a that penetrates the end cover damping valve seat 1551 in the axial direction.
  • the end cover damping valve core 1552 is in clearance fit with the end cover damping valve mounting hole 1511. If the H8/f7 clearance fit is adopted, one end of the end cover damping valve core 1552 is suitable for fitting with the end face of the end cover damping valve seat 1551 to form a surface seal. This structure enables the end cap damping valve core 1552 to slide in the valve cavity.
  • the end cover damping valve core 1552 is provided with a central blind hole 1552a and a damping hole 1552b.
  • the central blind hole 1552a is provided on the end surface of the valve core facing the end cap damping valve seat 1551 and communicates with the inner hole 1511a of the valve seat.
  • the damping hole 1552b penetrates the end cover damping valve core 1552 in the radial direction and communicates with the central blind hole 1552a.
  • the first end cover regulating valve nut 1554 is threadedly connected to the other end of the end cover damping valve installation hole 1511.
  • the end cover damping spring 1553 is compressed between the valve core and the regulating valve nut.
  • the diameter of the central blind hole 1552a on the end cap damping spool 1552 is set to be 2.8 times larger than the diameter of the orifice 1552b, and the orifice 1552b is 1mm in length. ⁇ 1.5mm thin-walled holes.
  • the aperture and the number of orifices of the orifice 1552b can be set according to the force value requirements.
  • the end of the end cover damping valve core 1552 facing away from the end cover damping valve seat 1551 is provided with a boss 1552c that is in interference fit with the end cover damping spring 1553.
  • the nut 1554 is provided with a groove 1554a for accommodating the spring.
  • a valve core oil outlet step 1552d and a valve core oil outlet step 1552e are sequentially provided on the end surface of the end cover damping valve core 1552 facing away from the valve seat.
  • the boss 1552c connected with the end cover damping spring 1553 is provided on the valve core oil outlet step 1552e.
  • An oil outlet square groove 1552f communicating with the orifice 1552b is provided on the outer peripheral surface of the oil outlet step 1552e of the valve core.
  • the working principle of the adjustable damping valve for the hydraulic shock absorber of this embodiment is: when the shock absorber vibrates, the high-pressure oil passes through the damping hole 1552b to produce a primary damping force. When the vibration speed increases, only the damping hole 1552b has It is not enough to pass a larger flow of oil. At this time, under the action of high-pressure oil, the end cover damping spool 1552 compresses the end cover damping spring 1553 and moves upward, and the end cover damping spool 1552 opens and generates a secondary damping force.
  • Step 1 Install the shock absorber on the performance test bench, and install two adjustable damping valves of this embodiment on the shock absorber, which are called No. 1 adjustable damping valve and No. 2 adjustable damping valve.
  • a shock absorber requires at least two damping forces corresponding to two speed points. Therefore, a shock absorber is equipped with at least two adjustable damping valves of this embodiment to adjust the damping force, so that the force value can meet the requirements.
  • Step two screw the first end cover adjusting nut 1554 of the two adjustable damping valves to the end, that is, to compress the end cover damping spring 1553 to the maximum, and adjust the damping hole 1552b by changing different end cover damping spools 1552. Size to match the damping force with the corresponding damping force at the low speed point, here called the first point damping force;
  • Step 3 When the damping force at the first point is satisfied, loosen the first end cap adjusting nut 1554 of the No. 1 adjustable damping valve, and observe the damping force through the performance test bench until it reaches the corresponding damping force at the second speed point. At this time, the first damping force cannot be changed. If it changes, the valve adjustment program enters an endless loop, and the stress value may not even be adjusted;
  • Step 4 When the force values at the first and second points are reached, loosen the first end cover adjusting nut 1554 of the No. 2 adjustable damping valve, and observe the damping force through the performance test bench until it reaches the third speed point. Damping force, the value of this point is called unloading force. At this time, the damping force corresponding to the first point and the second point cannot change. At this time, when the shock absorber speed increases again, in order to protect the shock absorber from damage, The damping force basically no longer increases, or the increase is small.
  • an embodiment of a rail vehicle is also shown here, which includes the hydraulic shock absorber in any of the foregoing embodiments or a combination thereof, and thus also has corresponding technical effects, so here No longer. And the improvement of the vibration reduction effect brought by the hydraulic shock absorber finally provides better running safety, stability and comfort for the rail vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种液压减振器,包括:流体储存缸(110);液压缸(120),其套设在流体储存缸(110)内;活塞杆组件(130),其穿过流体储存缸(110)与液压缸(120)设置,活塞杆组件(130)的第一端(130a)设置在流体储存缸(110)外,其第二端(130b)设置在液压缸(120)内,并受驱地沿着液压缸(120)的长度方向往复运动;其中,在活塞杆组件(130)的第二端(130b)设置活塞组件(140),其将液压缸(120)分成第一腔室(120c)及第二腔室(120d);活塞组件(140)包括第一阻尼阀组以及第二阻尼阀组,第一阻尼阀组受压力驱动来控制第一腔室(120c)至第二腔室(120d)的单向分级通断,且第二阻尼阀组受压力驱动来控制第二腔室(120d)至第一腔室(120c)的单向分级通断。该减震器带来了更好的减振效果。还涉及一种轨道车辆。

