WO2021139834A1 - 激光雷达、用于激光雷达的探测方法和制造方法 - Google Patents

激光雷达、用于激光雷达的探测方法和制造方法 Download PDF

Info

Publication number
WO2021139834A1
WO2021139834A1 PCT/CN2021/079408 CN2021079408W WO2021139834A1 WO 2021139834 A1 WO2021139834 A1 WO 2021139834A1 CN 2021079408 W CN2021079408 W CN 2021079408W WO 2021139834 A1 WO2021139834 A1 WO 2021139834A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lidar
scanning
module
partition
Prior art date
Application number
PCT/CN2021/079408
Other languages
English (en)
French (fr)
Inventor
杨佳
王强
郭士意
曹艳婷
韩佳晖
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010008629.6A external-priority patent/CN113075680B/zh
Priority claimed from CN202010008630.9A external-priority patent/CN113075642B/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Priority to US17/791,040 priority Critical patent/US20230028159A1/en
Publication of WO2021139834A1 publication Critical patent/WO2021139834A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses

Definitions

  • the present disclosure relates to a laser radar, a detection method for the laser radar, and a manufacturing method.
  • the existing mechanical rotating lidar uses multiple transmitting lasers and multiple receiving detectors to achieve multi-line scanning, and a rotating platform achieves a 360° horizontal field of view scanning.
  • the disadvantage of this kind of mechanical rotating lidar is that the scanning frame rate is low, and the system structure is complicated, and the laser and the detector need to be debugged separately.
  • this kind of lidar has a long assembly cycle, which leads to high costs and limits the development of lidar.
  • MEMS-based lidars There are also MEMS-based lidars.
  • the applicant realized that: First of all, in order to ensure a higher vibration frequency, the aperture of the general MEMS micro galvanometer should not be too large, and the laser emitted by the laser needs to be collimated, but generally after collimation The caliber of the MEMS mirror will be larger than that of the MEMS micro galvanometer, which leads to low energy coupling efficiency of the system.
  • the scanning field of view of the MEMS micro galvanometer is small, usually with an optical angle of only 30°-40°. To meet the requirements of a large field of view, multiple lidars are required to splice the field of view. Finally, limited by the process, the MEMS micro galvanometer is difficult to pass the car gauge test, and the cost is high.
  • Lidar uses laser as a light source and emits it to the target.
  • the target object produces diffuse reflection, and the reflected laser light (including physical information such as amplitude and phase) is accepted by the detector, so as to obtain the distance, orientation and other information of the target object to realize the three-dimensional detection of the surrounding environment.
  • the traditional mechanical lidar uses a motor to drive the mechanical shaft to realize the rotation of the entire transceiver system.
  • Using this traditional mechanical lidar to scan the surrounding environment has disadvantages such as slow speed of the transceiver system, large radar volume, unstable work, and poor performance reliability.
  • the opto-electromechanical system includes a transmitting system and a receiving system, but the light beam emitted by the transmitting system is discrete, which will cause the vertical angular resolution of the detection to be limited by the discrete light beam.
  • Lidar solutions by increasing the number of laser beams to improve the vertical angular resolution, but this will directly increase the volume and cost of the lidar, and it also needs to increase the number of detectors, further pushing up the cost and system complexity.
  • MEMS lidar usually adopts the form of single-point scanning, which realizes the scanning of the target range by the high-speed rotation of the MEMS device.
  • MEMS lidar can partially solve the problem of large volume, since the launch system emits a single light spot, such as Lissajous and other scanning forms, the scanning frequency of MEMS is extremely demanding. The higher the scanning frequency, the higher the cost of the MEMS. Conversely, if the scanning frequency of the MEMS is not enough, it will limit the vertical resolution and horizontal resolution of the lidar.
  • two single-axis MEMS or dual-axis MEMS are usually required to achieve the entire range of scanning, which will significantly increase the cost of the lidar and the complexity of system control.
  • One of the objectives of the present disclosure is to provide a lidar and a detection method for lidar, which can flexibly and reliably match the specific application environment and performance requirements, especially with an adjustable, especially scalable lidar
  • the field of view, scanning frequency and scanning resolution ensure that the lidar system is simple in structure, low in cost, quick to assemble and easy to test.
  • a laser radar including:
  • a laser emitting end has a laser, and the laser is configured to emit a laser beam for detecting a target;
  • a scanning module the scanning module is configured to guide the laser beam emitted by the laser to scan the target, and receive and guide the laser beam reflected by the target;
  • a laser receiving end the laser receiving end has a detector, and the detector is configured to receive the laser beam reflected from the target object guided by the scanning module;
  • At least one laser transmitting end and at least one laser receiving end are integrated into a laser transceiver module group constructed as a separate structural unit, wherein the lidar includes a plurality of laser transceiver module groups, and the plurality of laser transceiver module groups are opposite to The scanning modules are arranged in a distributed manner, and the sub-fields of view correspondingly formed by the plurality of laser transceiver module groups form an at least partially spliced field of view of the lidar.
  • the technical solution proposed in the first aspect of the present disclosure by arranging multiple laser transceiver module groups in a specific manner, it is possible to achieve efficient and targeted splicing of the field of view of the lidar detection field, especially to achieve a larger level
  • the field of view, in which the central field of view has a coincident part so in the case of using a limited number of parts, the field of view of the lidar can be expanded in a simple way, and the scanning frequency and detection accuracy of the key test areas can be improved, especially Vertical axis (vertical direction) scan resolution and/or horizontal scan resolution.
  • the lidar according to the first aspect of the present disclosure is easy to implement modular assembly, has a simple structure, low cost, and short assembly cycle, and can flexibly and quickly obtain lidar performance matching requirements according to application environmental conditions.
  • the laser emitting end further includes an emitting mirror group having a laser shaping module configured to shape the laser beam emitted by the laser.
  • the laser shaping module includes a collimator lens and a light homogenizing sheet sequentially arranged along the optical axis of the laser beam.
  • the laser shaping module shapes the laser beam emitted from the laser emitting end into a linear spot.
  • the laser beam is shaped into a linear spot, and three-dimensional scanning can be achieved by using a one-dimensional scanning module, thereby reducing the requirements for scanning components and reducing the overall cost of the lidar.
  • the laser beam is shaped into a linear spot, combined with the related improvement measures of the laser transceiver module group proposed in the first aspect of the present disclosure, an improved splicing field of view of the lidar can be obtained, and the scanning range of the lidar can be correspondingly increased. And/or scanning resolution, significantly improve the working flexibility, reliability and performance of lidar.
  • the scanning module includes a transmitting and scanning module and a receiving and scanning module, wherein the transmitting and scanning module is configured to reflect the laser beam emitted by the laser transmitting end to the target, and the receiving and scanning module is configured to Receive and guide the laser beam reflected from the target to the laser receiving end.
  • the laser receiving end further has a receiving mirror group configured to receive and transmit the laser beam reflected by the target guided by the scanning module, and The reflected laser beam is condensed on the detector at the laser receiving end.
  • the angles between the laser beams emitted by the laser emitting ends of the multiple laser transceiver module groups and the reflective surface of the scanning module are different from each other, so that the multiple laser transceiver module groups
  • the sub-fields of view are respectively formed with different orientations and at least partially overlapped with each other.
  • the plurality of laser transceiver module groups can adjust the orientation of the reflective surface relative to the scanning module through the orientation adjustment device, thereby being able to change the laser radar Mosaic field of view and/or scan resolution.
  • the stitching field of view and/or the scanning resolution of the lidar can be changed in the vertical direction and/or the horizontal direction.
  • the orientation adjustment device includes an actuator, wherein the orientation adjustment of the laser transceiver module group is achieved by controlling the actuator for driving the orientation adjustment device.
  • the actuator is an electric motor, a hydraulic actuator, a pneumatic actuator, or a piezoelectric actuator.
  • the orientation adjustment device assigned to each laser transceiver module group can be controlled according to a predetermined working mode, and can automatically match different application scenarios or environmental conditions by switching different working modes .
  • the lidar has a normal working mode.
  • the sub-fields of multiple laser transceiver module groups at least partially overlap each other to form a spliced field of view of the lidar, so as to determine A large number of laser transceiver module groups realize the balanced scanning performance of the laser radar.
  • the lidar has an enhanced working mode.
  • the enhanced working mode by adjusting the position of the laser transceiver module group by the position adjusting device, more laser transceiver module groups can be allocated to a specific area. Or the key area is scanned, thereby obtaining an enlarged splicing field of view, vertical angular resolution and/or horizontal angular resolution in the specific area or the key area.
  • the laser transceiver module groups cover or at least partially cover a specific area or key area for scanning
  • a larger number of laser transceiver module groups such as 40% , 50% or even 60% or more of the laser transceiver module group is allocated to the specific area or key area for scanning, thereby enhancing the scanning frequency and resolution of the lidar in these areas.
  • the field of view and scanning orientation or other characteristic parameters of the lidar can also be changed through the enhanced working mode, so that the lidar can be matched to specific working environment conditions and requirements simply, quickly and flexibly.
  • the lidar is equipped with a control module configured to control laser emission and reception, and acquire characteristic information of the target through post-signal data processing.
  • control module can control the orientation adjustment device according to the acquired characteristic information of the target, so that the relative position of the multiple laser transceiver module groups can be automatically adjusted in a closed-loop control manner. Scan the orientation of the reflective surface of the module, thereby dynamically and automatically changing the stitching field of view and/or scanning resolution of the lidar.
  • each laser transceiving module group the laser emitting end and the laser receiving end integrated in the laser transceiving module group are arranged next to each other in a common structural unit housing.
  • two laser transceiver module groups are included, and the two laser transceiver module groups are arranged symmetrically/asymmetrically with respect to the central axis of the scanning module.
  • four laser transceiver module groups are included, and the four laser transceiver module groups are arranged symmetrically/asymmetrically with respect to the central axis of the scanning module.
  • it further includes a spare laser transceiver module group, which can be put into use immediately and replace the laser transceiver module that has failed or externally damaged when the working laser transceiver module group fails or occurs external damage.
  • Module group a spare laser transceiver module group, which can be put into use immediately and replace the laser transceiver module that has failed or externally damaged when the working laser transceiver module group fails or occurs external damage.
  • the first aspect of the present disclosure further includes a fault detection device for detecting the working state of the laser transceiver module group, and the control module detects or monitors the functionality of the working laser transceiver module group by means of the fault detection device .
  • the lidar has an emergency operation mode, wherein when a failure or external damage of the laser transceiver module group is detected, the laser radar is switched to the emergency operation mode, and the laser transceiver module is spared The group was put into use and replaced the laser transceiver module group that failed or suffered external damage.
  • the scanning part of the scanning module is a rotating scanning part.
  • the scanning component of the scanning module includes a double-sided mirror, a polygonal prism, or a galvanometer.
  • the lidar can have a larger aperture, which can improve the energy utilization of the laser, and at the same time increase the receiving aperture, which is beneficial to improve the measurement. Distance.
  • different regions of the reflective surface of the rotating scanning part of the scanning module constitute a transmitting scanning module and a receiving scanning module, wherein the reflective surface area used as the transmitting scanning module is configured to emit laser light.
  • the laser beam emitted from the end is reflected to the target, and the reflective surface area used as the receiving and scanning module is set to receive and guide the laser beam reflected by the target, and change its direction to the laser receiving end.
  • the scanning component of the scanning module includes a different surface prism, wherein the angle between the reflective side surface of the different surface prism and the central axis is different from each other and matched with each other, so that each reflective side surface is formed correspondingly
  • the sub-fields of view at least partially overlap each other, thereby forming a spliced field of view of the lidar.
  • the different-faced prism is configured as a different-faced quadrangular prism.
  • a detection method for lidar is also provided, which is characterized in that the lidar includes a laser emitting end, a scanning module, and a laser receiving end, wherein
  • the laser at the laser emitting end is used to emit a laser beam for detecting the target
  • the detector with the laser receiving end is used to receive the laser beam reflected from the target object guided by the scanning module;
  • At least one laser emitting end and at least one laser receiving end are integrated into a laser transceiver module group constructed as a separate structural unit, wherein a plurality of laser transceiver module groups are arranged in a distributed manner relative to the scanning module and pass through the plurality of laser
  • the corresponding sub-fields of view formed by the transceiver module group form an at least partially spliced field of view of the lidar.
  • the laser emitting end further includes an emitting mirror group having a laser shaping module, and the laser shaping module is configured to correct the laser beam emitted by the laser. Perform plastic surgery.
  • a collimator lens and a light homogenizing sheet are sequentially arranged in the laser shaping module along the optical axis of the laser beam.
  • a laser shaping module is provided to shape the laser beam emitted from the laser emitting end into a linear spot.
  • the scanning module includes a transmitting scanning module and a receiving scanning module, wherein the transmitting scanning module is configured to reflect the laser beam emitted by the laser transmitting end to the target, and the receiving scanning module is configured to Receive and guide the laser beam reflected from the target to the laser receiving end.
  • the laser receiving end further has a receiving mirror group configured to receive and transmit the laser beam reflected by the target guided by the scanning module, and The reflected laser beam is condensed on the detector at the laser receiving end.
  • the angles between the laser beams emitted by the laser emitting ends of the multiple laser transceiver module groups and the reflective surface of the scanning module are different from each other, so that the multiple laser transceiver module groups
  • the sub-fields of view are respectively formed with different orientations and at least partially overlapping each other.
  • the lidar is equipped with a control module, wherein the control module is configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing.
  • it further includes an orientation adjusting device for adjusting the orientation of the laser transceiver module group, and the control module is configured to control the orientation adjusting device to adjust the multiple lasers.
  • control module is configured to change the stitching field of view and/or scanning resolution of the lidar in the vertical direction and/or the horizontal direction.
  • the orientation adjustment device includes an actuator, and the control module is provided to control the actuator used to drive the orientation adjustment device, so as to realize the control of the laser transceiver module group. Position adjustment.
  • control module is set to control the orientation adjustment device assigned to each laser transceiver module group according to a predetermined working mode, wherein the control module can automatically switch between different working modes. Match different application scenarios or environmental conditions.
  • control module can be switched to a normal working mode.
  • the normal working mode the sub-fields of multiple laser transceiver module groups at least partially overlap each other to form a spliced field of view of the lidar , So as to use a certain number of laser transceiver module groups to realize the balanced scanning performance of the laser radar.
  • the control module can be switched to an enhanced working mode.
  • the enhanced working mode adjusting the position of the laser transceiver module group by the position adjusting device will be more effective than in the normal working mode.
  • a large number of laser transceiver module groups are allocated to specific areas or key areas for scanning, thereby obtaining an increased splicing field of view, vertical axis angular resolution, and/or horizontal angular resolution in the specific area or key area.
  • control module is set to control the orientation adjustment device according to the acquired characteristic information of the target, so that the relative positions of the multiple laser transceiver module groups can be automatically adjusted in a closed-loop control manner. Scan the orientation of the reflective surface of the module, thereby dynamically and automatically changing the stitching field of view and/or scanning resolution of the lidar.
  • each laser transceiving module group the laser emitting end and the laser receiving end integrated in the laser transceiving module group are arranged next to each other in a common structural unit housing. .
  • two laser transceiver module groups are included, and the two laser transceiver module groups are arranged symmetrically/asymmetrically with respect to the central axis of the scanning module.
  • four laser transceiver module groups are included, and the four laser transceiver module groups are arranged symmetrically/asymmetrically with respect to the central axis of the scanning module.
  • it further includes a spare laser transceiver module group.
  • the standby laser transceiver module group is immediately put into use and replaces the failure or The laser transceiver module group with external damage.
  • the second aspect of the present disclosure further includes a fault detection device for detecting the working state of the laser transceiver module group, and the control module is configured to perform the functionality of the working laser transceiver module group by means of the fault detection device. Detection or monitoring.
  • the control module can be switched to an emergency working mode, wherein when a failure of the laser transceiver module group is detected or an external damage occurs, the control module is switched to the emergency working mode of the lidar, and will be standby The laser transceiver module group was put into use and replaced the laser transceiver module group that failed or suffered external damage.
  • the scanning part of the scanning module is a rotating scanning part.
  • the scanning component of the scanning module includes a double-sided mirror, a polygonal prism, or a galvanometer mirror.
  • different areas of the reflective surface of the rotating scanning part of the scanning module constitute the transmitting scanning module and the receiving scanning module, wherein the reflective surface area used as the transmitting scanning module is used for laser The laser beam emitted by the transmitting end is reflected to the target, and the reflective surface area used as the receiving and scanning module is set to receive and guide the laser beam reflected from the target, and change its direction to the laser receiving end.
  • the scanning component of the scanning module includes a different-surface prism, wherein the angle between the reflective side surface of the different-surface prism and the central axis is configured to be different from each other and match each other, so that each reflective side surface The correspondingly formed sub-fields at least partially overlap each other, thereby forming a spliced field of view of the lidar.
  • the different-face prism is configured as a different-face quadrangular prism.
  • One of the objectives of the present disclosure is also to propose a laser radar and a method for manufacturing the laser radar, which not only realizes the high resolution of the laser radar, but also has a compact structure, at the same time, the manufacturing cost is lower, and the assembly and maintenance are easy.
  • a laser radar which is characterized in that it includes:
  • a laser emitting end has a laser, and the laser is configured to emit a laser beam for detecting a target;
  • a scanning module the scanning module is configured to guide the laser beam emitted by the laser to scan the target, and receive and guide the laser beam reflected by the target;
  • a laser receiving end the laser receiving end has a detector, and the detector is configured to receive the laser beam reflected from the target object guided by the scanning module;
  • the scanning part of the scanning module is configured as a rotatable plate-shaped double-sided mirror.
  • a rotatable plate-shaped double-sided mirror is used as the scanning component of the scanning module, so that the scanning component is lighter in weight, and the light output aperture and the received beam aperture are larger, so it can be realized For example, large-scale high-speed scanning in the horizontal direction.
  • At least one laser emitting end and at least one laser receiving end are integrated into a laser transceiver module group configured as a separate structural unit.
  • the lidar further includes an isolation mechanism that separates the reflective surface of the plate-shaped double-sided mirror into a transmitting scanning area and a receiving scanning area.
  • the isolation mechanism isolates the laser emitting end and the laser receiving end of the laser transceiver module group configured as a separate structural unit.
  • the transmission optical path and the receiving optical path are optimally partitioned by setting the isolation mechanism.
  • the non-common optical path lidar for example, it can simply share a scanning component; compared with the common optical path scanning system, the laser receiving end is not affected by the laser beam emitted by the laser and the stray light generated by the scanning component, which can effectively improve The performance of lidar.
  • the isolation mechanism is made of a material capable of blocking stray light.
  • the isolation mechanism is composed of a circular rotating partition and a fixed partition with a circular hole, wherein the fixed partition is fixed on the lidar housing, and the The rotating baffle can be inserted into the circular hole of the fixed baffle and rotate in it.
  • the rotating partition has an opening, and the plate-shaped double-sided mirror extends through the opening of the rotating partition to be fixed to the rotating partition.
  • the rotating partition plate is composed of two semicircular plates, and the two semicircular plates are connected on both sides of the plate-shaped double-sided reflector and joined together Into a full circle.
  • the fixed partition fixed on the lidar housing extends across the laser transceiver module group arranged in the inner space of the lidar housing, and the configuration The laser transmitting end and the laser receiving end of the laser transceiver module group as a separate structural unit are isolated.
  • the plate-shaped double-sided mirror can drive the rotating partition to rotate together, wherein the plate-shaped double-sided mirror is formed on both sides of the rotating partition.
  • the emission scanning area and the receiving scanning area of the mirror can drive the rotating partition to rotate together.
  • the fixed baffle and the rotating baffle embedded in the circular hole of the fixed baffle form a baffle plane.
  • the internal space is divided into two chambers, wherein the emission scanning area of the plate-shaped double-sided mirror and the laser emitting end of the laser transceiver module group are arranged in one of the chambers, and the plate-shaped double-sided The receiving scanning area of the reflecting mirror and the laser receiving end of the laser transceiver module group are arranged in another cavity.
  • the plane of the partition is perpendicular to the reflective surface of the plate-shaped double-sided mirror.
  • the plate-shaped double-sided mirror is fixed on a base, and the base can be driven to rotate by a motor.
  • the isolation mechanism further includes a bottom plate that divides the inner space of the lidar housing into a separate equipment chamber, wherein the base is used to drive the base to rotate The electric motor is provided in the separate equipment chamber.
  • the laser emitting end further has a laser shaping module that shapes the laser beam emitted by the laser into a linear scanning laser, and the plate-shaped double-sided mirror will The linear scanning laser reflects and scans the target.
  • the laser beam emitted by the laser is shaped into a linear scanning laser, and the linear scanning laser is used to scan the target, combined with the corresponding proposed optical, mechanical and electrical improvement measures, to achieve without increasing the number of lasers in the lidar , To significantly improve the vertical angular resolution of lidar at a simple and low cost.
  • the lidar is equipped with a control module configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing.
  • control module includes:
  • the laser drive module is used to control the laser at the laser emitting end to emit laser
  • Signal processing module used to process the detection signal received by the detector at the laser receiving end;
  • the main control module is used to control the laser driving module and the signal processing module, and use the signal processing module to calculate the characteristic information of the target.
  • a method for manufacturing a laser radar which is characterized in that the laser radar includes a laser emitting end, a scanning module, and a laser receiving end, wherein
  • the laser at the laser emitting end is used to emit a laser beam for detecting the target
  • the detector with the laser receiving end is used to receive the laser beam reflected from the target object guided by the scanning module;
  • the scanning part of the scanning module is configured as a rotatable plate-shaped double-sided mirror.
  • an isolation mechanism is provided to separate the reflective surface of the plate-shaped double-sided mirror into a transmitting scanning area and a receiving scanning area, and at the same time, the laser light is configured as a separate structural unit.
  • the laser transmitting end and the laser receiving end of the transceiver module group are isolated.
  • the isolation mechanism is composed of a circular rotating partition and a fixed partition with a circular hole, wherein the fixed partition is fixed on the lidar housing and is assembled
  • the rotating partition is embedded in the circular hole of the fixed partition, and the rotating partition can be rotated in the circular hole of the fixed partition, the plate-shaped double-sided reflector can drive the The rotating partition rotates together.
  • One of the objectives of the present disclosure is also to propose a laser radar and a method for manufacturing the laser radar, which not only realizes the high resolution of the laser radar, but also has a compact structure, at the same time the manufacturing cost is lower, and the assembly and maintenance are easy.
  • a laser radar which is characterized in that it includes:
  • a laser emitting end has a laser, and the laser is configured to emit a laser beam for detecting a target;
  • a scanning module the scanning module is configured to guide the laser beam emitted by the laser to scan the target, and receive and guide the laser beam reflected by the target;
  • a laser receiving end the laser receiving end has a detector, and the detector is configured to receive the laser beam reflected from the target object guided by the scanning module;
  • the scanning part of the scanning module is configured as a rotatable prism.
  • a rotatable prism is used as the scanning component of the scanning module, so that the scanning component is lighter, and the light output aperture and the received beam aperture are larger, so that, for example, a large range of high speed in the horizontal direction can be achieved. scanning.
  • At least one laser emitting end and at least one laser receiving end are integrated into a laser transceiver module group configured as a separate structural unit, wherein the laser radar includes at least one laser transceiver module group .
  • the lidar further includes an isolation mechanism that separates the reflective surface of the rotatable prism into a transmitting scanning area and a receiving scanning area.
  • the isolation mechanism isolates the laser emitting end and the laser receiving end of the laser transceiver module group configured as a separate structural unit.
  • the transmission optical path and the receiving optical path are optimally partitioned by setting the isolation mechanism.
  • the non-common optical path lidar for example, it can simply share a scanning component; compared with the common optical path scanning system, the laser receiving end is not affected by the laser beam emitted by the laser and the stray light generated by the scanning component, which can effectively improve The performance of lidar.
  • the isolation mechanism is made of a material capable of blocking stray light.
  • the isolation mechanism is composed of a circular rotating partition and a fixed partition with a circular hole, wherein the fixed partition is fixed on the lidar housing, and the The rotating baffle can be inserted into the circular hole of the fixed baffle and rotate in it.
  • the rotary partition has an opening, and the rotatable prism extends through the opening of the rotary partition to be fixed to the rotary partition.
  • the rotating partition plate is composed of two semicircular plates, and the two semicircular plates are connected on both sides of the rotatable prism and joined together to form a complete circle. .
  • the fixed partition fixed on the lidar housing extends across the laser transceiver module group arranged in the inner space of the lidar housing, and the structure The laser transmitting end and the laser receiving end of the laser transceiver module group as a separate structural unit are isolated.
  • the rotatable prism can drive the rotating partition to rotate together, wherein the emission scanning area of the rotatable prism is formed on both sides of the rotating partition. And receiving scan area.
  • the fixed baffle and the rotating baffle embedded in the circular hole of the fixed baffle form a baffle plane.
