WO2021140908A1 - Gas mixing device - Google Patents

Gas mixing device Download PDF

Info

Publication number
WO2021140908A1
WO2021140908A1 PCT/JP2020/047946 JP2020047946W WO2021140908A1 WO 2021140908 A1 WO2021140908 A1 WO 2021140908A1 JP 2020047946 W JP2020047946 W JP 2020047946W WO 2021140908 A1 WO2021140908 A1 WO 2021140908A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mixing
path
hydrogen
oxygen
Prior art date
Application number
PCT/JP2020/047946
Other languages
French (fr)
Japanese (ja)
Inventor
尚士 市ノ木山
加藤 毅
石井 徹
佐々木 行雄
Original Assignee
ヤマハファインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハファインテック株式会社 filed Critical ヤマハファインテック株式会社
Publication of WO2021140908A1 publication Critical patent/WO2021140908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/60Safety arrangements

Definitions

  • the present invention relates to a gas mixer.
  • This application claims priority on the basis of Japanese Patent Application No. 2020-002339 filed on January 9, 2020 and incorporates all of its disclosures herein.
  • Patent Document 1 discloses a gas mixing device (hydrogen gas mixing device) that mixes a flammable gas (hydrogen gas) and a non-flammable gas (nitrogen gas).
  • This type of gas mixing device has an electric device for supplying electric power to each part of the gas mixing device and performing electrical control.
  • Electrical equipment includes parts that can be discharged and parts that can be charged with static electricity, such as relay contacts and circuit breakers. Therefore, in a gas mixing device that handles flammable gas, it is required to suppress the influence of the flammable gas on electrical equipment.
  • the present invention has been made in view of the above circumstances.
  • One of the objects of the present invention is to provide a gas mixing device capable of suppressing the influence of flammable gas on electrical equipment.
  • the gas mixing device is a gas mixing device for mixing flammable gas and non-flammable gas, and includes an electric device and a housing for accommodating the electric device.
  • the non-flammable gas is introduced into the housing.
  • the gas mixing device (hydrogen gas mixing device) 1 of the present embodiment shown in FIG. 1 mixes a flammable gas and a non-flammable gas, and supplies the mixed gas to various devices such as a leak inspection device.
  • the mixed gas is used, for example, as an inspection gas in a leak inspection (leak test).
  • the gas mixing device 1 includes a hydrogen generating unit (flammable gas generating unit) 2, a mixing gas supply unit 3, and a gas mixing unit 4. Further, the gas mixing device 1 includes a dilution gas supply unit 5 and a valve circuit 6. Further, the gas mixing device 1 includes an electric device 7 and a housing 8.
  • the hydrogen generating unit 2 generates hydrogen gas, which is a kind of flammable gas.
  • the hydrogen generation unit 2 of the present embodiment is a water electrolysis unit that generates hydrogen gas and oxygen gas by electrolyzing water (water electrolysis).
  • the hydrogen generating section 2 includes a solid polymer electrolyte membrane 201, an anode side electrode catalyst layer 202, a cathode side electrode catalyst layer 203, an anode side feeding body 204, a gas-liquid separator 205, a water circulation pump 206, and oxygen. It includes a path 207, a cathode side feeder 208, and a hydrogen path 209.
  • the solid polymer electrolyte membrane 201 is an ion filtration membrane that allows only cations (here, hydrogen ions) to pass through.
  • the anode side electrode catalyst layer 202 is provided on one side (anode side) of the solid polymer electrolyte membrane 201.
  • the cathode side electrode catalyst layer 203 is provided on the other side (cathode side) of the solid polymer electrolyte membrane 201.
  • the anode-side electrode catalyst layer 202 and the cathode-side electrode catalyst layer 203 are electrically connected via a power source.
  • the anode side feeder 204 is provided so as to sandwich the anode side electrode catalyst layer 202 with the solid polymer electrolyte membrane 201.
  • the gas-liquid separator 205 is arranged above the anode-side feeding body 204 and is connected to the anode-side feeding body 204 via two pipes 211 and 212.
  • the gas-liquid separator 205 is a water tank to which a plurality of pipes are connected.
  • the first pipe 211 connects the upper part of the anode side feeding body 204 and the lower part of the gas-liquid separator 205.
  • the second pipe 212 connects the lower part of the gas-liquid separator 205 and the lower part of the anode-side feeding body 204.
  • the water circulation pump 206 is provided in the middle of the second pipe 212.
  • This water flows in order by the water circulation pump 206 to the anode side feeding body 204, the first pipe 211, the lower part of the gas-liquid separator 205, and the second pipe 212. That is, this water is circulated between the anode-side feeding body 204 and the gas-liquid separator 205 by the water circulation pump 206.
  • the oxygen path 207 is a pipe connected to the upper part of the gas-liquid separator 205, and is connected to an exhaust pipe (not shown) of a factory that is open to the atmosphere or through which other exhaust gas flows. Oxygen gas generated in the anode-side feeding body 204 flows through the oxygen path 207.
  • the cathode side feeding body 208 is provided so as to sandwich the cathode side electrode catalyst layer 203 with the solid polymer electrolyte membrane 201.
  • the hydrogen path 209 is a pipe connected to the upper part of the cathode side feeding body 208, and is connected to the first mixing path 11 (see FIG. 1) described later.
  • the hydrogen gas generated in the cathode side feeding body 208 flows through the hydrogen path 209.
  • water in the anode-side feeding body 204 is electrolyzed in a state where a voltage is applied from the anode side to the cathode side of the solid polymer electrolyte membrane 201 by a power source, and the anode-side electrode catalyst layer 202 and the cathode are used.
  • the side electrode catalyst layer 203 promotes its electrolysis.
  • Hydrogen ions are generated in the anode-side feeder 204 by electrolysis of water, and the hydrogen ions pass through the solid polymer electrolyte membrane 201 and move to the cathode-side feeder 208.
  • the hydrogen ions that have moved to the cathode side feeder 208 combine with electrons to form hydrogen gas.
  • the hydrogen gas generated in the cathode side feeder 208 has a high concentration and flows out to the first mixing path 11 (see FIG. 1) through the hydrogen path 209.
  • the anode side feeding body 204 high-concentration oxygen gas is generated by electrolysis of water.
  • the oxygen gas generated in the anode-side feeding body 204 is separated from water in the gas-liquid separator 205 through the first pipe 211, and is discharged to the outside (atmosphere or factory exhaust pipe) through the oxygen path 207.
  • a part of the oxygen gas generated in the anode side feeding body 204 may flow to the second pipe 212 by the action of the water circulation pump 206 without being separated from the water in the gas-liquid separator 205. That is, the anode-side feeding body 204, the gas-liquid separator 205, and the first and second pipes 211 and 212 constitute the oxygen flow section 20 through which oxygen gas flows.
  • the mixing gas supply unit 3 shown in FIG. 1 is a non-flammable gas and supplies a mixing gas for mixing with the hydrogen gas described above.
  • the mixing gas in this embodiment is nitrogen gas.
  • the mixing gas may be, for example, helium gas, argon gas, carbon dioxide gas, or the like.
  • the mixing gas supply unit 3 includes an air supply source 31 and a filter 32.
  • the air supply source 31 is connected to the filter 32 and supplies air to the filter 32.
  • the air supply source 31 may be an air pipe through which air flows, a fan or a blower through which air flows toward the filter 32, or the like.
  • the filter 32 is, for example, a membrane module (membrane separation nitrogen gas generator), and separates and takes out nitrogen gas from the taken-in air. That is, the filter 32 functions as a mixing gas generating unit that generates a relatively high concentration of nitrogen gas. The nitrogen gas generated by the filter 32 flows out to the second mixing path 12, which will be described later.
  • the gas mixing unit 4 mixes the hydrogen gas from the hydrogen generating unit 2 and the nitrogen gas from the mixing gas supply unit 3. Specifically, the gas mixing unit 4 is connected to the hydrogen generating unit 2 via the first mixing path 11. Further, the gas mixing unit 4 is connected to the mixing gas supply unit 3 (particularly the filter 32) via the second mixing path 12. As a result, high-concentration hydrogen gas is guided from the hydrogen generating section 2 to the gas mixing section 4 through the first mixing path 11. Further, a high-concentration nitrogen gas is guided from the mixing gas supply unit 3 to the gas mixing unit 4 through the second mixing path 12. The mixed gas obtained by mixing hydrogen gas and nitrogen gas in the gas mixing unit 4 is supplied from the supply port 41 to various devices such as a leak inspection device.
  • the exhaust path (first path) 13 is connected to the middle part of the first mixing path 11 extending from the hydrogen generating section 2 to the gas mixing section 4.
  • An exhaust port 131 is provided at the tip of the exhaust path 13 in the extension direction.
  • the exhaust port 131 is open to the atmosphere or is connected to a factory exhaust pipe (not shown).
  • the dilution gas supply unit 5 supplies a non-flammable dilution gas.
  • the dilution gas is used to dilute the hydrogen gas released from the hydrogen generating unit 2 to the outside through the exhaust path 13.
  • the dilution gas path (second path) 14 extending from the dilution gas supply section 5 is connected to the middle portion in the extension direction of the exhaust path 13.
  • nitrogen gas is used as the dilution gas.
  • the dilution gas for example, helium gas, argon gas, carbon dioxide gas and the like may be used.
  • the dilution gas supply unit 5 includes a pressure vessel 51 that stores nitrogen gas (dilution gas) in a compressed state.
  • the pressure vessel 51 may be a cylinder, a tank, or the like.
  • the dilution gas supply unit 5 also includes the mixing gas supply unit 3 described above. Therefore, the dilution gas path 14 is branched at the middle portion thereof and is connected to the pressure vessel 51 and the mixing gas supply unit 3, respectively.
  • the dilution gas path 14 is connected to the mixing gas supply unit 3 via the second mixing path 12.
  • the dilution gas path 14 may be directly connected to, for example, the mixing gas supply unit 3.
  • a shuttle valve (switching portion) 52 is provided at the branch portion of the dilution gas path 14.
  • the shuttle valve 52 switches between the nitrogen gas from the mixing gas supply unit 3 and the nitrogen gas stored in the pressure vessel 51 as the dilution gas for diluting the hydrogen gas. Specifically, the shuttle valve 52 causes the nitrogen gas having the higher pressure among the nitrogen gas from the pressure vessel 51 and the nitrogen gas from the mixing gas supply unit 3 to flow toward the exhaust path 13.
  • a regulator 132 and an orifice 133 are provided in a portion of the exhaust path 13 on the upstream side (first mixing path 11 side) of the junction with the diluted gas path 14.
  • the regulator 132 and the orifice 133 adjust the flow rate of the hydrogen gas flowing through the exhaust path 13.
  • the dilution gas path 14 is provided with a regulator 142 and an orifice 143 for adjusting the flow rate of nitrogen gas flowing through the dilution gas path 14.
  • the regulators 132 and 142 and the orifices 133 and 143 can adjust the flow rate of hydrogen gas or nitrogen gas without power such as electric power.
  • the orifices 133 and 143 may be, for example, a flow rate adjusting valve (speed controller).
  • the valve circuit 6 guides hydrogen gas from the hydrogen generating unit 2 through the first mixing path 11 to the gas mixing unit 4 and mixes nitrogen gas in the normal time when no abnormality has occurred in the gas mixing device 1. It is led from the gas supply unit 3 to the gas mixing unit 4 through the second mixing path 12.
  • the valve circuit 6 has a first normally closed solenoid valve 61 that opens and closes the first mixing path 11, and a second normally closed solenoid valve 62 that opens and closes the second mixing path 12.
  • the first and second normally closed solenoid valves 61 and 62 open the first and second mixing paths 11 and 12 when the power is supplied to them, and when the power is not supplied, the first and second normally closed solenoid valves 61 and 62 open.
  • the first and second mixing paths 11 and 12 are closed. That is, in the gas mixing device 1, hydrogen gas and nitrogen gas are supplied to the gas mixing unit 4 only when energized, and are not supplied to the gas mixing unit 4 when the gas is not energized.
  • the valve circuit 6 includes a hydrogen gas exhaust path (first path) 13 from the hydrogen generating section 2 and a diluted gas supply section when an abnormality occurs in the gas mixing device 1 (when an abnormality occurs) such as during a power failure.
  • the hydrogen gas is diluted with the nitrogen gas by connecting the dilution gas path (second path) 14 of the nitrogen gas (dilution gas) from No. 5.
  • the valve circuit 6 includes a first normally-open solenoid valve 63 that opens and closes the exhaust path 13, and a second normally-open solenoid valve 64 that opens and closes the diluted gas path 14.
  • the first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14 when the power is not supplied to them, and for exhaust when the power is supplied.
  • the path 13 and the diluted gas path 14 are closed. That is, in the gas mixer 1, the hydrogen gas diluted with nitrogen gas is released to the outside only when it is not energized, and is not released to the outside when it is energized.
  • the power supply to the first and second normally closed solenoid valves 61 and 62 and the first and second normally open solenoid valves 63 and 64 described above is controlled by, for example, the electric device 7 described later.
  • a non-flammable dilution gas is introduced into the oxygen flow section 20 through which oxygen gas flows among the hydrogen generation sections 2 described above.
  • the dilution gas introduced into the oxygen flow unit 20 is nitrogen gas (mixing gas) supplied from the mixing gas supply unit 3.
  • the dilution gas introduced into the oxygen flow unit 20 may be, for example, nitrogen gas supplied from the pressure vessel 51.
  • the oxygen flow unit 20 of the hydrogen generation unit 2 is connected to the mixing gas supply unit 3 via the first introduction path 15.
  • the first introduction path 15 is connected to the mixing gas supply unit 3 by connecting to the second mixing path 12 on the upstream side of the second normally closed solenoid valve 62.
  • the first introduction path 15 may be directly connected to, for example, the mixing gas supply unit 3.
  • the first introduction path 15 is connected to the gas-liquid separator 205 of the oxygen flow unit 20.
  • the first introduction path 15 is connected to a portion of the gas-liquid separator 205 located above the water surface.
  • the first introduction path 15 is connected to, for example, a portion of the oxygen flow section 20 located below the water surface (anode side feeding body 204, lower part of gas-liquid separator 205, first and second pipes 211 and 212). You may. As shown in FIG. 1, the first introduction path 15 is provided with a first flow meter 151 for measuring the flow rate of nitrogen gas (dilution gas) introduced into the oxygen flow unit 20.
  • the electric device 7 is a device (for example, a control panel) that supplies electric power to each part of the gas mixing device 1 (for example, a hydrogen generating part 2 and a valve circuit 6) and performs electric control.
  • the electric device 7 includes parts that can generate electric discharge, such as relay contacts, buttons, and breakers, and parts that can be charged.
  • the housing 8 accommodates the above-mentioned electric device 7.
  • a non-combustible gas is introduced into the inside (internal space) of the housing 8.
