WO2021140903A1 - ロボットハンド - Google Patents

ロボットハンド Download PDF

Info

Publication number
WO2021140903A1
WO2021140903A1 PCT/JP2020/047804 JP2020047804W WO2021140903A1 WO 2021140903 A1 WO2021140903 A1 WO 2021140903A1 JP 2020047804 W JP2020047804 W JP 2020047804W WO 2021140903 A1 WO2021140903 A1 WO 2021140903A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingers
finger
robot hand
tip
actuator
Prior art date
Application number
PCT/JP2020/047804
Other languages
English (en)
French (fr)
Inventor
善久 井尻
フェリクス フォン・ドリガルスキ
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021140903A1 publication Critical patent/WO2021140903A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a robot hand.
  • gripping an object with a robot hand is premised on detecting accurate three-dimensional coordinates of the object or jig using a visual sensor and accurately positioning the object ().
  • a visual sensor for example, see Patent Document 1.
  • the gripping of the object may fail or the target may be dropped after gripping. In particular, when gripping a small object, such a defect is remarkable.
  • the present invention has been made to solve such a problem, and provides a robot hand having a simple structure and high robustness against an object detection error.
  • the robot hand includes a plurality of flexible fingers that capture and sandwich the object from the tip side, and an actuator that drives the plurality of fingers in the direction of sandwiching the object.
  • Each of the fingers has a stopper that prevents the object from being pushed out to the tip side due to bending when the object is pinched by the actuator and maintains the grip.
  • the object can be taken in by the tip side by utilizing the bending of the finger, and such an object can be taken in the finger. Even if the flexibility is provided, it is possible to prevent the object from being pushed out by the stopper. That is, the object can be gripped more reliably.
  • each of the plurality of fingers bends more easily on the tip side than on the base end side.
  • the base end side which is hard to bend, does not warp excessively due to the reaction force from the object
  • the tip side which is easy to bend, is inside the multiple fingers even if the position of the object is slightly deviated. It becomes easier to capture the object in space.
  • each of the plurality of fingers can be configured so that the cross-sectional area on the distal end side is equal to or less than the cross-sectional area on the proximal end side.
  • the stopper can be a hook that protrudes from the tips of the plurality of fingers in the sandwiching direction of the object. If a hook is used as a stopper, it can be easily adjusted to the optimum shape and size according to the properties (size, slipperiness, etc.) of the object to be gripped.
  • the stopper may be a notch provided at the tip of each of the plurality of fingers. If the object is preferably gripped so as to be picked up, the notch provided according to the unevenness of the surface can be gripped more reliably.
  • the stopper may be detachably configured for each of the plurality of fingers, whether it is a hook or a notch. Since various stoppers of different sizes and shapes can be prepared if they are detachably configured, if the object to be gripped is assumed in advance, it is possible to select and attach the most suitable stopper for the object. it can.
  • the rigidity of at least one finger among the plurality of fingers may be configured to be different from the rigidity of the other fingers.
  • the flexibility balance of the plurality of fingers is adjusted so that the central axis of the object is along the virtual axis equidistant from the plurality of fingers when the object is gripped. Is good. If the plurality of fingers flex evenly when the object is lifted, the robot hand can grip the object in a well-balanced manner.
  • the robot hand in the present embodiment is provided with a plurality of flexible fingers, and by opening and closing these fingers, the object is grasped and grasped.
  • the object is grasped and grasped.
  • the robot hand prevents this by the action of the stopper and maintains the gripping. Specific embodiments of the robot hand will be described below through two examples.
  • FIG. 1 is a diagram showing a first state in the process in which the robot hand 100 of the first embodiment in the present embodiment grips the object 910 as an object.
  • FIG. 1 (a) shows a state viewed from the front
  • FIG. 1 (b) shows a state viewed from the side.
  • a state in which the robot hand 100 grips a cylindrical object 910 placed on the floor surface with the cylindrical surface sideways will be described.
  • the object to be gripped is referred to as an object.
  • the robot hand 100 includes two fingers (first finger 110 and second finger 120), an actuator 130, and a base 140.
  • the first finger 110 and the second finger 120 cooperate with each other to take in and sandwich an object from the tip side.
  • Each of the first finger 110 and the second finger 120 is formed of, for example, a stainless steel plate and has flexibility. Specifically, it has an elongated shape that extends from the proximal end side driven by the actuator 130 toward the distal end side that captures the object, and bends in the longitudinal direction when the object is sandwiched.
  • the first finger 110 and the second finger 120 are curved so that the distance between them increases from the proximal end side to the distal end side. This curvature makes it easier to capture objects from the tip side. Further, each of the first finger 110 and the second finger 120 is processed so that the tip side is more easily bent than the base end side. Specifically, as shown in FIG. 1B, the width gradually narrows from the proximal end side to the distal end side. That is, when cut horizontally with respect to the floor surface, the cross-sectional area on the tip side is smaller than the cross-sectional area on the base end side.
  • the width on the tip side may be set to be equal to or less than the width on the base end side, or the cross-sectional area on the tip side may be set to be less than or equal to the cross-sectional area on the base end side.
  • the hardness of the material and the thickness of the coating may be changed stepwise.
  • the actuator 130 is composed of, for example, a rotary motor and a gear train, and drives the first finger 110 and the second finger 120 in the sandwiching direction when grasping the object and in the opposite direction when releasing the object. Specifically, the actuator 130 applies a rotational force to the respective base ends of the first finger 110 and the second finger 120, and the first finger 110 and the second finger open and close the respective tips. The 120 is rotated at an angle within a certain range. As shown in FIG. 1A, at the stage of capturing the object from the tip side, the actuator 130 drives the first finger 110 and the second finger 120 in the direction of opening each other (the direction of the arrow indicated by the dotted line).