Description

液压减振器以及轨道车辆 技术领域
本申请涉及轨道交通领域,具体而言,涉及一种用于轨道车辆的液压减振器。
背景技术
铁路运输是现代交通运输中一种重要的方式。轨道车辆在轨道上运行时,由于受到各种因素的激扰,轨道车辆与轨道之间,轨道车辆的各个车厢之间必然会产生相互作用,通过相互作用会产生横向和纵向的不平衡力。另外在制造过程中,轨道难以达成绝对平直、绝对刚性,且轨道车辆的车轮也不难以达成理想的圆形。由于这种不平衡力与制造误差,轨道车辆在沿钢轨运行时会呈现复杂的运动规律,将会经受各个方向的振动,如横向振动、纵向振动,以及由发生蛇行运动而导致的振动。具体地,轨道车辆因遭受到轨道不平顺与车轮不够圆的激扰而振动,会出现横向上的周期性摆动,这种运动称为蛇行运动。剧烈的蛇行运动将会加剧车辆的晃动,这会对轨道车辆的运行安全性以及乘客的舒适性产生重要影响,严重时甚至造成轨道车辆脱轨。
作为轨道车辆悬挂系统下的重要组成部件,油压减振器可有效地抑制振动及降低耗散的振动能量,从而改善轨道车辆系统的动力学性能。然而,目前的油压减振器的阀系设计复杂、噪声较大,且其减振效果依然亟待提高,以期能够提高轨道车辆的蛇行失稳临界速度。
发明内容
本申请提供一种改进的液压减振器以及轨道车辆,以解决或至少缓解现有的液压减振器存在的减振效果欠缺的技术问题。
为实现本申请的至少一个目的,根据本申请的一个方面,提供一种液压减振器,其包括:流体储存缸;液压缸,其套设在所述流体储存缸内;活塞杆组件,其穿过所述流体储存缸与所述液压缸设置,所述活塞杆组件的第一端设置在所述流体储存缸外,其第二端设置在所述液压缸内,并受驱地沿着所述液压缸的长度方向往复运动;其中,在所述活塞杆组件的第二端设置活塞组件,其 将所述液压缸分成第一腔室及第二腔室;所述活塞组件包括第一阻尼阀组以及第二阻尼阀组,所述第一阻尼阀组受压力驱动来控制所述第一腔室至所述第二腔室的单向分级通断,且所述第二阻尼阀组受压力驱动来控制所述第二腔室至所述第一腔室的单向分级通断。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一阻尼阀组包括:第一卸荷阀,其具有实现单向卸荷的第一压力阈值;以及第一阻尼阀,其具有设置导通的第一阻尼孔的第一阻尼阀芯,所述第一阻尼阀芯具有被驱动至单向卸荷位置的第二压力阈值;其中,所述第二压力阈值大于所述第一压力阈值;和/或所述第二阻尼阀组包括:第二卸荷阀,其具有实现单向卸荷的第三压力阈值;以及第二阻尼阀,其具有设置导通的第二阻尼孔的第二阻尼阀芯,所述第二阻尼阀芯具有被驱动至单向卸荷位置的第四压力阈值;其中,所述第四压力阈值大于所述第三压力阈值。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一卸荷阀与所述第一阻尼阀沿周向间隔180°设置在所述活塞组件上;和/或所述第二卸荷阀与所述第二阻尼阀沿周向间隔180°设置在所述活塞组件上。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一卸荷阀、所述第一阻尼阀、所述第二卸荷阀及所述第二阻尼阀沿周向间隔90°反向设置在所述活塞组件上。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一阻尼孔设置在所述第一阻尼阀芯的侧壁上,并且沿径向导通所述第一阻尼阀芯的内侧与外侧;和/或所述第二阻尼孔设置在所述第二阻尼阀芯的侧壁上,并且沿径向导通所述第二阻尼阀芯的内侧与外侧。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一阻尼孔的孔径变化对应于所述第一阻尼阀的低速度点阻尼力的变化,且所述第一阻尼阀芯受到的偏置力大小对应于第一阻尼阀的高速度点阻尼力的变化;和/或所述第二阻尼孔的孔径变化对应于所述第二阻尼阀的低速度点阻尼力的变化,且所述第二阻尼阀芯受到的偏置力大小对应于第二阻尼阀的高速度点阻尼力的变化。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述液压减振器包括:液压缸体;端盖组件,其设置在所述液压缸体的第 一端;以及底阀组件,其设置在所述液压缸体的第二端;其中,所述活塞杆组件经由所述端盖组件插入所述液压缸体内。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖组件包括:端盖主体;第一单向阀,其沿径向设置在所述端盖主体内,并受压力驱动来控制所述液压缸体至所述流体储存缸的单向通断;以及导流通道,其具有径向区段以及轴向区段,并连通所述第一单向阀与所述液压缸体。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖组件包括端盖主体、端盖阻尼阀、端盖卸荷阀和第一单向阀;所述端盖主体的中心设有沿轴向贯穿端盖主体两端面的活塞杆安装孔;所述活塞杆组件与活塞杆安装孔密封滑动连接;所述端盖主体的内端与液压缸密封连接;所述端盖主体上还设有端盖阻尼阀安装孔、端盖卸荷阀安装孔和单向阀安装孔;所述端盖阻尼阀安装孔和端盖卸荷阀安装孔均贯穿端盖主体的两端面;所述单向阀安装孔为开口设置于端盖主体内端面上的盲孔;所述端盖主体的外周面上设有三个分别连通端盖阻尼阀安装孔、端盖卸荷阀安装孔和单向阀安装孔的端盖通油孔,以及分别由三个端盖通油孔延伸至端盖主体内端面的端盖通油槽;所述端盖阻尼阀、端盖卸荷阀和第一单向阀分别安装于端盖阻尼阀安装孔、端盖卸荷阀安装孔和单向阀安装孔内。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖组件的端盖阻尼阀包括依次设置的端盖阻尼阀座、端盖阻尼阀芯、端盖阻尼弹簧和第一端盖调阀螺母;所述端盖阻尼阀座固定在端盖阻尼阀安装孔的内端与端盖通油孔之间;所述端盖阻尼阀座上设有沿轴向贯穿端盖阻尼阀座的第三阀座孔;所述端盖阻尼阀芯上设有第二T型阀芯孔,该第二T型阀芯孔包括沿径向贯穿端盖阻尼阀芯的径向部分,以及与端盖阻尼阀座的第三阀座孔连通的轴向部分;所述第一端盖调阀螺母与端盖阻尼阀安装孔的外端螺纹连接。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖组件的端盖卸荷阀包括依次设置的端盖卸荷阀座、端盖卸荷阀芯、端盖卸荷弹簧和第二端盖调阀螺母;所述端盖卸荷阀座固定在端盖卸荷阀安装孔的内端与端盖通油孔之间;所述端盖卸荷阀座上设有沿轴向贯穿端盖卸荷阀座的第四阀座孔;所述端盖卸荷阀芯适于与端盖卸荷阀座的端面形成面密封, 进而盖住所述第四阀座孔;所述第二端盖调阀螺母与端盖卸荷阀安装孔的外端螺纹连接。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖主体的单向阀安装孔为台阶孔,单向阀安装孔的小端与端盖通油孔连通,第一单向阀安装于单向阀安装孔的大端内部;所述第一单向阀包括依次设置的第一单向阀芯、阻尼弹簧和单向阀预紧螺母;所述第一单向阀芯与单向阀安装孔内部的台阶面接触形成面密封,并适于盖住单向阀安装孔的小端端部;所述单向阀预紧螺母与单向阀安装孔的大端螺纹连接;所述单向阀预紧螺母设有中心通孔。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖主体的活塞杆安装孔内部安装有由导向环、斯特封、骨架油封组成的密封系统。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述骨架油封的安装沟槽内开有低压回油槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一阀座孔的孔径>中心盲孔的孔径>阻尼孔的孔径。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯的外端设有圆柱凸台,所述端盖阻尼弹簧的一端套设于圆柱凸台上;所述第一端盖调阀螺母的内端设有容纳端盖阻尼弹簧另一端的凹槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯背向端盖阻尼阀座的一端端面上依次设有阀芯出油台阶和弹簧支撑台阶;所述圆柱凸台设于弹簧支撑台阶上;所述弹簧支撑台阶的圆周面上设置有连通阻尼孔的出油方槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖主体上的端盖阻尼阀安装孔、端盖卸荷阀安装孔和单向阀安装孔均为由端盖的内端面至外端面方向逐渐远离活塞杆安装孔。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀包括:端盖阻尼阀安装孔,两端开口,一端为进油端,另一端连通减振器外部;端盖通油孔,从侧面连通端盖阻尼阀安装孔并靠近端盖阻尼阀安装孔的进油端;端盖阻尼阀座,固定于端盖阻尼阀安装孔的进油端; 所述端盖阻尼阀座上设有沿轴向贯穿端盖阻尼阀座的阀座内孔;端盖阻尼阀芯,与端盖阻尼阀安装孔间隙配合,端盖阻尼阀芯的一端适于与端盖阻尼阀座的端面贴合形成面密封;所述端盖阻尼阀芯上设有中心盲孔和阻尼孔;所述中心盲孔设于端盖阻尼阀芯面向端盖阻尼阀座的一端端面上,并与阀座内孔连通;所述阻尼孔沿径向贯穿端盖阻尼阀芯并与中心盲孔连通;第一端盖调阀螺母,螺纹连接于端盖阻尼阀安装孔的另一端;端盖阻尼弹簧,压缩于端盖阻尼阀芯与第一端盖调阀螺母之间。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯上的中心盲孔的孔径大于阻尼孔孔径的2.8倍。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述阻尼孔为长度为1mm~1.5mm的薄壁孔。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯与端盖阻尼阀座贴合形成的密封面的与端盖通油孔最低点齐平或高于端盖通油孔的最低点不超过1mm。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯背向端盖阻尼阀座的一端设有与端盖阻尼弹簧连接的凸台;所述第一端盖调阀螺母上设有容纳端盖阻尼弹簧的凹槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述端盖阻尼阀芯背向端盖阻尼阀座的一端端面上依次设有阀芯出油台阶和弹簧支撑台阶;与端盖阻尼弹簧连接的所述凸台设于弹簧支撑台阶上;所述弹簧支撑台阶的圆周面上设置有连通阻尼孔的出油方槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述底阀组件包括:底阀主体;第三阻尼阀,其沿所述底阀主体的轴线设置在所述底阀主体内,并受压力驱动来控制所述液压缸体至所述流体储存缸的阻尼通断;所述第三阻尼阀具有设置导通的第三阻尼孔的第三阻尼阀芯,所述第三阻尼阀芯具有被驱动至单向卸荷位置的第五压力阈值;以及第二单向阀组,其沿轴向环绕所述第三阻尼阀设置在所述底阀主体内,并受压力驱动来控制所述流体储存缸至所述液压缸体的单向通断。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第三阻尼孔设置在所述第三阻尼阀芯的侧壁上,并且沿轴向导通所述第三阻尼阀芯的内侧与外侧。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,还包括:防尘罩,其从所述活塞杆组件的第一端套设在所述流体储存缸上,并能够随着所述活塞杆组件发生往复运动。