WO2021143361A1 - 基于3d打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯 - Google Patents

基于3d打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯 Download PDF

Info

Publication number
WO2021143361A1
WO2021143361A1 PCT/CN2020/131661 CN2020131661W WO2021143361A1 WO 2021143361 A1 WO2021143361 A1 WO 2021143361A1 CN 2020131661 W CN2020131661 W CN 2020131661W WO 2021143361 A1 WO2021143361 A1 WO 2021143361A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand core
core
sand
way valve
hydraulic multi
Prior art date
Application number
PCT/CN2020/131661
Other languages
English (en)
French (fr)
Inventor
何冰
薄夫祥
王帅统
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Priority to DE112020000327.2T priority Critical patent/DE112020000327T5/de
Priority to US17/425,598 priority patent/US20220088672A1/en
Publication of WO2021143361A1 publication Critical patent/WO2021143361A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0081Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present disclosure belongs to the technical field of 3D printing equipment, and in particular relates to an integral hydraulic multi-way valve sand core casting process based on 3D printing.
  • the integrated hydraulic multi-way valve sand core manufacturing process mainly includes traditional sand shooting technology and sand core 3D printing technology.
  • the traditional sand shooting process requires molds. Therefore, the integrated hydraulic multi-way valve has a long manufacturing cycle and high cost;
  • the sand core 3D printing process which is known for its short cycle and low cost: the selective laser sintering molding process and the binder injection molding process, both of which are based on the powder spreading method, the loose packing characteristics of the printed powder layer cause the printing of the sand core The compactness and strength are lower than the existing sand shooting process.
  • 3D printing sand cores can only meet the requirements of the sand core casting of simple parts such as engine cylinder heads, torque converter housings, and chip valves.
  • simple parts such as engine cylinder heads, torque converter housings, and chip valves.
  • cantilever sand cores and slender sand cores in 3D printed integral hydraulic multi-way valve sand cores.
  • Such sand cores are easily deformed under the action of long-term baking and wrapping of molten iron, as well as the buoyancy of molten iron and its own thermal stress It even cracks and eventually leads to casting failure.
  • the traditional mold opening method is used for integral multi-way valve sand core casting. It is necessary to consider the inclination of the mold and process the metal mold. This process greatly increases the development cycle and cost of new products; at the same time, most of the internal flow passages of the multi-way valve are relatively relatively large. It is complicated, and it is often necessary to split and design the inner runner sand core, which leads to many subsequent sand core assembly processes and low matching accuracy, which ultimately affects the quality of the casting.
  • the 3D printing sand core designed by the existing method especially the sand core, because the loose density of the coated sand powder for 3D printing is lower than the density of the sand grain, the density and strength of the 3D printing sand core are lower than that of the traditional sand shooting. Process;
  • the sand core designed based on the 3D printing process is an integrated monolithic sand core.
  • the inconsistency of the cross-sectional dimensions of each part of the sand core will inevitably lead to uneven strength of each part. Among them, the slender sand core and the cantilever sand core are weak points. However, the existing process has not strengthened it.
  • the weak parts in the 3D printed sand core often cannot withstand the long-term baking of the molten iron, the buoyancy of the molten iron and the effects of its own thermal stress, resulting in the bending of the sand core during the casting process. It even breaks and the casting fails in the end.
  • a 3D printing-based integral hydraulic multi-way valve sand core casting process including:
  • the weak sand core For the weak sand core, according to the ratio L/D of the length of the weak sand core to the diameter, design the corresponding hole diameter and length in the sand core model, and formulate the corresponding reinforced core bone according to the different hole diameter and length of the hole;