  • the base 140 is a housing that houses the actuator 130 and the base ends of the first finger 110 and the second finger 120. In addition, it functions as a mounting portion for mounting the robot hand 100 on the tip of the robot arm 200. The mounting portion mechanically and electrically connects the robot hand 100 to the robot arm 200.
  • the actuator 130 receives a control signal from the robot arm 200 side and is supplied with driving power.
  • the robot arm 200 moves the mounted robot hand 100 to an arbitrary position and posture within the operating range.
  • the first finger 110 has a first hook 111 at the tip end portion.
  • the second finger 120 has a second hook 121 at the tip.
  • the first hook 111 and the second hook 121 prevent the object from being pushed out to the tip side due to the bending and grip the object. Functions as a stopper to maintain.
  • Each hook is provided so as to project from the tip of the finger in the pinching direction (inward direction) of the object.
  • the first hook 111 is formed of, for example, resin, and is fitted and attached to the tip of the first finger 110.
  • the first hook 111 may be replaceable, for example, depending on the material of the object.
  • the first hook 111 may be formed integrally with the first finger 110.
  • the first hook 111 may be formed by bending the tip of the first finger 110.
  • the second hook 121 is formed of, for example, resin, and is fitted and attached to the tip of the second finger 120.
  • the second hook 121 may be replaceable, for example, depending on the material of the object.
  • the second hook 121 may be formed integrally with the second finger 120.
  • the second hook 121 may be formed by bending the tip of the second finger 120.
  • the configurations of the first hook 111 and the second hook 121 are preferably the same from the viewpoint of symmetry, which will be described later.
  • FIG. 2 is a diagram showing a second state in the process of grasping the object 910.
  • the robot arm 200 when the robot arm 200 is moved toward the floor surface, the first finger 110 and the second finger 120 of the robot hand 100 come into contact with the floor surface, and the object 910 is taken into the tip side. .. It should be noted that such a series of movement control of the robot arm 200 is executed based on an image taken by a camera (not shown) that observes the robot hand 100.
  • the robot hand 100 drives the first finger 110 and the second finger 120 in the closing direction (in the direction of the arrow indicated by the dotted line).
  • FIG. 3 is a diagram showing a third state in the process of grasping the object 910.
  • both fingers When both fingers are further driven in the direction of the arrow indicated by the dotted line from the state of FIG. 2, both fingers come into contact with the object 910.
  • both fingers When further driven, both fingers bend, and the elastic force is transmitted to the object 910 as a gripping force.
  • a part of the gripping force at this time acts as a force for pushing the object 910 toward the tip side (in the direction of the white arrow).
  • the robot hand 100 self-aligns the object by the elastic force of the finger, so that the object can be gripped reliably. ..
  • the timing at which the robot arm 200 starts lifting the robot hand 100 can be the timing at which the deflection of both fingers is detected from the above-mentioned camera image. Further, the timing may be determined by observing the output of the strain gauge attached to both fingers and the change in the output torque of the actuator 130.
  • FIG. 4 is a diagram showing a fourth state in the process of grasping the object 910.
  • the object 910 is pushed toward the tip side by the elastic force of both fingers, but the first hook 111 and the second hook 121 prevent the object 910 from falling.
  • the objects 910 are gripped by the balance between the two.
  • the first finger 110 and the second finger 120 are flexible so that when the object is gripped, the central axis of the object is along a virtual axis equidistant from the first finger 110 and the second finger 120. It is desirable that the balance is adjusted.
  • the central axis of the object 910 in this case, the vertical axis passing through the center of gravity of the object 910 in the front view
  • the virtual axis is also an alternate long and short dash line. That is, if both fingers flex evenly when the object is lifted, the robot hand 100 can grip the object in a well-balanced manner.
  • the first finger 110 and the second finger 120 are adjusted so that they intersect on the central axis of the object 910 when they are closed to each other in the case of the same shape and the same material.
  • FIG. 5 is a diagram showing a first state in the process in which the robot hand 300 of the second embodiment in the present embodiment grips the object 920 which is the object.
  • a state in which the robot hand 300 grips a rectangular parallelepiped object 920 placed on the floor surface will be described.
  • the robot hand 300 includes two fingers (first finger 310 and second finger 320), an actuator 330, and a base 340.
  • the first finger 310 and the second finger 320 cooperate with each other to take in and sandwich an object from the tip side.
  • Each of the first finger 310 and the second finger 320 is formed of, for example, a stainless steel plate and has flexibility. Specifically, it has an elongated shape that extends from the proximal end side driven by the actuator 330 toward the distal end side that captures the object, and bends in the longitudinal direction when the object is sandwiched. Further, each of the first finger 310 and the second finger 320 is processed so that the tip side is more easily bent than the base end side.
  • the actuator 330 is composed of, for example, a rotary motor and a gear train, and drives the first finger 310 and the second finger 320 in the sandwiching direction when grasping the object and in the opposite direction when releasing the object. Specifically, the actuator 330 applies a translational force to the respective base ends of the first finger 310 and the second finger 320, and the first finger 310 and the second finger open and close the respective tips. The 320 is moved horizontally within a certain range. As shown in the figure, at the stage of capturing the object from the tip side, the actuator 330 drives the first finger 310 and the second finger 320 in the direction of opening each other (the direction of the arrow indicated by the dotted line).
  • the base 340 is a housing that houses the actuator 330 and the base ends of the first finger 310 and the second finger 320. In addition, it functions as a mounting portion for mounting the robot hand 100 on the tip of the robot arm 200.
  • the mounting portion mechanically and electrically connects the robot hand 300 to the robot arm 200.
