WO2021142705A1 - 控制继电器低功耗电路及方法 - Google Patents

控制继电器低功耗电路及方法 Download PDF

Info

Publication number
WO2021142705A1
WO2021142705A1 PCT/CN2020/072440 CN2020072440W WO2021142705A1 WO 2021142705 A1 WO2021142705 A1 WO 2021142705A1 CN 2020072440 W CN2020072440 W CN 2020072440W WO 2021142705 A1 WO2021142705 A1 WO 2021142705A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
relay
electronic switch
control module
switch
Prior art date
Application number
PCT/CN2020/072440
Other languages
English (en)
French (fr)
Inventor
吴刚
赵德琦
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN202080002889.0A priority Critical patent/CN112236836B/zh
Priority to PCT/CN2020/072440 priority patent/WO2021142705A1/zh
Publication of WO2021142705A1 publication Critical patent/WO2021142705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/001Functional circuits, e.g. logic, sequencing, interlocking circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H2047/025Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay with taking into account of the thermal influences, e.g. change in resistivity of the coil or being adapted to high temperatures

Definitions

  • This application relates to the technical field of motor control, and relates to a low power consumption circuit and method for controlling a relay.
  • the relay circuit realizes the functions of automatic adjustment, safety protection, and conversion circuit in various motor control circuits by generating current in the coil of the relay.
  • the coil of the relay has a high temperature, which causes the power at both ends of the coil to exceed the rated power, which not only affects the service life of the relay, but also reduces the reliability of the relay circuit.
  • the embodiments of the present application provide a low power consumption circuit and method for controlling a relay, which not only realizes the simplicity of controlling the low power consumption of the relay, but also improves the reliability of the low power consumption relay circuit.
  • an embodiment of the present application provides a control relay low-power consumption circuit, which is applied to a vehicle power supply, and the control relay low-power consumption circuit includes:
  • the first end of the first electronic switch is respectively connected to the first end of the first resistor and the power source, and the second end of the first electronic switch is respectively connected to the second end of the first resistor and the relay.
  • the first end of the second electronic switch is connected to the second end of the coil of the relay, and the second end of the second electronic switch is grounded;
  • the first switch control module is used to control the on-off state of the first electronic switch
  • the second switch control module is used to control the on-off state of the second electronic switch.
  • the first electronic switch includes a first triode; the base of the first triode is connected to the first switch control module; the emission of the first triode is The poles are respectively connected to the first end of the first resistor and the power source, and the collector of the first triode is respectively connected to the second end of the first resistor and the first end of the coil of the relay.
  • the first switch control module includes a second resistor, a first diode, a first capacitor, a third resistor, and a second triode; the first end of the second resistor is connected to the The base of the first triode, the second end of the second resistor is connected to the collector of the second triode; the anode of the first diode is connected to the second end of the coil of the relay , The cathode of the first diode is respectively connected to the first end of the first capacitor and the first end of the third resistor; the base of the second triode is connected to the first end of the third resistor At two ends, the emitter of the second triode is respectively connected to the second end of the first capacitor and the second end of the second electronic switch.
  • the second electronic switch includes a third triode; the base of the third triode is connected to the second switch control module; the collector of the third triode The second end of the coil of the relay is connected, and the emitter of the third triode is grounded.
  • the second switch control module includes a first signal controller, a fourth resistor, and a fifth resistor; the first end of the fourth resistor is connected to the first signal controller, and the The second end of the fourth resistor is respectively connected to the base of the third triode and the first end of the fifth resistor; the second end of the fifth resistor is connected to the emitter of the third triode .
  • the second electronic switch includes a first field effect transistor; the gate of the first field effect transistor is connected to the second switch control module; the drain of the first field effect transistor The second end of the coil of the relay is connected, and the source of the first field effect transistor is grounded.
  • the second switch control module includes a second signal controller, a sixth resistor, a seventh resistor, an eighth resistor, and a second diode; the first end of the sixth resistor is connected to In the second signal controller, the second end of the sixth resistor is respectively connected to the gate of the first field effect transistor and the first end of the seventh resistor; the anode of the second diode is connected to The second end of the seventh resistor, the cathode of the second diode is connected to the first end of the sixth resistor; the first end of the eighth resistor is connected to the gate of the first field effect transistor , The second end of the eighth resistor is connected to the source of the first field effect transistor.
  • the second switch control module includes a third signal controller, a ninth resistor, a third diode, a fourth triode, a tenth resistor, and an eleventh resistor;
  • the first end of the nine resistor is connected to the third signal controller, the second end of the ninth resistor is connected to the base of the fourth triode; the anode of the third diode is connected to the ninth The second end of the resistor, the cathode of the third diode is respectively connected to the first end of the tenth resistor and the gate of the first field effect transistor; the emitter of the fourth triode is connected to the The second end of the tenth resistor is the collector ground end of the fourth triode; the first end of the eleventh resistor is connected to the cathode of the third diode, and the eleventh resistor The second end of is connected to the source of the first field effect transistor.
  • the first electronic switch includes a second field effect transistor; the gate of the second field effect transistor is connected to the first switch control module; the source of the second field effect transistor The first end of the first resistor and the power supply are respectively connected, and the drain of the second field effect transistor is respectively connected to the second end of the first resistor and the first end of the coil of the relay.
  • an embodiment of the present application provides a low power consumption method for controlling a relay, which is applied to the low power consumption circuit for controlling a relay shown in the foregoing embodiment, and the method includes:
  • the first end of the first resistor is connected to a power source, and the second end of the first resistor is connected to the first end of the coil of the relay;
  • the first electronic switch is connected in parallel with the first resistor, the first end of the first electronic switch is connected to the power supply, and the second end of the first electronic switch is connected to the first end of the coil of the relay. End connection
  • the first end of the second electronic switch is connected to the second end of the coil of the relay, and the second end of the second electronic switch is grounded;
  • the first switch control module Connecting the first switch control module with the first electronic switch, and the first switch control module is used to control the on-off state of the first electronic switch;
  • the relay is set to the first operation state
  • the relay When the first switch control module controls the first electronic switch to be turned on, and the second switch control module controls the second electronic switch to be turned off, the relay is set to the second operation State, the power consumed by the relay in the second working state is less than the power consumed by the relay in the first working state.
  • the low power consumption circuit and method for controlling the relay described in the embodiment of the present application controls the on-off state of the first electronic switch through the first switch control module, and the second switch control module controls the second electronic switch The on-off state. Since the power consumed by the relay when the first electronic switch is on and the second electronic switch is off is less than the power consumed when the first electronic switch is on and the second electronic switch is on, it is advantageous for flexibility and simplicity. Control the power consumption of the relay to ensure that the relay is at a lower power consumption. At the same time, the reduction of the power consumption of the relay reduces the temperature of the coil of the relay, which not only helps increase the service life of the relay, but also helps to improve the reliability of the relay circuit.