  • the non-flammable gas introduced into the housing 8 is nitrogen gas (mixing gas) supplied from the mixing gas supply unit 3.
  • the non-flammable gas introduced into the housing 8 may be, for example, nitrogen gas from the pressure vessel 51.
  • the housing 8 is connected to the mixing gas supply unit 3 via the second introduction path 16.
  • the pipe forming the second introduction path 16 is connected to the internal space of the housing 8 through a hole formed in the housing 8, so that the inside of the housing 8 is the mixing gas supply unit 3. Is connected with.
  • the nitrogen gas from the mixing gas supply unit 3 can be introduced into the housing 8.
  • the second introduction path 16 is connected to the mixing gas supply unit 3 by connecting to the second mixing path 12 on the upstream side of the second normally closed solenoid valve 62.
  • the second introduction path 16 may be directly connected to, for example, the mixing gas supply unit 3.
  • the housing 8 is not completely sealed to the outside. Therefore, nitrogen gas from the mixing gas supply unit 3 is continuously introduced into the housing 8.
  • the housing 8 may be completely sealed to the outside, for example.
  • the second introduction path 16 is provided with a second flow meter 161 that measures the flow rate of nitrogen gas (dilution gas) introduced into the housing 8.
  • the second introduction path 16 may be provided with a pressure gauge for measuring the pressure (atmospheric pressure) in the second introduction path 16 instead of the second flow meter 161.
  • the gas mixing device 1 of the present embodiment depending on the concentration of the oxygen gas contained in the nitrogen gas (diluting gas, non-flammable gas) introduced into the oxygen flow unit 20 of the hydrogen generating unit 2 and the housing 8. , The generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped.
  • This control is performed, for example, by an electric device 7 (control panel) arranged in the housing 8.
  • the concentration of oxygen gas contained in the nitrogen gas from the mixing gas supply unit 3 is measured by the oxygen concentration meter 121 provided in the second mixing path 12.
  • the electric device 7 controls the generation of hydrogen gas in the hydrogen generating unit 2 based on the measurement result output from the oxygen concentration meter 121.
  • the electric device 7 stops the generation of hydrogen gas in the hydrogen generating unit 2.
  • the oxygen concentration meter 121 described above may be provided in, for example, the first introduction path 15 or the second introduction path 16.
  • the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped according to the flow rate of the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 and the housing 8.
  • This control is performed, for example, by an electric device 7 (control panel) arranged in the housing 8.
  • the first flow meter 151 measures the flow rate of nitrogen gas (dilution gas) that flows through the first introduction path 15 and is introduced into the oxygen flow unit 20.
  • the second flow meter 161 measures the flow rate of the nitrogen gas (non-flammable gas) that flows through the second introduction path 16 and is introduced into the housing 8.
  • the electric device 7 controls the generation of hydrogen gas in the hydrogen generating unit 2 based on the measurement results output from the first flow meter 151 and the second flow meter 161. That is, when the flow rate of nitrogen gas measured by the first flow meter 151 or the second flow meter 161 becomes equal to or less than a predetermined value, the electric device 7 stops the generation of hydrogen gas in the hydrogen generating unit 2.
  • the operation of the gas mixing device 1 of the present embodiment will be described.
  • the operation in a normal time when no abnormality has occurred in the gas mixing device 1 will be described.
  • hydrogen gas and oxygen gas are generated in the hydrogen generating unit 2.
  • nitrogen gas is generated in the mixing gas supply unit 3.
  • electric power is supplied to the first and second normally closed solenoid valves 61 and 62, and the first and second normally open solenoid valves 63 and 64, respectively.
  • the first and second normally closed solenoid valves 61 and 62 open the first and second mixing paths 11 and 12, respectively.
  • first and second normally open solenoid valves 63 and 64 close the exhaust path 13 and the diluted gas path 14, respectively. Therefore, the hydrogen gas from the hydrogen generating unit 2 and the nitrogen gas from the mixing gas supply unit 3 are guided to the gas mixing unit 4 and mixed.
  • the nitrogen gas from the mixing gas supply unit 3 is also introduced into the oxygen flow unit 20 of the hydrogen generation unit 2.
  • the oxygen gas flowing through the oxygen flow unit 20 is diluted with nitrogen gas and then released to the outside of the hydrogen generation unit 2. That is, the oxygen gas can be released to the outside of the hydrogen generating unit 2 at a low concentration.
  • the nitrogen gas from the mixing gas supply unit 3 is also introduced into the housing 8 accommodating the electric device 7.
  • the inside of the housing 8 can be filled with nitrogen gas, which is a non-flammable gas, and it is possible to suppress the influence of flammable gas such as hydrogen gas on the electric device 7 arranged inside the housing 8. ..
  • the first example when an abnormality occurs is when the concentration of oxygen gas contained in the nitrogen gas supplied from the mixing gas supply unit 3 to the inside of the oxygen flow unit 20 and the housing 8 becomes a predetermined value or more.
  • the electric device 7 stops the power supply to the hydrogen generating unit 2 to stop the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2.
  • oxygen gas which is a flammable gas
  • the electric device 7 stops the power supply to the valve circuit 6. Therefore, the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively, and the first and second normally open solenoid valves 63 and 64 are for exhaust, respectively.
  • the path 13 and the diluted gas path 14 are opened.
  • the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted by the nitrogen gas (diluting gas) passing through the dilution gas path 14 and heading for the exhaust path 13, and then passed through the exhaust port 131. Is released to the outside.
  • the nitrogen gas passing through the diluting gas path 14 and heading to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3 or the nitrogen gas supplied from the pressure vessel 51. May be good.
  • the second example when an abnormality occurs is when the flow rate of nitrogen gas supplied from the mixing gas supply unit 3 to the inside of the oxygen flow unit 20 and the housing 8 becomes a predetermined value or less.
  • the electric device 7 stops the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2. Further, the electric device 7 stops the power supply to the valve circuit 6, and the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively.
  • the first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14, respectively.
  • the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted with nitrogen gas (diluting gas) passing through the diluting gas path 14 and heading for the exhaust path 13, and then passed through the exhaust port 131. It can be released to the outside.
  • the nitrogen gas passing through the diluting gas path 14 and heading to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3 or the nitrogen gas supplied from the pressure vessel 51. May be good.
  • the third example when an abnormality occurs is when the power supply to the gas mixing device 1 is stopped due to a power failure or the like (during a power failure).
  • the power supply to the hydrogen generating unit 2 is stopped, so that the hydrogen gas and oxygen gas generation in the hydrogen generating unit 2 is stopped.
  • the power supply to the first and second normally closed solenoid valves 61 and 62 and the first and second normally open solenoid valves 63 and 64 is stopped. Therefore, the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively, and the first and second normally open solenoid valves 63 and 64 exhaust the exhaust gas, respectively.
  • the use path 13 and the dilution gas path 14 are opened.
  • the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted by the nitrogen gas (diluting gas) passing through the diluting gas path 14 and heading for the exhaust path 13, and then the exhaust port 131 is opened. It is released to the outside through.
  • the nitrogen gas that passes through the dilution gas path 14 and goes to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3.
  • the nitrogen gas supply source is a pressure vessel from the mixing gas supply unit 3 due to the function of the shuttle valve 52. It is switched to 51. That is, the nitrogen gas from the pressure vessel 51 flows through the diluting gas path 14 toward the exhaust path 13, and dilutes the hydrogen gas passing through the exhaust path 13.
  • the first and second normally closed solenoid valves 61 and 62 may not be provided. That is, in each of the first, second, and third examples described above, the hydrogen gas passing through the exhaust path 13 passes through the diluted gas path 14 without closing the first and second mixing paths 11 and 12. It may be diluted with passing nitrogen gas.
  • the hydrogen gas exhaust path 13 from the hydrogen generation unit 2 and the nitrogen gas (dilution) from the dilution gas supply unit 5 are used.
  • a valve circuit 6 for diluting hydrogen gas with nitrogen gas is provided by connecting to the dilution gas path 14 of the gas). Therefore, when an abnormality occurs, the high-concentration hydrogen gas in the hydrogen generating section 2 can be diluted to obtain a low-concentration hydrogen gas. Therefore, hydrogen gas can be treated even when an abnormality occurs.
  • the hydrogen gas in the hydrogen generating section 2 is diluted with the nitrogen gas from the diluting gas supply section 5 and then released into the atmosphere. Therefore, it is possible to prevent the high-concentration hydrogen gas in the hydrogen generating section 2 from being released into the atmosphere.
  • the valve circuit 6 has a first solenoid valve 63 for opening and closing the exhaust path 13 and a second solenoid valve 63 for opening and closing the diluted gas path 14. It has a valve 64 and. Then, the first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14, respectively, in a state where electric power is not supplied to them. Therefore, by stopping the power supply to the first and second normally open solenoid valves 63 and 64 when an abnormality occurs, the exhaust path 13 and the diluted gas path 14 can be reliably connected.
  • the power supply to the first and second normally open solenoid valves 63 and 64 is automatically stopped, so that the exhaust path 13 and the diluted gas path 14 can be automatically connected. .. Therefore, when an abnormality occurs, the hydrogen gas can be reliably diluted with nitrogen gas (dilution gas).
  • the dilution gas supply unit 5 for supplying nitrogen gas (non-flammable dilution gas) includes the mixing gas supply unit 3. That is, the mixing gas supply unit 3 also functions as the dilution gas supply unit 5. Therefore, as compared with the case where the dilution gas supply unit 5 and the mixing gas supply unit 3 are completely separated, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low. ..
  • the mixing gas supply unit 3 that functions as the dilution gas supply unit 5 has a filter 32 that separates and extracts nitrogen gas from the air. Therefore, nitrogen gas as a dilution gas can be continuously flowed through the dilution gas path 14. That is, the hydrogen gas from the hydrogen generating unit 2 can be sufficiently diluted with nitrogen gas.
  • the dilution gas supply unit 5 for supplying nitrogen gas includes a pressure vessel 51 for storing the nitrogen gas in a compressed state. .. Therefore, even if there is no power such as electric power, the nitrogen gas can flow through the diluted gas path 14 at the pressure of the nitrogen gas itself. Therefore, in the event of an abnormality such as a power failure, the hydrogen gas from the hydrogen generating unit 2 can be reliably diluted with the nitrogen gas from the pressure vessel 51. Further, since the pressure vessel 51 for storing nitrogen gas in a high pressure state is more compact than the container for storing nitrogen gas at atmospheric pressure, the gas mixing device 1 can be compactly configured.
  • non-flammable nitrogen gas (dilution gas) is introduced into the oxygen flow section 20 of the hydrogen generating section 2.
  • the oxygen gas distributed in the oxygen flow unit 20 can be diluted with non-flammable nitrogen gas and then released to the outside (for example, the atmosphere). That is, the oxygen gas generated in the hydrogen generating unit 2 can be treated and then released to the outside.
  • the oxygen gas is diluted with the nitrogen gas, so that the hydrogen gas and the combustible gas are combustible gases.
  • the concentration of the mixed gas mixed with the oxygen gas can be kept low.
  • the hydrogen generating unit 2 when the concentration of oxygen gas contained in the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 becomes a predetermined value or more, the hydrogen generating unit 2 is charged. Stop the generation of hydrogen gas and oxygen gas. Further, in the gas mixing device 1 according to the present embodiment, even when the flow rate of the nitrogen gas introduced into the oxygen flow unit 20 becomes equal to or less than a predetermined value, the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped. To do. As a result, it is possible to prevent the concentration of the oxygen gas released from the hydrogen generating unit 2 to the outside from increasing.
  • the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 is supplied from the mixing gas supply unit 3. Therefore, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low, as compared with the case where the nitrogen gas supply source for introducing into the oxygen flow unit 20 is separately prepared.
  • non-flammable nitrogen gas non-flammable gas
  • the housing 8 accommodating the electric device 7.
  • the hydrogen gas (flammable gas) generated in the hydrogen generating unit 2 is introduced into the housing 8 accommodating the electric device 7.
  • the hydrogen gas (flammable gas) generated in the hydrogen generating unit 2 is introduced into the housing 8 accommodating the electric device 7.
  • the generated hydrogen gas from affecting the electric device 7 arranged in the housing 8.
  • a gas used for mixing with hydrogen gas (flammable gas) is used. Therefore, as compared with the case where the non-combustible gas supply source to be introduced inside the housing 8 is separately prepared, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low.
  • the hydrogen generating unit Stop the generation of hydrogen gas in 2. As a result, it is possible to prevent the oxygen gas contained in the nitrogen gas introduced into the housing 8 from affecting the electric device 7 arranged inside the housing 8.
  • the gas mixing device 1 even when the flow rate of the nitrogen gas introduced into the housing 8 becomes equal to or less than a predetermined value, the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped. To do. As a result, the flammable gas such as hydrogen gas generated in the hydrogen generating unit 2 is released to the housing based on the decrease in the flow rate of the nitrogen gas introduced into the housing 8 (or the decrease in the pressure of the nitrogen gas in the housing 8). It is possible to suppress the influence on the electric device 7 arranged in the 8.
  • the nitrogen gas (non-flammable gas) introduced into the housing 8 is the nitrogen gas from the pressure vessel 51, even if there is no power such as electric power.
  • Nitrogen gas can be introduced into the housing 8 by the pressure of the nitrogen gas itself. Therefore, even in the event of an abnormality such as a power failure, the electric device 7 arranged inside the housing 8 can be protected from a flammable gas such as hydrogen gas.
  • the mixed gas supply device is not limited to the hydrogen generating unit 2, but may include at least a flammable gas generating unit that generates flammable gas.
  • the present disclosure may be applied to a gas mixing device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Fuel Cell (AREA)