  • the actuator 330 receives a control signal from the robot arm 200 side and is supplied with driving power.
  • the robot arm 200 moves the mounted robot hand 300 to an arbitrary position and posture within the operating range.
  • the first finger 310 has a first notch 311 at the tip.
  • the second finger 320 has a second notch 321 at the tip.
  • the first notch 311 and the second notch 321 prevent the object from being pushed toward the tip side due to the bending when the first finger 310 and the second finger 320 are driven by the actuator 330 to pinch the object. Functions as a stopper to maintain grip.
  • Each notch is provided at the tip of the finger so as to be recessed in the direction opposite to the pinching direction (outward direction) of the object.
  • the tip portions of both fingers may be replaceable including the notch portion. If it is replaceable, a tip having a notch shape suitable for the shape of the object to be gripped can be attached. Further, depending on the material of the object, a tip portion made of a material having a suitable hardness may be attached.
  • FIG. 6 is a diagram showing a second state in the process of grasping the object 920.
  • the robot arm 200 when the robot arm 200 is moved toward the floor surface, the first finger 310 and the second finger 320 of the robot hand 300 approach the floor surface, and the object 920 is taken into the tip side. .. It should be noted that such a series of movement control of the robot arm 200 is executed based on an image taken by a camera (not shown) that observes the robot hand 300.
  • the robot hand 300 drives the first finger 310 and the second finger 320 in the closing direction (in the direction of the arrow indicated by the dotted line).
  • FIG. 7 is a diagram showing a third state in the process of grasping the object 920.
  • both fingers When both fingers are further driven in the direction of the arrow indicated by the dotted line from the state of FIG. 6, both fingers come into contact with the object 930.
  • both fingers When further driven, both fingers bend, and the elastic force is transmitted to the object 920 as a gripping force. A part of the gripping force at this time acts as a force for pushing the object 920 toward the tip side (in the direction of the white arrow).
  • the robot hand 300 self-aligns the object by the elastic force of the finger, so that the object can be gripped reliably. ..
  • the timing at which the robot arm 200 starts lifting the robot hand 300 can be the timing at which the deflection of both fingers is detected from the above-mentioned camera image. Further, the timing may be determined by observing the output of the strain gauge attached to both fingers and the change in the output torque of the actuator 330.
  • FIG. 8 is a diagram showing a fourth state in the process of grasping the object 920.
  • the robot hand 300 When the robot hand 300 is lifted by the robot arm 200 from the state shown in FIG. 7, the object 920 is pushed toward the tip side by the elastic force of both fingers, and the first notch 311 and the second notch 321 are the corners of the object 920. It catches the part to prevent it from falling and maintains the grip of the object 920. That is, the robot hand 300 applies the elastic forces of the first finger 310 and the second finger 320 to the first notch 311 and the second notch 321 to pick up and grip the object 920.
  • the first finger 310 and the second finger 320 are flexible so that when the object is gripped, the central axis of the object is along a virtual axis equidistant from the first finger 310 and the second finger 320. It is desirable that the balance is adjusted.
  • the central axis of the object 920 (in this case, the vertical axis passing through the center of gravity of the object 920 in the front view) is a alternate long and short dash line, which is equidistant in the front view from the first finger 310 and the second finger 320.
  • the virtual axis is also an alternate long and short dash line.
  • the robot hand 300 can grip the object in a well-balanced manner.
  • the first finger 310 and the second finger 320 are adjusted so that they intersect on the central axis of the object 920 when they are closed to each other in the case of the same shape and the same material.
  • the object is not limited to the above-mentioned cylinder or rectangular parallelepiped, and may be a three-dimensional object having a more complicated shape. Depending on the shape, size, and weight of the object, it may be replaced with a stopper suitable for gripping, or a robot hand with long fingers or a robot hand equipped with an actuator that exerts a strong driving force may be selected. Of course, hooks having different shapes may be used for the fingers, or notches having different indented shapes may be provided. Further, in the above embodiment, the robot hand including two fingers has been described, but the number of fingers may be three or more. When three or more fingers are adopted, it is preferable to arrange each finger in an annular shape with respect to the space for capturing the object.
  • the rigidity of at least one of the plurality of fingers may be configured to be different from the rigidity of the other fingers. For example, when the object is grasped and lifted, the rigidity of the finger located on the obstacle side may be increased so that the object does not approach an obstacle existing nearby. By making the rigidity between the fingers different in this way, it is not necessary to perform complicated control on the actuator side. Further, even if the object to be gripped has a bias in the center of gravity, it can be gripped in a well-balanced manner by adjusting the rigidity between the fingers according to the bias. The degree of bending between the fingers may be adjusted by adjusting the angle at which the base end side of the fingers is attached to the base.
  • the direction of gripping the object is not limited to the vertical direction as in the above embodiment, and for example, when gripping an object placed on a shelf, the gripping operation may be performed from the horizontal direction.
  • the shape of the object may be recognized, the gripping file direction may be searched, and the gripping operation may be performed so that the tip of the finger approaches from that direction.
  • [Appendix 4] The robot hand (11, 121) according to any one of Supplementary note 1 to 3, wherein the stopper is a hook (111, 121) protruding from the tip of each of the plurality of fingers (110, 120) in the sandwiching direction of the object. 100).
  • [Appendix 5] The robot hand (300) according to any one of Supplementary note 1 to 3, wherein the stopper is a notch (311 or 321) provided at the tip of each of the plurality of fingers (310, 320).
  • [Appendix 6] The robot hand (11, 121, 311, 321) according to any one of Supplementary note 1 to 5, wherein the stopper (111, 121, 311, 321) is removable to each of the plurality of fingers (110, 120, 310, 320).

