WO2021143560A1 - 一种电池、电池模组、电池包和电动车 - Google Patents

一种电池、电池模组、电池包和电动车 Download PDF

Info

Publication number
WO2021143560A1
WO2021143560A1 PCT/CN2021/070150 CN2021070150W WO2021143560A1 WO 2021143560 A1 WO2021143560 A1 WO 2021143560A1 CN 2021070150 W CN2021070150 W CN 2021070150W WO 2021143560 A1 WO2021143560 A1 WO 2021143560A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode
pole core
film
packaging film
Prior art date
Application number
PCT/CN2021/070150
Other languages
English (en)
French (fr)
Inventor
何龙
孙华军
胡世超
袁万颂
朱燕
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US17/792,318 priority Critical patent/US20230059574A1/en
Priority to JP2022542685A priority patent/JP7471424B2/ja
Priority to KR1020227025420A priority patent/KR20220119131A/ko
Priority to EP21741556.1A priority patent/EP4084203A4/en
Publication of WO2021143560A1 publication Critical patent/WO2021143560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application belongs to the field of batteries, and in particular relates to a battery, a battery module, a battery pack and an electric vehicle.
  • a battery pack applied to an electric vehicle usually includes multiple batteries to increase the battery capacity, and the multiple batteries are installed in the battery pack housing.
  • the battery needs to add electrolyte during the manufacturing process, so the battery needs to be sealed to prevent the electrolyte from leaking.
  • the pole core is directly sealed in the casing, and then the electrolyte is injected through the injection port on the casing. After the electrolyte is injected, the injection port is sealed to obtain the battery.
  • the pole core and the electrolyte are directly enclosed in the battery casing, once the casing is damaged, it is easy to cause the electrolyte to leak, and the sealing effect is poor.
  • multiple pole cores are connected in series in the battery shell.
  • the multiple pole cores are easy to move in the shell, and relative displacement between the pole core and the pole core will occur.
  • This application aims to solve one of the technical problems in the related technology at least to some extent.
  • a battery which includes a metal casing and a plurality of pole core groups arranged in sequence encapsulated in the metal casing, and the pole core groups are connected in series; the battery It also includes an encapsulation film located in the metal casing, the pole core group is encapsulated in the encapsulation film, and the air pressure between the metal casing and the encapsulation film is lower than the air pressure outside the metal casing; The air pressure in the packaging film is lower than the air pressure between the metal casing and the packaging film.
  • the number of the packaging film is one, and a plurality of the pole core groups connected in series are packaged in the same packaging film;
  • the first electrode and the second electrode electrically connected to the main body of the pole core set, and the connection point of the first electrode of one pole core set and the second electrode of the other pole core set in the two pole core sets connected in series Located in the packaging film.
  • an encapsulation portion is formed at a position where the encapsulation film is opposite to the first electrode and/or the second electrode to isolate two adjacent pole core groups; At least one of the first electrode of one electrode core group and the second electrode of the other electrode core group in the electrode core group is located in the packaging part.
  • the number of the packaging film is multiple, at least one of the pole core groups is encapsulated in one of the packaging films, and the pole core group contains a first electrode and a second electrode that draw current.
  • the electrode, at least one of the first electrode and/or the second electrode extends out of the packaging film.
  • the air pressure P1 between the metal casing and the packaging film is -100Kpa to -5Kpa.
  • the air pressure P1 between the metal shell and the packaging film is -75Kpa to -20Kpa.
  • the air pressure in the packaging film is P2, the relationship between P1 and P2 satisfies: P1>P2, and the range of P1/P2 is 0.05-0.85.
  • P2 takes a value of -100Kpa to -20Kpa.
  • the arrangement direction of the pole core group is a first direction, the length of the pole core group extends in the first direction, and the length of the battery extends in the first direction;
  • the length of the battery is 400mm-2500mm.
  • the thickness of the battery extends in the second direction
  • the metal casing has two opposite first surfaces along the second direction, and at least one of the first surfaces faces the The inside of the metal shell is recessed.
  • the two first surfaces are both recessed toward the inside of the metal shell to clamp the pole core group.
  • the pole core set includes a first electrode and a second electrode that draw current, and the first electrode and the second electrode are located on two sides of the pole core set along the first direction. side.
  • the battery is substantially a rectangular parallelepiped, and the thickness of the battery is greater than 10 mm.
  • the thickness of the battery is 13mm-75mm.
  • the packaging film includes a laminated non-metal outer layer film and a non-metal inner layer film, the inner layer film is located between the electrode core group and the outer layer film, and the The melting point of the outer layer film is greater than the melting point of the inner layer film, and the melting point difference between the outer layer film and the inner layer film ranges from 30°C to 80°C.
  • the material of the outer film is one or a combination of one or more of polyethylene terephthalate, polyamide and polypropylene; the material of the inner film is poly A combination of one or more of propylene, polyethylene, and polyethylene terephthalate.
  • the outer film and the inner film are bonded.
  • the bonding adhesive is a polyolefin-based adhesive.
  • the packaging film is an aluminum plastic film.
  • the metal shell includes a shell body with an opening and a cover plate, and the cover plate is connected to the opening of the shell body in a hermetically sealed manner to jointly enclose a sealed accommodating chamber.
  • the pole core set is located in the containing chamber, the pole core set is connected in series to form a pole core string, both ends of the pole core string respectively contain a first electrode and a second electrode, the first electrode and the second electrode are from The cover plate leads out.
  • a vent hole is provided on the metal shell, and a seal is provided in the vent hole.
  • the thickness of the metal shell is 0.05 mm-1 mm.
  • a battery module including the battery described in any one of the above.
  • a battery pack including a battery sequence, the battery sequence includes a plurality of batteries, the battery includes a metal casing and a plurality of electrode core groups arranged in sequence enclosed in the metal casing, The pole core groups are connected in series; the battery further includes an encapsulation film located in the metal casing, the pole core group is encapsulated in the encapsulation film, and the gap between the metal casing and the encapsulation film.
  • the air pressure is lower than the air pressure outside the metal shell; the air pressure in the packaging film is lower than the air pressure between the metal shell and the packaging film.
  • the thickness of the battery extends along the second direction, and a plurality of the batteries are arranged in sequence along the second direction to form the battery sequence; one of at least two adjacent batteries There is a gap therebetween, and the ratio of the gap to the thickness of the battery ranges from 0.001 to 0.15.
  • the metal shell includes a shell body with an opening and a cover plate, and the cover plate is connected to the opening of the shell body in a hermetically sealed manner to jointly enclose a sealed accommodating chamber.
  • the pole core group is located in the containing chamber; the gap between the two adjacent batteries includes a first gap d1, and the first gap is between the two cover plates of the two adjacent batteries along the The minimum distance in the second direction, the thickness of the battery is the size of the cover plate along the second direction, and the ratio of the first gap d1 to the thickness of the battery ranges from 0.005-0.1.
  • the metal shell includes a shell body with an opening and a cover plate, and the cover plate is connected to the opening of the shell body in a hermetically sealed manner to jointly enclose a sealed accommodating chamber.
  • the pole core group is located in the containing chamber; the metal shell has two opposite first surfaces along the second direction, the gap between the two adjacent batteries includes a second gap d2, and the first The second gap is the minimum distance between the two first surfaces of the two adjacent batteries facing each other, and the thickness of the battery is the size of the cover plate along the second direction.
  • the second gap d2 of the battery before use is greater than the second gap d2 after use.
  • the battery pack further includes a battery pack cover and a tray, the battery pack cover and the tray are hermetically connected to form a battery accommodating cavity, the battery sequence is located in the battery accommodating cavity, and the tray includes a support A support area is formed on the metal shell, and the battery is docked with the support through the support area to be supported on the support.
  • the length of the battery extends in a first direction, the first direction is perpendicular to the second direction, the tray contains an edge beam, the edge beam is a support, and the The two ends of the battery along the first direction are respectively supported on the side beams.
  • an electric vehicle including the battery pack described in any one of the above.
  • the present application has the beneficial effects: in the battery of the present application, the pole core group is encapsulated in the packaging film, and the pole core group is encapsulated in the metal shell for secondary sealing, thereby Using the double-layer sealing effect of the packaging film and the metal shell can effectively improve the sealing effect, and by making the air pressure difference between the metal shell and the packaging film lower than the air pressure outside the metal shell, the metal shell and the inner pole core are as close as possible , To reduce the internal gap, prevent the pole core from moving in the metal shell, and at the same time prevent the relative displacement between the pole cores, reduce the occurrence of current collector damage, diaphragm wrinkles, and active material shedding, and improve the mechanical strength of the entire battery , Prolong the service life of the battery, and improve the safety performance of the battery; and by encapsulating multiple pole cores in a metal shell, a longer battery can be manufactured more conveniently.
  • the length of the battery can be easily realized by the solution of the present application.
  • Longer and stronger batteries so that when the battery is installed in the battery pack shell, the installation of supporting structures such as beams and longitudinal beams in the battery pack body can be reduced, and the battery can be directly installed in the battery pack by using the battery itself as a support
  • the internal space of the battery pack can be saved, the volume utilization rate of the battery pack can be improved, and the weight of the battery pack can be reduced.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a battery provided by an embodiment of the present application
  • Figure 2 is a schematic cross-sectional view of a battery provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a pole core assembly packaged in a packaging film provided by an embodiment of the present application
  • FIG. 4 is another schematic diagram of the pole core group packaged in the packaging film provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a depression formed on the first surface of a metal housing provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a battery sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the relationship between the battery module and the battery provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between an electric vehicle and a battery pack provided by an embodiment of the present application.
  • a first direction B second direction.
  • the present application provides a battery 100.
  • the battery 100 refers to a battery used to form a battery pack.
  • the battery 100 includes a metal casing 11 and a plurality of electrode core groups 12 encapsulated in the metal casing 11 and arranged in sequence.
  • the pole core groups 12 are connected in series, and each pole core group 12 contains at least one pole core.
  • the pole core set 12 includes a first electrode 121 and a second electrode 122 that draw current.
