WO2021143188A1 - 一种具有气液通道的气雾弹 - Google Patents

一种具有气液通道的气雾弹 Download PDF

Info

Publication number
WO2021143188A1
WO2021143188A1 PCT/CN2020/116737 CN2020116737W WO2021143188A1 WO 2021143188 A1 WO2021143188 A1 WO 2021143188A1 CN 2020116737 W CN2020116737 W CN 2020116737W WO 2021143188 A1 WO2021143188 A1 WO 2021143188A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
channel
liquid channel
aerosol bomb
Prior art date
Application number
PCT/CN2020/116737
Other languages
English (en)
French (fr)
Inventor
周兴夫
王立平
沈鼎
Original Assignee
浙江迈博高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江迈博高分子材料有限公司 filed Critical 浙江迈博高分子材料有限公司
Priority to EP20914215.7A priority Critical patent/EP4091483A4/en
Priority to US17/912,526 priority patent/US20230157360A1/en
Publication of WO2021143188A1 publication Critical patent/WO2021143188A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors

Definitions

  • the invention relates to an aerosol bomb with a gas-liquid channel, in particular to an aerosol bomb with a gas-liquid channel used in the application fields of liquid electric mosquito coils, electric aromatherapy, electronic cigarettes, and drug solution atomization.
  • the technology of distributing liquid through ultrasonic atomization or electric heating is widely used in the fields of liquid mosquito coils, aromatherapy and electronic cigarettes.
  • the traditional method is to use a core rod to siphon the liquid to the top, and use heater vaporization or ultrasonic atomization to volatilize the liquid on the top of the core rod.
  • the upward siphoning speed of the core rod is usually difficult to keep up with the atomization speed of the liquid. Therefore, this technology requires a large amount of organic solvents to dilute the active ingredients with higher viscosity to increase the siphoning speed of the liquid.
  • the use of large amounts of organic solvents is not only a waste of resources, but also harmful to human health. If the concentrated liquid with higher viscosity can be directly distributed, not only the waste of resources can be reduced, but the device can be miniaturized, and the aerosol bomb with gas-liquid channel can be more beautiful and easy to carry.
  • Electronic atomization cigarettes use atomization to ingest nicotine or nicotine salt, this method does not produce tar.
  • the common technology in electronic atomization cigarettes is to heat the atomizing core directly connected with the e-liquid to atomize the nicotine and the solvent together. This technology is prone to e-liquid leakage and poor consumer experience due to the lack of precise control over the e-liquid export. .
  • the present invention proposes an aerosol bomb with a gas-liquid channel.
  • the aerosol bomb includes a liquid storage element, a heating element, and a gas-liquid channel.
  • the channel is in communication, the gas-liquid channel includes at least one fluid cavity that axially penetrates the gas-liquid channel, and the gas-liquid channel further includes a fluid core.
  • the diameter of the largest inscribed circle of the smallest cross-section in the fluid channel is 0.05 mm to 1 mm.
  • gas-liquid channel is directly connected with the heating element.
  • a buffer liquid storage is provided in the atomization chamber.
  • gas-liquid channel is in communication with the heating element through a buffer liquid storage.
  • the buffer storage liquid is made of fiber or sponge.
  • the buffer storage liquid includes a buffer storage high-density portion and a buffer storage low-density portion.
  • the atomization chamber is provided with an air inlet.
  • the aerosol bomb includes a condensate absorption element.
  • the fluid core is made of fiber bonding.
  • the aerosol bomb with a gas-liquid channel of the present invention is suitable for the dissemination of various liquids, such as the atomization and distribution of e-cigarette liquid, the atomization and distribution of cannabidiol, the atomization and distribution of drug solutions, and it is also suitable for electric mosquito coils or electric mosquito coils. Dissemination of electric aromatherapy liquid.
  • the aerosol bomb with a gas-liquid channel of the present invention can uniformly control liquid emission, has good leakage resistance, compact structure and large liquid carrying capacity.
  • Figure 1a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a first embodiment of the present invention
  • 1b is a schematic cross-sectional view of the gas-liquid passage in the aerosol bomb with the gas-liquid passage according to the first embodiment
  • Fig. 1c is another schematic cross-sectional view of the gas-liquid passage in the aerosol bomb with the gas-liquid passage according to the first embodiment
  • Figure 2a is a schematic structural view of an aerosol bomb with a gas-liquid channel according to a second embodiment of the present invention
  • 2b is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the second embodiment
  • 2c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the second embodiment
  • Fig. 3a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a third embodiment of the present invention.
  • 3b is a schematic cross-sectional view of the gas-liquid passage in the aerosol bomb with gas-liquid passage according to the third embodiment
  • FIG. 4a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a fourth embodiment of the present invention.
  • 4b is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the fourth embodiment
  • 4c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the fourth embodiment
  • Figure 5a is a schematic structural view of an aerosol bomb with a gas-liquid channel according to a fifth embodiment of the present invention.
  • 5b is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with gas-liquid passage according to the fifth embodiment
  • 5c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the fifth embodiment
  • Fig. 6a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a sixth embodiment of the present invention.
  • 6b is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the sixth embodiment
  • 6c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the sixth embodiment
  • Fig. 7a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a seventh embodiment of the present invention.
  • Fig. 7b is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the seventh embodiment
  • Fig. 7c is a schematic cross-sectional view of the gas-liquid channel of the aerosol bomb with the gas-liquid channel according to the seventh embodiment
  • Figure 8a is a schematic structural view of an aerosol bomb with a gas-liquid channel according to an eighth embodiment of the present invention.
  • FIG. 8b is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the eighth embodiment
  • 8c is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the eighth embodiment
  • Figure 9a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a ninth embodiment of the present invention.
  • 9b is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the ninth embodiment
  • 9c is a schematic cross-sectional view of the gas-liquid channel of the aerosol bomb with the gas-liquid channel according to the ninth embodiment
  • 9d is a schematic cross-sectional view of the second liquid passage of the aerosol bomb with a gas-liquid passage according to the ninth embodiment
  • Fig. 1a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a first embodiment of the present invention
  • Fig. 1b is a schematic cross-sectional view of a gas-liquid channel in an aerosol bomb with a gas-liquid channel according to the first embodiment
  • 1c is another schematic cross-sectional view of the gas-liquid passage in the aerosol bomb with the gas-liquid passage according to the first embodiment.
  • an aerosol bomb with a gas-liquid channel the aerosol bomb 800 includes a liquid storage element 100, a heating element and a gas-liquid channel 830, the liquid storage element 100 and the heating The components are connected by a gas-liquid channel 830.
  • the gas-liquid channel 830 includes at least one fluid cavity 831 that axially penetrates the gas-liquid channel 830, and the gas-liquid channel 830 also includes a fluid core 832.
  • the liquid storage element 100 is a component that stores the dispersed liquid. Different liquids can be stored in it according to the purpose of the application, such as essential oils for aromatherapy, or mosquito repellents for liquid mosquito coils, e-cigarettes, cannabidiol solutions, or medicines for aerosols ⁇ Liquid and so on.
  • the cross-section of the liquid storage element 100 can be in various shapes, such as circular, oval, rectangular, etc., and can also be a combination of various geometric shapes.
  • the liquid in the liquid storage element 100 can be injected from the gas-liquid channel, or an upper cover is provided for the liquid storage element 100, and the upper cover is closed after the liquid is filled.
  • the aerosol bomb 800 further includes an aerosol bomb housing 810 having a bottom plate 815 and a top plate 818, and the top plate 818 is provided with a top plate aerosol hole 819.
  • the liquid storage element 100 is arranged in the aerosol shell 810.
  • the liquid storage element 100 may have a liquid storage element through hole 130 that axially penetrates the liquid storage element 100.
  • the liquid storage element through hole 130 can be used as an aerosol channel of the aerosol bomb 800.
  • the aerosol channel communicates with the atomization chamber 934 and the ceiling aerosol hole 819, and its function is to lead the aerosol in the atomization chamber 934 to the ceiling aerosol hole 819.
  • the aerosol channel can also be integrally formed with the liquid storage element 100, and the liquid storage element through hole 130 is used as the aerosol channel, or it can be separately formed from plastic, metal, ceramic or glass and assembled into the aerosol bomb 800.
  • the top plate aerosol hole 819 is a component that escapes the aerosol bomb 800 after being vaporized or atomized by the emitted liquid.