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

簡単な構造でありながら、対象物の検出誤差に対してロバスト性の高い、ロボットハンドを提供する。 ロボットハンドは、先端側から対象物を取り込んで挟み込む、可撓性のある複数のフィンガーと、対象物を挟み込む方向へ複数のフィンガーを駆動するアクチュエータとを備え、複数のフィンガーのそれぞれは、アクチュエータに駆動されて対象物を挟み込んだ場合に、撓みによって対象物が先端側へ押し出されることを防いで把持を維持するストッパを有する。

Description

ロボットハンド
 本発明は、ロボットハンドに関する。
 従来、ロボットハンドによる対象物の把持は、視覚センサを用いて対象物や治具の正確な三次元座標を検出することや、対象物の位置決めが正確に行われていることを前提としている(例えば、特許文献1参照)。
特開平10-97311号公報
 これまでのロボットハンドの把持制御は、検出した三次元座標に誤差が含まれると、対象物の把持に失敗したり、把持後に対象物を落下させたりする場合があった。特に、小さな対象物を把持する場合には、そのような不具合が顕著である。
 本発明は、このような問題を解決するためになされたものであり、簡単な構造でありながら、対象物の検出誤差に対してロバスト性の高い、ロボットハンドを提供するものである。
 本発明の具体的態様におけるロボットハンドは、先端側から対象物を取り込んで挟み込む、可撓性のある複数のフィンガーと、対象物を挟み込む方向へ複数のフィンガーを駆動するアクチュエータとを備え、複数のフィンガーのそれぞれは、アクチュエータに駆動されて対象物を挟み込んだ場合に、撓みによって対象物が先端側へ押し出されることを防いで把持を維持するストッパを有する。
 このような態様によれば、対象物の検出位置が実際の位置とずれていた場合でも、フィンガーの撓みを利用して対象物を先端側で取り込むことができ、また、フィンガーにそのような可撓性を持たせても、ストッパによって対象物が押し出されることを防ぐことができる。つまり、対象物をより確実に把持することができる。
 上記の態様において、複数のフィンガーのそれぞれは、基端側より先端側の方が撓みやすいと良い。このように構成された複数のフィンガーによれば、撓みにくい基端側はオブジェクトからの反力で過度に反り返らず、撓みやすい先端側はオブジェクトの位置が多少ずれていても複数のフィンガーの内側空間へ当該オブジェクトを取り込みやすくなる。
 また、上記の態様において、複数のフィンガーのそれぞれは、先端側の断面積が基端側の断面積以下となるように構成することができる。このように断面積を構成することにより、撓みやすさを簡単に調整することができる。
 また、上記の態様において、ストッパは、複数のフィンガーのそれぞれの先端から対象物の挟み込み方向へ突出するフックとすることができる。ストッパとしてフックを採用すれば、把持対象物の性質(大きさや滑りやすさなど)に応じて、最適な形状や大きさに簡単に調整することができる。
 あるいは、上記の態様において、ストッパは、複数のフィンガーのそれぞれの先端部に設けられた切欠きとしてもよい。摘まみ上げるように把持することが好ましい対象物であれば、その表面の凹凸に応じて設けた切欠きの方がより確実に把持することができる。
 このとき、ストッパは、フックであっても切欠きであっても、複数のフィンガーのそれぞれに対して着脱可能に構成してもよい。着脱可能に構成すれば大きさや形状が異なるさまざまなストッパを準備することができるので、把持する対象物が予め想定されるのであれば、当該対象物に最適なストッパを選択して装着することができる。
 また、上記の態様において複数のフィンガーのうち少なくともひとつのフィンガーの剛性が、他のフィンガーの剛性と異なるように構成しても良い。このように構成することにより、対象物を把持したときに、アクチュエータ側で制御をしなくても当該対象物を特定の方向に近づかないようにすることができる。あるいは、把持する対象物に重心の偏りがあっても、バランスよく把持することができる。
 また、上記の態様において、複数のフィンガーは、対象物を把持した場合に、対象物の中心軸が複数のフィンガーから等距離の仮想軸に沿うように、可撓性のバランスが調整されていると良い。対象物を持ち上げたときに複数のフィンガーが均等に撓めば、ロボットハンドは、バランス良く対象物を把持することができる。
 本発明により、簡単な構造でありながら、対象物の検出誤差に対してロバスト性の高い、ロボットハンドを提供することができる。
第1実施例のロボットハンドが対象物を把持する過程における第1の状態を示す図である。 対象物を把持する過程における第2の状態を示す図である。 対象物を把持する過程における第3の状態を示す図である。 対象物を把持する過程における第4の状態を示す図である。 第2実施例のロボットハンドが対象物を把持する過程における第1の状態を示す図である。 対象物を把持する過程における第2の状態を示す図である。 対象物を把持する過程における第3の状態を示す図である。 対象物を把持する過程における第4の状態を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。
 本実施形態におけるロボットハンドは、可撓性を有する複数のフィンガーを備え、これらを開閉することにより対象物を掴み、把持する。複数のフィンガーで囲まれる空間内に対象物を取り込んで徐々に当該空間を狭めて対象物を掴もうとする場合に、対象物の実際の位置が事前に検出した検出位置と多少ずれていても、それぞれのフィンガーが撓みながら対象物に接触するので、バランスの釣り合うところで対象物が安定する。
 フィンガーがそのまま把持力を高めて対象物を持ち上げようとすると、対象物はフィンガーの弾性力により先端側から押し出されてしまうが、ロボットハンドは、ストッパの作用によりこれを防いで把持を維持する。以下に2つの実施例を通じて、ロボットハンドの具体的な実施形態を説明する。
 図1は、本実施形態における第1実施例のロボットハンド100が対象物であるオブジェクト910を把持する過程における第1の状態を示す図である。特に図1(a)は、正面から見た様子を示し、図1(b)は、側面から見た様子を示す。本実施例においては、ロボットハンド100が、円筒面を横にして床面に置かれている円柱のオブジェクト910を把持する様子を説明する。なお、本実施形態においては、把持対象物をオブジェクトと称する。