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,还包括:气囊组件,其套设在所述液压缸外。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述气囊组件包括:气囊,其用于分离空气与液压流体;支撑环,其设置在所述液压缸外;以及卡箍,其将所述气囊的第一端与第二端固定至所述支撑环。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述气囊组件包括:隔离框架和气囊;所述隔离框架呈圆环套形,隔离框架内设有若干均匀分布的腔室,每个腔室内均设有一个气囊;所述气囊由复合铝塑膜制成,该复合铝塑膜包括位于外层的PET或尼龙、位于中间层的铝箔和位于内层的聚丙烯。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述隔离框架内的腔室由设置于隔离框架的外壁与内壁之间的连接筋板分隔而来。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述隔离框架由普通碳素钢或者耐油耐高温塑料制成。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述隔离框架上设置有若干圆弧槽。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述流体储存缸包括:储存缸体;顶盖组件,其设置在所述储存缸体的第一端,并抵靠所述端盖组件;以及底座组件,其设置在所述储存缸体的第二端,并抵靠所述底阀组件。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述底座组件包括底座主体、第一底座阻尼阀、第二底座阻尼阀和堵头;所述流体储存缸密封固定在底座主体的内端;所述底座主体的内端中心设有底阀安装孔;所述底座主体上设有两个沿径向垂直布置的阻尼阀安装孔;所述底阀安装孔与两个阻尼阀安装孔的交汇处连通;所述底座主体上还设有两个底座通油孔,两个底座通油孔分别连通两个阻尼阀安装孔的一端;所述底座主体的 内端面上还设有从底座通油孔延伸至内端边缘的底座通油槽;底阀组件的一端密封连接在底阀安装孔内,另一端与液压缸密封连接;所述第一底座阻尼阀和第二底座阻尼阀分别设置于两个阻尼阀安装孔内连通底座通油孔的一端,两个阻尼阀安装孔的另一端均通过堵头密封。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第一底座阻尼阀包括依次设置的第一底座阻尼阀座、第一底座阻尼阀芯、第一底座阻尼弹簧和第一底座调阀螺母;所述第一底座阻尼阀座固定在一个阻尼阀安装孔内,并位于底阀安装孔与底座通油孔之间;所述第一底座阻尼阀座上设有沿轴向贯穿第一底座阻尼阀座的第一阀座孔;所述第一底座阻尼阀芯内设有第一T型阀芯孔,该第一T型阀芯孔包括沿径向贯穿第一底座阻尼阀芯的径向部分,以及与第一底座阻尼阀座的第一阀座孔连通的轴向部分;所述第一底座调阀螺母与阻尼阀安装孔螺纹连接。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,所述第二底座阻尼阀包括依次设置的第二底座阻尼阀座、第二底座阻尼阀芯、第二底座阻尼弹簧和第二底座调阀螺母;所述第二底座阻尼阀座固定在另一个阻尼阀安装孔内,并位于底阀安装孔与通油孔之间;所述第二底座阻尼阀座上设有沿轴向贯穿第二底座阻尼阀座的第二阀座孔;所述第二底座阻尼阀芯适于与第二底座阻尼阀座的端面形成面密封,进而盖住所述第二阀座孔;所述第二底座调阀螺母与阻尼阀安装孔螺纹连接。
除了上述特征中的一个或多个之外,或者作为替代方案,在另外的实施例中,还包括:第一波纹管,其第一端抵接所述活塞杆组件,且其第二端固定至所述顶盖组件;在所述活塞杆组件发生往复运动时,所述第一波纹管的第一端相对于所述活塞杆组件发生滑动。
为实现本申请的至少一个目的,根据本申请的另一个方面,提供一种轨道车辆,其包括:如前所述的液压减振器。
在根据本申请的技术方案中,通过在所述活塞杆组件的上设置的第一阻尼阀组以及第二阻尼阀组,来实现二者在受到压力驱动时,分别控制第一腔室与第二腔室之间的正向或反向的单向分级通断,使得在面临不同的压力时提供不同的对应导通程度,在低速或高速状况下均可实现较好的减振效果。此外,该液压减振器的结构简单,活塞阀系零件与底阀阀系零件采用系列化设计,制造与组装较容易,加工成本较低;且其中液压流体仅在活塞组件的两侧运动,有 效距离短,可压缩量小,表现为刚度较大;拉伸与压缩行程,油液经过不同阀系,可实现拉伸压缩阻尼力单独控制;具有可调节力值范围广,拉压动态对称性好等优点。此外,由于该液压减振器采用了双向循环的液压流路,其活塞杆组件的直径不再受到液压缸尺寸的约束,故活塞杆也可以设计更细,有利于液压减振器内部空间布置。
附图说明
参照附图来说明本申请的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本申请的保护范围构成限制。在附图中,除非另有说明,相同的附图标记用于指代相同的部件。其中:
图1是本申请的液压减振器的一个实施例的整体剖视图。
图2是本申请的液压减振器的活塞组件的一个实施例的剖视图。
图3是本申请的液压减振器的端盖组件的一个实施例的剖视图。
图4是本申请的液压减振器的底阀组件的一个实施例的剖视图。
图5是本申请的液压减振器的流体储存缸的一个实施例的剖视图。
图6是本申请的液压减振器的气囊组件的一个实施例的剖视图。
图7是本申请的液压减振器的活塞杆组件的一个实施例的剖视图。
图8是本申请的液压减振器的顶盖组件的一个实施例的剖视图。
图9是本申请的液压减振器的一个实施例的油路原理图。
图10是本申请的液压减振器的另一个实施例的整体剖视图。
图11是本申请的液压减振器的底阀组件的另一个实施例的剖视图。
图12是本申请的液压减振器的底座组件的另一个实施例的第一底座阻尼阀处的剖视图。
图13是本申请的液压减振器的第一底座阻尼阀芯的另一个实施例的剖面图。
图14是本申请的液压减振器的第一底座阻尼阀芯的另一个实施例的俯视图。
图15是本申请的液压减振器的底座组件的另一个实施例的第二底座阻尼阀处的剖视图。
图16是本申请的液压减振器的端盖组件的另一个实施例的结构示意图。
图17是图16中的端盖组件的A-A剖视图。
图18是图16中的端盖组件的后视图。
图19是图18中的端盖组件的B-B剖视图。
图20是本申请的液压减振器的活塞组件的一个实施例的剖视图。
图21是本申请的液压减振器的气囊组件的另一个实施例的剖视图。
图22是本申请的液压减振器的气囊组件的另一个实施例的俯视图。
图23是图18中的端盖组件的C-C剖视图。
图24是本申请的液压减振器的阻尼阀芯的又一个实施例的结构示意图。
图25是图24中的阻尼阀芯的D-D剖视图。
图26是本申请的阻尼阀的又一个实施例的结构示意图。
具体实施方式
容易理解,根据本申请的技术方案,在不变更本申请实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本申请的技术方案的示例性说明,而不应当视为本申请的全部或者视为对本申请技术方案的限定或限制。
在本说明书中提到的上、下、前、后、顶部、底部等方位用语是相对于各附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。
参见图1至图8,其示出了一种液压减振器的实施例。其中,图1示出了其在已装配状态下的整体结构的剖视图,而图2至图8则分别单独示出了部分零部件的结构剖视图。如下将结合这些附图来展开描述其结构。
该液压减振器100大体上包括:第二端连接至橡胶关节220的流体储存缸110、套设在流体储存缸110内的液压缸120以及活塞杆组件130。活塞杆组件130穿过流体储存缸110与液压缸120设置,其中,活塞杆131的第一端130a设置在流体储存缸110外,并通过上连接环132连接至橡胶关节210;其第二端130b设置在液压缸120内,并受驱地沿着液压缸120的长度方向往复运动,且在此过程中,液压缸120内的液压流体在压力变化的驱动下也随之发生流动,以实现对活塞杆组件130传递过来的运动进行减振与缓冲。具体而言,在活塞杆组件130的第二端130b设置活塞组件140,其将液压缸120分成第一腔室120c及第二腔室120d;活塞组件140包括第一阻尼阀组以及第二阻尼 阀组,第一阻尼阀组受压力驱动来控制第一腔室120c至第二腔室120d的单向分级通断,即控制液压流体根据受压程度来实现以不同程度的速度流过具有不同导通程度的第一阻尼阀组,例如,在拉伸状态经受低速度点对应的阻尼力时,提供第一阻尼阀组的较低程度导通,而在拉伸状态经受高速度点对应的阻尼力时,提供第一阻尼阀组的更大程度的导通;类似地,第二阻尼阀组受压力驱动来控制第二腔室120d至第一腔室120c的单向分级通断,即控制液压流体根据受压程度来实现以不同程度的速度流过具有不同导通程度的第二阻尼阀组,诸如,在压缩状态经受低速度点对应的阻尼力时,提供第二阻尼阀组的较低程度导通,而在压缩状态经受高速度点对应的阻尼力时,提供第二阻尼阀组的更大程度的导通。
根据本申请的液压减振器,通过在活塞杆组件的上设置的第一阻尼阀组以及第二阻尼阀组,来实现二者在受到压力驱动时,分别控制第一腔室与第二腔室之间的正向或反向的单向分级通断,使得在面临不同的压力时提供不同的对应导通程度,进而分别提供对应的卸荷效果,在低速或高速状况下均可实现较好的减振效果。此外,该液压减振器的结构简单,活塞阀系零件与底阀阀系零件采用系列化设计,制造与组装较容易,加工成本较低;且其中液压流体仅在活塞组件的两侧运动,有效距离短,可压缩量小,表现为刚度较大;在拉伸与压缩行程中,油液经过不同阀系,可实现拉伸压缩阻尼力单独控制,具有可调节力值范围广,拉压动态对称性好等优点。
如下将分别介绍该液压减振器的各个部分的构造及其连接关系。此外,出于进一步提高可靠性、实用性、经济性或出于其他方面的改进考虑,还可在额外增设部分零部件,如下同样做出示例性地说明。
参见图2,其示出了活塞组件的部分示例性配置。活塞组件140包括沿轴向贯穿的活塞杆安装孔143,以便于将活塞杆组件130的端部插设其中,使得二者能够关联地往复运动。此外,图中示出的第一阻尼阀组以及未示出的第二阻尼阀组沿周向环绕活塞杆安装孔143设置。
第一阻尼阀组包括位于左侧的第一卸荷阀141以及位于右侧的第一阻尼阀142。第一卸荷阀141包括靠近液压缸的第二腔室120d设置的第一卸荷阀芯1411以及靠近液压缸的第一腔室120c设置的阻尼弹簧1412。阻尼弹簧1412将第一卸荷阀芯1411抵靠至活塞组件140的基部上,当施加至第一卸荷阀芯1411的力达到实现单向卸荷的第一压力阈值时,其可以克服阻尼弹簧1412施 加的弹力而将第一卸荷阀芯1411推开至导通该卸荷阀。第一阻尼阀142包括靠近液压缸的第二腔室120d设置的第一阻尼阀芯1421以及靠近液压缸的第一腔室120c设置的阻尼弹簧1423,第一阻尼阀芯1421的侧壁上设置沿径向导通其内侧与外侧的第一阻尼孔1422,以便少量的液压流体可以经由该第一阻尼孔1422从第二腔室120d流至第一腔室120c,且该孔的径向布置使得阀内的油液喷射向阻尼弹簧的内壁,而避免油液经该孔直接喷射向油液,改善了噪声,减少油液紊流和气泡的产生。且阻尼弹簧1423将第一阻尼阀芯1421抵靠至活塞组件140的基部上,以便当施加至第一阻尼阀芯1421的力达到实现阻尼导通的第二压力阈值时,其可以克服阻尼弹簧1423施加的弹力而将第一阻尼阀芯1421推开至导通该阻尼阀。此时,通过设置阻尼孔的孔径、阻尼弹簧的刚度与预紧力,可以对这些阈值进行调节,使得第二压力阈值大于第一压力阈值,并使得第一压力阈值大于液压流体通过第一阻尼孔1422的阻尼力要求;也即第一卸荷阀141的导通压力要求低于第一阻尼阀芯1421的导通压力要求,并使得第一卸荷阀141的导通压力要求高于液压流体流过第一阻尼孔1422的压力要求,由此实现了根据液压流体的不同流量来调节导通程度,进而改善缓冲减振效果。具体地,低速度点阻尼力可通过控制第一阻尼孔1422的孔径来实现,中速度点的阻尼力可通过调节第一卸荷阀141的弹簧刚度和预紧力实现,高速度点的阻尼力可通过调节第一阻尼阀142弹簧刚度和预紧力实现,由此实现三段力值的精确控制。在此方案的教示下,若对该阻尼阀组的结构额外增设一组卸荷阀,则可实现四段阻尼力值的精确控制,由此该该减振器结构在后期也具有较好的拓展性。