  • the top plate aerosol hole 819 may be made of plastic, ceramic, metal, or the like.
  • the top plate aerosol hole 819 communicates with the atomizing chamber 934 through the aerosol channel.
  • oil-absorbing cotton can be installed in the aerosol channel or the top aerosol hole 819.
  • the oil-absorbing cotton is a porous material that can absorb condensate. After the liquid in the electronic cigarette is atomized, it will partially condense and form a condensate when passing through the aerosol channel.
  • the absorbent cotton can absorb the condensate before the aerosol enters the user's mouth, thereby improving the smoking experience.
  • the atomization part of the present invention includes an atomization chamber 934 and a heating element.
  • the atomization chamber 934 is a cavity where liquid is vaporized or atomized.
  • the atomization chamber 934 is provided in the area between the bottom of the liquid storage element 100 and the bottom plate 815.
  • a heating element is provided in the atomization chamber 934, and an air inlet hole may be provided as required, for example, a bottom plate through hole 816 is provided on the bottom plate 815 as the air inlet hole.
  • the liquid is vaporized or atomized by the heating element in the atomization chamber 934, and escapes the aerosol bomb 800 through the through hole 130 of the liquid storage element and the aerosol hole 819 of the top plate.
  • the heating element of the present invention generally refers to a component that can vaporize or atomize liquid according to the requirements of use.
  • the heating element includes a heating core 930, such as an electric heating wire wound on glass fiber or cotton, a porous ceramic with a pre-embedded electric heating wire, and a ceramic printed with a thick film heating element.
  • the heating element may also include a liquid guiding element 200, such as glass fiber or cotton wound by an electric heating wire, a porous ceramic non-woven fabric wrapped in a pre-embedded electric heating wire, and the like.
  • the heating element also includes a wire 933.
  • the heating element is connected to a power source (not shown) through a wire 933.
  • Electric heating elements can be used: for example, the heating wire is wound on a bundle of glass fiber or cotton rope, or cotton or cotton non-woven cloth is wound on the heating wire, or the heating wire is pre-embedded in the ceramic, or Thick film heating elements are printed on the ceramic surface, or positive temperature coefficient ceramic heating elements are used; ultrasonic heating elements or other types of heating elements can also be used. According to application requirements, the heating element can be made into various shapes suitable for assembly.
  • the bottom of the atomization chamber 934 may be provided with a supporting member 935, and the supporting member 935 may be made of a material such as silica gel to enhance the contact and communication between the gas-liquid channel 830 and the heating element.
  • the supporting member 935 can be designed to be made of a material that has the functions of buffering and storing liquid.
  • the atomizing chamber 934 can also be designed to store part of the liquid, which can contain the liquid derived from the liquid storage element 100, thereby avoiding Liquid leaks to the outside world.
  • a buffer storage liquid (not shown) can be provided in the atomization chamber 934, and the gas-liquid channel 830 and the heating element can be respectively connected with the buffer storage liquid.
  • the buffer liquid storage can store part of the liquid derived from the liquid storage element 100, and can also conduct liquid between the gas-liquid channel 830 and the heating element.
  • the aerosol bomb 800 has an abnormal situation during storage, transportation or use, and the buffer storage liquid can absorb the liquid derived from the liquid storage element 100, reducing the risk of liquid leakage to the outside.
  • the supporting member 935 and the buffer and storage liquid can be made of fibers.
  • the fibers can be natural fibers such as cotton, modified products of natural fibers such as cellulose acetate fibers, or synthetic fibers such as polyester fibers, polylactic acid fibers, and Skin-core structure polyethylene/polypropylene bi-component fiber, etc.
  • the fiber can be bonded to form a buffer liquid storage in a desired shape, which is convenient to assemble into the aerosol bomb 800.
  • the supporting member 935 and the buffer liquid storage can also be made of sponge, such as polyurethane sponge, polyvinyl alcohol sponge, and the like.
  • the buffer storage liquid can be set as a high-density part and a low-density part, so as to better control the drainage of the liquid in the liquid storage element 100 and improve the liquid leakage prevention capability.
  • the liquid storage element 100 and the heating element are connected by a gas-liquid channel 830.
  • the gas-liquid channel 830 includes at least one fluid cavity 831 that axially penetrates the gas-liquid channel 830, and the gas-liquid channel 830 further includes a fluid core 832.
  • the gas-liquid channel 830 is provided in the atomization chamber 934.
  • a gas-liquid channel 830 is shown in Figure 1b.
  • the gas-liquid channel 830 includes a gas-liquid channel outer tube 834, a fluid core 832 arranged in the gas-liquid channel outer tube 834, a gas-liquid channel outer tube 834, and a fluid
  • a gas-liquid channel 830 of another structure is shown in FIG. 1c.
  • the gas-liquid channel 830 includes a gas-liquid channel outer tube 834, a fluid core 832 disposed in the gas-liquid channel outer tube 834, and a fluid cavity 831.
  • the gas-liquid channel outer tube 834 is tightly fitted with the fluid core 832.
  • a plurality of grooves axially penetrating the gas-liquid channel 830 are formed on the outer periphery of the fluid core 832. The grooves and the gas-liquid channel outer tube 834 together form a fluid Cavity 831.
  • the fluid channel 831 can be used as a gas channel or a liquid channel, and at least one of the fluid channels 831 is used as a gas channel.
  • the fluid core 832 absorbs enough liquid, and the liquid on the surface of the fluid core 832 liquid seals the gas passages.
  • the vacuum in the liquid storage element 100 increases, the liquid in the liquid-sealed gas channel is absorbed by the fluid core 832, part or all of the liquid seal of the fluid channel 831 disappears, and the air in the atomization chamber 934
  • the liquid storage element 100 enters the liquid storage element 100 through the gas channel, and the vacuum degree in the liquid storage element 100 is reduced to an equilibrium state, the gas channel is again liquid-sealed.
  • the diameter of the largest inscribed circle of the smallest cross-section in the fluid channel 831 is 0.05mm-1mm, and the "mm" in this text refers to millimeters.
  • the fluid cavity 831 with a smaller inscribed circle diameter serves as a gas channel with stronger liquid sealing ability, and is suitable for applications with lower viscosity and smaller liquid output.
  • the liquid sealing ability is weaker, and it is suitable for applications with higher viscosity or larger liquid output.
  • the maximum inscribed circle diameter of the smallest cross-section of the fluid channel 831 is 0.05mm-1mm, such as 0.05mm, 0.08mm, 0.2mm, 0.5mm, 0.6mm, 0.8mm, 1mm.
  • the gas channel is sealed by the liquid on the peripheral surface of the fluid core 832 due to capillary force.
  • the gas-liquid channel 830 may directly communicate with the heating element, or the heating element may indirectly communicate with the gas-liquid channel through the buffer liquid storage, so that the liquid is conducted from the liquid storage element 100 to the heating element through the gas-liquid channel.
  • the fluid core 832 is usually set as a liquid channel, and the fluid core 832 is made of fiber bonding.
  • the polyester fiber is bonded to the fluid core 832 with a binder, or the two-component fiber is thermally bonded to the fluid. Core 832 and so on.
  • the fluid core 832 may participate in forming the gas channel.
  • the liquid When the liquid is atomized, the liquid is continuously replenished from the liquid storage element 100 to the heating element or its surroundings through the gas-liquid channel 830.
  • the external control device instructs the heating element to work, the liquid on the heating element is atomized, and the aerosol bomb 800 escapes through the aerosol channel and the top plate aerosol hole 819, while the liquid in the liquid storage element 100 passes through the gas-liquid channel 830 The liquid channel is led out and supplemented to the heating element.
  • FIG. 2a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a second embodiment of the present invention
  • FIG. 2b is a schematic cross-sectional view of a gas-liquid channel in an aerosol bomb with a gas-liquid channel according to the second embodiment
  • Fig. 2c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the second embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the cross-section and cross-section of the gas-liquid channel 830 are shown in Figs. 2b and 2c, respectively.
  • the bottom of the liquid storage element 100 is provided with a short gas-liquid channel outer tube 834, the fluid core 832 is inserted into the gas-liquid channel outer tube 834, and three gas-liquid channel reinforcements are provided between the fluid core 832 and the gas-liquid channel outer tube 834 Tendons 833.
  • a fluid cavity 831 is formed between the inner wall of the gas-liquid channel outer tube 834, the gas-liquid channel reinforcing rib 833 and the outer wall of the fluid core 832.
  • the maximum inscribed circle diameter of the smallest cross section of the fluid cavity 831 is 0.5 mm, the fluid cavity 831 can be used as a gas channel, and the liquid channel is a fluid core 832.
  • the heating element includes a heating core 930 and a liquid guiding element 200.
  • the heating core 930 is an electric heating wire
  • the liquid guiding element 200 is a glass fiber bundle or cotton rope