  • the internal space is divided into two chambers, wherein the emitting scanning area of the rotatable prism and the laser emitting end of the laser transceiver module group are arranged in one of the chambers, and the receiving scanning area of the rotatable prism
  • the laser receiving end of the laser transceiver module group is arranged in another cavity.
  • the plane of the partition is perpendicular to the reflective surface of the rotatable prism.
  • the rotatable prism is fixed on a base, and the base can be driven to rotate by a motor.
  • the isolation mechanism further includes a bottom plate that divides the inner space of the lidar housing into a separate equipment chamber, wherein the base is used to drive the base to rotate The electric motor is provided in the separate equipment chamber.
  • the laser emitting end further has a laser shaping module that shapes the laser beam emitted by the laser into a linear scanning laser, and the rotatable prism shapes the linear The scanning laser reflects and scans the target.
  • the laser beam emitted by the laser is shaped into a linear scanning laser, and the linear scanning laser is used to scan the target.
  • the laser radar is not increased.
  • the vertical angular resolution of lidar can be significantly improved at a simple and low cost.
  • the lidar is equipped with a control module configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing.
  • control module includes:
  • the laser drive module is used to control the laser at the laser emitting end to emit laser
  • Signal processing module used to process the detection signal received by the detector at the laser receiving end;
  • the main control module is used to control the laser driving module and the signal processing module, and use the signal processing module to calculate the characteristic information of the target.
  • the laser transceiver module group includes exactly two laser emitting ends and one laser receiving end.
  • a method for manufacturing a laser radar which is characterized in that the laser radar includes a laser emitting end, a scanning module, and a laser receiving end, wherein
  • the laser at the laser emitting end is used to emit a laser beam for detecting the target
  • the detector with the laser receiving end is used to receive the laser beam reflected from the target object guided by the scanning module;
  • the scanning part of the scanning module is configured as a rotatable prism.
  • an isolation mechanism is provided to separate the reflective surface of the rotatable prism into a transmitting scanning area and a receiving scanning area, and at the same time, the laser transceiver module group configured as a separate structural unit The laser emitting end is isolated from the laser receiving end.
  • the isolation mechanism is composed of a circular rotating partition and a fixed partition with a circular hole, wherein the fixed partition is fixed on the lidar housing and is assembled
  • the rotating partition is embedded in the circular hole of the fixed partition, and the rotating partition can be rotated in the circular hole of the fixed partition, the rotatable prism can drive the rotating partition Rotate together.
  • FIG. 1 is a schematic diagram of a laser emitting end according to some embodiments of the present disclosure, where the laser emitting end includes a laser and a shaping module;
  • FIG. 2 is a schematic diagram of a laser emitting end emitting a linear spot according to some embodiments of the present disclosure, where the laser beam is shaped into a linear spot by a shaping module at the laser emitting end;
  • FIG. 3 is a schematic diagram of the included angle between the laser beam and the rotation axis of the scanning component of the scanning module according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of a laser radar system according to some embodiments of the present disclosure, which exemplarily shows a splicing field of view;
  • FIG. 5 is a schematic diagram of the angular resolution of overlapping parts in the case of field of view splicing according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of the first rotation state of the mirror of some embodiments of the lidar according to the present disclosure.
  • FIG. 7 is a schematic diagram of a second rotation state of the mirror of some embodiments of the lidar according to the present disclosure.
  • FIG. 8 is a schematic diagram of the angular resolution of the overlapping part after the field of view is spliced according to some embodiments of the lidar of the present disclosure
  • FIG. 9 is a schematic top view of a stitched scanning field of view according to some embodiments of the lidar of the present disclosure.
  • FIG. 10 is a schematic diagram of some embodiments of the lidar according to the present disclosure, which increases the group of laser transceiver modules from two to four on the basis of the foregoing embodiments;
  • FIG. 11 is a schematic diagram of a scanning module according to some embodiments of the lidar of the present disclosure, where the scanning module is configured as a quadrangular prism;
  • FIG. 12 is a schematic diagram of field of view stitching according to some embodiments of the lidar of the present disclosure.
  • FIG. 13 is a schematic diagram of some embodiments of the lidar according to the present disclosure, which constructs the scanning module as a different-surface prism on the basis of the foregoing embodiments;
  • FIG. 14 is a schematic diagram of detecting the field of view in the case of scanning using a group of laser transceiver module groups in some embodiments according to the present disclosure
  • FIG. 15 is a schematic diagram of scanning of a lidar according to some embodiments of the present disclosure.
  • Figure 16 is a functional block diagram of a lidar according to some embodiments of the present disclosure.
  • FIG. 17 is a schematic structural perspective view of a lidar according to some embodiments of the present disclosure.
  • FIG. 18 is a schematic structural perspective view of a scanning module of a lidar according to some embodiments of the present disclosure.
  • FIG. 19 is a schematic structural perspective view of a lidar according to some embodiments of the present disclosure.
  • FIG. 20 is a schematic structural perspective view of a scanning module of a lidar according to some embodiments of the present disclosure.
  • the laser radar 1 includes a laser emitting end 3, a scanning module 4 and a laser receiving end 5.
  • the laser emitting end 3 has a laser 31, and the laser 31 is configured to emit a laser beam for detecting a target object.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4.
  • the scanning module 4 is configured to guide the laser beam emitted by the laser 31 to scan the target, and/or receive and guide the laser beam reflected by the target.
  • the control module 6 is configured to control laser emission and reception, and obtain characteristic information of the target object through post-signal data processing.
  • the control module 6 can be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position, thereby realizing independent design, manufacturing, and installation control, for example. Module 6, or realize remote control and data analysis of lidar 1.
  • the control module 6 can also be configured as a component of the lidar 1, for example, arranged in the lidar housing or integrated with the photoelectric device of the lidar 1, so that, for example, in manufacturing and installation In the case of lidar, a complete lidar system can be obtained.
  • At least one laser transmitting terminal 3 and at least one laser receiving terminal 5 are integrated into a laser transceiver module group 2 constructed as a separate structural unit, wherein the laser radar 1 includes a plurality of laser transceiver module groups 2, and the multiple The laser transceiving module groups 2 are arranged in a distributed manner relative to the scanning module 4, and the sub-fields of view correspondingly formed by the plurality of laser transceiving module groups 2 form an at least partially spliced field of view of the laser radar 1 as a whole.
  • the laser radar 1 includes a plurality of laser transceiver module groups 2
  • the multiple The laser transceiving module groups 2 are arranged in a distributed manner relative to the scanning module 4, and the sub-fields of view correspondingly formed by the plurality of laser transceiving module groups 2 form an at least partially spliced field of view of the laser radar 1 as a whole.
  • three-dimensional scanning can be realized by using the one-dimensional scanning module 4, which reduces the requirements for scanning components and reduce
  • the splicing of the detection field of view is realized, and the horizontal field of view has a larger horizontal field of view.
  • the center field of view has a coincident part, so the detection accuracy of the key test area can be improved.
  • FIG. 1 is a schematic diagram of a laser emitting end 3 according to some embodiments, where the laser emitting end 3 includes a laser 31 and a laser shaping module. As shown in the figure, the laser emitting end 3 has a laser 31 configured to emit a laser beam for detecting a target.
  • the laser 31 can be selected from solid-state lasers or semiconductor lasers, such as fiber lasers.
  • the technical solutions proposed in the present disclosure include but are not limited to the aforementioned laser types, but any device capable of generating and emitting laser light can be used, and the concept of the present disclosure is not limited to the form described herein.
  • the laser emitting end 3 also has an emitting mirror group.
  • the emitting mirror group is configured as a laser shaping module.
  • the laser shaping module transmits the laser beam emitted by the laser 31, and realizes the functions of collimating, homogenizing, and shaping the laser beam. According to different design functions and purposes, one or more of the three functions of collimation, homogenization, and shaping can be used to form, for example, a point-like or linear spot.
  • the laser shaping module is composed of a collimator lens 311 and a light homogenizing sheet 312.
  • the laser beam projected by the laser 31 of the laser emitting end 3 is incident on the collimator lens 311 in a relatively divergent manner.
  • the parallel light exits from the collimator lens 311 and is projected to the homogenizing plate 312, and continues after passing through the homogenizing plate 312 Projected.
  • the form of the laser shaping module can be diversified, including but not limited to the combination of the collimator lens 311 and the light homogenizing sheet 312 shown. As long as it is an optical component and its combination that can achieve the corresponding shaping purpose, it can be used as the meaning of the present disclosure.
  • the above laser shaping module, the concept of the present disclosure is not limited to the form described here.
  • the laser 31 and the laser shaping module may be integrated, or configured as separate components to be installed separately, and the concept of the present disclosure is not limited to the form described herein.
  • the laser emitting end 3 emits a linear light spot.
  • the laser shaping module of the laser emitting end 3 shapes the laser beam emitted by the laser 31 of the laser emitting end 3 into a linear spot, that is, a linear scanning laser. Therefore, the laser beam hits the reflection of the scanning module 4 in the form of a linear spot.
  • the target is still scanned in the form of the linear light spot.
  • the beam is shaped into a linear shape, using the technical solution proposed in the present disclosure, three-dimensional scanning can be realized by using the one-dimensional scanning module 4, which reduces the requirements for scanning components and reduces the cost of the whole machine.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4.
  • the laser beam is emitted from the laser emitting end 3 of the lidar 1, and after being reflected by the reflective surface of the scanning module 4, it is projected to the target and scanned. After that, the laser beam reflected by the target first hits the reflective surface of the scanning module 4, and after being reflected by the laser beam, it is received and detected by the laser receiving end 5 of the laser radar 1.
  • a photoelectric detector or a photothermal detector can be used to detect the laser signal, such as an avalanche photodiode, a single photon detector, or a photomultiplier tube.
  • the detector includes but is not limited to the aforementioned types. Any detector that can convert a laser signal into an electrical signal can be used in the technical solution proposed in the present disclosure, and the concept of the present disclosure is not limited to the form described herein.
  • the laser receiving end 5 also has a receiving mirror group.
  • the receiving lens group is arranged in front of the detector along the propagation direction of the laser beam, so that the receiving lens group can receive and transmit the laser beam reflected by the target and/or the laser beam reflected by the scanning module 4, and reflect it back The laser beam is focused on the detector at the laser receiving end 5.
  • the scanning module 4 is configured to guide the laser beam and change the propagation direction and mode of the laser beam to scan the target; on the other hand, the scanning module 4 is configured to change the laser beam reflected by the target.
  • the propagation direction and mode of the light beam guide it to the receiving mirror group of the laser receiving end 5 of the laser radar 1.
  • the scanning module 4 includes a transmitting scanning module and a receiving scanning module, wherein the transmitting scanning module is specifically configured to reflect the laser beam emitted by the laser transmitting end 3 to the target, and the receiving scanning module is specifically configured to Receive and guide the laser beam reflected by the target, and change its direction to the laser receiving end 5.
  • the scanning component of the scanning module 4 may include a double-sided mirror, a polygonal prism, a different-surface prism, or a galvanometer.
  • the laser beam emitted by the laser emitting end 3 of the laser transceiver module group 2 forms an angle with the rotation axis of the scanning component of the scanning module 4, or forms an angle with the reflective surface of the scanning component of the scanning module 4.
  • the angles formed by the laser beam emitted by the laser 31 of the laser emitting end 3 of the laser transceiver module group 2 and the reflective surface of the scanning module 4 are different from each other, so the corresponding scanning subfields of the laser transceiver module groups 2 are mutually different.
  • the angle formed by the laser beam emitted by the laser 31 of the laser emitting end 3 of the laser transceiver module group 2 and the reflective surface of the scanning module 4 is appropriately matched, especially by adjusting the orientation of the laser transceiver module group 2.
  • the splicing mode of the splicing field of view of the lidar 1 in the vertical direction and/or the splicing field of view in the horizontal direction can be changed.
  • the vertical axis direction refers to the direction perpendicular to the horizontal direction, that is, the vertical direction or the vertical direction of the lidar in the normal working state.
  • the scanning component of the scanning module 4 is configured as a double-sided mirror, and the laser beams emitted by the lasers 31 of the laser emitting ends 3 of the two laser transceiver module groups 2 respectively form an angle ⁇ and the rotation axis of the double-sided mirror. ⁇ .
  • the angles ⁇ and ⁇ formed by the laser beams emitted by the laser 31 of the laser emitting end 3 of the two laser transceiver module groups 2 and the rotation axis of the double-sided mirror of the scanning module 4 can be different from each other, that is, the two The angles formed by the laser beams emitted by the laser 31 of the laser emitting end 3 of the laser transceiver module group 2 and the reflective surface of the double-sided mirror of the scanning module 4 are different from each other. Therefore, as shown in FIG. 4, one of the laser beams is integrated with the laser.
  • the lidar 1 generally forms a spliced field of view from the subfields of each laser transceiver module group 2.
  • the scanning module 4 proposed in the present disclosure includes but is not limited to the aforementioned scanning components, but any optical device that can change the propagation direction of the laser beam can be used, and the concept of the present disclosure is not limited to the form described herein.
  • control module 6 is configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing, as shown in FIG. 4.
  • the control module 6 may be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position; or, the control module 6 may also be configured as a component of the lidar 1.
  • the control module 6 can control the laser 31, so as to control the timing and manner of the laser 31 emitting the laser beam.
  • the laser beam may be emitted from the laser 31 in a continuous manner or in a pulsed manner.
  • the control module 6 can also be used to control the detector of the laser receiving end 5 of the laser radar 1.
  • the control module 6 can control the detector for receiving the laser beam reflected from the target object guided by the scanning module 4, and perform post-signal data processing to analyze the characteristic information of the target object.
  • the characteristic information of the target here includes, but is not limited to, characteristic parameters such as the speed, position, and shape of the target, as well as other parameters that can be deduced or calculated from this.
  • control module 6 may include an integrated signal processing part, which is used to analyze and process the photoelectric signal data of the reflected laser beam received by the detector, thereby obtaining characteristic information of the target object. It is also possible to set up a separate signal processing module to realize the corresponding signal processing and analysis functions.
  • the control module 6 can also control the scanning module 4, so that, for example, for rotating scanning components, such as double-sided mirrors, polyhedral prisms, different-surface prisms, etc., control the rotation speed of the rotating scanning components; or for the galvanometer, the controller vibrates Frequency or scanning angle.
  • the scanning component of the scanning module 4 includes different-surface prisms, wherein the angles between the reflective side surfaces of the different-surface prisms and the central axis are different and matched with each other, so that the corresponding sub-fields of each reflective side surface at least partially overlap each other, thereby The stitched field of view of the lidar 1 is formed.
  • a motor is provided for rotationally driving the rotating scanning part of the scanning module 4.
  • the control module 6 can be configured to control the start, stop, and work mode of the motor, especially to regulate the rotation speed of the motor.
  • At least one laser emitting end 3 and at least one laser receiving end 5 are integrated into a laser transceiver module group 2, and the laser transceiver module group 2 is constructed as a single structural unit.
  • the laser emitting end 3 and the laser receiving end 5 integrated in the laser transceiving module group 2 are arranged next to each other in a common structural unit housing.
  • a single structural unit can be formed by integrating at least one laser emitting end 3 and at least one laser receiving end 5 into a common laser transceiver module housing.
  • the separate laser emitting end 3 and the laser receiving end 5 are connected side by side to each other to form a single structural unit through mechanical connection. It is also conceivable that the laser emitting end 3 and the laser receiving end 5 are directly constructed in a common structural module, thereby forming a single structural unit.
  • the laser emitting end 3 and the laser receiving end 5 may be in an up-and-down positional relationship, or a left-right positional relationship, or other positional relationship with each other, all within the scope of the present disclosure. What is important here is that the laser emitting end 3 and the laser receiving end 5 integrated as a structural unit or laser transceiver module group 2 can emit and receive laser beams normally, instead of the laser emission of a laser transceiver module group 2. Optical path interference is caused between the end 3 and the laser receiving end 5 or between the laser emitting end 3 and the laser receiving end 5 of different laser transceiver module groups 2.
  • the lidar 1 includes a plurality of laser transceiver module groups 2, and the plurality of laser transceiver module groups 2 are arranged in a distributed manner relative to the scanning module 4, so that the sub-views corresponding to the multiple laser transceiver module groups 2 are formed.
  • the field forms a field of view in which at least part of the lidar 1 overlaps/splices with each other.
  • a specific number of laser transceiver module groups 2 can be selected, or the orientation relationship between the scanning module 4 and multiple laser transceiver module groups 2 can be changed according to the application situation, or the number of laser transceiver module groups 2 can be changed.
  • the azimuth relationship between the two laser transceiver module groups What is important is that the mutual arrangement relationship between the multiple laser transceiver module groups 2 and the mutual arrangement relationship between the multiple laser transceiver module groups 2 and the scanning module 4 can smoothly realize the transmission and reception of laser beams, and multiple laser transceiver modules Group 2 can form mutually complementary sub-fields of view for the target as required, especially the overall at least partially spliced field of view, for example, as shown in FIG. 4 and FIG. 5.
  • the laser radar 1 includes an even number of laser transceiver module groups 2, such as 2, 4, 6, 8, 10, 12, or even more laser transceiver module groups 2. These laser transceiver module groups 2 can be used as separate laser transceiver module groups. With respect to the scanning module 4, the structural units are substantially symmetrically distributed on both sides, so that the sub-fields of view formed by the multiple laser transceiver module groups 2 form an at least partially spliced overall field of view of the lidar 1 in an overlapping manner.
  • the laser transceiver module group 2 it is also possible to consider the laser transceiver module group 2 to adopt an asymmetrical arrangement with respect to the central axis of the scanning module 4, for example, to enhance the scanning of key areas or key areas, or for example to deal with Special scan angle range, or to change the scan frequency/scan angle resolution of a specific area in a targeted manner.
  • the two laser transceiver module groups 2 and the scanning module 4 may be arranged in a triangle.
  • the two laser transceiver module groups 2 and the scanning module 4 are respectively located at the vertices of an equilateral triangle.
  • the four laser transceiver module groups 2 may be arranged symmetrically on both sides relative to the scanning components of the scanning module 4, for example, in a rectangular arrangement. It can be considered that the four laser transceiver module groups 2 are respectively located at the four corners of a rectangle, and the scanning components of the scanning module 4 can be arranged inside this rectangular shape as required, for example, arranged on the geometric center of the rectangle. , That is, at the intersection of two diagonals. Of course, for special field of view size and/or scanning resolution requirements, it is also possible to consider arranging the scanning components of the scanning module 4 outside this rectangular shape.
  • the lidar 1 includes more than one odd number of laser transceiver module groups 2, such as 3, 5, 7, 9, 11 or even more laser transceiver module groups 2.
  • These laser transceiver module groups 2 can be used as separate structural units to be distributed asymmetrically on both sides relative to the scanning module 4. In this way, the number of laser transceiver module groups 2 assigned to a specific scanning area or a key scanning area can be increased in a targeted manner compared to other areas, and the resolution and/or scanning frequency in such scanning areas can be improved.
  • the working laser transceiver module group 2 can still be distributed symmetrically on both sides relative to the scanning module 4, and the extra laser transceiver module group is used as a spare laser transceiver module group, which is only working laser When the transceiver module group fails or is damaged, it is put into use as a safe redundant replacement device, thereby ensuring the safe, reliable and uninterrupted operation of the lidar 1.
  • a spare laser transceiver module group 2 can also be set separately, for example, for an important scanning range, so that when an individual working laser transceiver module group 2 fails or is externally damaged, it can respond immediately and replace it with a failure or occurrence.
  • the externally damaged laser transceiver module group 2 ensures the continuous and uninterrupted scanning work of the laser radar 1, thereby not interrupting the scanning and monitoring of the target.
  • the laser radar 1 may be provided with a fault detection device for detecting the working state of the laser transceiver module group 2.
  • the control module 6 detects or monitors the functionality of the working laser transceiver module group 2 with the help of a fault detection device, and switches to the emergency working mode of the laser radar 1 when it detects that the laser transceiver module group 2 has a fault or is externally damaged, and Put the spare laser transceiver module group 2 into use and replace the working laser transceiver module group 2 that has failed or is externally damaged.
  • the functional detection of the working laser transceiver module group 2 can be performed when the laser radar 1 is started or paused intermittently.
  • a fault detection device can also be set to continuously monitor the laser transceiver module group 2.
  • each laser transceiver module group 2 may integrate a different number of laser transmitters 3 and laser receivers 5.
  • multiple laser transmitters 3 correspond to one laser receiver. 5.
  • Either one laser emitting end 3 corresponds to multiple laser receiving ends 5, or one laser emitting end 3 corresponds to one laser receiving end 5, or multiple laser emitting ends 3 correspond to multiple laser receiving ends 5.
  • the lidar 1 further includes an orientation adjustment device, which is configured to adjust the orientation of the laser transceiver module group 2, especially the orientation of the laser emitting end 3 and the laser receiving end 5 contained therein.
  • an actuator for adjusting the posture of the laser transceiver module group 2 may be provided.
  • the actuator used to adjust the attitude of the laser transceiver module group 2 is controlled by the control module 6, so that the laser beam emitted by the laser 31 of the laser transmitting end 3 of the laser transceiver module group 2 can be dynamically and automatically adjusted relative to the scanning module 4.
  • control module 6 can coordinately control the actuators assigned to each laser transceiver module group 2 according to a predetermined working mode, so that the control module 6 can automatically match different application scenarios by switching different working modes or Environmental conditions, such as changing the scanning field of view of the lidar 1, and increasing the scanning frequency, vertical angular resolution and/or horizontal angular resolution of a specific scanning area or key scanning area.
  • each laser transceiver module group 2 may be considered to equip each laser transceiver module group 2 with a separate orientation adjustment device, so that individual targeted posture adjustments can be realized for each laser transceiver module group 2.
  • it may also be considered to provide a common orientation adjustment device for all laser transceiver module groups 2. It is also possible to group all laser transceiver module groups 2 into groups, and set a common orientation adjustment device for each group of laser transceiver module groups 2, thereby achieving overall or grouping control of all laser transceiver module groups 2 and achieve consistent satisfaction.
  • actuators that adjust the attitude of the laser transceiver module group consider using electric motors, hydraulic actuators, pneumatic actuators, or piezoelectric actuators, as long as they can drive the orientation adjustment device according to the control signal sent by the control module 6. In other words, adjust the position of the laser transceiver module group 2.
  • it particularly includes a motor for driving the orientation adjustment device, wherein the control module 6 controls the motor for driving the orientation adjustment device, thereby realizing the orientation by driving the orientation adjustment device Adjustment.
  • the plurality of laser transceiver module groups 2 can be individually adjusted by the orientation adjustment device to adjust the orientation of the reflective surface of the scanning module 4, thereby correspondingly formed by adjusting the plurality of laser transceiver module groups 2
  • the sub-field of view is used to change the stitching field of view and/or scanning resolution of the lidar 1.
  • the field of view of the lidar 1 can be dynamically and automatically changed in the way of open-loop control/closed-loop control; especially for specific For critical areas, dynamically improve the vertical angular resolution and/or horizontal angular resolution of the lidar 1.
  • the lidar 1 can be set in different working modes, including but not limited to a normal working mode and an enhanced working mode.
  • the normal working mode of lidar 1 the sub-fields of multiple laser transceiver module groups 2 at least partially overlap each other to form a spliced field of view of lidar 1, so that a certain number of laser transceiver module groups 2 are used to realize lidar 1 Balanced scanning performance.
  • the balanced scanning performance here means that, for example, the size of the field of view, the vertical axis angular resolution and the horizontal angular resolution are coordinated and matched with each other to achieve the performance of the lidar 1 that meets the application requirements.
  • the position adjustment device to adjust the position of the laser transceiver module group 2
  • more laser transceiver module groups 2 are allocated to specific areas or key areas for scanning.
  • a larger number of laser transceiver module groups 2 are allocated to specific areas or key areas for scanning, thereby obtaining an increased stitching field of view, vertical angular resolution and/or horizontal angular resolution in this area, thereby improving the lidar 1 Overall performance.
  • the laser transceiver module group 2 covers or at least partially covers a specific area or key area for scanning
  • a larger number of laser transceiver module groups 2, such as 40%, 50%, or even 60% or more of the laser transceiver module group is allocated to the specific area or key area for scanning, thereby enhancing the scanning frequency and resolution of the lidar 1 in these areas.
  • the lidar 1 also has an emergency working mode.
  • the lidar 1 When detecting that the laser transceiver module group 2 is faulty or externally damaged, switch to the emergency working mode of the laser radar 1, and put the spare laser transceiver module group 2 into use and replace the laser transceiver module group 2 that has failed or externally damaged , To ensure that the functions and performance of the lidar 1 are not damaged or reduced.
  • the position adjustment device can be controlled by the control module 6 so that the variable field of view of the lidar 1 can be dynamically realized according to requirements.
  • the posture of each laser transceiver module group that is, changing the orientation and angle of the laser beam emitted by the laser 31 of the laser emitting end 3, for example, in the case of being used as a vehicle-mounted laser radar 1, it can be based on the external environment of the vehicle.
  • 6 to 9 show some embodiments of the laser radar 1 according to the present disclosure, in which exactly two laser transceiver module groups 2 are provided, and a double-sided mirror is used as the scanning component of the scanning module 4.
  • the two laser transceiver module groups 2 are arranged symmetrically with respect to the double-sided mirror as the scanning part of the scanning module 4, and are arranged in a triangle with the double-sided mirror. That is to say, the two laser transceiver module groups 2 and the scanning module 4 are respectively located at the vertices of a triangle, and this triangle may especially be an equilateral triangle.
  • the laser transceiver module group 2 can also be arranged in a straight line or in a plane with the rotation axis.
  • FIG. 6 shows a first rotation state of the double-sided mirror according to some embodiments of the present disclosure
