WO2021142569A1 - 传感装置和轴承组件 - Google Patents

传感装置和轴承组件 Download PDF

Info

Publication number
WO2021142569A1
WO2021142569A1 PCT/CN2020/071715 CN2020071715W WO2021142569A1 WO 2021142569 A1 WO2021142569 A1 WO 2021142569A1 CN 2020071715 W CN2020071715 W CN 2020071715W WO 2021142569 A1 WO2021142569 A1 WO 2021142569A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
sensing device
sensing
antenna
base body
Prior art date
Application number
PCT/CN2020/071715
Other languages
English (en)
French (fr)
Inventor
关冉
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to US17/792,428 priority Critical patent/US20230063769A1/en
Priority to EP20913566.4A priority patent/EP4092281A4/de
Priority to PCT/CN2020/071715 priority patent/WO2021142569A1/zh
Priority to CN202080091861.9A priority patent/CN114981551B/zh
Publication of WO2021142569A1 publication Critical patent/WO2021142569A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration

Definitions

  • the present invention relates to a sensor device for a bearing, especially a wireless sensor device.
  • the invention also relates to a bearing assembly including a sensing device.
  • Bearing load is a very important parameter for controlling, optimizing and monitoring equipment operation. Therefore, there is always a need for a measurement solution for bearing load, especially the load of large bearings in the field of wind energy. There are currently a variety of load measurement solutions for bearings.
  • Chinese Patent Document CN 102265046 A teaches a bearing unit, which measures the load by connecting a strain gauge to the load area of the housing, especially the bearing seat.
  • Chinese Patent Document CN 107448362 B teaches a state detection solution for a slewing bearing, which uses an eddy current sensor to detect the displacement change caused by the load.
  • Chinese Patent Document CN 104595352 B teaches a load detection device for rolling bearings, and the load detection device is configured as a pin type.
  • pin-type load sensors are limited by their power supply and signal transmission. If real-time measurement is required, the pin-type load sensor can only be installed in the fixed bearing ring of the bearing, and multiple pin-type load sensors need to be arranged in the circumferential direction of the fixed bearing ring. In addition, the layout of the electrical wires requires a special design, which is usually complicated.
  • the technical problem to be solved by the present invention is to provide a sensing device for bearings, which can overcome the above-mentioned drawbacks.
  • the above-mentioned technical problem is solved by a sensor device for a bearing.
  • the sensor device includes a sensor body for mounting into the bearing by press-fitting.
  • the sensor body is configured with a sensor measurement module, a wireless communication module, and a wireless communication module. Communication module.
  • the sensing body is installed in the bearing member of the bearing by press-fitting.
  • the bearing component may be the rolling elements of a rolling bearing or a fixed or rotating bearing ring, such as an outer ring or an inner ring, wherein the rolling elements are non-spherical rolling elements.
  • the sensing body Through the press fit, the load in various directions borne by the bearing member can be transmitted to the sensing body for load measurement by the sensing measurement module on the sensing body.
  • the sensing body also has a supporting function, which can firmly install the components of the above three modules in the bearing member.
  • the sensor measurement module includes a pressure sensor for measuring the load of the bearing and a temperature sensor for measuring the temperature of the sensing device, wherein the measured load is corrected by the measured temperature.
  • the sensor measurement module also includes a measurement signal processing unit for the pressure sensor and/or the temperature sensor.
  • the measurement signal processing unit may include, for example, a measurement circuit, an amplifier circuit, and an analog-to-digital conversion circuit that matches the sensor.
  • the measurement signal processing unit may further include a compensation arithmetic unit that corrects the load measured by the pressure sensor by the temperature measured by the temperature sensor.
  • the pressure sensor here can be a piezoelectric pressure sensor, a piezoresistive pressure sensor, a capacitive pressure sensor or an electromagnetic pressure sensor.
  • the temperature sensor may be a separately provided sensor, preferably a temperature sensor integrated in a chip.
  • the wireless communication module is used to wirelessly transmit bearing information from the sensor measurement module.
  • the wireless communication module includes a signal processing unit and a signal transmitting and/or receiving part arranged at the bearing, so as to be able to perform wireless communication with the receiving and/or transmitting part arranged outside the bearing.
  • the wireless communication module can wirelessly transmit the temperature-corrected load information from the bearing to the signal receiving part outside the bearing for the relevant technical personnel and/or equipment to read or use.
  • the wireless communication module can also wirelessly transmit the bearing load information and the matched temperature information from the bearing to the signal receiving part outside the bearing. After the temperature correction is performed by the compensation calculation unit outside the bearing, it will be used by relevant technicians and/or equipment. Provides temperature-corrected bearing load information.
  • the wireless power supply module is used to supply power for the sensing measurement module and the wireless communication module.
  • the wireless power supply module includes a power receiving antenna arranged at the bearing, which can obtain energy from electromagnetic waves provided by a power supply supporting device arranged outside the bearing.
  • the power supply supporting equipment here includes, for example, a power supply antenna that can be electromagnetically coupled with the power receiving antenna, a power supply circuit that supplies the power supply antenna, and a corresponding control unit.
  • the wireless power supply module may also include a power management circuit.
  • the sensing body has a pin-shaped base body and a printed circuit board, wherein the base body can be installed in the bearing by press-fitting, and wherein the printed circuit board is used to partially connect the sensor measurement module,
  • the components in the wireless communication module and the wireless power supply module, especially the electronic components, are mounted on the base. That is to say, the whole structure of the sensing body is a pin structure, which constitutes a sensing pin.
  • the sensing body can be installed in the mounting hole of the bearing member through the base, where the base can be press-fitted with the mounting hole at least partially.
  • the base body is press-fitted with the mounting hole at one axial end.
  • the cross section of the base body and the mounting hole can be correspondingly designed into various shapes, preferably a regular polygon, and particularly preferably a circular shape.
  • the mounting hole is a blind hole.
  • the mounting hole on the bearing ring preferably extends parallel to the central axis of the bearing or the bearing ring, thereby facilitating efficient measurement of the bearing load.
  • the mounting hole on the rolling body preferably extends along the central axis of the rolling body.
  • a plane for arranging the printed circuit board is configured on the outer peripheral surface of the base body.
  • the plane is preferably perpendicular to the axial end surface of the base body. The arrangement of the plane avoids interference to the press-fit area of the printed circuit board to the base body as much as possible.
  • the wireless communication module includes an RFID chip arranged on the printed circuit board and an antenna arranged on the base.
  • the RFID chip and the antenna are used for wireless communication with a communication supporting device arranged outside the bearing.
  • RFID technology radio frequency identification technology
  • the RFID chip and the antenna jointly constitute an RFID tag
  • the communication supporting equipment includes, for example, an RFID reader/writer, and the RFID reader/writer can perform wireless data communication with the RFID tag. That is to say, the bearing information provided by the sensor measurement module is modulated to the carrier RF electromagnetic wave and transmitted by the antenna, so that the load condition of the bearing can be monitored wirelessly in real time.
  • the antenna is preferably a small antenna, such as a metal dipole antenna, a PCB printed antenna or a ceramic antenna.
  • the antenna is a ceramic antenna, which can obtain a large antenna gain through a small size.
  • the pressure sensor includes at least two strain gauges, wherein at least two strain gauges are arranged in the area of the base body for press-fitting, wherein one of the at least two strain gauges can be arranged
  • the other one of the at least two strain gauges may be at least partially axially extended on the outer peripheral surface of the base body.
  • the strain gauges arranged in the axial end face are such that their measuring direction extends in the radial direction of the base body or passes through the central axis of the base body.
