WO2020063871A1 - 继电器的驱动电路、方法、存储介质及电子装置 - Google Patents

继电器的驱动电路、方法、存储介质及电子装置 Download PDF

Info

Publication number
WO2020063871A1
WO2020063871A1 PCT/CN2019/108564 CN2019108564W WO2020063871A1 WO 2020063871 A1 WO2020063871 A1 WO 2020063871A1 CN 2019108564 W CN2019108564 W CN 2019108564W WO 2020063871 A1 WO2020063871 A1 WO 2020063871A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
voltage
resistor
driving
control circuit
Prior art date
Application number
PCT/CN2019/108564
Other languages
English (en)
French (fr)
Inventor
李建国
李艳玲
蒋翌平
唐弘扬
彭云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020063871A1 publication Critical patent/WO2020063871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device

Definitions

  • the present disclosure relates to the field of electricity, and in particular, to a drive circuit, method, storage medium, and electronic device for a relay.
  • the relay is a commonly used electronic component, which can realize the switch of low voltage control and high voltage.
  • the relay coil end is connected to the low voltage control circuit, and the relay contact point is connected to the high voltage circuit.
  • the low voltage control circuit at the coil end can realize the high voltage part. On or off.
  • High-power relays are generally used to control the switching of high voltage and high current.
  • High-power relays have the following characteristics: the internal driving part is based on the principle of electromagnetics, and an appropriate voltage is applied to the relay coil to generate a magnetic field, which can control the mechanical contact device inside the relay to operate.
  • the contact capacity of the relay is large, the magnetic field required by the coil end must also be strong enough to ensure that the relay can be reliably pulled in.
  • the auxiliary power supply for driving energy to the relay is limited in the equipment.
  • each power relay needs to control pull-in or disconnection at the same time, its auxiliary power needs a lot of power. In this way, the design requirements for the auxiliary power are relatively high, which brings trouble to the circuit design and is not conducive to resource conservation; and the relay Large driving power consumption will also increase the relay's own heating, which will affect the relay's operating life.
  • the embodiments of the present disclosure provide a driving circuit, a method, a device, a storage medium, and an electronic device of a relay, so as to at least solve the problems that the relay driving power consumption in the related art is large, which will affect its own working life and is not conducive to resource conservation.
  • a driving circuit for a relay including: a first voltage control circuit, an output terminal of the first voltage control circuit is connected to an input terminal of the relay, and is used for connecting the relay After being in the pull-in state, a specified voltage is output to the relay to drive the relay, wherein the specified voltage is less than the current driving voltage of the relay, and the relay still keeps being pulled in under the driving of the specified voltage status.
  • a method for driving a relay comprising: after the relay is in a pull-in state, reducing a driving voltage of the relay to a specified voltage, wherein the relay is at the specified voltage The driving state is still maintained; the relay is driven by the specified voltage.
  • a driving device for a relay including: a reducing module for reducing a driving voltage of the relay to a specified voltage after the relay is in a pull-in state, wherein the relay is in A driving state is maintained under the driving of the specified voltage; a driving module is configured to drive the relay by using the specified voltage.
  • a storage medium where the computer program is stored in the storage medium, and the computer program is configured to execute the method embodiment described in any one of the above when run. A step of.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above. Steps in the described method embodiments.
  • the driving voltage of the relay in the pull-in state is reduced, thereby reducing the power consumption of the relay. Therefore, the problems in the related art that the power consumption of the relay driving is large, which will affect its own working life and is not conducive to resource conservation, The technical effect of reducing the driving power consumption of the relay and the power of the auxiliary power source is achieved, and at the same time, the situation of reduced reliability and reduced life due to the heating of the relay itself is avoided.
  • FIG. 1 is a schematic structural diagram of a driving circuit of a relay according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a driving method of a relay according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a driving device of a relay according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of a driving circuit of a relay according to an alternative embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a driving circuit of a relay according to an alternative embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method of driving a relay according to an alternative embodiment of the present disclosure
  • FIG. 7 is a timing diagram of a driving method of a relay according to an alternative embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a driving circuit for a relay, as shown in FIG. 1, including: a first voltage control circuit 11, an output terminal of the first voltage control circuit and a relay 12 The input terminal is connected to output a specified voltage to the relay 12 to drive the relay after the relay is in the pull-in state, wherein the specified voltage is less than the current drive voltage of the relay, and the relay 12 remains in the pull-in state under the drive of the specified voltage.
  • the driving voltage of the relay in the pull-in state is reduced, thereby reducing the power consumption of the relay. Therefore, the problems in the related art that the power consumption of the relay driving is large, which will affect its own working life and is not conducive to resource conservation, The technical effect of reducing the driving power consumption of the relay and the power of the auxiliary power source is achieved, and at the same time, the situation of reduced reliability and reduced life due to the heating of the relay itself is avoided.
  • the driving circuit of the relay further includes: a second voltage control circuit, an output terminal of the second voltage control circuit is connected to the input terminal of the relay, and is configured to output a driving voltage to the relay, so that the relay transitions from a released state It is a closed state.
  • the second voltage control circuit is further configured to stop outputting the driving voltage to the relay when the first voltage control circuit outputs the specified voltage to the relay after the relay is in the pull-in state.
  • the driving circuit further includes: a relay action control circuit, an output terminal of the relay action control circuit is connected to an output end of the relay, and the relay action control circuit is configured to connect the first voltage control circuit or the second voltage control circuit to When the relay outputs the specified voltage or driving voltage, the output terminal of the control relay is grounded to form a relay driving circuit.
  • the driving circuit further includes a power source, and the power source is connected to the input terminals of the first voltage control circuit, the second voltage control circuit, and the relay operation control circuit.
  • the driving circuit when the input terminals of the first voltage control circuit and the second voltage control circuit are connected to the same power source, the driving circuit further includes: a clamper, the positive pole of the clamper and the output terminal of the first voltage control circuit.
  • the second voltage control circuit and the first voltage control circuit simultaneously output the driving voltage and the specified voltage to the relay.