 ロボットハンド100は、2本のフィンガー(第1フィンガー110および第2フィンガー120)と、アクチュエータ130と、ベース140を備える。第1フィンガー110および第2フィンガー120は、協働して、先端側からオブジェクトを取り込んで挟み込む機能を担う。第1フィンガー110および第2フィンガー120のそれぞれは、例えばステンレスの板材から形成され、可撓性を有する。具体的には、アクチュエータ130に駆動される基端側からオブジェクトを取り込む先端側へ向かって伸延する細長形状を成し、オブジェクトを挟み込んだ場合に長手方向に撓む。
 図1(a)に示すように、第1フィンガー110および第2フィンガー120は、基端側から先端側へ向かって互いの距離が大きくなるように湾曲している。このような湾曲により、先端側からオブジェクトを取り込みやすくなっている。また、第1フィンガー110および第2フィンガー120のそれぞれは、基端側より先端側の方が撓みやすいように加工されている。具体的には、図1(b)に示すように、基端側から先端側へ向かって幅が徐々に狭くなっている。すなわち、床面に対して水平に切断した場合には、基端側の断面積より先端側の断面積が小さい。なお、徐々に狭くする場合に限らず、先端側の幅を基端側の幅以下とすればよく、もしくは、先端側の断面積を基端側の断面積以下とすれば良い。また、基端側より先端側を撓みやすくする手法は、素材の形状を異ならせる他に、素材の硬度や塗装の厚みを段階的に変化させても良い。このように先端側を撓みやすくすることにより、以下に説明する把持過程において、撓みにくい基端側はオブジェクトからの反力で過度に反り返らず、撓みやすい先端側はオブジェクトの位置が多少ずれていても両フィンガーの内側へ当該オブジェクトを取り込みやすくなる。
 アクチュエータ130は、例えば回転モータとギア列によって構成され、オブジェクトを掴むときには挟み込む方向へ、オブジェクトを放すときには反対方向へ、第1フィンガー110および第2フィンガー120を駆動する。具体的には、アクチュエータ130は、第1フィンガー110および第2フィンガー120のそれぞれの基端部に回転力を与え、それぞれの先端部が開いたり閉じたりするように第1フィンガー110および第2フィンガー120を一定範囲の角度で回動させる。なお、図1(a)に示すように、オブジェクトを先端側から取り込む段階では、アクチュエータ130は、第1フィンガー110および第2フィンガー120を互いに開く方向(点線で示す矢印方向)へ駆動する。
 ベース140は、アクチュエータ130と、第1フィンガー110および第2フィンガー120の基端部を収容する筐体である。また、ロボットアーム200の先端部にロボットハンド100を装着するための装着部としての機能を担う。装着部は、ロボットハンド100を、機械的かつ電気的にロボットアーム200に接続する。アクチュエータ130は、ロボットアーム200側から制御信号を受け取り、また、駆動電力を供給される。ロボットアーム200は、装着されたロボットハンド100を、稼働範囲内で任意の位置および姿勢に移動させる。
 第1フィンガー110は、先端部に第1フック111を有する。同様に、第2フィンガー120は、先端部に第2フック121を有する。第1フック111および第2フック121は、第1フィンガー110および第2フィンガー120がアクチュエータ130に駆動されてオブジェクトを挟み込んだ場合に、その撓みによってオブジェクトが先端側へ押し出されることを防いで把持を維持するストッパとして機能する。それぞれのフックは、フィンガーの先端部からオブジェクトの挟み込み方向(内側方向)に向けて突出するように設けられている。
 第1フック111は、例えば樹脂で成形され、第1フィンガー110の先端部に嵌合して装着される。第1フック111は、交換可能であっても良く、例えばオブジェクトの素材に応じて取り換えても良い。また、第1フック111は、第1フィンガー110と一体的に形成されても良い。例えば、第1フィンガー110の先端部を折り曲げることによって第1フック111を形成しても良い。同様に、第2フック121は、例えば樹脂で成形され、第2フィンガー120の先端部に嵌合して装着される。第2フック121は、交換可能であっても良く、例えばオブジェクトの素材に応じて取り換えても良い。また、第2フック121は、第2フィンガー120と一体的に形成されても良い。例えば、第2フィンガー120の先端部を折り曲げることによって第2フック121を形成しても良い。なお、第1フック111と第2フック121の構成は、後述する対称性の観点から、同一であることが好ましい。
 図2は、オブジェクト910を把持する過程における第2の状態を示す図である。図示するように、ロボットアーム200が床面方向へ移動されると、ロボットハンド100の第1フィンガー110および第2フィンガー120は、床面と接触し、オブジェクト910を先端側に取り込んだ状態になる。なお、ロボットアーム200のこのような一連の移動制御は、ロボットハンド100を観察する不図示のカメラが撮影した映像に基づいて実行される。ロボットハンド100は、オブジェクト910を先端側に取り込んだ状態になったら、第1フィンガー110および第2フィンガー120を閉じ方向(点線で示す矢印方向)へ駆動する。
 図3は、オブジェクト910を把持する過程における第3の状態を示す図である。図2の状態から更に点線で示す矢印方向へ両フィンガーが駆動されると、両フィンガーはオブジェクト910に接触する。さらに駆動されると、両フィンガーは撓み、その弾性力が把持力としてオブジェクト910へ伝達する。このときの把持力の一部は、オブジェクト910を先端側(白抜き矢印の方向)へ押し出す力として作用する。
 なお、オブジェクト910が予め検出された位置に対してずれた位置に存在していても、両フィンガーの弾性力により、オブジェクト910は、両フィンガーのバランス位置に整合する。すなわち、ロボットハンド100は、把持対象物であるオブジェクトの実際の位置が検出した位置と多少ずれていても、フィンガーの弾性力によりオブジェクトに自己整合が働くので、オブジェクトを確実に把持することができる。
 両フィンガーが若干撓んでオブジェクト910へ把持力を伝達する状態になったら、ロボットアーム200は、ロボットハンド100を持ち上げる。なお、ロボットアーム200がロボットハンド100の持ち上げを開始するタイミングは、上述のカメラ映像から両フィンガーの撓みが検出されたタイミングとすることができる。また、両フィンガーに貼着された歪みゲージの出力や、アクチュエータ130の出力トルクの変化を観察することにより、当該タイミングを判断しても良い。