  • a plane is partially constructed on the outer peripheral surface of the base body to form an accommodation space for the strain gauge.
  • the plane is preferably perpendicular to the axial end surface of the base body.
  • the strain gauge is arranged in the receiving plane such that its measuring direction extends along the axial direction of the base body or is parallel to the central axis of the base body.
  • the individual strain gauges are here connected to the corresponding measuring circuit via electrical wires.
  • the two strain gauges can be used as measuring strain gauges and reference strain gauges respectively.
  • the measuring directions of the measuring strain gauge and the reference strain gauge are perpendicular to each other.
  • a strain gauge arranged on the axial end surface of the base body is used as a measuring strain gauge
  • a strain gauge arranged in the accommodation space of the outer peripheral surface of the base body is used as a reference strain gauge.
  • the strain gauge can be a metal resistance strain gauge or a semiconductor strain gauge.
  • the measuring strain gauge is preferably a semiconductor strain gauge, which has the advantages of large resistance strain and high strain sensitivity.
  • Strain gauges can be installed on the substrate in a variety of ways.
  • the strain gauge can be attached to the base with an adhesive.
  • the strain gauge can also be fixed to the base by welding methods such as spot welding.
  • the strain gauge can also be fixed to the base through a MEMS manufacturing process.
  • a measurement circuit for a strain gauge and a measurement signal processing circuit are arranged on the printed circuit board.
  • the measuring circuit is preferably a Wheatstone bridge, in particular a half bridge circuit for two strain gauges.
  • the measurement signal processing circuit includes an amplifying circuit and an analog-to-digital conversion circuit.
  • the RFID chip provides an analog-to-digital conversion circuit in the measurement signal processing circuit. Therefore, the integration degree of the sensing device is improved, which is beneficial to reduce the size of the sensing device, especially the sensing body.
  • the RFID chip provides a temperature sensor. Therefore, there is no need to additionally provide a temperature sensor, and only the temperature sensor integrated in the RFID chip is used, thereby improving the integration degree of the sensing device, and reducing the size of the sensing device, especially the sensing body.
  • the antenna is arranged on the axial end face of the base body, wherein the axial end face on which the antenna is arranged is opposite to the axial end face on which the strain gauge is arranged. Therefore, when the base body is installed on the bearing member, the antenna can be located on the axial end side of the bearing to better realize its function.
  • an antenna cover is provided on the outside of the antenna.
  • the radome cover is made of plastic, such as ABS, PPS, PTFE, etc. This advantageously protects the antenna when low-power radio frequency signals can pass through the antenna cover.
  • a sealing elastic body especially a sealing rubber, between the antenna and the antenna cover, so that the antenna can be better protected.
  • the above-mentioned antenna can be used as the power receiving antenna of the wireless power supply module, so that the energy provided by the power supply supporting equipment arranged outside the bearing can be obtained wirelessly.
  • the power supply antenna of the power supply supporting equipment emits electromagnetic waves
  • the electromagnetic waves radiate to the power receiving antenna through the antenna cover and sealing elastic part that may exist.
  • the power receiving antenna obtains energy from the electromagnetic waves, and the obtained energy can be stored in the capacitor.
  • the RFID chip provides the power management circuit of the wireless power supply module. Therefore, the energy stored in the capacitor can be processed by the power management circuit in the RFID sensor chip to provide a stable power supply.
  • This design improves the integration degree of the sensing device and is beneficial to reducing the size of the sensing device, especially the sensing body.
  • the inside of the base body has channels for accommodating electrical wires.
  • the channel can be configured in the form of a through hole, a blind hole or a groove.
  • the electrical lead is, for example, a lead for electrically connecting the strain gauge and the printed circuit board.
  • the electrical wire is, for example, a wire for electrically connecting the antenna and the printed circuit board.
  • the arrangement of the channel especially avoids the influence of the wiring on the press-fit area.
  • the material of the electrical wire is selected in such a way that its temperature coefficient of resistance changes little within the normal operating temperature range, so as to eliminate the influence of temperature on the measurement result of the sensing device as much as possible.
  • the base body is provided with an additional connection structure for connection with the bearing member.
  • an external thread can be constructed on an axial end of the base body and an internal thread can be constructed in the mounting hole, especially in the step of the mounting hole, wherein when the sensing device is mounted in the mounting hole, the axial end is at At the opening of the mounting hole, so that the base body and the mounting hole can be auxiliary connected by threads.
  • the base body is made of the same material as the bearing member on which the sensor device is mounted. Thereby, the influence of temperature-induced dimensional changes of the material can be minimized.
  • the sensing device is at least partially encapsulated, thereby advantageously reducing or preventing impacts or liquids on the sensing device, especially the electronic components.
  • the packaging process can advantageously avoid the auxiliary connection structure of the base body.
  • the encapsulation can be encapsulated by plastic, rubber, adhesive or the like.
  • a bearing assembly which includes a bearing, especially a rolling bearing, and the above-mentioned sensing device.
  • the sensing body of the sensing device can be installed in the mounting hole of the outer ring or the inner ring of the bearing, wherein the mounting hole extends along the axial direction of the bearing, that is, extends parallel to the central axis of the bearing.
  • the sensing body of the sensing device is installed in the mounting hole of the rolling body of the bearing, wherein the mounting hole extends along the central axis of the rolling body.
  • the mounting hole is preferably a blind hole.
  • the sensing body is installed in the mounting hole such that the antenna for the wireless power supply module of the sensing device is located at the opening of the mounting hole.
  • the sensing body is mounted on the mounting hole in such a way that the sensing device does not protrude from the mounting hole, thereby avoiding collisions between the sensing device and other components.
  • the sensing body is mounted on the bearing ring, such as the outer ring or the inner ring, it is preferably mounted on the mounting hole of the bearing ring in such a way that the measurement direction of the strain gauge arranged on the axial end surface of the base in the sensing measurement module is along the The radial direction of the bearing is aligned.
  • a sensing system for a bearing which includes a sensing device with the above characteristics and a matching device for the sensing device arranged outside the bearing.
  • the supporting equipment for the sensing device includes communication supporting equipment and power supply supporting equipment.
  • the communication supporting equipment can communicate wirelessly with the wireless communication module of the sensor device arranged on the bearing, and the power supply supporting equipment can communicate with the sensor device of the bearing.
  • the wireless power supply module cooperates to supply power to the sensing measurement module and the wireless communication module of the sensing device in a wireless or non-contact manner.
  • a plurality of sensor devices can be matched with a common sensor device supporting device, wherein each sensor device can have its own identification mark. In this case, multiple sensing devices can be arranged on the same bearing or on different bearings.
  • a bearing assembly which includes a bearing and the above-mentioned sensing system.
  • the load value measured by the pressure sensor can be corrected by the measured temperature.
  • the measurement error caused by the influence of temperature on the electric wire and the pressure sensor, such as strain gauge can be reduced, and the measurement error can be improved. Accuracy of load measurement.
  • the sensing device since the sensing device adopts a wireless communication module and a wireless power supply module, the sensing device can provide bearing load information in real time when it is arranged on rotating components of the bearing, such as rolling elements and rotatable bearing rings. And because the sensing device can be arranged on the rotating member of the bearing, the sensing device can measure the load at various positions in the circumferential direction of the bearing during the rotation of the rotating member. Therefore, only one such sensor is provided in each bearing. The device can meet the measurement requirements.