  • FIG. 1 is a schematic structural diagram of a low power consumption circuit for controlling a relay provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a second low-power consumption circuit of a control relay provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a third low power consumption circuit of a control relay provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a fourth low power consumption circuit of a control relay provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for controlling low power consumption of a relay according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a low power consumption circuit of a control relay provided by an embodiment of the present application.
  • the control relay low power consumption circuit includes: a first electronic switch S1, a resistor R1, a relay K1, a second electronic switch S2, a first switch control module 110, and a second switch control module 120.
  • the first end of the first electronic switch S1 is respectively connected to the first end of the first resistor R1 and the power supply VCC, and the second end of the first electronic switch S1 is respectively connected to the second end of the first resistor R1 and the coil of the relay K1.
  • the first end; and the first end of the second electronic switch S2 is connected to the second end of the coil of the relay K1, the second end of the second electronic switch S2 is grounded to the GND; the first switch control module 110 is used to control the first electronic For the on-off state of the switch S1, the second switch control module 120 is used to control the on-off state of the second electronic switch S2.
  • the second switch control module controls 120 to control the second electronic switch S1 to turn off, the circuit where the relay K1 is located cannot form a loop, and no current flows through the coil of the relay K1, and the relay K1 is in the holding state at this time.
  • the power supply VCC is applied to both ends of the coil of the relay K1 , A certain current flows in the coil, which produces electromagnetic effects.
  • the armature of the relay K1 overcomes the pulling force of the return spring to attract to the iron core, and drives the moving and static contacts of the armature to attract, and the relay K1 is in the first working state at this time.
  • the power supply VCC is added to the resistor connected in series with the relay K1
  • a certain current flows through the coils to produce electromagnetic effects.
  • the armature of the relay K1 overcomes the pull force of the return spring to attract the iron core under the action of electromagnetic effect, and drives the moving and static contacts of the armature to attract.
  • the relay K1 is in the second working state, and the relay K1 is in the second working state.
  • the power consumed in the working state is less than the power consumed in the first working state.
  • the first electronic switch S1 includes a triode
  • the base b of the triode is connected to the first switch control module 110
  • the emitter e of the triode is connected to the first end of the resistor R1 and the power supply VCC, respectively.
  • the collector c is respectively connected to the second end of the resistor R1 and the first end of the coil of the relay K1.
  • the first electronic switch S1 includes a field effect transistor, the gate G of the field effect transistor is connected to the first switch control module 110, and the source S of the field effect transistor is respectively connected to the first resistor R1.
  • One end is connected to the power supply VCC, and the drain D of the field effect transistor is respectively connected to the second end of the first resistor R1 and the first end of the coil of the relay K1.
  • the first switch control module 110 applies a low voltage to the gate G of the field effect transistor and ensures that the potential of the source G of the field effect transistor is higher than the potential of the gate G of the field effect transistor, the field effect The transistor is in an on state.
  • the second electronic switch S2 includes a triode, the base b of the triode is connected to the second switch control module 120, the collector c of the triode is connected to the second end of the coil of the relay K1, and the third third is The emitter e of the pole tube is grounded to the GND.
  • the second switch control module 120 applies a low voltage to the base b of the triode and ensures that the potential of the emitter e of the triode is higher than the potential of the base b of the triode, the triode is in a conducting state.
  • the second electronic switch S2 includes a field effect transistor, the gate G of the field effect transistor is connected to the second switch control module 120, and the drain D of the field effect transistor is connected to the second coil of the relay K1. Terminal, the source S of the field effect transistor is grounded to the ground terminal GND.
  • the second switch control module 120 applies a low voltage to the gate G of the field effect transistor and ensures that the potential of the source G of the field effect transistor is higher than the potential of the gate G of the field effect transistor, the field effect The transistor is in an on state.
  • the low power consumption circuit of the control relay described in the embodiment of the present application controls the on-off state of the first electronic switch S1 through the first switch control module 110, and the second switch control module 120 controls the second electronic switch S1.
  • the first electronic switch S1, the second electronic switch S2, the first switch control module 110, and the second switch control module 120 in FIG. 1 may be composed of specific circuit elements and circuit modules, which will be described in detail below.
  • FIG. 2 is a schematic structural diagram of a second control relay low power consumption circuit provided by an embodiment of the present application.
  • the control relay low power consumption circuit includes: resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, relay K1, transistor Q1, transistor Q2, transistor Q3, diode D1 and capacitor C1.
  • the first electronic switch S1 includes a transistor Q1
  • the second electronic switch S2 includes a transistor Q3
  • the first switch control module 110 includes a circuit module composed of a resistor R2, a resistor R3, a diode D1, a capacitor C1, and a transistor Q2.
  • the switch control module 120 includes a circuit module composed of a first signal controller CTR1, a resistor R4, and a resistor R5.
  • the emitter e of the transistor Q1 is connected to the power supply VCC and the first end of the resistor R1, the collector c of the transistor Q1 is connected to the second end of the resistor R2 and the first end of the relay K1, and the base b of the transistor Q1 is connected
  • the first end of the resistor R2; the base b of the transistor Q2 is connected to the first end of the resistor R3, the collector c of the transistor Q2 is connected to the second end of the resistor R2, and the emitter e of the transistor Q2 is respectively connected to the first end of the capacitor C1 and
  • the emitter e of the transistor Q3; the collector c of the transistor Q3 is connected to the second end of the relay K1 and the anode of the diode D1, and the base b of the transistor Q3 is connected to the first end of the resistor R4 and the first end of the resistor R5, respectively.
  • the emitter e of Q3 is respectively connected to the second end of the resistor R5 and the ground terminal GND; the second end of the capacitor C1 is connected to the cathode of the diode D1 and the second end of the resistor R3, and the first end of the capacitor C1 is connected to the emitter of the transistor Q3 e;
  • the first end of the resistor R4 is connected to the base b of the transistor Q3 and the first end of the resistor R5, and the second end of the resistor R4 is connected to the first signal controller CTR1.
  • the transistor Q3 is in an off state, and the direct current flows through the resistor R1, the coil of the relay K1, and the diode D1 to become the capacitor C1.
  • the transistor Q2 and the transistor Q1 are turned on in turn.
  • the transistor Q3 is in a conducting state, and the power supply VCC is applied to both ends of the coil of the relay K1 through the conducting transistor Q1 to ensure that the relay K1 completes the pull-in state.
  • the turned-on transistor Q3 pulls down the anode of the diode D1 to the ground terminal GND, causing the diode D1 to reversely cut off, and the capacitor C1 discharges through the resistor R3 to ensure that the transistor Q2 and the transistor Q1 continue to conduct.