  • the clamp is used to cut off the specified voltage output to the relay, so that the relay uses the driving voltage to change from the released state to the attracted state.
  • the structure of the second voltage control circuit includes: a first converter, a first inductor, a first diode, and a first capacitor, wherein an input terminal of the first converter is connected to a power source, and the first The output terminal of the converter is connected to the first terminal of the first inductor, the second terminal of the first inductor is connected to the negative electrode of the first diode, the first terminal of the first capacitor and the input terminal of the relay, and the first diode The positive terminal of and the second terminal of the first capacitor are both connected to the first converter.
  • a relay driving method includes: Step S202, after the relay is in a pull-in state, reducing the driving voltage of the relay to a specified voltage, wherein the relay is at The pull-in state is maintained under the driving of the specified voltage; in step S204, the relay is driven by the specified voltage.
  • the driving voltage of the relay in the pull-in state is reduced, thereby reducing the power consumption of the relay. Therefore, the problems in the related art that the power consumption of the relay driving is large, which will affect its own working life and is not conducive to resource conservation
  • the technical effect of reducing the driving power consumption of the relay and the power of the auxiliary power source is achieved, and at the same time, the situation of reduced reliability and reduced life due to the heating of the relay itself is avoided.
  • the method further includes: outputting the drive voltage to the relay, so that the relay changes from the released state to the pull-in state.
  • reducing the driving voltage of the relay to a specified voltage includes: stopping outputting the driving voltage to the relay, and outputting the specified voltage to the relay.
  • a driving device for a relay is provided.
  • the device is used to implement the foregoing embodiments and preferred implementation manners.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • the device includes: a reduction module 31 for reducing the driving voltage of the relay to a specified voltage after the relay is in the pull-in state, wherein the relay remains in the pull-in state under the driving of the specified voltage; the drive module 33, used to drive the relay with the specified voltage.
  • the driving voltage of the relay in the pull-in state is reduced, thereby reducing the power consumption of the relay. Therefore, the problems in the related art that the power consumption of the relay driving is large, which will affect its own working life and is not conducive to resource conservation
  • the technical effect of reducing the driving power consumption of the relay and the power of the auxiliary power source is achieved, and at the same time, the situation of reduced reliability and reduced life due to the heating of the relay itself is avoided.
  • the reduction module further includes: a reduction sub-module, configured to stop outputting the driving voltage to the relay, and output the specified voltage to the relay.
  • the above modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are all in the same processor; or the above modules are combined in any combination The forms are in different processors.
  • a storage medium is provided, and a computer program is stored in the storage medium, wherein the computer program is configured to execute the steps in any one of the method embodiments described above when running.
  • the storage medium described above may be configured to store a computer program for performing the following steps: Step S1, after the relay is in the pull-in state, reduce the driving voltage of the relay to a specified voltage, where , The relay remains in the pull-in state under the driving of the specified voltage; step S2, the relay is driven by the specified voltage.
  • the storage medium is further configured to store a computer program for performing the following steps:
  • step S1 after the relay is in the pull-in state, before the drive voltage of the relay is reduced to a specified voltage, a drive voltage is output to the relay, so that the relay changes from the released state to the pull-in state.
  • the above storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), and a random access memory (RAM) ), Mobile hard disks, magnetic disks, or compact discs, which can store computer programs.
  • an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to execute the method in any one of the method embodiments described above. step.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the processor may be configured to execute the following steps by a computer program: Step S1, after the relay is in a pull-in state, reduce the driving voltage of the relay to a specified voltage, where the relay is in The driving state of the specified voltage is still maintained; in step S2, the relay is driven by the specified voltage.
  • the technical solution of the present disclosure that is essentially or contributes to the existing technology can be embodied in the form of a software product that is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods of the embodiments of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • the electromagnetically controlled relay has the following characteristics: After the relay coil generates a magnetic field to cause the relay to act, the internal magnetically soft material has a better magnetic permeability than air. Therefore, after the relay operates, the magnetic resistance of its internal magnetic circuit will suddenly decrease. At this time, even if the current of the control coil is appropriately reduced, the electromagnet will not return immediately. Only when the current is reduced to a certain level, the contacts of the relay will return due to the spring force of the internal spring. This is the relay's relay characteristics.
  • the operating characteristics of electromagnetic relays include “operating voltage”, “holding voltage” and “release voltage”, where “operating voltage” is generally 75% of the rated voltage, “holding voltage” is generally 60% of the rated voltage, and “release voltage” Generally it is 5% of the rated voltage.
  • FIG. 4 shows a schematic diagram of a circuit structure of a low-power relay control circuit provided by the implementation of the present disclosure. For convenience of explanation, FIG. 4 only shows a part related to the present disclosure.
  • the circuit hardware module includes: a low-power relay driver including a high-voltage power supply control unit 1, a low-voltage power supply unit 2, a relay action control unit 3, a clamping diode 4, and a power relay 5.
  • the input of the high-voltage power supply control unit 1 is connected to the control signal CON1
  • the output of the high-voltage power supply control unit 1 is connected to the positive end of the coil of the power relay 5
  • the output of the voltage power supply unit 2 is connected to the positive pole of the clamp diode 4
  • the negative terminal of the clamping diode 4 is connected to the output terminal of the power control unit 1 and also to the positive terminal of the power relay 5.
  • the input of the relay action control unit 3 is connected to the control signal CON2, and the output of the relay action control unit 3 is connected to power.
  • the high-voltage power supply control unit 1 is mainly used to control the positive terminal voltage of the power relay coil. This unit can control the voltage applied to the power relay coil terminal to be “rated voltage” or “hold voltage”.
  • the low-voltage power supply unit 2 is the “holding voltage” of the power relay, and the clamping diode prevents the "rated voltage” voltage output by the high-voltage power supply control unit 1 from backflowing into the low-voltage power supply unit 2.