  • the glass fiber bundle or cotton rope is partially wound by the electric heating wire.
  • the liquid guiding element 200 and the gas-liquid channel 830 are in direct contact in the atomizing chamber 934, so that the liquid can be directly conducted from the liquid storage element 100 to the liquid guiding element 200 of the heating element through the gas-liquid channel 830.
  • the atomization chamber 934 is also provided with a supporting member 935 for supporting the heating element.
  • the two ends of the liquid guiding element 200 are bent and then supported by the supporting member 935.
  • the aerosol bomb 800 of this embodiment is suitable for applications such as electronic cigarettes, and the principle of liquid extraction and atomization is similar to that of the first embodiment, and will not be repeated here.
  • the supporting member 935 of this embodiment is made of silica gel, and the supporting member 935 is designed into a special shape.
  • the cross-sectional view of the supporting member 935 is two symmetrical "L" shapes, so that a "sag” is formed in the atomization chamber 934.
  • the aerosol bomb 800 may include a condensate absorption element 400.
  • a condensate absorbing element 400 can be provided between the top plate 818 and the liquid storage element 100, which can absorb the condensate in the aerosol and further improve the user experience.
  • the aerosol bomb 800 of this embodiment is provided as a contact connection end at the end of the wire 933, which is convenient for the aerosol bomb 800 to be connected to the control device in a contact manner when in use.
  • the maximum inscribed circle diameter of the minimum cross section of the fluid channel 831 can be set to be less than 0.5mm, such as 0.08mm or 0.25mm, or greater than 0.5mm , Such as 0.8mm or 1mm.
  • factors such as the cross-sectional area and porosity of the fluid core 832 as a liquid channel can also be set to increase or decrease the liquid conduction velocity.
  • the atomization speed is also related to factors such as the size of the glass fiber bundle and the heating power.
  • Fig. 3a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a third embodiment of the present invention
  • Fig. 3b is a schematic cross-sectional view of a gas-liquid channel in an aerosol bomb with a gas-liquid channel according to the third embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the heating element in this embodiment includes a heating core 930 and a liquid guiding element 200.
  • the heating core 930 is a positive temperature coefficient thermistor heating element (PTC heating element for short), and the liquid guiding element 200 is made of glass fiber, Made of cotton or polyester fiber.
  • the gas-liquid channel 830 in this embodiment is similar to the second embodiment, and the cross section is as shown in FIG. 3b.
  • the maximum inscribed circle diameter of the smallest cross-section of the fluid channel 831 is set to 0.05mm; if the liquid is a high-viscosity essential oil or mosquito repellent, the smallest cross-section of the fluid channel 831
  • the maximum inscribed circle diameter can be set to 0.1mm, 0.2mm, 0.5mm, or even 1mm, so that the gas can smoothly enter the liquid storage element 100 when the liquid is led out.
  • This embodiment is particularly suitable for portable aerosol bombs 800 such as miniature aroma diffusers and miniature liquid mosquito coils.
  • the upper end of the liquid storage element 100 can be used as a top plate. It is also possible to fix the heating core 930 in an external control device, so as to reuse the heating core 930 and reduce the use cost.
  • FIG. 4a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a fourth embodiment of the present invention
  • FIG. 4b is a schematic cross-sectional view of a gas-liquid channel in an aerosol bomb with a gas-liquid channel according to the fourth embodiment
  • 4c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the fourth embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • a fluid core 832 with an axial groove on the outer peripheral wall is inserted into a short tube at the bottom of the liquid storage element 100 to form a gas-liquid channel 830, and the short tube forms an outer tube 834 for the gas-liquid channel.
  • the channel formed by the groove of the fluid core 832 and the inner wall of the short tube at the bottom of the liquid storage element 100 constitutes a fluid cavity 831, and the fluid core 832 as a liquid channel is made of fiber bonding.
  • the maximum inscribed circle diameter of the smallest cross section of the fluid cavity 831 is 0.2 mm. If the liquid viscosity is high, the maximum inscribed circle diameter of the minimum cross section of the fluid cavity 831 can be appropriately increased.
  • a buffer liquid storage 835 is provided in the atomization chamber 934.
  • the buffer liquid storage 835 is made of fiber or sponge, for example, a polyurethane sponge or a polyethylene/polypropylene bicomponent fiber bonded with a sheath-core structure.
  • the gas-liquid channel 830 communicates with the heating element through the buffer liquid storage 835.
  • the additional benefit brought by the buffer liquid storage 835 is that the heating element can obtain liquid more stably, improve the stability of atomization, and improve the user experience.
  • the buffer storage liquid 835 partially saturated with the absorbing liquid still has partial liquid absorption performance, so the aerosol bomb 800 has better leak-proof performance.
  • the buffer storage liquid 835 has sufficient contact with the liquid guiding element 200. If the liquid is rapidly atomized in a short period of time (commonly known as "sniffing"), the buffer storage liquid The liquid in the 835 can be quickly replenished to the liquid guiding element 200, which reduces the risk of the liquid guiding element 200 of the heating element being burnt due to a temporary lack of liquid.
  • a condensate absorbing element 400 is provided at the upper end of the aerosol channel to absorb the condensate in the aerosol and improve the use experience.
  • Fig. 5a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a fifth embodiment of the present invention
  • Fig. 5b is a schematic cross-sectional view of the gas-liquid channel of an aerosol bomb with a gas-liquid channel according to the fifth embodiment
  • 5c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the fifth embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • a fluid core 832 with an axial groove on the outer peripheral wall is inserted into a short tube at the bottom of the liquid storage element 100 to form a gas-liquid channel 830, and the short tube forms an outer tube 834 for the gas-liquid channel.
  • the fluid core 832 is a liquid channel
  • the channel formed by the groove of the fluid core 832 and the inner wall of the gas-liquid channel outer tube 834 is a fluid cavity 831, and the fluid cavity 831 serves as a gas channel.
  • the diameter of the largest inscribed circle of the smallest cross section of the fluid cavity 831 is 1 mm, which is suitable for the atomization of high-viscosity liquids, such as the atomization of cannabidiol. If the viscosity of the liquid is low, the diameter of the largest inscribed circle of the smallest cross section of the fluid channel 831 can be appropriately reduced, such as 0.8 mm or 0.6 mm.
  • a support member 935 made of polyurethane sponge or cotton is provided at the bottom of the atomization chamber 934, and the support member 935 has the function of buffering and storing liquid.
  • FIG. 6a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a sixth embodiment of the present invention
  • FIG. 6b is a schematic cross-sectional view of a gas-liquid channel in an aerosol bomb with a gas-liquid channel according to the sixth embodiment
  • Fig. 6c is a schematic cross-sectional view of the gas-liquid channel in the aerosol bomb with the gas-liquid channel according to the sixth embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the buffer liquid storage 835 may include a buffer liquid storage high density part 8351 and a buffer liquid storage low density part 8352.
  • a buffer storage liquid 835 is provided in this embodiment, including a buffer storage liquid high-density portion 8351 close to the heating element and a buffer storage low-density portion 8352 located on the outer periphery.
  • a gap is provided between the density part 8351 and the bottom of the liquid storage element 100.
  • a cylindrical short tube with gas-liquid channel reinforcing ribs 833 on the inner wall extends from the bottom of the liquid storage element 100. The cylindrical short tube is used as the gas-liquid channel outer tube 834, and the fluid core 832 is inserted into the gas-liquid channel outer tube 834 to form a gas ⁇ channel 830.
  • the fluid core 832 is a liquid channel
  • the gas-liquid channel outer tube 834, the gas-liquid channel reinforcing rib 833 and the fluid core 832 form a fluid cavity 831
  • the fluid cavity 831 is used as a gas channel.
  • the end surface of the gas-liquid channel outer tube 834 abuts against the buffer liquid storage high-density part 8351
  • the fluid core 832 is inserted into the buffer liquid storage high-density part 8351
  • the maximum inscribed circle diameter of the smallest cross section of the fluid cavity 831 is 0.8 mm.
  • the heating element in this embodiment includes a heating core 930 without a liquid guiding element, and the heating core 930 is a porous ceramic with a pre-embedded heating wire.
  • the liquid in the liquid storage element 100 is conducted to the buffer liquid storage high-density portion 8351 through the liquid channel of the gas-liquid channel 830, and is further conducted to the porous ceramic.
  • Outside air enters the liquid storage element 100 from the gas channel of the gas-liquid channel 830, and the capillary force gradually decreases after the high-density buffer liquid storage portion 8351 absorbs the liquid until the liquid is no longer exported from the liquid storage element 100, and the system reaches equilibrium.