  • the power supply VCC is applied to both ends of the coil of the relay K1 through the resistor R1, reducing the voltage and current on the relay K1, and reducing the power consumption of the relay K1.
  • the first switch control module 110 composed of the transistor Q2, the diode D1, the resistor R2, the resistor R3, and the capacitor C1 controls the on-time of the transistor Q1 and is controlled by the first signal
  • the second switch control module 120 composed of the resistor CTR1, the resistor R4, and the resistor R5 controls the conduction state of the transistor Q3, so as to reduce the power consumption of the relay and further improve the reliability of the low-power relay circuit.
  • the desired conduction time of the transistor Q2 can be obtained to meet the driving requirements of different specifications of relays.
  • the low power consumption circuit of the control relay described in Figure 2 achieves low power consumption of the control relay, and further improves the stability of the relay pull-in. Performance and reliability of low-power relay circuits.
  • the low power consumption circuit of the control relay described in Figure 2 can reduce the power consumption of the relay while further reducing the power consumption of the relay. The cost of the relay drive circuit and the improvement of the reliability of the low power consumption relay circuit.
  • FIG. 3 is a schematic structural diagram of a third low power consumption circuit of a control relay provided by an embodiment of the present application.
  • the control relay low power consumption circuit includes: resistor R1, resistor R2, resistor R3, resistor R6, resistor R7, resistor R8, relay K1, transistor Q1, transistor Q2, field effect transistor Q4, diode D1 and capacitor C1.
  • the first electronic switch includes a transistor Q1
  • the second electronic switch includes a field effect transistor Q4
  • the first switch control module 110 includes a circuit module composed of a resistor R2, a resistor R3, a diode D1, a capacitor C1, and a transistor Q2.
  • the switch module 120 includes a circuit module composed of a second signal controller CTR2, a resistor R6, a resistor R7, a resistor R8, and a diode D1.
  • the emitter e of the transistor Q1 is connected to the power supply VCC and the first end of the resistor R1, the collector c of the transistor Q1 is connected to the second end of the resistor R2 and the first end of the relay K1, and the base b of the transistor Q1 is connected
  • the first end of the resistor R2; the base b of the transistor Q2 is connected to the first end of the resistor R3, the collector c of the transistor Q2 is connected to the second end of the resistor R2, and the emitter e of the transistor Q2 is respectively connected to the first end of the capacitor C1 and
  • the source S of the field effect transistor Q4; the drain D of the field effect transistor Q4 is respectively connected to the second end of the relay K1 and the anode of the diode D1, and the gate G of the field effect transistor Q4 is respectively connected to the first end of the resistor R6 and the resistor R7
  • the field effect transistor Q4 when the power supply VCC provides a direct current and the second signal controller CTR2 has no level input, the field effect transistor Q4 is in the off state, and the direct current passes through the resistor R1 and the relay K1.
  • the coil and the diode D1 provide charging for the capacitor C1, and the transistor Q2 and the transistor Q1 are turned on in turn.
  • the second signal controller CTR2 inputs a high level, the field effect transistor Q4 is in a conducting state, and the power supply VCC is applied to both ends of the coil of the relay K1 through the conducting transistor Q1 to ensure that the relay K1 completes the pull-in state.
  • the power supply VCC is applied to both ends of the coil of the relay K1 through the resistor R1, reducing the voltage and current on the relay K1, and reducing the power consumption of the relay K1.
  • the desired conduction time of the transistor Q2 can be obtained to meet the driving requirements of different specifications of relays.
  • the second switch control module 120 composed of the resistor R7, the resistor R8 and the diode D1 can provide a path with the lowest possible impedance for the rapid discharge of the capacitance and voltage between the gate G and the source S of the field effect transistor Q4.
  • the on-off time of the field effect transistor Q4 is reduced, and the loss during on-off is reduced.
  • Control relay low power consumption circuit includes: transistor Q1, transistor Q2, field effect transistor Q4, transistor Q5, relay K1, resistor R1, resistor R2, resistor R3, resistor R9, resistor R10, resistor R11, diode D1, diode D3, capacitor C1.
  • the first electronic switch includes a transistor Q1
  • the second electronic switch includes a field effect transistor Q4
  • the first switch control module 110 includes a circuit module composed of a resistor R2, a resistor R3, a diode D1, a capacitor C1, and a transistor Q2.
  • the switch module 120 includes a circuit module composed of a third signal controller CTR3, a resistor R9, a resistor R10, a resistor R11, a diode D3, and a transistor Q5.
  • the emitter e of the transistor Q1 is connected to the power supply VCC and the first end of the resistor R1, the collector c of the transistor Q1 is connected to the second end of the resistor R2 and the first end of the relay K1, and the base b of the transistor Q1 is connected
  • the first end of the resistor R2; the base b of the transistor Q2 is connected to the first end of the resistor R3, the collector c of the transistor Q2 is connected to the second end of the resistor R2, and the emitter e of the transistor Q2 is respectively connected to the first end of the capacitor C1 and
  • the source S of the field effect transistor Q4; the drain D of the field effect transistor Q4 are respectively connected to the second end of the relay K1 and the anode of the diode D1, and the gate G of the field effect transistor Q4 is respectively connected to the cathode of the diode D3 and the second end of the resistor R10.
  • One end and the first end of the resistor R11, the source S of the field effect transistor Q4 is respectively connected to the second end of the resistor R11 and the ground terminal GND; the second end of the capacitor C1 is respectively connected to the cathode of the diode D1 and the second end of the resistor R3 , The first end of the capacitor C1 is connected to the source S of the field effect transistor Q4; the emitter e of the transistor Q5 is connected to the second end of the resistor R10, and the base b of the transistor Q5 is respectively connected to the anode of the diode D3 and the first end of the resistor R9 , The collector c of the transistor Q5 is grounded to the ground terminal GND; the first end of the resistor R9 is respectively connected to the anode of the diode D3 and the base b of the transistor Q5, and the second end of the resistor R9 is connected to the third signal controller CTR3.
  • the first switch control module 110 composed of the transistor Q2, the diode D1, the resistor R2, the resistor R3, and the capacitor C1 controls the on-time of the transistor Q1 to realize the power supply VCC passing through the resistor R1 Applied to both ends of the coil of the relay K1, the voltage and current on the relay K1 are reduced, and the power consumed by the relay K1 is reduced.
  • the second switch control module 120 composed of the third signal controller CTR3, resistor R9, resistor R10, resistor R11, diode D3 and transistor Q5 quickly discharges the field effect through the transistor Q5
  • the capacitance and voltage between the gate G and the source S of the transistor Q4 further reduce the on-off time and on-off loss of the field-effect transistor Q4, and ultimately, not only reduce the power consumption of the relay circuit, but also further improve the control relay Reliability of low-power circuits.
  • FIG. 5 is a schematic flowchart of a method for controlling a low power consumption of a relay according to an embodiment of the present application, which is applied to the low power consumption circuit of a control relay shown in the foregoing embodiment, and the method includes:
  • the low power consumption method for controlling the relay described in the embodiment of the present application controls the on-off state of the first electronic switch through the first switch control module, and the second switch control module controls the on-off state of the second electronic switch. Off state. Since the power consumed by the relay when the first electronic switch is on and the second electronic switch is off is less than the power consumed when the first electronic switch is on and the second electronic switch is on, it is advantageous for flexibility and simplicity. Control the power consumption of the relay to ensure that the relay is at a lower power consumption. At the same time, the reduction of the power consumption of the relay reduces the temperature of the coil of the relay, which not only helps increase the service life of the relay, but also helps to improve the reliability of the relay circuit.