  • the relay operation control unit 3 controls the power relay to be turned on or off. It should be noted that: the high-voltage power supply control unit 1, the low-voltage power supply unit 2, and the relay operation control unit 3 all use the same power ground.
  • FIG. 5 it is a schematic diagram of a circuit structure specifically implemented in this embodiment.
  • the high-voltage power supply control unit 1 is a power supply control unit composed of an optocoupler U1, resistors R1 to R5, a PNP-type transistor Q1 / Q3, an NPN-type transistor Q2, and a P communication insulated gate field-effect transistor Q4.
  • the auxiliary power supply VCC is powered on and the control signal CON1 of the power supply control unit is at a low level
  • the primary diode of the optocoupler U3 is not conductive, and the secondary side is also not conductive.
  • the transistor Q1 is turned off, and a push-pull consisting of Q2 and Q3
  • the control of the circuit is extremely low level, at this time Q3 will be turned on, and the gate of the field effect transistor Q4 is pulled to a low level.
  • Q4 is a P-channel FET
  • the drain of Q4 is the power supply voltage VCC
  • the voltage of the positive terminal of the power relay K1 coil to ground is the power supply voltage VCC.
  • the optocoupler U1 is turned on, the control pole of the PNP transistor Q1 is pulled low, and the collector of Q1 becomes high level.
  • Q2 is turned on, and the gate of Q4 The pole becomes high level, at this time Q4 is not turned on, and the voltage of the positive terminal of the power relay K1 coil to ground is the output voltage of the DC / DC converter part.
  • the voltage of the positive terminal of the coil of the power relay K1 is VCC
  • CON1 is at a high level
  • the voltage of the positive terminal of the coil of the power relay K1 is DC / DC.
  • Output voltage of the converter section It should be noted here that the voltage VCC is the "rated voltage" of the relay operation.
  • the low-voltage power supply unit 2 is a DC / DC converter composed of a DC / DC chip U2, a freewheeling inductor L1, a freewheeling diode D1, and an output capacitor C1.
  • U2 is a step-down DC / DC chip.
  • U2 and inductor L1, diode D1, and capacitor C1 form a step-down BUCK circuit.
  • the output voltage can be set by the external parameters. This voltage is set here as the "holding voltage” required for the relay to pull in. It can be seen that as long as the VCC voltage is powered on, the DC / DC converter part can output the voltage, which is the "holding voltage” required for the relay to pull in.
  • the relay action control unit 3 is a relay action control unit composed of a photocoupler U3, resistors R6 to R8, a PNP-type transistor Q5, and an N-channel insulated gate field effect transistor Q6.
  • the auxiliary power supply VCC is powered on and the control signal CON2 of the relay action control unit is at a low level, the primary diode of the optocoupler U3 is not conducting, so the secondary side is also not conducting, and the transistor Q5 is turned off, then the gate of the field effect transistor Q6 Very low. Because Q6 is a P-channel field effect transistor, when the gate of Q6 is at a low level, Q6 is not turned on, and the negative terminal of the power relay K1 coil is in a floating state.
  • the control signal CON2 of the relay action control unit When the control signal CON2 of the relay action control unit is at a high level, the primary diode of the optocoupler U3 is turned on, the secondary transistor is also turned on, the base of the transistor Q5 is pulled to a low level, and Q5 is turned on, then the field The gate of the effect transistor Q6 becomes high level, at this time Q6 is turned on, and the negative terminal of the coil of the power relay K1 is pulled to the ground.
  • the control signal CON2 of the relay action control unit when the control signal CON2 of the relay action control unit is at a low level, the negative terminal of the power relay K1 coil is in a floating state.
  • the control signal CON2 When the control signal CON2 is at a high level, the negative terminal of the power relay K1 coil is pulled to ground. .
  • the control signal of the power control unit is marked as CON1
  • the control signal of the relay action control unit is marked as CON2
  • the output voltage of the power control unit that is, the drain-to-ground voltage of the field effect transistor Q4 in FIG. 5
  • the output voltage of the DC / DC converter part that is, the voltage of the negative pole of the diode D1 in FIG. 5 to the ground
  • the voltage of the positive and negative ends of the coil of the power relay K1 is marked as V3.
  • the specific working process of the system is shown in FIG.
  • FIG. 6 including: start; the relay action control signal CON2 sends a high level, the relay draws in with high power consumption; the power control signal CON1 sends a high level, the relay keeps in low power consumption; and the end.
  • Figure 7 shows a graph of the system from power-on to the power relay maintaining a low power state.
  • Step 1 When the system is powered on, that is, when the VCC voltage is established, the control signal CON1 of the power control unit and the control signal CON2 of the relay action control unit are both low.
  • CON1 when CON1 is at a low level, the drain-to-ground voltage V1 of the field effect transistor Q4 is a "rated voltage” VCC.
  • the output voltage of the DC / DC converter that is, the diode D1 negative pole voltage to ground V2 is the "holding voltage” required for the power relay to pull in.
  • the "hold voltage” is about 60% of the "rated voltage” VCC, so V1 is greater than V2, and the clamping diode D2 is in the reverse cutoff state.
  • Step 3 The control signal CON1 of the power control unit is converted to a high level, and the control signal CON2 of the relay action control unit is still high. From the above analysis, when the control signal of the power control unit is high level, the field effect transistor Q4 is turned off, then the output voltage of the DC / DC converter is added to the drain of Q4 through the diode D2, and the voltage of the drain of Q4 to ground is DC / DC converter output voltage V2. Because the control signal CON2 of the relay action control unit is still high, the field effect transistor Q6 is still on. At this time, the voltage V3 of the positive and negative terminals of the coil of the relay K1 is a "holding voltage", and the power relay K1 is kept in a low power consumption state, and the process is as shown after time t2 in FIG. 7.
  • this circuit is only a specific example. In practical applications, it can be modified according to specific conditions, such as: using small relay control instead of the optocoupler control of Figure 5 for high voltage power control units and relay action control circuits; or to save costs, U1, U3 optocoupler and other methods are omitted; If there are other suitable low voltages in the system, it can directly replace the DC / DC converter circuit, saving costs, etc.
  • the low power consumption driving method of the power relay described in this patent can be adjusted and set according to different application scenarios to meet the actual application conditions in different scenarios.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Above, in some embodiments, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be different from here
  • the steps shown or described are performed sequentially, or they are separately made into individual integrated circuit modules, or multiple modules or steps in them are made into a single integrated circuit module to implement. As such, the present disclosure is not limited to any particular combination of hardware and software.
  • the related art solves the problems that the relay driving power consumption is large, which will affect its own operating life and is not conducive to resource conservation, and achieves the technical effect of reducing the driving power consumption of the relay and reducing the power of the auxiliary power source, while avoiding This reduces the reliability and life of the relay due to its own heating.