  • 3D print the sand core according to the sand core model, and place the reinforcing core bone into the corresponding sand core hole.
  • the core bone and the sand core will be tightly combined during the hardening or solidification process of the sand core, so that the strength of the integral hydraulic multi-way valve sand core Get overall improvement.
  • the integral hydraulic multi-way valve sand core model to be 3D printed is created in three-dimensional software, and then the structure of the sand core is analyzed to determine the weak sand core; the weak sand core includes: main valve Hole sand core, slender hole sand core and cantilever hole sand core.
  • the integrated hydraulic multi-way valve sand core casting process based on 3D printing further includes: measuring the diameter D and length L of the weak sand core section in the sand core model, and calculating the length and diameter The ratio L/D.
  • the corresponding hole diameter and length are designed in the sand core model, including:
  • the diameter of the hole is not less than 10% of the diameter of the sand core and not more than 15% of the diameter of the sand core.
  • the length of the hole extends to 5-10mm inside the sand core body, so that the core bone can get the sand core body
  • the support and fixing of the cantilever sand core; and the channel of the cantilever sand core does not completely penetrate the cantilever end, which should be less than 5mm.
  • the corresponding reinforcing cores are formulated according to the channels of different diameters and lengths, including: according to the determined sand core channels, the main valve hole sand core adopts steel tube cores, and the sidewalls of the steel tube cores are drilled with multiple The pores are used to assist the large-diameter sand core for conformal exhaust during the pouring process, and the non-main valve hole sand cores (slender hole sand cores, cantilever hole sand cores) are made of ceramic solid cores.
  • the sand core is 3D printed according to the sand core model, and the reinforcing core bone is placed in the corresponding sand core hole.
  • the core bone and the sand core are tightly combined, including:
  • the sand core is immediately removed and the outer surface of the sand core and the loose sand attached to the hole are cleaned, and then the customized core bone is inserted into the sand core hole. Finally, after the sand core is hardened, the sand core is tightly combined with the core bone;
  • the core bone is placed in the hole before the sand core is heated and solidified, and then the core bone and the sand core are tightly combined during the heating and solidification process of the sand core.
  • an integral hydraulic multi-way valve sand core is provided, which is prepared by the above-mentioned 3D printing-based integral hydraulic multi-way valve sand core casting process.
  • Fig. 1 is a schematic diagram of an integral hydraulic multi-way valve sand core according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the main valve hole sand core in Figure 1;
  • Figure 3 is a schematic diagram of the elongated hole sand core in Figure 1;
  • Figure 4 is a schematic diagram of the cantilever sand core in Figure 1;
  • Fig. 5 is a schematic diagram of a steel pipe core for an integral hydraulic multi-way valve sand core according to an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a ceramic core bone for an integral hydraulic multi-way valve sand core according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a 3D printing integral hydraulic multi-way valve sand core strengthening method, which includes the following steps:
  • the first step is to create an integral hydraulic multi-way valve sand core model to be 3D printed in the 3D software, as shown in Figure 1, and then analyze the various parts of the sand core structure to determine the main valve hole sand core 1, fine Long hole sand core 2 and cantilever hole sand core 3 and other weak sand cores;
  • Figure 2 is a schematic diagram of the main valve hole sand core in Figure 1;
  • Figure 3 is a schematic diagram of the elongated hole sand core in Figure 1;
  • Figure 4 is the cantilever sand core in Figure 1 Schematic diagram of the core.
  • the second step is to measure the diameter D and length L of the weak sand core section of the main valve hole sand core 1, the slender hole sand core 2 and the cantilever hole sand core 3 determined in the first step, and calculate the length to diameter ratio L /D.