  • the pole core set 12 includes a pole core set main body 123 and a first electrode 121 electrically connected to the pole core set main body 123.
  • the second electrode 122, the first electrode 121 of one of the two electrode core groups 12 connected in series and the second electrode of the other electrode core group 12 are connected.
  • the series connection mode of this embodiment may be a series connection between adjacent pole core groups 12, and the specific way of implementation may be that the first electrode 121 and the second electrode 122 on the adjacent pole core groups are directly connected, or The electrical connection is achieved through additional conductive parts.
  • the pole core set 12 contains only one pole core
  • the first electrode 121 and the second electrode 122 may be the positive and negative lugs of the pole, or the negative and positive lugs of the pole, respectively.
  • the lead-out parts of the first electrode 121 and the second electrode 122 can be electrode leads, or one of the first electrode 121 and the second electrode 122 is a positive lug composite of multiple pole cores.
  • the lead part is formed by welding together, and the other is the lead part formed by compounding and welding the negative lugs of multiple pole cores together.
  • the "first" and “second" in the first electrode 121 and the second electrode 122 are only used to distinguish between names, and not to limit the number.
  • the first electrode 121 may contain one first electrode 121.
  • a plurality of first electrodes 121 may be included.
  • the metal shell 11 includes a shell body 111 having an opening and a cover 112.
  • the cover plate 112 is respectively connected to the opening of the shell body 11 in a sealed manner to jointly enclose a sealed containing chamber, and a plurality of pole core groups 12 are located in the containing chamber.
  • a plurality of pole core groups 12 are connected in series to form a pole core string. Both ends of the pole core string respectively contain a first electrode and a second electrode.
  • the first electrode of the pole core string is the first electrode of the pole core set 12 located at one end of the pole core string.
  • An electrode 121, the second electrode of the pole core string is the second electrode 122 of the pole core set 12 at the other end of the pole core string.
  • the first electrode and the second electrode of the pole core string are led out from the cover plate 112 respectively.
  • the shell body 111 may be open at both ends, and the number of the cover plates 112 may be two, so that the two cover plates 112 are respectively connected to the two end openings of the shell body 111 in a sealed manner to form a sealed accommodating chamber .
  • the first electrode and the second electrode of the pole core string may be led out from the same cover plate 112, or may be led out from two cover plates 112 respectively, which is not limited.
  • the shell body 111 may only be provided with an opening at one end, and the number of the cover plate 112 is one, so that one cover plate 112 is sealedly connected with the one end opening of the shell body 111. In this manner, the first electrode and the second electrode of the pole core string are led out from the same cover plate 112.
  • the battery 100 further includes an encapsulation film 13 located in the metal casing 11, and the pole core assembly 12 is encapsulated in the encapsulation film 13, that is, an encapsulation film is also provided between the metal shell 11 and the pole core assembly 12 13. Therefore, the secondary packaging of the pole core assembly 12 can be achieved through the packaging film 13 and the metal casing 11, which is beneficial to improve the sealing effect of the battery. It is understandable that electrolyte solution is also injected into the packaging film 13. Therefore, through the above method, contact between the electrolyte and the metal casing 11 can also be avoided, and the corrosion of the metal casing 11 or the decomposition of the electrolyte can be avoided.
  • the air pressure between the metal casing 11 and the packaging film 13 is lower than the air pressure outside the metal casing 11.
  • air pressure is an abbreviation for atmospheric pressure. It refers to the atmospheric pressure acting on a unit area, which is equal to the weight of a vertical air column extending upwards to the upper boundary of the atmosphere on a unit area.
  • the air pressure between the metal shell 11 and the packaging film 13 is also the air pressure in the space between the metal shell 11 and the packaging film 13, which is lower than the air pressure outside the metal shell 11. Therefore, in the embodiment of the present application , The metal shell 11 and the packaging film 13 are in a negative pressure state, so the metal shell 11 is dented or deformed under the action of atmospheric pressure, and the gap between the metal shell 11 and the pole core assembly 12 is reduced accordingly. , The space for the pole core group 12 to move or the mutual displacement between them is reduced, thereby reducing the movement of the pole core set 12 and the relative displacement between the pole core sets 12, and improving the stability of the battery 100 and the battery 100 The strength of the battery and the safety performance of the battery 100.
  • the space between the metal casing 11 and the packaging film 13 can be evacuated to make the metal casing 11 and the packaging film 13 in a negative pressure state, thereby making the metal casing 11 and the internal
  • the pole core assembly 12 should be as close as possible to reduce internal gaps, prevent the pole core from moving in the metal shell, and prevent relative displacement between the pole cores, reducing the occurrence of damage to the current collector, wrinkling of the diaphragm, and falling off of the active material.
  • the mechanical strength of the whole battery prolongs the service life of the battery and improves the safety performance of the battery.
  • the air pressure P1 between the metal casing 11 and the packaging film 13, wherein the value of P1 may range from -100Kpa to -5Kpa. In an embodiment, the value of P1 may be -75Kpa. To -20Kpa. Of course, those skilled in the art can set the value of P1 according to actual needs.
  • the air pressure in the packaging film 13 is P2, where the relationship between P1 and P2 satisfies: P1>P2, and the range of P1/P2 is 0.05-0.85.
  • the value of P2 can be from -100Kpa to -20Kpa.
  • the pole core assembly 12 in the present technology adopts a secondary sealing mode.
  • the pole core assembly 12 is encapsulated in the packaging film 13, in order to prevent the packaging film 13 from occurring due to internal Excessive air pressure can cause damage to the outer drum of the packaging film 13, we choose the air pressure between the metal shell 11 and the packaging film 13 to be greater than the air pressure in the packaging film 13.
  • the reliability of the secondary sealing of the battery is better guaranteed, at the same time, the interface between the battery pole pieces is ensured, and the gap between the pole pieces is reduced. , So that lithium ions can conduct better.
  • the air pressure in the packaging film 13 is lower than the air pressure between the metal casing 11 and the packaging film 13.
  • the packaging film 13 includes one, in other words, the number of the packaging film 13 is one, and multiple pole core groups 12 connected in series are encapsulated in the same packaging film 13, wherein the pole core set 12 includes pole cores.
  • the group body 123 and the first electrode 121 and the second electrode 122 electrically connected to the electrode core group body 123 for drawing current, and the first electrode 121 and the first electrode 121 of one of the electrode core groups 12 of the two electrode core groups 12 connected in series
  • the connection point of the second electrode 122 of the other electrode core group 12 is located in the packaging film 13.
  • the packaging film 13 is integrally provided, and a plurality of pole core groups 12 are packaged in the same packaging film 13.
  • a plurality of pole core groups 12 can be connected in series first, and then a whole piece of packaging film 13 can be used to wrap the series pole core groups 12, for example, the series pole cores can be connected in series.
  • the group 12 is placed on a part of the packaging film 13 (or a groove can be made on a part of the packaging film 13 in advance, and then a plurality of pole core groups 12 connected in series are placed in the groove), and then the packaging film 13
  • the other part of the area is folded in half toward the direction of the pole core group 12, and then the two partial areas of the packaging film 13 are heat-melt sealed by a hot melt process, thereby encapsulating the series of pole core groups 12 in the same packaging film 13.
  • the packaging film 13 and the first electrode 121 and/or the second electrode 122 are oppositely formed with a packaging portion 131 to isolate the main body 123 of the adjacent two-pole core group, and one of the two-pole core groups 12 in the adjacent two-pole core group 12 At least one of the first electrode 121 of the first electrode 121 and the second electrode 122 of the other electrode core group 122 is located in the encapsulation part 131.
  • the encapsulation part 131 isolates the main bodies 123 of the plurality of pole core groups to prevent the electrolyte between the plurality of pole core sets 12 from flowing mutually, the plurality of pole core sets 12 will not affect each other, and the plurality of pole core sets 12 The electrolyte in the battery will not decompose due to excessive potential difference, ensuring the safety and service life of the battery.
  • the packaging part 131 can be implemented in various manners.
  • the packaging film 13 can be fastened by a cable tie to form the packaging part 131, or the packaging film 13 can be directly thermally fused to form the packaging part 131.
  • the specific method of the packaging portion 131 is not particularly limited.
  • FIG. 4 there are multiple packaging films 13, that is, the number of packaging films 13 is multiple, and at least one pole core group 12 is encapsulated in one packaging film 13 to form poles.
  • the core components and the pole core components are connected in series.
  • the number of packaging films 13 corresponds to the number of pole core groups 12 one-to-one, and each pole core set 12 is individually packaged in one packaging film 13.
  • a packaging film 13 can be separately sleeved outside each pole core group 12, and then the pole core components are connected in series.
  • At least one of the first electrode 121 and the second electrode 122 of the pole core set 12 extends out of the packaging film 13.
  • the first electrode 121 may extend out of the packaging film 13, or the second electrode 122 may extend out of the packaging film 13.
  • the film 13 or the first electrode 121 and the second electrode 122 may both extend out of the packaging film 13.
  • the arrangement direction of the plurality of pole core groups 12 is the first direction A
  • the length direction of the pole core groups 12 extends along the first direction A
  • the length of the battery also extends along the first direction A, that is, a plurality of The pole core sets 12 are arranged in sequence along the length of the battery, and the first electrode 121 and the second electrode 122 of the pole core set 12 are respectively located on both sides of the pole core set 12 along the first direction A, that is, a plurality of pole core sets 12
  • Adopting the "head-to-head" arrangement method this arrangement method can conveniently realize the two-by-two series connection between the pole core groups 12, and the connection structure is simple. In addition, this arrangement makes it easier to manufacture the battery 100 with a longer length.
  • the battery 100 when the battery 100 is installed in the battery pack casing, there is no need to provide support structures such as beams and longitudinal beams, but the battery 100 itself is used.
  • the battery 100 is directly mounted on the outer shell of the battery pack with the metal shell 11 as support, thereby saving the internal space of the battery pack, improving the volume utilization rate of the battery pack, and reducing the weight of the battery pack.
  • the battery is generally a rectangular parallelepiped, and the length L of the battery is 400mm-2500mm (millimeters), for example, it can be 500mm, 1000mm, or 1500mm.
  • the length L of the battery is 400mm-2500mm (millimeters), for example, it can be 500mm, 1000mm, or 1500mm.
  • the thickness D of the battery may be greater than 10 mm, for example, may be in the range of 13 mm-75 mm.
  • the thickness of the battery 100 extends along a second direction B perpendicular to the first direction A, wherein the metal casing 11 has two opposite first surfaces 113 along the second direction B, and the first surface 113 That is, the largest surface of the battery, that is, the "large surface” of the battery.