Landscapes

  • Relay Circuits (AREA)

Abstract

一种继电器的驱动电路、方法、装置、存储介质及电子装置,驱动电路包括第一电压控制电路(11),第一电压控制电路(11)的输出端与继电器(12)的输入端连接,用于在继电器(12)处于吸合状态后,向继电器(12)输出指定电压以驱动继电器(12),其中,指定电压小于继电器(12)当前的驱动电压,且继电器(12)在指定电压的驱动下仍然保持吸合状态。

Description

继电器的驱动电路、方法、存储介质及电子装置
本公开要求享有2018年09月28日提交的名称为“继电器的驱动电路、方法、装置、存储介质及电子装置”的中国专利申请CN201811141715.3的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及电学领域,具体而言,涉及一种继电器的驱动电路、方法、存储介质及电子装置。
背景技术
继电器是一种常用的电子元器件,可以实现低压控制高压的切换,一般情况下,继电器线圈端连接低压控制电路,而继电器触电点连接高压电路,通过线圈端的低压控制电路,可以实现高压部分的接通或断开。
在电力行业,由于交直流电的功率都较大,所以一般采用大功率继电器来控制高电压、大电流的切换。大功率继电器有如下特点:其内部驱动部分是利用电磁原理,在继电器线圈端施加适当电压以产生磁场,该磁场可以控制继电器内部的机械触点装置动作。当继电器的触点容量较大时,其线圈端所需要的磁场也必须要足够强才能保证继电器可靠吸合,但是一般在设备内部,给继电器提供驱动能量的辅助电源功率是有限的,当多个功率继电器需要同时控制吸合或断开时,其辅助电源需要很大的功率,这样,对辅助电源的设计要求就比较高,给电路设计带来了麻烦并且不利于资源的节约;并且继电器的驱动功耗较大还会增加继电器自身发热,从而影响继电器的工作寿命。
针对相关技术中,继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种继电器的驱动电路、方法、装置、存储介质及电子装置,以至少解决相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题。
根据本公开的一个实施例,提供了一种继电器的驱动电路,包括:第一电压控制电路,所述第一电压控制电路的输出端与所述继电器的输入端连接,用于在所述继电器处于吸合状态后,向所述继电器输出指定电压以驱动所述继电器,其中,所述指定电压小于所述继电器当前的驱动电压,且所述继电器在所述指定电压的驱动下仍然保持吸合状态。
根据本公开的另一个实施例,提供了一种继电器的驱动方法,包括:在继电器处于吸合状态后,降低所述继电器的驱动电压至指定电压,其中,所述继电器在所述指定电压的驱动下仍然保持吸合状态;利用所述指定电压驱动所述继电器。
根据本公开的另一个实施例,提供了一种继电器的驱动装置,包括:降低模块,用于在继电器处于吸合状态后,降低所述继电器的驱动电压至指定电压,其中,所述继电器在所述指定电压的驱动下仍然保持吸合状态;驱动模块,用于利用所述指定电压驱动所述继电器。
根据本公开的又一个实施例,提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项中所述的方法实施例中的步骤。
根据本公开的又一个实施例,提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项中所述的方法实施例中的步骤。
通过本公开,降低了继电器在吸合状态的驱动电压,进而降低继电器的功耗,因此,可以解决相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,达到降低继电器的驱动功耗,降低辅助电源的功率的技术效果,同时又避免了由于继电器自身发热导致的可靠性降低,寿命减少的情况。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的继电器的驱动电路的结构示意图;
图2是根据本公开实施例的继电器的驱动方法的流程图;
图3是根据本公开实施例的继电器的驱动装置的结构框图;
图4是根据本公开可选实施例的继电器的驱动电路的结构框图;
图5是根据本公开可选实施例的继电器的驱动电路的结构示意图;
图6是根据本公开可选实施例的继电器的驱动方法的流程图;
图7是根据本公开可选实施例的继电器的驱动方法的时序曲线图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
针对相关技术中存在的问题,在本公开实施例中提供了一种继电器的驱动电路,如图1所示,包括:第一电压控制电路11,第一电压控制电路的输出端与继电器12的输入端连接,用于在继电器处于吸合状态后,向继电器12输出指定电压以驱动继电器,其中,指定电压小于继电器当前的驱动电压,且继电器12在指定电压的驱动下仍然保持吸合状态。
通过本公开,降低了继电器在吸合状态的驱动电压,进而降低继电器的功耗,因此,可以解决相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,达到降低继电器的驱动功耗,降低辅助电源的功率的技术效果,同时又避免了由于继电器自身发热导致的可靠性降低,寿命减少的情况。
在一个实施例中,上述继电器的驱动电路还包括:第二电压控制电路,第二电压控制电路的输出端与继电器的输入端连接,用于向继电器输出驱动电压,以使继电器从释放状态转变为吸合状态。
在一个实施例中,第二电压控制电路还用于在继电器处于吸合状态后,在第一电压控制电路向继电器输出指定电压时,停止向继电器输出驱动电压。
在一个实施例中,驱动电路还包括:继电器动作控制电路,继电器动作控制电路的的输出端与继电器的输出端连接,继电器动作控制电路用于在第一电压控制电路或第二电压控制电路向继电器输出指定电压或驱动电压时,控制继电器的输出端接地,以构成继电器驱动回路。
在一个实施例中,驱动电路还包括:电源,电源与第一电压控制电路、第二电压控 制电路和继电器动作控制电路的输入端连接。
在一个实施例中,当第一电压控制电路和第二电压控制电路的输入端连接同一个电源时,驱动电路还包括:钳位器,钳位器的正极与第一电压控制电路的输出端连接,钳位器的负极与第二电压控制电路的输出端和继电器的输入端连接;当电源上电,第二电压控制电路和第一电压控制电路同时向继电器输出驱动电压和指定电压时,钳位器,用于截止指定电压输出至继电器,以使继电器利用驱动电压从释放状态转变为吸合状态。