  • the third step according to the calculation results of the weak parts in the second step, when the value of L/D is greater than 6, create a hole for placing the core bone in the sand core model, and the diameter of the hole is not less than 10% of the diameter of the sand core , And not more than 15% of the diameter of the sand core, to ensure that the strength of the sand core is strengthened while preventing the initial strength of the 3D printed sand core from being too low and causing fracture during the post-treatment process.
  • the length of the channel needs to extend to 5-10mm inside the sand core body so that the core bone can be supported and fixed by the sand core body.
  • the channel of the cantilever sand core cannot completely penetrate the cantilever end, and should be less than about 5mm.
  • steel tube cores should be preferentially used for the main valve holes and other large-hole sand cores.
  • the side wall of the steel tube core bones needs to be drilled with multiple air holes to assist the large-diameter sand cores.
  • Conformal exhaust is carried out during the pouring process, and the other sand cores (slender hole sand core 2 and cantilever hole sand core 3) are made of ceramic solid cores.
  • Figure 5 is a schematic diagram of a steel pipe core for integral hydraulic multi-way valve sand core of the embodiment
  • Figure 6 is a schematic diagram of a ceramic core bone for the integral hydraulic multi-way valve sand core of the embodiment; the inner hole of the core bone and the core hole are formed together Conformal exhaust to the sand core.
  • the fifth step for the sand core printed by the binder molding process, after the printing is completed, the sand core needs to be removed immediately and the loose sand adhered to the outer surface of the sand core and the channel is cleaned, and then the customized core bone is passed through Inside the sand core tunnel, the sand core is tightly combined with the core bone after the sand core is hardened; for the sand core printed by the selective laser sintering process, the core bone must be placed in the hole before the sand core is heated and solidified, and then the sand core is heated During the curing process, the core bone and the sand core are tightly combined.
  • the integrated hydraulic multi-way valve sand core casting process based on 3D printing provided by the present disclosure has at least one of the following beneficial effects:
  • the integrated hydraulic multi-way valve sand core casting process based on 3D printing is based on the cantilever sand core, the elongated hole sand core and the main valve hole sand core after the three-dimensional model of the integral hydraulic multi-way valve sand core is established. Wait for the weak sand core, design the corresponding hole diameter and length in the sand core model.
  • the corresponding reinforced core bone will be formulated according to the holes of different diameter and length and preset into the sand core hole to make the whole
  • the strength of the integrated hydraulic multi-way valve sand core has been improved as a whole to achieve the required core strength for integral hydraulic multi-way valve casting, and the success rate of rapid casting of the integrated hydraulic multi-way valve sand core based on 3D printing is improved.
  • Sand core strengthening The loose density of the coated sand powder for 3D printing is lower than the density of the sand particles.
  • the density and strength of the printed sand core cannot withstand the long-term baking of the molten iron, the buoyancy of the molten iron and its own thermal stress, which often occurs during the casting process.
  • the sand core bends or even breaks.
  • the present disclosure strengthens the weak sand core by pre-setting high-strength core bones to the 3D printed sand core, which not only reduces the risk of fracture in intermediate links such as sand core transfer and flow coating, but also improves the high temperature resistance of the sand core during the casting process. .
  • the casting success rate of integral hydraulic multi-way valve is high. High-strength cores are pre-installed in the weak parts of the integral hydraulic multi-way valve sand core, so that the overall strength of the sand core structure is effectively improved, and the buoyancy of the molten iron and the thermal stress of the sand core itself are mostly transferred to the core during the casting process. Finally, it is transferred to the main body of the sand core, which alleviates the risk of sand core fracture, and finally effectively improves the casting success rate of the integral hydraulic multi-way valve.