 図4は、オブジェクト910を把持する過程における第4の状態を示す図である。図3の状態からロボットハンド100がロボットアーム200によって持ち上げられると、オブジェクト910は両フィンガーの弾性力により先端側へ押し出されるが、第1フック111および第2フック121が、オブジェクト910の落下を防ぎ、オブジェクト910の把持を維持する。すなわち、ロボットハンド100は、第1フィンガー110および第2フィンガー120の腹がオブジェクト910を押し出そうとする力と、第1フック111および第2フック121がオブジェクト910を押し留めようとする力とが釣り合うことにより、オブジェクト910の把持を実現している。
 なお、第1フィンガー110および第2フィンガー120は、オブジェクトを把持した場合に、オブジェクトの中心軸が第1フィンガー110および第2フィンガー120からの等距離の仮想軸に沿うように、可撓性のバランスが調整されていることが望ましい。図4の例では、オブジェクト910の中心軸(この場合、正面視においてオブジェクト910の重心を通る鉛直軸)が一点鎖線であり、第1フィンガー110および第2フィンガー120からの正面視における等距離の仮想軸も一点鎖線である。すなわち、オブジェクトを持ち上げたときに両フィンガーが均等に撓めば、ロボットハンド100は、バランス良くオブジェクトを把持することができる。第1フィンガー110および第2フィンガー120は、同一形状、同一素材の場合には、互いに閉じたときにオブジェクト910の中心軸上で交わるように調整される。
 図5は、本実施形態における第2実施例のロボットハンド300が対象物であるオブジェクト920を把持する過程における第1の状態を示す図である。本実施例においては、ロボットハンド300が、床面に置かれている直方体のオブジェクト920を把持する様子を説明する。
 ロボットハンド300は、2本のフィンガー(第1フィンガー310および第2フィンガー320)と、アクチュエータ330と、ベース340を備える。第1フィンガー310および第2フィンガー320は、協働して、先端側からオブジェクトを取り込んで挟み込む機能を担う。第1フィンガー310および第2フィンガー320のそれぞれは、例えばステンレスの板材から形成され、可撓性を有する。具体的には、アクチュエータ330に駆動される基端側からオブジェクトを取り込む先端側へ向かって伸延する細長形状を成し、オブジェクトを挟み込んだ場合に長手方向に撓む。また、第1フィンガー310および第2フィンガー320のそれぞれは、基端側より先端側の方が撓みやすいように加工されている。
 アクチュエータ330は、例えば回転モータとギア列によって構成され、オブジェクトを掴むときには挟み込む方向へ、オブジェクトを放すときには反対方向へ、第1フィンガー310および第2フィンガー320を駆動する。具体的には、アクチュエータ330は、第1フィンガー310および第2フィンガー320のそれぞれの基端部に並進力を与え、それぞれの先端部が開いたり閉じたりするように第1フィンガー310および第2フィンガー320を一定範囲で水平移動させる。なお、図示するように、オブジェクトを先端側から取り込む段階では、アクチュエータ330は、第1フィンガー310および第2フィンガー320を互いに開く方向(点線で示す矢印方向)へ駆動する。
 ベース340は、アクチュエータ330と、第1フィンガー310および第2フィンガー320の基端部を収容する筐体である。また、ロボットアーム200の先端部にロボットハンド100を装着するための装着部としての機能を担う。装着部は、ロボットハンド300を、機械的かつ電気的にロボットアーム200に接続する。アクチュエータ330は、ロボットアーム200側から制御信号を受け取り、また、駆動電力を供給される。ロボットアーム200は、装着されたロボットハンド300を、稼働範囲内で任意の位置および姿勢に移動させる。
 第1フィンガー310は、先端部に第1切欠き311を有する。同様に、第2フィンガー320は、先端部に第2切欠き321を有する。第1切欠き311および第2切欠き321は、第1フィンガー310および第2フィンガー320がアクチュエータ330に駆動されてオブジェクトを挟み込んだ場合に、その撓みによってオブジェクトが先端側へ押し出されることを防いで把持を維持するストッパとして機能する。それぞれの切欠きは、フィンガーの先端部にオブジェクトの挟み込み方向とは逆方向(外側方向)へ窪むように設けられている。
 上記のように切欠き部分がフィンガーと一体的に構成される場合に限らず、両フィンガーの先端部は、切欠き部分を含めて交換可能であっても良い。交換可能であれば、把持しようとするオブジェクトの形状に適した切欠き形状を有する先端部を装着することができる。また、オブジェクトの素材に応じて、硬度の適した素材で形成された先端部を装着するようにしても良い。
 図6は、オブジェクト920を把持する過程における第2の状態を示す図である。図示するように、ロボットアーム200が床面方向へ移動されると、ロボットハンド300の第1フィンガー310および第2フィンガー320は、床面に接近し、オブジェクト920を先端側に取り込んだ状態になる。なお、ロボットアーム200のこのような一連の移動制御は、ロボットハンド300を観察する不図示のカメラが撮影した映像に基づいて実行される。ロボットハンド300は、オブジェクト920を先端側に取り込んだ状態になったら、第1フィンガー310および第2フィンガー320を閉じ方向(点線で示す矢印方向)へ駆動する。
 図7は、オブジェクト920を把持する過程における第3の状態を示す図である。図6の状態から更に点線で示す矢印方向へ両フィンガーが駆動されると、両フィンガーはオブジェクト930に接触する。さらに駆動されると、両フィンガーは撓み、その弾性力が把持力としてオブジェクト920へ伝達する。このときの把持力の一部は、オブジェクト920を先端側(白抜き矢印の方向)へ押し出す力として作用する。
 なお、オブジェクト920が予め検出された位置に対してずれた位置に存在していても、両フィンガーの弾性力により、オブジェクト920は、両フィンガーのバランス位置に整合する。すなわち、ロボットハンド300は、把持対象物であるオブジェクトの実際の位置が検出した位置と多少ずれていても、フィンガーの弾性力によりオブジェクトに自己整合が働くので、オブジェクトを確実に把持することができる。