  • this sensor device Compared with the existing solution that requires multiple sensing devices when installed on a fixed bearing ring and the solution that cannot perform real-time measurement when installed on a rotating member, this sensor device has a good real-time measurement function, and because of its It requires fewer mounting holes and eliminates the layout of communication lines and power supply lines, which makes the design structure simpler, lower cost, and higher reliability. In addition, since the sensor device does not require a battery, maintenance work such as battery replacement is not required.
  • the RFID chip can realize the function of wireless communication with the communication supporting equipment, it can also provide the analog-to-digital conversion circuit and the temperature sensor for the sensing measurement module and provide the power management circuit for the wireless power supply module, so that
  • the integration of the sensing device is very high, the size of the sensing device can be reduced accordingly, and the cost can be reduced accordingly.
  • the power consumption of the sensing device can be reduced to below hundreds of microwatts.
  • the effective distance of the sensing device combined with an RFID chip and a strain gauge can be 5 meters or more, which is suitable for most applications.
  • Figure 1 is a partial cross-sectional view of a bearing assembly according to a preferred embodiment
  • Figure 2 is a perspective view of the sensing device in the bearing assembly according to Figure 1, and
  • Fig. 3 is a cross-sectional view of the sensor device according to Fig. 2 taken along its axial direction.
  • Fig. 1 shows a partial cross-sectional view of a bearing assembly according to a preferred embodiment.
  • the bearing assembly includes a bearing designed as a tapered roller bearing and a sensing device 50.
  • the bearing includes an outer ring 20, an inner ring 10, a cage 40 arranged between the outer ring 20 and the inner ring 10, and a tapered roller type rolling element 30.
  • the inner ring 10 of the bearing is configured with mounting holes for accommodating the sensing device.
  • the mounting hole is configured as a blind hole and extends parallel to the central axis of the bearing.
  • the sensor device 50 is implemented as a sensor pin for wireless communication and wireless power supply in this embodiment.
  • the sensing device 50 includes a sensing body for mounting to the inner ring 10 of the bearing.
  • the sensing body is configured with a sensing measurement module, a wireless communication module and a wireless communication module.
  • the sensing body includes a pin-shaped base 6 and a printed circuit board 1.
  • the pin-shaped base body 6 has a substantially circular cross-section.
  • the pin-shaped base 6 and the inner ring 10 are made of the same material, thereby minimizing the influence of temperature-induced material size changes.
  • a plane is partially formed on the outer peripheral surface of the base body 6 on which the printed circuit board 1 is arranged.
  • the sensing body is fixed in the mounting hole of the inner ring 10 with a pin-shaped base 6 through press fit.
  • the axial end at the opening of the mounting hole is also provided with a stepped portion, and the outer circumferential surface of the stepped portion is provided with an external thread, not shown in detail, which can be matched and configured on the step Internal thread in the type mounting hole to achieve auxiliary thread connection.
  • the sensor measurement module includes a pressure sensor for measuring the axial and radial load of the bearing and a temperature sensor for measuring the temperature of the sensing device.
  • the pressure sensor includes two strain gauges arranged in the press-fit area, namely the measuring strain gauge 2 and the reference strain gauge 3.
  • the measuring strain gauge 2 and the reference strain gauge 3 are preferably semiconductor strain gauges with large resistance strain and high strain sensitivity.
  • the measuring strain gauge 2 is attached to the axial end surface of the base 6 facing the bottom of the mounting hole. Here, the longitudinal direction of the measuring strain gauge 2 is aligned with the radial direction of the base 6.
  • a plane is partially constructed on the outer peripheral surface of the base body 6, the plane is perpendicular to the axial end surface of the base body 6, and the reference strain gauge 3 is pasted on the plane.
  • the plane on which the reference strain gauge 3 is arranged and the plane on which the printed circuit board 1 is arranged are parallel to each other on the base 6.
  • the longitudinal direction of the reference strain gauge 3 is parallel to the central axis of the base 6.
  • the measuring strain gauge 2 and the reference strain gauge 3 are respectively connected to the measuring printed circuit board 1 through electrical wires 4.
  • a channel for accommodating and guiding the electrical conductor 4 is formed inside the base body 6.
  • the printed circuit board 1 is provided with a measuring circuit for strain gauges, an amplifying circuit, and an analog-to-digital conversion circuit, where the measuring circuit is a Wheatstone bridge here, and the analog-to-digital conversion circuit is provided by an RFID chip arranged on the printed circuit board 1.
  • the strain on the substrate 6 caused by the bearing load causes the resistance of the measuring strain gauge 2 to change.
  • the resistance change can be detected by the Wheatstone bridge measurement circuit, and then amplified by the amplifier circuit, and adjusted to fit The analog-to-digital conversion circuit in the RFID sensor chip.
  • the RFID chip also provides a temperature sensor, and the load measured by the pressure sensor can be corrected by the temperature measured by the temperature sensor. In this way, the measurement error caused by the influence of the temperature strain gauge and the electric wire can be reduced.
  • the reference strain gauge 3, the electric wire 4, the printed circuit board 1 and the base body 6 can be packaged by plastic.
  • the wireless communication module includes the above-mentioned RFID chip arranged on the printed circuit board 1 and the antenna 5 arranged on the axial end face of the base body 6, wherein the axial end face on which the antenna 5 is arranged and the axial end face on which the measuring strain gauge 2 is arranged Opposite.
  • the antenna 5 is connected to the printed circuit board 1 through an electrical wire 4, especially an RFID chip.
  • the electrical wire 4 is accommodated in a channel inside the base 6.
  • the RFID chip and the antenna 5 jointly constitute an RFID tag
  • the communication supporting equipment arranged outside the bearing includes an RFID reader, and the RFID reader can perform wireless data communication with the RFID tag.
  • the bearing information provided by the sensor measurement module is modulated into a carrier RF electromagnetic wave and emitted by the antenna 5, so that the load condition of the bearing can be monitored wirelessly.
  • the antenna 5 is preferably a ceramic antenna here, which can obtain a large antenna gain in a small size.
  • An antenna cover 7 is provided outside the antenna 5.
  • the radome cover 7 is mounted on the base body 6 by screw connection, for example.
  • the radome cover 7 is made of plastic, such as ABS, PPS, PTFE, etc., which can be passed through by low-power radio frequency signals.
  • a sealing elastic body, especially a sealing rubber, is arranged between the antenna 5 and the antenna cover 7, so that the antenna 5 can be better protected.
  • the wireless power supply module includes a power receiving antenna and a power management circuit.
  • the antenna 5 of the RFID tag used for the wireless communication module can be used as the power receiving antenna of the wireless power supply module.
  • RFID chip can provide power management circuit.
  • the power supply antenna of the power supply supporting equipment emits electromagnetic waves
  • the electromagnetic waves pass through the antenna cover 7 and the sealing elastic part and radiate to the antenna 5, where the antenna 5 functions as a power receiving antenna to obtain energy from the electromagnetic waves.
  • the energy obtained can be stored in a capacitor and processed by a power management circuit to provide a stable power supply.
  • the power consumption of the sensing device can be reduced to below hundreds of microwatts. This is very important for the design of passive wireless sensor devices, because it is closely related to the effective distance. In an open environment, the effective distance of the sensing device 50 according to this embodiment can be 5 meters or more, which is suitable for most applications.
  • the sensing device adopts a wireless communication module and a wireless power supply module, the sensing device can provide bearing load information in real time when it is arranged on the rotating member of the bearing. This also enables the sensing device to perform load measurement at various positions in the circumferential direction of the bearing during the rotation of the rotating member. Therefore, only one such sensing device can be provided in each bearing to meet the measurement requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种用于轴承的传感装置(50),包括用于通过压配合安装到轴承中的传感主体,传感主体配置有:传感测量模块,其包括用于测量轴承载荷的压力传感器和用于测量传感装置的温度的温度传感器,其中,借助所测量的温度校正所测量的载荷;无线通信模块,其用于无线传输来自传感测量模块的轴承信息;无线供电模块,其用于为传感测量模块和无线通信模块供电。还提供一种轴承组件、传感系统和轴承总成。

