WO2021139832A1 - 一种非周期srs发送方法及相关设备 - Google Patents

一种非周期srs发送方法及相关设备 Download PDF

Info

Publication number
WO2021139832A1
WO2021139832A1 PCT/CN2021/077771 CN2021077771W WO2021139832A1 WO 2021139832 A1 WO2021139832 A1 WO 2021139832A1 CN 2021077771 W CN2021077771 W CN 2021077771W WO 2021139832 A1 WO2021139832 A1 WO 2021139832A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
srs
srs resource
resource set
time slot
Prior art date
Application number
PCT/CN2021/077771
Other languages
English (en)
French (fr)
Inventor
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Priority to US17/791,891 priority Critical patent/US20230043745A1/en
Priority to EP21738219.1A priority patent/EP4106248A4/en
Publication of WO2021139832A1 publication Critical patent/WO2021139832A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • This application relates to the field of communication technology, and in particular to an aperiodic SRS transmission method and related equipment.
  • a sounding reference signal is a signal sent by a terminal device to an access network device such as a base station to enable the access network device to estimate the uplink channel quality according to the SRS, and then perform transmission resource scheduling.
  • SRS is divided into two time domain types: Periodic SRS (Periodic SRS) and Aperiodic SRS (Aperiodic SRS).
  • Periodic SRS Periodic SRS
  • Aperiodic SRS Aperiodic SRS
  • New Radio Access Technology New Radio Access Technology
  • semi-persistent SRS semi-persistent SRS (semi-persistent SRS) has been newly added, and there are three types of SRS in the time domain.
  • SRS can be sent based on a certain SRS resource (SRS resource).
  • SRS resource is determined by multiple resource parameters configured by Radio Resource Control (RRC). These resource parameters can be the number of antenna ports and orthogonal frequency division multiplexing. (Orthogonal Frequency Division Multiplexing, OFDM) symbol number, frequency domain position, slot position, etc. Multiple SRS resources of the same time domain type can form an SRS resource set (SRS resource set).
  • RRC Radio Resource Control
  • the aperiodic SRS is downlink control information (Downlink Control Information, DCI) sent to the terminal device through the access network device, and the DCI triggers the sending of the terminal device.
  • DCI Downlink Control Information
  • a unique corresponding slot offset is configured through RRC. After the terminal device receives the DCI, it can obtain the SRS resource set triggered by the DCI and the time slot offset in the corresponding RRC configuration to determine the transmission time slot for transmitting the aperiodic SRS.
  • the terminal equipment can only determine the transmission time slot of the aperiodic SRS according to the fixed time slot offset in the RRC configuration for the SRS resource set, that is, after the RRC configuration, any terminal equipment transmits for the SRS resource set
  • the time slot offset of the aperiodic SRS is fixed and consistent, and this way of determining the SRS transmission time slot is relatively simple.
  • This application provides an aperiodic SRS transmission method and related equipment, through which the flexibility and diversity of the aperiodic SRS transmission slot determination method can be improved.
  • the first aspect of the embodiments of the present application provides an aperiodic SRS transmission method, including:
  • the first terminal device receives a first control instruction, the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, the first control instruction includes a first parameter field and SRS resource set information, the The first parameter field contains the first time slot offset;
  • the first terminal device determines a time domain position for sending aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the SRS resource set information included in the first control instruction only includes first SRS resource set information corresponding to a first SRS resource set;
  • the determining, by the first terminal device, according to the first time slot offset, a time domain position for sending aperiodic SRS, and sending the aperiodic SRS according to the determined time domain position includes:
  • the first terminal device determines a first time domain position according to the first time slot offset, and sends an aperiodic SRS for the first SRS resource set according to the first time domain position.
  • the SRS resource set information included in the first control instruction includes second SRS resource set information corresponding to each of multiple second SRS resource sets;
  • the method also includes:
  • the first terminal device For each of the second SRS resource sets, the first terminal device sends an aperiodic SRS according to the corresponding second time domain location.
  • the SRS resource set information included in the first control instruction includes a third SRS resource corresponding to each of multiple third SRS resource sets Set information
  • the determining, by the first terminal device, according to the first time slot offset, a time domain position for sending aperiodic SRS, and sending the aperiodic SRS according to the determined time domain position includes:
  • the first terminal device determines a third time domain position according to the first time slot offset, and sends an aperiodic SRS according to the third time domain position for the specified third SRS resource set.
  • the method further includes:
  • the first terminal device obtains, according to the third SRS resource set information, the RRC configuration time slot offset corresponding to each of the remaining third SRS resource sets except for the designated third SRS resource set;
  • the first terminal device determines the fourth time domain position corresponding to each of the remaining third SRS resource sets according to the RRC configuration time slot offset corresponding to each of the remaining third SRS resource sets;
  • the first terminal device For each of the remaining third SRS resource sets, the first terminal device sends an aperiodic SRS according to the corresponding fourth time domain location.
  • the first control instruction further includes an acquisition mode indication field, and the acquisition mode indication field includes the information in the first acquisition mode or the second acquisition mode information.