此外,虽然图中未示出,第二阻尼阀组也可采用类似的布置,也即其包括:第二卸荷阀,其具有实现单向卸荷的第三压力阈值;以及第二阻尼阀,其具有设置导通的第二阻尼孔的第二阻尼阀芯,第二阻尼阀芯具有被驱动至单向卸荷位置的第四压力阈值;其中,第四压力阈值大于第三压力阈值。更具体地,其中的第二阻尼孔设置在第二阻尼阀芯的侧壁上,并且沿径向导通第二阻尼阀芯的内侧与外侧。且由此也将实现根据液压流体的不同流量来调节其沿着反向的导通程度,进而同样改善缓冲减振效果。
在此,本领域技术人员应当知道的是,文中述及的“第一”、“第二”等序号仅出自便于分辨与描述的目的而设置,而非构成对阀件特征的具体限制。在实际应用中,这些第一阀件与第二阀件等,即可以采用相似的结构,也可以 采用不同的结构,只要其能够实现文中述及的功能即可。
此外,在图1所示的布置中,第一卸荷阀141与第一阻尼阀142沿周向间隔180°设置在活塞组件140上,因此该剖面视图能够较好地显示出该第一阻尼阀组的结构。且由于在该图所示的布置中,第二卸荷阀与第二阻尼阀沿周向间隔180°设置在活塞组件140上,并与第一卸荷阀141及第一阻尼阀142分别间隔90°反向布置,故在图中未呈现其具体结构与布置,但结合上文的描述已可以对第二阻尼阀组具有清晰的认知,在此不再赘述。此种均匀间隔的布置使之更加易于加工生产,且双向的流量分配也更为均匀。
再者,对于前述阻尼阀而言,为适应不同的减振要求,可对其零部件做出适应性的调整设计。在调整过程中,可推知的是,第一阻尼孔1422的孔径变化对应于第一阻尼阀142的低速度点阻尼力的变化,且第一阻尼阀芯1421受到的偏置力大小对应于第一阻尼阀142的高速度点阻尼力的变化;且第二阻尼孔的孔径变化对应于第二阻尼阀的低速度点阻尼力的变化,且第二阻尼阀芯受到的偏置力大小对应于第二阻尼阀的高速度点阻尼力的变化。
转而参见图1,图中示出的液压缸120包括:液压缸体121;设置在液压缸体121的第一端的端盖组件150;以及设置在液压缸体121的第二端的底阀组件160。其中,还可对液压缸体121两端的两个组件分别做出导向阀门上的设计,从而进一步改善液压流体在液压减振器内的循环回路以及流动平稳性。
具体地,参见图3,图示的端盖组件150包括端盖主体151。端盖主体151包括沿轴向贯穿的活塞杆安装孔154,以便于将活塞杆组件130的端部插设其中,使得二者能够关联地往复运动。第一单向阀152沿径向设置在端盖主体151内,并受压力驱动来控制流体储存缸110至液压缸体121的单向通断。端盖主体151还开设有具有径向区段1531以及轴向区段1532的导流通道153,且连通第一单向阀152与液压缸体121。此种布置下,当液压流体从流体储存缸110流向液压缸120的第一腔室120c时,第一单向阀152的第一单向阀芯1521将在液压流体的推动下,克服阻尼弹簧1522的弹力发生移动,进入的液压流体将经由第三单向阀芯1521上的径向孔流入导流通道152中,并依次经由其径向区段1531与轴向区段1532进入液压缸120。
转而参见图4,图示的底阀组件160包括底阀主体161。底阀主体161具有沿其轴线设置在底阀主体161内的第三阻尼阀162,其受压力驱动来控制液压缸体121至流体储存缸110的阻尼通断。具体地,该第三阻尼阀162包括靠 近液压缸120的第二腔室120d设置的第三阻尼阀芯1621,以及靠近在液压缸120外侧而设置的阻尼弹簧1623。在第三阻尼阀芯1621的侧壁上设置第三阻尼孔1622,其沿轴向导通第三阻尼阀芯1621的内侧与外侧,以便少量的液压流体可以经由该第三阻尼孔1622从流体储存缸110流至液压缸体121。该阻尼弹簧1623将第三阻尼阀芯1621抵靠至底阀主体161上,以便当施加至第三阻尼阀芯1621的力达到实现阻尼导通的第五压力阈值时,其可以克服阻尼弹簧1623施加的弹力而将第三阻尼阀芯1621推开至导通该阻尼阀,由此实现了根据液压流体的不同流量来调节导通程度,进而改善缓冲减振效果。
底阀主体161上还设有第二单向阀组163,其沿轴向环绕第三阻尼阀162设置在底阀主体161内,并受压力驱动来控制流体储存缸110至液压缸体121的单向通断。该第二单向阀组163可配置成环绕第三阻尼阀162设置的多个单向阀孔,这些单向阀可具有相似或不同的结构,只要其能够实现对同一方向的单向卸荷即可。以图示的单向阀为例,其具有靠近液压缸120外侧而设置的第二单向阀片1631以及液压缸120的第二腔室120d设置的阻尼弹簧1632。阻尼弹簧1632将第二单向阀片1631抵靠至底阀主体161上,当施加至第二单向阀片1631的力达到实现单向卸荷的阈值时,其可以克服阻尼弹簧1632施加的弹力而将第二单向阀片1631推开至导通该单向阀。
再参见图8,图示的流体储存缸110包括:储存缸体111、顶盖组件112以及底座组件113。其中,顶盖组件112设置在储存缸体111的第一端111a,并抵靠端盖组件150;底座组件113设置在储存缸体111的第二端111b,并抵靠底阀组件160。由此可知,该液压减振器中的导通阀件的设置避开了流体储存缸110,无需占用顶盖组件112与底座组件113的空间,因而具有突出的经济效益。
综上可知,在前述实施例中的活塞组件140、端盖组件150及底阀组件160中各个单向阀及阻尼阀的配合下,实现了液压流体在系统内的稳定循环,进而为活塞杆组件传递的运动提供更好的缓冲减振效果。如下将结合图9来描述该液压减振器中的各个阀件在活塞杆组件的作用过程。
在活塞杆131受到外界驱动而被拉伸时,液压缸120的第一腔室120c内的液压流体被挤压,而第二腔室120d内的液压流体被膨胀。
此时,液压流体的流向如图9中的实线所示,一方面,受到挤压的液压流体将经由活塞组件140的第一阻尼阀组从第一腔室120c流向第二腔室120d。 在通常状态下,液压流体将经由第一阻尼阀组的第一阻尼阀142的第一阻尼孔1422以及第二阻尼阀组的第二阻尼阀144的第二阻尼孔实现从第一腔室120c朝向第二腔室120d的低速流动;若流体压力增大至第一压力阈值时,则液压流体将通过推动第一阻尼阀组的第一卸荷阀来实现从第一腔室120c朝向第二腔室120d的额外的中速流动;随后,若流体压力增大至第二压力阈值时,则液压流体将通过推动第一阻尼阀组的第一阻尼阀142的第一阻尼阀芯1421来实现从第一腔室120c朝向第二腔室120d的进一步额外的高速流动。
另一方面,流体储存缸110内的液压流体也将受到压力驱动而经由底阀组件160的第二单向阀组163流向第二腔室120d。此时,当存在压力时,液压流体将通过推动第二单向阀组163中的多个单向阀的阀孔来实现从流体储存缸110朝向第二腔室120d的流动。
在活塞杆131受到外界驱动而被压缩时,液压缸120的第二腔室120d内的液压流体被挤压,而第一腔室120c内的液压流体被膨胀。
此时,液压流体的流向如图9中的虚线所示,一方面,受到挤压的液压流体将经由活塞组件140的第二阻尼阀组从第二腔室120d流向第一腔室120c。在通常状态下,液压流体将经由第二阻尼阀组的第二阻尼阀144的第二阻尼孔以及第一阻尼阀组的第一阻尼阀142的第一阻尼孔1422实现从第二腔室120d朝向第一腔室120c的低速流动;若流体压力增大至第三压力阈值时,则液压流体将通过推动第二阻尼阀组的第二卸荷阀来实现从第二腔室120d朝向第一腔室120c的额外的中速流动;随后,若流体压力增大至第四压力阈值时,则液压流体将通过推动第二阻尼阀组的第二阻尼阀的第二阻尼阀芯来实现从第二腔室120d朝向第一腔室120c的进一步额外的高速流动。
另一方面,第二腔室120d内的液压流体也将受到压力驱动而依次流经底阀组件160的第三阻尼阀162、流体储存缸110,并经由端盖组件150的第三单向阀152流向第一腔室120c。
此时,在通常状态下,液压流体将经由第三阻尼阀162的第三阻尼孔1622来实现从第二腔室120d朝向流体储存缸110的流动;或者,若流体压力增大至大于前述压力阈值的第五压力阈值时,则液压流体将通过推动第三阻尼阀162的第三阻尼阀芯1621来实现从第二腔室120d朝向流体储存缸110的额外的超高速流动。无论在前述哪种情形下,进入流体储存缸110的液压流体将继续推动端盖组件150上的第一单向阀152的第一单向阀芯1521来实现朝向液 压缸120的第一腔室120c的流动。
本申请除了关注前述阀件布置上的改动外,同样关注到该液压减振器的其他部分的构造及其连接关系,如下同样做出示例性地说明。
参见图1,例如,该减振器还包括防尘罩170,其从活塞杆组件130的第一端130a套设在流体储存缸110上,并能够随着活塞杆组件130发生往复运动。考虑到液压减振器的应用环境存在较多灰尘等干扰因素,此种布置为液压减振器提供了良好的防尘效果。继续参见图1,又如,也可额外设置第一波纹管190,使其第一端190a抵接活塞杆组件130,且使其第二端190b固定至顶盖组件112。在活塞杆组件130发生往复运动时,第一波纹管的第一端190a相对于活塞杆组件130发生滑动。此种布置在活塞杆131与流体储存缸的滑动配合缝隙处提供了进一步的防尘效果。
转而参见图8,再如,该顶盖组件112的顶盖主体1121上用于插设活塞杆组件的轴向通孔内还额外设置橡胶圈112,其同样在活塞杆131与流体储存缸的滑动配合缝隙处提供了进一步的防尘效果。
另一方面,参见图6,还可为该减振器还设置气囊组件180。该置气囊组件180套设在液压缸120外,以用于分离空气与油液,防止油液中气泡的产生并延长油液使用寿命。作为一类具体的实现形式,该气囊组件180包括气囊181以及设置在液压缸120外支撑环182,通过卡箍183将气囊的第一端与第二端固定至支撑环,来实现气囊组件与液压缸120的固定。
转而参见图21至图22,其示出了气囊组件的另一个实施例。该实施例的液压减振器的气囊组件包括隔离框架184和气囊181。
隔离框架184呈圆环套形,由普通碳素钢或者耐油耐高温塑料制成。隔离框架184的外壁与内壁之间通过连接筋板分隔出八个均匀分布的半封闭的腔室,八个半封闭的腔室由上下两层,每层四个构成。每个腔室内均设有一个气囊181。
气囊181由复合铝塑膜制成,该复合铝塑膜包括位于外层的PET或尼龙、位于中间层的铝箔和位于内层的聚丙烯。气囊181气密性好,结构稳定,不会产生泄漏现象。
隔离框架184上设置有若干圆弧槽185,圆弧槽185具有消灭气泡的作用,能够避免气泡经过液压减振器的阻尼阀而发生减振器阻尼力抖动现象。
工作时,将气囊181放入隔离框架184中,将整套气囊组件装入减振器液 压缸120外壁与流体储存缸110内壁形成的储油腔中。当减振器压缩时,压力缸中油液进入储油缸,储油腔内油液增多,压力增大,气囊181压缩;当减振器拉伸时,储油缸内油液进入压力缸,储油腔内油液减少,压力降低,气囊181膨胀,从而可以实现拉压过程中的油气隔离。
另外,该气囊组件的隔离框架184可以根据需要设置更多或者更少的腔室,气囊181尺寸及充气量也可以根据需要设置不同规格。
上述技术方案具有以下的有益效果:
(1)本实用新型的隔离框架内设有若干均匀分布的腔室,每个腔室内均设有一个气囊,从而使气囊之间相互隔开,防止气囊之间重叠;使气囊均匀分布于储油缸内壁与压力缸外壁形成的腔室里面,实现油气隔离的同时,增加了气囊的使用寿命。
(2)本实用新型的气囊由复合铝塑膜制成,气密性好,结构稳定,不会产生泄漏现象。
(3)由于操作原因,安装过程中可能进入少量空气,本实用新型的隔离框架上设置有若干圆弧槽,具有消灭气泡的作用,能够避免气泡经过液压减振器的阻尼阀而发生减振器阻尼力抖动现象。
如下继续参考图10至图20来介绍根据本申请的液压减振器的另一个实施例。
见图10至图20,本实施例的液压减振器,包括底座组件113、流体储存缸110、液压缸120、端盖组件150、活塞组件140、活塞杆组件130和橡胶关节210、220。
流体储存缸110的一端密封固定于底座组件113的内端。液压缸120设置于流体储存缸110内,并且液压缸120的一端与底座组件113的内端密封连接。端盖组件150与液压缸120及流体储存缸110的另一端密封连接。活塞组件140设于液压缸120内,并与液压缸120的内壁密封滑动连接。活塞杆组件130贯穿端盖组件150,并与端盖组件150密封滑动连接。活塞杆组件130的内端与活塞组件140固定连接。活塞杆组件130的外端以及底座组件113的外端均设有与其固定连接的橡胶关节210、220。