Abstract

一种基于3D打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯。整体式液压多路阀砂芯铸造工艺包括:在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,然后对砂芯结构部位进行分析,确定其中的薄弱砂芯;针对薄弱砂芯,根据薄弱砂芯长度与直径的比值L/D,在砂芯模型中设计相应孔径和长度的孔道,并根据不同孔径、长度的孔道制定相应的加强芯骨;根据砂芯模型3D打印砂芯,并将加强芯骨置到对应的砂芯孔道内,待砂芯硬化或固化过程中芯骨与砂芯紧密结合,使得整体式液压多路阀砂芯的强度得到整体提高。

Description

基于3D打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯
相关申请的交叉引用
本公开是以申请号为202010126901.0,申请日为2020年2月28日,发明名称为“一种基于3D打印的整体式液压多路阀砂芯铸造工艺”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开属于3D打印设备技术领域,具体涉及一种基于3D打印的整体式液压多路阀砂芯铸造工艺整体式液压多路阀砂芯。
背景技术
目前,整体式液压多路阀砂芯制造工艺主要有传统射砂工艺和砂芯3D打印工艺,其中,传统射砂工艺需开设模具,因此,整体式液压多路阀制造周期长,成本高;而对于以短周期低成本著称的砂芯3D打印工艺:选区激光烧结成型工艺和粘结剂喷射成型工艺,两者均是基于铺粉方式成型,打印粉层的松装特性造成打印砂芯的致密性和强度均低于现有射砂工艺。
现阶段,3D打印砂芯仅能满足发动机缸体缸盖、液力变矩器壳体、片式阀等简单零件的砂芯铸造,而对于具有复杂内油道的整体式液压多路阀,3D打印的整体式液压多路阀砂芯存在大量悬臂砂芯和细长砂芯,此类砂芯在受到铁液长时间烘烤、包裹以及铁液浮力和自身热应力作用下极易发生变形甚至开裂,最终导致铸造失败。
在实现本公开的过程中,发明人发现:
1、采用传统开模方式进行整体式多路阀砂芯铸造,需要考虑起模斜度问题并加工金属模具,此过程大大增加了新产品研发周期和成本;同时多路阀内部流道大多较为复杂,常需要对内流道砂芯进行拆分设计,这导致后续砂芯组装工序多,配合精度低,最终影响铸件质量。
2、采用现有方法设计的3D打印砂芯,特别是砂芯,由于3D打印用覆膜砂粉末的松装密度低于砂粒本体密度,3D打印砂芯致密性和强度均低于传统射砂工艺;同时,基于3D打印工艺设计的砂芯为一体化整体砂芯,砂芯各部分截面尺寸的不一致必然 导致各部分的强度不均匀,其中细长砂芯、悬臂砂芯均为薄弱处,而现有工艺并未对其进行加强处理,因此,3D打印砂芯中薄弱部位常常无法承受铁液的长时间烘烤、铁液浮力以及自身热应力的作用,导致铸造过程中出现砂芯弯曲甚至断裂,最终铸造失败。
发明内容
本公开采用的技术方案为:
一种基于3D打印的整体式液压多路阀砂芯铸造工艺,包括:
在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,然后对砂芯结构部位进行分析,确定其中的薄弱砂芯;
针对薄弱砂芯,根据薄弱砂芯长度与直径的比值L/D,在砂芯模型中设计相应孔径和长度的孔道,并根据不同孔径、长度的孔道制定相应的加强芯骨;
根据砂芯模型3D打印砂芯,并将加强芯骨置到对应的砂芯孔道内,待砂芯硬化或固化过程中芯骨与砂芯紧密结合,使得整体式液压多路阀砂芯的强度得到整体提高。
在一些实施例中,在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,然后对砂芯结构部位进行分析,确定其中的薄弱砂芯;所述薄弱砂芯包括:主阀孔砂芯、细长孔砂芯和悬臂孔砂芯。
在一些实施例中,所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,还包括:对砂芯模型中的薄弱砂芯截面直径D和长度L进行测量,并计算长度与直径的比值L/D。
在一些实施例中,根据薄弱砂芯长度与直径的比值L/D,在砂芯模型中设计相应孔径和长度的孔道,包括:
当薄弱砂芯的L/D的值大于6时,在砂芯模型中创建用于放置芯骨的孔道,孔道直径不低于砂芯直径的10%,且不高于砂芯直径的15%,以保证砂芯强度得到强化的同时防止3D打印砂芯初强度过低而导致后处理过程中发生断裂;同时,孔道长度延伸至砂芯主体内部5-10mm,以使得芯骨得到砂芯主体的支撑和固定;且悬臂砂芯的孔道不完全穿透悬臂端,应小于5mm左右。