  • the first acquisition method information is used to instruct the first terminal device to acquire the time slot offset from the first parameter field
  • the second acquisition method information is used to instruct the first terminal device to acquire the time slot offset from the Obtain the time slot offset from the RRC configuration parameters
  • the determining, by the first terminal device, according to the first time slot offset, a time domain position for sending aperiodic SRS, and sending the aperiodic SRS according to the determined time domain position includes:
  • the first terminal device executes the determination of the time domain position for transmitting aperiodic SRS according to the first time slot offset, and according to Sending an aperiodic SRS at the determined position in the time domain;
  • the method also includes:
  • the first terminal device obtains the RRC configuration time slot offset corresponding to the SRS resource set information
  • the first terminal device determines a fifth time domain position according to the RRC configuration time slot offset corresponding to the SRS resource set information, and sends an aperiodic SRS according to the fifth time domain position.
  • the method further includes:
  • the first terminal device receives first enabling information; the first enabling information is used to instruct the first terminal device to determine to send aperiodic SRS according to the first time slot offset in the first parameter field Time domain position;
  • the determining, by the first terminal device, according to the first time slot offset, a time domain position for sending aperiodic SRS, and sending the aperiodic SRS according to the determined time domain position includes:
  • the first terminal device obtains the first time slot offset from the first parameter field according to the first enable information, and determines the time domain for transmitting aperiodic SRS according to the first time slot offset Position, sending an aperiodic SRS according to the determined position in the time domain.
  • the method further includes:
  • the first terminal device receives second enabling information; the second enabling information is used to instruct the first terminal device to determine the time domain position for sending aperiodic SRS according to the RRC configuration time slot offset;
  • the first terminal device receives a second control instruction, the second control instruction is used to trigger the first user terminal to send an aperiodic SRS, and the second control instruction includes fourth SRS resource set information;
  • the first terminal device determines a sixth time domain position according to the RRC configuration time slot offset corresponding to the fourth SRS resource set information, and sends an aperiodic SRS according to the sixth time domain position.
  • a second aspect of the embodiments of the present application provides a first terminal device, including:
  • a control instruction receiving module configured to receive a first control instruction, the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes a first parameter field and SRS resource set information , The first parameter field includes a first time slot offset;
  • the SRS sending module is configured to determine the time domain position for sending the aperiodic SRS according to the first time slot offset, and send the aperiodic SRS according to the determined time domain position.
  • a third aspect of the embodiments of the present application provides a first terminal device, and the communication device may include a processor and a memory;
  • the processor is connected to a memory, where the memory is used to store program codes, and the processor is used to execute the program codes stored in the memory, so as to implement the above-mentioned first aspect and the methods in each implementation manner thereof.
  • the fourth aspect of the embodiments of the present application provides a computer storage medium, the computer storage medium stores a computer program, and when the computer program is executed by a processor, the processor executes the method in any of the foregoing aspects.
  • a fifth aspect of the embodiments of the present application provides a communication chip.
  • the communication chip may include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to call the implementation program of the transmission resource determination method provided by any one of the above aspects from the memory, and execute the instructions contained in the program.
  • the interface may be used to output the determination result of the transmission resource of the processor.
  • the sixth aspect of the embodiments of the present application provides a computer program product containing instructions, which when run on a processor, causes the processor to execute the method for determining transmission resources described in any of the foregoing aspects.
  • the first terminal device receives a first control instruction, where the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes the first parameter field and SRS resource set information,
  • the first parameter field contains the first time slot offset; the first terminal device determines the time domain position for sending the aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the first terminal device is dynamically instructed to send the aperiodic SRS time slot offset, and then the time domain position for sending the aperiodic SRS is determined according to the dynamically indicated time slot offset , Improve the flexibility and diversity of the aperiodic SRS transmission time slot determination method.
  • FIG. 1 is a schematic diagram of the architecture of an aperiodic SRS transmission system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an aperiodic SRS sending method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another aperiodic SRS sending method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another first terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the architecture of an aperiodic SRS transmission system provided by an embodiment of the present application.
  • the system may include an access network device 001 and at least A terminal device, the terminal device 002, the terminal device 003, and the terminal device 004 are exemplarily shown in FIG. 1.
  • the access network equipment 001 may include various forms of network equipment, such as: a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, a cell, and so on.
  • exemplary base stations may be evolved base stations (evolutional node B, eNB), and next-generation nodes (next-generation Node B, gNB) in 5G systems and new wireless systems.
  • the base station may also be a transmission receive point (TRP), a central unit (CU), or other network entities.
  • TRP transmission receive point
  • CU central unit
  • the access network device 001 can be a baseband processing unit (BBU) and a radio unit (RRU), in the cloud radio access network (CRAN) In the scenario, it can be a baseband pool BBU pool and a radio frequency unit RRU.
  • the access network device 001 may also be a mobility management entity (MME) device, an access and mobility management function (AMF) device, and a vehicle networking control function (CF) device.
  • MME mobility management entity
  • AMF access and mobility management function
  • CF vehicle networking control function
  • Equipment Gateway (GateWay), roadside unit (RSU), operation management and maintenance (OAM) equipment, application server (APP server) or third-party network elements.
  • Terminal equipment may also be referred to as user equipment, mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device can be a handheld user equipment, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA), and wireless communication.