Abstract

This gas mixing device for mixing a flammable gas and a non-flammable gas comprises electrical equipment and a housing for accommodating the electrical equipment. The non-flammable gas is introduced into the housing.

Description

ガス混合装置Gas mixer
 本発明は、ガス混合装置に関する。
 この出願は、2020年1月9日に出願された日本国特願2020-002339号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The present invention relates to a gas mixer.
This application claims priority on the basis of Japanese Patent Application No. 2020-002339 filed on January 9, 2020 and incorporates all of its disclosures herein.
 特許文献1には、可燃性ガス(水素ガス)と非可燃性ガス(窒素ガス)とを混合するガス混合装置(水素ガス混合装置)が開示されている。 Patent Document 1 discloses a gas mixing device (hydrogen gas mixing device) that mixes a flammable gas (hydrogen gas) and a non-flammable gas (nitrogen gas).
日本国特開2018-140361号公報Japanese Patent Application Laid-Open No. 2018-140361
 この種のガス混合装置は、ガス混合装置の各部への電力供給や電気制御を行うための電気機器を有する。電気機器は、リレー接点やブレーカーなどのように放電が生じ得る部品や静電気を帯び得る部品を含む。このため、可燃性ガスを扱うガス混合装置においては、可燃性ガスの電気機器への影響を抑制することが求められる。 This type of gas mixing device has an electric device for supplying electric power to each part of the gas mixing device and performing electrical control. Electrical equipment includes parts that can be discharged and parts that can be charged with static electricity, such as relay contacts and circuit breakers. Therefore, in a gas mixing device that handles flammable gas, it is required to suppress the influence of the flammable gas on electrical equipment.
 本発明は、上述した事情に鑑みてなされた。本発明の目的の一つは、可燃性ガスの電気機器への影響を抑制できるガス混合装置を提供することである。 The present invention has been made in view of the above circumstances. One of the objects of the present invention is to provide a gas mixing device capable of suppressing the influence of flammable gas on electrical equipment.
 本発明の一態様に係るガス混合装置は、可燃性ガスと非可燃性ガスとを混合するためのガス混合装置であって、電気機器と、前記電気機器を収容する筐体と、を備える。前記筐体の内部に、前記非可燃性ガスが導入される。 The gas mixing device according to one aspect of the present invention is a gas mixing device for mixing flammable gas and non-flammable gas, and includes an electric device and a housing for accommodating the electric device. The non-flammable gas is introduced into the housing.
 本開示によれば、可燃性ガスが電気機器に影響することを抑制できる。 According to the present disclosure, it is possible to suppress the influence of flammable gas on electrical equipment.
本発明の一実施形態に係るガス混合装置を示すブロック図である。It is a block diagram which shows the gas mixing apparatus which concerns on one Embodiment of this invention. 図1のガス混合装置の水素発生部を示す図である。It is a figure which shows the hydrogen generation part of the gas mixing apparatus of FIG.
 以下、図1,2を参照して、本発明の一実施形態について説明する。
 図1に示す本実施形態のガス混合装置(水素ガス混合装置)1は、可燃性ガスと非可燃性ガスとを混合し、これらの混合ガスを漏れ検査装置などの各種の装置に供給する。混合ガスは、例えば漏れ検査(リークテスト)における検査用ガスとして用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
The gas mixing device (hydrogen gas mixing device) 1 of the present embodiment shown in FIG. 1 mixes a flammable gas and a non-flammable gas, and supplies the mixed gas to various devices such as a leak inspection device. The mixed gas is used, for example, as an inspection gas in a leak inspection (leak test).
 ガス混合装置1は、水素発生部(可燃性ガス発生部)2と、混合用ガス供給部3と、ガス混合部4と、を備える。また、ガス混合装置1は、希釈ガス供給部5と、弁回路6と、を備える。さらに、ガス混合装置1は、電気機器7と、筐体8と、を備える。 The gas mixing device 1 includes a hydrogen generating unit (flammable gas generating unit) 2, a mixing gas supply unit 3, and a gas mixing unit 4. Further, the gas mixing device 1 includes a dilution gas supply unit 5 and a valve circuit 6. Further, the gas mixing device 1 includes an electric device 7 and a housing 8.
 水素発生部2は、可燃性ガスの一種である水素ガスを発生する。本実施形態の水素発生部2は、図2に示すように、水を電気分解すること(水電解)により水素ガスと酸素ガスとを発生する水電解部である。水素発生部2は、固体高分子電解質膜201と、陽極側電極触媒層202と、陰極側電極触媒層203と、陽極側給電体204と、気液分離器205と、水循環ポンプ206と、酸素経路207と、陰極側給電体208と、水素経路209と、を備える。 The hydrogen generating unit 2 generates hydrogen gas, which is a kind of flammable gas. As shown in FIG. 2, the hydrogen generation unit 2 of the present embodiment is a water electrolysis unit that generates hydrogen gas and oxygen gas by electrolyzing water (water electrolysis). The hydrogen generating section 2 includes a solid polymer electrolyte membrane 201, an anode side electrode catalyst layer 202, a cathode side electrode catalyst layer 203, an anode side feeding body 204, a gas-liquid separator 205, a water circulation pump 206, and oxygen. It includes a path 207, a cathode side feeder 208, and a hydrogen path 209.
 固体高分子電解質膜201は、陽イオン(ここでは水素イオン)のみを通過させるイオン濾過膜である。陽極側電極触媒層202は、固体高分子電解質膜201の一方側(陽極側)に設けられている。陰極側電極触媒層203は、固体高分子電解質膜201の他方側(陰極側)に設けられている。陽極側電極触媒層202と陰極側電極触媒層203とは、電源を介して電気的に接続される。 The solid polymer electrolyte membrane 201 is an ion filtration membrane that allows only cations (here, hydrogen ions) to pass through. The anode side electrode catalyst layer 202 is provided on one side (anode side) of the solid polymer electrolyte membrane 201. The cathode side electrode catalyst layer 203 is provided on the other side (cathode side) of the solid polymer electrolyte membrane 201. The anode-side electrode catalyst layer 202 and the cathode-side electrode catalyst layer 203 are electrically connected via a power source.
 陽極側給電体204は、固体高分子電解質膜201との間に陽極側電極触媒層202を挟むように設けられている。気液分離器205は、陽極側給電体204の上方に配され、二つの配管211,212を介して陽極側給電体204に接続されている。気液分離器205は、複数の配管が接続された水タンクである。第一配管211は、陽極側給電体204の上部と気液分離器205の下部とを接続している。第二配管212は、気液分離器205の下部と陽極側給電体204の下部とを接続している。水循環ポンプ206は、第二配管212の中途部に設けられている。 The anode side feeder 204 is provided so as to sandwich the anode side electrode catalyst layer 202 with the solid polymer electrolyte membrane 201. The gas-liquid separator 205 is arranged above the anode-side feeding body 204 and is connected to the anode-side feeding body 204 via two pipes 211 and 212. The gas-liquid separator 205 is a water tank to which a plurality of pipes are connected. The first pipe 211 connects the upper part of the anode side feeding body 204 and the lower part of the gas-liquid separator 205. The second pipe 212 connects the lower part of the gas-liquid separator 205 and the lower part of the anode-side feeding body 204. The water circulation pump 206 is provided in the middle of the second pipe 212.
 陽極側給電体204、気液分離器205の下部、第一配管211及び第二配管212には、水が流れる。この水は、水循環ポンプ206によって、陽極側給電体204、第一配管211、気液分離器205の下部及び第二配管212に順番に流れる。すなわち、この水は、水循環ポンプ206によって、陽極側給電体204と気液分離器205との間で循環する。
 酸素経路207は、気液分離器205の上部に接続された配管であり、大気に開放される、あるいは、他の排気ガスが流れる工場の排気管(不図示)に接続される。酸素経路207には、陽極側給電体204において発生した酸素ガスが流通する。
Water flows through the anode side feeding body 204, the lower part of the gas-liquid separator 205, the first pipe 211, and the second pipe 212. This water flows in order by the water circulation pump 206 to the anode side feeding body 204, the first pipe 211, the lower part of the gas-liquid separator 205, and the second pipe 212. That is, this water is circulated between the anode-side feeding body 204 and the gas-liquid separator 205 by the water circulation pump 206.
The oxygen path 207 is a pipe connected to the upper part of the gas-liquid separator 205, and is connected to an exhaust pipe (not shown) of a factory that is open to the atmosphere or through which other exhaust gas flows. Oxygen gas generated in the anode-side feeding body 204 flows through the oxygen path 207.
 陰極側給電体208は、固体高分子電解質膜201との間に陰極側電極触媒層203を挟むように設けられている。水素経路209は、陰極側給電体208の上部に接続される配管であり、後述する第一混合用経路11(図1参照)に接続される。水素経路209には、陰極側給電体208において発生した水素ガスが流れる。 The cathode side feeding body 208 is provided so as to sandwich the cathode side electrode catalyst layer 203 with the solid polymer electrolyte membrane 201. The hydrogen path 209 is a pipe connected to the upper part of the cathode side feeding body 208, and is connected to the first mixing path 11 (see FIG. 1) described later. The hydrogen gas generated in the cathode side feeding body 208 flows through the hydrogen path 209.
 水素発生部2では、電源によって固体高分子電解質膜201の陽極側から陰極側に電圧が印加された状態で、陽極側給電体204にある水が電気分解され、陽極側電極触媒層202及び陰極側電極触媒層203が、その電気分解を促進する。
 水の電気分解により、陽極側給電体204に水素イオンが生成され、この水素イオンが、固体高分子電解質膜201を通過して、陰極側給電体208に移動する。陰極側給電体208に移動した水素イオンは、電子と結合して水素ガスとなる。陰極側給電体208で発生した水素ガスは、高濃度であり、水素経路209を通して第一混合用経路11(図1参照)に流出する。
In the hydrogen generating section 2, water in the anode-side feeding body 204 is electrolyzed in a state where a voltage is applied from the anode side to the cathode side of the solid polymer electrolyte membrane 201 by a power source, and the anode-side electrode catalyst layer 202 and the cathode are used. The side electrode catalyst layer 203 promotes its electrolysis.
Hydrogen ions are generated in the anode-side feeder 204 by electrolysis of water, and the hydrogen ions pass through the solid polymer electrolyte membrane 201 and move to the cathode-side feeder 208. The hydrogen ions that have moved to the cathode side feeder 208 combine with electrons to form hydrogen gas. The hydrogen gas generated in the cathode side feeder 208 has a high concentration and flows out to the first mixing path 11 (see FIG. 1) through the hydrogen path 209.
 一方、陽極側給電体204では、水の電気分解により高濃度の酸素ガスが発生する。陽極側給電体204で発生した酸素ガスは、第一配管211を通り気液分離器205において水から分離され、酸素経路207を通して外部(大気あるいは工場の排気管)に放出される。なお、陽極側給電体204で発生した酸素ガスの一部は、気液分離器205において水から分離されずに、水循環ポンプ206の作用によって第二配管212にも流れ得る。すなわち、陽極側給電体204、気液分離器205及び第一、第二配管211,212は、酸素ガスが流れる酸素流通部20を構成している。 On the other hand, in the anode side feeding body 204, high-concentration oxygen gas is generated by electrolysis of water. The oxygen gas generated in the anode-side feeding body 204 is separated from water in the gas-liquid separator 205 through the first pipe 211, and is discharged to the outside (atmosphere or factory exhaust pipe) through the oxygen path 207. A part of the oxygen gas generated in the anode side feeding body 204 may flow to the second pipe 212 by the action of the water circulation pump 206 without being separated from the water in the gas-liquid separator 205. That is, the anode-side feeding body 204, the gas-liquid separator 205, and the first and second pipes 211 and 212 constitute the oxygen flow section 20 through which oxygen gas flows.
 図1に示す混合用ガス供給部3は、非可燃性ガスであり、前述した水素ガスと混合するための混合用ガスを供給する。本実施形態における混合用ガスは、窒素ガスである。なお、混合用ガスは、例えばヘリウムガスや、アルゴンガス、二酸化炭素ガスなどであってもよい。 The mixing gas supply unit 3 shown in FIG. 1 is a non-flammable gas and supplies a mixing gas for mixing with the hydrogen gas described above. The mixing gas in this embodiment is nitrogen gas. The mixing gas may be, for example, helium gas, argon gas, carbon dioxide gas, or the like.
 混合用ガス供給部3は、空気供給源31と、フィルター32と、を備える。空気供給源31は、フィルター32に接続され、空気をフィルター32に供給する。空気供給源31は、空気が流れる空気配管や、空気をフィルター32に向けて流すファンやブロワなどであってよい。フィルター32は、例えば膜モジュール(膜分離窒素ガス発生装置)であり、取り入れられた空気から窒素ガスを分離して取り出す。すなわち、フィルター32は、比較的高濃度の窒素ガスを発生する混合用ガス発生部として機能する。フィルター32で発生した窒素ガスは、後述する第二混合用経路12に流出する。 The mixing gas supply unit 3 includes an air supply source 31 and a filter 32. The air supply source 31 is connected to the filter 32 and supplies air to the filter 32. The air supply source 31 may be an air pipe through which air flows, a fan or a blower through which air flows toward the filter 32, or the like. The filter 32 is, for example, a membrane module (membrane separation nitrogen gas generator), and separates and takes out nitrogen gas from the taken-in air. That is, the filter 32 functions as a mixing gas generating unit that generates a relatively high concentration of nitrogen gas. The nitrogen gas generated by the filter 32 flows out to the second mixing path 12, which will be described later.
 ガス混合部4は、水素発生部2からの水素ガスと、混合用ガス供給部3からの窒素ガスと、を混合する。具体的に、ガス混合部4は、第一混合用経路11を介して水素発生部2に接続されている。また、ガス混合部4は、第二混合用経路12を介して混合用ガス供給部3(特にフィルター32)に接続されている。これにより、高濃度の水素ガスが、水素発生部2から第一混合用経路11を通してガス混合部4に導かれる。また、高濃度の窒素ガスが、混合用ガス供給部3から第二混合用経路12を通してガス混合部4に導かれる。
ガス混合部4において水素ガスと窒素ガスとを混合した混合ガスは、供給ポート41から漏れ検査装置などの各種の装置に供給される。
The gas mixing unit 4 mixes the hydrogen gas from the hydrogen generating unit 2 and the nitrogen gas from the mixing gas supply unit 3. Specifically, the gas mixing unit 4 is connected to the hydrogen generating unit 2 via the first mixing path 11. Further, the gas mixing unit 4 is connected to the mixing gas supply unit 3 (particularly the filter 32) via the second mixing path 12. As a result, high-concentration hydrogen gas is guided from the hydrogen generating section 2 to the gas mixing section 4 through the first mixing path 11. Further, a high-concentration nitrogen gas is guided from the mixing gas supply unit 3 to the gas mixing unit 4 through the second mixing path 12.
The mixed gas obtained by mixing hydrogen gas and nitrogen gas in the gas mixing unit 4 is supplied from the supply port 41 to various devices such as a leak inspection device.