 両フィンガーが若干撓んでオブジェクト920へ把持力を伝達する状態になったら、ロボットアーム200は、ロボットハンド300を持ち上げる。なお、ロボットアーム200がロボットハンド300の持ち上げを開始するタイミングは、上述のカメラ映像から両フィンガーの撓みが検出されたタイミングとすることができる。また、両フィンガーに貼着された歪みゲージの出力や、アクチュエータ330の出力トルクの変化を観察することにより、当該タイミングを判断しても良い。
 図8は、オブジェクト920を把持する過程における第4の状態を示す図である。図7の状態からロボットハンド300がロボットアーム200によって持ち上げられると、オブジェクト920は両フィンガーの弾性力により先端側へ押し出されるが、第1切欠き311および第2切欠き321が、オブジェクト920の角部を捉えて落下を防ぎ、オブジェクト920の把持を維持する。すなわち、ロボットハンド300は、第1フィンガー310および第2フィンガー320の弾性力を第1切欠き311および第2切欠き321に作用させて、オブジェクト920をつまみ上げるように把持する。
 なお、第1フィンガー310および第2フィンガー320は、オブジェクトを把持した場合に、オブジェクトの中心軸が第1フィンガー310および第2フィンガー320からの等距離の仮想軸に沿うように、可撓性のバランスが調整されていることが望ましい。図8の例では、オブジェクト920の中心軸(この場合、正面視においてオブジェクト920の重心を通る鉛直軸)が一点鎖線であり、第1フィンガー310および第2フィンガー320からの正面視における等距離の仮想軸も一点鎖線である。すなわち、オブジェクトを持ち上げたときに両フィンガーが均等に撓めば、ロボットハンド300は、バランス良くオブジェクトを把持することができる。第1フィンガー310および第2フィンガー320は、同一形状、同一素材の場合には、互いに閉じたときにオブジェクト920の中心軸上で交わるように調整される。
 以上、2つの実施例を通じて本実施形態に係るロボットハンドを説明したが、オブジェクトは上記の円柱や直方体に限らず、より複雑な形状の立体物であっても構わない。オブジェクトの形状、大きさ、重さに応じて、把持に適切なストッパに交換したり、フィンガーの長いロボットハンド、強力な駆動力を発揮するアクチュエータを備えるロボットハンドを選択したりすれば良い。もちろんフィンガーに対して異なる形状のフックを採用したり、くぼみ形状の異なる切欠きを設けたりしても良い。また、上記の実施例では2本のフィンガーを備えるロボットハンドを説明したが、フィンガーの本数は、3本以上であっても構わない。3本以上のフィンガーを採用する場合には、オブジェクトを取り込む空間に対してそれぞれのフィンガーを円環状に配列すると良い。
 また、複数のフィンガーのうち少なくともひとつのフィンガーの剛性が、他のフィンガーの剛性と異なるように構成しても良い。例えば、対象物を把持して持ち上げた場合に、当該対象物が近くに存在する障害物に近づかないよう、その障害物側に位置するフィンガーの剛性を大きくすると良い。このようにフィンガー間の剛性を異ならせると、複雑な制御をアクチュエータ側で行わなくても良い。また、把持する対象物に重心の偏りがあっても、その偏りに合わせてフィンガー間の剛性を調整しておけば、バランスよく把持することができる。なお、フィンガーの基端側をベースに取り付ける角度を調整することにより、フィンガー間の撓み具合を調整してもよい。
 また、オブジェクトを把持する方向は、上記の実施例のように鉛直方向に限らず、例えば棚に置かれたオブジェクトを把持する場合には、水平方向から把持動作を行っても良い。また、オブジェクトの形状を認識して把持しやすり方向を探索し、当該方向からフィンガーの先端部を接近させるように把持動作を行っても良い。
 ここで、以上説明したロボットハンドの主要な構成について纏めておく。
[付記1]
 先端側から対象物(910、920)を取り込んで挟み込む、可撓性のある複数のフィンガー(110、120、310、320)と、
 前記対象物を挟み込む方向へ前記複数のフィンガーを駆動するアクチュエータ(130、330)と
を備え、
 前記複数のフィンガーのそれぞれは、前記アクチュエータに駆動されて前記対象物を挟み込んだ場合に、撓みによって前記対象物が先端側へ押し出されることを防いで把持を維持するストッパ(111、121、311、321)を有するロボットハンド(100、300)。
[付記2]
 前記複数のフィンガー(110、120、310、320)のそれぞれは、基端側より先端側の方が撓みやすい付記1に記載のロボットハンド(100、300)。
[付記3]
 前記複数のフィンガー(110、120、310、320)のそれぞれは、先端側の断面積が基端側の断面積以下である付記2に記載のロボットハンド(100、300)。
[付記4]
 前記ストッパは、前記複数のフィンガー(110、120)のそれぞれの先端から前記対象物の挟み込み方向へ突出するフック(111、121)である付記1から3のいずれか1項に記載のロボットハンド(100)。
[付記5]
 前記ストッパは、前記複数のフィンガー(310、320)のそれぞれの先端部に設けられた切欠き(311、321)である付記1から3のいずれか1項に記載のロボットハンド(300)。
[付記6]
 前記ストッパ(111、121、311、321)は、前記複数のフィンガー(110、120、310、320)のそれぞれに対して着脱可能である付記1から5のいずれか1項に記載のロボットハンド(100、300)。
[付記7]
 前記複数のフィンガー(110、120、310、320)のうち少なくともひとつのフィンガーの剛性が、他のフィンガーの剛性と異なる請求項1から6のいずれか1項に記載のロボットハンド。
[付記8]
 前記複数のフィンガー(110、120、310、320)は、前記対象物を把持した場合に、前記対象物の中心軸が前記複数のフィンガーから等距離の仮想軸に沿うように、可撓性のバランスが調整されている付記1から7のいずれか1項に記載のロボットハンド(100、300)。
100、300 ロボットハンド、110、310 第1フィンガー、120、320 第2フィンガー、111 第1フック、121 第2フック、311 第1切欠き、321 第2切欠き、130、330 アクチュエータ、140、340 ベース、200 ロボットアーム、910、920 オブジェクト