  • Increasing or decreasing the maximum inscribed circle diameter of the minimum cross-section of the fluid cavity 831 can increase or decrease the liquid content in the buffered liquid storage high-density portion 8351 when the system is in equilibrium.
  • the heating element heats up, the liquid is atomized, and the aerosol is emitted to the aerosol hole 819 of the ceiling through the aerosol channel.
  • the heating element obtains liquid from the buffer liquid storage high density part 8351, the liquid content in the buffer liquid storage high density part 8351 decreases, capillary force rises, and the liquid is again led out from the liquid storage element 100 to the buffer liquid storage high density part 8351 through the liquid channel. This process is repeated until the liquid in the liquid storage element 100 is used up. If you continue to use the aerosol bomb 800, the liquid in the buffer storage liquid 835 will continue to be transferred to the porous ceramic and atomized, but the amount of liquid will gradually decay until it becomes unusable.
  • This embodiment has better leak-proof performance. This is because normally the low-density buffer storage liquid part 8352 does not absorb liquid, but when the excess liquid is discharged and exceeds the capacity of the buffer storage liquid high-density part 8351, the buffer liquid storage low-density part 8352 can absorb the excess liquid.
  • Fig. 7a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a seventh embodiment of the present invention
  • Fig. 7b is a schematic cross-sectional view of the gas-liquid channel of an aerosol bomb with a gas-liquid channel according to the seventh embodiment
  • 7c is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the seventh embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • a buffer storage liquid 835 is provided in the atomization chamber 934 of this embodiment.
  • the buffer storage liquid 835 includes a buffer storage liquid low-density portion 8352 close to the liquid storage element 100 and a buffer storage liquid low-density portion 8352 located below the buffer liquid storage low-density portion 8352 Buffer storage liquid high-density part 8351.
  • a cylindrical short tube with gas-liquid channel reinforcing ribs 833 on the inner wall extends from the bottom of the liquid storage element 100. The cylindrical short tube is used as the gas-liquid channel outer tube 834, and the fluid core 832 is inserted into the gas-liquid channel outer tube 834 to form a gas ⁇ channel 830.
  • the fluid core 832 is a liquid channel
  • the gas-liquid channel outer tube 834, the gas-liquid channel reinforcing rib 833 and the fluid core 832 form a fluid cavity 831
  • the fluid cavity 831 is used as a gas channel.
  • the diameter of the largest inscribed circle of the smallest cross section of the fluid cavity 831 is 0.2 mm.
  • the heating element is a glass fiber bundle wound by resistance wires, and both ends of the glass fiber bundle are sandwiched between the buffer liquid storage high density part 8351 and the buffer liquid storage low density part 8352 or embedded in the buffer liquid storage high density part 8351.
  • the liquid in the liquid storage element 100 is conducted to the liquid guiding element 200 of the heating element and the high-density portion 8351 of the buffer liquid storage through the liquid channel of the gas-liquid channel 830, and external air enters the liquid storage element from the gas channel 100.
  • the high-density buffer storage liquid storage high-density part 8351 absorbs the liquid, the capillary force gradually decreases until the liquid is no longer exported from the liquid storage element 100, the gas channel is liquid-sealed, and the system reaches equilibrium.
  • the heating element heats the liquid in the glass fiber bundle to atomize and radiate through the aerosol channel and the aerosol hole 819 of the top plate.
  • liquid is replenished from the liquid storage element 100 to the glass fiber bundle through the liquid channel, and the gas in the atomization chamber 934 enters the liquid storage element 100 through the gas channel. This process is repeated until the liquid in the liquid storage element 100 is used up.
  • the liquid storage element 100 contains a particularly viscous liquid such as glycerol, the maximum inscribed circle diameter of the smallest cross-section of the gas channel can be increased to 0.3mm or 0.5mm, so that the liquid seal in the gas channel can be opened smoothly. Make the atomization proceed smoothly.
  • the maximum inscribed circle diameter of the smallest cross section of the gas channel can be appropriately reduced, for example, 0.1 mm, so that the gas channel can obtain a suitable liquid seal strength and prevent liquid leakage.
  • a condensate absorbing element 400 is provided between the top plate aerosol hole 819 and the liquid storage element 100 to absorb the condensate in the aerosol and improve the use experience.
  • FIG. 8a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to an eighth embodiment of the present invention
  • FIG. 8b is a schematic cross-sectional view of the gas-liquid channel of an aerosol bomb with a gas-liquid channel according to the eighth embodiment
  • 8c is a schematic cross-sectional view of the gas-liquid passage of the aerosol bomb with the gas-liquid passage according to the eighth embodiment.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 of this embodiment is pipe-shaped, and includes an aerosol channel 1303 and an aerosol outlet 1301.
  • the aerosol channel 1303 and the aerosol outlet 1301 are arranged on the side of the atomization chamber 934.
  • a cylindrical short tube with gas-liquid channel reinforcing ribs 833 on the inner wall extends from the bottom of the liquid storage element 100.
  • the cylindrical short tube is used as the gas-liquid channel outer tube 834, and the fluid core 832 is inserted into the gas-liquid channel outer tube 834 to form a gas ⁇ channel 830.
  • the fluid core 832 is a liquid channel
  • the gas-liquid channel outer tube 834, the gas-liquid channel reinforcing rib 833 and the fluid core 832 form a fluid cavity 831
  • the fluid cavity 831 is used as a gas channel.
  • the maximum inscribed circle diameter of the smallest cross-section of the fluid channel 831 is 0.3mm, and the maximum inscribed circle diameter of the smallest cross-section of the fluid channel 831 can be appropriately increased or decreased according to the viscosity and use requirements of the liquid to obtain a suitable gas The amount of fog.
  • the heating core 930 of the heating element is a ceramic printed with a thick film heating element, and there is no liquid guiding element in the heating element.
  • the liquid in the liquid storage element 100 is directly conducted to the heating core 930 via the fluid core 832.
  • the heating element heats up during operation, the liquid at the contact portion between the fluid core 832 and the heating element is atomized and dispersed, and the liquid on the fluid core 832 is replenished from the liquid storage element 100.
  • the principle is similar to the first embodiment, and will not be repeated this time. .
  • Fig. 9a is a schematic structural diagram of an aerosol bomb with a gas-liquid channel according to a ninth embodiment of the present invention
  • Fig. 9b is a schematic cross-sectional view of the gas-liquid channel of an aerosol bomb with a gas-liquid channel according to the ninth embodiment
  • 9c is a schematic cross-sectional view of the gas-liquid channel of the aerosol bomb with a gas-liquid channel according to the ninth embodiment
  • FIG. 9d is a schematic cross-sectional view of the second liquid channel of the aerosol bomb with a gas-liquid channel according to the ninth embodiment .
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • a gas-liquid channel 830 is provided at the bottom of the liquid storage element 100.
  • the gas-liquid channel 830 is formed by inserting a short tube at the bottom of the liquid storage element 100 through a fluid core 832 with an axial groove on the outer peripheral wall.
  • the tube forms a gas-liquid channel outer tube 834.
  • the fluid core 832 is a liquid channel
  • the channel formed by the groove of the fluid core 832 and the inner wall of the gas-liquid channel outer tube 834 is a fluid cavity 831
  • the fluid cavity 831 serves as a gas channel.
  • the maximum inscribed circle diameter of the smallest cross section of the fluid channel 831 is 0.2 mm. According to the viscosity of the liquid, the maximum inscribed circle diameter of the minimum cross section of the fluid channel 831 can be appropriately increased or reduced.
  • the bottom of the liquid storage element 100 is also provided with a second liquid channel 836, the second liquid channel 836 is a small groove, its cross section is shown in Figure 9d, the second liquid channel 836 and the buffer liquid storage arranged in the atomization chamber 934 835 connected.
  • the heating element of this embodiment includes a heating core 930 and a liquid guiding element 200.
  • the liquid guiding element 200 is cotton or glass fiber, and the heating core 930 is an electric heating wire wound on the liquid guiding element 200.
  • the two ends of the liquid guiding element 200 are sandwiched between the buffer liquid 835 and the support member 935 made of silica gel.
  • the working principle of this embodiment is similar to that of the first embodiment.
  • the advantage of this setting is that the conduction of the liquid is more stable and reliable.
  • the aerosol bomb with a gas-liquid channel of the present invention is suitable for applications such as liquid mosquito coils, aromatherapy and electronic cigarettes, and can also be used for quantitative atomization of inhaled liquid medicines in the medical field.
  • the aerosol bomb has a compact structure, good leakage resistance, and can evenly control liquid release. If an airflow sensor is installed in the external control device, the atomization of the liquid can be controlled according to the airflow, which is more convenient to use.