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device and the access network device 001 communicate with each other using a certain air interface technology.
  • the terminal device 002, the terminal device 003, and the terminal device 004 may be terminal devices in the cell of the access network device 001, and the access network device may send a first control instruction to any of the above-mentioned terminal devices to trigger the terminal to send aperiodic SRS; After receiving the first control instruction sent by the access network device 001, the device can determine the time domain position for sending aperiodic SRS according to the first time slot offset carried in the first control instruction, and send the aperiodic SRS to improve The flexibility and diversity of the aperiodic SRS transmission slot determination method are improved.
  • FIG. 2 is a schematic flowchart of an aperiodic SRS transmission method provided by an embodiment of the present application. As shown in the figure, the method may include steps S201-S202.
  • the first terminal device receives a first control instruction.
  • the first control instruction is an instruction used to trigger the first terminal device to send an aperiodic SRS.
  • the first control instruction may be DCI, and the parameters carried in the DCI exist in the DCI in the form of domains.
  • the DCI may include the SRS request (SRS request) domain and time domain resource allocation (time resource allocation). domain resource allocation, TDRA) domain, etc.
  • the first control instruction includes a first parameter field, and the first parameter field includes a first time slot offset.
  • the first control command instructs the first terminal device to send the aperiodic SRS time slot offset by way of explicit indication
  • the first parameter field can be the first control command specifically for dynamic and flexible A field indicating the time slot offset of the user terminal to transmit aperiodic SRS.
  • the first time slot offset in the first parameter field is a time slot offset specially designated for aperiodic SRS transmission; in another implementation mode, the first The control command instructs the first terminal device to send the aperiodic SRS time slot offset by implicitly specifying, then the first parameter field can be the TDRA field, and the time slot offset in the TDRA field can be used to indicate the physical uplink shared channel
  • the first control instruction also includes SRS resource set information, and the SRS resource set information is indication information corresponding to the SRS resource set, and instructs the access network device to trigger the first terminal device to send aperiodic SRS for which one or more SRS resource sets. That is, the first user terminal can determine which SRS resource set is triggered according to the SRS resource set information in the first control instruction.
  • the SRS resource set information may be a parameter in the SRS request field in the first control instruction, that is, different SRS request values may be used to trigger different SRS resource sets.
  • different SRS resource parameters can be configured through RRC to define different SRS resource sets.
  • a fixed time slot offset ie, RRC
  • RRC fixed time slot offset
  • the access network device may configure the SRS resource parameter corresponding to the SRS resource set to the first terminal device for storage.
  • the access network device can establish the correspondence between each SRS resource set and different aperiodic SRS-Resource Trigger values, and configure the above correspondence to the first terminal device so that the first terminal device records each SRS resource set The corresponding aperiodic SRS-Resource Trigger value; and then in step S201, the first terminal device obtains the SRS request value (ie SRS resource set information) contained in the first control command, and then determines the SRS request in the first control command.
  • the aperiodic SRS-Resource Trigger value corresponding to the value is determined, and the corresponding SRS resource set is determined according to the above-mentioned corresponding relationship recorded, and the corresponding SRS resource parameter can also be further obtained.
  • the SRS resource parameter is subsequently used to send aperiodic SRS.
  • the access network equipment is configured with three SRS resource sets.
  • the values of the high-level configuration parameter aperiodic SRS-Resource Trigger corresponding to these three SRS resource sets are different. This is the annual SRS-Resource corresponding to the three SRS resource sets. Trigger is configured as 1, 2 and 3 respectively.
  • the SRS request field in DCI occupies two bits, and the different values of these two bits represent different SRS resource set information.
  • the SRS request value of 00 corresponds to no aperiodic SRS resources.
  • the SRS request with a value of 01 corresponds to the SRS resource set with the aperiodic SRS-Resource Trigger configured as 1
  • the SRS request with the value of 10 corresponds to the SRS resource set with the annual SRS-Resource Trigger configured as 2.
  • the SRS request of 11 corresponds to the SRS resource set of which the annual SRS-Resource Trigger is configured as 3. If the value of SRS request in the SRS request in the DCI is 11, the first terminal device can determine that the access network device is targeting the SRS resource set of the annual SRS-Resource Trigger configured to 3 to trigger the aperiodic SRS, and then can obtain the corresponding SRS resource parameters, subsequent transmission of aperiodic SRS. If the value of SRS request in the first control instruction is 00, the first terminal device can determine that no aperiodic SRS resource set is triggered, and can determine whether the condition for sending periodic SRS or semi-persistent SRS is satisfied according to other information.
  • the first terminal device determines a time domain position for sending aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the first terminal device determines the time domain position for transmitting aperiodic SRS according to the first time slot offset
  • the first terminal device receives the first control command in time slot n, the first time slot offset Is k
  • the first terminal device determines that the time slot for transmitting aperiodic SRS is the time slot n+k, and then according to the symbol position in the SRS resource parameter corresponding to the SRS resource set information, determines that it is in the time slot n+k
  • the symbol of transmitting aperiodic SRS that is, the time domain position of transmitting aperiodic SRS).