  • at least one first surface 113 is recessed toward the inside of the metal casing 11, so that the metal casing 11 and the pole core assembly 12 can be as close as possible.
  • the depression 114 on the first surface 113 of the metal shell 11 may be, for example, a depression formed when the metal shell 11 is evacuated. That is, when the space between the metal casing 11 and the packaging film 13 is evacuated so that the air pressure between the metal housing 11 and the packaging film 13 is lower than the air pressure outside the metal case 11, as the air extraction progresses , The first surface 113 of the metal casing 11 easily forms a recess 114 in the metal casing 11.
  • the battery During the normal use of the battery, the battery usually expands due to the expansion of the material itself, gas production from the electrolyte, etc., and the area with the largest expansion and deformation often lies in the large surface of the battery.
  • the large surface of the battery in the initial state is limited to a slight indentation by vacuuming, which can effectively alleviate the squeezing between the batteries after the battery expands, and improve the life and safety performance of the battery and the entire system.
  • a recess 114 on the first surface 113 of the metal shell 11, and then perform an air extraction process on the inside of the metal shell 11.
  • the two opposite first surfaces 113 of the metal shell 11 are both recessed inward, so as to clamp the pole core assembly 12 through the recessed area.
  • an exhaust hole may be provided on the metal shell 11, and the space between the metal shell 11 and the packaging film 13 can be evacuated through the exhaust hole.
  • the vent hole needs to be sealed, so a sealing element is also provided in the vent hole to seal the vent hole.
  • the sealing member may be, for example, a plug, a rubber member, etc., which is not limited.
  • a gap is provided between the pole core set 12 and the inner surface of the metal shell 11; the gap facilitates the pole core set 12 to be easily installed into the metal shell 11; After the metal shell 11 is evacuated, the metal shell 11 is pressed on the outer surface of the pole core set 12 in the second direction B to clamp the pole core set 12, thereby reducing the movement of the pole core set inside the metal shell Space to improve battery safety performance.
  • the metal shell 11 has high strength and good heat dissipation effect.
  • the metal shell 11 may include, but is not limited to, an aluminum shell or a steel shell.
  • the thickness of the metal shell 11 is 0.05 mm-1 mm.
  • the thicker thickness of the metal shell 11 will not only increase the weight of the battery 100 and reduce the capacity of the battery 100, but also the thickness of the metal shell 11 is too thick.
  • the side depression or deformation cannot reduce the distance between the metal shell 11 and the pole core assembly 12, and thus cannot effectively realize the positioning of the pole core assembly 12. Not only that, if the metal shell 11 is too thick, it will increase the cost of air extraction, thereby increasing the manufacturing cost.
  • This application limits the thickness of the metal casing 11 to the above range, which not only ensures the strength of the metal casing 11, but also does not reduce the capacity of the battery 100. It can also make the metal casing 11 easier under negative pressure. Deformation occurs, reducing the distance between the metal shell 11 and the pole core set 12, thereby reducing the movement of the pole core set 12 inside the metal shell 11 and the relative displacement between the pole core sets 12.
  • the packaging film 13 includes a laminated non-metal outer film and a non-metal inner film, and the inner film is located between the outer film and the electrode core group.
  • the inner film has good chemical stability.
  • materials with anti-corrosion properties of electrolyte can be used, such as polypropylene (PP, Polypropylene), polyethylene (PE, Polyethylene) or polyethylene terephthalate (PET, Polyethylene terephthalate), or a combination of multiple of the above materials.
  • the outer film is a protective layer.
  • the outer film can prevent the penetration of air, especially water vapor, oxygen, etc.
  • the material can be polyethylene terephthalate, polyamide (PA, Polyamide) or polypropylene, or it can be A combination of the above materials.
  • the melting point of the outer film is greater than the melting point of the inner film, so that the outer film will not be melted during hot-melt sealing, and the inner film can be melted in time to ensure excellent sealing performance .
  • the melting point difference between the outer layer film and the inner layer film ranges from 30°C to 80°C.
  • the melting point difference between the two can be 50°C or 70°C.
  • the specific material selection can be determined according to actual needs.
  • the non-metal outer layer film and the non-metal inner layer film are bonded and compounded with an adhesive.
  • the material of the outer film may be PP
  • the material of the inner film may be PET
  • the adhesive for bonding the two may be, for example, a polyolefin adhesive to form a composite film.
  • the electrode core assembly is encapsulated by using a double-layer non-metallic film to form a encapsulation film. Due to the non-metallic encapsulation film, it has higher tensile strength and elongation at break, which can reduce the limitation on the thickness of the battery, so that The produced battery has a greater thickness. Among them, the thickness of the battery of this embodiment can be extended in a large range, for example, it can be greater than 10 mm, for example, it can be in the range of 13 mm to 75 mm.
  • the packaging film may be an aluminum plastic film.
  • the battery is a lithium ion battery.
  • a battery module 300 including the battery of any one of the foregoing embodiments.
  • the sealing performance is better, the assembly process is less, and the battery cost is lower.
  • the present application also provides a battery pack 200, including a battery sequence 21, wherein the battery sequence 21 includes a plurality of batteries 100, wherein the battery 100 is the battery 100 described in any of the above embodiments, therefore The specific structure of the battery 100 will not be repeated here.
  • the number of batteries 100 can be set according to actual needs.
  • the number of sequences 21 can also be set according to actual needs, which is not specifically limited in this application.
  • the length direction of the battery 100 extends along the first direction A, and the thickness direction thereof extends along the second direction B perpendicular to the first direction A, wherein a plurality of batteries 100 are arranged in sequence along the second direction B to form Battery sequence 21.
  • a gap between at least two adjacent batteries 100 there is a gap between at least two adjacent batteries 100, and the ratio of the gap to the thickness of the battery 100 ranges from 0.001 to 0.15.
  • a certain gap is reserved between the batteries 100 to reserve a buffer space for the expansion of the batteries 100.
  • the swelling of the battery 100 is related to the thickness of the battery 100.
  • the greater the thickness of the battery the easier the battery 100 to swell.
  • This application limits the ratio of the gap between the batteries 100 to the thickness of the battery 100 to 0.001-0.15, which can be fully utilized
  • the space of the battery pack 200 improves the utilization rate of the battery pack 200, and at the same time, it can also play a better buffer effect for the expansion of the battery 100.
  • the gap can also serve as a heat dissipation channel, such as an air duct.
  • the larger surface of the battery 100 has a better heat dissipation effect, so it can also improve the battery pack.
  • the heat dissipation efficiency of 200 provides the safety performance of the battery pack 200.
  • the gap between the batteries 100 can be understood to mean that no structural components are arranged between the batteries 100, and a certain space is simply reserved. It can also be understood that the battery 100 is equipped with other structural components to allow the battery 100 to pass between the battery 100 and the battery 100. The structural parts are separated.
  • the gap between the batteries 100 should be understood as the distance between the batteries 100 on both sides of the structural member, and the distance between the structural member and the battery 100 cannot be understood.
  • the structural parts include but are not limited to aerogel, thermally conductive structural glue or thermal insulation cotton.
  • the gap should refer to the distance between two adjacent batteries 100 in the same battery sequence 21, rather than the distance between two adjacent batteries in different battery sequences 21. spacing. And in the same battery sequence 21, a certain gap may be reserved between all two adjacent batteries, or a certain gap may be reserved between part of two adjacent batteries.
  • the gap between two adjacent batteries 100 includes a first gap d1, and the first gap d1 is defined as the minimum distance between two cover plates 112 of two adjacent batteries along the second direction B.
  • the thickness of the battery 100 is the size of the cover 112 along the second direction B.
  • the ratio of the first gap d1 to the thickness of the battery 100 ranges from 0.005 to 0.1.
  • the cover plate 112 due to the higher strength of the cover plate 112, it is less prone to swelling than the shell body 111. Even if the battery 100 operates for a period of time, a chemical reaction occurs internally, and the swelling of the battery 100 will squeeze adjacent In the battery 100, the first gap d1 will change (such as gradually increasing), but the degree of the change is small and can be ignored, or even if it changes, the ratio of the first gap to the thickness of the battery 100 still meets the above range.
  • the cover plates 112 are respectively provided at both ends of the casing body 111, and when the batteries 100 are arranged in the battery sequence 21 along the thickness direction, the gap between the two batteries 100 refers to the two cover plates located at the same end of the battery sequence 21 The minimum distance between 112, rather than the distance between two cover plates 112 at different ends of the battery 100.
  • the gap between two adjacent batteries 100 includes a second gap d2, and the second gap d2 is the smallest distance between two first surfaces of two adjacent batteries 100 facing each other.
  • the second gap d2 of the battery 100 before use is larger than the second gap d2 after use.
  • before use can be understood as the battery 100 is ready to leave the factory after the assembly is completed or has been shipped but before the external power supply has not yet begun;
  • after use can be understood as after the battery 100 provides power to the outside.
  • the state before use can be understood as the state of a new car; the state after use should be the state after the car has driven for a certain distance.
  • the second gap should refer to the smallest distance between the two first surfaces of two adjacent batteries 100 opposite to each other.
  • the distance will gradually decrease with the increase of the battery usage time, mainly Because, after the battery expands, the distance between two adjacent large surfaces will gradually decrease.
  • the battery pack 200 further includes a battery cover and a tray 22, wherein the battery cover is not shown in the view of FIG. 7.
  • the battery cover and the tray 22 are hermetically connected to form a battery accommodating cavity, and the battery sequence 21 is located in the battery accommodating cavity.
  • the tray 22 includes a support 221, a support area is formed on the metal shell 11 of the battery 100, and the battery 100 is docked with the support 221 through the support area to be supported on the support 221.
  • the tray 22 includes an edge beam, which serves as a support 221, and the battery 100 is supported on the edge beams at both ends of the battery 100 along its length. That is, the two ends of the battery 100 along the second direction B are respectively supported on the side beams.
  • the air pressure between the metal casing 11 and the packaging film 13 is negative pressure, which can improve the overall strength of the battery. Therefore, the battery 100 can be directly mounted on the tray 22 with its own strength as support. Therefore, there is no need to provide a structure such as a beam or a longitudinal beam on the tray 22 to support the battery 100, which is beneficial to improve the utilization of the internal space of the battery pack.
  • An electric vehicle 400 includes the battery pack 200 described above. Using the electric vehicle 400 provided in this application has high endurance and low cost.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in the application at least In one embodiment or example.
  • the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)