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种具有气液通道(830)的气雾弹(800),气雾弹(800)包括储液元件(100)、加热元件和气液通道(830),储液元件(100)和加热元件之间由气液通道(830)连通,气液通道(830)包括至少一个轴向贯穿气液通道(830)的流体腔道(831),且气液通道(830)还包括流体芯体(832)。具有气液通道(830)的气雾弹(800),能均匀地控制液体散发、防漏性好、结构紧凑。

Description

一种具有气液通道的气雾弹 技术领域
本发明涉及一种具有气液通道的气雾弹,特别涉及用于液体电蚊香、电香薰、电子烟和药物溶液雾化等应用领域中的具有气液通道的气雾弹。
背景技术
通过超声波雾化或电加热来散发液体的技术被广泛用于液体蚊香、香薰和电子烟等领域。在液体蚊香和香薰中,传统的方法是用芯棒将液体虹吸至顶部,用加热器气化或超声波雾化将芯棒顶部的液体挥发。对精油等高粘度液体,芯棒向上虹吸液体的速度通常难以跟上液体的雾化速度,因此,这种技术需要用大量有机溶剂将粘度较高的有效成份稀释,以提高液体的虹吸速度。大量有机溶剂的使用不仅浪费资源,并且有害人体健康。如果能将较高粘度的浓缩液直接散发,不仅可以减少资源浪费,还可以使装置小型化,使具有气液通道的气雾弹更美观、便于携带。
使用传统烟草的时候,吸入燃烧烟草时产生的焦油等有害物质,对健康影响较大。电子雾化烟采用雾化来摄入尼古丁或尼古丁盐,这种方法不产生焦油。电子雾化烟中常见的技术是加热与烟油直接连通的雾化芯,使尼古丁与溶剂一起雾化,这种技术由于对烟油导出缺乏精密控制,容易发生烟油泄漏,消费体验较差。
发明内容
为解决现有技术中存在的问题,本发明提出了一种具有气液通道的气雾弹,气雾弹包括储液元件、加热元件和气液通道,储液元件和加热元件之间由气液通道连通,气液通道包括至少一个轴向贯穿气液通道的流体腔道,且气液通道还包括流体芯体。
进一步,流体腔道中最小横截面的最大内切圆直径为0.05mm到1mm。
进一步,气液通道与加热元件直接连通。
进一步,雾化室中设置缓冲储液体。
进一步,气液通道与加热元件通过缓冲储液体连通。
进一步,缓冲储液体由纤维或者海绵制成。
进一步,缓冲储液体包括缓冲储液体高密度部和缓冲储液体低密度部。
进一步,雾化室设置进气孔。
进一步,气雾弹包括冷凝液吸收元件。
进一步,流体芯体由纤维粘结制成。
本发明的具有气液通道的气雾弹适合于各种液体的散发,比如电子烟烟液的雾化散发,大麻二酚的雾化散发,药物溶液的雾化散发,还适合于电蚊香或电香薰液体的散发。本发明的具有气液通道的气雾弹能均匀地控制液体散发、防漏性好、结构紧凑、载液量大。为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为根据本发明第一实施例的具有气液通道的气雾弹的结构示意图;
图1b为根据第一实施例的具有气液通道的气雾弹中气液通道的横截面示意图;
图1c为根据第一实施例的具有气液通道的气雾弹中气液通道的另一种横截面示意图;
图2a为根据本发明第二实施例的具有气液通道的气雾弹的结构示意图;
图2b为根据第二实施例的具有气液通道的气雾弹中的气液通道的横截面示意图;
图2c为根据第二实施例的具有气液通道的气雾弹中的气液通道的剖面示意图;
图3a为根据本发明第三实施例的具有气液通道的气雾弹的结构示意图;
图3b为根据第三实施例的具有气液通道的气雾弹中气液通道的横截面示意图;
图4a为根据本发明第四实施例的具有气液通道的气雾弹的结构示意图;
图4b为根据第四实施例的具有气液通道的气雾弹的气液通道的横截面示意图;
图4c为根据第四实施例的具有气液通道的气雾弹中的气液通道的剖面示意图;
图5a为根据本发明第五实施例的具有气液通道的气雾弹的结构示意图;
图5b为根据第五实施例的具有气液通道的气雾弹的气液通道的横截面示意图;
图5c为根据第五实施例的具有气液通道的气雾弹中的气液通道的剖面示意图;
图6a为根据本发明第六实施例的具有气液通道的气雾弹的结构示意图;
图6b为根据第六实施例的具有气液通道的气雾弹中的气液通道的横截面示意图;
图6c为根据第六实施例的具有气液通道的气雾弹中的气液通道的剖面示意图;
图7a为根据本发明第七实施例的具有气液通道的气雾弹的结构示意图;
图7b为根据第七实施例的具有气液通道的气雾弹的气液通道的横截面示意图;
图7c为根据第七实施例的具有气液通道的气雾弹的气液通道的剖面示意图;
图8a为根据本发明第八实施例的具有气液通道的气雾弹的结构示意图;
图8b为根据第八实施例的具有气液通道的气雾弹的气液通道的横截面示意图;
图8c为根据第八实施例的具有气液通道的气雾弹的气液通道的剖面示意图;
图9a为根据本发明第九实施例的具有气液通道的气雾弹的结构示意图;
图9b为根据第九实施例的具有气液通道的气雾弹的气液通道的横截面示意图;
图9c为根据第九实施例的具有气液通道的气雾弹的气液通道的剖面示意图;
图9d为根据第九实施例的具有气液通道的气雾弹的第二液体通道的横截面示意图;
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1a为根据本发明第一实施例的具有气液通道的气雾弹的结构示意图;图1b为根据第一实施例的具有气液通道的气雾弹中气液通道的横截面示意图;图1c为根据第一实施例的具有气液通道的气雾弹中气液通道的另一种横截面示意图。
如图1a、1b和1c所示,根据本发明第一实施例的具有气液通道的气雾弹,气雾弹800包括储液元件100、加热元件和气液通道830,储液元件100和加热元件之间由气液通道830连通,气液通道830包括至少一个轴向贯穿气液通道830的流体腔道831,且气液通道830还包括流体芯体832。
<储液元件>
本发明所述的气雾弹800中,储液元件100是储存被散发液体的部件。根据应用的目的可以在其中储存不同的液体,如用于香薰的精油,或用于液体蚊香的驱蚊剂,用于电子烟的烟油,大麻二酚溶液,或用于气雾剂的药液等。储液元件100的横截面可以为多种形状,如圆形,椭圆型,长方型等,也可以为 各种几何形状的组合。储液元件100中的液体可以从气液通道注入,或者为储液元件100设置上盖,注完液体后将上盖封闭。
气雾弹800还包括气雾弹壳体810,气雾弹壳体810具有底板815和顶板818,顶板818上设置有顶板气雾孔819。储液元件100设置在气雾弹壳体810中。
储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130。储液元件通孔130可以用作气雾弹800的气雾通道。
气雾通道连通雾化室934和顶板气雾孔819,其作用是将雾化室934中的气雾导出至顶板气雾孔819。气雾通道也可以与储液元件100一体成型,由储液元件通孔130作为气雾通道,也可以由塑料、金属、陶瓷或玻璃等单独成型后组装到气雾弹800中。
顶板气雾孔819是被散发的液体气化或雾化后逸出气雾弹800的部件。顶板气雾孔819可以由塑料、陶瓷或金属等制成。顶板气雾孔819通过气雾通道与雾化室934连通。如果气雾弹800的应用为电子烟,可以在气雾通道或顶板气雾孔819部位安装吸油棉,吸油棉为可以吸收冷凝液的多孔材料。电子烟中的液体被雾化后,通过气雾通道时会部分冷凝并形成冷凝液,吸油棉可以在气雾进入使用者口腔前将冷凝液吸收,从而提高吸烟体验。
<雾化部>
本发明所述的雾化部包括雾化室934和加热元件,雾化室934是液体被气化或雾化的空腔。在本实施例中,雾化室934设置在储液元件100底部和底板815之间的区域。雾化室934中设置加热元件,并可以根据需要,设置进气孔孔,例如在底板815上设置底板通孔816,作为进气孔。液体在雾化室934中被加热元件气化或雾化,并经储液元件通孔130和顶板气雾孔819逸出气雾弹800。
本发明所述的加热元件泛指能将液体按使用要求气化或雾化的部件。加热元件包括发热芯930,如缠绕在玻纤或棉花上的电热丝、预埋电热丝的多孔陶瓷、印刷厚膜发热体的陶瓷等。加热元件还可以包括导液元件200,如被电热丝缠绕的玻纤或棉花、包裹在预埋电热丝的多孔陶瓷的无纺布等。
加热元件还包括导线933。加热元件通过导线933与电源(未图示)连接。
可以采用电加热的加热元件:如将电热丝缠绕在一束玻纤或棉绳上,或者将棉花或棉质无纺布缠绕在电热丝上,或者将电热丝预埋在陶瓷中,或者将厚膜发热体印刷在陶瓷表面,或者采用正温度系数陶瓷发热体;还可以采用超声加热元件或其他类型的加热元件。根据应用要求,可以将加热元件制成各种适合于组装的形状。
雾化室934底部可以设置支撑部件935,支撑部件935可以用诸如硅胶的材料制成,以加强气液通道830和加热元件的接触连通。
由于气雾弹800在储存、运输或使用过程中发生异常情况,导致液体泄漏。可以将支撑部件935设计成由兼具缓冲和储存液体的功能的材料制成,同时雾化室934还可以设计成能够存储部分液体的结构,可以容纳从储液元件100导出的液体,从而避免液体向外界泄漏。
需要时,雾化室934中可以设置缓冲储液体(未图示),气液通道830和加热元件可以分别与缓冲储液体连通。缓冲储液体可以储存从储液元件100导出的部分液体,还可以在气液通道830和加热元件之间传导液体。气雾弹800在储存、运输或使用过程中发生异常情况,缓冲储液体可以吸收从储液元件100导出的液体,减少液体向外界泄漏的风险。支撑部件935和缓冲储液体可以由纤维制成,纤维可以为天然纤维如棉花,也可以为天然纤维的改性产物如醋酸纤维素纤维,还可以为合成纤维如聚酯纤维、聚乳酸纤维、皮芯结构聚乙烯/聚丙烯双组份纤维等。可以将纤维粘结制成需要的形状的缓冲储液体,便于组装到气雾弹800中。另外,支撑部件935和缓冲储液体也可以由海绵制成,如聚氨酯海绵、聚乙烯醇海绵等。可以将缓冲储液体设置为高密度部和低密度部,从而更好地控制储液元件100中的液体导出并提高液体防漏能力。
<气液通道>
在本实施例中,储液元件100和加热元件之间由气液通道830连通。如图1b和图1c所示,气液通道830包括至少一个轴向贯穿气液通道830的流体腔道831,且气液通道830还包括流体芯体832。气液通道830设置在雾化室934中。