在一个实施例中,第一电压控制电路的结构,包括:第一光耦、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一三极管、第二三极管、第三三极管、第一场效应管,其中,第一电阻的第一端、第一三极管的发射极、第二三极管的集电极、第五电阻的第一端和第一场效应管的源极均与电源连接,第一电阻的第二端和第一三极管的基极均与第一光耦的集电极连接,第一光耦的信号输入端用于输入第一控制信号,第一光耦的信号输出端和发射极均与第二电阻的第一端和第三三极管的集电极连接,第二电阻的第二端和第一三极管的集电极与第三电阻的第一端连接,第三电阻的第二端与第二三极管的基极和第三三极管的基极连接,第二三极管的发射极和第三三极管的发射极均连接至第四电阻的第一端,第四电阻的第二端和第五电阻的第二端均连接至第一场效应管的栅极,第一场效应管的漏极与继电器的输入端连接。
在一个实施例中,第二电压控制电路的结构,包括:第一变换器、第一电感、第一二极管、第一电容,其中,第一变换器的输入端与电源连接,第一变换器的输出端与第一电感的第一端连接,第一电感的第二端与第一二极管的负极、第一电容的第一端和继电器的输入端连接,第一二极管的正极和第一电容的第二端均连接至第一变换器。
在一个实施例中,继电器动作控制电路的结构,包括:第二光耦、第六电阻、第七电阻、第八电阻、第四三极管和第二场效应管,其中,第二光耦的输入端用于输入第二控制信号,第二光耦的集电极与第六电阻的第一端连接,第二光耦的发射极和输出端均与第七电阻的第一端和第二场效应管的源极连接,第六电阻的第二端与第四三极管的基极连接,第四三极管的发射极与电源连接,第四三极管的集电极与第七电阻的第二端和第八电阻的第一端连接,第八电阻的第二端与第二场效应管的栅极连接,第二场效应管的漏极与继电器的输出端连接。
根据本公开的另一个实施例,提供了一种继电器的驱动方法,如图2所示,包括:步骤S202,在继电器处于吸合状态后,降低继电器的驱动电压至指定电压,其中,继电器在指定电压的驱动下仍然保持吸合状态;步骤S204,利用指定电压驱动继电器。
通过本公开,降低了继电器在吸合状态的驱动电压,进而降低继电器的功耗,因此,可以解决相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,达到降低继电器的驱动功耗,降低辅助电源的功率的技术效果,同时又避免了由于继电器自身发热导致的可靠性降低,寿命减少的情况。
在一个实施例中,在继电器处于吸合状态后,降低继电器的驱动电压至指定电压之前,方法还包括:向继电器输出驱动电压,以使继电器从释放状态转变为吸合状态。
在一个实施例中,降低继电器的驱动电压至指定电压,包括:停止向继电器输出驱动电压,将指定电压输出至继电器。
根据本公开的另一个实施例,提供了一种继电器的驱动装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。如图3所示,该装置包括:降低模块31,用于在继电器处于吸合状态后,降低继电器的驱动电压至指定电压,其中,继电器在指定电压的驱动下仍然保持吸合状态;驱动模块33,用于利用指定电压驱动继电器。
通过本公开,降低了继电器在吸合状态的驱动电压,进而降低继电器的功耗,因此,可以解决相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,达到降低继电器的驱动功耗,降低辅助电源的功率的技术效果,同时又避免了由于继电器自身发热导致的可靠性降低,寿命减少的情况。
在一个实施例中,驱动装置,还包括:转变模块,用于在继电器处于吸合状态后,降低继电器的驱动电压至指定电压之前,向继电器输出驱动电压,以使继电器从释放状态转变为吸合状态。
在一个实施例中,降低模块,还包括:降低子模块,用于停止向继电器输出驱动电压,将指定电压输出至继电器。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均处于同一处理器中;或者,上述各个模块以任意组合的形式分别处于不同的处理器中。
根据本公开的又一个实施例,提供了一种存储介质,存储介质中存储有计算机程序,其中,计算机程序被设置为运行时执行上述任一项中的方法实施例中的步骤。
在一些实施方式中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:步骤S1,在继电器处于吸合状态后,降低继电器的驱动电压至指定电压,其中,继电器在指定电压的驱动下仍然保持吸合状态;步骤S2,利用指定电压驱动继电器。
在一些实施方式中,存储介质还被设置为存储用于执行以下步骤的计算机程序:
步骤S1,在继电器处于吸合状态后,降低继电器的驱动电压至指定电压之前,向继电器输出驱动电压,以使继电器从释放状态转变为吸合状态。
在一些实施方式中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
根据本公开的又一个实施例,提供了一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述任一项中的方法实施例中的步骤。
在一些实施方式中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一些实施方式中,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:步骤S1,在继电器处于吸合状态后,降低继电器的驱动电压至指定电压,其中,继电器在指定电压的驱动下仍然保持吸合状态;步骤S2,利用指定电压驱动继电器。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例的方法。
在一些实施方式中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
为了使本公开的目的、技术方案更加清楚明白地展现,以下结合附图及实施用例,对本公开进行进一步的说明。此处所描述的具体实施例仅仅用于解释本公开,并不用于 限定本公开。
电磁控制的继电器有如下特性:当继电器线圈产生磁场使继电器动作后,由于内部软磁材料的导磁性能远比空气好,因此继电器动作后,其内部磁路的磁阻会骤然减小,此时,即使控制线圈的电流适当减小,电磁铁也不会立即返回,只有在电流减小到一定程度,继电器的触点才会由于内部弹簧的弹力作用返回,这就是继电器的继电特性。电磁继电器的动作特性包括“动作电压”、“保持电压”和“释放电压”,其中“动作电压”一般为额定电压的75%,“保持电压”一般为额定电压的60%,“释放电压”一般为额定电压的5%。
具体实施例一
图4示出了本公开实施提供的低功耗继电器控制电路的电路结构示意图,为了便于说明,图4中仅给出了与本公开相关的部分。