在一些实施例中,根据不同孔径、长度的孔道制定相应的加强芯骨,包括:根据确定好的砂芯孔道,主阀孔砂芯采用钢管芯骨,其中,钢管芯骨侧壁钻多个气孔以辅 助大直径砂芯在浇注过程中进行随形排气,非主阀孔砂芯(细长孔砂芯、悬臂孔砂芯)用陶瓷实心芯骨。
在一些实施例中,根据砂芯模型3D打印砂芯,并将加强芯骨置到对应的砂芯孔道内,待砂芯硬化或固化过程中芯骨与砂芯紧密结合,包括:
对于采用粘结剂成型工艺打印的砂芯,待打印完成后立即将砂芯去除并清理砂芯外表面及孔道中沾附的散砂,然后将定制好的芯骨穿于砂芯孔道内部,最后待砂芯硬化后砂芯与芯骨紧密结合;
或,对于采用选区激光烧结工艺打印的砂芯,在砂芯加热固化前将芯骨置于孔道内,然后在砂芯加热固化过程中芯骨与砂芯紧密结合。
根据本公开的第二方面,提供一种整体式液压多路阀砂芯,由上述的基于3D打印的整体式液压多路阀砂芯铸造工艺制备得到。
附图说明
图1是本公开实施例的整体式液压多路阀砂芯示意图;
图2是图1中主阀孔砂芯示意图;
图3是图1中细长孔砂芯示意图;
图4是图1中悬臂砂芯示意图;
图5是本公开实施例的整体式液压多路阀砂芯用钢管芯骨示意图;
图6是本公开实施例的整体式液压多路阀砂芯用陶瓷芯骨示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应 当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开实施例提供一种3D打印整体式液压多路阀砂芯强化方法,包括如下步骤:
第一步,在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,如图1所示,然后对砂芯结构的各个部位进行分析,确定其中主阀孔砂芯1、细长孔砂芯2和悬臂孔砂芯3等薄弱砂芯;图2是图1中主阀孔砂芯示意图;图3是图1中细长孔砂芯示意图;图4是图1中悬臂砂芯示意图。
第二步,对第一步中确定的主阀孔砂芯1、细长孔砂芯2和悬臂孔砂芯3薄弱砂芯截面直径D和长度L进行测量,并计算长度与直径的比值L/D。
第三步,根据第二步中各薄弱部位计算结果,当L/D的值大于6时,在砂芯模型中创建用于放置芯骨的孔道,孔道直径不低于砂芯直径的10%,且不高于砂芯直径的15%,以保证砂芯强度得到强化的同时又能防止3D打印砂芯初强度过低而导致后处理过程中发生断裂。同时,孔道长度需要延伸至砂芯主体内部5-10mm,以使得芯骨能够得到砂芯主体的支撑和固定,特别地,悬臂砂芯的孔道不可完全穿透悬臂端,应小于5mm左右。
第四步,根据第三步确定好的砂芯孔道,针对主阀孔及其他大孔砂芯应优先采用钢管芯骨,其中,钢管芯骨侧壁需钻多个气孔以辅助大直径砂芯在浇注过程中进行随形排气,其他砂芯(细长孔砂芯2和悬臂孔砂芯3)采用陶瓷实心芯骨。图5是实施例的整体式液压多路阀砂芯用钢管芯骨示意图;图6是实施例的整体式液压多路阀砂芯用陶瓷芯骨示意图;芯骨内孔和砂芯孔道共同起到砂芯的随形排气作用。
第五步,对于采用粘结剂成型工艺打印的砂芯,待打印完成后需立即将砂芯去除并清理砂芯外表面及孔道中粘附的散砂,然后将定制好的芯骨穿于砂芯孔道内部,最后待砂芯硬化后砂芯与芯骨紧密结合;对于采用选区激光烧结工艺打印的砂芯,需在砂芯加热固化前将芯骨置于孔道内,然后在砂芯加热固化过程中芯骨与砂芯紧密结合。
本公开提供的基于3D打印的整体式液压多路阀砂芯铸造工艺具有以下有益效果至少之一:
本公开提供的基于3D打印的整体式液压多路阀砂芯铸造工艺,在整体式液压多 路阀砂芯三维模型建立后,针对其中悬臂砂芯、细长孔砂芯以及主阀孔砂芯等薄弱砂芯,在砂芯模型中设计相应孔径和长度的孔道,待3D打印完砂芯,再根据不同孔径、长度的孔道制定相应的加强芯骨并预置到砂芯孔道中,使得整体式液压多路阀砂芯的强度得到整体提高,以达到整体式液压多路阀铸造所需砂芯强度,提高基于3D打印的整体式液压多路阀砂芯快速铸造的成功率。具有以下优点:
1、砂芯强化。3D打印用覆膜砂粉末的松装密度低于砂粒本体密度,打印的砂芯致密性和强度无法承受铁液的长时间烘烤、铁液浮力以及自身热应力的作用,导致铸造过程中常出现砂芯弯曲甚至断裂。本公开通过对3D打印砂芯预置高强度芯骨,对薄弱砂芯进行了强化,既降低了砂芯转运、流涂等中间环节的断裂风险又提高了铸造过程中的砂芯耐高温强度。
2、随形排气。整体式液压多路阀砂芯预制的孔道不仅起到放置芯骨的作用,同时还有利于浇注过程中砂芯的随形排气。
3、整体式液压多路阀铸造成功率高。对整体式液压多路阀砂芯中薄弱部位预置高强度芯骨,使得砂芯结构整体强度得到有效提升,并且铸造过程中铁液的浮力和砂芯自身的热应力大部分传递至芯骨并最终转移到砂芯主体上,缓解了砂芯断裂风险,最终有效提高整体式液压多路阀铸造成功率。
以上所述仅是本公开的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (7)