 水素発生部2からガス混合部4まで延びる第一混合用経路11の中途部には、排気用経路(第一経路)13が接続されている。排気用経路13の延長方向の先端には、排気ポート131が設けられている。排気ポート131は、大気に開放される、あるいは、工場の排気管(不図示)に接続される。これにより、水素発生部2からの水素ガスを、排気用経路13に通すことでガス混合装置1の外部(大気あるいは工場の排気管)に放出することができる。 The exhaust path (first path) 13 is connected to the middle part of the first mixing path 11 extending from the hydrogen generating section 2 to the gas mixing section 4. An exhaust port 131 is provided at the tip of the exhaust path 13 in the extension direction. The exhaust port 131 is open to the atmosphere or is connected to a factory exhaust pipe (not shown). As a result, the hydrogen gas from the hydrogen generating unit 2 can be discharged to the outside of the gas mixing device 1 (the atmosphere or the exhaust pipe of the factory) by passing the hydrogen gas through the exhaust path 13.
 希釈ガス供給部5は、非可燃性の希釈用ガスを供給する。希釈用ガスは、水素発生部2から排気用経路13を通って外部に放出される水素ガスを希釈するために用いられる。具体的には、希釈ガス供給部5から延びる希釈ガス経路(第二経路)14が、排気用経路13の延長方向の中途部に接続されている。これにより、希釈用ガスが希釈ガス経路14を通して排気用経路13に導入されることで、排気用経路13に通る水素ガスを希釈用ガスによって希釈して外部に放出することができる。本実施形態では、希釈用ガスとして、窒素ガスが用いられる。希釈用ガスとして、例えばヘリウムガスや、アルゴンガス、二酸化炭素ガスなどが用いられてもよい。 The dilution gas supply unit 5 supplies a non-flammable dilution gas. The dilution gas is used to dilute the hydrogen gas released from the hydrogen generating unit 2 to the outside through the exhaust path 13. Specifically, the dilution gas path (second path) 14 extending from the dilution gas supply section 5 is connected to the middle portion in the extension direction of the exhaust path 13. As a result, the dilution gas is introduced into the exhaust path 13 through the dilution gas path 14, so that the hydrogen gas passing through the exhaust path 13 can be diluted with the dilution gas and released to the outside. In this embodiment, nitrogen gas is used as the dilution gas. As the dilution gas, for example, helium gas, argon gas, carbon dioxide gas and the like may be used.
 希釈ガス供給部5は、窒素ガス(希釈用ガス)を圧縮した状態で貯留する圧力容器51を含む。圧力容器51は、ボンベやタンクなどであってよい。また、希釈ガス供給部5は、前述した混合用ガス供給部3も含む。このため、希釈ガス経路14は、その中途部で分岐されて、圧力容器51と混合用ガス供給部3とにそれぞれ接続される。希釈ガス経路14は、第二混合用経路12を介して混合用ガス供給部3に接続されている。なお、希釈ガス経路14は、例えば混合用ガス供給部3に直接接続されてもよい。
 希釈ガス経路14の分岐部分には、シャトルバルブ(切換部)52が設けられている。シャトルバルブ52は、水素ガスを希釈するための希釈用ガスとして、混合用ガス供給部3からの窒素ガスと圧力容器51に貯留された窒素ガスとのいずれかに切り換える。具体的に、シャトルバルブ52は、圧力容器51からの窒素ガス、及び、混合用ガス供給部3からの窒素ガスのうち、圧力が高い方の窒素ガスを排気用経路13に向けて流す。
The dilution gas supply unit 5 includes a pressure vessel 51 that stores nitrogen gas (dilution gas) in a compressed state. The pressure vessel 51 may be a cylinder, a tank, or the like. The dilution gas supply unit 5 also includes the mixing gas supply unit 3 described above. Therefore, the dilution gas path 14 is branched at the middle portion thereof and is connected to the pressure vessel 51 and the mixing gas supply unit 3, respectively. The dilution gas path 14 is connected to the mixing gas supply unit 3 via the second mixing path 12. The dilution gas path 14 may be directly connected to, for example, the mixing gas supply unit 3.
A shuttle valve (switching portion) 52 is provided at the branch portion of the dilution gas path 14. The shuttle valve 52 switches between the nitrogen gas from the mixing gas supply unit 3 and the nitrogen gas stored in the pressure vessel 51 as the dilution gas for diluting the hydrogen gas. Specifically, the shuttle valve 52 causes the nitrogen gas having the higher pressure among the nitrogen gas from the pressure vessel 51 and the nitrogen gas from the mixing gas supply unit 3 to flow toward the exhaust path 13.
 排気用経路13のうち希釈ガス経路14との合流部分よりも上流側(第一混合用経路11側)の部分には、レギュレータ132及びオリフィス133が設けられている。レギュレータ132及びオリフィス133は、排気用経路13に流れる水素ガスの流量を調整する。同様に、希釈ガス経路14には、希釈ガス経路14に流れる窒素ガスの流量を調整するためのレギュレータ142及びオリフィス143が設けられている。これにより、外部に放出される水素ガスと窒素ガスとの混合比、すなわち、窒素ガスによって希釈される水素ガスの濃度を調整することができる。レギュレータ132,142やオリフィス133,143は、電力等の動力が無くても水素ガスや窒素ガスの流量を調整することができる。オリフィス133,143は、例えば流量調整弁(スピードコントローラー)であってもよい。 A regulator 132 and an orifice 133 are provided in a portion of the exhaust path 13 on the upstream side (first mixing path 11 side) of the junction with the diluted gas path 14. The regulator 132 and the orifice 133 adjust the flow rate of the hydrogen gas flowing through the exhaust path 13. Similarly, the dilution gas path 14 is provided with a regulator 142 and an orifice 143 for adjusting the flow rate of nitrogen gas flowing through the dilution gas path 14. Thereby, the mixing ratio of the hydrogen gas released to the outside and the nitrogen gas, that is, the concentration of the hydrogen gas diluted by the nitrogen gas can be adjusted. The regulators 132 and 142 and the orifices 133 and 143 can adjust the flow rate of hydrogen gas or nitrogen gas without power such as electric power. The orifices 133 and 143 may be, for example, a flow rate adjusting valve (speed controller).
 弁回路6は、ガス混合装置1に異常が発生していない通常時において、水素ガスを水素発生部2から第一混合用経路11に通してガス混合部4に導くと共に、窒素ガスを混合用ガス供給部3から第二混合用経路12に通してガス混合部4に導く。具体的に、弁回路6は、第一混合用経路11を開閉する第一の常閉電磁弁61と、第二混合用経路12を開閉する第二の常閉電磁弁62と、を有する。第一、第二の常閉電磁弁61,62は、いずれもこれらに電力が供給されている通電時に第一、第二混合用経路11,12を開き、電力が供給されていない非通電時に第一、第二混合用経路11,12を閉じる。すなわち、ガス混合装置1では、水素ガス及び窒素ガスが、通電時にのみガス混合部4に供給され、非通電時にはガス混合部4に供給されない。 The valve circuit 6 guides hydrogen gas from the hydrogen generating unit 2 through the first mixing path 11 to the gas mixing unit 4 and mixes nitrogen gas in the normal time when no abnormality has occurred in the gas mixing device 1. It is led from the gas supply unit 3 to the gas mixing unit 4 through the second mixing path 12. Specifically, the valve circuit 6 has a first normally closed solenoid valve 61 that opens and closes the first mixing path 11, and a second normally closed solenoid valve 62 that opens and closes the second mixing path 12. The first and second normally closed solenoid valves 61 and 62 open the first and second mixing paths 11 and 12 when the power is supplied to them, and when the power is not supplied, the first and second normally closed solenoid valves 61 and 62 open. The first and second mixing paths 11 and 12 are closed. That is, in the gas mixing device 1, hydrogen gas and nitrogen gas are supplied to the gas mixing unit 4 only when energized, and are not supplied to the gas mixing unit 4 when the gas is not energized.
 また、弁回路6は、停電時などガス混合装置1に異常が発生した時(異常発生時)において、水素発生部2からの水素ガスの排気用経路(第一経路)13と希釈ガス供給部5からの窒素ガス(希釈用ガス)の希釈ガス経路(第二経路)14とを接続することで水素ガスを窒素ガスによって希釈する。具体的に、弁回路6は、排気用経路13を開閉する第一の常開電磁弁63と、希釈ガス経路14を開閉する第二の常開電磁弁64と、を有する。第一、第二の常開電磁弁63,64は、いずれもこれらに電力が供給されていない非通電時に排気用経路13や希釈ガス経路14を開き、電力が供給されている通電時に排気用経路13や希釈ガス経路14を閉じる。すなわち、ガス混合装置1では、窒素ガスで希釈された水素ガスが、非通電時にのみ外部に放出され、通電時には外部に放出されない。
 上記した第一、第二の常閉電磁弁61,62及び第一、第二の常開電磁弁63,64への電力供給の制御は、例えば後述の電気機器7によって行われる。
Further, the valve circuit 6 includes a hydrogen gas exhaust path (first path) 13 from the hydrogen generating section 2 and a diluted gas supply section when an abnormality occurs in the gas mixing device 1 (when an abnormality occurs) such as during a power failure. The hydrogen gas is diluted with the nitrogen gas by connecting the dilution gas path (second path) 14 of the nitrogen gas (dilution gas) from No. 5. Specifically, the valve circuit 6 includes a first normally-open solenoid valve 63 that opens and closes the exhaust path 13, and a second normally-open solenoid valve 64 that opens and closes the diluted gas path 14. The first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14 when the power is not supplied to them, and for exhaust when the power is supplied. The path 13 and the diluted gas path 14 are closed. That is, in the gas mixer 1, the hydrogen gas diluted with nitrogen gas is released to the outside only when it is not energized, and is not released to the outside when it is energized.
The power supply to the first and second normally closed solenoid valves 61 and 62 and the first and second normally open solenoid valves 63 and 64 described above is controlled by, for example, the electric device 7 described later.
 ガス混合装置1では、前述した水素発生部2のうち酸素ガスが流通する酸素流通部20に非可燃性の希釈用ガスを導入する。本実施形態において、酸素流通部20に導入される希釈用ガスは、混合用ガス供給部3から供給される窒素ガス(混合用ガス)である。なお、酸素流通部20に導入される希釈用ガスは、例えば圧力容器51から供給される窒素ガスであってもよい。 In the gas mixing device 1, a non-flammable dilution gas is introduced into the oxygen flow section 20 through which oxygen gas flows among the hydrogen generation sections 2 described above. In the present embodiment, the dilution gas introduced into the oxygen flow unit 20 is nitrogen gas (mixing gas) supplied from the mixing gas supply unit 3. The dilution gas introduced into the oxygen flow unit 20 may be, for example, nitrogen gas supplied from the pressure vessel 51.
 水素発生部2の酸素流通部20は、第一導入経路15を介して混合用ガス供給部3に接続されている。具体的に、第一導入経路15は、第二の常閉電磁弁62よりも上流側において第二混合用経路12につながることで混合用ガス供給部3に接続されている。第一導入経路15は、例えば混合用ガス供給部3に直接接続されてもよい。また、第一導入経路15は、図2に示すように、酸素流通部20の気液分離器205に接続されている。具体的に、第一導入経路15は気液分離器205のうち水面よりも上方に位置する部位に接続されている。第一導入経路15は、例えば酸素流通部20のうち水面よりも下方に位置する部位(陽極側給電体204、気液分離器205の下部、第一、第二配管211,212)に接続されてもよい。
 図1に示すように、第一導入経路15には、酸素流通部20に導入される窒素ガス(希釈用ガス)の流量を計測する第一流量計151が設けられている。
The oxygen flow unit 20 of the hydrogen generation unit 2 is connected to the mixing gas supply unit 3 via the first introduction path 15. Specifically, the first introduction path 15 is connected to the mixing gas supply unit 3 by connecting to the second mixing path 12 on the upstream side of the second normally closed solenoid valve 62. The first introduction path 15 may be directly connected to, for example, the mixing gas supply unit 3. Further, as shown in FIG. 2, the first introduction path 15 is connected to the gas-liquid separator 205 of the oxygen flow unit 20. Specifically, the first introduction path 15 is connected to a portion of the gas-liquid separator 205 located above the water surface. The first introduction path 15 is connected to, for example, a portion of the oxygen flow section 20 located below the water surface (anode side feeding body 204, lower part of gas-liquid separator 205, first and second pipes 211 and 212). You may.
As shown in FIG. 1, the first introduction path 15 is provided with a first flow meter 151 for measuring the flow rate of nitrogen gas (dilution gas) introduced into the oxygen flow unit 20.
 電気機器7は、ガス混合装置1の各部(例えば水素発生部2や弁回路6)への電力供給や電気制御を行う機器(例えば制御盤)である。電気機器7は、リレー接点やボタン、ブレーカーなどのように放電が生じ得る部品や、帯電し得る部品を含む。筐体8は、上記した電気機器7を収容する。筐体8の内部(内部空間)には、非可燃性ガスが導入される。本実施形態において、筐体8の内部に導入される非可燃性ガスは、混合用ガス供給部3から供給される窒素ガス(混合用ガス)である。筐体8内部に導入される非可燃性ガスは、例えば圧力容器51からの窒素ガスであってもよい。 The electric device 7 is a device (for example, a control panel) that supplies electric power to each part of the gas mixing device 1 (for example, a hydrogen generating part 2 and a valve circuit 6) and performs electric control. The electric device 7 includes parts that can generate electric discharge, such as relay contacts, buttons, and breakers, and parts that can be charged. The housing 8 accommodates the above-mentioned electric device 7. A non-combustible gas is introduced into the inside (internal space) of the housing 8. In the present embodiment, the non-flammable gas introduced into the housing 8 is nitrogen gas (mixing gas) supplied from the mixing gas supply unit 3. The non-flammable gas introduced into the housing 8 may be, for example, nitrogen gas from the pressure vessel 51.
 筐体8は、第二導入経路16を介して混合用ガス供給部3に接続されている。具体的には、第二導入経路16を構成する管が、筐体8に形成された穴を通して筐体8の内部空間につながっていることで、筐体8の内部が混合用ガス供給部3とつながっている。これにより、混合用ガス供給部3からの窒素ガスを筐体8の内部に導入することができる。また、第二導入経路16は、第二の常閉電磁弁62よりも上流側において第二混合用経路12につながることで混合用ガス供給部3に接続されている。第二導入経路16は、例えば混合用ガス供給部3に直接接続されてもよい。
 筐体8は、外部に対して完全には密閉されていない。このため、筐体8の内部には、混合用ガス供給部3からの窒素ガスが継続的に導入される。筐体8は、例えば外部に対して完全に密閉されてもよい。
 第二導入経路16には、筐体8内部に導入される窒素ガス(希釈用ガス)の流量を計測する第二流量計161が設けられている。第二導入経路16には、第二流量計161の代わりに、第二導入経路16における圧力(気圧)を計測する圧力計が設けられてもよい。
The housing 8 is connected to the mixing gas supply unit 3 via the second introduction path 16. Specifically, the pipe forming the second introduction path 16 is connected to the internal space of the housing 8 through a hole formed in the housing 8, so that the inside of the housing 8 is the mixing gas supply unit 3. Is connected with. As a result, the nitrogen gas from the mixing gas supply unit 3 can be introduced into the housing 8. Further, the second introduction path 16 is connected to the mixing gas supply unit 3 by connecting to the second mixing path 12 on the upstream side of the second normally closed solenoid valve 62. The second introduction path 16 may be directly connected to, for example, the mixing gas supply unit 3.
The housing 8 is not completely sealed to the outside. Therefore, nitrogen gas from the mixing gas supply unit 3 is continuously introduced into the housing 8. The housing 8 may be completely sealed to the outside, for example.
The second introduction path 16 is provided with a second flow meter 161 that measures the flow rate of nitrogen gas (dilution gas) introduced into the housing 8. The second introduction path 16 may be provided with a pressure gauge for measuring the pressure (atmospheric pressure) in the second introduction path 16 instead of the second flow meter 161.