Description

传感装置和轴承组件 技术领域
本发明涉及用于轴承的传感装置,尤其无线传感装置。本发明还涉及包括传感装置的轴承组件。
背景技术
轴承载荷是控制、优化和监控设备运行的非常重要的参数。因此,对于轴承载荷、尤其风能领域中的大型轴承的载荷的测量方案始终存在需求。当前存在多种用于轴承的载荷测量方案。
例如在中国专利文献CN 102265046 A中教导了一种轴承单元,其通过在壳体、尤其轴承座的负载区域上连接应变仪来测量负载。
又例如在中国专利文献CN 107448362 B中教导了一种回转支承轴承的状态检测方案,其通过使用涡流传感器来检测载荷引起的位移变化。
又例如在中国专利文献CN 104595352 B中教导了一种滚动轴承用载荷检测装置,该载荷检测装置构造为销式。
然而上述轴承载荷测量方案存在一定缺陷。
对于采用应变仪的测量方案,在很多应用中,轴承载荷的方向在工作期间不断变化,因此需要多个应变仪,这使得设计方案复杂且成本很高。
另外,对于采用涡流传感器的测量方案,由于涡流传感器受温度影响严重,因此通过涡流传感器测量的在内圈和外圈之间的位移(径向或轴向)不仅会随负载变化,还会随温度而变化。此外,带有涡流传感器的轴承通常需要额外的轴向空间来安装,因此不能与标准设计互换。
此外,销式载荷传感器受其电源和信号传输的限制。若需要实时测量,销式载荷传感器只能安装在轴承的固定的轴承圈中,并且需要在固定的轴承圈的周向上布置多个销式载荷传感器。另外,电导线的布局需要特殊设计,这通常很复杂。
发明内容
因此,本发明所要解决的技术问题是提供一种用于轴承的传感装置,其可以克服上述缺陷。
上述技术问题通过一种用于轴承的传感装置解决,该传感装置包括用于通过压配合安装到轴承中的传感主体,传感主体配置有:传感测量模块、无线通信模块和无线通信模块。
传感主体通过压配合安装到轴承的轴承构件中。轴承构件在此可以是滚动轴承的滚动体或者是固定的或转动的轴承圈、例如外圈或内圈,其中,滚动体为非球体形的滚动体。通过压配合,轴承构件所承受的各个方向的载荷能够传导到传感主体,以供传感主体上的传感测量模块进行载荷测量。除了传导载荷,传感主体还具有支承功能,其可以稳固地将上述三个模块中的元件安装于轴承构件中。
传感测量模块包括用于测量轴承的载荷的压力传感器和用于测量传感装置的温度的温度传感器,其中,借助所测量的温度校正所测量的载荷。
在此,传感测量模块还包括用于压力传感器和/或温度传感器的测量信号处理单元。测量信号处理单元例如可以包括匹配传感器的测量电路、放大电路和模数转换电路等。可选地,测量信号处理单元还可以包括补偿运算单元,其借助由温度传感器测量的温度校正由压力传感器所测量的载荷。压力传感器在此可以为压电式压力传感器、压阻压力传感器、电容式压力传感器或电磁压力传感器。温度传感器在此可以为单独设置的传感器,优选为集成在芯片中的温度传感器。
无线通信模块用于无线传输来自传感测量模块的轴承信息。
在此,无线通信模块包括布置在轴承处的信号处理单元和信号发送和/或接收部等,从而可以与布置在轴承之外的接收和/或发送部进行无线通信。无线通信模块可以将经温度校正的载荷信息从轴承无线传输至轴承外的信号接收部,以供相关技术人员和/或设备读取或利用。无线通信模块也可以将轴承载荷信息和与之匹配的温度信息分别从轴承无线传输至轴承外的信号接收部,在经过轴承外的补偿运算单元进行温度校正后,为相关技 术人员和/或设备提供经温度校正的轴承载荷信息。
无线供电模块用于为传感测量模块和无线通信模块供电。
在此,无线供电模块包括布置在轴承处的受电天线,其可以从由布置在轴承之外的供电配套设备提供电磁波获取能量。供电配套设备在此例如包括可以与受电天线电磁耦合的供电天线,供给供电天线的供电电路以及相应的控制单元。无线供电模块还可以包括电源管理电路。
在一种特别优选的实施方式,传感主体具有销状的基体和印刷电路板,其中,基体可以通过压配合安装到轴承中,并且其中,印刷电路板用于部分地将传感测量模块、无线通信模块和无线供电模块中的元件、尤其电子元件安装于基体。也就是说,传感主体整体构造为销式结构,即构成传感销。传感主体可以通过基体安装于轴承构件的安装孔中,在此基体可以至少局部地与安装孔实现压配合。优选地,基体在一个轴向端部与安装孔实现压配合。基体和安装孔的横截面可以相对应地设计为多种形状、优选正多边形、特别优选圆形。优选地,安装孔为盲孔。在此,轴承圈上的安装孔优选平行于轴承或者说轴承圈的中轴线延伸,从而有利于高效测量轴承载荷。滚动体上的安装孔优选沿滚动体的中轴线延伸。优选地,在基体的外周面构造用于布置印刷电路板的平面。在此,该平面优选与基体的轴向端面相互垂直。该平面的设置尽可能地避免了对印刷电路板对基体的压配合区域的干扰。
在一种优选实施方式中,无线通信模块包括布置在印刷电路板上的RFID芯片和布置在基体上的天线,RFID芯片和天线用于与布置在轴承之外的通信配套设备进行无线通信。在此,利用RFID技术(射频识别技术)实现无线通信。具体地,RFID芯片和天线共同构成RFID标签,通信配套设备例如包括RFID读写器,RFID读写器可以与RFID标签进行无线数据通信。也就是说,由传感测量模块提供的轴承信息被调制到载波RF电磁波并由天线发射,从而可以无线地实时地监测轴承的载荷情况。在此,天线优选为小型天线,例如是金属偶极子天线,PCB印刷天线或陶瓷天线。优选地,天线是陶瓷天线,其可以通过小尺寸获得大的天线增益。