Abstract

一种电池、电池模组、电池包和电动车,电池包括金属壳体(11)和封装于金属壳体(11)内依次排列的多个极芯组(12),极芯组(12)之间串联,极芯组(12)含有至少一个极芯;极芯组(12)封装于封装膜(13)内,金属壳体(11)与封装膜(13)之间的气压低于金属壳体(11)外的气压,封装膜(13)内的气压低于金属壳体(11)与封装膜(13)之间的气压。

Description

一种电池、电池模组、电池包和电动车
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年01月13日提交的、申请名称为“一种电池、电池模组、电池包和电动车”的、中国专利申请号“202010033794.7”的优先权。
技术领域
本申请属于电池领域,尤其涉及一种电池、电池模组、电池包和电动车。
背景技术
应用于电动车的电池包中通常包括有多个电池,以提高电池容量,多个电池安装在电池包外壳内。
电池在制造过程中需要加入电解液,因此需要对电池进行密封,以防止电解液泄露。现有技术中,一般是直接将极芯密封在壳体内,然后通过壳体上的注入口进行电解液注入,完成电解液注入后再对注入口进行密封,从而得到电池。然而,上述方式由于将极芯和电解液直接封装在电池壳体内,一旦壳体产生损坏则容易造成电解液泄露,密封效果较差。
另外,为提高电池的容量,在电池的壳体内串联有多个极芯,在振动、颠簸情况下,多个极芯容易在壳体里窜动,极芯与极芯之间会发生相对位移,对极芯产生损伤,例如,集流体破损,隔膜打皱、极片上活性材料层脱落,电池的稳定性较差,也容易发生安全问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,在本申请的第一个方面,提供一种电池,包括金属壳体和封装于所述金属壳体内依次排列的多个极芯组,所述极芯组之间串联;所述电池还包括位于所述金属壳体内的封装膜,所述极芯组封装于所述封装膜内,所述金属壳体与所述封装膜之间的气压低于所述金属壳体外的气压;所述封装膜内的气压低于所述金属壳体与所述封装膜之间的气压。
在本申请的一些实施方式中,所述封装膜的数量为一个,串联的多个所述极芯组封装在同一个所述封装膜内;所述极芯组包括极芯组主体以及与所述极芯组主体电连接的第一电极和第二电极,串联连接的两个所述极芯组中的其中一个极芯组的第一电极和另外一个极芯组的第二电极的连接处位于所述封装膜内。
在本申请的一些实施方式中,所述封装膜与所述第一电极和/或所述第二电极相对位置形成有封装部以将相邻两个所述极芯组主体隔离;相邻两个所述极芯组中的一个极芯组的 第一电极和另一个极芯组的第二电极中的至少之一位于所述封装部内。
在本申请的一些实施方式中,所述封装膜的数量为多个,至少一个所述极芯组封装于一个所述封装膜内,所述极芯组含有引出电流的第一电极和第二电极,至少一个所述第一电极和/或第二电极延伸出所述封装膜。
在本申请的一些实施方式中,所述金属壳体与所述封装膜之间的气压P1为-100Kpa至-5Kpa。
在本申请的一些实施方式中,所述金属壳体与所述封装膜之间的气压P1为-75Kpa至-20Kpa。
在本申请的一些实施方式中,所述封装膜内的气压为P2,所述P1与P2的关系满足:P1>P2,且P1/P2的范围为0.05-0.85。
在本申请的一些实施方式中,P2取值为-100Kpa至-20Kpa。
在本申请的一些实施方式中,所述极芯组的排列方向为第一方向,所述极芯组的长度沿所述第一方向延伸,所述电池的长度沿所述第一方向延伸;所述电池的长度为400mm-2500mm。
在本申请的一些实施方式中,所述电池的厚度沿第二方向延伸,所述金属壳体沿所述第二方向具有相对的两个第一表面,至少一个所述第一表面向所述金属壳体内部凹陷。
在本申请的一些实施方式中,所述两个第一表面均向所述金属壳体内部凹陷,以夹持所述极芯组。
在本申请的一些实施方式中,所述极芯组含有引出电流的第一电极和第二电极,所述第一电极和第二电极沿所述第一方向分别位于所述极芯组的两侧。
在本申请的一些实施方式中,所述电池大体为长方体,所述电池的厚度大于10mm。
在本申请的一些实施方式中,所述电池的厚度为13mm-75mm。
在本申请的一些实施方式中,所述封装膜包括层叠的非金属外层膜和非金属内层膜,所述内层膜位于所述极芯组和所述外层膜之间,所述外层膜的熔点大于所述内层膜的熔点,且所述外层膜和所述内层膜的熔点差的范围为30℃-80℃。
在本申请的一些实施方式中,所述外层膜的材料为聚对苯二甲酸乙二酯、聚酰胺和聚丙烯中的一种或多种的组合;所述内层膜的材料为聚丙烯、聚乙烯和聚对苯二甲酸乙二酯中的一种或多种的组合。
在本申请的一些实施方式中,所述外层膜和内层膜粘结。
在本申请的一些实施方式中,所述粘结的粘结剂为聚烯烃类粘结剂。
在本申请的一些实施方式中,所述封装膜为铝塑膜。
在本申请的一些实施方式中,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与 所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内,所述极芯组串联形成极芯串,所述极芯串的两端分别含有第一电极和第二电极,所述第一电极和第二电极分别从所述盖板引出。
在本申请的一些实施方式中,所述金属壳体上设置有排气孔,所述排气孔内设置有密封件。
在本申请的一些实施方式中,所述金属壳体的厚度为0.05mm-1mm。
本申请的第二方面,提供一种电池模组,包括上述任一项所述的电池。
本申请的第三方面,提供一种电池包,包括电池序列,所述电池序列包括若干个电池,所述电池包括金属壳体和封装于所述金属壳体内依次排列的多个极芯组,所述极芯组之间串联;所述电池还包括位于所述金属壳体内的封装膜,所述极芯组封装于所述封装膜内,所述金属壳体与所述封装膜之间的气压低于所述金属壳体外的气压;所述封装膜内的气压低于所述金属壳体与所述封装膜之间的气压。
在本申请的一些实施方式中,所述电池的厚度沿第二方向延伸,若干个所述电池沿所述第二方向依次排列以形成所述电池序列;至少两个相邻的所述电池之间具有间隙,所述间隙与所述电池的厚度的比例范围为0.001-0.15。
在本申请的一些实施方式中,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内;所述两个相邻电池之间的间隙包括第一间隙d1,所述第一间隙为所述两个相邻电池的两个盖板之间沿所述第二方向的最小距离,所述电池的厚度为所述盖板沿所述第二方向的尺寸,且所述第一间隙d1与所述电池的厚度的比例范围为0.005-0.1。
在本申请的一些实施方式中,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内;所述金属壳体沿所述第二方向具有相对的两个第一表面,所述两个相邻电池之间的间隙包括第二间隙d2,所述第二间隙为所述两个相邻电池面对面的两个所述第一表面之间的最小距离,所述电池的厚度为所述盖板沿所述第二方向的尺寸。
在本申请的一些实施方式中,所述电池在使用前的第二间隙d2大于使用后的第二间隙d2。
在本申请的一些实施方式中,所述电池包还包括电池包盖和托盘,所述电池包盖和托盘密封连接形成电池容纳腔,所述电池序列位于电池容纳腔中,所述托盘包括支撑件,所述金属壳体上形成有支撑区,所述电池通过所述支撑区与所述支撑件对接以支撑于所述支撑件上。
在本申请的一些实施方式中,所述电池的长度沿第一方向延伸,所述第一方向与所述第 二方向垂直,所述托盘含有边梁,所述边梁为支撑件,所述电池沿所述第一方向的两端分别支撑在所述边梁上。
本申请的第四方面,提供一种电动车,包括上述任一项所述的电池包。
与现有技术相比,本申请具有的有益效果为:本申请的电池中,通过将极芯组封装在封装膜内,并且将极芯组封装在金属壳体内,以进行二次密封,从而利用封装膜和金属壳体的双层密封作用可以有效提高密封效果,并且通过使金属壳体与封装膜之间的气压差低于金属壳体外的气压,使金属壳体与内部极芯尽量贴近,减少内部空隙,防止极芯在金属壳体内发生窜动,同时防止极芯之间发生相对位移,减少集流体破损、隔膜打皱、和活性材料脱落等情况的发生,提高整个电池的机械强度,延长电池的使用寿命,提高电池的安全性能;且通过在一个金属壳体内封装多个极芯,可以更方便地制造出长度较长的电池,因此,通过本申请的方案可以很容易实现长度较长且强度较佳的电池,由此在将电池安装进电池包外壳内时,可以减少电池包体中横梁和纵梁等支撑结构的设置,利用电池本身作支撑将电池直接安装在电池包外壳上,由此可以节省电池包内部空间,提高电池包的体积利用率,且有利于降低电池包的重量。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实施例提供的电池的立体结构示意图;
图2是本申请实施例提供的电池的截面示意图;
图3是本申请实施例提供的极芯组封装在封装膜内的一示意图;
图4是本申请实施例提供的极芯组封装在封装膜内的另一示意图;
图5是本申请实施例提供的金属壳体第一表面形成有凹陷的示意图;
图6是本申请实施例提供的电池序列的结构示意图;
图7是本申请实施例提供的电池包的结构示意图;
图8是本申请实施例提供的电池模组与电池的关系示意图;
图9是本申请实施例提供的电动车与电池包的关系示意图。
附图标记:
100电池;
11金属壳体;12极芯组;13封装膜;
111壳本体;112盖板;113第一表面;114凹陷;
121第一电极;122第二电极;
131封装部;
200电池包;
300电池模组;
400电动车;
21电池序列;22托盘;221支撑件;
L电池的长度;
D电池的厚度;
A第一方向;B第二方向。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