 本実施形態のガス混合装置1では、水素発生部2の酸素流通部20や筐体8内部に導入される窒素ガス(希釈用ガス、非可燃性ガス)に含まれる酸素ガスの濃度に応じて、水素発生部2における水素ガス及び酸素ガスの発生を停止する。この制御は、例えば筐体8内に配された電気機器7(制御盤)において行われる。
 具体的には、第二混合用経路12に設けられた酸素濃度計121によって、混合用ガス供給部3からの窒素ガスに含まれる酸素ガスの濃度を計測する。そして、電気機器7は、酸素濃度計121から出力された計測結果に基づいて水素発生部2における水素ガスの発生を制御する。すなわち、酸素濃度計121において計測される酸素ガスの濃度が所定値以上となった際に、電気機器7は水素発生部2における水素ガスの発生を停止する。
 上記した酸素濃度計121は、例えば第一導入経路15や第二導入経路16に設けられてもよい。
In the gas mixing device 1 of the present embodiment, depending on the concentration of the oxygen gas contained in the nitrogen gas (diluting gas, non-flammable gas) introduced into the oxygen flow unit 20 of the hydrogen generating unit 2 and the housing 8. , The generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped. This control is performed, for example, by an electric device 7 (control panel) arranged in the housing 8.
Specifically, the concentration of oxygen gas contained in the nitrogen gas from the mixing gas supply unit 3 is measured by the oxygen concentration meter 121 provided in the second mixing path 12. Then, the electric device 7 controls the generation of hydrogen gas in the hydrogen generating unit 2 based on the measurement result output from the oxygen concentration meter 121. That is, when the concentration of oxygen gas measured by the oxygen concentration meter 121 becomes equal to or higher than a predetermined value, the electric device 7 stops the generation of hydrogen gas in the hydrogen generating unit 2.
The oxygen concentration meter 121 described above may be provided in, for example, the first introduction path 15 or the second introduction path 16.
 本実施形態のガス混合装置1では、酸素流通部20や筐体8内部に導入される窒素ガス(希釈用ガス)の流量に応じて、水素発生部2における水素ガス及び酸素ガスの発生を停止する。この制御は、例えば筐体8内に配された電気機器7(制御盤)において行われる。
 具体的には、第一流量計151が、第一導入経路15に流れて酸素流通部20に導入される窒素ガス(希釈用ガス)の流量を計測する。また、第二流量計161が、第二導入経路16に流れて筐体8内部に導入される窒素ガス(非可燃性ガス)の流量を計測する。そして、電気機器7は、第一流量計151、第二流量計161から出力された計測結果に基づいて水素発生部2における水素ガスの発生を制御する。すなわち、第一流量計151や第二流量計161において計測される窒素ガスの流量が所定値以下となった際に、電気機器7は水素発生部2における水素ガスの発生を停止する。
In the gas mixing device 1 of the present embodiment, the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped according to the flow rate of the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 and the housing 8. To do. This control is performed, for example, by an electric device 7 (control panel) arranged in the housing 8.
Specifically, the first flow meter 151 measures the flow rate of nitrogen gas (dilution gas) that flows through the first introduction path 15 and is introduced into the oxygen flow unit 20. Further, the second flow meter 161 measures the flow rate of the nitrogen gas (non-flammable gas) that flows through the second introduction path 16 and is introduced into the housing 8. Then, the electric device 7 controls the generation of hydrogen gas in the hydrogen generating unit 2 based on the measurement results output from the first flow meter 151 and the second flow meter 161. That is, when the flow rate of nitrogen gas measured by the first flow meter 151 or the second flow meter 161 becomes equal to or less than a predetermined value, the electric device 7 stops the generation of hydrogen gas in the hydrogen generating unit 2.
 次に、本実施形態のガス混合装置1の動作について説明する。はじめに、ガス混合装置1に異常が発生していない通常時における動作について説明する。
 通常時には、水素発生部2に電力が供給されることで、水素発生部2において水素ガス及び酸素ガスが発生する。また、混合用ガス供給部3において窒素ガスが発生する。さらに、通常時には、第一、第二の常閉電磁弁61,62、第一、第二の常開電磁弁63,64それぞれに電力が供給される。これにより、第一、第二の常閉電磁弁61,62は、それぞれ第一、第二混合用経路11,12を開く。また、第一、第二の常開電磁弁63,64は、それぞれ排気用経路13、希釈ガス経路14を閉じる。このため、水素発生部2からの水素ガス及び混合用ガス供給部3からの窒素ガスが、それぞれガス混合部4に導かれて混合する。
Next, the operation of the gas mixing device 1 of the present embodiment will be described. First, the operation in a normal time when no abnormality has occurred in the gas mixing device 1 will be described.
Normally, when electric power is supplied to the hydrogen generating unit 2, hydrogen gas and oxygen gas are generated in the hydrogen generating unit 2. In addition, nitrogen gas is generated in the mixing gas supply unit 3. Further, in the normal state, electric power is supplied to the first and second normally closed solenoid valves 61 and 62, and the first and second normally open solenoid valves 63 and 64, respectively. As a result, the first and second normally closed solenoid valves 61 and 62 open the first and second mixing paths 11 and 12, respectively. Further, the first and second normally open solenoid valves 63 and 64 close the exhaust path 13 and the diluted gas path 14, respectively. Therefore, the hydrogen gas from the hydrogen generating unit 2 and the nitrogen gas from the mixing gas supply unit 3 are guided to the gas mixing unit 4 and mixed.
 また、通常時には、混合用ガス供給部3からの窒素ガスは、水素発生部2の酸素流通部20にも導入される。これにより、酸素流通部20を流れる酸素ガスは、窒素ガスで希釈された後に、水素発生部2の外部に放出される。すなわち、酸素ガスを低い濃度で水素発生部2の外部に放出することができる。 Further, normally, the nitrogen gas from the mixing gas supply unit 3 is also introduced into the oxygen flow unit 20 of the hydrogen generation unit 2. As a result, the oxygen gas flowing through the oxygen flow unit 20 is diluted with nitrogen gas and then released to the outside of the hydrogen generation unit 2. That is, the oxygen gas can be released to the outside of the hydrogen generating unit 2 at a low concentration.
 また、通常時には、混合用ガス供給部3からの窒素ガスは、電気機器7を収容した筐体8の内部にも導入される。これにより、筐体8の内部を非可燃性ガスである窒素ガスで充満させることができ、水素ガスなどの可燃性ガスが筐体8内部に配された電気機器7に影響することを抑制できる。 In addition, normally, the nitrogen gas from the mixing gas supply unit 3 is also introduced into the housing 8 accommodating the electric device 7. As a result, the inside of the housing 8 can be filled with nitrogen gas, which is a non-flammable gas, and it is possible to suppress the influence of flammable gas such as hydrogen gas on the electric device 7 arranged inside the housing 8. ..
 次いで、ガス混合装置1において異常が発生した時(異常発生時)の動作について三つの例を挙げて説明する。
 異常発生時の第一例は、混合用ガス供給部3から酸素流通部20や筐体8の内部に供給される窒素ガスに含まれる酸素ガスの濃度が所定値以上となった時である。この時には、電気機器7が水素発生部2への電力供給を停止して、水素発生部2における水素ガス及び酸素ガスの発生を停止させる。これにより、助燃性ガスである酸素ガスが高い濃度で水素発生部2の外部に放出されることを抑制できる。また、筐体8内部において酸素ガスの濃度が過度に上昇することを抑制することができる。
Next, the operation when an abnormality occurs in the gas mixing device 1 (when an abnormality occurs) will be described with reference to three examples.
The first example when an abnormality occurs is when the concentration of oxygen gas contained in the nitrogen gas supplied from the mixing gas supply unit 3 to the inside of the oxygen flow unit 20 and the housing 8 becomes a predetermined value or more. At this time, the electric device 7 stops the power supply to the hydrogen generating unit 2 to stop the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2. As a result, it is possible to prevent oxygen gas, which is a flammable gas, from being released to the outside of the hydrogen generating unit 2 at a high concentration. In addition, it is possible to suppress an excessive increase in the concentration of oxygen gas inside the housing 8.
 また、混合用ガス供給部3からの窒素ガスに含まれる酸素ガスの濃度が所定値以上となった時には、電気機器7が弁回路6への電力供給を停止する。このため、第一、第二の常閉電磁弁61,62がそれぞれ第一、第二混合用経路11,12を閉じると共に、第一、第二の常開電磁弁63,64がそれぞれ排気用経路13、希釈ガス経路14を開く。これにより、水素発生部2に残存し排気用経路13を通る水素ガスは、希釈ガス経路14を通り排気用経路13に向かう窒素ガス(希釈用ガス)によって希釈された後に、排気ポート131を介して外部に放出される。この際、希釈ガス経路14を通り排気用経路13に向かう窒素ガスは、混合用ガス供給部3から供給される窒素ガスであってもよいし、圧力容器51から供給される窒素ガスであってもよい。 Further, when the concentration of oxygen gas contained in the nitrogen gas from the mixing gas supply unit 3 exceeds a predetermined value, the electric device 7 stops the power supply to the valve circuit 6. Therefore, the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively, and the first and second normally open solenoid valves 63 and 64 are for exhaust, respectively. The path 13 and the diluted gas path 14 are opened. As a result, the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted by the nitrogen gas (diluting gas) passing through the dilution gas path 14 and heading for the exhaust path 13, and then passed through the exhaust port 131. Is released to the outside. At this time, the nitrogen gas passing through the diluting gas path 14 and heading to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3 or the nitrogen gas supplied from the pressure vessel 51. May be good.
 異常発生時の第二例は、混合用ガス供給部3から酸素流通部20や筐体8の内部に供給される窒素ガスの流量が所定値以下となった時である。この時には、電気機器7が水素発生部2における水素ガス及び酸素ガスの発生を停止させる。また、電気機器7が弁回路6への電力供給を停止して、第一、第二の常閉電磁弁61,62がそれぞれ第一、第二混合用経路11,12を閉じる、また、第一、第二の常開電磁弁63,64がそれぞれ排気用経路13、希釈ガス経路14を開く。
 これにより、酸素流通部20に流れる酸素ガスが高い濃度で水素発生部2の外部に放出されることを防止できる。また、水素発生部2に残存し排気用経路13を通る水素ガスを、希釈ガス経路14を通り排気用経路13に向かう窒素ガス(希釈用ガス)によって希釈した後で、排気ポート131を介して外部に放出することができる。この際、希釈ガス経路14を通り排気用経路13に向かう窒素ガスは、混合用ガス供給部3から供給される窒素ガスであってもよいし、圧力容器51から供給される窒素ガスであってもよい。
The second example when an abnormality occurs is when the flow rate of nitrogen gas supplied from the mixing gas supply unit 3 to the inside of the oxygen flow unit 20 and the housing 8 becomes a predetermined value or less. At this time, the electric device 7 stops the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2. Further, the electric device 7 stops the power supply to the valve circuit 6, and the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively. The first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14, respectively.
As a result, it is possible to prevent the oxygen gas flowing through the oxygen flow unit 20 from being released to the outside of the hydrogen generation unit 2 at a high concentration. Further, the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted with nitrogen gas (diluting gas) passing through the diluting gas path 14 and heading for the exhaust path 13, and then passed through the exhaust port 131. It can be released to the outside. At this time, the nitrogen gas passing through the diluting gas path 14 and heading to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3 or the nitrogen gas supplied from the pressure vessel 51. May be good.
 異常発生時の第三例は、停電などによりガス混合装置1への電力供給が停止された時(停電時)である。停電時には、水素発生部2への電力供給が停止されるため、水素発生部2における水素ガス及び酸素ガスの発生が停止される。
 また、停電時には、第一、第二の常閉電磁弁61,62、第一、第二の常開電磁弁63,64への電力供給が停止される。このため、第一、第二の常閉電磁弁61,62がそれぞれ第一、第二混合用経路11,12を閉じる、また、第一、第二の常開電磁弁63,64がそれぞれ排気用経路13、希釈ガス経路14を開く。これにより、水素発生部2に残存し排気用経路13を通る水素ガスは、希釈ガス経路14を通り排気用経路13に向かう窒素ガス(希釈用ガス)によって希釈された後で、排気ポート131を介して外部に放出される。
The third example when an abnormality occurs is when the power supply to the gas mixing device 1 is stopped due to a power failure or the like (during a power failure). In the event of a power failure, the power supply to the hydrogen generating unit 2 is stopped, so that the hydrogen gas and oxygen gas generation in the hydrogen generating unit 2 is stopped.
Further, in the event of a power failure, the power supply to the first and second normally closed solenoid valves 61 and 62 and the first and second normally open solenoid valves 63 and 64 is stopped. Therefore, the first and second normally closed solenoid valves 61 and 62 close the first and second mixing paths 11 and 12, respectively, and the first and second normally open solenoid valves 63 and 64 exhaust the exhaust gas, respectively. The use path 13 and the dilution gas path 14 are opened. As a result, the hydrogen gas remaining in the hydrogen generating section 2 and passing through the exhaust path 13 is diluted by the nitrogen gas (diluting gas) passing through the diluting gas path 14 and heading for the exhaust path 13, and then the exhaust port 131 is opened. It is released to the outside through.
 この際、希釈ガス経路14を通り排気用経路13に向かう窒素ガスは、混合用ガス供給部3から供給される窒素ガスであってよい。ただし、停電などの影響を受けて混合用ガス供給部3からの窒素ガスの供給が停止した場合には、シャトルバルブ52の機能により、窒素ガスの供給源が混合用ガス供給部3から圧力容器51に切り換えられる。すなわち、圧力容器51からの窒素ガスが、希釈ガス経路14を通り排気用経路13に向けて流れ、排気用経路13を通る水素ガスを希釈する。
 上記の第一例、第二例、第三例のそれぞれにおいては、例えば第一、第二の常閉電磁弁61,62が無くてもよい。すなわち、上記の第一例、第二例、第三例のそれぞれにおいて、第一、第二混合用経路11,12を閉じない状態で、排気用経路13を通る水素ガスが希釈ガス経路14を通る窒素ガスにより希釈されてもよい。
At this time, the nitrogen gas that passes through the dilution gas path 14 and goes to the exhaust path 13 may be the nitrogen gas supplied from the mixing gas supply unit 3. However, if the supply of nitrogen gas from the mixing gas supply unit 3 is stopped due to the influence of a power failure or the like, the nitrogen gas supply source is a pressure vessel from the mixing gas supply unit 3 due to the function of the shuttle valve 52. It is switched to 51. That is, the nitrogen gas from the pressure vessel 51 flows through the diluting gas path 14 toward the exhaust path 13, and dilutes the hydrogen gas passing through the exhaust path 13.