  • the symbol position is the position of the symbol configured to transmit aperiodic SRS in a time slot (that is, the time slot for transmitting aperiodic SRS) when the SRS resource is configured by RRC.
  • the symbol position It can be l consecutive symbols among the last j symbols in the time slot used to transmit aperiodic SRS.
  • the value of j can be 6, and the value of l can be 1, 2, or 4.
  • the symbol position it can be determined that the symbol for transmitting aperiodic SRS in the time slot n+k.
  • the first terminal device also obtains the SRS resource parameters of the SRS resource set corresponding to the SRS resource set information in the first control instruction, such as the number of antenna ports, the number of OFDM, and the frequency domain position. According to these SRS resource parameters, in the n+k time slot Send aperiodic SRS.
  • the method before S201 may further include that the first terminal device may receive first enabling information, and the first enabling information may be configured through RRC to indicate to the first terminal device According to the first time slot offset in the first parameter field, determine the time-domain position for sending aperiodic SRS; then, after receiving the first control instruction, the first terminal device starts from the first parameter field according to the first enable information. Obtain the first time slot offset, determine the time domain position of the aperiodic SRS according to the first time slot offset, and then send the aperiodic SRS according to the determined time domain position.
  • the first terminal device if the first terminal device receives the first enable information before receiving the first control instruction, the first terminal device obtains the time slot used to transmit the aperiodic SRS from the first parameter field according to the first enable information Offset, otherwise, the first terminal device will determine the time slot offset for transmitting the aperiodic SRS according to the RRC configuration.
  • the method may further include: the first terminal device receives second enabling information, where the second enabling information is used to instruct the first terminal device to configure the time slot offset according to RRC, Determine the time domain position for sending aperiodic SRS; the first terminal device receives a second control instruction, the second control instruction is used to trigger the first user terminal to send the aperiodic SRS, and the second control instruction includes fourth SRS resource set information
  • the first terminal device obtains the RRC configuration time slot offset corresponding to the fourth SRS resource set information according to the second enabling information; the first terminal device obtains the RRC configuration time slot offset corresponding to the fourth SRS resource set information according to the fourth SRS resource set information, Determine the sixth time domain position, and send an aperiodic SRS according to the sixth time domain position.
  • the above two optional methods can only execute any one of them independently, or they can be executed in a sequential order. For example, after the first terminal device receives the first enabling information, the first terminal device performs according to the parameters in the first parameter field.
  • the first time slot offset in the first parameter field is used to determine the time domain position for sending aperiodic SRS. After the first terminal device receives the second enable information, it will no longer determine the transmission according to the first time slot offset in the first parameter field.
  • the time domain position of the aperiodic SRS is determined according to the RRC configuration time slot offset; until the first enabling information is received again, the first terminal device is based on the first parameter field in the first parameter field.
  • a slot offset determines the time domain position for transmitting aperiodic SRS.
  • the first enabling information and the second enabling information respectively enable the first terminal device to determine the time slot offset for transmitting aperiodic SRS in different ways
  • the second enabling information can be regarded as the first enabling information.
  • Both the first enabling information and the second enabling information can be the same type of enabling information configured through RRC, and both contain the same field type; these field types include an indication that the first terminal device is in accordance with the first parameter field
  • the first time slot offset in the RRC configuration time slot offset is used to determine the enable field type of the time domain position for sending aperiodic SRS.
  • the first terminal device After receiving the enable information, the first terminal device can use the enable field type
  • the value of the received enable information is to identify whether the received enable information indicates the first enable information to determine the time domain position of sending aperiodic SRS according to the first time slot offset in the first parameter field, or indicates that it is configured according to RRC
  • the slot offset determines the second enable information of the time domain position for sending aperiodic SRS, and further determines the time domain position for sending aperiodic SRS, and sends the aperiodic SRS.
  • the first enabling information may be specifically used to instruct the first terminal device according to the parameter in the first parameter domain.
  • the first time slot offset, and the RRC configuration time slot offset determine the time domain position for sending aperiodic SRS.
  • the first terminal device receives the first enable information before S202, the first terminal device receives the first control instruction in the time domain s, the first time slot offset is r, and the SRS in the first control instruction
  • the RRC configuration time slot offset of the SRS resource set corresponding to the resource set information is t, then the first terminal device determines the time slot s+r+t as the time slot for transmitting aperiodic SRS, and then according to the corresponding SRS resource set information
  • the symbol position in the SRS resource parameter determines the symbol for transmitting the aperiodic SRS in the time slot s+r+t (that is, the time domain position for transmitting the aperiodic SRS).
  • the SRS resource set information included in the first control instruction may include SRS resource set information corresponding to one SRS resource set, or may include SRS resource set information corresponding to multiple SRS resource sets. For example, if there is one SRS resource set whose aperiodic SRS-Resource Trigger is configured as 1, when the value of SRS request in the first control command is 01, that is, the first control command only contains the SRS resource set corresponding to one SRS resource set Information; if the aperiodic SRS-Resource Trigger is configured to have multiple SRS resource sets of 2, when the SRS request value in the first control command is 10, that is, the first control command only contains SRS corresponding to multiple SRS resource sets Resource set information.