如图1至图5所示,本申请提供了一种电池100,电池100例如是指用于形成电池包的电池。电池100包括金属壳体11和封装于金属壳体11内且依次排列的多个极芯组12。极芯组12之间为串联,且每个极芯组12至少含有一个极芯。其中,极芯组12含有引出电流的第一电极121和第二电极122,在一个实施例中,极芯组12包括极芯组主体123以及与极芯组主体123电连接的第一电极121和第二电极122,串联连接的两个极芯组12中的其中一个极芯组12的第一电极121和另一个极芯组12的第二电极连接。通过多个极芯组12串联,单个电池即可实现容量和电压的提高,减小制造工艺和成本。
需要说明的是,本实施例的串联方式可以为相邻极芯组12间串联连接,实现的具体方式可以为相邻极芯组上的第一电极121和第二电极122直接连接,也可以是通过额外的导电部件实现电连接。如果极芯组12仅含有一个极芯的情况下,第一电极121和第二电极122可以分别为极芯的正极耳和负极耳,或者分别为极芯的负极耳和正极耳。如果含有多个极芯的情况下,第一电极121和第二电极122的引出部件可以为电极引线,或者,第一电极121和第二电极122中的一个为多个极芯的正极耳复合并焊接在一起形成的引出部件,另一个为多个极芯的负极耳复合并焊接在一起形成的引出部件。
在本申请中,第一电极121和第二电极122中的“第一”和“第二”仅用于名称区分,并不用于限定数量,例如第一电极121可以含有一个第一电极121也可以含有多个第一电极121。
在一个实施例中,金属壳体11包括具有开口的壳本体111和盖板112。盖板112分别与壳本体11的开口密封连接,以共同围成密封的容纳腔室,多个极芯组12位于该容纳腔室内。多个极芯组12串联形成极芯串,极芯串的两端分别含有第一电极和第二电极,该极芯串的第一电极即位于该极芯串一端的极芯组12的第一电极121,该极芯串的第二电极即位于该极芯串另一端的极芯组12的第二电极122。极芯串的第一电极和第二电极分别从盖板112引出。
在一些实施方式中,壳本体111可以是两端开口,盖板112的数量可以为两个,从而两个盖板112分别与壳本体111的两端开口密封连接,以形成密封的容纳腔室。此种方式中,极芯串的第一电极和第二电极可以是从同一个盖板112引出,也可以是分别从两个盖板112引出,对此不做限定。
在一些实施方式中,壳本体111上可以仅在一端设置有开口,盖板112的数量为一个,从而一个盖板112与壳本体111的一端开口密封连接。此种方式中,极芯串的第一电极和第二电极从同一个盖板112引出。
本申请实施例中,电池100还包括位于金属壳体11内的封装膜13,极芯组12封装于封装膜13内,即在金属壳体11和极芯组12之间还设有封装膜13。由此,通过封装膜13和金属壳体11可以实现对极芯组12的二次封装,有利于提高电池的密封效果。可以理解的是,封装膜13内还注入有电解液。因此,通过上述方式,还可以避免电解液与金属壳体11的接触,避免金属壳体11的腐蚀或者电解液的分解。
其中,金属壳体11和封装膜13之间的气压低于金属壳体11外的气压。
在本申请中,“气压”是大气压强的简称。它是指作用在单位面积上的大气压力,即等于单位面积上向上延伸到大气上界的垂直空气柱的重量。
金属壳体11和封装膜13之间的气压也即位于金属壳体11和封装膜13之间的空间内的气压,该气压低于金属壳体11外的气压,因此,本申请实施例中,金属壳体11和封装膜13之间为负压状态,由此金属壳体11在大气压的作用下发生凹陷或变形,则金属壳体11和极芯组12之间的间隙随之减小,极芯组12发生窜动或者相互之间发生位移的空间减小,进而可以减少极芯组12的窜动以及极芯组12之间的相对位移,提高电池100的稳定性,以及电池100的强度以及电池100的安全性能。
例如,可以通过对金属壳体11和封装膜13之间的空间进行抽气处理,以使金属壳体11和封装膜13之间为负压状态,由此可以使得金属壳体11和内部的极芯组12尽量贴近, 减少内部空隙,防止极芯在金属壳体内发生窜动,同时防止极芯之间发生相对位移,减少集流体破损、隔膜打皱和活性材料脱落等情况的发生,提高整个电池的机械强度,延长电池的使用寿命,提高电池的安全性能。
在一种实施方式中,金属壳体11和封装膜13之间的气压P1,其中,P1的取值范围可以为-100Kpa至-5Kpa,在一个实施例中,P1的取值可以是-75Kpa至-20Kpa。当然本领域的技术人员可以根据实际需要设定P1的值。
封装膜13内的气压为P2,其中P1和P2的关系满足:P1>P2,且P1/P2的范围为0.05-0.85。
P2取值可以为-100Kpa至-20Kpa。
将P1、P2以及P1/P2限定在上述范围内,本技术中的极芯组12采用二次密封的模式,先将极芯组12封装在封装膜13内,为避免封装膜13发生由于内部气压过大使封装膜13外鼓造成的破损,我们选择金属壳体11与封装膜13之间的气压大于封装膜13内的气压。同时,我们通过大量实验验证,当P1/P2在上述范围时,较好的保证了电池二次密封的可靠性,同时,保证了电池极片之间的界面,减小了极片间的间隙,使锂离子能更好的传导。
在一些实施方式中,封装膜13内的气压低于金属壳体11与封装膜13之间的气压。
本申请的一实施例中,封装膜13包括一个,换言之,封装膜13的数量为一个,串联的多个极芯组12封装在同一个封装膜13内,其中,极芯组12包括极芯组主体123以及与极芯组主体123电连接用于引出电流的第一电极121和第二电极122,串联连接的两个极芯组12中的其中一个极芯组12的第一电极121和另一个极芯组12的第二电极122的连接处位于封装膜13内。也就是说,封装膜13一体设置,多个极芯组12封装在同一封装膜13内。
在实际应用中,例如,如图3所示,可以先将多个极芯组12进行串联,然后利用一整张封装膜13将串联的极芯组12包裹起来,比如可以将串联的极芯组12放置于封装膜13的一部分区域上(或者可以预先在封装膜13的一部分区域上开凹槽,然后将串联的多个极芯组12置于该凹槽内),然后将封装膜13的另一部分区域朝向极芯组12的方向对折,之后通过热熔处理将两部分区域的封装膜13进行热熔密封,由此将串联的极芯组12封装在同一封装膜13内。
其中,封装膜13与第一电极121和/或第二电极122相对位置形成有封装部131以将相邻两极芯组主体123隔离,并且相邻两极芯组12中的其中一个极芯组12的第一电极121和另一个极芯组122的第二电极122中的至少之一位于封装部131内。通过封装部131将多个极芯组主体123之间隔离,避免多个极芯组12间的电解液互相流通,多个极芯组12之间不会相互影响,且多个极芯组12中的电解液不会因电位差过大而分解,保证电池的安全性和使用寿命。
封装部131可以多种实施方式,例如可以采用扎带将封装膜13扎紧形成封装部131,也可以直接将封装膜13热熔融连接形成封装部131。封装部131的具体方式不作特殊限定。
本申请的另一实施例中,如图4所示,封装膜13含有多个,也即封装膜13的数量为多个,其中至少一个极芯组12封装于一个封装膜13内以形成极芯组件,极芯组件之间串联。
换句话说,封装膜13的数量与极芯组12的数量一一对应,每个极芯组12单独封装在一个封装膜13,该种实施方式,在多个极芯组12制备完成后,可在每个极芯组12外单独套一个封装膜13,然后极芯组件再串联。
其中,极芯组12的第一电极121和第二电极122中的至少一个延伸出封装膜13,例如可以是第一电极121延伸出封装膜13,或者也可以是第二电极122延伸出封装膜13,或者也可以是第一电极121和第二电极122都延伸出封装膜13。通过将至少一个第一电极121和/或第二电极122延伸出封装膜13,可以利用延伸出的电极与其他极芯组件进行串联。
在本申请实施例中,多个极芯组12的排列方向为第一方向A,极芯组12的长度方向沿第一方向A延伸,电池的长度也沿第一方向A延伸,即多个极芯组12沿着电池的长度方向依次排列,且极芯组12的第一电极121和第二电极122沿第一方向A分别位于极芯组12的两侧,即多个极芯组12采用“头对头”的排布方式,此排布方式可以较为方便地实现极芯组12之间的两两串联,连接结构简单。另外该种排布方式可以较为方便的制造长度较长的电池100,由此在将电池100安装进电池包外壳内时,可以不需要设置横梁和纵梁等支撑结构,而是利用电池100本身的金属壳体11作支撑而将电池100直接安装在电池包外壳上,由此可以节省电池包内部空间,提高电池包的体积利用率,且有利于降低电池包的重量。
其中,电池大体为长方体,电池的长度L为400mm-2500mm(毫米),例如可以是500mm、1000mm或1500mm等。通过在电池内设置多个极芯组12,与现有只设置一个极芯的方式相比,可以更方便地制造出长度较长的电池。传统的电池中,一旦电池较长,内部用作集流体的铜铝箔的长度即会相应增加,大大提高了电池内部的电阻,无法满足当前越来越高的功率及快充的要求。在电池长度相同的情况下,本申请实施例可以极大的减小电池内部的电阻,避免高功率输出、快充等情况下电池过热等带来的问题。
其中,电池的厚度D可以是大于10mm,例如可以在13mm-75mm的范围。
本申请实施例中,电池100的厚度沿与第一方向A垂直的第二方向B延伸,其中,金属壳体11沿第二方向B具有相对的两个第一表面113,该第一表面113也即电池的最大表面,也即电池的“大面”。其中,至少一个第一表面113向金属壳体11内部凹陷,由此可以使得金属壳体11与极芯组12尽量贴合。
由于金属壳体11的厚度较小,其为较薄的薄片,因此金属壳体11的第一表面113上的凹陷114例如可以是通过对金属壳体11内进行抽气时所形成的凹陷。即在对金属壳体11 和封装膜13之间的空间进行抽气处理以使得金属壳体11和封装膜13之间的气压低于金属壳体11外的气压时,随着抽气的进行,金属壳体11的第一表面113容易向金属壳体11内形成凹陷114。