  • FIG. 7 shows a second rotation state of the double-sided mirror according to some embodiments of the present disclosure.
  • the laser beam emitted from the laser emitting end 3 of the laser transceiver module group 2 is projected to the target in the form of a linear laser after passing through the laser shaping module.
  • the two laser transceiver module groups 2 are respectively placed on both sides of the double-sided mirror, and integrate a laser emitting end 3 and a laser receiving end 5 respectively.
  • the target object is detected and scanned by rotating the double-sided mirror.
  • the laser beam reflected by the target is also received by the double-sided mirror of the scanning module 4 and reflected to the laser receiving end 5 of the laser transceiver module group 2 respectively.
  • the receiving mirror group of each laser receiving end 5 can receive and transmit the reflected laser beam, and converge the reflected laser beam to the detector of the laser receiving end 5.
  • the two laser transceiver module groups 2 respectively form their respective sub-fields, in which the different areas of the reflective surface of the double-sided mirror respectively constitute the transmitting scanning module/area and the receiving scanning module/area, which is used as the transmitting and scanning module.
  • the reflective surface area is specifically set to reflect the laser beam emitted by the laser emitting end 3 to the target
  • the reflective surface area used as the receiving and scanning module is specifically set to receive and guide the laser beam reflected from the target, and to Change the direction to the laser receiving end 5.
  • FIG. 8 is a schematic diagram of the angular resolution of the overlapping part after the field of view is spliced according to some embodiments of the present disclosure.
  • the vertical field angle is related to the divergence angle after laser shaping.
  • the vertical field angle in this embodiment is 20°.
  • the detector in the laser receiving end uses a 64-line linear array APD.
  • the lidar 1 has a vertical angular resolution of 0.3° in the non-coincident part, and can be increased to a vertical angular resolution of 0.15° in the coincident part, and the scanning resolution of the coincident part is higher than that of the non-coincident part.
  • the vertical axis angular resolution here is only used as an example for explaining the inventive concept, and does not constitute a limitation to the present disclosure.
  • a detection scanning field of view of 0.1° or even higher can also be achieved according to requirements.
  • Figure 9 is a schematic top view of a stitched scanning field of view according to some embodiments of the present disclosure.
  • a motor can be provided to drive the double-sided mirror to rotate.
  • the control module 6 can be configured to control the start, stop, and work mode of the motor, especially to regulate the rotation speed of the motor.
  • the scanning subfields respectively formed by the two laser transceiver module groups 2 each have a horizontal field of view of 100°, of which 20° is the overlapping part, so the total horizontal field of view angle is 180°.
  • the size of the horizontal angle of view here is only used as an example for explaining the inventive concept, and does not constitute a limitation to the present disclosure.
  • a detection scanning field of view of more than 200° can also be achieved according to requirements.
  • an orientation adjustment device (not shown) may also be included.
  • the plurality of laser transceiver module groups 2 can individually adjust the orientation relative to the reflective surface of the scanning module 4 through the orientation adjustment device, thereby adjusting and scanning.
  • the control module 6 can control the orientation adjustment device to automatically adjust the orientation of the multiple laser transceiver module groups 2 relative to the reflective surface of the scanning module 4 according to the acquired characteristic information of the target.
  • the orientation adjustment device can individually set different included angles of the laser transceiver module group 2 relative to the reflective surface of the scanning module 4, thereby improving the vertical and/or horizontal angular resolution of a specific field of view.
  • FIG. 10 shows some embodiments of the laser radar 1 of the present disclosure, in which exactly four laser transceiver module groups 2A-2D are provided, and a double-sided mirror is used as the scanning component of the scanning module 4.
  • the four laser transceiver module groups 2A-2D are arranged symmetrically on both sides with respect to the reflective surface of the double-sided mirror as the scanning component of the scanning module 4, and form a substantially rectangular shape.
  • the four laser transceiver module groups 2A-2D are respectively arranged on one of the four corners of the rectangle, and the double-sided mirror as the scanning part of the scanning module 4 is at the geometric center of this rectangle.
  • the rotation axis of the double-sided mirror as the scanning component of the scanning module 4 coincides with the intersection of the two diagonal lines of the rectangle formed by the four laser transceiver module groups 2A-2D.
  • the laser transceiver module group 2 is arranged in a non-rectangular manner relative to the reflective surface of the double-sided mirror as the scanning component of the scanning module 4, for example, to enhance scanning For key areas or key areas, or, for example, to deal with a special scanning angle range, or to change the scanning frequency/scanning angle resolution of a specific area in a targeted manner, the laser transceiver module group 2 can adopt a trapezoidal or other irregular quadrilateral arrangement. In particular, different positions of the laser transceiver module group 2 can be set according to detection requirements.
  • the four laser transceiver module groups 2A-2D respectively form corresponding sub-fields 2A-2D, and the sub-fields 2A-2D overlap each other.
  • the different areas of the reflective surface of the double-sided mirror can respectively constitute the transmitting and scanning module/area and the receiving and scanning module/area, that is, the reflective surface area used as the transmitting and scanning module is specially set for the laser beam emitted by the laser emitting end 3 Reflected to the target, and the reflective surface area used as the receiving and scanning module is specially set to receive and guide the laser beam reflected by the target, and change its direction to the laser receiving end 5.
  • a motor in order to drive the double-sided mirror to rotate, a motor can also be provided, and the control module 6 can be configured to control the start, stop, and work mode of the motor, especially to regulate the rotation speed of the motor.
  • the laser transceiver module group 2 of these embodiments is increased from two to four.
  • the sub-fields 2A-2D formed by the four laser transceiver module groups 2A-2D partially overlap, which is more conducive to improving the scanning resolution.
  • the vertical axis angular resolution can reach 0.075°.
  • the control module 6 can coordinate and control the actuators assigned to the four laser transceiver module groups according to the predetermined working mode, so that the control module 6 can adjust the actuators by switching different working modes.
  • the orientation of the four laser transceiver module groups allows the lidar to automatically match different application scenarios or environmental conditions, such as changing the scanning field of view of the lidar 1 to improve the vertical angular resolution and/or level of a specific scanning area or key scanning area Angular resolution.
  • FIG. 11 is a scanning module 4 according to some embodiments of the present disclosure.
  • the scanning module 4 is configured as a quadrangular prism, especially a regular quadrangular prism or a rectangular parallelepiped quadrangular prism.
  • the quadrangular prism rotates around its central axis.
  • FIG. 12 is a schematic diagram of field of view stitching according to some embodiments of the present disclosure.
  • a spliced field of view is formed when a quadrangular prism is used as the scanning part of the scanning module 4.
  • the two laser transceiving module groups 2 are arranged symmetrically with respect to the central axis of the quadrangular prism as the scanning component of the scanning module 4, for example, the two laser transceiving module groups 2 and the central axis of the quadrangular prism are arranged in the same plane.
  • other irregular or misaligned arrangements can also be considered to achieve a special field of view splicing effect.
  • the field of view of the laser radar 1 can be effectively expanded, the scanning frequency can be increased, and it can even be real-time for the target or specific area. monitor.
  • Fig. 13 shows a configuration of the scanning module 4 as a different-surface prism based on the foregoing embodiments according to some embodiments of the present disclosure, specifically, a different-surface quadrangular prism in these embodiments.
  • the feature of the different-sided quadrangular prism is that the included angles of the four sides and the central axis of the quadrangular prism are different from each other.
  • the angles formed by the laser beam emitted by the laser 31 of the laser emitting end 3 of the laser transceiver module group 2 and the reflection surfaces of the different-face prism are different from each other, so the scanning subfields formed by the laser transceiver module groups 2 coincide with each other Part, forming the spliced field of view of the lidar 1.
  • FIG. 14 is a schematic diagram of detecting the field of view in the case of scanning using a set of transceiver modules in some embodiments according to the present disclosure.
  • the sub-fields AD corresponding to the respective reflective surfaces of the different-surface prism The overlapping positional relationship.
  • the four reflecting sides of the different-faced quadrangular prism are placed on an axis (reflected as an intersection in the plan view) in an imaginary way, which more clearly shows that the four reflecting sides are at an angle ⁇ 1 , The positional relationship of ⁇ 2 and ⁇ 3.
  • the sub-views formed by the respective reflective surfaces of the different-face prisms are different from each other.
  • the field is also in a different position.
  • the sub-field A corresponding to face A of the different-face prism is shown as the first rectangle (dashed line) from top to bottom in Fig. 14, and the sub-field B corresponding to face B is shown in Fig.
  • each two adjacent sub-fields of view have a partial field of view that overlaps in a unique manner, thereby forming a spliced field of view of the lidar 1 as a whole.
  • FIG. 14 is a schematic diagram of a spliced detection field of view formed by scanning using only one laser transceiver module group 2.
  • at least two laser transceiver module groups 2 can be used, and by adopting an appropriate arrangement as described above, a more complex and special field of view splicing effect can be achieved to meet the diverse and changing needs of practical applications.
  • the different-surface prism has four reflective sides by way of example.
  • the included angles between the different reflecting surfaces of the different-faced prisms or the included angles with the central axis can be set according to the actual application requirements according to the concept of the present disclosure, so as to achieve a favorable large range Even a panoramic scanning field of view, such as real-time monitoring or greater vertical and/or horizontal resolution.
  • the laser radar 1 mainly includes a laser emitting end 3, a laser receiving end 5 and a scanning module 4.
  • the laser emitting end 3 has a laser
  • the laser is configured to emit a laser beam for detecting a target object.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4.
  • the scanning module 4 is configured to guide the laser beam emitted by the laser to scan the target, and/or receive and guide the laser beam reflected by the target.
  • the lidar is further equipped with a control module 6, which is configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing.
  • the scanning part of the scanning module 4 is configured as a rotatable plate-shaped double-sided mirror 41.
  • control module 6 can be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position, thereby realizing independent design, manufacturing, and installation control, for example. Module 6, or realize remote control and data analysis of lidar 1.
  • control module 6 can also be configured as a component of the lidar 1, for example, arranged in the lidar housing or integrated with the photoelectric device of the lidar 1, so that, for example, in manufacturing and installation In the case of lidar, a complete lidar system can be obtained.
  • the linear scanning laser can be used simply and efficiently, which helps to significantly improve the vertical angular resolution of the lidar 1 without increasing the number of lasers.
  • FIG. 15 is a schematic diagram of scanning of the lidar 1 according to some embodiments of the present disclosure.
  • the laser shaping module of the lidar 1 shapes the laser beam emitted by the laser of the laser emitting end 3 into a linear scanning laser, so the laser beam is projected in the form of a linear scanning laser to a plate-shaped double-sided mirror that is a scanning component of the scanning module 4 41 on the reflective surface.
  • the human body representing the target is still scanned in the form of the linear scanning laser.
  • the laser beam is shaped into a linear scanning laser by the shaping module of the laser emitting end 3 of the laser radar 1, that is, a linear spot, and then a rotatable plate-shaped double-sided mirror 41 is used as a scanning component.
  • the one-dimensional scanning module 4 can realize three-dimensional scanning, so the requirements for scanning components are significantly reduced, the overall machine cost is reduced, and the linear scanning laser can be reflected efficiently and the target can be scanned with the linear scanning laser.
  • FIG. 16 is a functional block diagram of the lidar 1 according to some embodiments of the present disclosure.
  • the laser emitting end 3 of the laser radar 1 includes a laser and a laser shaping module, wherein the laser is configured to emit a laser beam for detecting a target.
  • the laser can be selected from solid-state lasers or semiconductor lasers, such as fiber lasers.
  • the technical solutions proposed in the present disclosure include but are not limited to the aforementioned laser types, but any device that can generate and emit laser light can be used, and the present disclosure has no limitation on this.
  • the laser emitting end 3 also has an emitting mirror group, which is configured as a laser shaping module.
  • the laser shaping module transmits the laser beam emitted by the laser, and realizes the functions of collimating, homogenizing, and shaping the laser beam. According to different design functions and purposes, one or more of the three functions of collimation, homogenization, and shaping can be used to form, for example, a point-like or linear spot.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4. For example, as shown in FIG. 16, the laser beam is emitted from the laser emitting end 3 of the laser radar 1, and after being reflected by the reflective surface of the plate-shaped double-sided mirror 41, it is projected to the target and scanned. After that, the laser beam reflected by the target first hits the reflecting surface of the plate-shaped double-sided mirror 41, and is reflected by the laser receiving end 5 of the lidar 1 and detected.
  • a photoelectric detector or a photothermal detector can be used to detect the laser signal, such as an avalanche photodiode, a single photon detector, or a photomultiplier tube.
  • the detector includes but is not limited to the aforementioned types. Any detector that can convert laser signals into electrical signals can be used in the technical solutions proposed in the present disclosure, and the present disclosure has no limitation on this.
  • the laser receiving end 5 also has a receiving mirror group.
  • the receiving lens group is arranged in front of the detector along the propagation direction of the laser beam, so that the receiving lens group can receive and transmit the laser beam reflected by the target and/or the laser beam reflected by the scanning module 4, and reflect it back
  • the laser beam is focused on the detector at the laser receiving end 5.
  • the target When the linear scanning beam irradiates the detection target, the target generates a diffusely reflected beam, and the diffusely reflected beam is received by the laser receiving end 5 after passing through the rotating double-sided mirror 41.
  • the diffusely reflected light beam is collected by the receiving mirror group of the laser receiving end 5 and then converged on the detector to form a detection signal.
  • the plate-shaped double-sided mirror 41 is provided on the one hand to guide the laser beam emitted by the laser emitting end 3, and to change the propagation direction and mode of the laser beam to scan the target; on the other hand, the plate-shaped double The surface reflecting mirror 41 is set to change the propagation direction and mode of the laser beam reflected by the target, and guide it to the receiving mirror group of the laser receiving end 5 of the laser radar 1.
  • control module 6 is configured to control laser emission and reception, and obtain characteristic information of the target object through post-signal data processing.
  • the control module 6 may be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position; or, the control module 6 may also be configured as a component of the lidar 1.
  • the control module 6 includes, for example, a laser driving module 62, a signal processing module 63, and a main control module 61.
  • the laser driving module 62 is used to control the laser of the laser emitting end 3 to emit laser
  • the signal processing module 63 is used to process the detection signal received by the detector of the laser receiving end 5
  • the main control module 61 is used to control the laser driving
  • the module 62 and the signal processing module 63 use the signal processing module 63 to calculate the characteristic information of the target, such as the distance and position of the target.
  • the main control module 61 can also control and adjust the laser driving module 62 and/or the scanning module 4 according to the characteristic information fed back by the signal processing module 63, so as to automatically adjust the laser driving module 62 and/or the scanning module in a closed-loop control manner.
  • 4 working state or working mode for example, dynamically and automatically adjust the performance of the lidar, such as the field of view, scanning resolution, etc.
  • control module 6 can control the laser, so as to control the timing and manner of the laser beam emitting the laser beam.
  • the laser beam may be emitted from the laser in a continuous manner or in a pulsed manner.
  • characteristic information of the target includes but is not limited to characteristic parameters such as speed, position, and shape, as well as other parameters that can be derived or calculated from this.
  • the control module 6 can also control the scanning component of the scanning module 4, so as to control parameters such as the rotation speed of the rotating scanning component.
  • the control module 6 can also control the detector of the laser receiving end 5.
  • FIG. 17 is a schematic structural perspective view of a lidar 1 according to some embodiments of the present disclosure.
  • reference numeral 7 is used to denote the housing 7 of the lidar 1, which defines the internal space of the lidar 1.
  • the components of the lidar 1, including but not limited to the laser emitting end 3, the laser receiving end 5, the scanning module 4 and the optional control module 6, and other optical and electronic components, are all arranged in the housing 7 of the lidar 1. In the defined internal space.
  • the specific structure of the housing 7 can be designed and changed according to the installation and use environment of the lidar 1, which is not limited in the present disclosure.
  • At least one laser emitting end 3 and at least one laser receiving end 5 are integrated into a laser transceiver module group 2.
  • Each laser transceiver module group 2 is constructed as a separate structural unit.
  • the laser emitting end 3 and the laser receiving end 5 integrated in the laser transceiving module group 2 are arranged next to each other in a common structural unit housing.
  • a single structural unit can be formed by integrating at least one laser emitting end 3 and at least one laser receiving end 5 into a common laser transceiver module housing.
  • a laser emitting end 3 and a laser receiving end 5 are integrated into a laser transceiver module group 2 constructed as a single structural unit.
  • a total of two laser transceiver module groups 2 are provided in the housing 7 of the laser radar 1.
  • the laser emitting end 3 does not limit the number of lasers and shaping modules, and may be one or more.
  • the laser receiving end 5 does not limit the number of detectors and receiving mirror groups, and may be one or more.
  • the number of corresponding component parts can be increased or decreased according to requirements and a reasonable arrangement, and the concept of the present disclosure is not limited to the number and manner of component parts described as examples.
  • each laser transceiver module group 2 may integrate a different number of laser transmitters 3 and laser receivers 5.
  • multiple laser transmitters 3 correspond to one Laser receiving end 5, or one laser emitting end 3 corresponds to multiple laser receiving ends 5, or one laser emitting end 3 corresponds to one laser receiving end 5, or multiple laser emitting ends 3 correspond to multiple laser receiving ends 5.
  • the separate laser emitting end 3 and the laser receiving end 5 are connected side by side to each other to form a single structural unit through mechanical connection. It is also conceivable that the laser emitting end 3 and the laser receiving end 5 are directly constructed in a common structural module, thereby forming a single structural unit.
  • the laser emitting end 3 and the laser receiving end 5 may be in an up-and-down positional relationship, or a left-right positional relationship, or other positional relationship with each other, all within the scope of the present disclosure. What is important here is that the laser emitting end 3 and the laser receiving end 5 integrated as a structural unit or laser transceiver module group 2 can emit and receive laser beams normally, instead of the laser emission of a laser transceiver module group 2. Optical path interference is caused between the end 3 and the laser receiving end 5 or between the laser emitting end 3 and the laser receiving end 5 of different laser transceiver module groups 2.
  • the laser radar 1 includes a plurality of laser transceiver module groups 2, and the plurality of laser transceiver module groups 2 are distributedly arranged relative to the plate-shaped double-sided mirror 41.
  • a specific number of laser transceiver module groups 2 can be selected.
  • the laser radar 1 includes an even number of laser transceiver module groups 2, such as 2, 4, 6, 8, 10, 12, or even more laser transceiver module groups 2.
  • These laser transceiver module groups 2 can be used as separate structural units.
  • the scanning modules 4 are generally symmetrical or asymmetrically distributed on both sides.
  • the laser radar 1 includes more than one odd number of laser transceiver module groups 2, for example, 3, 5, 7, 9, 11 or even more laser transceiver module groups 2.
  • These laser transceiver module groups 2 can be respectively used as separate structural units to be distributed symmetrically or asymmetrically on both sides of the scanning module 4.
  • the factors that determine the arrangement of the laser transceiver module group 2 include, but are not limited to: enhancing the scanning of key areas or key areas, coping with special scanning angle ranges, and changing the scanning frequency/scanning angular resolution of specific areas in a targeted manner.
  • a rotatable plate-shaped double-sided mirror 41 is used as the scanning part of the scanning module 4 here.
  • the plate-shaped double-sided mirror 41 is fixed on the base 42.
  • the plate-shaped double-sided mirror 41 is vertically fixed to the base 42 with its rectangular short sides, so that the base 42 can transmit the rotational motion to the plate-shaped double-sided mirror 41.
  • the base 42 can be driven by a motor 43 to rotate around a rotation axis.
  • the linear scanning laser light is reflected by the reflecting surface of the rotating double-sided mirror 41 to form a two-dimensional scan, especially in the horizontal scanning direction as shown in FIG. 15.
  • the control module 6 can also be configured to control the start, stop, and working mode of the motor 43, especially to adjust the rotation speed of the motor 43, and then adjust the rotation of the plate-shaped double-sided mirror 41.
  • the lidar 1 further includes an isolation mechanism that separates the reflective surface of the plate-shaped double-sided mirror 41 into a transmitting scanning area and a receiving scanning area. At the same time, the isolation mechanism also isolates the laser emitting end 3 and the laser receiving end 5 of the laser transceiver module group 2 constructed as a separate structural unit from each other.
  • the isolation mechanism is made of materials that can eliminate, filter or block stray light. The stray light is generated by, for example, the internal and external environment of the lidar, the structure of the lidar itself, the optical components arranged in the lidar, or the optical components related to the lidar.
  • stray light may be generated by the scanning component of the scanning module of the lidar itself and/or by the shaping module at the laser emitting end and/or by the laser at the laser emitting end.
  • the adverse effects of stray light that may be generated when the plate-shaped double-sided mirror 41 reflects the laser beam on the operation of the lidar 1 can be at least partially or even completely eliminated by the isolation mechanism.
  • the isolation mechanism is composed of a circular rotating partition 81 and a fixed partition 82 having a circular hole.
  • the fixed partition 82 is, for example, fixed to the housing 7 of the lidar 1, so that in addition to the isolation function, it can also support the internal structure of the entire lidar 1, or be used to carry optoelectronic components or other electronic components. Device.
  • the fixed partition 82 fixed on the housing 7 of the lidar 1 also extends across the laser transceiver module group 2 configured as a separate structural unit arranged in the inner space of the housing 7 of the lidar 1, and The laser transmitting end 3 and the laser receiving end 5 of the laser transceiver module group 2 are isolated from each other.
  • a circular hole is opened in the fixed partition 82.
  • the rotating partition 81 has a circular shape, and its circular diameter matches the diameter of the circular hole opened in the fixed partition 82, so that it can be embedded in the laser radar when assembling the lidar. In the circular hole of the fixed partition 82, it can rotate in the circular hole of the fixed partition 82 when the lidar is running.
  • the stray light generated by the optical components in the lidar or the optical components related to the lidar can be provided with a sliding and sealing coating between the outer circumference of the rotating partition 81 and the circular hole of the fixed partition 82, On the one hand, it can improve the sliding performance between the rotating partition 81 and the fixed partition 82, and on the other hand, it can maintain the seamless fit between the rotating partition 81 and the fixed partition 82, so as to completely block the impact on the operation of the lidar 1 Unfavorable effects of stray light.
  • the coating here can be a structural modification layer on the surface of the material, or an attached lubricating/sealing material layer.
  • the fixed partition 82 and the rotating partition 81 embedded in the circular hole of the fixed partition 82 form a partition plane, which divides the inner space of the housing 7 of the lidar 1 into two cavities
  • the scanning area of the plate-shaped double-sided mirror 41 and the laser emitting end 3 of each laser transceiver module group 2 are arranged in one of the chambers, and the plate-shaped double-sided mirror 41 receives The scanning area and the laser receiving end 5 of each laser transceiver module group 2 are arranged in another chamber.
  • the rotating partition 81 has an opening 811, and the plate-shaped double-sided reflector 41 extends through the opening 811 of the rotating partition 81 and interacts with the rotating partition 81. fixed.
  • the opening 811 of the rotating partition 81 has a long and narrow rectangular shape so as to match the rectangular cross-sectional shape of the plate-shaped double-sided mirror 41.
  • the size of the opening 811 of the rotating partition 81 and the rectangular cross-sectional size of the plate-shaped double-sided reflector 41 can form a close fit on the one hand to prevent stray light from passing through all of the rotating partition 81.
  • the opening 811 propagates, on the other hand, it can form a force transmission cooperation, so that the plate-shaped double-sided mirror 41 can drive the rotating partition 81 to rotate together when the lidar is running.
  • the transmitting scanning area and the receiving scanning area of the plate-shaped double-sided mirror 41 are formed on both sides of the rotating partition 81, respectively.
  • the rotating partition 81 is composed of two semicircular plates, and the two semicircular plates are connected to both sides of the plate-shaped double-sided mirror 41, for example, by bonding, welding or integral forming. Join together to form a full circle.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 divides the internal space of the housing 7 of the lidar 1 into an upper chamber and a lower chamber, wherein the upper chamber is arranged with the laser emission Related components include but are not limited to the laser emitting end 3 of each laser transceiver module group 2 and the emission scanning area of the plate-shaped double-sided mirror 41, and the lower chamber is arranged with components related to laser reception, including but not limited to each The laser receiving end 5 of the laser transceiver module group 2 and the receiving scanning area of the plate-shaped double-sided mirror 41.
  • the emitted linear scanning beam and the reflected beam of the target object are in the rotatable plate-shaped double-sided mirror. Different areas of 41 reflect, thereby effectively isolating the light-receiving path and avoiding the risk of stray light.
  • each laser transceiver module group 2 in a separate structural unit can be set according to needs, for example, it can be placed up and down, or left and right.
  • the laser emitting end 3 and the laser receiving end 5 can be located in different chambers in the inner space of the shell 7 of the laser radar 1, without being affected by the mutual positional relationship between the laser emitting end 3 and the laser receiving end 5 .
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 can also divide the internal space of the housing 7 of the lidar 1 into two left and right chambers, or any possible other positional relationship. Two chambers.
  • an isolation mechanism can be used to divide the internal space of the housing 7 of the lidar 1 into more functional chambers.
  • the structural unit housing of the laser transceiver module group 2 and the housing 7 of the laser radar 1 can be integrally formed to form a separate laser transceiver module group cavity.
  • the relative positional relationship between the laser transceiver module group 2 and the scanning components of the scanning module 4 can be accurately determined in advance, simplifying the optical calibration steps that must be carried out in the process of assembling the laser radar 1, and making the laser radar 1 itself Easy to implement modular structure.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 is consistent with the The reflecting surfaces of the plate-shaped double-sided reflecting mirror 41 all form an angle, especially perpendicular to each other.
  • the lidar 1 is structurally easy to realize that the rotation axis of the plate-shaped double-sided mirror 41 coincides with the rotation axis of the output shaft of the drive motor 43, which is not only conducive to the simplified structural design of the lidar 1, but also has Conducive to the use of linear scanning lasers for efficient scanning in the horizontal direction.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 and the reflective surface of the plate-shaped double-sided mirror 41 form other angles, such as 30° or 60°.