Landscapes

  • Relay Circuits (AREA)

Abstract

本申请公开了一种控制继电器低功耗电路及方法,应用于车载电源,所述控制继电器低功耗电路,包括:第一电子开关、第二电子开关、第一电阻、继电器、第一开关控制模组和第二开关控制模组;第一电子开关的第一端分别连接第一电阻的第一端和电源,第一电子开关的第二端分别连接所述第一电阻的第二端和继电器的线圈的第一端;第二电子开关的第一端连接继电器的线圈的第二端,第二电子开关的第二端接地端;第一开关控制模组用于控制第一电子开关的通断状态,第二开关控制模组用于控制第二电子开关的通断状态。通过第一开关控制模组和第二开关控制模组控制电子开关的通断状态,不仅实现控制继电器低功耗的简易性,也提高低功耗继电器电路的可靠性。

Description

控制继电器低功耗电路及方法 技术领域
本申请涉及电机控制技术领域,具有涉及一种控制继电器低功耗电路及方法。
背景技术
随着开关电源和电机控制技术的发展,单体功率密度不断提高,电容容量不断提高,与车载电源中预充电路配合使用的继电器电路也随之产生。
继电器电路通过在继电器的线圈产生电流,实现在各种电机控制电路中自动调节、安全保护、转换电路等作用。然而,在密闭空间或长时间工作的应用场景下,继电器的线圈存在温度较高,导致线圈两端的功率超出额定功率,不仅影响继电器的使用寿命,也降低继电器电路的可靠性。
发明内容
本申请实施例提供了一种控制继电器低功耗电路及方法,不仅实现控制继电器低功耗的简易性,也提高低功耗继电器电路的可靠性。
第一方面,本申请实施例提供一种控制继电器低功耗电路,应用于车载电源,所述控制继电器低功耗电路包括:
第一电子开关、第二电子开关、第一电阻、继电器、第一开关控制模组和第二开关控制模组;
所述第一电子开关的第一端分别连接所述第一电阻的第一端和电源,所述第一电子开关的第二端分别连接所述第一电阻的第二端和所述继电器的线圈的第一端;
所述第二电子开关的第一端连接所述继电器的线圈的第二端,所述第二电子开关的第二端接地端;
所述第一开关控制模组用于控制所述第一电子开关的通断状态,所述第二开关控制模组用于控制所述第二电子开关的通断状态。
在一种可能的示例中,所述第一电子开关包括第一三极管;所述第一三极管的基极连接所述第一开关控制模组;所述第一三极管的发射极分别连接所述第一电阻的第一端和电源,所述第一三极管的集电极分别连接所述第一电阻的第二端和所述继电器的线圈的第一端。
在一个可能示例中,所述第一开关控制模组包括第二电阻、第一二极管、第一电容、第三电阻和第二三极管;所述第二电阻的第一端连接所述第一三极管的基极,所述第二电阻的第二端连接所述第二三极管的集电极;所述第一二极管的阳极连接所述继电器的线圈的第二端,所述第一二极管的阴极分别连接所述第一电容的第一端和所述第三电阻的第一端;所述第二三极管的基极连接所述第三电阻的第二端,所述第二三极管的发射极分别连接所述第一电容的第二端和所述第二电子开关的第二端。
在一个可能的示例中,所述第二电子开关包括第三三极管;所述第三三极管的基极连接所述第二开关控制模组;所述第三三极管的集电极连接所述继电器的线圈的第二端,所述第三三极管的发射极接地端。
在一个可能的示例中,所述第二开关控制模组包括第一信号控制器、第四电阻和第五电阻;所述第四电阻的第一端连接所述第一信号控制器,所述第四电阻的第二端分别连接所述第三三极管的基极和所述第五电阻的第一端;所述第五电阻的第二端连接所述第三三极管的发射极。
在一个可能的示例中,所述第二电子开关包括第一场效应晶体管;所述第一场效应晶体管的栅极连接所述第二开关控制模组;所述第一场效应晶体管的漏极连接所述继电器的线圈的第二端,所述第一场效应晶体管的源极接地端。
在一个可能的示例中,所述第二开关控制模组包括第二信号控制器、第六电阻、第七电阻、第八电阻和第二二极管;所述第六电阻的第一端连接所述第二信号控制器,所述第六电阻的第二端分别连接所述第一场效应晶体管的栅极和所述第七电阻的第一端;所述第二二极管的阳极连接所述第七电阻的第二端,所述第二二极管的阴极连接所述第六电阻的第一端;所述第八电阻的第一端连接所述第一场效应晶体管的栅极,所述第八电阻的第二端连接所述第一场效应晶体管的源极。
在一个可能的示例中,所述第二开关控制模组包括第三信号控制器、第九电阻、第三二极管、第四三极管、第十电阻和第十一电阻;所述第九电阻的第一端连接所述第三信号控制器,所述第九电阻的第二端连接所述第四三极管的基极;所述第三二极管的阳极连接所述第九电阻的第二端,所述第三二极管的阴极分别连接所述第十电阻的第一端和所述第一场效应晶体管的栅极;所述第四三极管的发射极连接所述第十电阻的第二端,所述第四三极管的集电极接地端;所述第十一电阻的第一端分别连接所述第三二极管的阴极,所述第十一电阻的第二端连接所述第一场效应晶体管的源极。
在一个可能的示例中,所述第一电子开关包括第二场效应晶体管;所述第二场效应晶体管的栅极连接所述第一开关控制模组;所述第二场效应晶体管的源极分别连接所述第一电阻的第一端和电源,所述第二场效应晶体管的漏极分别连接所述第一电阻的第二端和所述继电器的线圈的第一端。
第二方面,本申请实施例提供一种控制继电器低功耗方法,应用于上述实施例中所示的控制继电器低功耗电路,所述方法包括:
将所述第一电阻与所述继电器串联,所述第一电阻的第一端与电源连接,所述第一电阻的第二端与所述继电器的线圈的第一端连接;
将所述第一电子开关与所述第一电阻并联,所述第一电子开关的第一端与所述电源连接,所述第一电子开关的第二端与所述继电器的线圈的第一端连接;
将所述第二电子开关与所述继电器串联,所述第二电子开关的第一端与所述继电器的线圈的第二端连接,所述第二电子开关的第二端接地端;
将所述第一开关控制模组与所述第一电子开关连接,所述第一开关控制模组用于控制所述第一电子开关的通断状态;
将所述第二开关控制模组与所述第二电子开关连接,所述第二开关控制模组用于控制所述第二电子开关的通断状态;
当所述第一开关控制模组控制所述第一电子开关处于导通,且所述第二开关控制模组控制所述第二电子开关处于导通时,将所述继电器设置于第一工作状态;
当所述第一开关控制模组控制所述第一电子开关处于导通,且所述第二开 关控制模组控制所述第二电子开关处于断开时,将所述继电器设置于第二工作状态,所述第二工作状态下所述继电器的所耗功率小于所述第一工作状态下所述继电器的所耗功率。
可以看出,本申请实施例中所描绘的控制继电器低功耗电路及方法,通过第一开关控制模组控制第一电子开关的通断状态,以及第二开关控制模组控制第二电子开关的通断状态。由于继电器在第一电子开关处于导通并且第二电子开关处于断开时所耗功率小于第一电子开关处于导通并且第二电子开关处于导通时所耗功率,所以有利于灵活和简易地控制继电器的功耗,保证继电器处于较低功耗。同时,继电器所耗功率的降低,使得继电器的线圈温度降低,不仅有利于增加继电器的使用寿命,也有利于提高继电器电路的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种控制继电器低功耗电路的结构示意图;
图2是本申请实施例提供的第二种控制继电器低功耗电路的结构示意图;
图3是本申请实施例提供的第三种控制继电器低功耗电路的结构示意图;