In each of the above first example, second example, and third example, for example, the first and second normally closed solenoid valves 61 and 62 may not be provided. That is, in each of the first, second, and third examples described above, the hydrogen gas passing through the exhaust path 13 passes through the diluted gas path 14 without closing the first and second mixing paths 11 and 12. It may be diluted with passing nitrogen gas.
 以上説明したように、本実施形態に係るガス混合装置1は、停電時などの異常発生時に、水素発生部2からの水素ガスの排気用経路13と希釈ガス供給部5からの窒素ガス(希釈用ガス)の希釈ガス経路14とを接続することで、水素ガスを窒素ガスによって希釈する弁回路6を備える。このため、異常発生時において、水素発生部2にある高濃度の水素ガスを希釈して低濃度の水素ガスとすることができる。したがって、異常発生時においても水素ガスを処置することができる。 As described above, in the gas mixing device 1 according to the present embodiment, when an abnormality such as a power failure occurs, the hydrogen gas exhaust path 13 from the hydrogen generation unit 2 and the nitrogen gas (dilution) from the dilution gas supply unit 5 are used. A valve circuit 6 for diluting hydrogen gas with nitrogen gas is provided by connecting to the dilution gas path 14 of the gas). Therefore, when an abnormality occurs, the high-concentration hydrogen gas in the hydrogen generating section 2 can be diluted to obtain a low-concentration hydrogen gas. Therefore, hydrogen gas can be treated even when an abnormality occurs.
 また、本実施形態のガス混合装置1では、水素発生部2にある水素ガスを、希釈ガス供給部5からの窒素ガスにより希釈した後で、大気に放出する。このため、水素発生部2にある高濃度の水素ガスが大気に放出されることを防止できる。 Further, in the gas mixing device 1 of the present embodiment, the hydrogen gas in the hydrogen generating section 2 is diluted with the nitrogen gas from the diluting gas supply section 5 and then released into the atmosphere. Therefore, it is possible to prevent the high-concentration hydrogen gas in the hydrogen generating section 2 from being released into the atmosphere.
 また、本実施形態に係るガス混合装置1によれば、弁回路6は、排気用経路13を開閉する第一の常開電磁弁63と、希釈ガス経路14を開閉する第二の常開電磁弁64と、を有する。そして、第一、第二の常開電磁弁63,64は、これに電力が供給されていない状態で排気用経路13、希釈ガス経路14をそれぞれ開く。このため、異常発生時に第一、第二の常開電磁弁63,64への電力供給を停止することで、排気用経路13と希釈ガス経路14とを確実に接続することができる。また、停電時には、第一、第二の常開電磁弁63,64への電力供給が自動的に停止されるため、排気用経路13と希釈ガス経路14とを自動的に接続することができる。したがって、異常発生時には、水素ガスを確実に窒素ガス(希釈用ガス)によって希釈することができる。 Further, according to the gas mixing device 1 according to the present embodiment, the valve circuit 6 has a first solenoid valve 63 for opening and closing the exhaust path 13 and a second solenoid valve 63 for opening and closing the diluted gas path 14. It has a valve 64 and. Then, the first and second normally open solenoid valves 63 and 64 open the exhaust path 13 and the diluted gas path 14, respectively, in a state where electric power is not supplied to them. Therefore, by stopping the power supply to the first and second normally open solenoid valves 63 and 64 when an abnormality occurs, the exhaust path 13 and the diluted gas path 14 can be reliably connected. Further, in the event of a power failure, the power supply to the first and second normally open solenoid valves 63 and 64 is automatically stopped, so that the exhaust path 13 and the diluted gas path 14 can be automatically connected. .. Therefore, when an abnormality occurs, the hydrogen gas can be reliably diluted with nitrogen gas (dilution gas).
 また、本実施形態に係るガス混合装置1によれば、窒素ガス(非可燃性の希釈用ガス)を供給する希釈ガス供給部5が、混合用ガス供給部3を含んでいる。すなわち、混合用ガス供給部3が希釈ガス供給部5としても機能する。したがって、希釈ガス供給部5と混合用ガス供給部3とを完全に別個に構成する場合と比較して、ガス混合装置1の占有領域を小さく抑えたり、製造コストを低く抑えたりすることができる。 Further, according to the gas mixing device 1 according to the present embodiment, the dilution gas supply unit 5 for supplying nitrogen gas (non-flammable dilution gas) includes the mixing gas supply unit 3. That is, the mixing gas supply unit 3 also functions as the dilution gas supply unit 5. Therefore, as compared with the case where the dilution gas supply unit 5 and the mixing gas supply unit 3 are completely separated, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low. ..
 また、本実施形態に係るガス混合装置1では、希釈ガス供給部5として機能する混合用ガス供給部3が、空気から窒素ガスを分離して取り出すフィルター32を有する。このため、希釈用ガスとしての窒素ガスを、連続して希釈ガス経路14に流し続けることが可能となる。すなわち、水素発生部2からの水素ガスを窒素ガスによって十分に希釈することができる。 Further, in the gas mixing device 1 according to the present embodiment, the mixing gas supply unit 3 that functions as the dilution gas supply unit 5 has a filter 32 that separates and extracts nitrogen gas from the air. Therefore, nitrogen gas as a dilution gas can be continuously flowed through the dilution gas path 14. That is, the hydrogen gas from the hydrogen generating unit 2 can be sufficiently diluted with nitrogen gas.
 また、本実施形態に係るガス混合装置1では、窒素ガス(非可燃性の希釈用ガス)を供給する希釈ガス供給部5が、窒素ガスを圧縮した状態で貯留する圧力容器51を含んでいる。このため、電力等の動力が無くても、窒素ガス自体の圧力で窒素ガスを希釈ガス経路14に流すことができる。したがって、停電時などの異常発生時において、水素発生部2からの水素ガスを圧力容器51からの窒素ガスによって確実に希釈することができる。
 また、窒素ガスを高圧の状態で貯留する圧力容器51は、窒素ガスを大気圧で貯留する容器と比較してコンパクトであるため、ガス混合装置1をコンパクトに構成することもできる。
Further, in the gas mixing device 1 according to the present embodiment, the dilution gas supply unit 5 for supplying nitrogen gas (non-flammable dilution gas) includes a pressure vessel 51 for storing the nitrogen gas in a compressed state. .. Therefore, even if there is no power such as electric power, the nitrogen gas can flow through the diluted gas path 14 at the pressure of the nitrogen gas itself. Therefore, in the event of an abnormality such as a power failure, the hydrogen gas from the hydrogen generating unit 2 can be reliably diluted with the nitrogen gas from the pressure vessel 51.
Further, since the pressure vessel 51 for storing nitrogen gas in a high pressure state is more compact than the container for storing nitrogen gas at atmospheric pressure, the gas mixing device 1 can be compactly configured.
 また、本実施形態に係るガス混合装置1では、水素発生部2の酸素流通部20に、非可燃性の窒素ガス(希釈用ガス)が導入される。これにより、酸素流通部20で流通する酸素ガスを、非可燃性の窒素ガスで希釈した後で、外部(例えば大気)に放出することができる。すなわち、水素発生部2において発生する酸素ガスを処置した上で外部に放出することができる。
 また、仮に固体高分子電解質膜が破れて水素ガスが酸素流通部20に侵入しても、酸素ガスが窒素ガスによって希釈されていることで、可燃性ガスである水素ガスと助燃性ガスである酸素ガスとが混合した混合ガスの濃度を低く抑えることができる。
Further, in the gas mixing device 1 according to the present embodiment, non-flammable nitrogen gas (dilution gas) is introduced into the oxygen flow section 20 of the hydrogen generating section 2. As a result, the oxygen gas distributed in the oxygen flow unit 20 can be diluted with non-flammable nitrogen gas and then released to the outside (for example, the atmosphere). That is, the oxygen gas generated in the hydrogen generating unit 2 can be treated and then released to the outside.
Further, even if the solid polymer electrolyte membrane is broken and the hydrogen gas invades the oxygen flow section 20, the oxygen gas is diluted with the nitrogen gas, so that the hydrogen gas and the combustible gas are combustible gases. The concentration of the mixed gas mixed with the oxygen gas can be kept low.
 また、本実施形態に係るガス混合装置1では、酸素流通部20に導入される窒素ガス(希釈用ガス)に含まれる酸素ガスの濃度が所定値以上となった際に、水素発生部2における水素ガス及び酸素ガスの発生を停止する。また、本実施形態に係るガス混合装置1では、酸素流通部20に導入される窒素ガスの流量が所定値以下となった際にも、水素発生部2における水素ガス及び酸素ガスの発生を停止する。これにより、水素発生部2から外部に放出される酸素ガスの濃度が高くなることを防止できる。 Further, in the gas mixing device 1 according to the present embodiment, when the concentration of oxygen gas contained in the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 becomes a predetermined value or more, the hydrogen generating unit 2 is charged. Stop the generation of hydrogen gas and oxygen gas. Further, in the gas mixing device 1 according to the present embodiment, even when the flow rate of the nitrogen gas introduced into the oxygen flow unit 20 becomes equal to or less than a predetermined value, the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped. To do. As a result, it is possible to prevent the concentration of the oxygen gas released from the hydrogen generating unit 2 to the outside from increasing.
 また、本実施形態に係るガス混合装置1では、酸素流通部20に導入される窒素ガス(希釈用ガス)が混合用ガス供給部3から供給される。このため、酸素流通部20に導入するための窒素ガスの供給源を別途用意する場合と比較して、ガス混合装置1の占有領域を小さく抑えたり、製造コストを低く抑えたりすることができる。 Further, in the gas mixing device 1 according to the present embodiment, the nitrogen gas (diluting gas) introduced into the oxygen flow unit 20 is supplied from the mixing gas supply unit 3. Therefore, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low, as compared with the case where the nitrogen gas supply source for introducing into the oxygen flow unit 20 is separately prepared.
 また、本実施形態に係るガス混合装置1では、電気機器7を収容した筐体8の内部に、非可燃性の窒素ガス(非可燃性ガス)が導入される。これにより、水素発生部2において発生する水素ガス(可燃性ガス)が筐体8内部に侵入することを抑制できる。したがって、発生した水素ガスが筐体8内に配された電気機器7に影響することを抑制できる。
 また、筐体8内部に導入される窒素ガス(非可燃性ガス)には、水素ガス(可燃性ガス)との混合に用いるガスが利用されている。このため、筐体8内部に導入する非可燃性ガスの供給源を別途用意する場合と比較して、ガス混合装置1の占有領域を小さく抑えたり、製造コストを低く抑えたりすることができる。
Further, in the gas mixing device 1 according to the present embodiment, non-flammable nitrogen gas (non-flammable gas) is introduced into the housing 8 accommodating the electric device 7. As a result, it is possible to prevent the hydrogen gas (flammable gas) generated in the hydrogen generating unit 2 from entering the inside of the housing 8. Therefore, it is possible to prevent the generated hydrogen gas from affecting the electric device 7 arranged in the housing 8.
Further, as the nitrogen gas (non-flammable gas) introduced into the housing 8, a gas used for mixing with hydrogen gas (flammable gas) is used. Therefore, as compared with the case where the non-combustible gas supply source to be introduced inside the housing 8 is separately prepared, the occupied area of the gas mixing device 1 can be kept small and the manufacturing cost can be kept low.
 また、本実施形態に係るガス混合装置1では、筐体8の内部に導入される窒素ガス(非可燃性ガス)に含まれる酸素ガスの濃度が所定値以上となった際に、水素発生部2における水素ガスの発生を停止する。これにより、筐体8の内部に導入される窒素ガスに含まれる酸素ガスが筐体8内部に配された電気機器7に影響することを抑制できる。 Further, in the gas mixing device 1 according to the present embodiment, when the concentration of oxygen gas contained in the nitrogen gas (non-flammable gas) introduced into the housing 8 becomes a predetermined value or more, the hydrogen generating unit Stop the generation of hydrogen gas in 2. As a result, it is possible to prevent the oxygen gas contained in the nitrogen gas introduced into the housing 8 from affecting the electric device 7 arranged inside the housing 8.
 また、本実施形態に係るガス混合装置1では、筐体8内部に導入される窒素ガスの流量が所定値以下となった際にも、水素発生部2における水素ガス及び酸素ガスの発生を停止する。これにより、筐体8内部に導入される窒素ガスの流量低下(あるいは筐体8内における窒素ガスの圧力低下)に基づいて、水素発生部2において発生する水素ガスなどの可燃性ガスが筐体8内に配された電気機器7に影響することを抑制できる。 Further, in the gas mixing device 1 according to the present embodiment, even when the flow rate of the nitrogen gas introduced into the housing 8 becomes equal to or less than a predetermined value, the generation of hydrogen gas and oxygen gas in the hydrogen generating unit 2 is stopped. To do. As a result, the flammable gas such as hydrogen gas generated in the hydrogen generating unit 2 is released to the housing based on the decrease in the flow rate of the nitrogen gas introduced into the housing 8 (or the decrease in the pressure of the nitrogen gas in the housing 8). It is possible to suppress the influence on the electric device 7 arranged in the 8.
 本実施形態に係るガス混合装置1において、筐体8内部に導入される窒素ガス(非可燃性ガス)が、圧力容器51からの窒素ガスである場合には、電力等の動力が無くても、窒素ガス自体の圧力で窒素ガスを筐体8の内部に導入することができる。したがって、停電時などの異常発生時においても、筐体8内部に配された電気機器7を水素ガスなどの可燃性ガスから保護することができる。 In the gas mixing device 1 according to the present embodiment, when the nitrogen gas (non-flammable gas) introduced into the housing 8 is the nitrogen gas from the pressure vessel 51, even if there is no power such as electric power. , Nitrogen gas can be introduced into the housing 8 by the pressure of the nitrogen gas itself. Therefore, even in the event of an abnormality such as a power failure, the electric device 7 arranged inside the housing 8 can be protected from a flammable gas such as hydrogen gas.
 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
 本発明の実施形態にかかる混合ガス供給装置は、水素発生部2を備えることに限らず、少なくとも可燃性ガスを発生する可燃性ガス発生部を備えればよい。 The mixed gas supply device according to the embodiment of the present invention is not limited to the hydrogen generating unit 2, but may include at least a flammable gas generating unit that generates flammable gas.
 本開示は、ガス混合装置に適用してもよい。 The present disclosure may be applied to a gas mixing device.
1…ガス混合装置(水素ガス混合装置)
2…水素発生部(水電解部)
3…混合用ガス供給部
4…ガス混合部
5…希釈ガス供給部
6…弁回路
7…電気機器
8…筐体
13…排気用経路(第一経路)
14…希釈ガス経路(第二経路)
15…第一導入経路
16…第二導入経路
20…酸素流通部
32…フィルター
51…圧力容器
52…シャトルバルブ(切換部)
63…第一の常開電磁弁
64…第二の常開電磁弁
121…酸素濃度計
151…第一流量計
161…第二流量計
1 ... Gas mixer (hydrogen gas mixer)
2 ... Hydrogen generation part (water electrolysis part)
3 ... Mixing gas supply unit 4 ... Gas mixing unit 5 ... Diluted gas supply unit 6 ... Valve circuit 7 ... Electrical equipment 8 ... Housing 13 ... Exhaust path (first path)
14 ... Diluted gas route (second route)
15 ... First introduction path 16 ... Second introduction path 20 ... Oxygen flow section 32 ... Filter 51 ... Pressure vessel 52 ... Shuttle valve (switching section)
63 ... First normally open solenoid valve 64 ... Second normally open solenoid valve 121 ... Oxygen concentration meter 151 ... First flow meter 161 ... Second flow meter