  1. 一种基于3D打印的整体式液压多路阀砂芯铸造工艺,包括:
    在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,然后对砂芯结构部位进行分析,确定其中的薄弱砂芯;
    针对薄弱砂芯,根据薄弱砂芯长度与直径的比值L/D,在砂芯模型中设计相应孔径和长度的孔道,并根据不同孔径、长度的孔道制定相应的加强芯骨;
    根据砂芯模型3D打印砂芯,并将加强芯骨置到对应的砂芯孔道内,待砂芯硬化或固化过程中芯骨与砂芯紧密结合,使得整体式液压多路阀砂芯的强度得到整体提高。
  2. 根据权利要求1所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,其中,在三维软件中创建待3D打印的整体式液压多路阀砂芯模型,然后对砂芯结构部位进行分析,确定其中的薄弱砂芯;所述薄弱砂芯包括:主阀孔砂芯、细长孔砂芯和悬臂孔砂芯。
  3. 根据权利要求1所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,还包括:对砂芯模型中的薄弱砂芯截面直径D和长度L进行测量,并计算长度与直径的比值L/D。
  4. 根据权利要求3所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,其中,根据薄弱砂芯长度与直径的比值L/D,在砂芯模型中设计相应孔径和长度的孔道,包括:
    当薄弱砂芯的L/D的值大于6时,在砂芯模型中创建用于放置芯骨的孔道,孔道直径不低于砂芯直径的10%,且不高于砂芯直径的15%,以保证砂芯强度得到强化的同时防止3D打印砂芯初强度过低而导致后处理过程中发生断裂;同时,孔道长度延伸至砂芯主体内部5-10mm,以使得芯骨得到砂芯主体的支撑和固定;且悬臂砂芯的孔道不完全穿透悬臂端,应小于5mm左右。
  5. 根据权利要求1所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,其中, 根据不同孔径、长度的孔道制定相应的加强芯骨,包括:根据确定好的砂芯孔道,主阀孔砂芯采用钢管芯骨,其中,钢管芯骨侧壁钻多个气孔以辅助大直径砂芯在浇注过程中进行随形排气,非主阀孔砂芯采用陶瓷实心芯骨。
  6. 根据权利要求1所述的基于3D打印的整体式液压多路阀砂芯铸造工艺,其中,根据砂芯模型3D打印砂芯,并将加强芯骨置到对应的砂芯孔道内,待砂芯硬化或固化过程中芯骨与砂芯紧密结合,包括:
    对于采用粘结剂成型工艺打印的砂芯,待打印完成后将砂芯去除并清理砂芯外表面及孔道中沾附的散砂,然后将定制好的芯骨穿于砂芯孔道内部,最后待砂芯硬化后砂芯与芯骨紧密结合;
    或,对于采用选区激光烧结工艺打印的砂芯,在砂芯加热固化前将芯骨置于孔道内,然后在砂芯加热固化过程中芯骨与砂芯紧密结合。
  7. 一种整体式液压多路阀砂芯,由权利要求1-6任一项所述的基于3D打印的整体式液压多路阀砂芯铸造工艺制备得到。
PCT/CN2020/131661 2020-02-28 2020-11-26 基于3d打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯 WO2021143361A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020000327.2T DE112020000327T5 (de) 2020-02-28 2020-11-26 Verfahren zum verstärken eines 3d-gedruckten sandkerns für das giessen eines integralen mehrwegeventils und sandkern eines integralen hydraulischen mehrwegeventils
US17/425,598 US20220088672A1 (en) 2020-02-28 2020-11-26 Process of strengthening 3d printed sand core for the casting of integral multi-way valve and sand core of integral hydraulic multi-way valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010126901.0 2020-02-28
CN202010126901.0A CN111230049B (zh) 2020-02-28 2020-02-28 一种基于3d打印的整体式液压多路阀砂芯铸造工艺