见图11至图15,底座组件113包括底座主体114、底阀组件160、第一底座阻尼阀115、第二底座阻尼阀116和堵头117。流体储存缸110密封固定在底座主体114的内端,固定方式优选焊接。底座主体114的内端中心设有底 阀安装孔1141。底座主体114上设有两个沿径向垂直布置的阻尼阀安装孔1142。底阀安装孔1141与两个阻尼阀安装孔1142的交汇处连通。底座主体114上还设有两个底座通油孔1143,两个底座通油孔1143分别连通两个阻尼阀安装孔1142的一端。底座主体114的内端面上还设有从底座通油孔1143延伸至内端边缘的底座通油槽1144。底阀组件160的一端通过密封圈密封连接在底阀安装孔1141内,另一端与液压缸120通过密封圈密封连接。第一底座阻尼阀115和第二底座阻尼阀1-4分别设置于两个阻尼阀安装孔1142内连通底座通油孔1143的一端,两个阻尼阀安装孔1142的另一端均通过堵头117密封。
见图11,底阀组件160包括底阀主体161、第二单向阀片1631、偏转弹簧1632和预紧螺母1633。底阀主体161的内端设有环形凹槽1611,环形凹槽1611的中心为管状部1612,管状部1612向两端延伸。第二单向阀片1631设于阀体的环形凹槽1611内,并且套设于管状部1612上。预紧螺母1633与管状部1612的内端端部可拆卸地固定连接。偏转弹簧1632套设于管状部1612上,并且压缩在第二单向阀片1631与预紧螺母1633之间。管状部1612的外端密封固定连接在底座主体114的底阀安装孔1141内。环形凹槽1611的底面设有多个被第二单向阀片1631盖住的导油孔1613,导油孔1613沿轴向贯穿环形凹槽1611的底面。
见图12至图14,第一底座阻尼阀115包括依次设置的第一底座阻尼阀座1151、第一底座阻尼阀芯1152、第一底座阻尼弹簧1153和第一底座调阀螺母1154。第一底座阻尼阀座1151固定在一个阻尼阀安装孔1142内,并位于底阀安装孔1141与底座通油孔1143之间。第一底座阻尼阀座1151上设有沿轴向贯穿第一底座阻尼阀座1151的第一阀座孔。第一底座阻尼阀芯1152内设有第一T型阀芯孔1152a,该第一T型阀芯孔1152a包括沿径向贯穿第一底座阻尼阀芯1152的径向部分,以及与第一底座阻尼阀座1151的第一阀座孔连通的轴向部分。第一底座调阀螺母1154与阻尼阀安装孔1142螺纹连接。
第一阀座孔的直径>第一T型阀芯孔1152a轴向部分的直径>第一T型阀芯孔1152a径向部分的直径。第一T型阀芯孔1152a的轴向部分的直径大于径向部分的直径的2.8倍,保证通过轴向部分的油量大于通过径向部分的油量。
第一底座阻尼阀芯1152背向第一T型阀芯孔1152a的轴向部分的一端设有第一圆柱凸台1152b。第一底座阻尼弹簧1153的一端套设于第一圆柱凸台 1152b上。第一底座调阀螺母1154面向第一底座阻尼弹簧1153的一端设有容纳第一底座阻尼弹簧1153的凹槽。第一底座阻尼阀芯1152背向第一底座阻尼阀座1151的一端端面上依次设有阀芯出油台阶1152c和弹簧支撑台阶1152d;第一圆柱凸台1152b设于弹簧支撑台阶1152d上.弹簧支撑台阶1152d的圆周面上设置有连通第一T型阀芯孔1152a的径向部分的出油方槽1152e。
见图15,第二底座阻尼阀116包括依次设置的第二底座阻尼阀座1161、第二底座阻尼阀芯1162、第二底座阻尼弹簧1163和第二底座调阀螺母1164。第二底座阻尼阀座1161固定在另一个阻尼阀安装孔1142内,并位于底阀安装孔1141与通油孔1144之间。第二底座阻尼阀座1161上设有沿轴向贯穿第二底座阻尼阀座1161的第二阀座孔。第二底座阻尼阀芯1162适于与第二底座阻尼阀座1161的端面形成面密封,进而盖住第二阀座孔。第二底座调阀螺母1164与阻尼阀安装孔1142螺纹连接。
第二底座阻尼阀芯1162上设有第二圆柱凸台。第二底座阻尼弹簧1163的一端套设于第二圆柱凸台上。第二底座调阀螺母1164面向第二底座阻尼弹簧1163的一端设有容纳第二底座阻尼弹簧1163的凹槽。
底座组件113还包括底座阀盖118。两个阻尼阀安装孔1142安装了底座阻尼阀的一端端部均可拆卸地固定有底座阀盖118。
见图16,端盖组件150包括端盖主体151、端盖阻尼阀155、端盖卸荷阀156、第一单向阀152和顶盖组件112。端盖主体151的中心设有沿轴向贯穿端盖主体151两端面的活塞杆安装孔154。活塞杆组件130与活塞杆安装孔154密封滑动连接。端盖主体151的内端与液压缸120通过密封圈密封连接。顶盖组件112固定在端盖主体151的外周面上,并与流体储存缸110密封固定连接,优选螺纹连接。端盖主体151上还设有端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513。端盖阻尼阀安装孔1511和端盖卸荷阀安装孔1512均贯穿端盖主体151的两端面。单向阀安装孔1513为开口设置于端盖主体151内端面上的盲孔。端盖主体151的外周面上设有三个分别连通端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513的端盖通油孔1514,以及分别由三个端盖通油孔1514延伸至端盖主体151内端面的端盖通油槽1515。端盖阻尼阀155、端盖卸荷阀156和第一单向阀152分别安装于端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513内。
端盖主体151上的端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单 向阀安装孔1513均为由端盖主体151的内端面至外端面方向逐渐远离活塞杆安装孔154。
端盖组件150的端盖阻尼阀155包括依次设置的端盖阻尼阀座1551、端盖阻尼阀芯1552、端盖阻尼弹簧1553和第一端盖调阀螺母1554。端盖阻尼阀座1551固定在端盖阻尼阀安装孔1511的内端与端盖通油孔1514之间。端盖阻尼阀座1551上设有沿轴向贯穿端盖阻尼阀座1551的第三阀座孔。端盖阻尼阀芯1552的结构与第一底座阻尼阀芯1152的结构一致。端盖阻尼阀芯1552上设有第二T型阀芯孔,该第二T型阀芯孔包括沿径向贯穿端盖阻尼阀芯1552的径向部分,以及与端盖阻尼阀座1551的第三阀座孔连通的轴向部分。第一端盖调阀螺母1554与端盖阻尼阀安装孔1511的外端螺纹连接。
第三阀座孔的直径>第二T型阀芯孔的轴向部分的直径>第二T型阀芯孔的径向部分的直径。第二T型阀芯孔的轴向部分的直径大于径向部分的直径的2.8倍,保证通过轴向部分的油量大于通过径向部分的油量。
端盖阻尼阀芯1552的外端设有第三圆柱凸台,端盖阻尼弹簧1553的一端套设于第三圆柱凸台上。第一端盖调阀螺母1554的内端设有容纳端盖阻尼弹簧1553的凹槽。
端盖组件150的端盖卸荷阀156包括依次设置的端盖卸荷阀座1561、端盖卸荷阀芯1562、端盖卸荷弹簧1563和第二端盖调阀螺母1564。端盖卸荷阀座1561固定在端盖卸荷阀安装孔1512的内端与端盖通油孔1514之间。端盖卸荷阀座1561上设有沿轴向贯穿端盖卸荷阀座1561的第四阀座孔。端盖卸荷阀芯1562适于与端盖卸荷阀座1561的端面形成面密封,进而盖住第四阀座孔。第二端盖调阀螺母1564与端盖卸荷阀安装孔1512的外端螺纹连接。
端盖卸荷阀芯1562和第二端盖调阀螺母1564上均设有容纳端盖卸荷弹簧1563的凹槽。
端盖主体151的单向阀安装孔1513为台阶孔,单向阀安装孔1513的小端与端盖通油孔1514连通,第一单向阀152安装于单向阀安装孔1513的大端内部。第一单向阀152包括依次设置的第一单向阀芯1521、阻尼弹簧1522和单向阀预紧螺母1523。第一单向阀芯1521与单向阀安装孔1513内部的台阶面接触形成面密封,并适于盖住单向阀安装孔1513的小端端部。单向阀预紧螺母1523与单向阀安装孔1513的大端螺纹连接。单向阀预紧螺母1523设有中心通孔。第一单向阀芯1521和单向阀预紧螺母1523上均设有容纳阻尼弹簧 1522的凹槽。
通过调整单向阀预紧螺母1523的旋入深度,实现阻尼弹簧1522的不同压缩长度,进而调整第一单向阀芯1521的回油开度。第一单向阀152可保证油液经通油孔,克服阻尼弹簧1522作用于第一单向阀芯1521的压力后,经单向阀安装孔1513、单向阀预紧螺母1523的中心通孔实现单向回油,但油液无法实现反向流动。
活塞组件140包括活塞5-1和第一卸荷阀141。活塞145的中心设有活塞杆安装孔143。活塞145上还设有围绕活塞杆安装孔143设置的至少两个卸荷阀安装孔146,每个卸荷阀安装孔146内均安装有一个第一卸荷阀141,并且相邻两个卸荷阀安装孔146内的第一卸荷阀141的安装方向相反。第一卸荷阀141包括依次设置的第一卸荷阀座1413、卸荷阀芯1411、阻尼弹簧1412和活塞调阀螺母1414。第一卸荷阀座1413与卸荷阀安装孔146的一端固定连接,活塞调阀螺母1414与卸荷阀安装孔146的另一端螺纹连接。第一卸荷阀座1413上设有沿轴向贯穿第一卸荷阀座1413的第五阀座孔。第一卸荷阀芯1411适于盖住第五阀座孔。
为了使阻尼弹簧1412安装更加稳定,第一卸荷阀芯1411上设有第四圆柱凸台,阻尼弹簧1412的一端套设于第四圆柱凸台上,活塞调阀螺母1414上设有容纳阻尼弹簧1412的凹槽。
安装时,先将底阀组件160安装在液压缸120上,然后将液压缸120与底阀组件160一起装入流体储存缸110内部,将底阀组件160装入底阀安装孔1141内。然后将端盖组件150与液压缸120连接,并将顶盖组件112与流体储存缸110通过螺纹连接紧密。
本实施例的液压减振器,还包括防尘罩170。防尘罩170固定于活塞杆组件130的外端部,并且其边缘沿轴向向活塞杆组件130的内端部方向延伸。
本实施例的液压减振器的减振过程是:压缩循环中,当车辆发生晃动带动活塞组件140向右运动速度较小时,液压缸120右腔内油液通过底阀组件160的管状部1612、、第一底座阻尼阀座1151的第一阀座孔、第一底座阻尼阀芯1152上的第一T型阀芯孔1152a、底座通油孔1143流回流体储存缸110,此时第一底座阻尼阀芯1152在第一底座阻尼弹簧1153预紧力的作用下并不会产生移动,只有小孔节流产生阻尼力,由于第一T型阀芯孔1152a的径向部沿径向设置,因此,第一T型阀芯孔1152a喷射出的油液直接被阻尼阀安装孔1142 的内壁挡住,因此会使噪音大幅下降。
当晃动速度增大到一定程度时,流经第一底座阻尼阀芯1152的流量增大,油液压力压缩第一底座阻尼弹簧1153致使第一底座阻尼阀芯1152移动打开,此时阻尼力主要来源于第一底座阻尼阀芯1152开口节流产生阻尼力,当晃动速度再次增大时,设置于底座主体114上的第二底座阻尼阀芯1162开启,此时阻尼力主要来源于两阀的开口节流。
当晃动速度继续增大时,设置于活塞145上第一卸荷阀芯1411靠右设置的第一卸荷阀141的第一卸荷阀芯1411打开泄压,以免所述减振器由于压力过大而破坏;与此同时,液压缸120左腔内由于产生负压,流体储存缸110内的油液在压力作用下,打开第一单向阀芯1521,流入液压缸120的左腔。
拉伸循环中,当车辆发生晃动带动活塞组件140向左运动时,当达到第一个速度等级时,液压缸120左腔内油液通过端盖阻尼阀芯1552的第二T型阀芯孔流入流体储存缸110,此时由于流经端盖阻尼阀芯1552的流量相对较小,端盖阻尼阀芯1552在端盖阻尼弹簧1553的预紧力的作用下并不会产生移动,只有小孔节流产生阻尼力。
当晃动速度达到第二个速度等级时,流经端盖阻尼阀芯1552的流量较大,油液压力压缩端盖阻尼弹簧1553致使端盖阻尼阀芯1552移动打开,此时阻尼力主要来源于端盖阻尼阀芯1552开口节流产生阻尼力。
当晃动速度更大时,流量增大,致使端盖卸荷阀芯1562打开,此时阻尼力主要来源于两阀的开口节流。
当晃动速度继续增大时,设置于活塞145上的第一卸荷阀芯1411靠左设置的第一卸荷阀141的第一卸荷阀芯1411打开泄压,以免所述减振器由于压力过大而破坏;与此同时,液压缸120右腔内由于产生负压,流体储存缸110内的油液在压力作用下,打开第二单向阀片1631流入液压缸120的右腔。
前述技术方案具有以下的有益效果:
(1)本申请的底座组件和端盖组件的上均设有可从外部调节阻尼力大小的阻尼阀,调节非常方便,无需拆解整个减振器,从而可以大大提高阀系阻尼力的调节效率。
(2)本申请的第一底座阻尼阀芯上设置第一T型阀芯孔,端盖阻尼阀芯上设置第二T型阀芯孔,能够使阻尼力值更加平稳,并且由于T型阀芯孔具有沿径向贯穿的径向部分,因此能够改变油液喷向,有效降低了喷油噪音。