在一种优选实施方式中,压力传感器包括至少两个应变仪,其中,至 少两个应变仪布置在基体的用于实现压配合的区域中,其中,至少两个应变仪中的一者可以布置于基体的轴向端面,并且至少两个应变仪中的另外一者可以至少部分轴向延伸地布置于基体的外周面。优选地,如此布置在轴向端面中的应变仪,使得其测量方向沿基体的径向延伸或者说穿过基体的中轴线。优选地,在基体实现压配合的轴向端部区域内,在基体的外周面局部地构造平面,以形成用于应变仪的容纳空间。在此,该平面优选垂直于基体的轴向端面。优选地,如此布置在该容纳平面中的应变仪,使得其测量方向沿基体的轴向延伸或者说平行于基体的中轴线。各个应变仪在此通过电导线连接至相应的测量电路。两个应变仪在此可以分别用作测量应变仪和参考应变仪。优选地,测量应变仪和参考应变仪的测量方向相互垂直。优选地,布置于基体的轴向端面的应变仪用作测量应变仪,布置于基体的外周面的容纳空间的应变仪用作参考应变仪。在此,特别优选地,形成容纳空间的平面与印刷电路板具有相同的轴向位置和/或相互平行。在此,应变仪可以是金属电阻应变片或半导体应变片。为尽可能减小功耗,测量应变仪优选为半导体应变仪,其具有电阻应变大且应变敏感性高的优点。应变仪可以通过多种方式规定安装于基体。例如,应变仪可以通过粘结剂粘贴于基体。备选地,应变仪也可以通过点焊等焊接方式固定于基体。备选地,应变仪也可以通过MEMS制造工艺固定于基体。
在此,优选地,印刷电路板上布置有用于应变仪的测量电路和测量信号处理电路。测量电路在此优选是惠斯通电桥、尤其用于两个应变仪的半桥电路。测量信号处理电路包括放大电路和模数转换电路等。
在此,特别优选地,RFID芯片提供测量信号处理电路中的模数转换电路。从而提高传感装置的集成度,有利于减小传感装置、尤其传感主体的尺寸。
在此,特别优选地,RFID芯片提供温度传感器。由此无需另外设置温度传感器,仅利用RFID芯片中集成的温度传感器,从而提高传感装置的集成度,有利于减小传感装置、尤其传感主体的尺寸。
在此,优选地,天线布置于基体的轴向端面,其中,布置有天线的轴向端面与布置有应变仪的轴向端面相对置。从而当基体安装于轴承构件 时,天线可以处于轴承的轴向端侧,以更好地实现其功能。
在此,特别优选地,天线外侧设有天线罩盖。在这种情况下,天线罩盖由塑料制成,例如ABS,PPS,PTFE等。由此在低功率的射频信号可以穿过天线罩盖的情况下有利地保护天线。
在此,特别有利地,在天线和天线罩盖之间设有密封弹性体,尤其密封橡胶,由此可以更好地保护天线。
在一种优选实施方式中,上述天线可以用作无线供电模块的受电天线,从而能够无线地获取由布置在轴承之外的供电配套设备提供的能量。当供电配套设备的供电天线发射电磁波,电磁波穿过可能存在的天线罩盖和密封弹性部辐射到受电天线,受电天线从电磁波获取能量,所获取的能量可以存储在电容中。
在此,特别优选地,RFID芯片提供无线供电模块的电源管理电路。由此存储在电容中的能量可以由RFID感应芯片中的电源管理电路处理,以提供稳定的电源。这种设计提高了传感装置的集成度,有利于减小传感装置、尤其传感主体的尺寸。
在一种有利的实施方式中,基体的内部具有用于容纳电导线的通道。通道可以构造为通孔、盲孔或凹槽等形式。电导线在此例如是用于电连接应变仪和印刷电路板的导线。电导线在此例如是用于电连接天线和印刷电路板的导线。通道的设置尤其避免了布线对压配合区域的影响。电导线的材料如此选择,其电阻温度系数在常规工作温度范围内变化较小,从而尽可能地排除温度对传感装置测量结果的影响。
在一种有利的实施方式中,基体设有用于与轴承构件连接的附加连接结构。优选地,可以在基体的一轴向端部上构造外螺纹并且在安装孔内、尤其安装孔的台阶部内构造内螺纹,其中,在传感装置安装于安装孔时,该轴向端部处于安装孔的孔口处,从而基体与安装孔可以通过螺纹辅助地连接。
在此,特别有利地,基体与安装传感装置的轴承构件的材料相同。从而可以将由温度引起的材料尺寸变化的影响最小化。
在一种有利的实施方式中,传感装置至少局部地进行封装处理,从而 可以有利地减小或者防止冲击或液体对传感装置中尤其电子器件的影响。在此,封装处理可以有利地避开基体的辅助连接结构。有利地,该封装可由塑料、橡胶或粘结剂等进行封装。
上述技术问题还可以通过一种轴承组件解决,该轴承组件包括轴承、尤其滚动轴承和上述传感装置。
在此,优选地,传感装置的传感主体可以安装于轴承的外圈或内圈的安装孔内,其中,安装孔沿轴承的轴向延伸,即平行于轴承的中轴线延伸。备选地且优选地,传感装置的传感主体安装于轴承的滚动体的安装孔内,其中,安装孔沿滚动体的中轴线延伸。
在此,安装孔优选为盲孔。优选地,传感主体如此安装于安装孔中,使得传感装置的用于无线供电模块的天线位于安装孔的孔口处。优选地,传感主体如此安装于安装孔,使得传感装置不伸出于安装孔,从而避免传感装置与其他构件相互碰撞。优选地,当传感主体安装于轴承圈、例如外圈或内圈,则优选如此安装于轴承圈的安装孔,使得传感测量模块中设置在基体的轴向端面的应变仪的测量方向沿轴承的径向方向对齐。
上述技术问题还可以通过一种用于轴承的传感系统解决,该传感系统包括具有上述特征的传感装置以及用于布置在轴承之外的传感装置配套设备。在此,传感装置配套设备包括通信配套设备和供电配套设备,其中,通信配套设备可以与布置于轴承的传感装置的无线通信模块进行无线通信,供电配套设备可以与轴承的传感装置的无线供电模块配合作用,以无线式或者说非接触式地向传感装置的传感测量模块和无线通信模块供电。在此,多个传感装置可以与共同的传感装置配套设备匹配,其中,每个传感装置可以具有自身的识别标识。在这种情况下,多个传感装置可以布置于同一轴承,也可布置于不同的轴承。
上述技术问题还可以通过一种轴承总成解决,该轴承总成包括轴承和上述传感系统。
综上所述,通过本发明的方案可以实现多种优点。由于附加地测量传感装置处的温度,可以借助所测量的温度校正压力传感器所测量的载荷值,尤其可以减少因温度对电导线以及压力传感器、例如应变仪的影响而 引起的测量误差,提高载荷测量的精确性。
此外,由于传感装置采用无线通信模块和无线供电模块,传感装置可以在布置于轴承的旋转构件、例如滚动体和可转动的轴承圈时实时地提供轴承载荷信息。又因为传感装置可以在布置于轴承的旋转构件,因此传感装置可在随旋转构件转动过程中在轴承周向的各个位置进行载荷测量,因此在每个轴承中仅设置一个这种传感装置即可满足测量需求。相比于现有的安装于固定的轴承圈时需要多个传感装置的方案以及安装于旋转构件时不能实时进行测量的方案,这种传感装置具有良好的实时测量功能,同时由于其所需的安装孔更少并且免除通信线路和供电线路的布置而使得设计结构更为简单,成本更小、可靠性更高。另外,由于传感装置无需电池,因此无需更换电池等维护工作。