  • the SRS resource set information in the first control instruction only includes the first SRS resource set information corresponding to a first SRS resource set, then the first terminal device offsets according to the first time slot , Determine the position of the first time slot, and send the aperiodic SRS based on the SRS resource parameter corresponding to the first SRS resource set according to the first time domain position.
  • the first control instruction may be sent by the access network device to the first terminal device when the first terminal device does not expect or support multiple SRS resource sets being triggered at the same time; it may also be sent to the first terminal device.
  • the access network device In the case of expecting or supporting multiple SRS resource sets to be started at the same time, the access network device only needs to send the aperiodic SRS to the first terminal device when the first terminal device sends the aperiodic SRS for one first SRS resource set.
  • the SRS resource set information in the first control instruction includes second SRS resource set information corresponding to each of the multiple second SRS resource sets, then the first terminal device can ignore the first control instruction
  • the aperiodic SRS is sent according to the RRC configuration time slot offset corresponding to each second SRS resource set.
  • the method further includes: the first terminal device obtains the RRC configuration time slot offset corresponding to each second SRS resource set according to the information of each second SRS resource set, and according to each second SRS resource set The RRC configuration time slot offset corresponding to the SRS resource set is determined, and the second time domain position corresponding to each second SRS resource set is determined, and then according to the SRS resource parameter corresponding to each second SRS resource set, the corresponding second time domain position is determined , Send aperiodic SRS.
  • the SRS resource set information in the first control instruction contains the third SRS resource set information corresponding to each of the multiple third SRS resource sets
  • the first terminal device may select the third SRS resource set from the third SRS resource set. Select a specified third SRS resource set, and then determine the third time domain position according to the first time slot offset, and according to the SRS resource parameters corresponding to the specified third SRS resource set, for the specified third SRS Resource set, sending aperiodic SRS.
  • the third SRS resource set with the smallest resource set identifier of the multiple third SRS resource sets is used as the specified third SRS resource set, for example, .
  • the third SRS resource set with the largest resource set identifier in the plurality of third SRS resource sets is used as the designated third SRS resource set.
  • a plurality of designated third SRS resource sets may also be determined, and the aperiodic SRS is sent according to the first time slot offset.
  • There may be multiple ways to determine the specified third SRS resource set which are not limited here, but no matter which specific method is used for determining, each terminal device in the access network device should be determined in accordance with the same agreed determination method.
  • the designated third SRS resource set may be multiple ways to determine the specified third SRS resource set, which are not limited here, but no matter which specific method is used for determining, each terminal device in the access network device should be determined in accordance with the same agreed determination method.
  • the designated third SRS resource set is not limited here, but no matter which specific method is used for
  • the first terminal device does not send aperiodic SRS for other third SRS resource sets except for sending aperiodic SRS for the third SRS resource set specified above. SRS.
  • the first terminal device in addition to sending aperiodic SRS for the third SRS resource set specified above, the first terminal device also sends aperiodic SRS for other third SRS resource sets.
  • the method may further include: the first terminal device may obtain, according to the third SRS resource set information, the RRC configuration time slot corresponding to each of the remaining third SRS resource sets except for the specified third SRS resource set And then determine the fourth time domain position corresponding to each of the remaining third SRS resource sets according to the RRC configuration time slot offset corresponding to each of the remaining third SRS resource sets, and the first terminal device determines the fourth time domain position corresponding to each of the remaining third SRS resource sets.
  • the third SRS resource set of SRS is sent aperiodic SRS according to the corresponding fourth time domain location.
  • the SRS resource set information in the first control instruction includes fifth SRS resource set information corresponding to each of multiple fifth SRS resource sets, and the first terminal device may ignore the first control instruction, No aperiodic SRS is sent for any fifth SRS resource set.
  • the first control instruction may be sent by the access network device to the first terminal device when the first terminal device does not expect or does not support multiple SRS resource sets being triggered at the same time, And the SRS resource set information in the first control instruction contains the sixth SRS resource set information corresponding to each of the multiple sixth SRS resource sets, then the first terminal device determines that this event is an error event and does not send aperiodic SRS.
  • the first terminal device can set the execution mode in advance (that is, the preset execution mode is the above Any one of the second optional implementation manner, the third optional implementation manner, the fourth optional implementation manner, or the fifth optional implementation manner) is executed according to the set execution mode.
  • the first control instruction may also include third enable information, and the third enable information is used to instruct the first terminal device to follow the instructions when the first control instruction includes multiple SRS resource set information Which of the foregoing methods is executed, and the first terminal device may execute in the manner indicated by the third enable information.
  • the third enabling information may be the same enabling information as the first enabling information or the second enabling information.
  • the first control instruction may be used to implicitly instruct the first terminal device to send the time slot offset of the aperiodic SRS, that is, the first parameter field is TDRA domain, at this time, if the SRS resource set information in the first control command only contains the SRS resource set information corresponding to one SRS resource, then aperiodic transmission is sent according to the slot offset in the TDRA domain implicitly indicated by the first control command SRS.
  • the first terminal device may only determine one designated SRS resource set (such as the SRS resource set corresponding to the low resource set identifier), according to the slot offset in the TDRA domain implicitly indicated by the first control instruction, send aperiodic SRS to the specified SRS resource set, not to Other SRS resource sets transmit aperiodic SRS; or in another implementation manner, if the SRS resource set information in the first control instruction includes SRS resource set information corresponding to each of multiple SRS resources, the first terminal device may ignore the first terminal device.