(3)本申请的底座组件和端盖组件均可以实现三级阻尼力调节,可适用于不同型号减振器,当减振器发生振动时,高压油液首先经过第一底座/端盖阻尼阀芯的T型阀芯孔,产生一级阻尼力,当振动速度加快,油液压力进一步升高时,在油液压力的作用下,第一底座/端盖阻尼阀芯压缩第一底座/端盖阻尼弹簧,使第一底座/端盖阻尼阀开启,此时产生二级阻尼力;当振动速度再次增大,油液压力再次升高,第二底座/端盖阻尼阀开启,此时产生三级阻尼力,从而保护减振器不会由于内部压力太大而损坏。
(4)本申请的端盖组件的端盖单向阀可保证油液经通油孔,克服单向阀弹簧作用于单向阀芯的压力后,经单向阀安装孔、单向阀预紧螺母的中心通孔实现单向回油,但油液无法实现反向流动。
如下继续参考图16至图19以及图23至图25来介绍根据本申请的液压减振器的端盖组件的另一个实施例。
参见图16至图19,本实施例的液压减振器用端盖,包括端盖主体151、端盖阻尼阀155、端盖卸荷阀156和第一单向阀152。
端盖主体151的中心设有沿轴向贯穿端盖主体151两端面的活塞杆安装孔154。端盖主体151上还设有端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513。端盖阻尼阀安装孔1511和端盖卸荷阀安装孔1512均贯穿端盖主体151的两端面。单向阀安装孔1513为开口设置于端盖主体151内端面上的盲孔。端盖主体151的外周面上设有分别与端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513对应连通的端盖通油孔1514,以及由端盖通油孔1514延伸至端盖主体151内端面的端盖通油槽1515。端盖阻尼阀安装孔1511、端盖卸荷阀安装孔1512和单向阀安装孔1513均为由端盖的内端面至外端面方向逐渐远离活塞杆安装孔154。端盖阻尼阀155安装于端盖阻尼阀安装孔1511内,端盖卸荷阀156安装于端盖卸荷阀安装孔1512内,第一单向阀152安装于单向阀安装孔1513内。
端盖主体151的活塞杆安装孔154内部安装有由导向环、斯特封、骨架油封组成的密封系统。见图23骨架油封的安装沟槽内开有低压回油槽1516,保证密封低压区内的油液不外漏,保证密封腔体中油液的顺利回流。
端盖阻尼阀155包括依次设置的端盖阻尼阀座1551、端盖阻尼阀芯1552、端盖阻尼弹簧1551和第一端盖调阀螺母1554。端盖阻尼阀座1551固定在端盖阻尼阀安装孔1511的内端与端盖通油孔1514之间。第一端盖调阀螺母1554 与端盖阻尼阀安装孔1511的外端螺纹连接。端盖阻尼阀座1551上设有沿轴向贯穿端盖阻尼阀座1551的第一阀座孔。
见图24和图25,端盖阻尼阀芯1552上设有中心盲孔1552a和阻尼孔1552b。中心盲孔1552a设于端盖阻尼阀芯1552面向端盖阻尼阀座1551的一端端面上,并与第一阀座孔连通。阻尼孔1552b沿径向贯穿端盖阻尼阀芯1552并与中心盲孔1552a连通。第一阀座孔的孔径>中心盲孔1552a的孔径>阻尼孔1552b的孔径。中心盲孔1552a的孔径大于阻尼孔1552b孔径的2.8倍,保证通过中心盲孔1552a的油量大于通过阻尼孔1552b的油量。
端盖阻尼阀芯1552的外端设有圆柱凸台1552c,端盖阻尼弹簧1551的一端套设于圆柱凸台1552c上。第一端盖调阀螺母1554的内端设有容纳端盖阻尼弹簧1551另一端的凹槽。端盖阻尼阀芯1552背向端盖阻尼阀座1551的一端端面上依次设有阀芯出油台阶1552d和弹簧支撑台阶1552e。圆柱凸台1552c设于弹簧支撑台阶1552e上。弹簧支撑台阶1552e的圆周面上设置有连通阻尼孔1552b的出油方槽1552f。
端盖卸荷阀156包括依次设置的端盖卸荷阀座1561、端盖卸荷阀芯1562、端盖卸荷弹簧1563和第二端盖调阀螺母1564。端盖卸荷阀座1561固定在端盖卸荷阀安装孔1512的内端与端盖通油孔1514之间。端盖卸荷阀座1561上设有沿轴向贯穿端盖卸荷阀座1561的第二阀座孔。端盖卸荷阀芯1562适于与端盖卸荷阀座1561的端面形成面密封,进而盖住第二阀座孔。第二端盖调阀螺母1564与端盖卸荷阀安装孔1512的外端螺纹连接。端盖卸荷阀芯1562和第二端盖调阀螺母1564上均设有容纳端盖卸荷弹簧1563的凹槽。
端盖主体151的单向阀安装孔1513为台阶孔,单向阀安装孔1513的小端与端盖通油孔1514连通,第一单向阀152安装于单向阀安装孔1513的大端内部。第一单向阀152包括依次设置的第一单向阀芯1521、阻尼弹簧1522和单向阀预紧螺母1523。第一单向阀芯1521与单向阀安装孔1513内部的台阶面接触形成面密封,并适于盖住单向阀安装孔1513的小端端部。单向阀预紧螺母1523与单向阀安装孔1513的大端螺纹连接。单向阀预紧螺母1523设有中心通孔。第一单向阀芯1521和单向阀预紧螺母1523上均设有容纳阻尼弹簧1522的凹槽。
通过调整单向阀预紧螺母1523的旋入深度,实现阻尼弹簧1522的不同压缩长度,进而调整第一单向阀芯1521的回油开度。第一单向阀152可保证油 液经通油孔,克服阻尼弹簧1522作用于第一单向阀芯1521的压力后,经单向阀安装孔1513、单向阀预紧螺母1523的中心通孔实现单向回油,但油液无法实现反向流动。
当减振器产生振动时,高压油液经过阻尼孔1552b产生一级阻尼力,当振动速度加快时,仅凭阻尼孔1552b已不足以通过更大流量的油液,此时,在高压油液的作用下,端盖阻尼阀芯1552压缩端盖阻尼弹簧1551,端盖阻尼阀芯1552开启产生二级阻尼力;当速度更高时,在油液压力作用下,端盖卸荷阀芯1562压缩端盖卸荷弹簧1563,减振器卸荷。调阀时,只需拧紧或拧松第一端盖调阀螺母1554来控制端盖阻尼弹簧1551的压缩长度,从而控制端盖阻尼阀芯1552的开启压力。
上述技术方案具有以下的有益效果:
(1)本发明的阻尼阀安装孔和卸荷阀安装孔均贯穿端盖本体的两端面,可以直接调阀,无需拆解减振器,调节非常方便。
(2)本发明的阻尼阀芯上设有中心盲孔和阻尼孔,当减振器发生振动时产生的高压油液经过第一阀座孔后通过阻尼阀芯的阻尼孔产生阻尼力,此时高压油液经过阻尼孔后直接喷向阻尼阀安装孔的内壁,避免了高压油液射流直接喷向阻尼阀安装孔内部油液中产生噪音的情况。
(3)本发明的阻尼阀芯背向阻尼阀座的一端端面上依次设有阀芯出油台阶和弹簧支撑台阶,弹簧支撑台阶的圆周面上设置有连通阻尼孔的出油方槽,这种结构使得油液不需要流经阻尼弹簧的簧丝缝隙,因此不会产生二次阻尼及压力失稳的状况,可以提高调阀效率。
(4)本发明可以实现三级阻尼力调节,可适用于不同型号减振器,当减振器发生振动时,高压油液首先经过阻尼阀芯的阻尼孔,产生一级阻尼力,当振动速度加快,油液压力进一步升高时,在油液压力的作用下,阻尼阀芯压缩阻尼弹簧,使阻尼阀开启,此时产生二级阻尼力;当振动速度再次增大,油液压力再次升高,卸荷阀开启,此时产生三级阻尼力,从而保护减振器不会由于内部压力太大而损坏。
(5)本发明的单向阀可保证油液经通油孔,克服单向阀弹簧作用于单向阀芯的压力后,经单向阀安装孔、单向阀预紧螺母的中心通孔实现单向回油,但油液无法实现反向流动。
如下继续参考图24至图26来介绍根据本申请的液压减振器的可调阻尼阀 的另一个实施例。
参见图24至图26,本实施例的液压减振器用可调阻尼阀,包括端盖阻尼阀安装孔1511、端盖通油孔1514、端盖阻尼阀座1551、端盖阻尼阀芯1552、第一端盖调阀螺母1554和端盖阻尼弹簧1553。
端盖阻尼阀安装孔1511两端开口,一端为进油端,另一端连通减振器外部。端盖通油孔1514从侧面连通端盖阻尼阀安装孔1511,并靠近端盖阻尼阀安装孔1511的进油端。端盖阻尼阀座1551固定于端盖阻尼阀安装孔1511的进油端,如采用H8/n7过盈装入端盖阻尼阀安装孔1511的进油端。端盖阻尼阀座1551上设有沿轴向贯穿端盖阻尼阀座1551的阀座内孔1511a。端盖阻尼阀芯1552与端盖阻尼阀安装孔1511间隙配合,如采用H8/f7间隙配合,端盖阻尼阀芯1552的一端适于与端盖阻尼阀座1551的端面贴合形成面密封,这种结构使得端盖阻尼阀芯1552能在阀腔内滑动。端盖阻尼阀芯1552上设有中心盲孔1552a和阻尼孔1552b。中心盲孔1552a设于阀芯面向端盖阻尼阀座1551的一端端面上,并与阀座内孔1511a连通。阻尼孔1552b沿径向贯穿端盖阻尼阀芯1552并与中心盲孔1552a连通。第一端盖调阀螺母1554螺纹连接于端盖阻尼阀安装孔1511的另一端。端盖阻尼弹簧1553压缩于阀芯与调阀螺母之间。
阀座内孔1511a的孔径>中心盲孔1552a的孔径>阻尼孔1552b的孔径。为保证通过中心盲孔1552a的油量大于通过阻尼孔1552b的油量,设置端盖阻尼阀芯1552上的中心盲孔1552a的孔径大于阻尼孔1552b孔径的2.8倍,阻尼孔1552b为长度为1mm~1.5mm的薄壁孔。阻尼孔1552b的孔径及孔数可根据力值需求设定。
当端盖阻尼阀芯1552与端盖阻尼阀座1551的端面贴合形成面密封时,为了防止卡阀,该密封面所在位置与端盖通油孔1514最低点齐平或略高于端盖通油孔1514的最低点最大超出高度不能超过1mm
为使端盖阻尼弹簧1553安装的更加稳定,端盖阻尼阀芯1552背向端盖阻尼阀座1551的一端设有与端盖阻尼弹簧1553过盈配合的凸台1552c,第一端盖调阀螺母1554上设有容纳弹簧的凹槽1554a。装配时,可以先将端盖阻尼阀芯1552与端盖阻尼弹簧1553安装在一起,再放入凹槽1554a,提高安装效率
端盖阻尼阀芯1552背向阀座的一端端面上依次设有阀芯出油台阶1552d和阀芯出油台阶1552e。与端盖阻尼弹簧1553连接的凸台1552c设于阀芯出油台阶1552e上。阀芯出油台阶1552e的外周面上设置有连通阻尼孔1552b的出 油方槽1552f。
本实施例的液压减振器用可调阻尼阀的工作原理是:当减振器产生振动时,高压油液经过阻尼孔1552b产生一级阻尼力,当振动速度加快时,仅凭阻尼孔1552b已不足以通过更大流量的油液,此时,在高压油液的作用下,端盖阻尼阀芯1552压缩端盖阻尼弹簧1553向上移动,端盖阻尼阀芯1552开启并产生二级阻尼力。调阀时,只需从外部拧紧或拧松第一端盖调阀螺母1554来控制端盖阻尼弹簧1553的压缩长度,即可控制端盖阻尼阀芯1552的开启压力。
本实施例的液压减振器用可调阻尼阀的调节方式是:
步骤一,将减振器安装在性能试验台上,在减振器上安装两个本实施例的可调阻尼阀,分别称之为1号可调阻尼阀和2号可调阻尼阀减振器一般至少要求两个速度点对应的阻尼力,因此一支减振器相应的至少安装两个本实施例的可调阻尼阀来调阻尼力,致使力值能达到要求。
步骤二,将两个可调阻尼阀的第一端盖调阀螺母1554拧到底也就是将端盖阻尼弹簧1553最大限度的压缩,通过更换不同的端盖阻尼阀芯1552来调整阻尼孔1552b的大小,使阻尼力与低速度点对应的阻尼力相匹配,这里称为第一点阻尼力;
步骤三,在满足第一点阻尼力时,拧松1号可调阻尼阀的第一端盖调阀螺母1554,通过性能试验台观察阻尼力的大小,直至达到第二速度点对应阻尼力,此时第一阻尼力不能发生变化,如果发生变化,调阀程序进入死循环,甚至有可能调不出对应力值;
步骤四,当第一点和第二点力值达到后拧松2号可调阻尼阀的第一端盖调阀螺母1554,通过性能试验台观察阻尼力的大小,直至达到第三速度点对应阻尼力,该点力值称为卸荷力,此时第一点与第二点对应阻尼力不能发生变化,此时当减振器速度再增大时,为了保护减振器不被损坏,阻尼力基本不再升高,或者升高幅度微小。
此外,虽然图中未示出,在此还示出了一种轨道车辆的实施例,其包括前述任意实施例或其组合中的液压减振器,因而也具有相应的技术效果,故在此不再赘述。且液压减振器所带来的减振效果的改善,最后为轨道车辆提供了更好的运行安全性、平稳性与舒适性。
以上例子主要说明了本申请的液压减振器以及轨道车辆。尽管只对其中一些本申请的实施方式进行了描述,但是本领域普通技术人员应当了解,本申请 可以在不偏离其主旨与范围内以许多其它的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本申请精神及范围的情况下,本申请可能涵盖各种的修改与替换。

Claims (39)

  1. 一种液压减振器(100),其特征在于,包括:
    流体储存缸(110);
    液压缸(120),其套设在所述流体储存缸(110)内;