另外,由于RFID芯片可以在实现与通信配套设备进行无线通信的功能的同时,还可以提供用于传感测量模块的模数转换电路和温度传感器并且提供用于无线供电模块的电源管理电路,使得传感装置的集成度非常高,传感装置的尺寸也可以相应减小,成本可以相应降低。得益于高度集成的RFID芯片和电阻大且灵敏度高的应变仪,传感装置的功耗可降低至数百微瓦以下。在开放环境中,这种结合RFID芯片和应变仪的传感装置的有效距离可以为5米或以上,适用于大多数应用。
附图说明
下面结合附图来示意性地阐述本发明的优选实施方式。附图为:
图1是根据一种优选实施方式的轴承组件的局部剖视图,
图2是根据图1的轴承组件中的传感装置的立体图,以及
图3是根据图2的传感装置的沿其轴向剖切所得的剖视图。
具体实施方式
图1示出了根据一种优选实施方式的轴承组件的局部剖视图。轴承组件包括被设计为圆锥滚子轴承的轴承和传感装置50。如图1所示,轴承包括外圈20、内圈10以及布置在外圈20和内圈10之间的保持架40和圆锥 滚子式的滚动体30。
如图1所示,轴承的内圈10构造有用于容纳传感装置的安装孔。安装孔构造为盲孔并且平行于轴承的中轴线延伸。传感装置50在本实施方式中实施为无线通信且无线供电的传感销。
图2和图3分别示出了根据图1的轴承组件中的传感装置50的立体图和沿轴向剖切传感装置50所得的剖视图。如图2和图3所示,传感装置50包括用于安装到轴承的内圈10的传感主体。传感主体配置有传感测量模块、无线通信模块和无线通信模块。
传感主体包括销状的基体6和印刷电路板1。销状的基体6具有基本呈圆形的横截面。销状的基体6与内圈10由相同的材料构成,从而将由温度引起的材料尺寸变化的影响最小化。在基体6的外周面局部地构造平面,印刷电路板1布置在该平面上。
结合图1、图2和图3可见,传感主体以销状的基体6通过压配合固定在内圈10的安装孔中。此外,在基体6的完成安装时位于安装孔的孔口处的轴向端部还设有台阶部,台阶部的外周表面设有未详细示出的外螺纹,该外螺纹可以匹配构造在台阶式安装孔内的内螺纹,以实现辅助的螺纹连接。
传感测量模块包括用于测量轴承的轴向和径向载荷的压力传感器和用于测量传感装置的温度的温度传感器。压力传感器包括布置在压配合区域内的两个应变仪,即测量应变仪2和参考应变仪3。测量应变仪2和参考应变仪3在此优选为电阻应变大且应变敏感性高的半导体应变仪。测量应变仪2粘贴于基体6的朝向安装孔的孔底的轴向端面。在此,测量应变仪2的纵向与基体6的径向对齐。在基体6实现压配合的区域内,在基体6的外周面局部地构造平面,该平面垂直于基体6的轴向端面,参考应变仪3粘贴在该平面上。在此,布置参考应变仪3的平面与布置印刷电路板1的平面在基体6相互平行。在此,参考应变仪3的纵向平行于基体6的中轴线。测量应变仪2和参考应变仪3分别通过电导线4连接到测量印刷电路板1。在此,在基体6内部构造有用于容纳和引导电导线4的通道。印刷电路板1上布置有用于应变仪的测量电路、放大电路、模数转换电路, 其中测量电路在此为惠斯通电桥,其中模数转换电路由布置在印刷电路板1上RFID芯片提供。在测量过程中,基体6上由轴承载荷引起的应变造成测量应变计2的电阻变化,该电阻变化可以通过惠斯通电桥测量电路进行检测,随后通过放大电路进行放大,并进行调整以适配RFID传感芯片中的模数转换电路。RFID芯片还提供温度传感器,可以通过由该温度传感器测量所测量的温度校正由压力传感器所测量的载荷。如此可以减少因温度对应变仪和电导线的影响而引起的测量误差。在此,参考应变仪3、电导线4、印刷电路板1连同基体6可以通过塑料进行封装。
无线通信模块包括上述布置在印刷电路板上1的RFID芯片和布置在基体6的轴向端面上的天线5,其中,布置有天线5的轴向端面与布置有测量应变仪2的轴向端面相对置。天线5通过电导线4连接至印刷电路板1、尤其RFID芯片。电导线4容纳在基体6内部的通道中。在此,RFID芯片和天线5共同构成RFID标签,布置在轴承之外通信配套设备包括RFID读写器,RFID读写器可以与RFID标签进行无线数据通信。在此,由传感测量模块提供的轴承信息被调制到载波RF电磁波并由天线5发射,从而可以无线地监测轴承的载荷情况。天线5在此优选为陶瓷天线,其可以以小尺寸获得大的天线增益。天线5外侧设有天线罩盖7。天线罩盖7例如通过螺纹连接安装在基体6上。天线罩盖7由塑料制成,例如ABS,PPS,PTFE等,其可以被低功率的射频信号穿过。在天线5和天线罩盖7之间设置密封弹性体,尤其密封橡胶,由此可以更好地保护天线5。
无线供电模块包括受电天线和电源管理电路。在此,用于无线通信模块的RFID标签的天线5可用作无线供电模块的受电天线。RFID芯片可提供电源管理电路。当供电配套设备的供电天线发射电磁波,电磁波穿过天线罩盖7和密封弹性部辐射到天线5,天线5在此作为受电天线从电磁波获取能量。获取的能量可以存储在电容中,并由电源管理电路处理,以提供稳定的电源。
得益于高度集成的RFID芯片和电阻大且灵敏度高的应变仪,传感装置的功耗可降低至数百微瓦以下。这对于无源无线传感装置的设计非常重 要,因为这与有效距离密切相关。在开放环境中,根据本实施方式传感装置50的有效距离可以为5米或以上,适用于大多数应用。此外,由于传感装置采用无线通信模块和无线供电模块,传感装置可以在布置于轴承的旋转构件时实时地提供轴承载荷信息。这也使得传感装置可在随旋转构件转动过程中在轴承周向的各个位置进行载荷测量,因此在每个轴承仅设置一个这种传感装置即可满足测量需求。
虽然在上述说明中示例性地描述了可能的实施例,但是应该理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。
附图标记列表
10        内圈
20        外圈
30        滚动体
40        保持架
50        传感装置的传感销
1         印刷电路板
2         应变仪
3         应变仪
4         电导线
5         天线
6         基体
7         天线罩盖