如图1b所示的一种气液通道830,气液通道830包括气液通道外管834、设置在气液通道外管834内的流体芯体832、设置在气液通道外管834和流体芯体832之间的气液通道加强筋833以及由气液通道加强筋833分隔出的流体腔道831。
如图1c所示的另一种结构的气液通道830。气液通道830包括气液通道外管834、设置在气液通道外管834内的流体芯体832以及流体腔道831。气液通道外管834与流体芯体832之间紧密配合,流体芯体832的外周部上形成多个轴向贯穿气液通道830的凹槽,该凹槽和气液通道外管834一起形成流体腔道831。
流体腔道831可以用作气体通道或者液体通道,流体腔道831中的至少一个流体腔道831用作气体通道。在平衡状态时,流体芯体832吸收足够的液体,流体芯体832周表的液体将气体通道液封。当液体从储液元件100导出时,储液元件100内真空度增加,液封气体通道 的液体被流体芯体832吸收,部分或全部流体通道831的液封消失,雾化室934中的空气通过气体通道进入储液元件100,储液元件100内真空度降低至平衡状态时,气体通道重新被液封。
流体腔道831中最小横截面的最大内切圆直径为0.05mm-1mm,本文中的“mm”均指毫米。较小内切圆直径的流体腔道831作为气体通道时液封能力较强,适合于粘度较低和出液量较小的应用。较大内切圆直径的流体腔道831作为气体通道时液封能力较弱,适合于粘度较高或出液量较大的应用。根据液体的性质和应用要求,流体腔道831的最小横截面的最大内切圆直径为0.05mm-1mm,如,0.05mm、0.08mm、0.2mm、0.5mm、0.6mm、0.8mm、1mm。在平衡状态下气体通道由于毛细力被流体芯体832周表的液体液封。
气液通道830可以与加热元件直接连通,或加热元件通过缓冲储液体与气液通道间接连通,从而使液体通过气液通道从储液元件100传导至加热元件。通常将流体芯体832设置为液体通道,流体芯体832由纤维粘结制成,比如用粘结剂将聚酯纤维粘结成流体芯体832,或者将双组份纤维热粘结成流体芯体832等。在本实施例中,流体芯体832可以参与构成气体通道。
当液体雾化时,液体经气液通道830从储液元件100被不断补充到加热元件或其周边。当外部控制装置指令加热元件工作时,加热元件上的液体被雾化,经气雾通道和顶板气雾孔819逸出气雾弹800,同时储液元件100中的液体经气液通道830的液体通道导出并补充到加热元件,随着液体的导出,储液元件100内的真空度升高至一定程度时,气液通道830的气体通道的液封被打开,雾化室934中的空气通过气体通道进入储液元件100,使储液元件100内的真空度下降,气体通道重新被液封,这个过程反复进行使雾化过程可不断进行直至储液元件100中的液体被用完。
第二实施例
图2a为根据本发明第二实施例的具有气液通道的气雾弹的结构示意图;图2b为根据第二实施例的具有气液通道的气雾弹中的气液通道的横截面示意图;图2c为根据第二实施例的具有气液通道的气雾弹中的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
在本实施例中,气液通道830的横截面和剖面分别如图2b和图2c所示。储液元件100底部设有短的气液通道外管834,将流体芯体832插在气液通道外管834中,流体芯体832和气液通道外管834之间设置有三个气液通道加强筋833。气液通道外管834的内壁、气液通道加强筋833和流体芯体832外壁之间形成流体腔道831。流体腔道831的最小横截面的最大内切圆直径为0.5mm,流体腔道831可以用作气体通道,液体通道为流体芯体832。
加热元件包括发热芯930和导液元件200。发热芯930为电热丝,导液元件200为玻纤束或棉绳,电热丝部分缠绕的玻纤束或棉绳。导液元件200与气液通道830在雾化室934内直接接触,使液体可以从储液元件100经气液通道830直接传导至加热元件的导液元件200上。
在本实施例中,雾化室934中还设置有支撑部件935,用于支撑加热元件。导液元件200的两端弯折后接由支撑部件935支撑。
本实施例的气雾弹800适合于电子烟等应用,液体导出和雾化原理与第一实施例相似,在此不再赘述。
本实施例的支撑部件935由硅胶制成,支撑部件935设计成特殊形状,例如支撑部件935的剖面视图呈两个对称的“L”形,使雾化室934中形成“洼地”。当气雾弹800在储存、运输和使用过程中遇到外界环境的异常波动时,少量液体会从储液元件100经液体通道导出并暂存于雾化室934的“洼地”中,减少液体泄漏的风险。当加热元件上的液体被消耗时,雾化室934洼地中暂存的液体会优先被消耗,因此不会造成液体在雾化室934中残留。
气雾弹800可以包括冷凝液吸收元件400。在本实施例中,如图2a所示,可以在顶板818和储液元件100之间设置冷凝液吸收元件400,可以吸收气雾中的冷凝液,进一步提高使用者的体验。
本实施例的气雾弹800在导线933的末端设置成接触式连接端,便于气雾弹800使用时与控制装置以接触方式连接。为适应不同的液体粘度、表面张力和不同的雾化速度要求,可以将流体腔道831的最小横截面的最大内切圆直径设置为小于0.5mm,如0.08mm或0.25mm,或者大于0.5mm,如0.8mm或1mm。同时,也可以设置作为液体通道的流体芯体832的横截面积和孔隙率等因素来增加或减小导液速度。当然,雾化速度还与玻纤束的大小和加热功率等因素相关。
第三实施例
图3a为根据本发明第三实施例的具有气液通道的气雾弹的结构示意图;图3b为根据第三实施例的具有气液通道的气雾弹中气液通道的横截面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图3a所示,本实施例中的加热元件包括发热芯930和导液元件200,发热芯930为正温度系数热敏电阻发热体(简称PTC发热体),导液元件200由玻纤、棉花或聚酯纤维等制成。本实施例中气液通道830与第二实施例相似,横截面如图3b所示。
如果液体为低粘度的香精溶液,流体腔道831的最小横截面的最大内切圆直径设置为0.05mm;如果液体为粘度较高精油或驱蚊剂等,流体腔道831的最小横截面的最大内切圆直 径可以设置为0.1mm、0.2mm、0.5mm,甚至1mm,以便在液体导出时使气体能顺畅进入储液元件100。
本实施例尤其适合于微型香薰和微型液体蚊香等便携式气雾弹800。为简化结构,可以将储液元件100的上端用作顶板。还可以将发热芯930固定于外部控制装置中,以便重复利用发热芯930,降低使用成本。
第四实施例
图4a为根据本发明第四实施例的具有气液通道的气雾弹的结构示意图;图4b为根据第四实施例的具有气液通道的气雾弹中气液通道的横截面示意图;图4c为根据第四实施例的具有气液通道的气雾弹中的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图4a至4c所示,外周壁上具有轴向凹槽的流体芯体832插入储液元件100底部短管形成气液通道830,短管形成气液通道外管834。如图4b和4c所示,流体芯体832的凹槽与储液元件100底部短管内壁形成的通道构成流体腔道831,作为液体通道的流体芯体832由纤维粘结制成。流体腔道831的最小横截面的最大内切圆直径为为0.2mm,如果液体粘度较高,可以适当加大流体腔道831的最小横截面的最大内切圆直径。
在本实施例中,在雾化室934中设置缓冲储液体835,缓冲储液体835由纤维或者海绵制成,例如,由聚氨酯海绵或皮芯结构的聚乙烯/聚丙烯双组分纤维粘结制成,气液通道830与加热元件通过缓冲储液体835连通。缓冲储液体835带来的额外好处是加热元件可以更稳定地获得液体,改善雾化的稳定性,提高用户体验。吸收液体部分饱和的缓冲储液体835仍具有部分吸液性能,因此这种气雾弹800具有较好的防漏性能。
当本实施例用于电子雾化烟时,其优点在于,缓冲储液体835与导液元件200有充分的接触,如果短时间内快速雾化(俗称为“猛吸一口”),缓冲储液体835中的液体可以快速补充给导液元件200,减少加热元件的导液元件200因暂时缺少液体而被烧焦的风险。本实施例在气雾通道的上端设置冷凝液吸收元件400,用于吸收气雾中的冷凝液,提高使用体验。
第五实施例
图5a为根据本发明第五实施例的具有气液通道的气雾弹的结构示意图;图5b为根据第五实施例的具有气液通道的气雾弹的气液通道的横截面示意图;图5c为根据第五实施例的具有气液通道的气雾弹中的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图5a所示,外周壁上具有轴向凹槽的流体芯体832插入储液元件100底部短管形成气 液通道830,短管形成气液通道外管834。如图5b和5c所示。流体芯体832为液体通道,流体芯体832的凹槽与气液通道外管834的内壁形成的通道为流体腔道831,流体腔道831用作气体通道。流体腔道831的最小横截面的最大内切圆直径为1mm,适合于高粘度液体的雾化,如大麻二酚的雾化。若液体粘度较低,可以适当减小流体腔道831的最小横截面的最大内切圆的直径,比如0.8mm或0.6mm。本实施例在雾化室934底部设置由聚氨酯海绵或棉花等制成的支撑部件935,支撑部件935具有缓冲储液的功能。
第六实施例
图6a为根据本发明第六实施例的具有气液通道的气雾弹的结构示意图;图6b为根据第六实施例的具有气液通道的气雾弹中的气液通道的横截面示意图;图6c为根据第六实施例的具有气液通道的气雾弹中的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
缓冲储液体835可包括缓冲储液体高密度部8351和缓冲储液体低密度部8352。在本实施例中,如图6a所示,本实施例中设置缓冲储液体835,包括靠近加热元件的缓冲储液体高密度部8351和位于外周的缓冲储液体低密度部8352,缓冲储液体高密度部8351与储液元件100底部之间设置间隙。在储液元件100底部延伸出内壁带有气液通道加强筋833的圆柱形短管,该圆柱形短管用作气液通道外管834,流体芯体832插入气液通道外管834中形成气液通道830。