  • the laser beam emitted by the laser emitting end 3 of each laser transceiver module group 2 and the reflective surface of the plate-shaped double-sided mirror 41 can form different angles, so the special field of view of the laser radar 1 can be realized according to requirements Angle, scan range, or other scan characteristics.
  • the isolation mechanism may further include a bottom plate 83, which additionally divides the internal space of the housing 7 of the lidar 1 into a separate equipment chamber.
  • the bottom plate 83 in the housing 7 of the lidar 1 separates a separate equipment chamber below the partition plane formed by the fixed partition 82 and the rotating partition 81, and is used to drive the motor that rotates the base 42 43 can be located in this separate equipment chamber.
  • other electromechanical components can also be placed in this equipment chamber, such as the control module 6 itself or an electronic device associated with it.
  • the internal space of the housing 7 of the lidar 1 is entirely separated by an isolation mechanism, including a fixed partition 82, a rotating partition 81 and a bottom plate 83, forming a structure of three chambers. Therefore, through simple and effective measures, functional optimization and structural partitioning at the three levels of optics, electrical and machinery are realized, which not only avoids unfavorable stray light optically, but also shields harmful electromagnetic interference, and can be used in mechanical structures. Realize modular manufacturing and assembly.
  • the laser shaping module can shape the laser beam emitted by the laser of the laser emitting end 3 into a linear scanning laser, and the plate-shaped double-sided mirror 41 reflects the linear scanning laser and scans the target object.
  • the laser emitting end 3 emits a line of light, which can be regarded as a large number of continuous points in the vertical direction, and scanning the target area/object is achieved by rotating the plate-shaped double-sided mirror 41.
  • by shaping the laser beam into a linear scanning laser combined with other improvement measures on the lidar 1 proposed in the present disclosure, an improved field of view of the lidar 1 can be obtained, and the working flexibility, reliability, and reliability of the lidar 1 can be significantly improved. Work performance.
  • FIG. 18 is a schematic structural perspective view of the scanning module 4 of the laser radar 1 according to some embodiments of the present disclosure.
  • the plate-shaped double-sided mirror 41 is installed in an upright manner on, for example, a circular base 42.
  • the base 42 can be driven to rotate around a vertical rotation axis by the motor 43 below, and thus drive the plate-shaped double-sided mirror 41 to rotate together.
  • the reflection surface of the plate-shaped double-sided mirror 41 is perpendicular to the rotation plane of the base 42, and on the other hand, the rotation axes of the two coincide with each other.
  • the base 42 may be directly arranged on the housing 7 of the lidar 1 by using a structure such as a bearing, or as shown in FIG. 17, the base 42 may be arranged on the bottom plate 83, which is separated from the housing 7 of the lidar 1.
  • the internal space is divided into a separate equipment chamber.
  • the motor 43 for driving the rotation of the base 42 or other driving/transmission mechanisms can be conveniently arranged in the equipment chamber.
  • the output shaft of the motor 43 can pass through the bottom plate 83 and connect to the base 42 carrying the plate-shaped double-sided mirror 41.
  • the plate-shaped double-sided mirror 41 passes through the long and narrow rectangular opening 811 of the circular rotating partition 81 and is fixed to the rotating partition 81 without any gap.
  • the opening 811 of the rotating partition 81 can be press-fitted with the plate-shaped double-sided mirror 41 to prevent stray light from propagating through the gap between the rotating partition 81 and the plate-shaped double-sided mirror 41.
  • other sealing and fixing measures may also be considered, such as filling other gap-filling materials and/or adhesives between the opening 811 of the rotating partition 81 and the plate-shaped double-sided mirror 41.
  • the rotating partition 81 and the bottom plate 83 are parallel to each other, and both are perpendicular to the reflection surface of the plate-shaped double-sided mirror 41.
  • the rotation axis of the output shaft of the motor 43 for driving the rotation of the base 42 passes through the center of the circular base 42 and the rotating partition 81 and coincides with the rotation axis of the plate-shaped double-sided mirror 41.
  • the scanning module 4 including but not limited to the plate-shaped double-sided mirror 41, the rotating partition 81, the base 42, and the motor 43, can be configured as a separate pre-assembled module, thereby greatly simplifying the manufacturing of the lidar 1 And the assembly process, and can be easily replaced and repaired when needed.
  • the scanning part of the scanning module 4 is configured as a rotatable plate-shaped double-sided mirror 41.
  • an isolation mechanism is provided to separate the reflective surface of the plate-shaped double-sided mirror 41 into a transmitting scanning area and a receiving scanning area, and at the same time, the laser transmitting end 3 of the laser transceiver module group 2 constructed as a separate structural unit is separated. It is isolated from the laser receiving end 5.
  • the isolation mechanism is composed of a circular rotating partition 81 and a fixed partition 82 with a circular hole.
  • the fixed partition 82 is fixed to the housing 7 of the lidar 1, and the rotating partition 81 is embedded in the lid during assembly. In the circular hole of the fixed partition 82, the rotating partition 81 can rotate in the circular hole of the fixed partition 82.
  • the plate-shaped double-sided mirror 41 can drive the rotating partition 81 to rotate together.
  • the scanning part of the scanning module 4 may also be configured as a rotatable prism.
  • the laser radar 1 mainly includes a laser emitting end 3, a laser receiving end 5, and a scanning module 4.
  • the laser emitting end 3 has a laser
  • the laser is configured to emit a laser beam for detecting a target object.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4.
  • the scanning module 4 is configured to guide the laser beam emitted by the laser to scan the target, and/or receive and guide the laser beam reflected by the target.
  • the lidar is further equipped with a control module 6, which is configured to control laser emission and reception, and obtain characteristic information of the target through post-signal data processing.
  • the scanning part of the scanning module 4 is configured as a rotatable prism 44.
  • control module 6 can be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position, thereby realizing independent design, manufacturing, and installation control, for example. Module 6, or realize remote control and data analysis of lidar 1.
  • control module 6 can also be configured as a component of the lidar 1, for example, arranged in the lidar housing or integrated with the photoelectric device of the lidar 1, so that, for example, in manufacturing and installation In the case of lidar, a complete lidar system can be obtained.
  • the linear scanning laser can be used simply and efficiently, which helps to significantly improve the vertical angular resolution of the lidar 1 without increasing the number of lasers. 15 and 16, the laser radar including the rotatable prism 44 will be described.
  • FIG. 15 is a schematic diagram of scanning of the lidar 1 according to some embodiments of the present disclosure.
  • the laser shaping module of the lidar 1 shapes the laser beam emitted by the laser of the laser emitting end 3 into a linear scanning laser, so the laser beam is projected to the surface of the rotatable prism 44 as a scanning part of the scanning module 4 in the form of a linear scanning laser on.
  • the human body representing the target is still scanned in the form of the linear scanning laser.
  • the laser beam is shaped into a linear scanning laser by the shaping module of the laser emitting end 3 of the laser radar 1, that is, a linear spot, and then the rotatable prism 44 is used as the scanning component, and the one-dimensional scanning module 4 is used.
  • Three-dimensional scanning can be realized, so the requirements for scanning components are significantly reduced, the cost of the whole machine is reduced, and the linear scanning laser can be reflected efficiently and the target can be scanned with the linear scanning laser.
  • FIG. 16 is a functional block diagram of the lidar 1 according to some embodiments of the present disclosure.
  • the laser emitting end 3 of the laser radar 1 includes a laser and a laser shaping module, wherein the laser is configured to emit a laser beam for detecting a target.
  • the laser can be selected from solid-state lasers or semiconductor lasers, such as fiber lasers.
  • the technical solutions proposed in the present disclosure include but are not limited to the aforementioned laser types, but any device that can generate and emit laser light can be used, and the present disclosure has no limitation on this.
  • the laser emitting end 3 also has an emitting mirror group, which is configured as a laser shaping module.
  • the laser shaping module transmits the laser beam emitted by the laser, and realizes the functions of collimating, homogenizing, and shaping the laser beam. According to different design functions and purposes, one or more of the three functions of collimation, homogenization, and shaping can be used to form, for example, a point-like or linear spot.
  • the laser receiving end 5 has a detector which is configured to receive the laser beam reflected from the target object guided by the scanning module 4. For example, as shown in Fig. 16, the laser beam is emitted from the laser emitting end 3 of the lidar 1, and after being reflected and/or refracted by the surface of the rotatable prism 44, it is projected to the target and scanned. After that, the laser beam reflected by the target first hits the surface of the prism 44, and is received and detected by the laser receiving end 5 of the lidar 1 after being reflected and/or refracted.
  • a photoelectric detector or a photothermal detector can be used to detect the laser signal, such as an avalanche photodiode, a single photon detector, or a photomultiplier tube.
  • the detector includes but is not limited to the aforementioned types. Any detector that can convert laser signals into electrical signals can be used in the technical solutions proposed in the present disclosure, and the present disclosure has no limitation on this.
  • the laser receiving end 5 also has a receiving mirror group.
  • the receiving lens group is arranged in front of the detector along the propagation direction of the laser beam, so that the receiving lens group can receive and transmit the laser beam reflected by the target and/or the laser beam reflected by the scanning module 4, and reflect it back
  • the laser beam is focused on the detector at the laser receiving end 5.
  • the target When the linear scanning beam irradiates the detection target, the target generates a diffuse reflection beam, and the diffuse reflection beam is reflected and/or refracted by the rotating prism 44 and then received by the laser receiving end 5.
  • the diffusely reflected light beam is collected by the receiving mirror group of the laser receiving end 5 and then converged on the detector to form a detection signal.
  • the prism 44 is set to guide the laser beam emitted by the laser emitting end 3, and to change the propagation direction and mode of the laser beam to scan the target; on the other hand, the prism 44 is set to change the reflection from the target.
  • the propagation direction and mode of the returned laser beam are guided to the receiving mirror group of the laser receiving end 5 of the laser radar 1.
  • control module 6 is configured to control laser emission and reception, and obtain characteristic information of the target object through post-signal data processing.
  • the control module 6 may be configured as an electronic device independent of the lidar 1 and separated from the lidar body in terms of composition structure and arrangement position; or, the control module 6 may also be configured as a component of the lidar 1.
  • the control module 6 includes, for example, a laser driving module 62, a signal processing module 63, and a main control module 61.
  • the laser driving module 62 is used to control the laser of the laser emitting end 3 to emit laser
  • the signal processing module 63 is used to process the detection signal received by the detector of the laser receiving end 5
  • the main control module 61 is used to control the laser driving
  • the module 62 and the signal processing module 63 use the signal processing module 63 to calculate the characteristic information of the target, such as the distance and position of the target.
  • the main control module 61 can also control and adjust the laser driving module 62 and/or the scanning module 4 according to the characteristic information fed back by the signal processing module 63, so as to automatically adjust the laser driving module 62 and/or the scanning module in a closed-loop control manner.
  • 4 working state or working mode for example, dynamically and automatically adjust the performance of the lidar, such as the field of view, scanning resolution, etc.
  • control module 6 can control the laser, so as to control the timing and manner of the laser beam emitting the laser beam.
  • the laser beam may be emitted from the laser in a continuous manner or in a pulsed manner.
  • characteristic information of the target includes but is not limited to characteristic parameters such as speed, position, and shape, as well as other parameters that can be derived or calculated from this.
  • the control module 6 can also control the scanning component of the scanning module 4, so as to control parameters such as the rotation speed of the rotating scanning component.
  • the control module 6 can also control the detector of the laser receiving end 5.
  • FIG. 19 is a schematic structural perspective view of a lidar 1 according to some embodiments of the present disclosure.
  • reference numeral 7 is used to denote the housing 7 of the lidar 1, which defines the internal space of the lidar 1.
  • the components of the lidar 1, including but not limited to the laser emitting end 3, the laser receiving end 5, the scanning module 4 and the optional control module 6, and other optical and electronic components, are all arranged in the housing 7 of the lidar 1. In the defined internal space.
  • the specific structure of the housing 7 can be designed and changed according to the installation and use environment of the lidar 1, which is not limited in the present disclosure.
  • At least one laser emitting end 3 and at least one laser receiving end 5 are integrated into a laser transceiver module group 2.
  • Each laser transceiver module group 2 is constructed as a separate structural unit.
  • the laser emitting end 3 and the laser receiving end 5 integrated in the laser transceiving module group 2 are arranged next to each other in a common structural unit housing.
  • a single structural unit can be formed by integrating at least one laser emitting end 3 and at least one laser receiving end 5 into a common laser transceiver module housing.
  • a laser emitting end 3 and a laser receiving end 5 are integrated into a laser transceiver module group 2 constructed as a single structural unit.
  • a laser transceiver module group 2 is provided in the housing 7 of the laser radar 1.
  • two or more laser transceiver module groups 2 can also be provided, as described in the previous embodiment.
  • the laser emitting end 3 does not limit the number of lasers and shaping modules, and may be one or more.
  • the laser receiving end 5 does not limit the number of detectors and receiving mirror groups, and may be one or more.
  • the number of corresponding component parts can be increased or decreased according to requirements and a reasonable arrangement, and the concept of the present disclosure is not limited to the number and manner of component parts described as examples.
  • each laser transceiver module group 2 may integrate a different number of laser transmitters 3 and laser receivers 5.
  • multiple laser transmitters 3 correspond to one Laser receiving end 5, or one laser emitting end 3 corresponds to multiple laser receiving ends 5, or one laser emitting end 3 corresponds to one laser receiving end 5, or multiple laser emitting ends 3 correspond to multiple laser receiving ends 5.
  • the laser transceiver module group 2 includes exactly two laser emitting ends 3 and one laser receiving end 5.
  • the separate laser emitting end 3 and the laser receiving end 5 are connected side by side to each other to form a single structural unit through mechanical connection. It is also conceivable that the laser emitting end 3 and the laser receiving end 5 are directly constructed in a common structural module, thereby forming a single structural unit. In the embodiment shown in FIG. 19, two laser emitting ends 3 and one laser receiving end 5 form a laser transceiver module group 2, especially a single structural unit.
  • the laser emitting end 3 and the laser receiving end 5 may be in an up-and-down positional relationship, or a left-right positional relationship, or other positional relationship with each other, all within the scope of the present disclosure. What is important here is that the laser emitting end 3 and the laser receiving end 5 integrated as a structural unit or laser transceiver module group 2 can emit and receive laser beams normally, instead of the laser emission of a laser transceiver module group 2. Optical path interference is caused between the end 3 and the laser receiving end 5 or between the laser emitting end 3 and the laser receiving end 5 of different laser transceiver module groups 2.
  • the laser radar 1 includes a plurality of laser transceiver module groups 2, and the plurality of laser transceiver module groups 2 are arranged in a distributed manner relative to the prism 44.
  • a specific number of laser transceiver module groups 2 can be selected.
  • the laser radar 1 includes an even number of laser transceiver module groups 2, such as 2, 4, 6, 8, 10, 12, or even more laser transceiver module groups 2.
  • These laser transceiver module groups 2 can be used as separate structural units.
  • the scanning modules 4 are generally symmetrical or asymmetrically distributed on both sides.
  • the laser radar 1 includes more than one odd number of laser transceiver module groups 2, for example, 3, 5, 7, 9, 11 or even more laser transceiver module groups 2.
  • These laser transceiver module groups 2 can be respectively used as separate structural units to be distributed symmetrically or asymmetrically on both sides of the scanning module 4.
  • the factors that determine the arrangement of the laser transceiver module group 2 include, but are not limited to: enhancing the scanning of key areas or key areas, coping with special scanning angle ranges, and changing the scanning frequency/scanning angular resolution of specific areas in a targeted manner.
  • a rotatable prism 44 is used as the scanning part of the scanning module 4 here.
  • the prism 44 is fixed on the base 42 (see FIG. 18).
  • the prism 44 may be vertically fixed in the base 42, so that the base 42 can be used to transmit the rotational movement to the prism 44.
  • the base 42 can be driven to rotate around a rotation axis by a motor 43 (see FIG. 18).
  • the linear scanning laser light is reflected and/or refracted by the rotating prism 44 to form a two-dimensional scan, especially in the horizontal scanning direction as shown in FIG. 15.
  • the control module 6 may also be configured to control the start, stop, and working mode of the motor 43, especially to adjust the rotation speed of the motor 43, and then to adjust the rotation movement of the prism 44.
  • the lidar 1 further includes an isolation mechanism that separates the surface of the prism 44 into a transmitting scanning area and a receiving scanning area. At the same time, the isolation mechanism also isolates the laser emitting end 3 and the laser receiving end 5 of the laser transceiver module group 2 constructed as a separate structural unit from each other.
  • the isolation mechanism is made of materials that can eliminate, filter or block stray light. The stray light is generated by, for example, the internal and external environment of the lidar, the structure of the lidar itself, the optical components arranged in the lidar, or the optical components related to the lidar.
  • stray light may be generated by the scanning component of the scanning module of the laser radar and/or by the shaping module of the laser emitting end and/or by the laser of the laser emitting end.
  • the adverse effect of the stray light that may be generated by the prism 44 when reflecting the laser beam on the operation of the lidar 1 can be at least partially or even completely eliminated by the isolation mechanism.
  • the isolation mechanism is composed of a circular rotating partition 81 and a fixed partition 82 having a circular hole.
  • the fixed partition 82 is, for example, fixed to the housing 7 of the lidar 1, so that in addition to the isolation function, it can also support the internal structure of the entire lidar 1, or be used to carry optoelectronic components or other electronic components. Device.
  • the fixed partition 82 fixed on the casing 7 of the lidar 1 also extends across the laser transceiver module group 2 configured as a separate structural unit arranged in the internal space of the casing 7 of the lidar 1, and The laser transmitting end 3 and the laser receiving end 5 of the laser transceiver module group 2 are isolated from each other.
  • a circular hole is opened in the fixed partition 82.
  • the rotating partition 81 has a circular shape, and its circular diameter matches the diameter of the circular hole opened in the fixed partition 82, so that it can be embedded in the laser radar when assembling the lidar. In the circular hole of the fixed partition 82, it can rotate in the circular hole of the fixed partition 82 when the lidar is running.
  • the stray light generated by the optical components in the lidar or the optical components related to the lidar can be provided with a sliding and sealing coating between the outer circumference of the rotating partition 81 and the circular hole of the fixed partition 82, On the one hand, it can improve the sliding performance between the rotating partition 81 and the fixed partition 82, and on the other hand, it can maintain the seamless fit between the rotating partition 81 and the fixed partition 82, so as to completely block the impact on the operation of the lidar 1 Unfavorable effects of stray light.
  • the coating here can be a structural modification layer on the surface of the material, or an attached lubricating/sealing material layer.
  • the fixed partition 82 and the rotating partition 81 embedded in the circular hole of the fixed partition 82 form a partition plane, which divides the inner space of the housing 7 of the lidar 1 into two cavities
  • the scanning area of the prism 44 and the laser transmitting end 3 of each laser transceiver module group 2 are arranged in one of the chambers, and the receiving scanning area of the prism 44 and the laser receiving area of each laser transceiver module group 2
  • the end 5 is placed in another chamber.
  • the rotary partition 81 has an opening 811, and the prism 44 extends through the opening 811 of the rotary partition 81 and is fixed to the rotary partition 81.
  • the opening 811 of the rotating partition 81 matches the polygonal cross-sectional shape of the prism 44.
  • the size of the opening 811 of the rotating partition 81 and the cross-sectional size of the prism 44 can form a close fit on the one hand to prevent stray light from propagating through the opening 811 of the rotating partition 81, and on the other hand
  • force transmission cooperation can be formed, so that the prism 44 can drive the rotating partition 81 to rotate together when the lidar is running.
  • the transmitting scanning area and the receiving scanning area of the prism 44 are respectively formed on both sides of the rotating partition 81.
  • the rotating partition 81 is composed of two semicircular plates, the two semicircular plates, for example, by bonding, welding or integral forming, are connected to both sides of the prism 44 and joined together to form a complete circle.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 divides the internal space of the housing 7 of the lidar 1 into an upper chamber and a lower chamber, wherein the upper chamber is arranged with the laser emission Related components include, but are not limited to, the laser emitting end 3 of each laser transceiver module group 2 and the emission scanning area of the prism 44, and the lower chamber is arranged with components related to laser reception, including but not limited to each laser transceiver module group 2 The receiving scanning area of the laser receiving end 5 and the prism 44.
  • the emitted linear scanning beam and the reflected beam of the target are reflected in different areas of the rotatable prism 44, So as to effectively isolate the receiving and emitting circuit, avoid the risk of stray light.
  • each laser transceiver module group 2 in a separate structural unit can be set according to needs, for example, it can be placed up and down, or left and right.
  • the laser emitting end 3 and the laser receiving end 5 can be located in different chambers in the inner space of the shell 7 of the laser radar 1, without being affected by the mutual positional relationship between the laser emitting end 3 and the laser receiving end 5 .
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 can also divide the internal space of the housing 7 of the lidar 1 into two left and right chambers, or any possible other positional relationship. Two chambers.
  • an isolation mechanism can be used to divide the internal space of the housing 7 of the lidar 1 into more functional chambers.
  • the structural unit housing of the laser transceiver module group 2 and the housing 7 of the laser radar 1 can be integrally formed to form a separate laser transceiver module group cavity.
  • the relative positional relationship between the laser transceiver module group 2 and the scanning components of the scanning module 4 can be accurately determined in advance, simplifying the optical calibration steps that must be carried out in the process of assembling the laser radar 1, and making the laser radar 1 itself Easy to implement modular structure.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 is consistent with the The surfaces of the prisms 44 are angled, especially perpendicular to each other.
  • the lidar 1 is structurally easy to realize that the rotation axis of the prism 44 coincides with the rotation axis of the output shaft of the drive motor 43, which not only facilitates the simplified structural design of the lidar 1, but also facilitates the use of linear scanning lasers Efficient scanning in the horizontal direction.
  • the partition plane formed by the fixed partition 82 and the rotating partition 81 and the surface of the prism 44 form other angles, such as 30° or 60°.
  • the laser beam emitted by the laser emitting end 3 of each laser transceiver module group 2 and the surface of the prism 44 can form different angles, so the special field of view, scanning range or other scanning of the laser radar 1 can be realized according to requirements characteristic.
  • the isolation mechanism may further include a bottom plate 83, which additionally divides the internal space of the housing 7 of the lidar 1 into a separate equipment chamber.
  • the bottom plate 83 in the housing 7 of the lidar 1 separates a separate equipment chamber below the partition plane formed by the fixed partition 82 and the rotating partition 81, and is used to drive the motor that rotates the base 42 43 can be located in this separate equipment chamber.
  • other electromechanical components can also be placed in this equipment chamber, such as the control module 6 itself or an electronic device associated with it.
  • the internal space of the housing 7 of the lidar 1 is entirely separated by an isolation mechanism, including a fixed partition 82, a rotating partition 81 and a bottom plate 83, forming a structure of three chambers. Therefore, through simple and effective measures, functional optimization and structural partitioning at the three levels of optics, electrical and machinery are realized, which not only avoids unfavorable stray light optically, but also shields harmful electromagnetic interference, and can be used in mechanical structures. Realize modular manufacturing and assembly.
  • the laser shaping module can shape the laser beam emitted by the laser of the laser emitting end 3 into a linear scanning laser, and the prism 44 reflects and/or refracts the linear scanning laser and scans the target.
  • the laser emitting end 3 emits a line of light, which can be regarded as a large number of continuous points in the vertical direction, and the scanning of the target area/object is realized by rotating the prism 44.
  • by shaping the laser beam into a linear scanning laser combined with other improvement measures on the lidar 1 proposed in the present disclosure, an improved field of view of the lidar 1 can be obtained, and the working flexibility, reliability, and reliability of the lidar 1 can be significantly improved. Work performance.
  • FIG. 20 is a schematic structural perspective view of the scanning module 4 of the lidar 1 according to some embodiments of the present disclosure.
  • the prism 44 can be mounted on a circular base 42 (see FIG. 18) in an upright manner, for example.
  • the base 42 can be driven to rotate around a vertical axis of rotation by the motor 43 below, and thus drive the rotatable prism 44 to rotate together.
  • the surface of the prism 44 is perpendicular to the rotation plane of the base 42; on the other hand, the rotation axes of the two coincide with each other.
  • the base 42 can be directly arranged on the shell 7 of the lidar 1 by using a structure such as a bearing, or the base 42 can be arranged on the bottom plate 83 similar to the structure shown in FIG. 17, and the bottom plate 83 (see FIG. 17)
  • the internal space of the housing 7 of the lidar 1 is divided into a separate equipment chamber.
  • the motor 43 for driving the rotation of the base 42 or other driving/transmission mechanisms can be conveniently arranged in the equipment chamber.
  • the output shaft of the motor 43 can pass through the bottom plate 83 and connect to the base 42 carrying the prism 44.
  • the rectangular quadrangular prism 44 passes through the rectangular opening 811 of the circular rotating partition 81 and is fixed to the rotating partition 81 seamlessly.
  • the opening 811 of the rotating partition 81 and the prism 44 can be press-fitted to prevent stray light from propagating through the gap between the rotating partition 81 and the prism 44.
  • other sealing and fixing measures may also be considered, such as filling other gap-filling materials and/or adhesives between the opening 811 of the rotating partition 81 and the prism 44.
  • the rotating partition 81 and the bottom plate 83 may be parallel to each other, and both are perpendicular to the surface of the prism 44.
  • the rotation axis of the output shaft of the motor 43 for driving the rotation of the base 42 passes through the center of the circular base 42 and the rotating partition 81 and coincides with the rotation axis of the prism 44.
  • the scanning module 4 including but not limited to the prism 44, the rotating partition 81, the base 42 and the motor 43, can be constructed as a separate pre-assembled module, which greatly simplifies the manufacturing and assembly process of the lidar 1, and can easily replace and repair when needed.
  • the scanning part of the scanning module 4 is configured as a rotatable prism 44.
  • an isolation mechanism is provided to separate the surface of the prism 44 into a transmitting scanning area and a receiving scanning area, and at the same time to isolate the laser transmitting end 3 and the laser receiving end 5 of the laser transceiver module group 2 constructed as separate structural units.
  • the isolation mechanism is composed of a circular rotating partition 81 and a fixed partition 82 with a circular hole.
  • the fixed partition 82 is fixed to the housing 7 of the lidar 1, and the rotating partition 81 is embedded in the lid during assembly. In the circular hole of the fixed partition 82, the rotating partition 81 can rotate in the circular hole of the fixed partition 82.
  • the prism 44 can drive the rotating partition 81 to rotate together.
  • lidar 1 can be combined or replaced arbitrarily within the framework of the concept of the present disclosure as long as they do not violate the laws of nature or technical specifications. Disclosure restrictions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达及用于激光雷达的探测方法,激光雷达包括多个由至少一个激光发射端(3)和至少一个激光接收端(5) 集成构造的激光收发模块组(2)、扫描模块(4),多个激光收发模块组(2)相对于扫描模块(4)分布布置,并且通过多个激光收发模块组(2)对应形成的子视场形成激光雷达(1)的至少部分拼接的视场;一种激光雷达及激光雷达的制造方法,激光雷达包括激光发射端(3)、激光接收端(5)、扫描模块(4)、隔离机构,将扫描模块(4)的扫描部件构造成可旋转的板状的双面反射镜(41)或可旋转的棱镜(44) ,隔离机构将所述双面反射镜(41)或棱镜(44)的反射面分隔为发射扫描区域和接收扫描区域。