Claims (20)

  1. 用于轴承的传感装置,其特征在于,所述传感装置(50)包括用于通过压配合安装到所述轴承中的传感主体,所述传感主体配置有:
    -传感测量模块,其包括用于测量所述轴承的载荷的压力传感器和用于测量所述传感装置的温度的温度传感器,其中,借助所测量的温度校正所测量的载荷;
    -无线通信模块,其用于无线传输来自所述传感测量模块的轴承信息;
    -无线供电模块,其用于为所述传感测量模块和所述无线通信模块供电。
  2. 根据权利要求1所述的传感装置,其特征在于,所述传感主体包括销状的基体(6)和印刷电路板(1),其中,所述基体(6)能够通过压配合安装到所述轴承中,并且其中,所述印刷电路板(1)用于部分地将所述三个模块的元件安装于所述基体(6)。
  3. 根据权利要求2所述的传感装置,其特征在于,所述无线通信模块包括布置在所述印刷电路板(1)上的RFID芯片和布置在所述基体(6)上的天线(5),所述RFID芯片和所述天线(5)用于与布置在所述轴承之外的通信配套设备进行无线通信。
  4. 根据权利要求3所述的传感装置,其特征在于,所述压力传感器包括至少两个应变仪(2、3),其中,所述至少两个应变仪(2、3)布置在所述基体(6)的用于实现所述压配合的区域中,其中,所述至少两个应变仪(2、3)中的一者布置于所述基体(6)的轴向端面,并且且所述至少两个应变仪(2、3)中的另外一者至少部分轴向延伸地布置于所述基体(6)的外周面。
  5. 根据权利要求4所述的传感装置,其特征在于,所述印刷电路板(1)上布置有用于所述应变仪(2、3)的测量电路和测量信号处理电路。
  6. 根据权利要求5所述的传感装置,其特征在于,所述RFID芯片提 供所述测量信号处理电路中的模数转换电路。
  7. 根据权利要求4-6中任一项所述的传感装置,其特征在于,所述RFID芯片提供所述温度传感器。
  8. 根据权利要求4-7中任一项所述的传感装置,其特征在于,所述天线(5)布置于所述基体(6)的轴向端面,其中,所述轴向端面与布置有应变仪(2)的轴向端面相对置。
  9. 根据权利要求8所述的传感装置,其特征在于,所述天线(5)外侧设有天线罩盖(7)。
  10. 根据权利要求9所述的传感装置,其特征在于,在所述天线(5)和所述天线罩盖(7)之间设置密封弹性体。
  11. 根据权利要求3-10中任一项所述的传感装置,其特征在于,所述天线(5)能够用作所述无线供电模块的受电天线,从而能够无线地获取由布置在所述轴承之外的供电配套设备提供的能量。
  12. 根据权利要求3-11中任一项所述的传感装置,其特征在于,所述RFID芯片提供所述无线供电模块的电源管理电路。
  13. 根据权利要求2-12中任一项所述的传感装置,其特征在于,所述基体(6)的内部具有用于容纳电导线(4)的通道。
  14. 根据权利要求2-13中任一项所述的传感装置,其特征在于,所述基体(6)设有用于与所述轴承的轴承构件相连接的辅助连接结构。
  15. 根据权利要求2-14中任一项所述的传感装置,其特征在于,所述基体(6)与安装所述传感装置的轴承构件的材料相同。
  16. 根据权利要求2-15中任一项所述的传感装置,其特征在于,所述传感装置至少局部地进行封装处理。
  17. 轴承组件,包括轴承和根据权利要求1-16中任一项所述的传感装置(50)。
  18. 根据权利要求17所述的轴承组件,其特征在于,
    所述传感装置(50)安装于所述轴承的外圈(20)或内圈(10)的安装孔内,其中,所述安装孔沿所述轴承的轴向延伸;
    或者,所述传感装置(50)安装于所述轴承的滚动体(30)的安装孔 内,其中,所述安装孔沿所述滚动体(30)的中轴线延伸。
  19. 用于轴承的传感系统,所述传感系统包括根据权利要求1-16中任一项所述的传感装置以及用于布置在所述轴承之外的传感装置配套设备。
  20. 轴承总成,包括轴承和根据权利要求19所述的传感系统。
PCT/CN2020/071715 2020-01-13 2020-01-13 传感装置和轴承组件 WO2021142569A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,428 US20230063769A1 (en) 2020-01-13 2020-01-13 Sensing device and bearing component
EP20913566.4A EP4092281A4 (de) 2020-01-13 2020-01-13 Sensorvorrichtung und lagerbauteil
PCT/CN2020/071715 WO2021142569A1 (zh) 2020-01-13 2020-01-13 传感装置和轴承组件
CN202080091861.9A CN114981551B (zh) 2020-01-13 2020-01-13 传感装置和轴承组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071715 WO2021142569A1 (zh) 2020-01-13 2020-01-13 传感装置和轴承组件