    活塞杆组件(130),其穿过所述流体储存缸(110)与所述液压缸(120)设置,所述活塞杆组件(130)的第一端(130a)设置在所述流体储存缸(110)外,其第二端(130b)设置在所述液压缸(120)内,并受驱地沿着所述液压缸(120)的长度方向往复运动;
    其中,在所述活塞杆组件(130)的第二端(130b)设置活塞组件(140),其将所述液压缸(120)分成第一腔室(120c)及第二腔室(120d);所述活塞组件(140)包括第一阻尼阀组以及第二阻尼阀组,所述第一阻尼阀组受压力驱动来控制所述第一腔室(120c)至所述第二腔室(120d)的单向分级通断,且所述第二阻尼阀组受压力驱动来控制所述第二腔室(120d)至所述第一腔室(120c)的单向分级通断。
  2. 根据权利要求1所述的液压减振器(100),其特征在于,
    所述第一阻尼阀组包括:
    第一卸荷阀(141),其具有实现单向卸荷的第一压力阈值;以及
    第一阻尼阀(142),其具有设置导通的第一阻尼孔(1422)的第一阻尼阀芯(1421),所述第一阻尼阀芯(1421)具有被驱动至单向卸荷位置的第二压力阈值;
    其中,所述第二压力阈值大于所述第一压力阈值;和/或
    所述第二阻尼阀组包括:
    第二卸荷阀,其具有实现单向卸荷的第三压力阈值;以及
    第二阻尼阀,其具有设置导通的第二阻尼孔的第二阻尼阀芯,所述第二阻尼阀芯具有被驱动至单向卸荷位置的第四压力阈值;
    其中,所述第四压力阈值大于所述第三压力阈值。
  3. 根据权利要求2所述的液压减振器(100),其特征在于,
    所述第一卸荷阀(141)与所述第一阻尼阀(142)沿周向间隔180°设置在所述活塞组件(140)上;和/或
    所述第二卸荷阀与所述第二阻尼阀沿周向间隔180°设置在所述活塞组件(140)上。
  4. 根据权利要求3所述的液压减振器(100),其特征在于,所述第一卸荷阀(141)、所述第一阻尼阀(142)、所述第二卸荷阀及所述第二阻尼阀沿周向间隔90°反向设置在所述活塞组件(140)上。
  5. 根据权利要求2所述的液压减振器(100),其特征在于,
    所述第一阻尼孔(1422)设置在所述第一阻尼阀芯(1421)的侧壁上,并且沿径向导通所述第一阻尼阀芯(1421)的内侧与外侧;和/或
    所述第二阻尼孔设置在所述第二阻尼阀芯的侧壁上,并且沿径向导通所述第二阻尼阀芯的内侧与外侧。
  6. 根据权利要求2所述的液压减振器(100),其特征在于,
    所述第一阻尼孔(1422)的孔径变化对应于所述第一阻尼阀(142)的低速度点阻尼力的变化,且所述第一阻尼阀芯(1421)受到的偏置力大小对应于第一阻尼阀(142)的高速度点阻尼力的变化;和/或
    所述第二阻尼孔的孔径变化对应于所述第二阻尼阀的低速度点阻尼力的变化,且所述第二阻尼阀芯受到的偏置力大小对应于第二阻尼阀的高速度点阻尼力的变化。
  7. 根据权利要求1至6任意一项所述的液压减振器(100),其特征在于,所述液压缸(120)包括:
    液压缸体(121);
    端盖组件(150),其设置在所述液压缸体(121)的第一端;以及
    底阀组件(160),其设置在所述液压缸体(121)的第二端;
    其中,所述活塞杆组件(130)经由所述端盖组件(150)插入所述液压缸体(121)内。
  8. 根据权利要求7所述的液压减振器(100),其特征在于,所述端盖组件(150)包括:
    端盖主体(151);
    第一单向阀(152),其沿径向设置在所述端盖主体(151)内,并受压力驱动来控制所述流体储存缸(110)至所述液压缸体(121)的单向通断;以及
    导流通道(153),其具有径向区段(1531)以及轴向区段(1532), 并连通所述第一单向阀(152)与所述液压缸体(121)。
  9. 根据权利要求7所述的液压减振器(100),其特征在于,所述端盖组件(150)包括端盖主体(151)、端盖阻尼阀(155)、端盖卸荷阀(156)和第一单向阀(152);所述端盖主体(151)的中心设有沿轴向贯穿端盖主体(151)两端面的活塞杆安装孔(154);所述活塞杆组件(130)与活塞杆安装孔(154)密封滑动连接;所述端盖主体(151)的内端与液压缸(120)密封连接;所述端盖主体(151)上还设有端盖阻尼阀安装孔(1511)、端盖卸荷阀安装孔(1512)和单向阀安装孔(1513);所述端盖阻尼阀安装孔(1511)和端盖卸荷阀安装孔(1512)均贯穿端盖主体(151)的两端面;所述单向阀安装孔(1513)为开口设置于端盖主体(151)内端面上的盲孔;所述端盖主体(151)的外周面上设有三个分别连通端盖阻尼阀安装孔(1511)、端盖卸荷阀安装孔(1512)和单向阀安装孔(1513)的端盖通油孔(1514),以及分别由三个端盖通油孔(1514)延伸至端盖主体(151)内端面的端盖通油槽(1515);所述端盖阻尼阀(155)、端盖卸荷阀(156)和第一单向阀(152)分别安装于端盖阻尼阀安装孔(1511)、端盖卸荷阀安装孔(1512)和单向阀安装孔(1513)内。
  10. 根据权利要求9所述的液压减振器(100),其特征在于,所述端盖组件(150)的端盖阻尼阀(155)包括依次设置的端盖阻尼阀座(1551)、端盖阻尼阀芯(1552)、端盖阻尼弹簧(1553)和第一端盖调阀螺母(1554);所述端盖阻尼阀座(1551)固定在端盖阻尼阀安装孔(1511)的内端与端盖通油孔(1514)之间;所述端盖阻尼阀座(1551)上设有沿轴向贯穿端盖阻尼阀座(1551)的第三阀座孔;所述端盖阻尼阀芯(1552)上设有第二T型阀芯孔,该第二T型阀芯孔包括沿径向贯穿端盖阻尼阀芯(1552)的径向部分,以及与端盖阻尼阀座(1551)的第三阀座孔连通的轴向部分;所述第一端盖调阀螺母(1554)与端盖阻尼阀安装孔(1511)的外端螺纹连接。
  11. 根据权利要求9所述的液压减振器(100),其特征在于,所述端盖组件(150)的端盖卸荷阀(156)包括依次设置的端盖卸荷阀座(1561)、端盖卸荷阀芯(1562)、端盖卸荷弹簧(1563)和第二端盖调阀螺母(1564);所述端盖卸荷阀座(1561)固定在端盖卸荷阀安装孔(1512)的内端与端盖通油孔(1514)之间;所述端盖卸荷阀座(1561)上设有沿轴向贯穿端 盖卸荷阀座(1561)的第四阀座孔;所述端盖卸荷阀芯(1562)适于与端盖卸荷阀座(1561)的端面形成面密封,进而盖住所述第四阀座孔;所述第二端盖调阀螺母(1564)与端盖卸荷阀安装孔(1512)的外端螺纹连接。
  12. 根据权利要求9所述的液压减振器(100),其特征在于,所述端盖主体(151)的单向阀安装孔(1513)为台阶孔,单向阀安装孔(1513)的小端与端盖通油孔(1514)连通,第一单向阀(152)安装于单向阀安装孔(1513)的大端内部;所述第一单向阀(152)包括依次设置的第一单向阀芯(1521)、阻尼弹簧(1522)和单向阀预紧螺母(1523);所述第一单向阀芯(1521)与单向阀安装孔(1513)内部的台阶面接触形成面密封,并适于盖住单向阀安装孔(1513)的小端端部;所述单向阀预紧螺母(1523)与单向阀安装孔(1513)的大端螺纹连接;所述单向阀预紧螺母(1523)设有中心通孔。
  13. 根据权利要求9所述的液压减振器(100),其特征在于:所述端盖主体(151)的活塞杆安装孔(154)内部安装有由导向环、斯特封、骨架油封组成的密封系统。
  14. 根据权利要求13所述的液压减振器(100),其特征在于:所述骨架油封的安装沟槽内开有低压回油槽(1516)。
  15. 根据权利要求10所述的液压减振器(100),其特征在于:所述第一阀座孔的孔径>中心盲孔(1552a)的孔径>阻尼孔(1552b)的孔径。
  16. 根据权利要求10所述的液压减振器(100),其特征在于:所述端盖阻尼阀芯(1552)的外端设有圆柱凸台(1552c),所述端盖阻尼弹簧(1551)的一端套设于圆柱凸台(1552c)上;所述第一端盖调阀螺母(1554)的内端设有容纳端盖阻尼弹簧(1551)另一端的凹槽。
  17. 根据权利要求16所述的液压减振器(100),其特征在于:所述端盖阻尼阀芯(1552)背向端盖阻尼阀座(1551)的一端端面上依次设有阀芯出油台阶(1552d)和弹簧支撑台阶(1552e);所述圆柱凸台(1552c)设于弹簧支撑台阶(1552e)上;所述弹簧支撑台阶(1552e)的圆周面上设置有连通阻尼孔(1552b)的出油方槽(1552f)。
  18. 根据权利要求9所述的液压减振器(100),其特征在于:所述端盖主体(151)上的端盖阻尼阀安装孔(1511)、端盖卸荷阀安装孔(1512) 和单向阀安装孔(1513)均为由端盖的内端面至外端面方向逐渐远离活塞杆安装孔(154)。
  19. 根据权利要求9所述的液压减振器(100),其特征在于,所述端盖阻尼阀包括:
    端盖阻尼阀安装孔(1511),两端开口,一端为进油端,另一端连通减振器外部;
    端盖通油孔(1514),从侧面连通端盖阻尼阀安装孔(1511)并靠近端盖阻尼阀安装孔(1511)的进油端;
    端盖阻尼阀座(1551),固定于端盖阻尼阀安装孔(1511)的进油端;所述端盖阻尼阀座(1551)上设有沿轴向贯穿端盖阻尼阀座(1551)的阀座内孔(1511a);
    端盖阻尼阀芯(1552),与端盖阻尼阀安装孔(1511)间隙配合,端盖阻尼阀芯(1552)的一端适于与端盖阻尼阀座(1551)的端面贴合形成面密封;所述端盖阻尼阀芯(1552)上设有中心盲孔(1552a)和阻尼孔(1552b);所述中心盲孔(1552a)设于端盖阻尼阀芯(1552)面向端盖阻尼阀座(1551)的一端端面上,并与阀座内孔(1511a)连通;所述阻尼孔(1552b)沿径向贯穿端盖阻尼阀芯(1552)并与中心盲孔(1552a)连通;
    第一端盖调阀螺母(1554),螺纹连接于端盖阻尼阀安装孔(1511)的另一端;
    端盖阻尼弹簧(1553),压缩于端盖阻尼阀芯(1552)与第一端盖调阀螺母(1554)之间。
  20. 根据权利要求19所述的液压减振器(100),其特征在于,所述端盖阻尼阀芯(1552)上的中心盲孔(1552a)的孔径大于阻尼孔(1552b)孔径的2.8倍。
  21. 根据权利要求19所述的液压减振器(100),其特征在于:所述阻尼孔(1552b)为长度为1mm-1.5mm的薄壁孔。
  22. 根据权利要求19所述的液压减振器(100),其特征在于:所述端盖阻尼阀芯(1552)与端盖阻尼阀座(1551)贴合形成的密封面的与端盖通油孔(1514)最低点齐平或高于端盖通油孔(1514)的最低点不超过1mm。
  23. 根据权利要求19所述的液压减振器(100),其特征在于:所述端盖阻尼阀芯(1552)背向端盖阻尼阀座(1551)的一端设有与端盖阻尼弹簧(1553)连接的凸台(1552c);所述第一端盖调阀螺母(1554)上设有容纳端盖阻尼弹簧(1553)的凹槽(1554a)。
  24. 根据权利要求23所述的液压减振器(100),其特征在于:所述端盖阻尼阀芯(1552)背向端盖阻尼阀座(1551)的一端端面上依次设有阀芯出油台阶(1552d)和弹簧支撑台阶(1552e);所述与端盖阻尼弹簧(1553)连接的凸台(1552c)设于弹簧支撑台阶(1552e)上;所述弹簧支撑台阶(1552e)的圆周面上设置有连通阻尼孔(1552b)的出油方槽(1552f)。
  25. 根据权利要求7所述的液压减振器(100),其特征在于,所述底阀组件(160)包括:
    底阀主体(161);
    第三阻尼阀(162),其沿所述底阀主体(161)的轴线设置在所述底阀主体(161)内,并受压力驱动来控制所述液压缸体(121)至所述流体储存缸(110)的阻尼通断;所述第三阻尼阀(162)具有设置导通的第三阻尼孔(1622)的第三阻尼阀芯(1621),所述第三阻尼阀芯(1621)具有被驱动至单向卸荷位置的第五压力阈值;以及
    第二单向阀组(163),其沿轴向环绕所述第三阻尼阀(162)设置在所述底阀主体(161)内,并受压力驱动来控制所述流体储存缸(110)至所述液压缸体(121)的单向通断。
  26. 根据权利要求25所述的液压减振器(100),其特征在于,所述第三阻尼孔(1622)设置在所述第三阻尼阀芯(1621)的侧壁上,并且沿轴向导通所述第三阻尼阀芯(1621)的内侧与外侧。