图4是本申请实施例提供的第四种控制继电器低功耗电路的结构示意图;
图5是本申请实施例提供的一种控制继电器低功耗方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、系统、电路或装置没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、系统、电路或装置固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。下面结合附图,对本申请实施例进行详细介绍。
请参阅图1所述,图1是本申请实施例提供的一种控制继电器低功耗电路的结构示意图。控制继电器低功耗电路包括:第一电子开关S1、电阻R1、继电器K1、第二电子开关S2、第一开关控制模组110和第二开关控制模组120。其中,第一电子开关S1的第一端分别连接第一电阻R1的第一端和电源VCC,第一电子开关S1的第二端分别连接第一电阻R1的第二端和继电器K1的线圈的第一端;以及第二电子开关S2的第一端连接继电器K1的线圈的第二端,第二电子开关S2的第二端接地端GND;第一开关控制模组110用于控制第一电子开关S1的通断状态,第二开关控制模组120用于控制第二电子开关S2的通断状态。
具体的,当第二开关控制模组控制120控制第二电子开关S1断开时,继电器K1所在的电路无法形成回路,继电器K1的线圈中没有电流通过,此时继电器K1处于保持状态。
具体的,当第一开关控制模组110控制第一电子开关S1处于导通,且第二开关控制模组120控制第二电子开关S1处于导通时,电源VCC加到继电器K1的线圈两端,线圈中流过一定的电流,从而产生电磁效应。继电器K1的衔铁在电磁效应的作用下克服返回弹簧的拉力吸向铁芯,带动衔铁的动触点和静触点吸合,此时继电器K1处于第一工作状态。
具体的,当第一开关控制模组110控制第一电子开关S1处于导通,且第二开关控制模组120控制第二电子开关S2处于断开时,电源VCC加到与继电器K1串联的电阻R1和继电器K1的线圈的两端,线圈中流过一定电流,产生电磁效应。继电器K1的衔铁在电磁效应的作用下克服返回弹簧的拉力吸向铁芯,带动衔铁的动触点和静触点吸合,此时继电器K1处于第二工作状态,其中,继电器K1在第二工作状态下所耗功率小于所述第一工作状态下所耗功率。
在一个可能示例中,第一电子开关S1包括三极管,该三极管的基极b连接第一开关控制模组110,该三极管的发射极e分别连接电阻R1的第一端和电源VCC,该三极管的集电极c分别连接电阻R1的第二端和继电器K1的线圈的第一端。当第一开关控制模组110向该三极管的基极b施加低电压,并保证该三极管的发射极e的电位高于该三极管的基极b的电位时,该三极管处于导通状态。
在一个可能的示例中,第一电子开关S1包括场效应晶体管,该场效应晶体管的栅极G连接第一开关控制模组110,该场效应晶体管的源极S分别连接第一电阻R1的第一端和电源VCC,该场效应晶体管的漏极D分别连接第一电阻R1的第二端和继电器K1的线圈的第一端。当第一开关控制模组110向该场效应晶体管的栅极G施加低电压,并保证该场效应晶体管的源极G的电位高于该场效应晶体管的栅极G的电位时,该场效应晶体管处于导通状态。
在一个可能的示例中,第二电子开关S2包括三极管,该三极管的基极b连接第二开关控制模组120,该三极管的集电极c连接继电器K1的线圈的第二端,该第三三极管的发射极e接地端GND。当第二开关控制模组120向该三极管的基极b施加低电压,并保证该三极管的发射极e的电位高于该三极管的基极b的电位时,该三极管处于导通状态。
在一个可能的示例中,第二电子开关S2包括场效应晶体管,该场效应晶体管的栅极G连接第二开关控制模组120,该场效应晶体管的漏极D连接继电器K1的线圈的第二端,该场效应晶体管道的源极S接地端GND。当第二开关控制模组120向该场效应晶体管的栅极G施加低电压,并保证该场效应晶体管的源极G的电位高于该场效应晶体管的栅极G的电位时,该场效应晶 体管处于导通状态。
可以看出,本申请实施例中所描绘的控制继电器低功耗电路,通过第一开关控制模组110控制第一电子开关S1的通断状态,以及第二开关控制模组120控制第二电子开关S2的通断状态。由于继电器在第一电子开关处于导通并且第二电子开关处于断开时所耗功率小于第一电子开关处于导通并且第二电子开关处于导通时所耗功率,所以有利于灵活和简易地控制继电器的功耗,保证继电器处于较低功耗。同时,继电器所耗功率的降低,使得继电器的线圈温度降低,不仅有利于增加继电器的使用寿命,也有利于提高继电器电路的可靠性。
图1中的第一电子开关S1、第二电子开关S2、第一开关控制模组110和第二开关控制模组120可以由具体的电路元件和电路模块组成,下面将对其具体描述。
请参阅图2,图2是本申请实施例提供的第二种控制继电器低功耗电路的结构示意图。控制继电器低功耗电路包括:电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、继电器K1、三极管Q1、三极管Q2、三极管Q3、二极管D1和电容C1。可见,第一电子开关S1包括三极管Q1,第二电子开关S2包括三极管Q3,第一开关控制模组110包括由电阻R2、电阻R3、二极管D1、电容C1、三极管Q2组成的电路模块,第二开关控制模块120包括由第一信号控制器CTR1、电阻R4和电阻R5组成的电路模块。
具体的,三极管Q1的发射极e分别连接电源VCC和电阻R1的第一端,三极管Q1的集电极c分别连接电阻R2的第二端和继电器K1的第一端,三极管Q1的基极b连接电阻R2的第一端;三极管Q2的基极b连接电阻R3的第一端,三极管Q2的集电极c连接电阻R2的第二端,三极管Q2的发射极e分别连接电容C1的第一端和三极管Q3的发射极e;三极管Q3的集电极c分别连接继电器K1的第二端和二极管D1的阳极,三极管Q3的基极b分别连接电阻R4的第一端和电阻R5的第一端,三极管Q3的发射极e分别连接电阻R5的第二端和接地端GND;电容C1的第二端分别连接二极管D1的阴极和电阻R3的第二端,电容C1的第一端连接三极管Q3的发射极e;电阻R4的第一端分别连接三极管Q3的基极b和电阻R5的第一端,电阻R4的第二端连 接第一信号控制器CTR1。
具体的,首先,当电源VCC提供直流电流,且第一信号控制器CTR1无电平输入时,三极管Q3处于断开状态,并且该直流电流通过电阻R1、继电器K1的线圈和二极管D1为电容C1提供充电,三极管Q2和三极管Q1依次导通。然后,当第一信号控制器CTR1输入高电平时,三极管Q3处于导通状态,电源VCC通过导通的三极管Q1施加到继电器K1的线圈的两端,保证继电器K1完成吸合状态。此时,导通的三极管Q3使得二极管D1的阳极下拉到接地端GND,导致二极管D1反向截至,电容C1经过电阻R3放电,保证三极管Q2和三极管Q1继续导通。最后,当电容C1的电量不足以支撑三极管Q2继续导通时,三极管Q2和三极管Q1依次截止。此时,电源VCC经过电阻R1施加到继电器K1的线圈的两端,降低继电器K1上的电压和电流,并降低继电器K1所耗功率。