如图4所示,电路硬件模块部分包括:低功耗的继电器驱动包括高压电源控制单元1,低压电源单元2,继电器动作控制单元3,钳位二极管4,功率继电器5。所述高压电源控制单元1的输入连接控制信号CON1,所述高压电源控制单元1的输出连接功率继电器5的线圈正端,所述电压电源单元2的输出连接钳位二极管4的正极,所述钳位二极管4的负极连接电源控制单元1的输出端,同时也连接功率继电器5的正端,所述继电器动作控制单元3的输入连接控制信号CON2,所述继电器动作控制单元3的输出连接功率继电器5的线圈负端。
在本公开中,高压电源控制单元1主要用于控制功率继电器线圈正端电压,此单元可以控制功率继电器线圈端所加电压为“额定电压”或“保持电压”。低压电源单元2为功率继电器的“保持电压”,钳位二极管是防止高压电源控制单元1输出的“额定电压”电压反灌到低压电源单元2中。继电器动作控制单元3是控制功率继电器吸合或断开。需要指出:高压电源控制单元1,低压电源单元2,继电器动作控制单元3均使用同一电源地。
在本公开中,如图5所示,为本实施例具体实现的电路结构示意图。
高压电源控制单元1由光耦U1、电阻R1~R5,PNP型三极管Q1/Q3,NPN型三极管Q2,P沟通绝缘栅场效应管Q4组成的电源控制单元。当辅助电源VCC上电,电源控制单元的控制信号CON1为低电平时,光耦U3的原边二极管不导通,则副边也不导通,三极管Q1截止,由Q2和Q3组成的推挽电路的控制极为低电平,此时Q3会导通,则场效应管Q4的栅极被拉为低电平。由于Q4为P沟道场效应管,因此,当Q4的栅极为低电 平时,Q4会导通,此时Q4的漏极为电源电压VCC,功率继电器K1线圈的正端对地电压为电源电压VCC。当电源控制单元的控制信号CON1为高电平为,光耦U1导通,PNP三极管Q1的控制极被拉低,Q1的集电极变为高电平,此时Q2导通,则Q4的栅极变为高电平,此时Q4不导通,功率继电器K1线圈的正端对地电压为DC/DC变换器部分的输出电压。综上所述,电源控制单元的控制信号CON1为低电平时,功率继电器K1的线圈正端对地电压为VCC,CON1为高电平时,功率继电器K1线圈的正端对地电压为DC/DC变换器部分的输出电压。在此需说明,电压VCC为继电器工作的“额定电压”。
低压电源单元2由DC/DC芯片U2、续流电感L1、续流二极管D1、输出电容C1组成的DC/DC变换器。其中U2为降压型DC/DC芯片,U2与电感L1、二极管D1、电容C1构成降压型BUCK电路。其输出电压可通过外围参数设置电压大小,该电压在此设置为继电器吸合所需的“保持电压”。可以看出,只要VCC电压上电,DC/DC变换器部分就能输出电压,该电压为继电器吸合所需的“保持电压”。
继电器动作控制单元3由光耦U3、电阻R6~R8、PNP型三极管Q5、N沟道绝缘栅场效应管Q6组成的继电器动作控制单元。当辅助电源VCC上电,继电器动作控制单元的控制信号CON2为低电平时,光耦U3的原边二极管不导通,则副边也不导通,三极管Q5截止,则场效应管Q6的栅极为低电平。由于Q6为P沟道场效应管,因此,当Q6的栅极为低电平时,Q6不导通,功率继电器K1线圈的负端为悬空状态。当继电器动作控制单元的控制信号CON2为高电平时,光耦U3的原边二极管导通,则副边三极管也导通,三极管Q5的基极被拉为低电平,Q5导通,则场效应管Q6的栅极变为高电平,此时Q6导通,功率继电器K1线圈的负端被拉到地。综上所述,当继电器动作控制单元的控制信号CON2为低电平时,功率继电器K1线圈的负端为悬空状态,当控制信号CON2为高电平时,功率继电器K1线圈的负端被拉到地。
流程部分的处理步骤如下:
以下从系统上电、功率继电器以高功耗吸合和功率继电器以低功耗保持三个阶段来说明本公开的具体实现过程。为了描述方便,将电源控制单元的控制信号标记为CON1,将继电器动作控制单元的控制信号标记为CON2,将电源控制单元的输出电压,即图5中场效应管Q4漏极对地电压标记为V1,将DC/DC变换器部分的输出电压,即图5中二极管D1负极对地电压标记为V2,将功率继电器K1线圈正负端的电压标记为V3。系统具体工作过程如图6所述,包括:开始;继电器动作控制信号CON2发出高电平,继电器以高功耗吸合;电源控制信号CON1发出高电平,继电器以低功耗保持;结束。图7示 出了系统从上电至功率继电器以低功耗状态保持阶段的曲线图。上述实施例中的电路的工作原理如下:
步骤1:系统上电,即VCC电压建立时,电源控制单元的控制信号CON1和继电器动作控制单元的控制信号CON2均为低电平。由上述分析,CON1为低电平时,场效应管Q4的漏极对地电压V1为“额定电压”VCC。DC/DC变换器的输出电压,即二极管D1负极对地电压V2为功率继电器吸合所需的“保持电压”。如前所述,“保持电压”约为“额定电压”VCC的60%,因此V1大于V2,钳位二极管D2处于反向截止状态,此时功率继电器K1线圈正端对地电压为“额定电压”VCC。同时,CON2为低电平时,继电器动作控制单元中场效应管Q6处于截止状态,即功率继电器K1线圈负端为悬空状态。因此,系统上电时,功率继电器K1线圈两端无电压,继电器不动作,此过程如图7中t0~t1阶段。
步骤2:电源控制单元的控制信号CON1仍为低电平,继电器动作控制单元的控制信号CON2转换为高电平。由上述分析,此时功率继电器K1线圈正端对地电压为“额定电压”VCC。CON2转换为高电平时,继电器动作控制单元中场效应管Q6导通,即功率继电器K1线圈负端被拉到地。此时,继电器K1线圈正负端电压V3为“额定电压”VCC,功率继电器K1以高功耗状态吸合,此过程如图7中t1~t2阶段。
步骤3:电源控制单元的控制信号CON1转换为高电平,继电器动作控制单元的控制信号CON2仍为高电平。由上述分析,当电源控制单元的控制信号为高电平时,场效应管Q4截止,则DC/DC变换器的输出电压通过二极管D2加到Q4漏极,此时Q4漏极对地电压为DC/DC变换器的输出电压V2。由于继电器动作控制单元的控制信号CON2仍为高电平,因此,场效应管Q6仍导通。此时,继电器K1线圈正负端电压V3为“保持电压”,功率继电器K1以低功耗状态保持吸合,此过程如图7中t2时刻之后。
至此,系统完成功率继电器从上电至低功耗吸合的全过程,该过程的控制流程如图6所示。
需要说明的是,在使用不同型号功率继电器时,只需要改变辅助电源VCC电压值及DC/DC变换器的外围参数,即可适应不同型号功率继电器的“额定电压”和“保持电压”。同时,需要注意的是,图7中t1至t2的时间长度必须大于等于功率继电器以额定电压吸合所需要的最短时间,否则,可能会导致系统控制异常。
对于图5,该电路只是具体实例的一种。实际应用中,可以根据具体情况进行修改,例如:将高压电源控制单元、继电器动作控制电路采用小继电器控制代替图5的光耦控 制;或者为了节省成本,省去U1,U3光耦等方式;系统内部如果有其他合适低压,可直接替代DC/DC变换电路,节省成本等。