  • one designated SRS resource set such as the SRS resource set corresponding to the low resource set identifier
  • a control signaling does not send aperiodic SRS; or in another implementation manner, if the first control instruction is that the access network device does not expect or support multiple SRS resource sets being triggered at the same time by the first terminal device , Sent to the first terminal device, and the SRS resource set information in the first control instruction includes SRS resource set information corresponding to each of the multiple SRS resources, then the first terminal device determines that this event is an error event and does not send aperiodic SRS .
  • the first terminal device receives a first control instruction, where the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes the first parameter field and SRS resource set information,
  • the first parameter field contains the first time slot offset; the first terminal device determines the time domain position for sending the aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the first terminal device is dynamically instructed to send the aperiodic SRS time slot offset, and then the time domain position for sending the aperiodic SRS is determined according to the dynamically indicated time slot offset , Improve the flexibility and diversity of the aperiodic SRS transmission time slot determination method.
  • FIG. 3 is a schematic flowchart of another aperiodic SRS sending method provided by an embodiment of the present application. As shown in the figure, the method includes steps S301 to S305.
  • the first terminal device receives a first control instruction.
  • the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, the first control instruction includes a first parameter field and SRS resource set information, and the first parameter field includes a first time slot Offset.
  • the first control instruction may be an implicit indication to instruct the first terminal to send the slot offset of the aperiodic SRS, then the first parameter field may be the TDRA field.
  • the first control instruction also includes an acquisition mode indication field, and the acquisition mode indication field contains one of the first acquisition mode information or the second acquisition mode information; the first acquisition mode information is used to indicate the first acquisition mode information.
  • the terminal device acquires the time slot offset from the first parameter field; the second acquisition mode information is used to instruct the first terminal device to acquire the time slot offset from the RRC configuration parameter.
  • S302 The first terminal device acquires the parameter in the acquisition mode indication domain in the first control instruction.
  • the parameter in the acquisition method indication field is one of the first acquisition method information or the second acquisition method information. If it is the first acquisition method information, execute S303, and if it is the second acquisition method information, execute S304.
  • the acquisition mode indication field may have one bit, and different values of this bit represent different parameters. For example, a pre-configured value of 0 corresponds to the first acquisition method information, and a value of 1 corresponds to the second acquisition method information. If the value in the acquisition mode indication field in the first control instruction is 0, S303 is executed, and if the value is 1, S304 is executed.
  • the first terminal device determines a time domain position for sending aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the SRS resource set information included in the first control instruction may be SRS resource set information corresponding to one SRS resource set, or may include SRS resource set information corresponding to multiple SRS resource sets.
  • SRS resource set information included in the first control instruction may be SRS resource set information corresponding to one SRS resource set, or may include SRS resource set information corresponding to multiple SRS resource sets.
  • step S202 please refer to the specific implementation manner of step S202 in the embodiment corresponding to FIG. 2, which will not be repeated here.
  • the first terminal device obtains the RRC configuration time slot offset corresponding to the SRS resource set information.
  • different SRS resource parameters can be configured through RRC to define different SRS resource sets.
  • a fixed time slot offset can also be configured for each SRS resource set through RRC (that is, RRC configuration time slot Offset).
  • the access network device may configure the SRS resource parameter corresponding to the SRS resource set to the first terminal device for storage.
  • the access network device can establish a corresponding relationship between each SRS resource set and different aperiodic SRS-Resource Trigger values, and configure the above-mentioned corresponding relationship to the first terminal device, so that the first terminal device records each SRS resource set The corresponding aperiodic SRS-Resource Trigger value; and then in step S304, the first terminal device obtains the SRS request value (that is, SRS resource set information) contained in the first control command, and then determines the SRS request in the first control command Aperiodic SRS-Resource Trigger value corresponding to the value, and then according to the recorded corresponding relationship, the SRS resource set corresponding to the SRS resource set information included in the first control instruction is determined, and the corresponding SRS resource parameter can also be further obtained.
  • the SRS resource parameter is subsequently used to send aperiodic SRS.
  • the first terminal device determines a fifth time domain position according to the RRC configuration time slot offset corresponding to the SRS resource set information, and sends an aperiodic SRS according to the fifth time domain position.
  • the RRC configured time slot offset is the fixed time slot offset in which the SRS resource set corresponding to the SRS resource set information is configured, and the fifth time domain position is determined according to the time slot offset to send the aperiodic SRS by the first terminal device. Time domain location.
  • the first terminal device determines to send aperiodic transmission in the time slot m+h SRS, time slot m+h is the time slot for sending SRS, and then according to the symbol position in the SRS resource parameter corresponding to the SRS resource set information, the symbol for sending aperiodic SRS in the time slot m+h (that is, sending The fifth time domain position of aperiodic SRS).
  • the symbol position is the symbol used for transmitting aperiodic SRS (that is, the time domain position of transmitting aperiodic SRS) that is configured in a time slot (that is, the time slot for transmitting aperiodic SRS) when the SRS resource is configured by RRC
  • the symbol position may be l consecutive symbols among the last j symbols in the time slot used to transmit aperiodic SRS.