可以看出,相比图1的电路结构,由三极管Q2、二极管D1、电阻R2、电阻R3和电容C1组成的第一开关控制模组110控制三极管Q1的导通时间,以及由第一信号控制器CTR1、电阻R4和电阻R5组成的第二开关控制模组120控制三极管Q3的导通状态,实现降低继电器所耗功率,进一步提高低功耗继电器电路的可靠性。此外,通过调整电容C1的电容容量,可以得到期望的三极管Q2的导通时间,满足不同规格继电器的驱动要求。
进一步地,相比于通过电阻与继电器串联的电路方式以直接降低继电器功耗,图2所述的控制继电器低功耗电路在实现控制继电器低功耗的同时,也进一步提高继电器吸合的稳定性和低功耗继电器电路的可靠性。此外,相比于通过电阻与电解电容并联的电路方式带来的成本与体积的增加、寿命的限制,图2所述的控制继电器低功耗电路在实现降低继电器功耗的同时,也进一步降低继电器驱动电路的成本,以及提高低功耗继电器电路的可靠性。
请参阅图3,图3是本申请实施例提供的第三种控制继电器低功耗电路的结构示意图。控制继电器低功耗电路包括:电阻R1、电阻R2、电阻R3、电阻R6、电阻R7、电阻R8、继电器K1、三极管Q1、三极管Q2、场效应晶体管Q4、二极管D1和电容C1。可见,第一电子开关包括三极管Q1,第二电子 开关包括场效应晶体管Q4,第一开关控制模组110包括由电阻R2、电阻R3、二极管D1、电容C1、三极管Q2组成的电路模块,第二开关模组120包括由第二信号控制器CTR2、电阻R6、电阻R7、电阻R8和二极管D1组成的电路模块。
具体的,三极管Q1的发射极e分别连接电源VCC和电阻R1的第一端,三极管Q1的集电极c分别连接电阻R2的第二端和继电器K1的第一端,三极管Q1的基极b连接电阻R2的第一端;三极管Q2的基极b连接电阻R3的第一端,三极管Q2的集电极c连接电阻R2的第二端,三极管Q2的发射极e分别连接电容C1的第一端和场效应晶体管Q4的源极S;场效应晶体管Q4的漏极D分别连接继电器K1的第二端和二极管D1的阳极,场效应晶体管Q4的栅极G分别连接电阻R6的第一端、电阻R7的第一端和电阻R8的第一端,场效应晶体管Q4的源极S分别连接电阻R8的第二端和接地端GND;电容C1的第二端分别连接二极管D1的阴极和电阻R3的第二端,电容C1的第一端连接场效应晶体管Q4的源极S;电阻R6的第一端分别连接场效应晶体管Q4的栅极G、电阻R7的第一端和电阻R8的第一端,电阻R6的第二端分别连接第二信号控制器CTR和二极管D2的阴极;电阻R7的第一端分别连接电阻R6的第一端、电阻R8的第一端和场效应晶体管Q4的栅极G,电阻R7的第二端连接二极管D2的阳极。
具体的,如图2中所述类似,当电源VCC提供直流电流,且第二信号控制器CTR2无电平输入时,场效应晶体管Q4处于断开状态,并且该直流电流通过电阻R1、继电器K1的线圈和二极管D1为电容C1提供充电,三极管Q2和三极管Q1依次导通。然后,当第二信号控制器CTR2输入高电平时,场效应晶体管Q4处于导通状态,电源VCC通过导通的三极管Q1施加到继电器K1的线圈的两端,保证继电器K1完成吸合状态。电源VCC经过电阻R1施加到继电器K1的线圈的两端,降低继电器K1上的电压和电流,并降低继电器K1所耗功率。
可以看出,相比图2,除了通过调整电容C1的电容容量,可以得到期望的三极管Q2的导通时间,满足不同规格继电器的驱动要求之外,由第二信号 控制器CTR2、电阻R6、电阻R7、电阻R8和二极管D1组成的第二开关控制模组120,能够提供一个尽可能低阻抗的通路供场效应晶体管Q4的栅极G和源极S之间电容和电压的快速泄放,使得场效应晶体管Q4的通断时间减小,同时减小通断时的损耗,最终,不仅实现控制继电器低功耗,也进一步提高低功耗继电器电路的可靠性。
请参阅图4,图4是本申请实施例提供的第四种控制继电器低功耗电路的结构示意图。控制继电器低功耗电路包括:三极管Q1、三极管Q2、场效应晶体管Q4、三极管Q5、继电器K1、电阻R1、电阻R2、电阻R3、电阻R9、电阻R10、电阻R11、二极管D1、二极管D3、电容C1。可见,第一电子开关包括三极管Q1,第二电子开关包括场效应晶体管Q4,第一开关控制模组110包括由电阻R2、电阻R3、二极管D1、电容C1、三极管Q2组成的电路模块,第二开关模组120包括由第三信号控制器CTR3、电阻R9、电阻R10、电阻R11、二极管D3和三极管Q5组成的电路模块。
具体的,三极管Q1的发射极e分别连接电源VCC和电阻R1的第一端,三极管Q1的集电极c分别连接电阻R2的第二端和继电器K1的第一端,三极管Q1的基极b连接电阻R2的第一端;三极管Q2的基极b连接电阻R3的第一端,三极管Q2的集电极c连接电阻R2的第二端,三极管Q2的发射极e分别连接电容C1的第一端和场效应晶体管Q4的源极S;场效应晶体管Q4的漏极D分别连接继电器K1的第二端和二极管D1的阳极,场效应晶体管Q4的栅极G分别连接二极管D3的阴极、电阻R10的第一端和电阻R11的第一端,场效应晶体管Q4的源极S分别连接电阻R11的第二端和接地端GND;电容C1的第二端分别连接二极管D1的阴极和电阻R3的第二端,电容C1的第一端连接场效应晶体管Q4的源极S;三极管Q5的发射极e连接电阻R10的第二端,三极管Q5的基极b分别连接二极管D3的阳极和电阻R9的第一端,三极管Q5的集电极c接地端GND;电阻R9的第一端分别连接二极管D3的阳极和三极管Q5的基极b,电阻R9的第二端连接第三信号控制器CTR3。
具体的,如图2中所述类似,由三极管Q2、二极管D1、电阻R2、电阻R3和电容C1组成的第一开关控制模组110控制三极管Q1的导通时间,以实 现电源VCC经过电阻R1施加到继电器K1的线圈的两端,降低继电器K1上的电压和电流,并降低继电器K1所耗功率。
可以看出,相比图3,由第三信号控制器CTR3、电阻R9、电阻R10、电阻R11、二极管D3和三极管Q5组成的第二开关控制模组120,通过三极管Q5来快速泄放场效应晶体管Q4的栅极G和源极S之间电容和电压,进一步减小场效应晶体管Q4的通断时间和通断时的损耗,最终,不仅实现降低继电器电路所耗功率,也进一步提高控制继电器低功耗电路的可靠性。
上述从电路侧的角度对本申请实施例的方案进行了介绍。下面将从方法示例的角度介绍控制继电器低功耗的执行步骤。
请参阅图5,图5是本申请实施例提供的一种控制继电器低功耗方法的流程示意图,应用于上述实施例中所示的控制继电器低功耗电路,所述方法包括:
S501、将第一电阻与继电器串联,第一电阻的第一端与电源连接,第一电阻的第二端与继电器的线圈的第一端连接;
S502、将第一电子开关与第一电阻并联,第一电子开关的第一端与电源连接,第一电子开关的第二端与继电器的线圈的第一端连接;
S503、将第二电子开关与继电器串联,第二电子开关的第一端与继电器的线圈的第二端连接,第二电子开关的第二端接地端;
S504、将第一开关控制模组与第一电子开关连接,第一开关控制模组用于控制第一电子开关的通断状态;
S505、将第二开关控制模组与第二电子开关连接,第二开关控制模组用于控制第二电子开关的通断状态;
S506、当第一开关控制模组控制第一电子开关处于导通,且第二开关控制模组控制第二电子开关处于导通时,将继电器设置于第一工作状态;