Claims (3)

  1.  可燃性ガスと非可燃性ガスとを混合するためのガス混合装置であって、
     電気機器と、
     前記電気機器を収容する筐体と、を備え、
     前記筐体の内部に、前記非可燃性ガスが導入されるガス混合装置。
    A gas mixer for mixing flammable gas and non-flammable gas.
    With electrical equipment
    A housing for accommodating the electrical equipment and
    A gas mixing device in which the non-flammable gas is introduced into the housing.
  2.  前記可燃性ガスを発生する可燃性ガス発生部をさらに備え、
     前記非可燃性ガスに含まれる酸素ガスの濃度に応じて前記可燃性ガス発生部による前記可燃性ガスの発生が停止される請求項1に記載のガス混合装置。
    Further provided with a flammable gas generating section for generating the flammable gas,
    The gas mixing apparatus according to claim 1, wherein the generation of the combustible gas by the combustible gas generating unit is stopped according to the concentration of the oxygen gas contained in the non-flammable gas.
  3.  前記非可燃性ガスを圧縮した状態で貯留する圧力容器をさらに備え、
     前記筐体の内部に、前記圧力容器から供給された前記非可燃性ガスが導入される請求項1又は請求項2に記載のガス混合装置。
    A pressure vessel for storing the non-combustible gas in a compressed state is further provided.
    The gas mixing apparatus according to claim 1 or 2, wherein the non-combustible gas supplied from the pressure vessel is introduced into the housing.
PCT/JP2020/047946 2020-01-09 2020-12-22 Gas mixing device WO2021140908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020002339A JP7401091B2 (en) 2020-01-09 2020-01-09 gas mixing device
JP2020-002339 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021140908A1 true WO2021140908A1 (en) 2021-07-15