电池在正常使用的过程中,由于材料本身的膨胀,电解液产气等原因电池通常会发生膨胀,而往往膨胀形变最大的区域在于电池的大面。采用本技术,将电池初始状态时大面通过抽真空限制在略微内陷的情况,可有效缓解电池膨胀后电池之间的挤压,提高电池及整个系统的寿命、安全等性能。
在其他一些实施例中,如图5所示,也可以是预先在金属壳体11的第一表面113上形成凹陷114后,再对金属壳体11内进行抽气处理。其中,金属壳体11的第一表面113上的凹陷114可以有多个,例如,预先在第一表面113上形成多个凹陷114,每个凹陷114的位置与一个极芯组件所在的位置对应。
其中,在一些实施方式中,金属壳体11相对的两个第一表面113上均向内部凹陷,以通过凹陷的区域夹持极芯组12。
其中,可以在金属壳体11上设置排气孔,通过该排气孔对金属壳体11和封装膜13之间的空间进行抽气操作。其中,需要对该排气孔进行密封处理,因此在排气孔内还设置有密封件,以密封排气孔。该密封件例如可以是堵头、橡胶件等,对此不做限定。
在一些实施方式中,金属壳体11在抽气之前,极芯组12与金属壳体11内表面设有间隙;该间隙便于极芯组12比较方便的装入到金属壳体11内部;在对金属壳体11抽气之后,金属壳体11沿第二方向B按压在极芯组12的外表面以夹持所述极芯组12,从而减小极芯组在金属壳体内部窜动的空间,提高电池安全性能。
本申请实施例中,金属壳体11的强度高,散热效果好,金属壳体11可以包括但不限于铝壳、或钢壳。
在一些实施例中,金属壳体11的厚度为0.05mm-1mm。
金属壳体11的厚度较厚不仅会增加电池100的重量,降低电池100的容量,而且金属壳体11的厚度过厚,在大气压的作用下,金属壳体11不容易向极芯组12一侧凹陷或变形,无法减少金属壳体11和极芯组12之间的间距,进而无法有效的对极芯组12实现定位的作用。不仅如此,金属壳体11过厚,会增加抽气的成本,从而增加制造成本。
本申请将金属壳体11厚度限定为上述范围内,不仅能保证金属壳体11强度,而且也不会降低1电池100的容量,还可以在负压的状态下,金属壳体11更加容易的发生变形,减少金属壳体11和极芯组12之间的间距,从而减少极芯组12在金属壳体11内部的窜动以及极芯组12之间的相对位移。
本申请的实施例中,封装膜13包括层叠的非金属外层膜和非金属内层膜,内层膜位于 外层膜和极芯组之间。
内层膜具有较好的化学稳定性,例如可以采用具有抗电解液腐蚀特性的材料,比如可以是聚丙烯(PP,Polypropylene)、聚乙烯(PE,Polyethylene)或者聚对苯二甲酸乙二酯(PET,Polyethylene terephthalate),或者可以是上述材料中的多种的组合。
外层膜为防护层,利用外层膜可以阻止空气尤其是水汽、氧等渗透,其材料例如可以采用聚对苯二甲酸乙二酯、聚酰胺(PA,Polyamide)或聚丙烯,或者可以是上述材料的多种的组合。
本实施例的封装膜13中,外层膜的熔点大于内层膜的熔点,从而可以在热熔密封时,外层膜不会被熔融,而内层膜能够及时熔融以保证密封性能的优良。
在一个实施例中,外层膜和内层膜的熔点差的范围为30℃-80℃,如两者熔点差可以是50℃或70℃等,具体的材料选择可以根据实际需要而定。
其中,非金属外层膜和非金属内层膜之间采用胶黏剂粘结复合。例如,外层膜的材料可以是PP,内层膜的材料可以是PET,两者粘结的粘结剂例如可以是聚烯烃类粘结剂,以粘结形成复合膜。
本实施例通过采用双层非金属膜形成封装膜对极芯组进行封装,由于采用非金属的封装膜,具有更高的拉伸强度和断裂伸长率,可以减少对电池厚度的限制,使得生产得到的电池具有更大的厚度。其中,本实施例的电池的厚度可扩展范围大,如可以大于10mm,例如可以在13mm~75mm的范围。
在本申请的一些实施方式中,封装膜可以为铝塑膜。
本申请的一个实施例中,电池为锂离子电池。
在本申请的另一个方面,提供了一种电池模组300包括上述任一实施例的电池。采用本申请提供的电池模组300,密封性能较佳,组装工艺少,电池的成本较低。
参阅图6和图7,本申请还提供了一种电池包200,包括电池序列21,其中电池序列21包括若干个电池100,其中电池100为上述任一实施例中所描述的电池100,因此对于电池100的具体结构在此不做一一赘述。
电池序列21可以有1个也可以有多个,每个电池序列21中的电池100可以有1个也可以有多个,在实际生产中,电池100的数量可以根据实际需要进行设定,电池序列21的数量也可以根据实际需要进行设定,本申请对此不做具体限定。
本申请的实施例中,电池100的长度方向沿第一方向A延伸,其厚度方向沿与第一方向A垂直的第二方向B延伸,其中若干个电池100沿第二方向B依次排列以形成电池序列21。其中,至少两个相邻的电池100之间具有间隙,该间隙与电池100的厚度的比例范围为0.001-0.15。
需要说明的是,两个相邻电池的间隙会随着电池的工作时间的增加而有所变化,但无论是处于工作中还是工作后或者是电池出厂前,只要满足电池之间的间隙与厚度的比例范围在本申请限定的范围内,均落在本申请的保护范围内。
本申请通过在电池100之间预留的一定的间隙,可以给电池100的膨胀预留缓冲空间。
电池100的膨胀与电池100的厚度相关,电池的厚度越大,电池100越容易发生膨胀,本申请将电池100之间的间隙与电池100的厚度的比值限定在0.001-0.15,既可以充分利用电池包200的空间,提高电池包200的利用率,同时也可以给电池100的膨胀起到较好的缓冲效果。
另外,电池100膨胀时会产生热量,电池100之间预留一定的间隙,该间隙还可以充当散热通道,例如风道,电池100面积较大的面散热效果更好,因而还可以提高电池包200的散热效率,提供电池包200的安全性能。
在上述方案中,电池100之间的间隙可以理解为电池100之间不设置任何结构件,单纯预留一定的空间,也可以理解电池100设置其他结构件使电池100与电池100之间通过该结构件隔开。
需要说明的是,当电池100之间设置结构件,电池100之间的间隙应该理解为该结构件两侧的电池100之间的距离,而不能理解该结构件与电池100之间的间距。
应当说明的是,结构件可以与该结构件两侧的电池100之间可以预留一定的间隙有可以直接接触,当结构件与位于两侧的电池100直接接触时,结构件应当具有一定的柔性,可以为电池100的膨胀起到缓冲作用。作为结构件包括但不限于气凝胶,导热结构胶或者是隔热棉。
本申请中,当电池序列21有多个时,间隙应该是指同一个电池序列21中相邻两个电池100之间的间距,而非不同电池序列21中,相邻两个电池之间的间距。且在同一个电池序列21中,可以所有相邻两个电池之间均预留一定的间隙,也可以部分相邻两个电池之间预留一定的间隙。
在一种实施方式中,两个相邻电池100之间的间隙包括第一间隙d1,第一间隙d1定义为两个相邻电池的两个盖板112之间沿第二方向B的最小距离,电池100的厚度为盖板112沿第二方向B的尺寸。其中,第一间隙d1与所述电池100的厚度的比例范围为0.005-0.1。
在上述实施方式中,由于盖板112的强度较高,相对比壳本体111而言,不容易发生膨胀,即使电池100在工作一段时间后,内部产生化学反应,电池100膨胀会挤压相邻的电池100,第一间隙d1会发生变化(如逐渐增大),但该变化的程度较小,可以忽略不计,或者即使变化,第一间隙与电池100的厚度的比例仍然满足上述范围。在上述实施方式中,壳本体111两端分别设有盖板112,电池100沿厚度方向排列成电池序列21时,两个电池 100之间的间隙是指位于电池序列21同一端的两个盖板112之间的最小间距,而非位于电池100不同端的两个盖板112之间的间距。
在一种实施方式中,两个相邻电池100之间的间隙包括第二间隙d2,第二间隙d2为两个相邻电池100面对面的两个第一表面之间的最小距离。其中,电池100在使用前的第二间隙d2大于使用后的第二间隙d2。
其中,“使用前”可以理解为电池100在装配完成后待出厂或者已出厂但还未开始给外部提供电能之前;“使用后”可以理解为电池100给外部提供电能之后。例如,电池包200装配在电动车400,使用前的状态可以理解为新车的状态;使用后的状态应该为车行驶一段里程后的状态。
在该实施方式中,第二间隙应该是指两个相邻的电池100相对的两个第一表面之间的最小间距,该间距会随着电池的使用时间的增加而逐渐减小,主要是因为,电池发生膨胀后,相邻两个大面之间的间距会逐渐减小。
本申请实施例中,电池包200还包括电池盖和托盘22,其中图7的视图中未示意出电池盖。电池盖和托盘22密封连接形成电池容纳腔,电池序列21位于电池容纳腔中。其中,托盘22包括支撑件221,电池100的金属壳体11上形成有支撑区,电池100通过其支撑区与支撑件221对接以支撑于支撑件221上。
在一个实施例中,托盘22含有边梁,该边梁作为支撑件221,电池100沿其长度方向的两端分别支撑在边梁上。也即,电池100沿第二方向B的两端分别支撑在边梁上。
本申请实施例的电池100中,其金属壳体11和封装膜13之间的气压为负压,可以提高电池的整体强度,因此可以将电池100利用自身的强度做支撑而直接安装在托盘22上,从而不需要在托盘22上设置横梁或纵梁等结构来支撑电池100,有利于提高电池包内部空间的利用率。
一种电动车400包括上述的电池包200。采用本申请提供的电动车400,车的续航能力高,成本较低。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而 且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (31)