Description

激光雷达、用于激光雷达的探测方法和制造方法 技术领域
本公开涉及一种激光雷达、用于激光雷达的探测方法和制造方法。
背景技术
这里的描述仅提供与本公开有关的背景信息,而不必然地构成现有技术。
目前存在的机械旋转式激光雷达,利用多个发射激光器与多个接收探测器实现多线扫描,通过旋转平台实现水平视场360°的扫描。对于这种机械旋转式激光雷达,申请人认识到:这种机械旋转式激光雷达的缺点是扫描帧率低,且系统结构复杂,需要单独调试激光器与探测器。此外,这种激光雷达装配周期长,因此导致成本高昂,限制了激光雷达的发展。
还存在基于MEMS的激光雷达。对于这种基于MEMS的激光雷达,申请人认识到:首先,为了保证较高的振动频率,一般MEMS微振镜的口径不能太大,激光器发射出的激光需要进行准直,但一般准直后的口径都会大于MEMS微振镜口径,这样导致系统能量耦合效率低。其次,在较高的振动频率下,MEMS微振镜的扫描视场小,通常光学角仅为30°-40°,为满足大视场的要求,需要多个激光雷达进行视场拼接。最后,受限于工艺,MEMS微振镜难以通过车规测试,成本较高。
激光雷达以激光作光源,发射到目标物上。目标物产生漫反射,反射回来的激光(包含幅值、相位等物理信息)被探测器所接受,从而获取目标物的距离、方位等信息,实现对周围环境的三维探测。
传统的机械式激光雷达,通过马达带动机械轴,实现整个收发系统的转动。利用这种传统的机械式激光雷达对周围环境进行扫描,存在着收发系统转速慢、雷达体积大、工作不稳定、性能可靠性差等缺点。光机电系统包括发射系统和接收系统,但发射系统发射的光束是离散的,会造成探测的垂直角分辨率受到离散光束的限制。也有Lidar方案通过增加激光光束数来提高垂直角分辨率,但这会直接导致激光雷达的体积和成本增加,同时还需要增加探测器个数,进一步推高成本和系统复杂度。
MEMS激光雷达通常采用单点扫描的形式,以MEMS器件的高速转动来实现对目标范围的扫描。MEMS激光雷达虽然可部分解决体积大的问题,但由于发射系统发射的是单个光点,例如李萨茹等扫描形式,对MEMS的扫描频率要求极高。扫描频率越高,意味着MEMS成本越高。反之,如果MEMS的扫描频率不够,会限制激光雷达的垂直分辨率和水平分辨率。此外,在MEMS激光雷达中,通常需要两个单轴MEMS配合或双轴MEMS来实现整个范围的扫描,这会显著增加激光雷达的成本和系统控制复杂度。
因此,如何实现高分辨率、小体积的激光雷达,同时降低激光雷达的制造费用,成为亟待解决的问题。
发明内容
本公开的目的之一在于提供一种激光雷达以及用于激光雷达的探测方法,其能够灵活、可靠地匹配具体应用环境和性能要求,尤其是具有可调整的、特别是可增大的激光雷达视场、扫描频率和扫描分辨率,同时确保激光雷达系统结构简单、造价低廉、装配快捷且测试简单。
因此,根据本公开的第一方面,提出一种激光雷达,包括:
激光发射端,所述激光发射端具有激光器,所述激光器设置用于发射对目标物进行探测的激光光束;
扫描模块,所述扫描模块设置用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
激光接收端,所述激光接收端具有探测器,所述探测器设置用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中至少一个激光发射端和至少一个激光接收端集成为一个构造成单独的结构单元的激光收发模块组,其中所述激光雷达包括多个激光收发模块组,所述多个激光收发模块组相对于扫描模块分布布置,并且通过所述多个激光收发模块组对应形成的子视场形成激光雷达的至少部分拼接的视场。
通过本公开的第一方面提出的技术方案,通过以特定的方式设置多个激光收发模块组,能实现激光雷达探测视场的高效和有针对性的拼接视场,尤其是实现更大的水平视场角,其中中心视场具有重合部分,因此在利用有限数量的零部件的情况下,以简单的方式即可扩大激光雷达的视场,提高重点测试区域的扫描频率、探测精度,尤其是垂轴(竖直方向)扫描分辨率和/或水平扫描分辨率。
此外,根据本公开的第一方面的激光雷达易于实现模块化组装,结构简单、成本低、装配周期短,还能够针对应用环境条件,灵活快速地获得匹配需求的激光雷达性能。
根据本公开的第一方面的一些实施方式,所述激光发射端还包括发射镜组,所述发射镜组具有设置用于对由所述激光器发射的激光光束进行整形的激光整形模块。
根据本公开的第一方面的一些实施方式,所述激光整形模块包括沿着激光光束的光轴顺序布置的准直镜和匀光片。
根据本公开的第一方面的一些实施方式,所述激光整形模块将由激光发射端发射的激光光束整形成线状光斑。
通过本公开的第一方面提出的技术方案,例如将激光光束整形成线状光斑,使用一维扫描模块即可实现三维扫描,由此减少对扫描部件的要求,降低激光雷达的整机成本。同时,通过将激光光束整形成线状光斑,结合本公开的第一方面提出的关于激光收发模块组的相关改进措施,能够获得激光雷达的改进的拼接视场,相应增大激光雷达的扫描范围和/或扫描分辨率,显著提高激光雷达的工作灵活性、可靠性以及工作性能。
根据本公开的第一方面的一些实施方式,所述扫描模块包括发射扫描模块和接收扫描模块,其中发射扫描模块设置用于反射激光发射端发射的激光光束至目标物,接收扫描模块设置用于接收并引导目标物反射回来的激光光束至激光接收端。
根据本公开的第一方面的一些实施方式,所述激光接收端还具有接收镜组,所述接收镜组设置用于接收并透射通过扫描模块引导的由目标物反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端的探测器上。
根据本公开的第一方面的一些实施方式,由所述多个激光收发模块组的激光发射端发射的激光光束与扫描模块的反射面的夹角彼此不同,从而所述多个激光收发模块组分别形成方位不同且彼此至少部分重叠的子视场。
根据本公开的第一方面的一些实施方式,还包括方位调整装置,所述多个激光收发模块组能够通过所述方位调整装置调整相对扫描模块的反射面的方位,由此能够改变激光雷达的拼接视场和/或扫描分辨率。
根据本公开的第一方面的一些实施方式,所述激光雷达的拼接视场和/或扫描分辨率的改变能够在垂轴方向和/或水平方向实现。
根据本公开的第一方面的一些实施方式,所述方位调整装置包括致动器,其中通过控制用于驱动所述方位调整装置的致动器实现对激光收发模块组的方位调整。
根据本公开的第一方面的一些实施方式,所述致动器是电动机、液压致动器、气压致动器或者压电致动器。
根据本公开的第一方面的一些实施方式,能够根据预定的工作模式控制配属于各个激光收发模块组的方位调整装置,并能够通过切换不同的工作模式,自动地匹配不同的应用场景或者环境条件。
根据本公开的第一方面的一些实施方式,激光雷达具有普通工作模式,在普通工作模式中,多个激光收发模块组的子视场彼此至少部分重叠形成激光雷达的拼接视场,从而利用确定数量的激光收发模块组,实现激光雷达均衡的扫描性能。
根据本公开的第一方面的一些实施方式,激光雷达具有强化工作模式,在强化工作模式中,通过利用方位调整装置调节激光收发模块组的方位,可以将更多激光收发模块组分配给特定区域或者关键区域进行扫描,由此在所述特定区域或者关键区域中获得增大的拼接视场、垂轴角分辨率和/或水平角分辨率。
也就是说,例如在普通工作模式下,30%的激光收发模块组覆盖或者至少部分覆盖特定区域或者关键区域进行扫描,而在强化工作模式中,更多数量的激光收发模块组,例如40%、50%甚至60%或者以上的激光收发模块组,被调配给所述特定区域或者关键区域进行扫描,从而增强这些区域中激光雷达的扫描频率和分辨率。当然,也可以通过强化工作模式改变激光雷达的视场角和扫描方位或者其他特征参数,以简单快速和灵活地使激光雷达匹配特定的工作环境条件和要求。
根据本公开的第一方面的一些实施方式,所述激光雷达配有控制模块,所述控制模块设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
根据本公开的第一方面的一些实施方式,所述控制模块能够根据获取的目标物的特征信息控制所述方位调整装置,从而能够以闭环控制的方式自动调节所述多个激光收发模块组相对扫描模块的反射面的方位,由此动态地自动改变激光雷达的拼接视场和/或扫描分辨率。
根据本公开的第一方面的一些实施方式,在每个激光收发模块组中,集成在激光收发模块组中的激光发射端和激光接收端紧邻地并排设置在一个共同的结构单元壳体中。
根据本公开的第一方面的一些实施方式,包括两个激光收发模块组,这两个激光收发模块组相对于扫描模块的中心轴线对称/不对称布置。
根据本公开的第一方面的一些实施方式,包括四个激光收发模块组,这四个激光收发模块组相对于扫描模块的中心轴线对称/不对称布置。
根据本公开的第一方面的一些实施方式,还包括备用激光收发模块组,其在工作激光收发模块组发生故障或者出现外部损毁时,能够马上投入使用并替代发生故障或者出现外部损毁的激光收发模块组。
根据本公开的第一方面的一些实施方式,还包括用于检测激光收发模块组的工作状态的故障检测装置,控制模块借助所述故障检测装置对工作激光收发模块组的功能性进行检测或监控。
根据本公开的第一方面的一些实施方式,激光雷达具有紧急工作模式,其中在检测到激光收发模块组发生故障或者出现外部损毁时,切换到激光雷达的紧急工作模式,并将备用激光收发模块组投入使用并替代发生故障或者出现外部损毁的激光收发模块组。
根据本公开的第一方面的一些实施方式,扫描模块的扫描部件是一种旋转扫描部件。
根据本公开的第一方面的一些实施方式,扫描模块的扫描部件包括双面反射镜、多面棱镜或者振镜。通过使用双面反射镜、多面棱镜、异面棱镜或振镜等作为旋转扫描部件,激光雷达可以具有更大的通光口径,能提高激光器能量的利用率,同时增加接收口径,有利于提高测距距离。
根据本公开的第一方面的一些实施方式,扫描模块的旋转扫描部件的反射面的不同区域分别构成发射扫描模块和接收扫描模块,其中用作发射扫描模块的反射面区域设置用于将激光发射端发射的激光光束反射至目标物,而用作接收扫描模块的反射面区域设置用于接收和引导由目标物反射回来的激光光束,并将其改变方向至激光接收端。
根据本公开的第一方面的一些实施方式,扫描模块的扫描部件包括异面棱镜,其中异面棱镜的反射侧面与中心轴线的夹角互不相同并彼此匹配,使得每个反射侧面对应形成的子视场至少部分地彼此重叠,由此形成激光雷达的拼接视场。
根据本公开的第一方面的一些实施方式,所述异面棱镜构造成异面四棱镜。
根据本公开的第二方面,还提出一种用于激光雷达的探测方法,其特征在于,所述激光雷达包括激光发射端、扫描模块和激光接收端,其中
设置激光发射端的激光器用于发射对目标物进行探测的激光光束;
设置扫描模块用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
设置激光接收端的探测器用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中将至少一个激光发射端和至少一个激光接收端集成为一个构造成单独的结构单元的激光收发模块组,其中将多个激光收发模块组相对于扫描模块分布布置,并通过所述多个激光收发模块组对应形成的子视场形成激光雷达的至少部分拼接的视场。
上述针对激光雷达及其相应改进技术措施所陈述的有益技术效果,同样适用于用于激光雷达的探测方法,具体请参见相应的描述部分。
根据本公开的第二方面的一些实施方式,所述激光发射端还包括发射镜组,所述发射镜组具有激光整形模块,设置所述激光整形模块用于对由所述激光器发射的激光光束进行整形。
根据本公开的第二方面的一些实施方式,沿着激光光束的光轴在所述激光整形模块中顺序布置准直镜和匀光片。
根据本公开的第二方面的一些实施方式,设置激光整形模块将由激光发射端发射的激光光束整形成线状光斑。
根据本公开的第二方面的一些实施方式,所述扫描模块包括发射扫描模块和接收扫描模块,其中设置发射扫描模块用于反射激光发射端发射的激光光束至目标物,设置接收扫描模块用于接收并引导目标物反射回来的激光光束至激光接收端。
根据本公开的第二方面的一些实施方式,所述激光接收端还具有接收镜组,设置所述接收镜组用于接收并透射通过扫描模块引导的由目标物反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端的探测器上。
根据本公开的第二方面的一些实施方式,由所述多个激光收发模块组的激光发射端发射的激光光束与扫描模块的反射面的夹角彼此不同,从而所述多个激光收发模块组分别形成方位不同且彼此至少部分重叠的子视场。
根据本公开的第二方面的一些实施方式,给激光雷达配有控制模块,其中设置所述控制模块用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
根据本公开的第二方面的一些实施方式,还包括方位调整装置用于调整所述激光收发模块组的方位,设置所述控制模块用于控制所述方位调整装置,从而调整所述多个激光收发模块组相对扫描模块的反射面的方位,由此改变激光雷达的拼接视场和/或扫描分辨率。
根据本公开的第二方面的一些实施方式,设置所述控制模块用于在垂轴方向和/或水平方向改变所述激光雷达的拼接视场和/或扫描分辨率。
根据本公开的第二方面的一些实施方式,所述方位调整装置包括致动器,其中设置所述控制模块控制用于驱动所述方位调整装置的致动器,从而实现对激光收发模块组的方位调整。
根据本公开的第二方面的一些实施方式,设置所述控制模块根据预定的工作模式控制配属于各个激光收发模块组的方位调整装置,其中所述控制模块能够通过切换不同的工作模式,自动地匹配不同的应用场景或者环境条件。
根据本公开的第二方面的一些实施方式,所述控制模块能够切换到普通工作模式,在普通工作模式中,多个激光收发模块组的子视场彼此至少部分重叠形成激光雷达的拼接视场,从而利用确定数量的激光收发模块组,实现激光雷达均衡的扫描性能。
根据本公开的第二方面的一些实施方式,所述控制模块能够切换到强化工作模式,在强化工作模式中,通过利用方位调整装置调节激光收发模块组的方位,将比在普通工作模式下更多数量的激光收发模块组分配给特定区域或者关键区域进行扫描,由此在所述特定区域或者关键区域中获得增大的拼接视场、垂轴角分辨率和/或水平角分辨率。
根据本公开的第二方面的一些实施方式,设置所述控制模块根据获取的目标物的特征信息控制所述方位调整装置,从而能够以闭环控制的方式自动调节所述多个激光收发模块组相对扫描模 块的反射面的方位,由此动态地自动改变激光雷达的拼接视场和/或扫描分辨率。
根据本公开的第二方面的一些实施方式,在每个激光收发模块组中,将集成在激光收发模块组中的激光发射端和激光接收端紧邻地并排设置在一个共同的结构单元壳体中。
根据本公开的第二方面的一些实施方式,包括两个激光收发模块组,将这两个激光收发模块组相对于扫描模块的中心轴线对称/不对称布置。
根据本公开的第二方面的一些实施方式,包括四个激光收发模块组,将这四个激光收发模块组相对于扫描模块的中心轴线对称/不对称布置。
根据本公开的第二方面的一些实施方式,还包括备用激光收发模块组,在工作激光收发模块组发生故障或者出现外部损毁时,将所述备用激光收发模块组马上投入使用并替代发生故障或者出现外部损毁的激光收发模块组。
根据本公开的第二方面的一些实施方式,还包括用于检测激光收发模块组的工作状态的故障检测装置,设置所述控制模块借助所述故障检测装置对工作激光收发模块组的功能性进行检测或监控。
根据本公开的第二方面的一些实施方式,所述控制模块能够切换到紧急工作模式,其中在检测到激光收发模块组发生故障或者出现外部损毁时切换到激光雷达的紧急工作模式,并将备用激光收发模块组投入使用并替代发生故障或者出现外部损毁的激光收发模块组。
根据本公开的第二方面的一些实施方式,扫描模块的扫描部件是一种旋转扫描部件。
根据本公开的第二方面的一些实施方式,扫描模块的扫描部件包括双面反射镜、多面棱镜或者振镜。
根据本公开的第二方面的一些实施方式,将扫描模块的旋转扫描部件的反射面的不同区域分别构成发射扫描模块和接收扫描模块,其中设置用作发射扫描模块的反射面区域用于将激光发射端发射的激光光束反射至目标物,设置用作接收扫描模块的反射面区域用于接收和引导由目标物反射回来的激光光束,并将其改变方向至激光接收端。
根据本公开的第二方面的一些实施方式,扫描模块的扫描部件包括异面棱镜,其中将异面棱镜的反射侧面与中心轴线的夹角构造为互不相同并彼此匹配,使得每个反射侧面对应形成的子视场至少部分地彼此重叠,由此形成激光雷达的拼接视场。
根据本公开的第二方面的一些实施方式,将所述异面棱镜构造成异面四棱镜。
本公开的目的之一还在于提出一种激光雷达和激光雷达的制造方法,其不但实现激光雷达的高分辨率,而且具有紧凑的结构形式,同时制造成本更低,易于组装和维护。
因此,根据本公开的第三方面,提出一种激光雷达,其特征在于,包括:
激光发射端,所述激光发射端具有激光器,所述激光器设置用于发射对目标物进行探测的激光光束;
扫描模块,所述扫描模块设置用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
激光接收端,所述激光接收端具有探测器,所述探测器设置用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中所述扫描模块的扫描部件构造成可旋转的板状的双面反射镜。
根据本公开的第三方面提出的技术方案,使用可旋转的板状的双面反射镜作为扫描模块的扫描部件,使得扫描部件质量更轻,而且出光口径和接收光束口径更大,因此可实现例如水平方向大范围的高速扫描。
根据本公开的第三方面的一些实施方式,至少一个激光发射端和至少一个激光接收端集成为一个构造成单独的结构单元的激光收发模块组。
根据本公开的第三方面的一些实施方式,所述激光雷达还包括隔离机构,所述隔离机构将所述板状的双面反射镜的反射面分隔为发射扫描区域和接收扫描区域。
根据本公开的第三方面的一些实施方式,所述隔离机构将所述构造成单独的结构单元的激光 收发模块组的激光发射端和激光接收端隔离。
根据本公开的第三方面,通过设置隔离机构使发射光路和接收光路最佳分区处理。与非共光路的激光雷达相比,例如可实现简单地共用一个扫描部件;与共光路的扫描系统相比,激光接收端不受激光发射激光光束以及扫描部件产生的杂散光的影响,可有效提高激光雷达的工作性能。
根据本公开的第三方面的一些实施方式,所述隔离机构由能够阻隔杂散光的材料制成。
根据本公开的第三方面的一些实施方式,所述隔离机构由圆形的旋转隔板和具有圆孔的固定隔板构成,其中所述固定隔板固定于激光雷达的壳体上,所述旋转隔板能够嵌入到所述固定隔板的圆孔中并在其中旋转。
根据本公开的第三方面的一些实施方式,所述旋转隔板具有开口,所述板状的双面反射镜延伸穿过所述旋转隔板的开口与所述旋转隔板固定。
根据本公开的第三方面的一些实施方式,所述旋转隔板由两个半圆形板组成,所述两个半圆形板连接在所述板状的双面反射镜两侧并一起拼接成整圆。
根据本公开的第三方面的一些实施方式,所述固定于激光雷达的壳体上的固定隔板延伸横穿布置在激光雷达的壳体内部空间中的激光收发模块组,并将所述构造成单独的结构单元的激光收发模块组的激光发射端和激光接收端隔离。
根据本公开的第三方面的一些实施方式,所述板状的双面反射镜能够带动所述旋转隔板一起旋转,其中在所述旋转隔板的两侧分别形成所述板状的双面反射镜的发射扫描区域和接收扫描区域。
根据本公开的第三方面的一些实施方式,所述固定隔板和嵌入到所述固定隔板的圆孔中的旋转隔板形成一个隔板平面,该隔板平面将激光雷达的壳体的内部空间划分为两个腔室,其中所述板状的双面反射镜的发射扫描区域和所述激光收发模块组的激光发射端设置在其中一个腔室中,而所述板状的双面反射镜的接收扫描区域和所述激光收发模块组的激光接收端设置在另一个腔室中。
根据本公开的第三方面的一些实施方式,所述隔板平面与所述板状的双面反射镜的反射面垂直。
根据本公开的第三方面的一些实施方式,所述板状的双面反射镜固定在底座上,所述底座能够通过电动机驱动旋转。
根据本公开的第三方面的一些实施方式,所述隔离机构还包括底板,所述底板将激光雷达的壳体的内部空间划分出单独的设备腔室,其中,用于驱动所述底座旋转的电动机设在所述单独的设备腔室中。
根据本公开的第三方面的一些实施方式,所述激光发射端还具有激光整形模块,所述激光整形模块将由激光器发射的激光光束整形成线形扫描激光,所述板状的双面反射镜将所述线形扫描激光反射并扫描目标物。
根据本公开,将激光器发射的激光光束整形成线形扫描激光,并使用线形扫描激光扫描目标物,结合相应提出的光学、机械和电气改进措施,实现了在不增加激光雷达的激光器数量的前提下,以简单且低廉的成本显著提升激光雷达的垂直角分辨率。
根据本公开的第三方面的一些实施方式,激光雷达配有控制模块,所述控制模块设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
根据本公开的第三方面的一些实施方式,所述控制模块包括:
激光器驱动模块,用于控制激光发射端的激光器发射激光;
信号处理模块:用于处理由激光接收端的探测器接收的探测信号;
主控模块,用于控制所述激光器驱动模块和信号处理模块,并利用所述信号处理模块计算出目标物的特征信息。
根据本公开的第四方面,提出一种激光雷达的制造方法,其特征在于,所述激光雷达包括激光发射端、扫描模块和激光接收端,其中
设置激光发射端的激光器用于发射对目标物进行探测的激光光束;
设置扫描模块用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
设置激光接收端的探测器用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中,将所述扫描模块的扫描部件构造成可旋转的板状的双面反射镜。
上述针对激光雷达及其相应改进技术措施所陈述的有益技术效果,同样适用于用于激光雷达的制造方法,具体请参见相应的描述部分。
根据本公开的第四方面的一些实施方式,设置隔离机构,将所述板状的双面反射镜的反射面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组的激光发射端和激光接收端隔离。
根据本公开的第四方面的一些实施方式,所述隔离机构由圆形的旋转隔板和具有圆孔的固定隔板构成,其中将固定隔板固定于激光雷达的壳体上,并在组装时使所述旋转隔板嵌入到所述固定隔板的圆孔中,并使旋转隔板能够在固定隔板的圆孔中旋转,其中使所述板状的双面反射镜能够带动所述旋转隔板一起旋转。
本公开的目的之一还在于提出一种激光雷达和激光雷达的制造方法,其不但实现激光雷达的高分辨率,而且具有紧凑的结构形式,同时制造成本更低,易于组装和维护。
因此,根据本公开的第五方面,提出一种激光雷达,其特征在于,包括:
激光发射端,所述激光发射端具有激光器,所述激光器设置用于发射对目标物进行探测的激光光束;
扫描模块,所述扫描模块设置用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
激光接收端,所述激光接收端具有探测器,所述探测器设置用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中所述扫描模块的扫描部件构造成可旋转的棱镜。
根据本公开的第五方面的技术方案,使用可旋转的棱镜作为扫描模块的扫描部件,使得扫描部件质量更轻,而且出光口径和接收光束口径更大,因此可实现例如水平方向大范围的高速扫描。
根据本公开的第五方面的一些实施方式,至少一个激光发射端和至少一个激光接收端集成为一个构造成单独的结构单元的激光收发模块组,其中所述激光雷达包括至少一个激光收发模块组。
根据本公开的第五方面的一些实施方式,所述激光雷达还包括隔离机构,所述隔离机构将所述可旋转的棱镜的反射面分隔为发射扫描区域和接收扫描区域。
根据本公开的第五方面的一些实施方式,所述隔离机构将所述构造成单独的结构单元的激光收发模块组的激光发射端和激光接收端隔离。
根据本公开,通过设置隔离机构使发射光路和接收光路最佳分区处理。与非共光路的激光雷达相比,例如可实现简单地共用一个扫描部件;与共光路的扫描系统相比,激光接收端不受激光发射激光光束以及扫描部件产生的杂散光的影响,可有效提高激光雷达的工作性能。
根据本公开的第五方面的一些实施方式,所述隔离机构由能够阻隔杂散光的材料制成。
根据本公开的第五方面的一些实施方式,所述隔离机构由圆形的旋转隔板和具有圆孔的固定隔板构成,其中所述固定隔板固定于激光雷达的壳体上,所述旋转隔板能够嵌入到所述固定隔板的圆孔中并在其中旋转。
根据本公开的第五方面的一些实施方式,所述旋转隔板具有开口,所述可旋转的棱镜延伸穿过所述旋转隔板的开口与所述旋转隔板固定。
根据本公开的第五方面的一些实施方式,所述旋转隔板由两个半圆形板组成,所述两个半圆形板连接在所述可旋转的棱镜两侧并一起拼接成整圆。
根据本公开的第五方面的一些实施方式,所述固定于激光雷达的壳体上的固定隔板延伸横穿布置在激光雷达的壳体内部空间中的激光收发模块组,并将所述构造成单独的结构单元的激光收发模块组的激 光发射端和激光接收端隔离。
根据本公开的第五方面的一些实施方式,所述可旋转的棱镜能够带动所述旋转隔板一起旋转,其中在所述旋转隔板的两侧分别形成所述可旋转的棱镜的发射扫描区域和接收扫描区域。
根据本公开的第五方面的一些实施方式,所述固定隔板和嵌入到所述固定隔板的圆孔中的旋转隔板形成一个隔板平面,该隔板平面将激光雷达的壳体的内部空间划分为两个腔室,其中所述可旋转的棱镜的发射扫描区域和所述激光收发模块组的激光发射端设置在其中一个腔室中,而所述可旋转的棱镜的接收扫描区域和所述激光收发模块组的激光接收端设置在另一个腔室中。
根据本公开的第五方面的一些实施方式,所述隔板平面与所述可旋转的棱镜的反射面垂直。
根据本公开的第五方面的一些实施方式,所述可旋转的棱镜固定在底座上,所述底座能够通过电动机驱动旋转。
根据本公开的第五方面的一些实施方式,所述隔离机构还包括底板,所述底板将激光雷达的壳体的内部空间划分出单独的设备腔室,其中,用于驱动所述底座旋转的电动机设在所述单独的设备腔室中。
根据本公开的第五方面的一些实施方式,所述激光发射端还具有激光整形模块,所述激光整形模块将由激光器发射的激光光束整形成线形扫描激光,所述可旋转的棱镜将所述线形扫描激光反射并扫描目标物。
根据本公开的第五方面,将激光器发射的激光光束整形成线形扫描激光,并使用线形扫描激光扫描目标物,结合相应提出的光学、机械和电气改进措施,实现了在不增加激光雷达的激光器数量的前提下,以简单且低廉的成本显著提升激光雷达的垂直角分辨率。
根据本公开的第五方面的一些实施方式,激光雷达配有控制模块,所述控制模块设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
根据本公开的第五方面的一些实施方式,所述控制模块包括:
激光器驱动模块,用于控制激光发射端的激光器发射激光;
信号处理模块:用于处理由激光接收端的探测器接收的探测信号;
主控模块,用于控制所述激光器驱动模块和信号处理模块,并利用所述信号处理模块计算出目标物的特征信息。
根据本公开的第五方面的一些实施方式,所述激光收发模块组包括恰好两个激光发射端和一个激光接收端。
根据本公开的第六方面,提出一种激光雷达的制造方法,其特征在于,所述激光雷达包括激光发射端、扫描模块和激光接收端,其中
设置激光发射端的激光器用于发射对目标物进行探测的激光光束;
设置扫描模块用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
设置激光接收端的探测器用于接收通过扫描模块引导的从目标物反射回来的激光光束;
其中,将所述扫描模块的扫描部件构造成可旋转的棱镜。
上述针对激光雷达及其相应改进技术措施所陈述的有益技术效果,同样适用于用于激光雷达的制造方法,具体请参见相应的描述部分。
根据本公开的第六方面的一些实施方式,设置隔离机构,将所述可旋转的棱镜的反射面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组的激光发射端和激光接收端隔离。
根据本公开的第六方面的一些实施方式,所述隔离机构由圆形的旋转隔板和具有圆孔的固定隔板构成,其中将固定隔板固定于激光雷达的壳体上,并在组装时使所述旋转隔板嵌入到所述固定隔板的圆孔中,并使旋转隔板能够在固定隔板的圆孔中旋转,其中使所述可旋转的棱镜能够带动所述旋转隔板一起旋转。
附图说明
以下将结合附图和实施例来对本公开的技术方案作进一步的详细描述。需要指出,附图只是出于解 释和说明目的示范性地给出的,用于说明此处描述的激光雷达的工作原理和组成结构等构思,其既不必然按照比例绘制,也不构成对本公开构思的限制。
图1是根据本公开的一些实施方式的激光发射端的示意图,在此激光发射端包括激光器与整形模块;
图2是根据本公开的一些实施方式的激光发射端发射线状光斑的示意图,在此通过激光发射端的整形模块将激光光束整形为线状光斑;
图3是根据本公开的一些实施方式的激光光束与扫描模块的扫描部件的旋转轴线的夹角的示意图;
图4是根据本公开的一些实施方式的激光雷达的系统示意图,在此示例性地表示了拼接视场;
图5是根据本公开的一些实施方式在视场拼接的情况下重合部分的角分辨率的示意图;
图6是根据本公开的激光雷达的一些实施例的反射镜的第一旋转状态的示意图;
图7是根据本公开的激光雷达的一些实施例的反射镜的第二旋转状态的示意图;
图8是根据本公开的激光雷达的一些实施例在视场拼接后重合部分的角分辨率的示意图;
图9是根据本公开的激光雷达的一些实施例的拼接扫描视场的示意的俯视图;
图10是根据本公开的激光雷达的一些实施例的示意图,其在前述实施例的基础上将激光收发模块组由两个增加至四个;
图11是根据本公开的激光雷达的一些实施例的扫描模块的示意图,在此扫描模块构造为四棱镜;
图12是根据本公开的激光雷达的一些实施例的视场拼接的示意图;
图13是根据本公开的激光雷达的一些实施例的示意图,其在前述实施例的基础上将扫描模块构造为异面棱镜;
图14是在根据本公开的一些实施例中在使用一组激光收发模块组进行扫描的情况下探测视场的示意图;
图15是根据本公开的一些实施例的激光雷达的扫描示意图;
图16是根据本公开的一些实施例的激光雷达的原理框图;
图17是根据本公开的一些实施例的激光雷达的示意性的结构立体图;
图18是根据本公开的一些实施例的激光雷达的扫描模块的示意性的结构立体图;
图19是根据本公开的一些实施例的激光雷达的示意性的结构立体图;
图20是根据本公开的一些实施例的激光雷达的扫描模块的示意性的结构立体图。
具体实施方式
以下描述中的实施方式或实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本公开的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本公开的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本公开的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“垂轴”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本公开的限制。
在根据本公开的一些实施方式中,激光雷达1包括激光发射端3、扫描模块4和激光接收端5。其中,激光发射端3具有激光器31,该激光器31设置用于发射对目标物进行探测的激光光束。激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。扫描模块4设置用于引导由所述激光器31发射的激光光束对目标物进行扫描,和/或接收并引导由目标物反射回来的激光光束。
控制模块6设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。在一些实施例中,根据实际应用需求,控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离,由此例如实现单独设计、制造和安装控制模块6,或者实现对激光雷达1进行远程控制和数据分析。在另一些实施例中,也可以选择将控制模块6构造成激光雷达1的一个组成部分,例如布置在激光雷达壳体中或者与激光雷达1的光电装置相集成,由此例如在制 造和安装激光雷达时,能够获得完整的激光雷达系统。
其中,至少一个激光发射端3和至少一个激光接收端5集成为一个构造成单独的结构单元的激光收发模块组2,其中所述激光雷达1包括多个激光收发模块组2,所述多个激光收发模块组2相对于扫描模块4分布布置,并通过所述多个激光收发模块组2对应形成的子视场在整体上形成激光雷达1的至少部分拼接的视场。根据本公开的一些实施方式,例如将光束整形成线状,使用一维扫描模块4即可实现三维扫描,减少对扫描部件的要求,降低整机成本。通过多个激光收发模块组2,实现探测视场的拼接,具有更大的水平视场角,其中中心视场具有重合部分,因此可提高重点测试区域的探测精度。
图1是根据一些实施方式的激光发射端3的示意图,在此激光发射端3包括激光器31与激光整形模块。如图所示,激光发射端3具有激光器31,该激光器31设置用于发射对目标物进行探测的激光光束。
激光器31可以选自固体激光器或半导体激光器等类型,例如光纤激光器。但是,本公开提出的技术方案包括但不限于前述的激光器类型,而是可以使用任何能产生并发射激光的装置,本公开的构思不限于在此描述的形式。
此外,激光发射端3还具有发射镜组。在示出的实施例中,发射镜组构造成激光整形模块。激光整形模块透射由激光器31发射的激光光束,并实现对激光光束的准直、匀化、整形等功能。根据不同设计功能和目的,可以使用准直、匀化、整形这三种功能的一种或多种,最终形成例如点状或线状光斑。