Family

ID=76788630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047946 WO2021140908A1 (en) 2020-01-09 2020-12-22 Gas mixing device

Country Status (2)

Country Link
JP (1) JP7401091B2 (en)
WO (1) WO2021140908A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282321A (en) * 2000-03-31 2001-10-12 Toyoda Mach Works Ltd Relay module equipped with signal state confirming device
JP2001336957A (en) * 2000-05-25 2001-12-07 Sony Corp Chemical resisting sensor system
JP2003047837A (en) * 2001-08-06 2003-02-18 Yamaha Fine Technologies Co Ltd Mixing device and mixing method for gas for inspection
JP2007255223A (en) * 2006-03-20 2007-10-04 Shimadzu Corp Vacuum pump
JP2013070512A (en) * 2011-09-22 2013-04-18 Sumitomo Wiring Syst Ltd Power supply box device
WO2018074460A1 (en) * 2016-10-17 2018-04-26 ヤマハファインテック株式会社 Mixed gas supply device
JP2018162484A (en) * 2017-03-24 2018-10-18 大陽日酸株式会社 Device and method for generating hydrogen-mixed gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165021A (en) 2002-11-13 2004-06-10 Nissan Motor Co Ltd Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282321A (en) * 2000-03-31 2001-10-12 Toyoda Mach Works Ltd Relay module equipped with signal state confirming device
JP2001336957A (en) * 2000-05-25 2001-12-07 Sony Corp Chemical resisting sensor system
JP2003047837A (en) * 2001-08-06 2003-02-18 Yamaha Fine Technologies Co Ltd Mixing device and mixing method for gas for inspection
JP2007255223A (en) * 2006-03-20 2007-10-04 Shimadzu Corp Vacuum pump
JP2013070512A (en) * 2011-09-22 2013-04-18 Sumitomo Wiring Syst Ltd Power supply box device
WO2018074460A1 (en) * 2016-10-17 2018-04-26 ヤマハファインテック株式会社 Mixed gas supply device
JP2018162484A (en) * 2017-03-24 2018-10-18 大陽日酸株式会社 Device and method for generating hydrogen-mixed gas

Also Published As

Publication number Publication date
JP7401091B2 (en) 2023-12-19
JP2021109142A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP2014509045A (en) Recirculation loop for fuel cell stack
JP5762263B2 (en) Gas supply system
WO2021140908A1 (en) Gas mixing device
JP2012221731A (en) Fuel cell system and power generation stopping method therefor
WO2009030303A1 (en) Method and apparatus for operation of a fuel cell arrangement
JP7440057B2 (en) Hydrogen gas mixing device
US20100081016A1 (en) Fuel cell system and method for shutting down the system
JP7417255B2 (en) Hydrogen gas mixing device
CN114762155A (en) Sensor device for fuel cell system
US7090943B2 (en) Regulating the communication of power to components of a fuel cell system
KR20060112679A (en) Fuel cell system and method for operating same
JP4410526B2 (en) Fuel cell exhaust gas treatment device
JP5080727B2 (en) Fuel cell exhaust gas treatment device
WO2022009262A1 (en) Gas mixing device
JP2011159538A (en) Fuel cell system
DE112020004183T5 (en) fuel cell system
JP2010177166A (en) Fuel cell system
JP2009266561A (en) Gas supply device, fuel cell evaluation testing device, and fuel cell system
JP2009164050A (en) Fuel cell system
JP4232027B2 (en) Ozone generator
KR20220079285A (en) Fuel cell system
JP2014192085A (en) Solid oxide fuel cell system
JP2021050375A (en) Hydrogen purifier
JP2005347218A (en) Fuel cell
JP2007018857A (en) Hydrogen gas dilution device of fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912837

Country of ref document: EP

Kind code of ref document: A1