S507、当第一开关控制模组控制第一电子开关处于导通,且第二开关控制模组控制第二电子开关处于断开时,将继电器设置于第二工作状态,第二工作状态下继电器的所耗功率小于第一工作状态下继电器的所耗功率。
可以看出,本申请实施例中所描绘的控制继电器低功耗方法,通过第一开关控制模组控制第一电子开关的通断状态,以及第二开关控制模组控制第二电 子开关的通断状态。由于继电器在第一电子开关处于导通并且第二电子开关处于断开时所耗功率小于第一电子开关处于导通并且第二电子开关处于导通时所耗功率,所以有利于灵活和简易地控制继电器的功耗,保证继电器处于较低功耗。同时,继电器所耗功率的降低,使得继电器的线圈温度降低,不仅有利于增加继电器的使用寿命,也有利于提高继电器电路的可靠性。
以上对本申请实施例所提供的一种控制继电器低功耗电路及方法进行了详细介绍,本文中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种控制继电器低功耗电路,应用于车载电源,其特征在于,所述控制继电器低功耗电路,包括:
    第一电子开关、第二电子开关、第一电阻、继电器、第一开关控制模组和第二开关控制模组;
    所述第一电子开关的第一端分别连接所述第一电阻的第一端和电源,所述第一电子开关的第二端分别连接所述第一电阻的第二端和所述继电器的线圈的第一端;
    所述第二电子开关的第一端连接所述继电器的线圈的第二端,所述第二电子开关的第二端接地端;
    所述第一开关控制模组用于控制所述第一电子开关的通断状态,所述第二开关控制模组用于控制所述第二电子开关的通断状态。
  2. 根据权利要求1所述的控制继电器低功耗电路,其特征在于,所述第一电子开关包括第一三极管;所述第一三极管的基极连接所述第一开关控制模组;所述第一三极管的发射极分别连接所述第一电阻的第一端和电源,所述第一三极管的集电极分别连接所述第一电阻的第二端和所述继电器的线圈的第一端。
  3. 根据权利要求2所述的控制继电器低功耗电路,其特征在于,所述第一开关控制模组包括第二电阻、第一二极管、第一电容、第三电阻和第二三极管;
    所述第二电阻的第一端连接所述第一三极管的基极,所述第二电阻的第二端连接所述第二三极管的集电极;
    所述第一二极管的阳极连接所述继电器的线圈的第二端,所述第一二极管的阴极分别连接所述第一电容的第一端和所述第三电阻的第一端;
    所述第二三极管的基极连接所述第三电阻的第二端,所述第二三极管的发射极分别连接所述第一电容的第二端和所述第二电子开关的第二端。
  4. 根据权利要求1所述的控制继电器低功耗电路,其特征在于,所述第二电子开关包括第三三极管;所述第三三极管的基极连接所述第二开关控制模 组;所述第三三极管的集电极连接所述继电器的线圈的第二端,所述第三三极管的发射极接地端。
  5. 根据权利要求4所述的控制继电器低功耗电路,其特征在于,所述第二开关控制模组包括第一信号控制器、第四电阻和第五电阻;
    所述第四电阻的第一端连接所述第一信号控制器,所述第四电阻的第二端分别连接所述第三三极管的基极和所述第五电阻的第一端;
    所述第五电阻的第二端连接所述第三三极管的发射极。
  6. 根据权利要求1所述的控制继电器低功耗电路,其特征在于,所述第二电子开关包括第一场效应晶体管;所述第一场效应晶体管的栅极连接所述第二开关控制模组;所述第一场效应晶体管的漏极连接所述继电器的线圈的第二端,所述第一场效应晶体管的源极接地端。
  7. 根据权利要求6所述的控制继电器低功耗电路,其特征在于,所述第二开关控制模组包括第二信号控制器、第六电阻、第七电阻、第八电阻和第二二极管;
    所述第六电阻的第一端连接所述第二信号控制器,所述第六电阻的第二端分别连接所述第一场效应晶体管的栅极和所述第七电阻的第一端;
    所述第二二极管的阳极连接所述第七电阻的第二端,所述第二二极管的阴极连接所述第六电阻的第一端;
    所述第八电阻的第一端连接所述第一场效应晶体管的栅极,所述第八电阻的第二端连接所述第一场效应晶体管的源极。
  8. 根据权利要求6所述的控制继电器低功耗电路,其特征在于,所述第二开关控制模组包括第三信号控制器、第九电阻、第三二极管、第四三极管、第十电阻和第十一电阻;
    所述第九电阻的第一端连接所述第三信号控制器,所述第九电阻的第二端连接所述第四三极管的基极;
    所述第三二极管的阳极连接所述第九电阻的第二端,所述第三二极管的阴极分别连接所述第十电阻的第一端和所述第一场效应晶体管的栅极;
    所述第四三极管的发射极连接所述第十电阻的第二端,所述第四三极管的 集电极接地端;
    所述第十一电阻的第一端分别连接所述第三二极管的阴极,所述第十一电阻的第二端连接所述第一场效应晶体管的源极。
  9. 根据权利要求1所述的控制继电器低功耗电路,其特征在于,所述第一电子开关包括第二场效应晶体管;所述第二场效应晶体管的栅极连接所述第一开关控制模组;所述第二场效应晶体管的源极分别连接所述第一电阻的第一端和电源,所述第二场效应晶体管的漏极分别连接所述第一电阻的第二端和所述继电器的线圈的第一端。
  10. 一种控制继电器低功耗方法,应用于权利要求1-9任一项所述的控制继电器低功耗电路,其特征在于,所述方法包括:
    将所述第一电阻与所述继电器串联,所述第一电阻的第一端与电源连接,所述第一电阻的第二端与所述继电器的线圈的第一端连接;
    将所述第一电子开关与所述第一电阻并联,所述第一电子开关的第一端与所述电源连接,所述第一电子开关的第二端与所述继电器的线圈的第一端连接;
    将所述第二电子开关与所述继电器串联,所述第二电子开关的第一端与所述继电器的线圈的第二端连接,所述第二电子开关的第二端接地端;
    将所述第一开关控制模组与所述第一电子开关连接,所述第一开关控制模组用于控制所述第一电子开关的通断状态;
    将所述第二开关控制模组与所述第二电子开关连接,所述第二开关控制模组用于控制所述第二电子开关的通断状态;
    当所述第一开关控制模组控制所述第一电子开关处于导通,且所述第二开关控制模组控制所述第二电子开关处于导通时,将所述继电器设置于第一工作状态;
    当所述第一开关控制模组控制所述第一电子开关处于导通,且所述第二开关控制模组控制所述第二电子开关处于断开时,将所述继电器设置于第二工作状态,所述第二工作状态下所述继电器的所耗功率小于所述第一工作状态下所述继电器的所耗功率。
PCT/CN2020/072440 2020-01-16 2020-01-16 控制继电器低功耗电路及方法 WO2021142705A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080002889.0A CN112236836B (zh) 2020-01-16 2020-01-16 控制继电器低功耗电路及方法
PCT/CN2020/072440 WO2021142705A1 (zh) 2020-01-16 2020-01-16 控制继电器低功耗电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072440 WO2021142705A1 (zh) 2020-01-16 2020-01-16 控制继电器低功耗电路及方法