  1. 一种电池,其特征在于,包括金属壳体和封装于所述金属壳体内依次排列的多个极芯组,所述极芯组之间串联;
    所述电池还包括位于所述金属壳体内的封装膜,所述极芯组封装于所述封装膜内,所述金属壳体与所述封装膜之间的气压低于所述金属壳体外的气压;所述封装膜内的气压低于所述金属壳体与所述封装膜之间的气压。
  2. 根据权利要求1所述的电池,其特征在于,所述封装膜的数量为一个,串联的多个所述极芯组封装在同一个所述封装膜内;
    所述极芯组包括极芯组主体以及与所述极芯组主体电连接的第一电极和第二电极,串联连接的两个所述极芯组中的其中一个极芯组的第一电极和另外一个极芯组的第二电极的连接处位于所述封装膜内。
  3. 根据权利要求2所述的电池,其特征在于,所述封装膜与所述第一电极和/或所述第二电极相对位置形成有封装部以将相邻两个所述极芯组主体隔离;
    相邻两个所述极芯组中的一个极芯组的第一电极和另一个极芯组的第二电极中的至少之一位于所述封装部内。
  4. 根据权利要求1所述的电池,其特征在于,所述封装膜的数量为多个,至少一个所述极芯组封装于一个所述封装膜内,所述极芯组含有引出电流的第一电极和第二电极,至少一个所述第一电极和/或第二电极延伸出所述封装膜。
  5. 根据权利要求1-4中任一项所述的电池,其特征在于,所述金属壳体与所述封装膜之间的气压P1为-100Kpa至-5Kpa。
  6. 根据权利要求5所述的电池,其特征在于,所述金属壳体与所述封装膜之间的气压P1为-75Kpa至-20Kpa。
  7. 根据权利要求6所述的电池,其特征在于,所述封装膜内的气压为P2,所述P1与P2的关系满足:P1>P2,且P1/P2的范围为0.05-0.85。
  8. 根据权利要求7所述的电池,其特征在于,P2取值为-100Kpa至-20Kpa。
  9. 根据权利要求1-8中任一项所述的电池,其特征在于,所述极芯组的排列方向为第一方向,所述极芯组的长度沿所述第一方向延伸,所述电池的长度沿所述第一方向延伸;所述电池的长度为400mm-2500mm。
  10. 根据权利要求9所述的电池,其特征在于,所述电池的厚度沿第二方向延伸,所述金属壳体沿所述第二方向具有相对的两个第一表面,至少一个所述第一表面向所述金属壳体内部凹陷。
  11. 根据权利要求10所述的电池,其特征在于,所述两个第一表面均向所述金属壳体内部凹陷,以夹持所述极芯组。
  12. 根据权利要求9-11中任一项所述的电池,其特征在于,所述极芯组含有引出电流的第一电极和第二电极,所述第一电极和第二电极沿所述第一方向分别位于所述极芯组的两侧。
  13. 根据权利要求9-12中任一项所述的电池,其特征在于,所述电池大体为长方体,所述电池的厚度大于10mm。
  14. 根据权利要求13所述的电池,其特征在于,所述电池的厚度为13mm-75mm。
  15. 根据权利要求1-14中任一项所述的电池,其特征在于,所述封装膜包括层叠的非金属外层膜和非金属内层膜,所述内层膜位于所述极芯组和所述外层膜之间,所述外层膜的熔点大于所述内层膜的熔点,且所述外层膜和所述内层膜的熔点差的范围为30℃-80℃。
  16. 根据权利要求15所述的电池,其特征在于,所述外层膜的材料为聚对苯二甲酸乙二酯、聚酰胺和聚丙烯中的一种或多种的组合;所述内层膜的材料为聚丙烯、聚乙烯和聚对苯二甲酸乙二酯中的一种或多种的组合。
  17. 根据权利要求16所述的电池,其特征在于,所述外层膜和内层膜粘结。
  18. 根据权利要求17所述的电池,其特征在于,所述粘结的粘结剂为聚烯烃类粘结剂。
  19. 根据权利要求1-18中任一项所述的电池,其特征在于,所述封装膜为铝塑膜。
  20. 根据权利要求1-19中任一项所述的电池,其特征在于,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内,所述极芯组串联形成极芯串,所述极芯串的两端分别含有第一电极和第二电极,所述第一电极和第二电极分别从所述盖板引出。
  21. 根据权利要求20所述的电池,其特征在于,所述金属壳体上设置有排气孔,所述排气孔内设置有密封件。
  22. 根据权利要求1-21中任一项所述的电池,其特征在于,所述金属壳体的厚度为0.05mm-1mm。
  23. 一种电池模组,其特征在于,包括权利要求1-22中任一项所述的电池。
  24. 一种电池包,其特征在于,包括电池序列,所述电池序列包括若干个电池,所述电池包括金属壳体和封装于所述金属壳体内依次排列的多个极芯组,所述极芯组之间串联;
    所述电池还包括位于所述金属壳体内的封装膜,所述极芯组封装于所述封装膜内,所述金属壳体与所述封装膜之间的气压低于所述金属壳体外的气压;所述封装膜内的气压低于所述金属壳体与所述封装膜之间的气压。
  25. 根据权利要求24所述的电池包,其特征在于,所述电池的厚度沿第二方向延伸,若 干个所述电池沿所述第二方向依次排列以形成所述电池序列;
    至少两个相邻的所述电池之间具有间隙,所述间隙与所述电池的厚度的比例范围为0.001-0.15。
  26. 根据权利要求25所述的电池包,其特征在于,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内;
    所述两个相邻电池之间的间隙包括第一间隙d1,所述第一间隙为所述两个相邻电池的两个盖板之间沿所述第二方向的最小距离,所述电池的厚度为所述盖板沿所述第二方向的尺寸,且所述第一间隙d1与所述电池的厚度的比例范围为0.005-0.1。
  27. 根据权利要求25或26所述的电池包,其特征在于,所述金属壳体包括具有开口的壳本体和盖板,所述盖板与所述壳本体的开口密封连接,以共同围成密封的容纳腔室,所述极芯组位于所述容纳腔室内;
    所述金属壳体沿所述第二方向具有相对的两个第一表面,所述两个相邻电池之间的间隙包括第二间隙d2,所述第二间隙为所述两个相邻电池面对面的两个所述第一表面之间的最小距离,所述电池的厚度为所述盖板沿所述第二方向的尺寸。
  28. 根据权利要求27所述的电池包,其特征在于,所述电池在使用前的第二间隙d2大于使用后的第二间隙d2。
  29. 根据权利要求25-28中任一项所述的电池包,其特征在于,所述电池包还包括电池包盖和托盘,所述电池包盖和托盘密封连接形成电池容纳腔,所述电池序列位于电池容纳腔中,所述托盘包括支撑件,所述金属壳体上形成有支撑区,所述电池通过所述支撑区与所述支撑件对接以支撑于所述支撑件上。
  30. 根据权利要求29所述的电池包,其特征在于,所述电池的长度沿第一方向延伸,所述第一方向与所述第二方向垂直,所述托盘含有边梁,所述边梁为支撑件,所述电池沿所述第一方向的两端分别支撑在所述边梁上。
  31. 一种电动车,其特征在于,包括如权利要求24-30任一项所述的电池包。
PCT/CN2021/070150 2020-01-13 2021-01-04 一种电池、电池模组、电池包和电动车 WO2021143560A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,318 US20230059574A1 (en) 2020-01-13 2021-01-04 Battery, battery module, battery pack, and electric vehicle
JP2022542685A JP7471424B2 (ja) 2020-01-13 2021-01-04 電池、電池モジュール、電池パック及び電気自動車
KR1020227025420A KR20220119131A (ko) 2020-01-13 2021-01-04 배터리, 배터리 모듈, 배터리 팩, 및 전기 차량
EP21741556.1A EP4084203A4 (en) 2020-01-13 2021-01-04 BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRIC VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010033794.7A CN110828745B (zh) 2020-01-13 2020-01-13 一种电池、电池模组、电池包和电动车
CN202010033794.7 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021143560A1 true WO2021143560A1 (zh) 2021-07-22