本专利中所述的功率继电器的低功耗驱动方法可根据不同应用场景进行调整设置,以满足不同场景的实际应用情况。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一些实施方式中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
通过本公开,解决了相关技术中继电器驱动功耗大进而会影响其本身的工作寿命和不利于资源节约的问题,达到降低继电器的驱动功耗,降低辅助电源的功率的技术效果,同时又避免了由于继电器自身发热导致的可靠性降低,寿命减少的情况。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种继电器的驱动电路,其中,包括:
    第一电压控制电路,所述第一电压控制电路的输出端与所述继电器的输入端连接,用于在所述继电器处于吸合状态后,向所述继电器输出指定电压以驱动所述继电器,其中,所述指定电压小于所述继电器当前的驱动电压,且所述继电器在所述指定电压的驱动下仍然保持吸合状态。
  2. 根据权利要求1所述的驱动电路,其中,所述电路还包括:
    第二电压控制电路,所述第二电压控制电路的输出端与所述继电器的输入端连接,用于向所述继电器输出所述驱动电压,以使所述继电器从释放状态转变为吸合状态。
  3. 根据权利要求2所述的驱动电路,其中,所述第二电压控制电路,还用于在所述继电器处于吸合状态后,在所述第一电压控制电路向所述继电器输出所述指定电压时,停止向所述继电器输出所述驱动电压。
  4. 根据权利要求2或3所述的驱动电路,其中,所述驱动电路还包括:
    继电器动作控制电路,所述继电器动作控制电路的输出端与所述继电器的输出端连接,所述继电器动作控制电路用于在所述第一电压控制电路或所述第二电压控制电路向所述继电器输出所述指定电压或所述驱动电压时,控制所述继电器的输出端接地,以构成继电器驱动回路。
  5. 根据权利要求4所述的驱动电路,其中,所述驱动电路还包括:电源,所述电源与所述第一电压控制电路、所述第二电压控制电路和所述继电器动作控制电路的输入端连接。
  6. 根据权利要求5所述的驱动电路,其中,当所述第一电压控制电路和所述第二电压控制电路的输入端连接同一个电源时,所述驱动电路还包括:
    钳位器,所述钳位器的正极与所述第一电压控制电路的输出端连接,所述钳位器的负极与所述第二电压控制电路的输出端和所述继电器的输入端连接;
    当所述电源上电,所述第二电压控制电路和所述第一电压控制电路同时向所述继电器输出所述驱动电压和所述指定电压时,所述钳位器,用于截止所述指定电压输出至所述继电器,以使所述继电器利用所述驱动电压从释放状态转变为吸合状态。
  7. 根据权利要求1所述的驱动电路,其中,所述第一电压控制电路的结构,包括:第一光耦、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一三极管、第二 三极管、第三三极管、第一场效应管,其中,所述第一电阻的第一端、所述第一三极管的发射极、所述第二三极管的集电极、所述第五电阻的第一端和所述第一场效应管的源极均与电源连接,所述第一电阻的第二端和所述第一三极管的基极均与所述第一光耦的集电极连接,所述第一光耦的信号输入端用于输入第一控制信号,所述第一光耦的信号输出端和发射极均与所述第二电阻的第一端和所述第三三极管的集电极连接,所述第二电阻的第二端和所述第一三极管的集电极与所述第三电阻的第一端连接,所述第三电阻的第二端与所述第二三极管的基极和第三三极管的基极连接,所述第二三极管的发射极和所述第三三极管的发射极均连接至所述第四电阻的第一端,所述第四电阻的第二端和所述第五电阻的第二端均连接至所述第一场效应管的栅极,所述第一场效应管的漏极与所述继电器的输入端连接。
  8. 根据权利要求2或3所述的驱动电路,其中,所述第二电压控制电路的结构,包括:第一变换器、第一电感、第一二极管、第一电容,其中,所述第一变换器的输入端与电源连接,所述第一变换器的输出端与所述第一电感的第一端连接,所述第一电感的第二端与所述第一二极管的负极、所述第一电容的第一端和所述继电器的输入端连接,所述第一二极管的正极和所述第一电容的第二端均连接至所述第一变换器。
  9. 根据权利要求4所述的驱动电路,其中,所述继电器动作控制电路的结构,包括:第二光耦、第六电阻、第七电阻、第八电阻、第四三极管和第二场效应管,其中,所述第二光耦的输入端用于输入第二控制信号,所述第二光耦的集电极与所述第六电阻的第一端连接,所述第二光耦的发射极和输出端均与所述第七电阻的第一端和所述第二场效应管的源极连接,所述第六电阻的第二端与所述第四三极管的基极连接,所述第四三极管的发射极与电源连接,所述第四三极管的集电极与所述第七电阻的第二端和所述第八电阻的第一端连接,所述第八电阻的第二端与所述第二场效应管的栅极连接,所述第二场效应管的漏极与所述继电器的输出端连接。
  10. 一种继电器的驱动方法,其中,包括:
    在继电器处于吸合状态后,降低所述继电器的驱动电压至指定电压,其中,所述继电器在所述指定电压的驱动下仍然保持吸合状态;
    利用所述指定电压驱动所述继电器。
  11. 根据权利要求10所述的方法,其中,在继电器处于吸合状态后,降低所述继电器的所述驱动电压至所述指定电压之前,所述方法还包括:
    向所述继电器输出所述驱动电压,以使所述继电器从释放状态转变为吸合状态。
  12. 根据权利要求10或11所述的方法,其中,降低所述继电器的所述驱动电压至所述指定电压,包括:
    停止向所述继电器输出所述驱动电压,将所述指定电压输出至所述继电器。
  13. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求10至12任一项中所述的方法。
  14. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求10至12任一项中所述的方法。
PCT/CN2019/108564 2018-09-28 2019-09-27 继电器的驱动电路、方法、存储介质及电子装置 WO2020063871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811141715.3A CN110970264B (zh) 2018-09-28 2018-09-28 继电器的驱动电路、方法、装置、存储介质及电子装置
CN201811141715.3 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063871A1 true WO2020063871A1 (zh) 2020-04-02