如图6b和6c所示,流体芯体832为液体通道,气液通道外管834、气液通道加强筋833和流体芯体832之间形成流体腔道831,流体腔道831用作气体通道。气液通道外管834的端面抵靠缓冲储液体高密度部8351,流体芯体832插入缓冲储液体高密度部8351,流体腔道831的最小横截面的最大内切圆直径为0.8mm。
本实施例中的加热元件包括发热芯930,不设导液元件,发热芯930为预埋电热丝的多孔陶瓷。气雾弹800组装完成后,储液元件100内的液体通过气液通道830的液体通道传导给缓冲储液体高密度部8351,并进一步传导给多孔陶瓷。外界气体从气液通道830的气体通道进入储液元件100,缓冲储液体高密度部8351吸收液体后毛细力逐渐下降直到液体不再从储液元件100导出,体系到达平衡。
增加或减少流体腔道831的最小横截面的最大内切圆直径可以增加或减少体系平衡时缓冲储液体高密度部8351中液体的含量。使用时加热元件加热,液体雾化,气雾经气雾通道散发至顶板气雾孔819。加热元件从缓冲储液体高密度部8351获取液体,缓冲储液体高密度部8351中液体含量减少,毛细力上升,液体重新从储液元件100经液体通道导出至缓冲储液体高密度部8351。此过程反复进行直到储液元件100中的液体被用完。如果继续使用气雾弹800, 缓冲储液体835中的液体会继续传导至多孔陶瓷并雾化,但液体量会逐渐衰减,直到无法使用。
本实施例具有更好的防漏性能。因为通常情况下缓冲储液体低密度部8352不吸收液体,但当过量液体导出并超过缓冲储液体高密度部8351的容量时,缓冲储液体低密度部8352可以吸收多余的液体。
第七实施例
图7a为根据本发明第七实施例的具有气液通道的气雾弹的结构示意图;图7b为根据第七实施例的具有气液通道的气雾弹的气液通道的横截面示意图;图7c为根据第七实施例的具有气液通道的气雾弹的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图7a所示,本实施例的雾化室934中设置缓冲储液体835,缓冲储液体835包括靠近储液元件100的缓冲储液体低密度部8352和位于缓冲储液体低密度部8352下方的缓冲储液体高密度部8351。在储液元件100底部延伸出内壁带有气液通道加强筋833的圆柱形短管,该圆柱形短管用作气液通道外管834,流体芯体832插入气液通道外管834中形成气液通道830。
如图7b、7c所示,流体芯体832为液体通道,气液通道外管834、气液通道加强筋833和流体芯体832之间形成流体腔道831,流体腔道831用作气体通道。流体腔道831的最小横截面的最大内切圆直径为0.2mm。加热元件为电阻丝缠绕的玻纤束,玻纤束两端夹在缓冲储液体高密度部8351和缓冲储液体低密度部8352之间或嵌入缓冲储液体高密度部8351中。气雾弹800组装完成后,储液元件100内的液体通过气液通道830的液体通道传导给加热元件的导液元件200和缓冲储液体高密度部8351,外界气体从气体通道进入储液元件100,缓冲储液体高密度部8351吸收液体后毛细力逐渐下降直到液体不再从储液元件100导出,气体通道被液封,体系到达平衡。
使用时加热元件加热将玻纤束中的液体雾化,并经气雾通道和顶板气雾孔819散发。在雾化过程中,液体从储液元件100经液体通道补充给玻纤束,雾化室934中的气体穿过气体通道进入储液元件100。此过程不断重复直到储液元件100内的液体被用完。如果储液元件100内是特别粘稠的液体如丙三醇,可以将气体通道最小横截面的最大内切圆直径增加到0.3mm或0.5mm,以便气体通道中的液封能被顺利打开,使雾化顺利进行。如果储液元件100内的液体粘度较低,可以将气体通道最小横截面的最大内切圆直径适当减小,比如0.1mm,使气体通道获得合适的液封强度,防止液体泄漏。
本实施例在顶板气雾孔819和储液元件100之间设置冷凝液吸收元件400,用于吸收气 雾中的冷凝液,提升使用体验。
第八实施例
图8a为根据本发明第八实施例的具有气液通道的气雾弹的结构示意图;图8b为根据第八实施例的具有气液通道的气雾弹的气液通道的横截面示意图;图8c为根据第八实施例的具有气液通道的气雾弹的气液通道的剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图8a所示,本实施例的气雾弹800为烟斗状,包括气雾通道1303和气雾出口1301。气雾通道1303和气雾出口1301设置在雾化室934的侧面。在储液元件100底部延伸出内壁带有气液通道加强筋833的圆柱形短管,该圆柱形短管用作气液通道外管834,流体芯体832插入气液通道外管834中形成气液通道830。
如图8b、8c所示,流体芯体832为液体通道,气液通道外管834、气液通道加强筋833和流体芯体832之间形成流体腔道831,流体腔道831用作气体通道。流体腔道831的最小横截面的最大内切圆直径为0.3mm,也可以根据液体的粘度和使用要求适当增加或减少流体腔道831最小横截面的最大内切圆直径,以获得合适的气雾量。
加热元件的发热芯930为印刷厚膜发热体的陶瓷,加热元件中不设导液元件。本实施例中储液元件100中的液体经流体芯体832直接传导给发热芯930。工作时加热元件加热,流体芯体832与加热元件接触部位的液体被雾化散发,流体芯体832上的液体从储液元件100补充,其原理与第一实施例相似,此次不再赘述。
第九实施例
图9a为根据本发明第九实施例的具有气液通道的气雾弹的结构示意图;图9b为根据第九实施例的具有气液通道的气雾弹的气液通道的横截面示意图;图9c为根据第九实施例的具有气液通道的气雾弹的气液通道的剖面示意图;图9d为根据第九实施例的具有气液通道的气雾弹的第二液体通道的横截面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图9a所示,本实施例在储液元件100底部设置气液通道830,气液通道830通过外周壁上具有轴向凹槽的流体芯体832插入储液元件100底部短管形成,短管形成气液通道外管834。
如图9b和9c所示,流体芯体832为液体通道,流体芯体832的凹槽与气液通道外管834的内壁形成的通道为流体腔道831,流体腔道831用作气体通道。流体腔道831的最小横截面的最大内切圆直径为0.2mm,根据液体粘度,可以适当加大或减小流体腔道831的最小横 截面的最大内切圆直径。
储液元件100底部还设有第二液体通道836,第二液体通道836为一条小槽,其横截面如图9d所示,第二液体通道836与设置在雾化室934中的缓冲储液体835连通。本实施例的加热元件包括发热芯930和导液元件200,导液元件200为棉花或玻纤,发热芯930为缠绕在导液元件200上的电热丝。
导液元件200两端被夹在缓冲储液体835和硅胶制成的支撑部件935之间,本实施例的工作原理与实施例1相似。这种设置的好处在于液体的传导更加稳定可靠。
综上,本发明的具有气液通道的气雾弹适用于液体蚊香、香薰和电子烟等应用,也可以在医疗领域中用于吸入型药液的定量雾化。这种气雾弹结构紧凑、防漏性好,并能均匀地控制液体释放。如果在外部控制装置中设置气流传感器,可以根据气流来控制液体的雾化,使用更加方便。
此外,本发明上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种具有气液通道的气雾弹,其特征在于,所述气雾弹(800)包括储液元件(100)、加热元件和气液通道(830),所述储液元件(100)和所述加热元件之间由所述气液通道(830)连通,所述气液通道(830)包括至少一个轴向贯穿所述气液通道(830)的流体腔道(831),且所述气液通道(830)还包括流体芯体(832)。
  2. 如权利要求1所述的具有气液通道的气雾弹,其特征在于,所述流体腔道(831)中最小横截面的最大内切圆直径为0.05mm到1mm。
  3. 如权利要求1所述的具有气液通道的气雾弹,其特征在于,所述气液通道(830)与所述加热元件直接连通。
  4. 如权利要求1所述的具有气液通道的气雾弹,其特征在于,所述具有气液通道的气雾弹还包括雾化室,所述雾化室中设置缓冲储液体(835)。
  5. 如权利要求4所述的具有气液通道的气雾弹,其特征在于,所述气液通道(830)与所述加热元件通过缓冲储液体(835)连通。
  6. 如权利要求4所述的具有气液通道的气雾弹,其特征在于,所述缓冲储液体(835)由纤维或者海绵制成。
  7. 如权利要求4所述的具有气液通道的气雾弹,其特征在于,所述缓冲储液体(835)包括缓冲储液体高密度部(8351)和缓冲储液体低密度部(8352)。
  8. 如权利要求4所述的具有气液通道的气雾弹,其特征在于,所述雾化室(934)设置进气孔。
  9. 如权利要求1所述的具有气液通道的气雾弹,其特征在于,所述气雾弹(800)包括冷凝液吸收元件(400)。
  10. 如权利要求1所述的具有气液通道的气雾弹,其特征在于,所述流体芯体(832)由纤维粘结制成。
PCT/CN2020/116737 2020-01-17 2020-09-22 一种具有气液通道的气雾弹 WO2021143188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20914215.7A EP4091483A4 (en) 2020-01-17 2020-09-22 Aerosol bomb having gas-liquid channels
US17/912,526 US20230157360A1 (en) 2020-01-17 2020-09-22 Aerosol cartridge with air-liquid channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010050867.3A CN111759010A (zh) 2020-01-17 2020-01-17 一种具有气液通道的气雾弹
CN202010050867.3 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021143188A1 true WO2021143188A1 (zh) 2021-07-22