Family

ID=69546620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070150 WO2021143560A1 (zh) 2020-01-13 2021-01-04 一种电池、电池模组、电池包和电动车

Country Status (7)

Country Link
US (1) US20230059574A1 (zh)
EP (1) EP4084203A4 (zh)
JP (1) JP7471424B2 (zh)
KR (1) KR20220119131A (zh)
CN (2) CN113193272B (zh)
TW (1) TWI747654B (zh)
WO (1) WO2021143560A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828746B (zh) * 2020-01-13 2020-07-10 比亚迪股份有限公司 一种电池包和电动车
CN113193272B (zh) * 2020-01-13 2023-06-13 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828744B (zh) * 2020-01-13 2020-07-10 比亚迪股份有限公司 一种电池、电池包和电动车
CN111312964B (zh) * 2020-04-24 2022-01-07 比亚迪股份有限公司 电池包及电动车
CN113764786B (zh) * 2020-05-18 2022-10-18 比亚迪股份有限公司 一种电池、电池包及汽车
CN212392355U (zh) * 2020-05-18 2021-01-22 比亚迪股份有限公司 一种电池、电池包及汽车
CN111354899B (zh) * 2020-05-25 2020-10-23 比亚迪股份有限公司 电池包、电池模组、车辆以及储能装置
CN111354900B (zh) * 2020-05-25 2020-10-23 比亚迪股份有限公司 电池包、电池模组、车辆以及储能装置
CN212810382U (zh) * 2020-08-24 2021-03-26 比亚迪股份有限公司 探测网、电池单体、电池模组及电动汽车
CN113454833A (zh) * 2020-09-08 2021-09-28 宁德新能源科技有限公司 电化学装置及电子装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062127A1 (en) * 2016-09-01 2018-03-01 Lg Chem, Ltd. Battery module and method for fabricating the same
CN108780856A (zh) * 2016-03-10 2018-11-09 日产自动车株式会社 电池组
CN110268550A (zh) * 2017-03-21 2019-09-20 奥柏里斯特科技有限公司 电池系统
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110571366A (zh) * 2019-09-30 2019-12-13 江西优特汽车技术有限公司 一种铝合金方形硬壳模组
CN110828746A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池包和电动车
CN110828744A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池包和电动车
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828745A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078329A (en) * 1958-04-16 1963-02-19 Union Carbide Corp Battery assembly
CN102906898B (zh) * 2011-05-25 2015-09-09 丰田自动车株式会社 电池及其制造方法
JP2014127285A (ja) 2012-12-26 2014-07-07 Automotive Energy Supply Corp 電池モジュールの液漏れ検査方法および電池モジュール
JP6354982B2 (ja) * 2014-04-24 2018-07-11 トヨタ自動車株式会社 非水電解液二次電池およびその製造方法
JP2016186865A (ja) 2015-03-27 2016-10-27 ブラザー工業株式会社 電池の製造方法及び電池
CN206313022U (zh) * 2016-12-22 2017-07-07 中科泰能高铭科技发展有限公司 一种方形钢壳电池及其集合成电池系统的模组
EP3656004A1 (en) * 2017-07-21 2020-05-27 QuantumScape Corporation Active and passive battery pressure management
CN207818747U (zh) * 2017-12-13 2018-09-04 比亚迪股份有限公司 电池系统及电动汽车
IT201800002774A1 (it) * 2018-02-16 2019-08-16 Ferrari Spa Pacco batteria veicolare
CN110379947B (zh) * 2019-07-24 2022-05-27 江苏正力新能电池技术有限公司 一种电池壳及其制备方法和锂离子电池及其补锂方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780856A (zh) * 2016-03-10 2018-11-09 日产自动车株式会社 电池组
US20180062127A1 (en) * 2016-09-01 2018-03-01 Lg Chem, Ltd. Battery module and method for fabricating the same
CN110268550A (zh) * 2017-03-21 2019-09-20 奥柏里斯特科技有限公司 电池系统
CN110571366A (zh) * 2019-09-30 2019-12-13 江西优特汽车技术有限公司 一种铝合金方形硬壳模组
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828746A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池包和电动车
CN110828744A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池包和电动车
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828745A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084203A4 *

Also Published As

Publication number Publication date
JP7471424B2 (ja) 2024-04-19
KR20220119131A (ko) 2022-08-26
CN113193272A (zh) 2021-07-30
EP4084203A1 (en) 2022-11-02
CN110828745B (zh) 2020-07-10
CN110828745A (zh) 2020-02-21
TW202127706A (zh) 2021-07-16
TWI747654B (zh) 2021-11-21
EP4084203A4 (en) 2023-12-13
US20230059574A1 (en) 2023-02-23
JP2023510838A (ja) 2023-03-15
CN113193272B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2021143668A1 (zh) 电池、电池模组、电池包及汽车
WO2021143514A1 (zh) 一种电池、电池包和电动车
WO2021143560A1 (zh) 一种电池、电池模组、电池包和电动车
WO2021143561A1 (zh) 一种电池包和电动车
WO2021164559A1 (zh) 电池、电池模组、电池包和电动车
CN113131045B (zh) 一种电池、电池模组、电池包和电动车
WO2021164568A1 (zh) 电池包及车辆
WO2021143625A1 (zh) 一种电池、电池模组、电池包和电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025420

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021741556

Country of ref document: EP

Effective date: 20220726

NENP Non-entry into the national phase

Ref country code: DE