在图1示出的实施方式中,激光整形模块由准直镜311和匀光片312构成。由激光发射端3的激光器31投射出的激光光束以相对发散的方式入射到准直镜311,平行的光从准直镜311出射并投射到匀光片312,并经过匀光片312后继续射出。激光整形模块的形式可以多样化,包括但不限于示出的准直镜311和匀光片312的组合,只要是能实现相应整形目的的光学元器件及其组合,均可以用作本公开意义上的激光整形模块,本公开的构思不限于在此描述的形式。
此外,在本公开的一些实施方式中,激光器31和激光整形模块既可以一体化,也可以构造成分开的部件单独安装,本公开的构思不限于在此描述的形式。
在图2示出的实施方式中,激光发射端3发射线状光斑。在此,激光发射端3的激光整形模块将由激光发射端3的激光器31发射的激光光束整形成线状光斑,即线形扫描激光,因此激光光束以线状光斑的形式射到扫描模块4的反射面上,如图2所示。当然,线状光斑经过扫描模块4的反射面反射后,仍然以线状光斑的形式扫描目标物。将光束整形成线状,利用本公开提出的技术方案,使用一维扫描模块4即可实现三维扫描,减少对扫描部件的要求,降低整机成本。
激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。例如在图4中可以最清楚地看到的,激光光束由激光雷达1的激光发射端3发射出来,经扫描模块4的反射面反射后,投向目标物并对其进行扫描。之后,由目标物反射回来的激光光束,首先射到扫描模块4的反射面上,经此反射后被激光雷达1的激光接收端5接收并检测。
在此,可以使用光电型探测器或光热型探测器探测激光信号,例如包括雪崩光电二极管、单光子探测器或者光电倍增管。但是,在根据本公开的技术方案中,探测器包括但不限于前述类型。任何能够将激光信号转换成电信号的探测器,均可以用在本公开提出的技术方案中,本公开的构思不限于在此描述的形式。
根据本公开的一些实施方式,激光接收端5还具有接收镜组。例如接收镜组沿着激光光束的传播方向设置在探测器之前,从而接收镜组能够接收并透射被目标物反射回来的激光光束和/或由扫描模块4反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端5的探测器上。
根据本公开,扫描模块4一方面设置用于导向激光光束,改变激光光束的传播方向和方式,以对目标物进行扫描;另一方面,扫描模块4设置用于改变由目标物反射回来的激光光束的传播方向和方式,将其引导到激光雷达1的激光接收端5的接收镜组。
根据本公开的一些实施方式,扫描模块4包括发射扫描模块和接收扫描模块,其中发射扫描模块专门设置用于将激光发射端3发射的激光光束反射至目标物,而接收扫描模块专门设置用于接收和引导由目标物反射回来的激光光束,并将其改变方向至激光接收端5。
根据本公开的一些实施方式,扫描模块4的扫描部件可以包括双面反射镜、多面棱镜、异面棱镜或者振镜。由激光收发模块组2的激光发射端3发出的激光光束与扫描模块4的扫描部件的旋转轴线形成夹角,或者说与扫描模块4的扫描部件的反射面形成夹角。尤其是,由激光收发模块组2的激光发射端3的激光器31发出的激光光束与扫描模块4的反射面形成的夹角彼此不同,因此各个激光收发模块组2对应形成的扫描子视场彼此重合部分,由此形成激光雷达1的拼接视场。
在一些实施方式中,通过适当匹配由激光收发模块组2的激光发射端3的激光器31发出的激光光束与扫描模块4的反射面形成的夹角,尤其是通过调整激光收发模块组2的方位或者改变扫描模块4的扫描部件的反射面角度或部件结构,可以改变激光雷达1在垂轴方向的拼接视场和/或在水平方向的拼接视场的拼接方式。在此,垂轴方向是指与水平方向垂直的方向,即激光雷达在正常工作状态下的竖直方向或者说铅垂方向。
图3是根据本公开的一些实施方式的激光收发模块组2的激光发射端3发出的激光光束与扫描模块4的旋转轴线的夹角的示意图。在此,扫描模块4的扫描部件构造成双面反射镜,由两个激光收发模块组2的激光发射端3的激光器31发出的激光光束分别与双面反射镜的旋转轴线形成夹角α和β。
由两个激光收发模块组2的激光发射端3的激光器31发出的激光光束分别与扫描模块4的双面反射镜的旋转轴线形成的夹角α和β可以彼此不同,也就是说,由两个激光收发模块组2的激光发射端3的激光器31发出的激光光束与扫描模块4的双面反射镜的反射面形成的夹角彼此不同,因此,如图4所示,其中一个集成了激光发射端3和激光接收端5的激光收发模块组2形成的子视场A与另一个集成了激光发射端3和激光接收端5的激光收发模块组2形成的子视场B存在重合部分,由此总体形成激光雷达1的拼接的视场。
如图5所示,由于两个激光收发模块组2的激光光束都针对重合部分进行扫描,因此显然重合部分的分辨率高于非重合部分。同样由于重合部分的存在,激光雷达1总体上由各个激光收发模块组2的子视场形成了一种拼接式的视场。
但是,本公开提出的扫描模块4包括但不限于前述的扫描部件,而是可以使用任何能改变激光光束传播方向的光学器件,本公开的构思不限于在此描述的形式。
根据本公开的一些实施方式,控制模块6设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息,如图4所示。控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离;或者,也可以选择将控制模块6构造成激光雷达1的一个组成部分。
控制模块6可以对激光器31进行控制,从而控制激光器31发射激光光束的时机和方式等。例如,激光光束可以以连续方式或者以脉冲方式从激光器31发出。当然,控制模块6也可以用于控制激光雷达1的激光接收端5的探测器。
控制模块6可以对用于接收通过扫描模块4引导的从目标物反射回来的激光光束的探测器进行控制,并进行后期信号数据处理,分析出目标物的特征信息。在此目标物的特征信息包括但不限于目标物的速度、位置和形状等特性参数,以及由此可以推导或者计算出的其他参量。
为此,控制模块6可以包括集成的信号处理部分,其用于对探测器接收到的反射激光光束的光电信号数据进行分析和处理,由此获取目标物的特征信息。也可以设置单独的信号处理模块,用于实现相应的信号处理和分析功能。
控制模块6还可以对扫描模块4进行控制,从而例如对于旋转扫描部件,如双面反射镜、多面棱镜、异面棱镜等,控制旋转扫描部件的旋转速度;或者对于振镜,控器其振动频率或扫描角度。扫描模块4的扫描部件包括异面棱镜,其中异面棱镜的反射侧面与中心轴线的夹角互不相同并彼此匹配,使得每个反射侧面对应形成的子视场至少部分地彼此重叠,由此形成激光雷达1的拼接视场。
例如,设置有电动机,用于旋转驱动扫描模块4的旋转扫描部件。对此,控制模块6可以设置用于控制电动机的启动、停止和工作模式等,尤其是调控电动机的旋转速度。
根据本公开的一些实施方式,至少一个激光发射端3和至少一个激光接收端5集成为一个激光收发模块组2,激光收发模块组2构造成单独的结构单元。例如,在每个激光收发模块组2中,集成在激光 收发模块组2中的激光发射端3和激光接收端5紧邻地并排设置在一个共同的结构单元壳体中。也就是说,可以通过将至少一个激光发射端3和至少一个激光接收端5集成到一个共同的激光收发模块组壳体中形成一个单独的结构单元。
也可以考虑,通过机械连接方式,将单独的激光发射端3和激光接收端5彼此并排连接到一起形成一个单独的结构单元。还可以考虑,将激光发射端3和激光接收端5直接构造在一个公用的结构模块中,由此形成一个单独的结构单元。
在此需要指出,激光发射端3和激光接收端5可以彼此处于上下位置关系,或者左右位置关系,或者其他位置关系,都在本公开的构思范围内。在此重要的是,集成为结构单元或者说激光收发模块组2的激光发射端3和激光接收端5能够分别正常地发射和接收激光光束,而不会在一个激光收发模块组2的激光发射端3和激光接收端5之间或者在不同激光收发模块组2的激光发射端3和激光接收端5之间造成光路干扰。
在一些实施方式中,激光雷达1包括多个激光收发模块组2,所述多个激光收发模块组2相对于扫描模块4分布布置,由此通过多个激光收发模块组2对应形成的子视场形成激光雷达1的至少部分彼此重叠/拼接的视场。当然,根据激光雷达1的具体结构和功能需求,可以选择特定数量的激光收发模块组2,或者也可以根据应用场合需要改变扫描模块4与多个激光收发模块组2的方位关系,或者改变多个激光收发模块组2之间的方位关系。重要的是,多个激光收发模块组2的相互之间的布置关系以及多个激光收发模块组2与扫描模块4相互之间的布置关系能够顺利实现激光光束的收发,且多个激光收发模块组2能够按照需要针对目标物形成互相弥补的子视场,尤其是总体上至少部分拼接的视场,例如图4和图5所示。
在一些实施方式中,激光雷达1包括偶数个激光收发模块组2,例如2、4、6、8、10、12甚至更多个激光收发模块组2,这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧大体对称地分布,由此通过多个激光收发模块组2对应形成的子视场,以重叠的方式形成激光雷达1的至少部分拼接的总体视场。
当然,根据激光雷达1的应用场合和性能要求,也可以考虑激光收发模块组2相对于扫描模块4的中心轴线采用不对称的布置方式,例如为了加强扫描重点区域或者关键区域,或者例如为了应对特殊的扫描角度范围,或者为了有针对性地改变特定区域的扫描频率/扫描角分辨率。
例如,在激光雷达1恰好设置2个激光收发模块组2的情况下,这2个激光收发模块组2与扫描模块4可以呈三角形布置。例如,2个激光收发模块组2与扫描模块4分别处在一个等边三角形的顶点上。
例如,在激光雷达1恰好设置4个激光收发模块组2的情况下,这4个激光收发模块组2可以相对于扫描模块4的扫描部件在两侧对称布置,例如呈矩形布置。可以考虑的是,4个激光收发模块组2分别处在一个矩形的四个角点上,而扫描模块4的扫描部件可以根据需要布置在这个矩形形状的内部,例如布置在矩形的几何中心上,即两条对角线的交点上。当然,对于特殊的视场大小和/或扫描分辨率需求,也可以考虑将扫描模块4的扫描部件布置在这个矩形形状的外部。
在一些实施方式中,也可以考虑的是,激光雷达1包括多于一个的奇数个激光收发模块组2,例如3、5、7、9、11甚至更多个激光收发模块组2。这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧不对称地分布。借此可以针对特定的扫描区域或者关键扫描区域,相对于其他区域有针对性地增加配属的激光收发模块组2的数量,提高在此类扫描区域中的分辨率和/或扫描频率。
在一些实施方式中,也可以使工作激光收发模块组2仍然相对于扫描模块4在两侧对称地分布,而将多出的激光收发模块组用作备用激光收发模块组,其仅仅在工作激光收发模块组出现故障或者发生损毁时,才作为安全冗余替换装置投入使用,由此确保激光雷达1安全、可靠且不间断地工作。
在一些实施方式中,还可以单独设置备用激光收发模块组2,例如针对重要扫描范围,从而在个别工作激光收发模块组2发生故障或者出现外部损毁时,能够马上作出反应,顶替发生故障或者出现外部损毁的激光收发模块组2,确保激光雷达1持续和不间断的扫描工作,由此也不会中断对于目标物的扫描监控。
为此,激光雷达1可以设置用于检测激光收发模块组2的工作状态的故障检测装置。控制模块6 借助故障检测装置对工作激光收发模块组2的功能性进行检测或监控,并在检测到激光收发模块组2发生故障或者出现外部损毁时,切换到激光雷达1的紧急工作模式,并将备用激光收发模块组2投入使用并替代发生故障或者出现外部损毁的工作激光收发模块组2。对工作激光收发模块组2的功能性进行检测可以在激光雷达1启动时或者暂停间歇进行。对于可靠性要求较高的应用场合,也可以设置故障检测装置对激光收发模块组2进行连续不断的持续监控。
在一些实施方式中,每个激光收发模块组2可以集成有不同数量的激光发射端3和激光接收端5,例如在一个激光收发模块组2中,多个激光发射端3对应一个激光接收端5,或者一个激光发射端3对应多个激光接收端5,或者一个激光发射端3对应一个激光接收端5,或者多个激光发射端3对应多个激光接收端5。通过合适地设置和匹配激光发射端3和激光接收端5的数量关系,以及合理地设置激光收发模块组2的数量,不但有利于灵活调整、尤其是扩大激光雷达1总体视场,而且有助于根据需求提高在单个激光收发模块组2的子视场内的扫描频率、垂轴和水平角分辨率,以及在多个激光收发模块组2的彼此重叠的视场内的扫描频率、垂轴和水平角分辨率。
在一些实施方式中,激光雷达1还包括方位调整装置,其设置用于调节激光收发模块组2的方位,尤其是其中包含的激光发射端3和激光接收端5的方位。为此,可以设置用于调节激光收发模块组2的姿态的致动器。通过控制模块6控制用于调节激光收发模块组2的姿态的致动器,能够动态地、自动地调节由激光收发模块组2的激光发射端3的激光器31发射的激光光束相对于扫描模块4的反射面或者扫描模块4的旋转轴线的夹角。
在一些实施方式中,控制模块6可以根据预定的工作模式协调控制配属于各个激光收发模块组2的致动器,从而控制模块6通过切换不同的工作模式,可以自动地匹配不同的应用场景或者环境条件,例如改变激光雷达1的扫描视场角,提高特定扫描区域或者关键扫描区域的扫描频率、垂轴角分辨率和/或水平角分辨率等。
在此,可以考虑给每个激光收发模块组2分别配有单独的方位调整装置,以便对每个激光收发模块组2能够实现个别的有针对性的姿态调整。或者,也可以考虑给所有激光收发模块组2设置一个共同的方位调整装置。也可以将所有激光收发模块组2分组,对于每组激光收发模块组2分别设置一个共同的方位调整装置,由此能够实现对所有激光收发模块组2的总体或者分组控制,协调一致地实现满足需求的对扫描视场角、扫描频率和/或扫描分辨率等的调整。
对于调节激光收发模块组姿态的致动器,可以考虑使用电动机、液压致动器、气压致动器或者压电致动器等类型,只要其能够根据控制模块6发出的控制信号驱动方位调整装置或者说调整激光收发模块组2的方位。
在一些实施方式中,尤其包括用于驱动所述方位调整装置的电动机,其中所述控制模块6控制所述用于驱动所述方位调整装置的电动机,由此通过驱动所述方位调整装置实现方位调整。在一些实施方式中,所述多个激光收发模块组2能够分别通过所述方位调整装置单独地调整相对扫描模块4的反射面的方位,由此通过调节多个激光收发模块组2对应形成的子视场的方式,来改变激光雷达1的拼接视场和/或扫描分辨率。
通过动态地、自动地调节由激光收发模块组2的激光发射端3的激光器31发射的激光光束相对于扫描模块4的反射面或者扫描模块4的旋转轴线的夹角,能带来的有益效果包括:能够根据激光雷达1的应用环境,例如根据获取的目标物的特征信息,以开环控制/闭环控制的方式,实现动态和自动地改变激光雷达1的视场;尤其是能够针对特定的关键区域,动态地提高激光雷达1的垂轴角分辨率和/或水平角分辨率。
为此,激光雷达1可以设置不同的工作模式,包括但不限于普通工作模式和强化工作模式。在激光雷达1的普通工作模式中,多个激光收发模块组2的子视场彼此至少部分重叠,总体形成激光雷达1的拼接视场,从而利用确定数量的激光收发模块组2,实现激光雷达1均衡的扫描性能。这里均衡的扫描性能是指,例如视场大小与垂轴角分辨率和水平角分辨率相互协调和匹配,达到符合应用要求的激光雷达1性能。
在激光雷达1的强化工作模式中,通过利用方位调整装置调节激光收发模块组2的方位,将更多激 光收发模块组2分配给特定区域或者关键区域进行扫描,例如将比在普通工作模式下更多数量的激光收发模块组2分配给特定区域或者关键区域进行扫描,由此在此区域中获得增大的拼接视场、垂轴角分辨率和/或水平角分辨率,进而提高激光雷达1整体性能。也就是说,例如在普通工作模式下,30%的激光收发模块组2覆盖或者至少部分覆盖特定区域或者关键区域进行扫描,而在强化工作模式中,更多数量的激光收发模块组2,例如40%、50%甚至60%或者以上的激光收发模块组,被调配给所述特定区域或者关键区域进行扫描,从而增强这些区域中激光雷达1的扫描频率和分辨率。当然,也可以通过强化工作模式改变激光雷达1的视场角和扫描方位或者其他特征参数。
在一些实施方式中,激光雷达1还具有紧急工作模式。在检测到激光收发模块组2发生故障或者出现外部损毁时,切换到激光雷达1的紧急工作模式,并将备用激光收发模块组2投入使用并替代发生故障或者出现外部损毁的激光收发模块组2,确保激光雷达1的功能和性能不受损害和降低。
在一些实施方式中,可以通过控制模块6控制方位调整装置,从而可以根据需求,动态地实现激光雷达1的可变的视场。尤其是,通过改变各个激光收发模块组的姿态,即改变由激光发射端3的激光器31发射的激光光束的方位和角度,例如在用作车载激光雷达1的情况下,可以根据车辆外部环境情况,尤其实时路况,动态调节激光雷达1的拼接视场,特别是提高在特定角度范围内的垂轴角分辨率和水平角分辨率。
下面参照具体实施例,对本公开的构思进一步详细说明。需要指出,这里列举的实施例仅仅用于清楚地阐述本公开的发明构思,而不应理解成对本公开的限制。在此涉及的激光雷达1的技术特征,只要没有违背自然规律或者技术规范,都可以在本公开构思的框架内任意组合或者替换,都在本公开的构思范围内。
图6至图9示出了根据本公开的激光雷达1的一些实施例,其中设有恰好两个激光收发模块组2,并采用双面反射镜作为扫描模块4的扫描部件。如图所示,两个激光收发模块组2相对于作为扫描模块4的扫描部件的双面反射镜对称布置,并与双面反射镜呈三角形布置。也就是说,两个激光收发模块组2与扫描模块4分别处在一个三角形的顶点上,这个三角形尤其可以是等边三角形。
当然,根据激光雷达1的应用场合和性能要求,也可以考虑激光收发模块组2相对于作为扫描模块4的扫描部件的双面反射镜采用非三角形的布置方式,例如为了应对特殊的扫描角度范围,或者为了有针对性地改变特定区域的扫描频率/扫描角分辨率,激光收发模块组2也可以与旋转轴布置在一条直线上或者布置在一个平面中。
图6示出了根据本公开的一些实施例的双面反射镜的第一旋转状态,图7示出了根据本公开的一些实施例的双面反射镜的第二旋转状态。由激光收发模块组2的激光发射端3发出的激光光束经激光整形模块后,以线状激光的形式投射至目标物。两个激光收发模块组2分别置于双面反射镜的两侧,分别集成一个激光发射端3和一个激光接收端5。通过旋转双面反射镜对目标物进行探测扫描。由目标物反射回来的激光光束,同样被扫描模块4的双面反射镜接收并分别反射到激光收发模块组2的激光接收端5。各个激光接收端5的接收镜组能够接收并透射反射回来的激光光束,并将反射回来的激光光束汇聚到激光接收端5的探测器上。
在此,两个激光收发模块组2分别形成各自的子视场,其中双面反射镜的反射面的不同区域分别构成发射扫描模块/区域和接收扫描模块/区域,即用作发射扫描模块的反射面区域专门设置用于将激光发射端3发射的激光光束反射至目标物,而用作接收扫描模块的反射面区域专门设置用于接收和引导由目标物反射回来的激光光束,并将其改变方向至激光接收端5。
图8是根据本公开的一些实施例在视场拼接后重合部分的角分辨率的示意图。垂轴视场角与激光整形后的发散角相关,例如,本实施例中垂轴视场角为20°。例如,在图8示出的实施例中,激光接收端中的探测器采用64线线阵APD。激光雷达1在非重合部分中具有0.3°的垂轴角分辨率,而在重合部分中可以提高到0.15°的垂轴角分辨率,重合部分扫描分辨率高于非重合部分。同样,这里的垂轴角分辨率大小仅仅作为用于说明发明构思的示例,而不构成对本公开的限制。事实上,根据本公开的技术方案,根据需求也可以实现0.1°甚至更高的探测扫描视场。
图9是根据本公开的一些实施例的拼接扫描视场的示意的俯视图。在此,例如可以设置电动机,用 于驱动双面反射镜旋转。对此,控制模块6可以设置用于控制电动机的启动、停止和工作模式等,尤其是调控电动机的旋转速度。例如,由两个激光收发模块组2分别形成的扫描子视场各具有100°的水平视场,其中20°为重合部分,因此总的水平视场角为180°。
需要指出,这里的水平视场角大小仅仅作为用于说明发明构思的示例,而不构成对本公开的限制。事实上,根据本公开的技术方案,根据需求也可以实现200°以上的探测扫描视场。
在此,同样可以包括方位调整装置(未示出),所述多个激光收发模块组2能够通过所述方位调整装置单独地调整相对扫描模块4的反射面的方位,并由此调整与扫描模块4的反射面的夹角。
其中,所述控制模块6可以根据获取的目标物的特征信息控制方位调整装置自动地调整所述多个激光收发模块组2相对扫描模块4的反射面的方位。换句话说,方位调整装置能够个别地设定激光收发模块组2相对扫描模块4的反射面的不同夹角,进而提高特定视场范围的垂轴和/或水平角分辨率。
图10示出了本公开的激光雷达1的一些实施例,其中设有恰好四个激光收发模块组2A-2D,并采用双面反射镜作为扫描模块4的扫描部件。如图所示,四个激光收发模块组2A-2D相对于作为扫描模块4的扫描部件的双面反射镜的反射面在两侧对称布置,并大体形成一个矩形。换句话说,四个激光收发模块组2A-2D分别设在矩形的四个角之一上,而作为扫描模块4的扫描部件的双面反射镜处于这个矩形的几何中心。在这些实施例中,作为扫描模块4的扫描部件的双面反射镜的旋转轴线与由四个激光收发模块组2A-2D所形成的矩形的两条对角线的交点重合。
当然,根据激光雷达1的应用场合和性能要求,也可以考虑激光收发模块组2相相对于作为扫描模块4的扫描部件的双面反射镜的反射面采用非矩形的布置方式,例如为了加强扫描重点区域或者关键区域,或者例如为了应对特殊的扫描角度范围,或者为了有针对性地改变特定区域的扫描频率/扫描角分辨率,激光收发模块组2可以采用梯形或其他不规则四边形的布置方式,尤其是可根据探测需求设定激光收发模块组2的不同位置。
如图所示,四个激光收发模块组2A-2D分别形成各自对应的子视场2A-2D,子视场2A-2D彼此之间重叠。同样,双面反射镜的反射面的不同区域可以分别构成发射扫描模块/区域和接收扫描模块/区域,即用作发射扫描模块的反射面区域专门设置用于将激光发射端3发射的激光光束反射至目标物,而用作接收扫描模块的反射面区域专门设置用于接收和引导由目标物反射回来的激光光束,并将其改变方向至激光接收端5。
在此,为驱动双面反射镜旋转,同样可以设置电动机,控制模块6可以设置用于控制电动机的启动、停止和工作模式等,尤其是调控电动机的旋转速度。
在前述实施例的基础上,这些实施例的激光收发模块组2由两个增加至四个。相较于前述实施例,四个激光收发模块组2A-2D所形成的子视场2A-2D部分重合,更有利于提高扫描分辨率,例如垂轴角分辨率可以达到0.075°。
对于四个激光收发模块组,控制模块6可以根据预定的工作模式协调控制配属于四个激光收发模块组的致动器,从而控制模块6通过切换不同的工作模式,可以通过利用致动器调整四个激光收发模块组的方位使得激光雷达自动地匹配不同的应用场景或者环境条件,例如改变激光雷达1的扫描视场,提高特定扫描区域或者关键扫描区域的垂轴角分辨率和/或水平角分辨率。
图11是根据本公开的一些实施例的扫描模块4,在此扫描模块4构造为四棱镜,尤其是正四棱镜或者长方体四棱镜。四棱镜绕着其中心轴线进行旋转。
图12是根据本公开的一些实施例的视场拼接的示意图。在此,以恰好两个激光收发模块组2为示例,表示了在使用四棱镜作为扫描模块4的扫描部件的情况下形成拼接视场的情况。如图所示,两个激光收发模块组2相对于作为扫描模块4的扫描部件的四棱镜的中心轴线对称布置,例如两个激光收发模块组2与四棱镜的中心轴线布置在同一平面中。当然,也可以考虑其他不规律或者说错位的布置方式,以实现特殊的视场拼接效果。通过激光收发模块组2的合适的布置方式,同时结合四棱镜作为扫描模块4的旋转扫描部件,能够有效地扩大激光雷达1的视场,增大扫描频率,甚至能够针对目标物或者特定区域实时监测。
图13是根据本公开的一些实施例,其在前述实施例的基础上将扫描模块4构造为异面棱镜,具体 地在这些实施例中为异面四棱镜。异面四棱镜的特征在于,其四个侧面与四棱镜的中心轴线的夹角互不相同。例如,由激光收发模块组2的激光发射端3的激光器31发射的激光光束与异面棱镜的各个反射面形成的夹角彼此不同,因此各个激光收发模块组2形成的扫描子视场彼此重合部分,形成激光雷达1的拼接视场。
图14是在根据本公开的一些实施例中在使用一组收发模块进行扫描的情况下探测视场的示意图,在此可以看到异面棱镜的各个反射面所对应的子视场A-D之间的重叠位置关系。在图14中,以假想的方式将异面四棱镜的四个反射侧面放置在一个轴线上(在平面图中体现为一个交点),由此更清楚地表示出四个反射侧面之间呈角度α1、α2和α3的位置关系。
也就是说,由于激光收发模块组2的激光发射端3的激光器31发出的激光光束与异面棱镜的各个反射面形成的夹角彼此不同,异面棱镜的各个反射面所对应形成的子视场也处于不同的方位。例如,如图14所示,异面棱镜的面A对应的子视场A在图14中表示为从上至下的第一个矩形(虚线),面B对应的子视场B在图14中表示为从上至下的第二个矩形(实线),面C对应的子视场C在图14中表示为从上至下的第三个矩形(虚线),而面D对应的子视场D在图14中表示为从上至下的第四个矩形(实线)。在此,每两个相邻的子视场之间都有以特有方式重叠的部分视场,由此整体上形成激光雷达1的拼接的视场。
需要指出,通过适当匹配由激光收发模块组2的激光发射端3的激光器31发出的激光光束与扫描模块4的反射面形成的夹角,尤其是通过调整激光收发模块组2的方位或者改变扫描模块4的扫描部件的反射面角度或结构,可以实现激光雷达1在竖直方向的特有拼接视场和/或在水平方向的特有拼接视场。
图14为使用仅一个激光收发模块组2进行扫描所形成的拼接探测视场的示意图。实际应用中,可以使用至少两个激光收发模块组2,如前所述采用适当的布置方式,能够实现更加复杂和特殊的视场拼接效果,满足实际应用的多样和变化的需求。在此,异面棱镜示例性地具有四个反射侧面。当然,也可以考虑使用其他多面异面棱镜,并根据实际应用需求根据本公开的构思设置异面棱镜的不同反射面之间的夹角或者说与中心轴线的夹角,从而实现有利的大范围甚至全景的扫描视场,例如实现实时监测或者更大的垂轴角分辨率和/或水平分辨率。
在根据本公开的一些实施例中,激光雷达1主要包括激光发射端3、激光接收端5和扫描模块4。其中,激光发射端3具有激光器,该激光器设置用于发射对目标物进行探测的激光光束。激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。扫描模块4设置用于引导由所述激光器发射的激光光束对目标物进行扫描,和/或接收并引导由目标物反射回来的激光光束。
在根据本公开的一些实施例中,激光雷达还配有控制模块6,其设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。其中扫描模块4的扫描部件构造成可旋转的板状的双面反射镜41。
在一些实施例中,根据实际应用需求,控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离,由此例如实现单独设计、制造和安装控制模块6,或者实现对激光雷达1进行远程控制和数据分析。在另一些实施例中,也可以选择将控制模块6构造成激光雷达1的一个组成部分,例如布置在激光雷达壳体中或者与激光雷达1的光电装置相集成,由此例如在制造和安装激光雷达时,能够获得完整的激光雷达系统。
通过使用可旋转的板状的双面反射镜41作为扫描部件,不但有利于保持扫描部件的质量轻,而且能够显著增大出光口径和接收光束口径,简单地实现尤其水平方向大范围的高速扫描。此外,根据本公开的技术方案能够简便高效地利用线形扫描激光,这有助于在不增加激光器数量的前提下显著提升激光雷达1的垂直角分辨率。
图15是根据本公开的一些实施例的激光雷达1的扫描示意图。激光雷达1的激光整形模块将由激光发射端3的激光器发射的激光光束整形成线形扫描激光,因此激光光束以线形扫描激光的形式射到作为扫描模块4的扫描部件的板状的双面反射镜41的反射面上。在图15中,线形扫描激光经过反射面反 射后,仍然以线形扫描激光的形式扫描代表目标物的人体。
如图15所示,通过激光雷达1的激光发射端3的整形模块将激光光束整形成线形扫描激光,即线状光斑,接着利用可旋转的板状的双面反射镜41作为扫描部件,使用一维扫描模块4即可实现三维扫描,因此显著减少对扫描部件的要求,降低整机成本,并可以实现高效地反射线形扫描激光并以线形扫描激光扫描目标物。
图16是根据本公开的一些实施例的激光雷达1的原理框图。
根据本公开的一些实施例,激光雷达1的激光发射端3包括激光器与激光整形模块,其中激光器设置用于发射对目标物进行探测的激光光束。激光器可以选自固体激光器或半导体激光器等类型,例如光纤激光器。但是,本公开提出的技术方案包括但不限于前述的激光器类型,而是可以使用任何能产生并发射激光的装置,本公开对此没有限制。
此外,激光发射端3还具有发射镜组,其构造成激光整形模块。激光整形模块透射由激光器发射的激光光束,并实现对激光光束的准直、匀化、整形等功能。根据不同设计功能和目的,可以使用准直、匀化、整形这三种功能的一种或多种,最终形成例如点状或线状光斑。
激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。例如图16所示,激光光束由激光雷达1的激光发射端3发射出来,经板状的双面反射镜41的反射面反射后,投向目标物并对其进行扫描。之后,由目标物反射回来的激光光束,首先射到板状的双面反射镜41的反射面上,经此反射后被激光雷达1的激光接收端5接收并检测。
在此,可以使用光电型探测器或光热型探测器探测激光信号,例如包括雪崩光电二极管、单光子探测器或者光电倍增管。但是,在根据本公开的技术方案中,探测器包括但不限于前述类型。任何能够将激光信号转换成电信号的探测器,均可以用在本公开提出的技术方案中,本公开对此没有限制。
根据本公开的一些实施例,激光接收端5还具有接收镜组。例如接收镜组沿着激光光束的传播方向设置在探测器之前,从而接收镜组能够接收并透射被目标物反射回来的激光光束和/或由扫描模块4反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端5的探测器上。当线形扫描光束照射到探测目标物上时,目标物产生漫反射光束,漫反射光束经旋转的双面反射镜41后被激光接收端5接收。漫反射的光束在通过激光接收端5的接收镜组收集后汇聚到探测器上,形成探测信号。
在此,板状的双面反射镜41一方面设置用于导向激光发射端3发射的激光光束,改变激光光束的传播方向和方式,以对目标物进行扫描;另一方面,板状的双面反射镜41设置用于改变由目标物反射回来的激光光束的传播方向和方式,将其引导到激光雷达1的激光接收端5的接收镜组。
根据本公开的一些实施例,设置控制模块6用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离;或者,也可以选择将控制模块6构造成激光雷达1的一个组成部分。在此,所述控制模块6例如包括激光器驱动模块62、信号处理模块63和主控模块61。其中,激光器驱动模块62用于控制激光发射端3的激光器发射激光,信号处理模块63用于处理由激光接收端5的探测器接收的探测信号,而主控模块61用于控制所述激光器驱动模块62和信号处理模块63,并利用所述信号处理模块63计算出目标物的特征信息,例如目标物的距离和位置等特征信息。可选地,主控模块61还可以根据信号处理模块63反馈的特征信息控制调整激光器驱动模块62和/或扫描模块4,从而能够以闭环控制的方式自动调节激光器驱动模块62和/或扫描模块4的工作状态或者工作模式,实现例如动态地自动调节激光雷达的性能,例如视场角、扫描分辨率等。
具体地,控制模块6可以对激光器进行控制,从而控制激光器发射激光光束的时机和方式等。例如,激光光束可以以连续方式或者以脉冲方式从激光器发出。需要指出,所述目标物的特征信息包括但不限于速度、位置和形状等特性参数,还包括可以由此推导或者计算出的其他参量。控制模块6还可以对扫描模块4的扫描部件进行控制,从而例如控制旋转扫描部件的旋转速度等参量。当然,控制模块6还可以对激光接收端5的探测器进行控制。
图17是根据本公开的一些实施例的激光雷达1的示意性的结构立体图。在此,使用附图标记7表示激光雷达1的壳体7,其限定激光雷达1的内部空间。激光雷达1的组成部件,包括但不限于激光发 射端3、激光接收端5、扫描模块4和可选的控制模块6等光学元器件和电子元器件,都布置在激光雷达1的壳体7所限定的内部空间中。可以根据激光雷达1的安装和使用环境设计和改变壳体7的具体结构,本公开对此不做限制。
根据本公开的一些实施例,至少一个激光发射端3和至少一个激光接收端5集成为一个激光收发模块组2。每个激光收发模块组2构造成一个单独的结构单元。例如,在每个激光收发模块组2中,集成在激光收发模块组2中的激光发射端3和激光接收端5紧邻地并排设置在一个共同的结构单元壳体中。也就是说,可以通过将至少一个激光发射端3和至少一个激光接收端5集成到一个共同的激光收发模块组壳体中形成一个单独的结构单元。在图17中,一个激光发射端3和一个激光接收端5集成为一个构造成单独的结构单元的激光收发模块组2。在激光雷达1的壳体7中共设有两个激光收发模块组2。
此外,激光发射端3不限定激光器和整形模块的数量,可以是一个或者多个。同样,激光接收端5也不限定探测器和接收镜组的数量,可以是一个或者多个。可以按照需求和合理的排布方式对相应组成部件的数量进行增减,本公开的构思不限于作为示例描述的组成部件的数量和方式。