Publications (1)

Publication Number Publication Date
WO2021143361A1 true WO2021143361A1 (zh) 2021-07-22

Family

ID=70876698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131661 WO2021143361A1 (zh) 2020-02-28 2020-11-26 基于3d打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯

Country Status (4)

Country Link
US (1) US20220088672A1 (zh)
CN (1) CN111230049B (zh)
DE (1) DE112020000327T5 (zh)
WO (1) WO2021143361A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878343B2 (en) 2021-12-07 2024-01-23 Lockheed Martin Corporation Housing and method of preparing same using a hybrid casting-additive manufacturing process
CN117611016A (zh) * 2024-01-24 2024-02-27 中铁四局集团有限公司 基于物联网的小型混凝土预制构件全流程追溯生产系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230049B (zh) * 2020-02-28 2021-10-12 江苏徐工工程机械研究院有限公司 一种基于3d打印的整体式液压多路阀砂芯铸造工艺
CN113976832A (zh) * 2021-10-26 2022-01-28 共享装备股份有限公司 一种3d打印砂芯的加固方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201470827U (zh) * 2009-07-31 2010-05-19 太仓林飞铸造有限公司 一种悬臂式砂芯结构
CN201728336U (zh) * 2010-05-27 2011-02-02 南通华东油压科技有限公司 一种大型挖掘机超高精密多路控制主阀阀体砂型
CN105328129A (zh) * 2015-10-30 2016-02-17 宁夏共享模具有限公司 3d打印气缸盖砂芯强度的强化方法
DE202016007939U1 (de) * 2016-12-22 2017-01-20 Innovative Fertigungstechnologie (IFT) GmbH Wasserlöslicher Formkern
WO2018063161A1 (en) * 2016-09-27 2018-04-05 Halliburton Energy Services, Inc. 3d printed ball valve
CN108160921A (zh) * 2018-02-09 2018-06-15 共享智能铸造产业创新中心有限公司 一种提升3d打印砂芯脆弱部位刚度的方法
CN108480566A (zh) * 2018-03-26 2018-09-04 四川共享铸造有限公司 增材制造型芯中芯骨的置入方法
CN109014083A (zh) * 2018-08-27 2018-12-18 共享智能铸造产业创新中心有限公司 一种复杂结构铸件整体砂型的灌涂方法
CN110523922A (zh) * 2019-09-30 2019-12-03 共享智能铸造产业创新中心有限公司 一种多路阀铸件的铸造砂型
CN110918885A (zh) * 2019-12-24 2020-03-27 肇庆学院 一种加强3d打印机砂型的制造方法
CN111230049A (zh) * 2020-02-28 2020-06-05 江苏徐工工程机械研究院有限公司 一种基于3d打印的整体式液压多路阀砂芯铸造工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB789721A (en) * 1954-03-09 1958-01-29 Rolls Royce Improvements relating to casting processes for metals
US5361823A (en) * 1992-07-27 1994-11-08 Cmi International, Inc. Casting core and method for cast-in-place attachment of a cylinder liner to a cylinder block
US20130220570A1 (en) * 2012-02-29 2013-08-29 Ford Motor Company Additive fabrication technologies for creating molds for die components
CN104707940A (zh) * 2015-03-17 2015-06-17 大连理工大学 一种3d打印的汽车热冲压模具砂芯强度强化的方法
CN105689651B (zh) * 2016-02-02 2017-12-19 宁夏共享模具有限公司 一种组芯用3d打印砂芯
CN105903910B (zh) * 2016-04-22 2018-06-08 南通华东油压科技有限公司 一种整体多路阀阀体铸件铸造方法
CN107042290B (zh) * 2017-06-12 2023-01-31 南通华东油压科技有限公司 一种整体式多路阀铸件及其铸造工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201470827U (zh) * 2009-07-31 2010-05-19 太仓林飞铸造有限公司 一种悬臂式砂芯结构
CN201728336U (zh) * 2010-05-27 2011-02-02 南通华东油压科技有限公司 一种大型挖掘机超高精密多路控制主阀阀体砂型
CN105328129A (zh) * 2015-10-30 2016-02-17 宁夏共享模具有限公司 3d打印气缸盖砂芯强度的强化方法
WO2018063161A1 (en) * 2016-09-27 2018-04-05 Halliburton Energy Services, Inc. 3d printed ball valve
DE202016007939U1 (de) * 2016-12-22 2017-01-20 Innovative Fertigungstechnologie (IFT) GmbH Wasserlöslicher Formkern
CN108160921A (zh) * 2018-02-09 2018-06-15 共享智能铸造产业创新中心有限公司 一种提升3d打印砂芯脆弱部位刚度的方法
CN108480566A (zh) * 2018-03-26 2018-09-04 四川共享铸造有限公司 增材制造型芯中芯骨的置入方法
CN109014083A (zh) * 2018-08-27 2018-12-18 共享智能铸造产业创新中心有限公司 一种复杂结构铸件整体砂型的灌涂方法
CN110523922A (zh) * 2019-09-30 2019-12-03 共享智能铸造产业创新中心有限公司 一种多路阀铸件的铸造砂型
CN110918885A (zh) * 2019-12-24 2020-03-27 肇庆学院 一种加强3d打印机砂型的制造方法
CN111230049A (zh) * 2020-02-28 2020-06-05 江苏徐工工程机械研究院有限公司 一种基于3d打印的整体式液压多路阀砂芯铸造工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878343B2 (en) 2021-12-07 2024-01-23 Lockheed Martin Corporation Housing and method of preparing same using a hybrid casting-additive manufacturing process
CN117611016A (zh) * 2024-01-24 2024-02-27 中铁四局集团有限公司 基于物联网的小型混凝土预制构件全流程追溯生产系统
CN117611016B (zh) * 2024-01-24 2024-04-05 中铁四局集团有限公司 基于物联网的小型混凝土预制构件全流程追溯生产系统