Publications (1)

Publication Number Publication Date
WO2021142569A1 true WO2021142569A1 (zh) 2021-07-22

Family

ID=76863438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071715 WO2021142569A1 (zh) 2020-01-13 2020-01-13 传感装置和轴承组件

Country Status (4)

Country Link
US (1) US20230063769A1 (zh)
EP (1) EP4092281A4 (zh)
CN (1) CN114981551B (zh)
WO (1) WO2021142569A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070068273A1 (en) * 2005-09-23 2007-03-29 Velocomp, Llp Apparatus for measuring total force in opposition to a moving vehicle and method of using
CN101292090A (zh) * 2005-09-06 2008-10-22 蒂姆肯公司 载荷感测轴承
CN101819091A (zh) * 2010-03-25 2010-09-01 重庆大学 组合式智能监测轴承
CN201673594U (zh) * 2010-05-21 2010-12-15 希姆通信息技术(上海)有限公司 无线传感装置及传感系统
CN102265046A (zh) 2008-12-22 2011-11-30 Skf公司 传感器化的轴承单元
CN104595352A (zh) 2010-01-25 2015-05-06 株式会社捷太格特 滚子轴承装置
CN205981278U (zh) * 2016-07-16 2017-02-22 刘兴超 基于mems的列车轮轴状态无线监测系统
CN106683387A (zh) * 2016-12-10 2017-05-17 杭州鸿雁智能科技有限公司 无源传感装置及一种无源式无线传感系统
CN107448362A (zh) 2016-05-31 2017-12-08 北京金风科创风电设备有限公司 回转支承轴承的状态监测方法、装置及风力发电机组
CN207779581U (zh) * 2018-01-24 2018-08-28 常州克劳诺斯特种轴承制造有限公司 用于轴承动圈检测的传感器装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038393A1 (de) * 2010-07-26 2012-01-26 Aktiebolaget Skf Wälzkörper für eine Wälzlagerung
DE102011006907B4 (de) * 2011-04-07 2018-02-22 Schaeffler Technologies AG & Co. KG Wälzkörper
DE102017111745A1 (de) * 2017-05-30 2018-12-06 Schaeffler Technologies AG & Co. KG Wälzlageranordnung für ein Getriebe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292090A (zh) * 2005-09-06 2008-10-22 蒂姆肯公司 载荷感测轴承
US20070068273A1 (en) * 2005-09-23 2007-03-29 Velocomp, Llp Apparatus for measuring total force in opposition to a moving vehicle and method of using
CN102265046A (zh) 2008-12-22 2011-11-30 Skf公司 传感器化的轴承单元
CN104595352A (zh) 2010-01-25 2015-05-06 株式会社捷太格特 滚子轴承装置
CN101819091A (zh) * 2010-03-25 2010-09-01 重庆大学 组合式智能监测轴承
CN201673594U (zh) * 2010-05-21 2010-12-15 希姆通信息技术(上海)有限公司 无线传感装置及传感系统
CN107448362A (zh) 2016-05-31 2017-12-08 北京金风科创风电设备有限公司 回转支承轴承的状态监测方法、装置及风力发电机组
CN205981278U (zh) * 2016-07-16 2017-02-22 刘兴超 基于mems的列车轮轴状态无线监测系统
CN106683387A (zh) * 2016-12-10 2017-05-17 杭州鸿雁智能科技有限公司 无源传感装置及一种无源式无线传感系统
CN207779581U (zh) * 2018-01-24 2018-08-28 常州克劳诺斯特种轴承制造有限公司 用于轴承动圈检测的传感器装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092281A4

Also Published As

Publication number Publication date
EP4092281A1 (de) 2022-11-23
CN114981551A (zh) 2022-08-30
US20230063769A1 (en) 2023-03-02
CN114981551B (zh) 2024-01-30
EP4092281A4 (de) 2023-10-11

Similar Documents

Publication Publication Date Title
US6831561B2 (en) Communications system and method with A/D converter
US7252010B2 (en) Pressure sensor system with semiconductor chip and antenna member
US8789424B2 (en) Method for manufacturing measuring transducers
US20160091377A1 (en) Physical quantity measuring device
KR101581908B1 (ko) 정보 취득 장치
JP2006220574A (ja) 回転体力学量測定装置および回転体力学量計測システム
KR20110040546A (ko) 수직형 압력 센서
JP5182431B2 (ja) 無線icデバイスおよびそれを用いた環境状態検出方法
US20200166425A1 (en) Sensor assembly and physical quantity measuring device
WO2021142569A1 (zh) 传感装置和轴承组件
CN111079251B (zh) 一种3bit标签的射频识别无源应变传感器
JP2020186950A (ja) ボルト、及び、検出システム
AU2013275529B2 (en) Condition detection device
JP4617732B2 (ja) 力学量測定装置
US7136683B2 (en) Surface acoustic wave sensor and radio frequency identification interrogator fixture
US20230258520A1 (en) Screw nut and mounting device
JP2010197117A (ja) 温度計測用のicタグ
CN211829189U (zh) 一种标签天线以及无源温度检测装置
US11616285B2 (en) Measuring device with near field antenna
KR101040110B1 (ko) 방압변 일체형 전자기파 부분방전 센서
JP6601597B1 (ja) 無線通信デバイス、およびそれを備えた物品
JP2005221337A (ja) トルク検出装置及びトルク較正情報作成装置
US10922502B2 (en) Structural unit for a linear actuator
CN215529600U (zh) 一种全向智能温感堵头
WO2019215963A1 (ja) 無線通信デバイス、およびそれを備えた物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913566

Country of ref document: EP

Effective date: 20220816