在本公开的一些实施例中,每个激光收发模块组2可以集成有不同数量的激光发射端3和激光接收端5,例如在一个激光收发模块组2中,多个激光发射端3对应一个激光接收端5,或者一个激光发射端3对应多个激光接收端5,或者一个激光发射端3对应一个激光接收端5,或者多个激光发射端3对应多个激光接收端5。通过合适地设置和匹配激光发射端3和激光接收端5的数量关系,以及合理地设置激光收发模块组2的数量,有利于灵活调整、尤其是增大激光雷达1的视场和扫描分辨率。
也可以考虑,通过机械连接方式,将单独的激光发射端3和激光接收端5彼此并排连接到一起形成一个单独的结构单元。还可以考虑,将激光发射端3和激光接收端5直接构造在一个公用的结构模块中,由此形成一个单独的结构单元。
在此需要指出,激光发射端3和激光接收端5可以彼此处于上下位置关系,或者左右位置关系,或者其他位置关系,都在本公开的构思范围内。在此重要的是,集成为结构单元或者说激光收发模块组2的激光发射端3和激光接收端5能够分别正常地发射和接收激光光束,而不会在一个激光收发模块组2的激光发射端3和激光接收端5之间或者在不同激光收发模块组2的激光发射端3和激光接收端5之间造成光路干扰。
在本公开的一些实施例中,激光雷达1包括多个激光收发模块组2,所述多个激光收发模块组2相对于板状的双面反射镜41分布布置。根据激光雷达1的具体结构和功能需求,可以选择特定数量的激光收发模块组2。例如,激光雷达1包括偶数个激光收发模块组2,例如2、4、6、8、10、12甚至更多个激光收发模块组2,这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧大体对称或者不对称地分布。
也可以考虑的是,激光雷达1包括多于一个的奇数个激光收发模块组2,例如3、5、7、9、11甚至更多个激光收发模块组2。这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧对称或者不对称地分布。决定激光收发模块组2的布置方式的因素包括但不限于:加强扫描重点区域或者关键区域、应对特殊的扫描角度范围以及有针对性地改变特定区域的扫描频率/扫描角分辨率。
如图17所示,在此以可旋转的板状的双面反射镜41作为扫描模块4的扫描部件。所述板状的双面反射镜41固定在底座42上。在此,板状的双面反射镜41利用其矩形短边竖立地固定在底座42中,由此能够利用底座42将旋转运动传递给板状的双面反射镜41。所述底座42能够通过电动机43驱动绕旋转轴线旋转。从而,线形扫描激光由旋转的双面反射镜41的反射面反射,形成二维扫描,尤其是如图15在水平的扫描方向上。对此,控制模块6也可以设置用于控制电动机43的启动、停止和工作模式等,尤其是调控电动机43的旋转速度,进而调节板状的双面反射镜41的旋转运动。
所述激光雷达1还包括隔离机构,所述隔离机构将所述板状的双面反射镜41的反射面分隔为发射扫描区域和接收扫描区域。同时,所述隔离机构还将所述构造成单独的结构单元的激光收发模块组2的激光发射端3和激光接收端5相互隔离。所述隔离机构由能够消除、过滤或者阻隔杂散光的材料制成。所述杂散光例如由激光雷达的内外部环境、激光雷达本身结构、布置在激光雷达中的光学元器件或者与激光雷达有关的光学元器件等产生。例如,杂散光可能由激光雷达自身的扫描模块的扫描部件产生和/ 或由激光发射端的整形模块产生和/或由激光发射端的激光器等产生。由此,例如所述板状的双面反射镜41在反射激光光束时可能产生的杂散光对激光雷达1运行产生的不利影响能够通过所述隔离机构至少部分、甚至完全消除。
在图17中,所述隔离机构由圆形的旋转隔板81和具有圆孔的固定隔板82构成。固定隔板82例如固定于激光雷达1的壳体7上,由此除了起到隔离作用以外,也可以对整个激光雷达1的内部结构起到支撑作用,或者用于承载光电元器件或者其他电子装置。此外,固定于激光雷达1的壳体7上的固定隔板82还延伸横穿布置在激光雷达1的壳体7的内部空间中的构造成单独的结构单元的激光收发模块组2,并将所述激光收发模块组2的激光发射端3和激光接收端5相互隔离。
在固定隔板82中开设圆孔,所述旋转隔板81为圆形形状,并且其圆形直径与固定隔板82中开设的圆孔直径相互匹配,因此能够在组装激光雷达时嵌入到所述固定隔板82的圆孔中,并在激光雷达运行时能够在固定隔板82的圆孔中旋转。
为了使圆形形状的旋转隔板81能够在固定隔板82的圆孔中顺畅旋转,同时阻隔会对激光雷达1运行产生不利影响的例如由激光雷达的内外部环境、激光雷达本身结构、布置在激光雷达中的光学元器件或者与激光雷达有关的光学元器件等产生的杂散光,可以在旋转隔板81的外圆周与固定隔板82的圆孔之间设有滑动和密封涂层,其一方面可以改善旋转隔板81与固定隔板82之间的滑动性能,另一方面保持旋转隔板81与固定隔板82之间的无缝配合,以彻底阻隔会对激光雷达1运行产生不利的影响的杂散光。这里的涂层可以是材料表面的结构改性层,也可以是附着的润滑/密封材料层。
所述固定隔板82和嵌入到所述固定隔板82的圆孔中的旋转隔板81形成一个隔板平面,该隔板平面将激光雷达1的壳体7的内部空间划分为两个腔室,其中所述板状的双面反射镜41的发射扫描区域和各个激光收发模块组2的激光发射端3设置在其中一个腔室中,而所述板状的双面反射镜41的接收扫描区域和各个激光收发模块组2的激光接收端5设置在另一个腔室中。
在图17示出的实施例中,所述旋转隔板81具有开口811,所述板状的双面反射镜41延伸穿过所述旋转隔板81的开口811并与所述旋转隔板81固定。这里,旋转隔板81的所述开口811是狭长的矩形形状,从而与所述板状的双面反射镜41的矩形横截面形状相匹配。在一些实施例中,旋转隔板81的所述开口811的尺寸与所述板状的双面反射镜41的矩形横截面尺寸一方面能够形成紧密配合,避免杂散光通过旋转隔板81的所述开口811传播,另一方面能够形成力传递配合,由此在激光雷达运行时所述板状的双面反射镜41能够带动所述旋转隔板81一起旋转。在此,在所述旋转隔板81的两侧分别形成所述板状的双面反射镜41的发射扫描区域和接收扫描区域。
替代在旋转隔板81中开设开口811,也可以采用其他的结构形式将板状的双面反射镜41与旋转隔板81固定。例如,使旋转隔板81由两个半圆形板组成,所述两个半圆形板,例如通过粘接、焊接或者整体成形,连接在所述板状的双面反射镜41两侧并一起拼接成整圆。
在图17中,所述固定隔板82和旋转隔板81形成的隔板平面将激光雷达1的壳体7的内部空间划分为上腔室和下腔室,其中上腔室布置与激光发射相关的组件,包括但不限于各个激光收发模块组2的激光发射端3和板状的双面反射镜41的发射扫描区域,而下腔室布置与激光接收相关的组件,包括但不限于各个激光收发模块组2的激光接收端5和板状的双面反射镜41的接收扫描区域。
根据本公开,通过由圆形的旋转隔板81和具有圆孔的固定隔板82构成的隔离机构,使发射的线形扫描光束和目标物的反射光束在可旋转的板状的双面反射镜41的不同区域反射,从而有效隔离收发光路,规避杂光风险。
需要指出,每个激光收发模块组2的激光发射端3和激光接收端5在单独的结构单元中的位置关系可以根据需要设定,例如可以是上下摆放,也可以是左右摆放。同时,激光发射端3和激光接收端5又可以位于激光雷达1的壳体7的内部空间的不同腔室中,而不受激光发射端3与激光接收端5之间的相互位置关系的影响。也就是说,所述固定隔板82和旋转隔板81形成的隔板平面也可以将激光雷达1的壳体7的内部空间划分为左右两个腔室,或者任何可能的处于其他位置关系的两个腔室。
同样,可以利用隔离机构将激光雷达1的壳体7的内部空间分隔成更多功能腔室。例如可以将激光收发模块组2的结构单元壳体与激光雷达1的壳体7一体成形,从而形成单独的激光收发模块组腔室。 在这种情况下,可以预先精确确定激光收发模块组2与扫描模块4的扫描部件之间的相对位置关系,简化在组装激光雷达1过程中必须进行的光学校准步骤,并使得激光雷达1本身易于实现模块化结构。
需要指出,无论旋转隔板81本身采用何种结构形式,或者以何种方式划分激光雷达1的壳体7的内部空间,所述固定隔板82和旋转隔板81形成的隔板平面与所述板状的双面反射镜41的反射面都形成角度,尤其是相互垂直。在垂直的情况下,激光雷达1在结构上容易实现板状的双面反射镜41的旋转轴线与驱动电动机43的输出轴的旋转轴线重合,这不但利于激光雷达1的简化结构设计,而且有利于实现使用线形扫描激光在水平方向上进行高效扫描。
当然,也可以考虑的是,所述固定隔板82和旋转隔板81形成的隔板平面与所述板状的双面反射镜41的反射面形成其他角度,例如30°或60°。这意味着由各个激光收发模块组2的激光发射端3发出的激光光束与板状的双面反射镜41的反射面可以形成不同的夹角,因此可根据需求实现激光雷达1的特殊视场角、扫描范围或者其他扫描特性。
所述隔离机构还可以包括底板83,所述底板83将激光雷达1的壳体7的内部空间附加地划分出单独的设备腔室。在图17中,底板83在激光雷达1的壳体7中在固定隔板82和旋转隔板81形成的隔板平面下方分隔出单独的设备腔室,用于驱动所述底座42旋转的电动机43可以设在这个单独的设备腔室中。当然,也可以在这个设备腔室安置其他机电组件,例如控制模块6本身或者与其相关联的电子装置等。
在本公开的一些实施例中,激光雷达1的壳体7的内部空间在整体上通过隔离机构,包括固定隔板82、旋转隔板81和底板83,形成了三个腔室的结构。由此通过简单有效的措施,实现在光学、电气和机械三个层面的功能优化和结构分区,既在光学上避免了不利的杂散光,又屏蔽了有害的电磁干扰,并在机械结构上可以实现模块化制造和组装。
激光整形模块可以将由激光发射端3的激光器发射的激光光束整形成线形扫描激光,所述板状的双面反射镜41将所述线形扫描激光反射并扫描目标物。具体地,激光发射端3发射的是一条线光,其可以看成在垂直方向为很多个连续的点,通过旋转板状的双面反射镜41来实现对目标区域/目标物的扫描。同时,通过将激光光束整形成线形扫描激光,结合本公开提出的关于激光雷达1的其他改进措施,能够获得激光雷达1的改进的视场,显著提高激光雷达1的工作灵活性、可靠性以及工作性能。
图18是根据本公开的一些实施例的激光雷达1的扫描模块4的示意性的结构立体图。如图所示,板状的双面反射镜41以竖立的方式安装在例如圆形的底座42上。底座42能够通过下方的电动机43驱动绕着竖直的旋转轴线旋转,并因此带动板状的双面反射镜41一起旋转。在此,一方面板状的双面反射镜41的反射面与底座42的旋转平面垂直,另一方面两者的旋转轴线彼此重合。
可以利用轴承等结构,将底座42直接布置在激光雷达1的壳体7上,或者也可以如图17所示,将底座42布置在底板83上,该底板83从激光雷达1的壳体7的内部空间划分出单独的设备腔室。在存在单独的设备腔室的情况下,用于驱动底座42旋转的电动机43,或者其他驱动/传动机构,可以方便地布置在设备腔室中。电动机43的输出轴可以穿过所述底板83连接到承载着板状的双面反射镜41的底座42上。通过这种设计方案,不但实现光学和机械功能的分区,同时有利于屏蔽电动机43在运行时产生的电磁辐射,进一步提高激光雷达1的工作稳定性和可靠性。
在图18示出的实施例中,板状的双面反射镜41穿过圆形的旋转隔板81的狭长的矩形开口811,并与所述旋转隔板81无缝隙地固定。在此,可以使旋转隔板81的开口811与板状的双面反射镜41形成压配合,避免杂散光通过旋转隔板81与板状的双面反射镜41之间的缝隙传播。或者也可以考虑其他密封和固定措施,例如在旋转隔板81的开口811与板状的双面反射镜41之间填充其他填缝材料和/或粘接剂。由此,一方面避免在旋转隔板81的开口811与板状的双面反射镜41之间留有可能传播杂散光的缝隙,另一方面确保旋转隔板81与板状的双面反射镜41之间形成牢固的传力连接,使板状的双面反射镜41也能够带动旋转隔板81一起旋转。
如图18所示,旋转隔板81与底板83彼此平行,并且都垂直于板状的双面反射镜41的反射面。在此,用于驱动底座42旋转的电动机43的输出轴的旋转轴线穿过圆形的底座42和旋转隔板81的圆心,并与板状的双面反射镜41的旋转轴线重合。
根据本公开的扫描模块4,包括但不限于板状的双面反射镜41、旋转隔板81、底座42以及电动机43,可以构造成单独的预装配模块,从而大大简化激光雷达1的制造和组装工序,并能够在需要时容易地更换和维修。
在根据本公开的激光雷达1的制造方法的一些实施例中,将所述扫描模块4的扫描部件构造成可旋转的板状的双面反射镜41。此外,设置隔离机构,将所述板状的双面反射镜41的反射面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组2的激光发射端3和激光接收端5隔离。隔离机构由圆形的旋转隔板81和具有圆孔的固定隔板82构成,其中将固定隔板82固定于激光雷达1的壳体7上,并在组装时使旋转隔板81嵌入到所述固定隔板82的圆孔中,并使旋转隔板81能在固定隔板82的圆孔中旋转。其中使所述板状的双面反射镜41能够带动所述旋转隔板81一起旋转。
在根据本公开的另一些实施例中,扫描模块4的扫描部件也可以构造成可旋转的棱镜。
类似前面的实施例,激光雷达1主要包括激光发射端3、激光接收端5和扫描模块4。其中,激光发射端3具有激光器,该激光器设置用于发射对目标物进行探测的激光光束。激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。扫描模块4设置用于引导由所述激光器发射的激光光束对目标物进行扫描,和/或接收并引导由目标物反射回来的激光光束。
在根据本公开的一些实施例中,激光雷达还配有控制模块6,其设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。其中扫描模块4的扫描部件构造成可旋转的棱镜44。
在一些实施例中,根据实际应用需求,控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离,由此例如实现单独设计、制造和安装控制模块6,或者实现对激光雷达1进行远程控制和数据分析。在另一些实施例中,也可以选择将控制模块6构造成激光雷达1的一个组成部分,例如布置在激光雷达壳体中或者与激光雷达1的光电装置相集成,由此例如在制造和安装激光雷达时,能够获得完整的激光雷达系统。
通过使用可旋转的棱镜44作为扫描部件,不但有利于保持扫描部件的质量轻,而且能够显著增大出光口径和接收光束口径,简单地实现尤其水平方向大范围的高速扫描。此外,根据本公开的技术方案能够简便高效地利用线形扫描激光,这有助于在不增加激光器数量的前提下显著提升激光雷达1的垂直角分辨率。下面同样参照图15和16,对包含可旋转的棱镜44的激光雷达进行描述。
图15是根据本公开的一些实施例的激光雷达1的扫描示意图。激光雷达1的激光整形模块将由激光发射端3的激光器发射的激光光束整形成线形扫描激光,因此激光光束以线形扫描激光的形式射到作为扫描模块4的扫描部件的可旋转的棱镜44的表面上。在图15中,线形扫描激光经过反射面反射后,仍然以线形扫描激光的形式扫描代表目标物的人体。
如图15所示,通过激光雷达1的激光发射端3的整形模块将激光光束整形成线形扫描激光,即线状光斑,接着利用可旋转的棱镜44作为扫描部件,使用一维扫描模块4即可实现三维扫描,因此显著减少对扫描部件的要求,降低整机成本,并可以实现高效地反射线形扫描激光并以线形扫描激光扫描目标物。
图16是根据本公开的一些实施例的激光雷达1的原理框图。
根据本公开的一些实施例,激光雷达1的激光发射端3包括激光器与激光整形模块,其中激光器设置用于发射对目标物进行探测的激光光束。激光器可以选自固体激光器或半导体激光器等类型,例如光纤激光器。但是,本公开提出的技术方案包括但不限于前述的激光器类型,而是可以使用任何能产生并发射激光的装置,本公开对此没有限制。
此外,激光发射端3还具有发射镜组,其构造成激光整形模块。激光整形模块透射由激光器发射的激光光束,并实现对激光光束的准直、匀化、整形等功能。根据不同设计功能和目的,可以使用准直、匀化、整形这三种功能的一种或多种,最终形成例如点状或线状光斑。
激光接收端5具有探测器,该探测器设置用于接收通过扫描模块4引导的从目标物反射回来的激光光束。例如图16所示,激光光束由激光雷达1的激光发射端3发射出来,经可旋转的棱镜44的表面反 射和/或折射后,投向目标物并对其进行扫描。之后,由目标物反射回来的激光光束,首先射到棱镜44的表面上,经此反射和/或折射后被激光雷达1的激光接收端5接收并检测。
在此,可以使用光电型探测器或光热型探测器探测激光信号,例如包括雪崩光电二极管、单光子探测器或者光电倍增管。但是,在根据本公开的技术方案中,探测器包括但不限于前述类型。任何能够将激光信号转换成电信号的探测器,均可以用在本公开提出的技术方案中,本公开对此没有限制。
根据本公开的一些实施例,激光接收端5还具有接收镜组。例如接收镜组沿着激光光束的传播方向设置在探测器之前,从而接收镜组能够接收并透射被目标物反射回来的激光光束和/或由扫描模块4反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端5的探测器上。当线形扫描光束照射到探测目标物上时,目标物产生漫反射光束,漫反射光束经旋转的棱镜44反射和/或折射后被激光接收端5接收。漫反射的光束在通过激光接收端5的接收镜组收集后汇聚到探测器上,形成探测信号。
在此,棱镜44一方面设置用于导向激光发射端3发射的激光光束,改变激光光束的传播方向和方式,以对目标物进行扫描;另一方面,棱镜44设置用于改变由目标物反射回来的激光光束的传播方向和方式,将其引导到激光雷达1的激光接收端5的接收镜组。
根据本公开的一些实施例,设置控制模块6用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。控制模块6可以构造成相对激光雷达1独立的电子装置,在组成结构和布置位置上与激光雷达本体分离;或者,也可以选择将控制模块6构造成激光雷达1的一个组成部分。在此,所述控制模块6例如包括激光器驱动模块62、信号处理模块63和主控模块61。其中,激光器驱动模块62用于控制激光发射端3的激光器发射激光,信号处理模块63用于处理由激光接收端5的探测器接收的探测信号,而主控模块61用于控制所述激光器驱动模块62和信号处理模块63,并利用所述信号处理模块63计算出目标物的特征信息,例如目标物的距离和位置等特征信息。可选地,主控模块61还可以根据信号处理模块63反馈的特征信息控制调整激光器驱动模块62和/或扫描模块4,从而能够以闭环控制的方式自动调节激光器驱动模块62和/或扫描模块4的工作状态或者工作模式,实现例如动态地自动调节激光雷达的性能,例如视场角、扫描分辨率等。
具体地,控制模块6可以对激光器进行控制,从而控制激光器发射激光光束的时机和方式等。例如,激光光束可以以连续方式或者以脉冲方式从激光器发出。需要指出,所述目标物的特征信息包括但不限于速度、位置和形状等特性参数,还包括可以由此推导或者计算出的其他参量。控制模块6还可以对扫描模块4的扫描部件进行控制,从而例如控制旋转扫描部件的旋转速度等参量。当然,控制模块6还可以对激光接收端5的探测器进行控制。
图19是根据本公开的一些实施例的激光雷达1的示意性的结构立体图。在此,使用附图标记7表示激光雷达1的壳体7,其限定激光雷达1的内部空间。激光雷达1的组成部件,包括但不限于激光发射端3、激光接收端5、扫描模块4和可选的控制模块6等光学元器件和电子元器件,都布置在激光雷达1的壳体7所限定的内部空间中。可以根据激光雷达1的安装和使用环境设计和改变壳体7的具体结构,本公开对此不做限制。
根据本公开的一些实施例,至少一个激光发射端3和至少一个激光接收端5集成为一个激光收发模块组2。每个激光收发模块组2构造成一个单独的结构单元。例如,在每个激光收发模块组2中,集成在激光收发模块组2中的激光发射端3和激光接收端5紧邻地并排设置在一个共同的结构单元壳体中。也就是说,可以通过将至少一个激光发射端3和至少一个激光接收端5集成到一个共同的激光收发模块组壳体中形成一个单独的结构单元。在图19中,一个激光发射端3和一个激光接收端5集成为一个构造成单独的结构单元的激光收发模块组2。在激光雷达1的壳体7中设有一个激光收发模块组2。可选地,也可以设置两个或者更多个激光收发模块组2,如在前面的实施例中所描述的那样。
此外,激光发射端3不限定激光器和整形模块的数量,可以是一个或者多个。同样,激光接收端5也不限定探测器和接收镜组的数量,可以是一个或者多个。可以按照需求和合理的排布方式对相应组成部件的数量进行增减,本公开的构思不限于作为示例描述的组成部件的数量和方式。
在本公开的一些实施例中,每个激光收发模块组2可以集成有不同数量的激光发射端3和激光接收端5,例如在一个激光收发模块组2中,多个激光发射端3对应一个激光接收端5,或者一个激光发射 端3对应多个激光接收端5,或者一个激光发射端3对应一个激光接收端5,或者多个激光发射端3对应多个激光接收端5。通过合适地设置和匹配激光发射端3和激光接收端5的数量关系,以及合理地设置激光收发模块组2的数量,有利于灵活调整、尤其是增大激光雷达1的视场和扫描分辨率。在图19示出的实施例中,所述激光收发模块组2包括恰好两个激光发射端3和一个激光接收端5。
也可以考虑,通过机械连接方式,将单独的激光发射端3和激光接收端5彼此并排连接到一起形成一个单独的结构单元。还可以考虑,将激光发射端3和激光接收端5直接构造在一个公用的结构模块中,由此形成一个单独的结构单元。在图19示出的实施例中,两个激光发射端3和一个激光接收端5形成一个激光收发模块组2,尤其是一个单独的结构单元。
在此需要指出,激光发射端3和激光接收端5可以彼此处于上下位置关系,或者左右位置关系,或者其他位置关系,都在本公开的构思范围内。在此重要的是,集成为结构单元或者说激光收发模块组2的激光发射端3和激光接收端5能够分别正常地发射和接收激光光束,而不会在一个激光收发模块组2的激光发射端3和激光接收端5之间或者在不同激光收发模块组2的激光发射端3和激光接收端5之间造成光路干扰。
在本公开的一些实施例中,激光雷达1包括多个激光收发模块组2,所述多个激光收发模块组2相对于棱镜44分布布置。根据激光雷达1的具体结构和功能需求,可以选择特定数量的激光收发模块组2。例如,激光雷达1包括偶数个激光收发模块组2,例如2、4、6、8、10、12甚至更多个激光收发模块组2,这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧大体对称或者不对称地分布。
也可以考虑的是,激光雷达1包括多于一个的奇数个激光收发模块组2,例如3、5、7、9、11甚至更多个激光收发模块组2。这些激光收发模块组2可以分别作为单独的结构单元相对于扫描模块4在两侧对称或者不对称地分布。决定激光收发模块组2的布置方式的因素包括但不限于:加强扫描重点区域或者关键区域、应对特殊的扫描角度范围以及有针对性地改变特定区域的扫描频率/扫描角分辨率。
如图19所示,在此以可旋转的棱镜44作为扫描模块4的扫描部件。所述棱镜44固定在底座42(参见图18)上。在此,棱镜44可以竖立地固定在底座42中,由此能够利用底座42将旋转运动传递给棱镜44。所述底座42能够通过电动机43(参见图18)驱动绕旋转轴线旋转。从而,线形扫描激光由旋转的棱镜44反射和/或折射,形成二维扫描,尤其是如图15在水平的扫描方向上。对此,控制模块6也可以设置用于控制电动机43的启动、停止和工作模式等,尤其是调控电动机43的旋转速度,进而调节棱镜44的旋转运动。
所述激光雷达1还包括隔离机构,所述隔离机构将所述棱镜44的表面分隔为发射扫描区域和接收扫描区域。同时,所述隔离机构还将所述构造成单独的结构单元的激光收发模块组2的激光发射端3和激光接收端5相互隔离。所述隔离机构由能够消除、过滤或者阻隔杂散光的材料制成。所述杂散光例如由激光雷达的内外部环境、激光雷达本身结构、布置在激光雷达中的光学元器件或者与激光雷达有关的光学元器件等产生。例如,杂散光可能由激光雷达自身的扫描模块的扫描部件产生和/或由激光发射端的整形模块产生和/或由激光发射端的激光器等产生。由此,例如所述棱镜44在反射激光光束时可能产生的杂散光对激光雷达1运行产生的不利影响能够通过所述隔离机构至少部分、甚至完全消除。
在图19中,所述隔离机构由圆形的旋转隔板81和具有圆孔的固定隔板82构成。固定隔板82例如固定于激光雷达1的壳体7上,由此除了起到隔离作用以外,也可以对整个激光雷达1的内部结构起到支撑作用,或者用于承载光电元器件或者其他电子装置。此外,固定于激光雷达1的壳体7上的固定隔板82还延伸横穿布置在激光雷达1的壳体7的内部空间中的构造成单独的结构单元的激光收发模块组2,并将所述激光收发模块组2的激光发射端3和激光接收端5相互隔离。
在固定隔板82中开设圆孔,所述旋转隔板81为圆形形状,并且其圆形直径与固定隔板82中开设的圆孔直径相互匹配,因此能够在组装激光雷达时嵌入到所述固定隔板82的圆孔中,并在激光雷达运行时能够在固定隔板82的圆孔中旋转。
为了使圆形形状的旋转隔板81能够在固定隔板82的圆孔中顺畅旋转,同时阻隔会对激光雷达1运行产生不利影响的例如由激光雷达的内外部环境、激光雷达本身结构、布置在激光雷达中的光学元器 件或者与激光雷达有关的光学元器件等产生的杂散光,可以在旋转隔板81的外圆周与固定隔板82的圆孔之间设有滑动和密封涂层,其一方面可以改善旋转隔板81与固定隔板82之间的滑动性能,另一方面保持旋转隔板81与固定隔板82之间的无缝配合,以彻底阻隔会对激光雷达1运行产生不利的影响的杂散光。这里的涂层可以是材料表面的结构改性层,也可以是附着的润滑/密封材料层。
所述固定隔板82和嵌入到所述固定隔板82的圆孔中的旋转隔板81形成一个隔板平面,该隔板平面将激光雷达1的壳体7的内部空间划分为两个腔室,其中所述棱镜44的发射扫描区域和各个激光收发模块组2的激光发射端3设置在其中一个腔室中,而所述棱镜44的接收扫描区域和各个激光收发模块组2的激光接收端5设置在另一个腔室中。
在图19示出的实施例中,所述旋转隔板81具有开口811,所述棱镜44延伸穿过所述旋转隔板81的开口811并与所述旋转隔板81固定。这里,旋转隔板81的所述开口811与所述棱镜44的多边形横截面形状相匹配。在一些实施例中,旋转隔板81的所述开口811的尺寸与所述棱镜44的横截面尺寸一方面能够形成紧密配合,避免杂散光通过旋转隔板81的所述开口811传播,另一方面能够形成力传递配合,由此在激光雷达运行时所述棱镜44能够带动所述旋转隔板81一起旋转。在此,在所述旋转隔板81的两侧分别形成所述棱镜44的发射扫描区域和接收扫描区域。
替代在旋转隔板81中开设开口811,也可以采用其他的结构形式将棱镜44与旋转隔板81固定。例如,使旋转隔板81由两个半圆形板组成,所述两个半圆形板,例如通过粘接、焊接或者整体成形,连接在所述棱镜44两侧并一起拼接成整圆。
在图19中,所述固定隔板82和旋转隔板81形成的隔板平面将激光雷达1的壳体7的内部空间划分为上腔室和下腔室,其中上腔室布置与激光发射相关的组件,包括但不限于各个激光收发模块组2的激光发射端3和棱镜44的发射扫描区域,而下腔室布置与激光接收相关的组件,包括但不限于各个激光收发模块组2的激光接收端5和棱镜44的接收扫描区域。
根据本公开,通过由圆形的旋转隔板81和具有圆孔的固定隔板82构成的隔离机构,使发射的线形扫描光束和目标物的反射光束在可旋转的棱镜44的不同区域反射,从而有效隔离收发光路,规避杂光风险。
需要指出,每个激光收发模块组2的激光发射端3和激光接收端5在单独的结构单元中的位置关系可以根据需要设定,例如可以是上下摆放,也可以是左右摆放。同时,激光发射端3和激光接收端5又可以位于激光雷达1的壳体7的内部空间的不同腔室中,而不受激光发射端3与激光接收端5之间的相互位置关系的影响。也就是说,所述固定隔板82和旋转隔板81形成的隔板平面也可以将激光雷达1的壳体7的内部空间划分为左右两个腔室,或者任何可能的处于其他位置关系的两个腔室。
同样,可以利用隔离机构将激光雷达1的壳体7的内部空间分隔成更多功能腔室。例如可以将激光收发模块组2的结构单元壳体与激光雷达1的壳体7一体成形,从而形成单独的激光收发模块组腔室。在这种情况下,可以预先精确确定激光收发模块组2与扫描模块4的扫描部件之间的相对位置关系,简化在组装激光雷达1过程中必须进行的光学校准步骤,并使得激光雷达1本身易于实现模块化结构。
需要指出,无论旋转隔板81本身采用何种结构形式,或者以何种方式划分激光雷达1的壳体7的内部空间,所述固定隔板82和旋转隔板81形成的隔板平面与所述棱镜44的表面都形成角度,尤其是相互垂直。在垂直的情况下,激光雷达1在结构上容易实现棱镜44的旋转轴线与驱动电动机43的输出轴的旋转轴线重合,这不但利于激光雷达1的简化结构设计,而且有利于实现使用线形扫描激光在水平方向上进行高效扫描。
当然,也可以考虑的是,所述固定隔板82和旋转隔板81形成的隔板平面与所述棱镜44的表面形成其他角度,例如30°或60°。这意味着由各个激光收发模块组2的激光发射端3发出的激光光束与棱镜44的表面可以形成不同的夹角,因此可根据需求实现激光雷达1的特殊视场角、扫描范围或者其他扫描特性。
所述隔离机构还可以包括底板83,所述底板83将激光雷达1的壳体7的内部空间附加地划分出单独的设备腔室。在图19中,底板83在激光雷达1的壳体7中在固定隔板82和旋转隔板81形成的隔板平面下方分隔出单独的设备腔室,用于驱动所述底座42旋转的电动机43可以设在这个单独的设备腔室 中。当然,也可以在这个设备腔室安置其他机电组件,例如控制模块6本身或者与其相关联的电子装置等。
在本公开的一些实施例中,激光雷达1的壳体7的内部空间在整体上通过隔离机构,包括固定隔板82、旋转隔板81和底板83,形成了三个腔室的结构。由此通过简单有效的措施,实现在光学、电气和机械三个层面的功能优化和结构分区,既在光学上避免了不利的杂散光,又屏蔽了有害的电磁干扰,并在机械结构上可以实现模块化制造和组装。
激光整形模块可以将由激光发射端3的激光器发射的激光光束整形成线形扫描激光,所述棱镜44将所述线形扫描激光反射和/或折射并扫描目标物。具体地,激光发射端3发射的是一条线光,其可以看成在垂直方向为很多个连续的点,通过旋转棱镜44来实现对目标区域/目标物的扫描。同时,通过将激光光束整形成线形扫描激光,结合本公开提出的关于激光雷达1的其他改进措施,能够获得激光雷达1的改进的视场,显著提高激光雷达1的工作灵活性、可靠性以及工作性能。
图20是根据本公开的一些实施例的激光雷达1的扫描模块4的示意性的结构立体图。类似于图18的结构,棱镜44可以竖立的方式安装在例如圆形的底座42(参见图18)上。底座42能够通过下方的电动机43驱动绕着竖直的旋转轴线旋转,并因此带动可旋转的棱镜44一起旋转。在此,一方面棱镜44的表面与底座42的旋转平面垂直,另一方面两者的旋转轴线彼此重合。
可以利用轴承等结构,将底座42直接布置在激光雷达1的壳体7上,或者也可以类似图17所示的结构,将底座42布置在底板83上,该底板83(参见图17)从激光雷达1的壳体7的内部空间划分出单独的设备腔室。在存在单独的设备腔室的情况下,用于驱动底座42旋转的电动机43,或者其他驱动/传动机构,可以方便地布置在设备腔室中。电动机43的输出轴可以穿过所述底板83连接到承载着棱镜44的底座42上。通过这种设计方案,不但实现光学和机械功能的分区,同时有利于屏蔽电动机43在运行时产生的电磁辐射,进一步提高激光雷达1的工作稳定性和可靠性。
在图20示出的实施例中,矩形的四棱镜44穿过圆形的旋转隔板81的矩形开口811,并与所述旋转隔板81无缝隙地固定。在此,可以使旋转隔板81的开口811与棱镜44形成压配合,避免杂散光通过旋转隔板81与棱镜44之间的缝隙传播。或者也可以考虑其他密封和固定措施,例如在旋转隔板81的开口811与棱镜44之间填充其他填缝材料和/或粘接剂。由此,一方面避免在旋转隔板81的开口811与棱镜44之间留有可能传播杂散光的缝隙,另一方面确保旋转隔板81与棱镜44之间形成牢固的传力连接,使棱镜44也能够带动旋转隔板81一起旋转。可选地,在此可以采用其他形式的多边形棱镜,例如三棱镜、四棱镜等,尤其是等边三棱镜或者直角棱镜。
在一些实施例中,旋转隔板81可以与底板83彼此平行,并且都垂直于棱镜44的表面。在此,用于驱动底座42旋转的电动机43的输出轴的旋转轴线穿过圆形的底座42和旋转隔板81的圆心,并与棱镜44的旋转轴线重合。
根据本公开的扫描模块4,包括但不限于棱镜44、旋转隔板81、底座42以及电动机43,可以构造成单独的预装配模块,从而大大简化激光雷达1的制造和组装工序,并能够在需要时容易地更换和维修。
在根据本公开的激光雷达1的制造方法的一些实施例中,将所述扫描模块4的扫描部件构造成可旋转的棱镜44。此外,设置隔离机构,将所述棱镜44的表面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组2的激光发射端3和激光接收端5隔离。隔离机构由圆形的旋转隔板81和具有圆孔的固定隔板82构成,其中将固定隔板82固定于激光雷达1的壳体7上,并在组装时使旋转隔板81嵌入到所述固定隔板82的圆孔中,并使旋转隔板81能在固定隔板82的圆孔中旋转。其中使所述棱镜44能够带动所述旋转隔板81一起旋转。
最后,本领域的技术人员应理解,上述描述及附图中所示的本公开的实施例只作为举例而并不意味着对本公开的技术方案或者构思的限制。在此针对激光雷达1所描述的所有技术特征,只要没有违背自然规律或者技术规范,都可以在本公开构思的框架内任意组合或者替换,均落在本公开的构思范围内,且不构成对本公开的限制。