Claims (8)

  1.  先端側から対象物を取り込んで挟み込む、可撓性のある複数のフィンガーと、
     前記対象物を挟み込む方向へ前記複数のフィンガーを駆動するアクチュエータと
    を備え、
     前記複数のフィンガーのそれぞれは、前記アクチュエータに駆動されて前記対象物を挟み込んだ場合に、撓みによって前記対象物が先端側へ押し出されることを防いで把持を維持するストッパを有するロボットハンド。
  2.  前記複数のフィンガーのそれぞれは、基端側より先端側の方が撓みやすい請求項1に記載のロボットハンド。
  3.  前記複数のフィンガーのそれぞれは、先端側の断面積が基端側の断面積以下である請求項2に記載のロボットハンド。
  4.  前記ストッパは、前記複数のフィンガーのそれぞれの先端から前記対象物の挟み込み方向へ突出するフックである請求項1から3のいずれか1項に記載のロボットハンド。
  5.  前記ストッパは、前記複数のフィンガーのそれぞれの先端部に設けられた切欠きである請求項1から3のいずれか1項に記載のロボットハンド。
  6.  前記ストッパは、前記複数のフィンガーのそれぞれに対して着脱可能である請求項1から5のいずれか1項に記載のロボットハンド。
  7.  前記複数のフィンガーのうち少なくともひとつのフィンガーの剛性が、他のフィンガーの剛性と異なる請求項1から6のいずれか1項に記載のロボットハンド。
  8.  前記複数のフィンガーは、前記対象物を把持した場合に、前記対象物の中心軸が前記複数のフィンガーから等距離の仮想軸に沿うように、可撓性のバランスが調整されている請求項1から7のいずれか1項に記載のロボットハンド。
PCT/JP2020/047804 2020-01-08 2020-12-22 ロボットハンド WO2021140903A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-001517 2020-01-08
JP2020001517A JP7360623B2 (ja) 2020-01-08 2020-01-08 ロボットハンド

Publications (1)

Publication Number Publication Date
WO2021140903A1 true WO2021140903A1 (ja) 2021-07-15

Family

ID=76788616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047804 WO2021140903A1 (ja) 2020-01-08 2020-12-22 ロボットハンド

Country Status (2)

Country Link
JP (1) JP7360623B2 (ja)
WO (1) WO2021140903A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024436A1 (ja) * 2022-07-27 2024-02-01 株式会社日立ハイテク 把持装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121092U (ja) * 1986-01-27 1987-07-31
JPH078377U (ja) * 1993-07-09 1995-02-07 株式会社テクニカ紙工機 クランプ装置
JPH0753174A (ja) * 1993-08-09 1995-02-28 Nippon Valqua Ind Ltd 瓶口栓部の把持装置
JP2002326180A (ja) * 2001-04-27 2002-11-12 Murata Mfg Co Ltd チャック方法およびチャック装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249773A (ja) * 1997-03-11 1998-09-22 Kubota Corp ロボットハンド用指
JP7107508B2 (ja) * 2019-09-03 2022-07-27 康彦 可知 ワーク把持装置
CN112606033B (zh) 2020-12-03 2021-12-10 吉林大学 一种基于柔性压力传感器的机械手驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121092U (ja) * 1986-01-27 1987-07-31
JPH078377U (ja) * 1993-07-09 1995-02-07 株式会社テクニカ紙工機 クランプ装置
JPH0753174A (ja) * 1993-08-09 1995-02-28 Nippon Valqua Ind Ltd 瓶口栓部の把持装置
JP2002326180A (ja) * 2001-04-27 2002-11-12 Murata Mfg Co Ltd チャック方法およびチャック装置

Also Published As

Publication number Publication date
JP2021109267A (ja) 2021-08-02
JP7360623B2 (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
EP3341163B1 (en) Systems and methods for providing contact detection in an articulated arm
US7950710B2 (en) Robot
JP5010382B2 (ja) マニピュレータおよびロボット
US8991885B2 (en) Compliant underactuated grasper
US9327412B2 (en) Compliant underactuated grasper
JP2019107769A (ja) 柔軟劣駆動把持具
US7992910B2 (en) Robot structure
WO2021140903A1 (ja) ロボットハンド
US20200206950A1 (en) Finger mechanism and humanoid hand incorporating same finger mechanism
Nie et al. A hand combining two simple grippers to pick up and arrange objects for assembly
WO2017203945A1 (ja) ワーク把持装置およびワーク把持方法
JP2011240422A (ja) ロボットハンド、およびロボット
WO2020066063A1 (ja) エンドエフェクタ装置
US20170112519A1 (en) Manipulator
JP4592794B2 (ja) ロボットハンド
US11400603B2 (en) End effector device and robotic device
JP2012024882A (ja) ロボットの駆動装置、ロボットの駆動方法、およびロボット
WO2020066061A1 (ja) エンドエフェクタおよびエンドエフェクタ装置
WO2021112121A1 (ja) ハンド装置
US20220395988A1 (en) Adaptive gripper finger, gripper device and method of using adaptive gripper device
WO2020246008A1 (ja) 触覚センサ、ロボットハンド、及びロボット
Ku et al. A versatile object pick-up system featuring grip-suction-pinch design integration and depth vision automation
JP5013476B2 (ja) ロボットハンド装置
WO2023120010A1 (ja) 検体仕分けシステム
Fukaya et al. F3 hand: A versatile robot hand inspired by human thumb and index fingers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912835

Country of ref document: EP

Kind code of ref document: A1