Also Published As

Publication number Publication date
US20220088672A1 (en) 2022-03-24
CN111230049A (zh) 2020-06-05
CN111230049B (zh) 2021-10-12
DE112020000327T5 (de) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2021143361A1 (zh) 基于3d打印的整体式液压多路阀砂芯铸造工艺和整体式液压多路阀砂芯
WO2021147505A1 (zh) 基于3d打印的适用于整体式多路阀的铸造方法和系统
CN107931543B (zh) 一种管状薄壁钢件铸造模具及其设计方法
WO2012088861A1 (zh) 一种混凝土泵送设备用锥管及其制造方法
CN105170911B (zh) 一种复杂异型复合砂芯的制造方法
CN105772646A (zh) 一种大型装载机液压阀体铸件模具及制造方法
CN107931525A (zh) 一种用于控制熔模铸造铸件凝固的方法
CN101391283B (zh) 一种耐热钢细长盲管的铸造方法及其模型
CN201275595Y (zh) 一种耐热钢细长盲管的铸造模型
CN111482556B (zh) 发动机缸体铸件的铸造方法
CN109396345A (zh) 一种用于熔模铸造模壳局部激冷的方法
CN107052265A (zh) 一种整体式三联阀体及其铸造工艺
CN105014311B (zh) 一种三层结构双金属冶金复合管的制备方法
CN213134950U (zh) 基于3d打印的适用于整体式多路阀的铸造系统
CN113477886A (zh) 一种蒸汽轮机缸体铸件浇注系统及铸造工艺
CN206747548U (zh) 一种便携式型芯制备装置
CN207982252U (zh) 轮盘模具
CN211360602U (zh) 一种四缸曲轴箱压铸模具浇口
CN218487155U (zh) 一种六缸气缸盖用高强度精密整体砂芯
CN220049942U (zh) 一种避免浇铸温度影响铸件热裂纹的模具
CN220717713U (zh) 一种缩短模具制作周期的低成本铁型覆砂模具
CN211262718U (zh) 涡轮增压器中耐热铸铁件的试验试块
CN217142245U (zh) 一种多层排气管组件
CN115319026A (zh) 一种铝合金熔模反重力铸造型壳排气充型方法
CN212598711U (zh) 一种用于消失模铸造的便捷式内浇口

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914262

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20914262

Country of ref document: EP

Kind code of ref document: A1