  • the value of j may be 6, l
  • the value can be 1, 2, or 4.
  • the symbol for sending aperiodic SRS in the time slot m+h can be determined.
  • the first terminal device also obtains other SRS resource parameters of the SRS resource set corresponding to the SRS resource set information in the first control instruction, such as the number of antenna ports, the number of OFDM, and the frequency domain position. According to these SRS resource parameters, when m+h The corresponding symbol in the slot sends aperiodic SRS.
  • the SRS resource set information included in the first control instruction may be SRS resource set information corresponding to one SRS resource set, or may include SRS resource set information corresponding to multiple SRS resource sets.
  • the first terminal device instructs the corresponding second terminal device in the domain according to the acquisition mode.
  • Obtaining mode information that is, instructing the first terminal device to obtain the time slot offset from the RRC configuration parameters
  • the first control instruction may be sent by the access network device to the first terminal device when the first terminal device does not expect or support multiple SRS resource sets being triggered at the same time; it may also be sent to the first terminal device.
  • the access network device only needs to send the aperiodic SRS to the first terminal device when the first terminal device sends the aperiodic SRS for one SRS resource set.
  • the SRS resource set information in the first control instruction includes SRS resource set information corresponding to each of the multiple SRS resource sets, then the first terminal device can ignore the time slot offset indicated by the first control instruction. Shift, send aperiodic SRS directly according to the RRC configuration time slot offset corresponding to each SRS resource set information.
  • the first terminal device obtains the slot offset in the RRC configuration corresponding to each SRS resource set according to the information of each SRS resource set, and according to the slot offset in the RRC configuration corresponding to each SRS resource set Move, determine the fifth time domain location corresponding to each SRS resource set, and then send aperiodic SRS at the fifth time domain location corresponding to each SRS resource set according to the SRS resource parameters corresponding to each SRS resource set.
  • the first terminal device when the SRS resource set information in the first control instruction includes the SRS resource set information corresponding to each of the multiple SRS resource sets, the first terminal device indicates the corresponding second in the domain according to the acquisition manner. 2.
  • Obtaining method information that is, instructing the first terminal device to obtain the time slot offset from the RRC configuration parameters
  • a specified SRS resource set can be selected from multiple SRS resource sets, and corresponding to obtaining the specified SRS resource set Configure the slot offset in the RRC, determine the fifth time domain position for sending the aperiodic SRS for the specified aperiodic SRS resource set, and according to the SRS resource parameters corresponding to the specified SRS resource set, set it in the corresponding fifth time domain Location, sending aperiodic SRS.
  • the specified SRS resource set There are many ways to determine the specified SRS resource set. For example, the SRS resource set with the smallest resource set identifier in the multiple SRS resource sets in the first control instruction is used as the specified SRS resource set. The SRS resource set with the largest SRS resource set identifier in the plurality of SRS resource sets in one control instruction is used as the designated SRS resource set.
  • multiple designated SRS resource sets may also be determined, and the time slot offset for transmitting aperiodic SRS may be determined according to the corresponding second acquisition mode information in the acquisition mode indication field.
  • each terminal device in the access network equipment should determine the designation according to the same agreed determination method. SRS resource set.
  • the first terminal device does not send aperiodic SRS for other SRS resource sets except for sending aperiodic SRS for the above-mentioned designated SRS resource set.
  • the first terminal device in addition to sending aperiodic SRS for the above-mentioned designated SRS resource set, the first terminal device also sends aperiodic SRS for other SRS resource sets. Specifically, the first terminal device may obtain the RRC configuration time slot offset corresponding to each other SRS resource set, and then determine the transmission corresponding to each other SRS resource set according to the RRC configuration time slot offset corresponding to each other SRS resource set In the time slot, the first terminal device transmits aperiodic SRS according to the respective corresponding transmission time slots for each of the other SRS resource sets.
  • the SRS resource set information in the first control instruction includes SRS resource set information corresponding to each of the multiple SRS resource sets, and the first terminal device can ignore the first control instruction, which is not specific to any SRS.
  • the resource set sends aperiodic SRS.
  • the first control instruction may be sent by the access network device to the first terminal device when the first terminal device does not expect or does not support multiple SRS resource sets being triggered at the same time, And the SRS resource set information in the first control instruction includes SRS resource set information corresponding to each of the multiple SRS resource sets, then the first terminal device determines that this event is an error event and does not send aperiodic SRS.
  • the first terminal device can set the execution mode in advance (that is, the preset execution mode is the above Any one of the second optional implementation manner, the third optional implementation manner, the fourth optional implementation manner, or the fifth optional implementation manner) is executed according to the set execution mode.
  • the first control instruction may also include fourth enable information, and the fourth enable information is used to instruct the first terminal device to follow the instructions when the first control instruction includes multiple SRS resource set information Which of the foregoing methods is executed, and the first terminal device may execute in the manner indicated by the fourth enable information.
  • the fourth enabling information may be the same enabling information as the first enabling information, the second enabling information, or the third enabling information.