Family

ID=69952461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108564 WO2020063871A1 (zh) 2018-09-28 2019-09-27 继电器的驱动电路、方法、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN110970264B (zh)
WO (1) WO2020063871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114283658A (zh) * 2021-09-27 2022-04-05 安徽南瑞中天电力电子有限公司 一种应用微型多路三相功率源的台区组网及隔离系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722127A (zh) * 2020-05-07 2020-09-29 武汉市蓝电电子股份有限公司 电池测试设备电流线防反接保护电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855552A (ja) * 1994-08-12 1996-02-27 Nissin Electric Co Ltd 開閉器制御電源装置
CN2901557Y (zh) * 2006-06-02 2007-05-16 淄博卓尔电器有限公司 电磁式开关机构吸合/维持电路
CN201966140U (zh) * 2011-04-08 2011-09-07 阳光电源股份有限公司 继电器控制电路以及具有该继电器控制电路的电子装置
CN205863093U (zh) * 2016-07-01 2017-01-04 比亚迪股份有限公司 车用继电器线圈控制电路和具有其的车辆
CN206210705U (zh) * 2016-11-14 2017-05-31 比亚迪股份有限公司 继电器的驱动装置及具有其的车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809905C2 (de) * 1978-03-08 1983-08-04 Felten & Guilleaume Fernmeldeanlagen GmbH, 8500 Nürnberg Relais-Halteschaltung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855552A (ja) * 1994-08-12 1996-02-27 Nissin Electric Co Ltd 開閉器制御電源装置
CN2901557Y (zh) * 2006-06-02 2007-05-16 淄博卓尔电器有限公司 电磁式开关机构吸合/维持电路
CN201966140U (zh) * 2011-04-08 2011-09-07 阳光电源股份有限公司 继电器控制电路以及具有该继电器控制电路的电子装置
CN205863093U (zh) * 2016-07-01 2017-01-04 比亚迪股份有限公司 车用继电器线圈控制电路和具有其的车辆
CN206210705U (zh) * 2016-11-14 2017-05-31 比亚迪股份有限公司 继电器的驱动装置及具有其的车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114283658A (zh) * 2021-09-27 2022-04-05 安徽南瑞中天电力电子有限公司 一种应用微型多路三相功率源的台区组网及隔离系统
CN114283658B (zh) * 2021-09-27 2023-09-19 安徽南瑞中天电力电子有限公司 一种应用微型多路三相功率源的台区组网及隔离系统

Also Published As

Publication number Publication date
CN110970264A (zh) 2020-04-07
CN110970264B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US9754745B2 (en) Methods and apparatus for improved relay control
WO2020063871A1 (zh) 继电器的驱动电路、方法、存储介质及电子装置
CN204215965U (zh) 一种磁保持继电器驱动电路
CN108880230B (zh) 基于开关电源斩波电压的电源并联控制模块及并联系统
CN103024973A (zh) 一种led灯具及其过流保护电路
CN213236265U (zh) 电磁阀驱动控制电路
CN204215966U (zh) 继电器驱动电路及继电器
CN108198731A (zh) 一种磁保持继电器控制电路
CN102540633A (zh) 电磁铁式机械快门的快速开启与保持控制系统
CN108183049A (zh) 继电器驱动电路与空调器
CN110780619B (zh) 电路的控制方法及装置、设备
CN209471892U (zh) 一种继电器控制电路及电源
CN207993772U (zh) 直流接触器节能驱动电路板
CN203191746U (zh) 一种继电器闭环控制系统
TW202141889A (zh) 具有零電流切換之備援電路及其備援方法
EP4080537A1 (en) Control device and method for contactor
CN111817425A (zh) 一种低压电器备用电源的自动投切电路
CN109659194A (zh) 一种继电器控制电路及电源
CN205450624U (zh) 一种用于控制贴片机的电磁阀和接驳台的控制电路
CN214672069U (zh) 电磁铁控制电路
CN111403236B (zh) 一种继电器控制电路和继电器
CN217239188U (zh) 一种电磁铁释放电路
CN203218188U (zh) 节能型交流接触器线圈
CN210225254U (zh) 一种大功率直流升压器
CN210091984U (zh) 一种接触器控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864392

Country of ref document: EP

Kind code of ref document: A1