Publications (1)

Publication Number Publication Date
WO2021142705A1 true WO2021142705A1 (zh) 2021-07-22

Family

ID=74123639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072440 WO2021142705A1 (zh) 2020-01-16 2020-01-16 控制继电器低功耗电路及方法

Country Status (2)

Country Link
CN (1) CN112236836B (zh)
WO (1) WO2021142705A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231347A (zh) * 2010-08-08 2011-11-02 浙江上方光伏科技有限公司 一种高分断能力的低功耗继电器
CN203179794U (zh) * 2013-03-27 2013-09-04 安徽三联学院 一种基于继电器维持电压的低功耗电路
CN105551886A (zh) * 2015-12-30 2016-05-04 安徽贵博新能科技有限公司 一种低功耗继电器驱动电路
EP3313154A1 (en) * 2016-10-18 2018-04-25 Climas Technology Co., Ltd. Rf controlled switch box without using neutral wire and an rf controlled circuit thereof
CN109494120A (zh) * 2018-12-24 2019-03-19 深圳和而泰小家电智能科技有限公司 继电器控制电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4410819C2 (de) * 1993-03-26 1996-08-14 Schleicher Relais Schaltungsanordnung für den Betrieb eines Relais
JP6044928B2 (ja) * 2012-09-25 2016-12-14 パナソニックIpマネジメント株式会社 リレー駆動装置
CN211236641U (zh) * 2020-01-16 2020-08-11 深圳欣锐科技股份有限公司 控制继电器低功耗电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231347A (zh) * 2010-08-08 2011-11-02 浙江上方光伏科技有限公司 一种高分断能力的低功耗继电器
CN203179794U (zh) * 2013-03-27 2013-09-04 安徽三联学院 一种基于继电器维持电压的低功耗电路
CN105551886A (zh) * 2015-12-30 2016-05-04 安徽贵博新能科技有限公司 一种低功耗继电器驱动电路
EP3313154A1 (en) * 2016-10-18 2018-04-25 Climas Technology Co., Ltd. Rf controlled switch box without using neutral wire and an rf controlled circuit thereof
CN109494120A (zh) * 2018-12-24 2019-03-19 深圳和而泰小家电智能科技有限公司 继电器控制电路

Also Published As

Publication number Publication date
CN112236836B (zh) 2023-04-04
CN112236836A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
JP2019514153A (ja) コンタクタコイル制御回路
EP2636053B1 (en) Method and apparatus for improved relay control
CN110148543B (zh) 一种磁保持继电器的上电自动切换电路
CN112017910A (zh) 继电器驱动电路和应用其的电力设备
WO2021142705A1 (zh) 控制继电器低功耗电路及方法
CN214477203U (zh) 一种继电器控制电路及电器设备
CN211236641U (zh) 控制继电器低功耗电路
WO2020063871A1 (zh) 继电器的驱动电路、方法、存储介质及电子装置
CN218633695U (zh) 上电缓启动电路、芯片及激光雷达
CN108183049A (zh) 继电器驱动电路与空调器
CN203191746U (zh) 一种继电器闭环控制系统
CN107946139B (zh) 车辆的继电器控制系统和方法及车辆
JP2006114446A (ja) リレー駆動回路
CN210925886U (zh) 无线汽车继电器
CN113394053B (zh) 车载继电器低边驱动电路
CN214672069U (zh) 电磁铁控制电路
CN215266098U (zh) 一种降低功耗并加速继电器吸合的电路
EP4080536A1 (en) Contactor, and device and method for controlling same
US12002640B1 (en) Control system of an electromagnetic relay and electromagnetic relay
CN217405333U (zh) 继电器的驱动电路及电子设备
CN220020922U (zh) 双线圈控制电路及双线圈脱扣器
CN220856443U (zh) 一种继电器驱动电路、电子设备及车辆
CN218788757U (zh) 一种可变电压使能电路
CN215183734U (zh) 接触器节能模块的快速释放电路
CN217545871U (zh) 预充电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20914563

Country of ref document: EP

Kind code of ref document: A1