Family

ID=72718424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116737 WO2021143188A1 (zh) 2020-01-17 2020-09-22 一种具有气液通道的气雾弹

Country Status (4)

Country Link
US (1) US20230157360A1 (zh)
EP (1) EP4091483A4 (zh)
CN (1) CN111759010A (zh)
WO (1) WO2021143188A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024504859A (ja) * 2021-04-19 2024-02-01 邁博高分子材料(寧波)有限公司 エアロゾルカートリッジ
CN117256936A (zh) * 2021-04-19 2023-12-22 迈博高分子材料(宁波)有限公司 一种雾化模块、气雾弹和气雾散发装置
CN220274911U (zh) * 2021-04-19 2024-01-02 浙江迈博高分子材料有限公司 一种气雾弹
CN115428996A (zh) * 2021-04-19 2022-12-06 浙江迈博高分子材料有限公司 一种气雾弹
CN115211591A (zh) * 2021-04-19 2022-10-21 浙江恒芯电子有限公司 一种雾化芯和气雾弹
CN113367398B (zh) * 2021-05-31 2024-03-19 深圳市美深威科技有限公司 雾化器及电子雾化装置
JP2024505104A (ja) * 2021-07-12 2024-02-02 邁博高分子材料(寧波)有限公司 気液交換部品及びエアロゾルカートリッジ
JP2024506214A (ja) * 2021-08-01 2024-02-09 邁博高分子材料(寧波)有限公司 気液交換部品及びエアロゾルカートリッジ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130228191A1 (en) * 2011-06-28 2013-09-05 Kyle D. Newton Electronic Cigarette With Liquid Reservoir
CN204317503U (zh) * 2014-12-01 2015-05-13 深圳佳品健怡科技有限公司 一种电子烟的导油装置
US20150272216A1 (en) * 2014-03-31 2015-10-01 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
CN207285194U (zh) * 2017-07-17 2018-05-01 上海新型烟草制品研究院有限公司 电子烟雾化器
CN110250576A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN209732600U (zh) * 2019-01-11 2019-12-06 上海新型烟草制品研究院有限公司 气雾产生装置、气雾产生系统及电子烟

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103960781A (zh) * 2013-09-29 2014-08-06 深圳市麦克韦尔科技有限公司 电子烟
HUE061806T2 (hu) * 2015-05-29 2023-08-28 Japan Tobacco Inc Égésmentes aroma-inhalátor
MX2018011463A (es) * 2016-03-31 2019-01-10 Philip Morris Products Sa Sistema generador de aerosol con capsula separada y unidad de vaporizacion.
US11957172B2 (en) * 2018-04-26 2024-04-16 Philip Morris Products S.A. Heater assembly having heater element isolated from liquid supply
CN110403246B (zh) * 2019-06-17 2022-08-30 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130228191A1 (en) * 2011-06-28 2013-09-05 Kyle D. Newton Electronic Cigarette With Liquid Reservoir
US20150272216A1 (en) * 2014-03-31 2015-10-01 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
CN204317503U (zh) * 2014-12-01 2015-05-13 深圳佳品健怡科技有限公司 一种电子烟的导油装置
CN207285194U (zh) * 2017-07-17 2018-05-01 上海新型烟草制品研究院有限公司 电子烟雾化器
CN209732600U (zh) * 2019-01-11 2019-12-06 上海新型烟草制品研究院有限公司 气雾产生装置、气雾产生系统及电子烟
CN110250576A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4091483A4 *

Also Published As

Publication number Publication date
CN111759010A (zh) 2020-10-13
EP4091483A4 (en) 2023-06-28
US20230157360A1 (en) 2023-05-25
EP4091483A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2021143188A1 (zh) 一种具有气液通道的气雾弹
CN211631799U (zh) 一种具有气液通道的气雾弹
US11903418B2 (en) Composite micro-vaporizer wicks
EP3516970B1 (en) Electronic cigarette atomizer with liquid storage transition cavity
JP2018038399A (ja) 電子タバコアトマイザー
CN108289505A (zh) 具有多室液体储存器的电子香烟
US20210093005A1 (en) Aerosol source for a vapor provision system
CN212697666U (zh) 一种储液元件
CN212309901U (zh) 复合储液元件和气雾散发装置
WO2021120749A1 (zh) 具有储液元件的气雾弹和气雾散发装置
CN214386078U (zh) 雾化器、电子雾化装置及用于雾化器的导液元件
CN113598436A (zh) 电子雾化装置、雾化器及其雾化组件
CN212437285U (zh) 一种雾化元件和气雾弹
CN214386079U (zh) 雾化器、电子雾化装置及用于雾化器的导液元件
US20200164162A1 (en) Micro-vaporizer with multiple liquid reservoirs
CN218354598U (zh) 电子雾化装置
US11241034B2 (en) Micro-vaporizer with multiple liquids
CN216453359U (zh) 一种气液交换元件和气雾弹
CN215958346U (zh) 一种气雾弹
CN216453361U (zh) 一种气液交换元件和气雾弹
CN115428997A (zh) 一种气雾弹
RU2796020C1 (ru) Аэрозольный баллон с газожидкостным каналом
CN216255482U (zh) 电子雾化装置、雾化器及其雾化组件
CN218499991U (zh) 气溶胶生成装置
CN113941460A (zh) 复合储液元件和气雾散发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914215

Country of ref document: EP

Effective date: 20220817