  27. 根据权利要求1至6任意一项所述的液压减振器(100),其特征在于,还包括:防尘罩(170),其从所述活塞杆组件(130)的第一端(130a)套设在所述流体储存缸(110)上,并能够随着所述活塞杆组件(130)发生往复运动。
  28. 根据权利要求1至6任意一项所述的液压减振器(100),其特征在于,还包括:气囊组件(180),其套设在所述液压缸(120)外。
  29. 根据权利要求28所述的液压减振器(100),其特征在于,所 述气囊组件(180)包括:
    气囊(181),其用于分离空气与液压流体;
    支撑环(182),其设置在所述液压缸(120)外;以及
    卡箍(183),其将所述气囊的第一端与第二端固定至所述支撑环。
  30. 根据权利要求28所述的液压减振器(100),其特征在于,所述气囊组件(180)包括:隔离框架(184)和气囊(181);所述隔离框架(184)呈圆环套形,隔离框架(184)内设有若干均匀分布的腔室,每个腔室内均设有一个气囊(181);所述气囊(181)由复合铝塑膜制成,该复合铝塑膜包括位于外层的PET或尼龙、位于中间层的铝箔和位于内层的聚丙烯。
  31. 根据权利要求30所述的液压减振器(100),其特征在于,所述隔离框架(184)内的腔室由设置于隔离框架(184)的外壁与内壁之间的连接筋板分隔而来。
  32. 根据权利要求30所述的液压减振器(100),其特征在于,所述隔离框架(184)由普通碳素钢或者耐油耐高温塑料制成。
  33. 根据权利要求30所述的液压减振器(100),其特征在于,所述隔离框架(184)上设置有若干圆弧槽(185)。
  34. 根据权利要求1至6任意一项所述的液压减振器(100),其特征在于,所述流体储存缸(110)包括:
    储存缸体(111);
    顶盖组件(112),其设置在所述储存缸体(111)的第一端(111a),并抵靠所述端盖组件(150);以及
    底座组件(113),其设置在所述储存缸体(111)的第二端(111b),并抵靠所述底阀组件(160)。
  35. 根据权利要求34所述的液压减振器(100),其特征在于,所述底座组件(113)包括底座主体(114)、第一底座阻尼阀(115)、第二底座阻尼阀(116)和堵头(117);所述流体储存缸密封固定在底座主体(114)的内端;所述底座主体(114)的内端中心设有底阀安装孔(1141);所述底座主体(114)上设有两个沿径向垂直布置的阻尼阀安装孔(1142);所述底阀安装孔(1141)与两个阻尼阀安装孔(1142)的交汇处连通;所述底座主体(114)上还设有两个底座通油孔(1143),两个底座通油孔 (1143)分别连通两个阻尼阀安装孔(1142)的一端;所述底座主体(114)的内端面上还设有从底座通油孔(1143)延伸至内端边缘的底座通油槽(1144);底阀组件(160)的一端密封连接在底阀安装孔(1141)内,另一端与液压缸(120)密封连接;所述第一底座阻尼阀(115)和第二底座阻尼阀(116)分别设置于两个阻尼阀安装孔(1142)内连通底座通油孔(1143)的一端,两个阻尼阀安装孔(1142)的另一端均通过堵头(117)密封。
  36. 根据权利要求35所述的液压减振器(100),其特征在于,所述第一底座阻尼阀(115)包括依次设置的第一底座阻尼阀座(1151)、第一底座阻尼阀芯(1152)、第一底座阻尼弹簧(1153)和第一底座调阀螺母(1154);所述第一底座阻尼阀座(1151)固定在一个阻尼阀安装孔(1142)内,并位于底阀安装孔(1141)与底座通油孔(1143)之间;所述第一底座阻尼阀座(1151)上设有沿轴向贯穿第一底座阻尼阀座(1151)的第一阀座孔;所述第一底座阻尼阀芯(1152)内设有第一T型阀芯孔(1152a),该第一T型阀芯孔(1152a)包括沿径向贯穿第一底座阻尼阀芯(1152)的径向部分,以及与第一底座阻尼阀座(1151)的第一阀座孔连通的轴向部分;所述第一底座调阀螺母(1154)与阻尼阀安装孔(1142)螺纹连接。
  37. 根据权利要求35所述的液压减振器(100),其特征在于,所述第二底座阻尼阀(116)包括依次设置的第二底座阻尼阀座(1161)、第二底座阻尼阀芯(1162)、第二底座阻尼弹簧(1163)和第二底座调阀螺母(1164);所述第二底座阻尼阀座(1161)固定在另一个阻尼阀安装孔(1142)内,并位于底阀安装孔(1141)与通油孔(1144)之间;所述第二底座阻尼阀座(1161)上设有沿轴向贯穿第二底座阻尼阀座(1161)的第二阀座孔;所述第二底座阻尼阀芯(1162)适于与第二底座阻尼阀座(1161)的端面形成面密封,进而盖住所述第二阀座孔;所述第二底座调阀螺母(1164)与阻尼阀安装孔(1142)螺纹连接。
  38. 根据权利要求34所述的液压减振器(100),其特征在于,还包括:第一波纹管(190),其第一端(190a)抵接所述活塞杆组件(130),且其第二端(190b)固定至所述顶盖组件(112);在所述活塞杆组件(130)发生往复运动时,所述第一波纹管的第一端(190a)相对于所述活塞杆组 件(130)发生滑动。
  39. 一种轨道车辆,其特征在于,包括:如权利要求1至38任意一项所述的液压减振器(100)。
PCT/CN2021/072368 2020-01-17 2021-01-18 液压减振器以及轨道车辆 WO2021143893A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010053060.5 2020-01-17
CN202010053081.7 2020-01-17
CN202020105222.0 2020-01-17
CN202020105222.0U CN211371124U (zh) 2020-01-17 2020-01-17 气囊及采用该气囊的轨道车辆减振器补偿气囊装置
CN202010053099.7A CN111255847B (zh) 2020-01-17 2020-01-17 一种轨道车辆减振器
CN202010053081.7A CN111255848B (zh) 2020-01-17 2020-01-17 一种轨道车辆减振器用可调阻尼阀及其调节方法
CN202010053099.7 2020-01-17
CN202010053060.5A CN110873146B (zh) 2020-01-17 2020-01-17 一种轨道车辆减振器用端盖
CN202110000954.2A CN114718975A (zh) 2021-01-04 2021-01-04 液压减振器以及轨道车辆
CN202110000954.2 2021-01-04

Publications (1)

Publication Number Publication Date
WO2021143893A1 true WO2021143893A1 (zh) 2021-07-22

Family

ID=76863645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072368 WO2021143893A1 (zh) 2020-01-17 2021-01-18 液压减振器以及轨道车辆

Country Status (1)

Country Link
WO (1) WO2021143893A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061699A (ja) * 2000-08-21 2002-02-28 Koyo Seiki Kk 制振用オイルダンパー
CN2503264Y (zh) * 2001-10-18 2002-07-31 海门市铁路机车车辆配件厂 油压减振器
CN205064679U (zh) * 2015-09-18 2016-03-02 珠海市业成轨道交通设备科技有限公司 一种轨道机车车辆用油压减振器的活塞单元
CN107143598A (zh) * 2017-06-28 2017-09-08 中车青岛四方车辆研究所有限公司 油压减振器
DE102016208632A1 (de) * 2016-05-19 2017-11-23 Zf Friedrichshafen Ag Schwingungsdämpfer mit hubabhängiger Dämpfkraft
CN108150582A (zh) * 2017-12-30 2018-06-12 珠海市业成轨道交通设备科技有限公司 一种高速动车用抗蛇行油压减振器导向盖回油阀系系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061699A (ja) * 2000-08-21 2002-02-28 Koyo Seiki Kk 制振用オイルダンパー
CN2503264Y (zh) * 2001-10-18 2002-07-31 海门市铁路机车车辆配件厂 油压减振器
CN205064679U (zh) * 2015-09-18 2016-03-02 珠海市业成轨道交通设备科技有限公司 一种轨道机车车辆用油压减振器的活塞单元
DE102016208632A1 (de) * 2016-05-19 2017-11-23 Zf Friedrichshafen Ag Schwingungsdämpfer mit hubabhängiger Dämpfkraft
CN107143598A (zh) * 2017-06-28 2017-09-08 中车青岛四方车辆研究所有限公司 油压减振器
CN108150582A (zh) * 2017-12-30 2018-06-12 珠海市业成轨道交通设备科技有限公司 一种高速动车用抗蛇行油压减振器导向盖回油阀系系统

Similar Documents

Publication Publication Date Title
US8978845B2 (en) Frequency/pressure sensitive shock absorber
JP6731537B2 (ja) 緩衝器
US7201260B2 (en) Subassembly for the amplitude-dependent absorption of shock
US20150159727A1 (en) Valve structure of shock absorber
JP2000110881A (ja) 二段型ショックアブソ―バ
KR20060055539A (ko) 충격 흡수장치 어셈블리
CN109340298B (zh) 阻尼器用活塞内置容积补偿结构
CN104214264B (zh) 一种多维减振平台的阻尼刚度可调的液力减振器
US20020033094A1 (en) Damping arrangement for suspension system
US7252031B2 (en) Cylinder apparatus
WO2021143893A1 (zh) 液压减振器以及轨道车辆
CN100548766C (zh) 列车液压减振器
CN108119592B (zh) 一种高速标动轨道用双向外置可调油压减振器
CN112253665B (zh) 一种双级隔振缓冲器
US20020179389A1 (en) Hydraulic piston assembly
CN216143107U (zh) 双向缓冲减震器和车辆
KR101874648B1 (ko) 선박 엔진용 고감쇠 톱 브레이싱 장치의 축압기
CN201013827Y (zh) 列车液压减振器
CN215634646U (zh) 一种汽车减震器
US20180274621A1 (en) Damping valve for shock absorber
CN1328520C (zh) 双作用单自由度液压缓冲器
KR20030017706A (ko) 유압식 쇽업소버
CN219932818U (zh) 一种活塞杆减震结构
CN219529680U (zh) 一种可调阻尼减振器导向座
KR101716694B1 (ko) 쇽업소버용 피스톤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740667

Country of ref document: EP

Kind code of ref document: A1