Claims (63)

  1. 一种激光雷达(1),其特征在于,包括:
    激光发射端(3),所述激光发射端(3)具有激光器(31),所述激光器(31)设置用于发射对目标物进行探测的激光光束;
    扫描模块(4),所述扫描模块(4)设置用于引导由所述激光器(31)发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    激光接收端(5),所述激光接收端(5)具有探测器,所述探测器设置用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中至少一个激光发射端(3)和至少一个激光接收端(5)集成为一个构造成单独的结构单元的激光收发模块组(2),其中所述激光雷达(1)包括多个激光收发模块组(2),所述多个激光收发模块组(2)相对于扫描模块(4)分布布置,并且通过所述多个激光收发模块组(2)对应形成的子视场形成激光雷达(1)的至少部分拼接的视场。
  2. 根据权利要求1所述的激光雷达(1),其中,所述激光发射端(3)还包括发射镜组,所述发射镜组具有设置用于对由所述激光器(31)发射的激光光束进行整形的激光整形模块。
  3. 根据权利要求2所述的激光雷达(1),其中,所述激光整形模块包括沿着激光光束的光轴顺序布置的准直镜(311)和匀光片(312)。
  4. 根据权利要求1所述的激光雷达(1),其中,所述扫描模块(4)包括发射扫描模块和接收扫描模块,其中发射扫描模块设置用于反射激光发射端(3)发射的激光光束至目标物,接收扫描模块设置用于接收并引导目标物反射回来的激光光束至激光接收端(5)。
  5. 根据权利要求1所述的激光雷达(1),其中,所述激光接收端(5)还具有接收镜组,所述接收镜组设置用于接收并透射通过扫描模块(4)引导的由目标物反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端(5)的探测器上。
  6. 根据权利要求1到5中任一项所述的激光雷达(1),其中,由所述多个激光收发模块组(2)的激光发射端(3)发射的激光光束与扫描模块(4)的反射面的夹角彼此不同,从而所述多个激光收发模块组(2)分别形成方位不同且彼此至少部分重叠的子视场。
  7. 根据权利要求1到5中任一项所述的激光雷达(1),其中,还包括方位调整装置,所述多个激光收发模块组(2)能够通过所述方位调整装置调整相对扫描模块(4)的反射面的方位,由此能够改变激光雷达(1)的拼接视场和/或扫描分辨率。
  8. 根据权利要求1到5中任一项所述的激光雷达(1),其中所述激光雷达(1)配有控制模块(6),所述控制模块(6)设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
  9. 根据权利要求8所述的激光雷达(1),其中,控制模块(6)能够根据预定的工作模式控制配属于各个激光收发模块组(2)的方位调整装置,并能够通过切换不同的工作模式,自动地匹配不同的应用场景或者环境条件。
  10. 根据权利要求8所述的激光雷达(1),其中,所述控制模块(6)能够根据获取的目标物的特征信息控制所述方位调整装置,从而能够以闭环控制的方式自动调节所述多个激光收发模块组(2)相对扫描模块(4)的反射面的方位,由此动态地自动改变激光雷达(1)的拼接视场和/或扫描分辨率。
  11. 根据权利要求1到5中任一项所述的激光雷达(1),其中,扫描模块(4)的扫描部件是一种旋转扫描部件。
  12. 根据权利要求11所述的激光雷达(1),其中,扫描模块(4)的扫描部件包括双面反射镜、多面棱镜或者振镜。
  13. 根据权利要求11所述的激光雷达(1),其中,扫描模块(4)的扫描部件包括异面棱镜,其中异面棱镜的反射侧面与中心轴线的夹角互不相同并彼此匹配,使得每个反射侧面对应形成的 子视场至少部分地彼此重叠,由此形成激光雷达(1)的拼接视场。
  14. 一种用于激光雷达(1)的探测方法,其特征在于,所述激光雷达(1)包括激光发射端(3)、扫描模块(4)和激光接收端(5),其中
    设置激光发射端(3)的激光器(31)用于发射对目标物进行探测的激光光束;
    设置扫描模块(4)用于引导由所述激光器(31)发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    设置激光接收端(5)的探测器用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中将至少一个激光发射端(3)和至少一个激光接收端(5)集成为一个构造成单独的结构单元的激光收发模块组(2),其中将多个激光收发模块组(2)相对于扫描模块(4)分布布置,并通过所述多个激光收发模块组(2)对应形成的子视场形成激光雷达(1)的至少部分拼接的视场。
  15. 根据权利要求14所述的用于激光雷达(1)的探测方法,其中,所述激光发射端(3)还包括发射镜组,所述发射镜组具有激光整形模块,设置所述激光整形模块用于对由所述激光器(31)发射的激光光束进行整形。
  16. 根据权利要求14所述的用于激光雷达(1)的探测方法,其中,沿着激光光束的光轴在所述激光整形模块中顺序布置准直镜(311)和匀光片(312)。
  17. 根据权利要求14所述的用于激光雷达(1)的探测方法,其中,所述激光接收端(5)还具有接收镜组,设置所述接收镜组用于接收并透射通过扫描模块(4)引导的由目标物反射回来的激光光束,并将反射回来的激光光束汇聚到所述激光接收端(5)的探测器上。
  18. 根据权利要求14到17中任一项所述的用于激光雷达(1)的探测方法,其中,由所述多个激光收发模块组(2)的激光发射端(3)发射的激光光束与扫描模块(4)的反射面的夹角彼此不同,从而所述多个激光收发模块组(2)分别形成方位不同且彼此至少部分重叠的子视场。
  19. 根据权利要求14到17中任一项所述的用于激光雷达(1)的探测方法,给所述激光雷达(1)配有控制模块(6),设置所述控制模块(6)用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
  20. 根据权利要求19所述的用于激光雷达(1)的探测方法,其中,还包括方位调整装置用于调整所述激光收发模块组(2)的方位,设置所述控制模块(6)用于控制所述方位调整装置,从而调整所述多个激光收发模块组(2)相对扫描模块(4)的反射面的方位,由此改变激光雷达(1)的拼接视场和/或扫描分辨率。
  21. 根据权利要求19所述的用于激光雷达(1)的探测方法,其中,设置所述控制模块(6)根据预定的工作模式控制配属于各个激光收发模块组(2)的方位调整装置,其中所述控制模块能够通过切换不同的工作模式,自动地匹配不同的应用场景或者环境条件。
  22. 根据权利要求19所述的用于激光雷达(1)的探测方法,其中,设置所述控制模块(6)根据获取的目标物的特征信息控制所述方位调整装置,从而能够以闭环控制的方式自动调节所述多个激光收发模块组(2)相对扫描模块(4)的反射面的方位,由此动态地自动改变激光雷达(1)的拼接视场和/或扫描分辨率。
  23. 一种激光雷达(1),其特征在于,包括:
    激光发射端(3),所述激光发射端(3)具有激光器,所述激光器设置用于发射对目标物进行探测的激光光束;
    扫描模块(4),所述扫描模块(4)设置用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    激光接收端(5),所述激光接收端(5)具有探测器,所述探测器设置用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中所述扫描模块(4)的扫描部件构造成可旋转的板状的双面反射镜(41)。
  24. 根据权利要求23所述的激光雷达(1),其中,至少一个激光发射端(3)和至少一个激光接收端(5)集成为一个构造成单独的结构单元的激光收发模块组(2)。
  25. 根据权利要求24所述的激光雷达(1),其中,所述激光雷达(1)还包括隔离机构,所述隔离机构将所述板状的双面反射镜(41)的反射面分隔为发射扫描区域和接收扫描区域。
  26. 根据权利要求25所述的激光雷达(1),其中,所述隔离机构将所述构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  27. 根据权利要求26所述的激光雷达(1),其中,所述隔离机构由能够阻隔杂散光的材料制成。
  28. 根据权利要求25到27中任一项所述的激光雷达(1),其中,所述隔离机构由圆形的旋转隔板(81)和具有圆孔的固定隔板(82)构成,其中所述固定隔板(82)固定于激光雷达(1)的壳体(7)上,所述旋转隔板(81)能够嵌入到所述固定隔板(82)的圆孔中并在其中旋转。
  29. 根据权利要求28所述的激光雷达(1),其中,所述旋转隔板(81)具有开口(811),所述板状的双面反射镜(41)延伸穿过所述旋转隔板(81)的开口(811)与所述旋转隔板(81)固定。
  30. 根据权利要求28所述的激光雷达(1),其中,所述旋转隔板(81)由两个半圆形板组成,所述两个半圆形板连接在所述板状的双面反射镜(41)两侧并一起拼接成整圆。
  31. 根据权利要求29或30所述的激光雷达(1),其中,所述固定于激光雷达(1)的壳体(7)上的固定隔板(82)延伸横穿布置在激光雷达(1)的壳体(7)内部空间中的激光收发模块组(2),并将所述构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  32. 根据权利要求29或30所述的激光雷达(1),其中,所述板状的双面反射镜(41)能够带动所述旋转隔板(81)一起旋转,其中在所述旋转隔板(81)的两侧分别形成所述板状的双面反射镜(41)的发射扫描区域和接收扫描区域。
  33. 根据权利要求32所述的激光雷达(1),其中,所述固定隔板(82)和嵌入到所述固定隔板(82)的圆孔中的旋转隔板(81)形成一个隔板平面,该隔板平面将激光雷达(1)的壳体(7)的内部空间划分为两个腔室,其中所述板状的双面反射镜(41)的发射扫描区域和所述激光收发模块组(2)的激光发射端(3)设置在其中一个腔室中,而所述板状的双面反射镜(41)的接收扫描区域和所述激光收发模块组(2)的激光接收端(5)设置在另一个腔室中。
  34. 根据权利要求33所述的激光雷达(1),其中,所述隔板平面与所述板状的双面反射镜(41)的反射面垂直。
  35. 根据权利要求33所述的激光雷达(1),其中,所述板状的双面反射镜(41)固定在底座(42)上,所述底座(42)能够通过电动机(43)驱动旋转。
  36. 根据权利要求35所述的激光雷达(1),其中,所述隔离机构还包括底板(83),所述底板(83)将激光雷达(1)的壳体(7)的内部空间划分出单独的设备腔室,其中,用于驱动所述底座(42)旋转的电动机(43)设在所述单独的设备腔室中。
  37. 根据权利要求23到27中任一项所述的激光雷达(1),其中,所述激光发射端(3)还具有激光整形模块,所述激光整形模块将由激光器发射的激光光束整形成线形扫描激光,所述板状的双面反射镜(41)将所述线形扫描激光反射并扫描目标物。
  38. 根据权利要求23到27中任一项所述的激光雷达(1),其中,所述激光雷达(1)配有控制模块(6),所述控制模块(6)设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
  39. 根据权利要求38所述的激光雷达(1),其中,所述控制模块(6)包括:
    激光器驱动模块(62),用于控制激光发射端(3)的激光器发射激光;
    信号处理模块(63):用于处理由激光接收端(5)的探测器接收的探测信号;
    主控模块(61),用于控制所述激光器驱动模块(62)和信号处理模块(63),并利用所述信号处理模块(63)计算出目标物的特征信息。
  40. 一种激光雷达(1)的制造方法,其特征在于,所述激光雷达(1)包括激光发射端(3)、扫描模块(4)和激光接收端(5),其中
    设置激光发射端(3)的激光器用于发射对目标物进行探测的激光光束;
    设置扫描模块(4)用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    设置激光接收端(5)的探测器用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中,将所述扫描模块(4)的扫描部件构造成可旋转的板状的双面反射镜(41)。
  41. 根据权利要求40所述的制造方法,其中,设置隔离机构,将所述板状的双面反射镜(41)的反射面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  42. 根据权利要求41所述的制造方法,其中,所述隔离机构由圆形的旋转隔板(81)和具有圆孔的固定隔板(82)构成,其中将固定隔板(82)固定于激光雷达(1)的壳体(7)上,并在组装时使所述旋转隔板(81)嵌入到所述固定隔板(82)的圆孔中,并使旋转隔板(81)能够在固定隔板(82)的圆孔中旋转,其中使所述板状的双面反射镜(41)能够带动所述旋转隔板(81)一起旋转。
  43. 一种激光雷达(1),其特征在于,包括:
    激光发射端(3),所述激光发射端(3)具有激光器,所述激光器设置用于发射对目标物进行探测的激光光束;
    扫描模块(4),所述扫描模块(4)设置用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    激光接收端(5),所述激光接收端(5)具有探测器,所述探测器设置用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中所述扫描模块(4)的扫描部件构造成可旋转的棱镜(44)。
  44. 根据权利要求43所述的激光雷达(1),其中,至少一个激光发射端(3)和至少一个激光接收端(5)集成为一个构造成单独的结构单元的激光收发模块组(2),其中所述激光雷达(1)包括至少一个激光收发模块组(2)。
  45. 根据权利要求44所述的激光雷达(1),其中,所述激光雷达(1)还包括隔离机构,所述隔离机构将所述可旋转的棱镜(44)的反射面分隔为发射扫描区域和接收扫描区域。
  46. 根据权利要求45所述的激光雷达(1),其中,所述隔离机构将所述构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  47. 根据权利要求46所述的激光雷达(1),其中,所述隔离机构由能够阻隔杂散光的材料制成。
  48. 根据权利要求46到47中任一项所述的激光雷达(1),其中,所述隔离机构由圆形的旋转隔板(81)和具有圆孔的固定隔板(82)构成,其中所述固定隔板(82)固定于激光雷达(1)的壳体(7)上,所述旋转隔板(81)能够嵌入到所述固定隔板(82)的圆孔中并在其中旋转。
  49. 根据权利要求48所述的激光雷达(1),其中,所述旋转隔板(81)具有开口(811),所述可旋转的棱镜(44)延伸穿过所述旋转隔板(81)的开口(811)与所述旋转隔板(81)固定。
  50. 根据权利要求48所述的激光雷达(1),其中,所述旋转隔板(81)由两个半圆形板组成,所述两个半圆形板连接在所述可旋转的棱镜(44)两侧并一起拼接成整圆。
  51. 根据权利要求49或50所述的激光雷达(1),其中,所述固定于激光雷达(1)的壳体(7)上的固定隔板(82)延伸横穿布置在激光雷达(1)的壳体(7)内部空间中的激光收发模块组(2),并将所述构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  52. 根据权利要求49或50所述的激光雷达(1),其中,所述可旋转的棱镜(44)能够带动所述旋转隔板(81)一起旋转,其中在所述旋转隔板(81)的两侧分别形成所述可旋转的棱镜(44)的发射扫描区域和接收扫描区域。
  53. 根据权利要求52所述的激光雷达(1),其中,所述固定隔板(82)和嵌入到所述固定隔板(82)的圆孔中的旋转隔板(81)形成一个隔板平面,该隔板平面将激光雷达(1)的壳体(7)的内部空间划分为两个腔室,其中所述可旋转的棱镜(44)的发射扫描区域和所述激光收发模块组(2)的激光发射端(3)设置在其中一个腔室中,而所述可旋转的棱镜(44)的接收扫描区域和所述激光收发模块组(2) 的激光接收端(5)设置在另一个腔室中。
  54. 根据权利要求53所述的激光雷达(1),其中,所述隔板平面与所述可旋转的棱镜(44)的反射面垂直。
  55. 根据权利要求53所述的激光雷达(1),其中,所述可旋转的棱镜(44)固定在底座(42)上,所述底座(42)能够通过电动机(43)驱动旋转。
  56. 根据权利要求55所述的激光雷达(1),其中,所述隔离机构还包括底板(83),所述底板(83)将激光雷达(1)的壳体(7)的内部空间划分出单独的设备腔室,其中,用于驱动所述底座(42)旋转的电动机(43)设在所述单独的设备腔室中。
  57. 根据权利要求43到47中任一项所述的激光雷达(1),其中,所述激光发射端(3)还具有激光整形模块,所述激光整形模块将由激光器发射的激光光束整形成线形扫描激光,所述可旋转的棱镜(44)将所述线形扫描激光反射并扫描目标物。
  58. 根据权利要求43到47中任一项所述的激光雷达(1),其中,所述激光雷达(1)配有控制模块(6),所述控制模块(6)设置用于对激光发射和接收进行控制,并通过后期信号数据处理获取目标物的特征信息。
  59. 根据权利要求58所述的激光雷达(1),其中,所述控制模块(6)包括:
    激光器驱动模块(62),用于控制激光发射端(3)的激光器发射激光;
    信号处理模块(63):用于处理由激光接收端(5)的探测器接收的探测信号;
    主控模块(61),用于控制所述激光器驱动模块(62)和信号处理模块(63),并利用所述信号处理模块(63)计算出目标物的特征信息。
  60. 根据权利要求46所述的激光雷达(1),其中,所述激光收发模块组(2)包括恰好两个激光发射端(3)和一个激光接收端(5)。
  61. 一种激光雷达(1)的制造方法,其特征在于,所述激光雷达(1)包括激光发射端(3)、扫描模块(4)和激光接收端(5),其中
    设置激光发射端(3)的激光器用于发射对目标物进行探测的激光光束;
    设置扫描模块(4)用于引导由所述激光器发射的激光光束对目标物进行扫描,并接收和引导由目标物反射回来的激光光束;
    设置激光接收端(5)的探测器用于接收通过扫描模块(4)引导的从目标物反射回来的激光光束;
    其中,将所述扫描模块(4)的扫描部件构造成可旋转的棱镜(44)。
  62. 根据权利要求61所述的制造方法,其中,设置隔离机构,将所述可旋转的棱镜(44)的反射面分隔为发射扫描区域和接收扫描区域,并同时将构造成单独的结构单元的激光收发模块组(2)的激光发射端(3)和激光接收端(5)隔离。
  63. 根据权利要求62所述的制造方法,其中,所述隔离机构由圆形的旋转隔板(81)和具有圆孔的固定隔板(82)构成,其中将固定隔板(82)固定于激光雷达(1)的壳体(7)上,并在组装时使所述旋转隔板(81)嵌入到所述固定隔板(82)的圆孔中,并使旋转隔板(81)能够在固定隔板(82)的圆孔中旋转,其中使所述可旋转的棱镜(44)能够带动所述旋转隔板(81)一起旋转。
PCT/CN2021/079408 2020-01-06 2021-03-05 激光雷达、用于激光雷达的探测方法和制造方法 WO2021139834A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/791,040 US20230028159A1 (en) 2020-01-06 2021-03-05 Lidar, and detection method and manufacturing method for lidar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010008630.9 2020-01-06
CN202010008629.6A CN113075680B (zh) 2020-01-06 激光雷达和激光雷达的制造方法
CN202010008630.9A CN113075642B (zh) 2020-01-06 2020-01-06 激光雷达和用于激光雷达的探测方法
CN202010008629.6 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021139834A1 true WO2021139834A1 (zh) 2021-07-15

Family

ID=76787766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079408 WO2021139834A1 (zh) 2020-01-06 2021-03-05 激光雷达、用于激光雷达的探测方法和制造方法

Country Status (2)

Country Link
US (1) US20230028159A1 (zh)
WO (1) WO2021139834A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341424A (zh) * 2021-08-05 2021-09-03 锐驰智光(北京)科技有限公司 防止漏光的激光雷达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117890931A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572017B1 (en) * 1999-08-12 2003-06-03 Telxon Corporation Optical device employing a mirror array for increasing the apparent resolution of a photosensor
CN109597050A (zh) * 2018-11-16 2019-04-09 上海禾赛光电科技有限公司 一种激光雷达
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN110333511A (zh) * 2019-07-22 2019-10-15 西安知微传感技术有限公司 一种收发同步激光雷达光学系统
KR20190130468A (ko) * 2018-05-14 2019-11-22 주식회사 에스오에스랩 라이다 장치
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置
CN209979851U (zh) * 2019-04-04 2020-01-21 苏州旭创科技有限公司 一种多线扫描激光雷达
CN112098972A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 激光雷达系统及其异光路扫描装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572017B1 (en) * 1999-08-12 2003-06-03 Telxon Corporation Optical device employing a mirror array for increasing the apparent resolution of a photosensor
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
KR20190130468A (ko) * 2018-05-14 2019-11-22 주식회사 에스오에스랩 라이다 장치
CN109597050A (zh) * 2018-11-16 2019-04-09 上海禾赛光电科技有限公司 一种激光雷达
CN209979851U (zh) * 2019-04-04 2020-01-21 苏州旭创科技有限公司 一种多线扫描激光雷达
CN112098972A (zh) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 激光雷达系统及其异光路扫描装置
CN110333511A (zh) * 2019-07-22 2019-10-15 西安知微传感技术有限公司 一种收发同步激光雷达光学系统
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341424A (zh) * 2021-08-05 2021-09-03 锐驰智光(北京)科技有限公司 防止漏光的激光雷达

Also Published As

Publication number Publication date
US20230028159A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
CN113075642B (zh) 激光雷达和用于激光雷达的探测方法
JP2022541007A (ja) プリズム及びマルチビームレーザーレーダー
CN213182011U (zh) 激光雷达的发射单元、接收单元及激光雷达
WO2021139834A1 (zh) 激光雷达、用于激光雷达的探测方法和制造方法
CN109597050B (zh) 一种激光雷达
CN109613515A (zh) 一种激光雷达系统
WO2020164223A1 (zh) 一种激光雷达及组合扫描装置
WO2020182024A1 (zh) 激光收发模块及激光雷达系统
JP2006500598A (ja) 光電検出デバイス
Sandner et al. Large aperture MEMS scanner module for 3D distance measurement
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
CN107450060B (zh) 一种激光扫描装置
EP3982150A1 (en) Lidar apparatus having wide-viewing angle
CN108205124A (zh) 一种基于微机电振镜的光学装置和激光雷达系统
CN110376597A (zh) 激光雷达及其探测装置
CN111308443A (zh) 一种激光雷达
CN106767513A (zh) 三维激光扫描装置
JP2018005183A (ja) 光走査装置、物体検知装置および距離検知装置
CN110346811A (zh) 激光雷达及其探测装置
JP2017138298A (ja) 光走査型の対象物検知装置
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
WO2020098771A1 (zh) 一种激光雷达系统
CN210864033U (zh) 一种扫描装置及激光雷达系统
WO2024032243A1 (zh) 激光雷达系统和车辆
CN104175332A (zh) 激光定位自动机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738220

Country of ref document: EP

Kind code of ref document: A1