  • the first terminal device receives the first control instruction, where the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes the acquisition mode indication field, and the acquisition mode indication field
  • the aperiodic SRS is sent according to the time slot offset implicitly indicated in the first control instruction
  • the aperiodic SRS is transmitted according to the RRC configuration
  • the aperiodic SRS is sent at the time slot offset, which realizes the dynamic indication of the time slot offset for sending the aperiodic SRS, and improves the flexibility and diversity of the sending time slot determination method of the aperiodic SRS.
  • FIG. 4 is a schematic structural diagram of a first terminal device according to an embodiment of the present application.
  • the first terminal device 40 includes:
  • the control instruction receiving module 401 is configured to receive a first control instruction, the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes a first parameter field and an SRS resource set Information, the first parameter field includes a first time slot offset;
  • the SRS sending module 402 is configured to determine a time domain position for sending aperiodic SRS according to the first time slot offset, and send the aperiodic SRS according to the determined time domain position.
  • the first terminal can execute each step in the aperiodic SRS transmission method shown in Figures 2 to 3 through its built-in functional modules.
  • the first terminal can execute each step in the aperiodic SRS transmission method shown in Figures 2 to 3 through its built-in functional modules.
  • the corresponding embodiments in Figures 2 to 3 The implementation details of each step will not be repeated here.
  • the control instruction receiving module receives the first control instruction, where the first control instruction is used to trigger the first terminal device to send an aperiodic SRS, and the first control instruction includes the first parameter field and SRS resource set information,
  • the first parameter field contains the first time slot offset;
  • the SRS sending module determines the time domain position for sending the aperiodic SRS according to the first time slot offset, and sends the aperiodic SRS according to the determined time domain position.
  • the first terminal device is dynamically instructed to send the aperiodic SRS time slot offset, and then the time domain position for sending the aperiodic SRS is determined according to the dynamically indicated time slot offset , Improve the flexibility and diversity of the aperiodic SRS transmission time slot determination method.
  • the first terminal device in the embodiment shown in FIG. 4 may be implemented by the first terminal device 50 shown in FIG. 5.
  • FIG. 5 is a schematic structural diagram of another first terminal device provided by an embodiment of the present application.
  • the computing node device 50 shown in FIG. 5 includes a processor 501 and a memory 502.
  • the processor 501 may be used to determine a slot offset for transmitting aperiodic SRS. For example, step S201 in the embodiment shown in FIG. 2 is implemented.
  • the memory 502 is used to store program codes and data for execution by the first terminal device, and the processor 501 can execute the application program codes stored in the memory 502 to implement the actions provided in any of the embodiments shown in FIGS. 2 to 3.
  • the processor 501 is in communication connection with the memory 502, for example, connected via a bus 503.
  • the bus 503 may be a PCI bus, an EISA bus, or the like.
  • the bus 503 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the computing node device 50 may further include a transceiver 504 for supporting information transmission between the first terminal device 50 and the access network device involved in the foregoing embodiment.
  • a transceiver 504 for supporting information transmission between the first terminal device 50 and the access network device involved in the foregoing embodiment.
  • step S202 in the embodiment corresponding to FIG. 2 is implemented; for example, step S305 in the embodiment corresponding to FIG. 3 is implemented.
  • the first terminal device may include one or more processors, and the structure of the first terminal device 50 does not constitute a limitation to the embodiment of the present application.
  • the processor 501 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (ASIC), a field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transceiver 504 may be a communication interface or a transceiver circuit, etc., where the transceiver is a general term. In a specific implementation, the transceiver may include multiple interfaces.
  • the memory 502 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 502 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory). Only memory, ROM, flash memory, hard disk drive (HDD), or solid-state drive (SSD); the memory 502 may also include a combination of the foregoing types of memories.
  • volatile memory such as a random access memory (random access memory, RAM)
  • non-volatile memory such as a read-only memory (read-only memory).
  • SSD solid-state drive
  • a computer storage medium is also provided, which can be used to store the computer software instructions used by the first terminal device in the embodiment shown in FIG. Designed procedures.
  • the storage medium includes but is not limited to flash memory, hard disk, and solid state hard disk.
  • An embodiment of the present application also provides a computer program product.
  • the computer product When the computer product is run by the first terminal device, it can execute the aperiodic SRS sending method designed for the first terminal device in the embodiment shown in FIG. 4.
  • FIG. 6 is a schematic structural diagram of a communication chip provided by an embodiment of the present application.
  • the communication chip 60 may include a processor 601 and one or more interfaces 602 coupled to the processor 601. among them:
  • the processor 601 can be used to read and execute computer-readable instructions.
  • the processor 601 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends out control signals for the operation corresponding to the instruction.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logical operations, etc., and can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 601 may be an application specific integrated circuit (ASIC) architecture, MIPS architecture, ARM architecture, NP architecture, and so on.
  • the processor 601 may be single-core or multi-core.
  • the interface 602 can be used to input data to be processed to the processor 601, and can output the processing result of the processor 601 externally.
  • the interface 602 may be a general purpose input output (GPIO) interface, and may be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.).
  • GPIO general purpose input output
  • peripheral devices such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.
  • the interface 602 is connected to the processor 601 through the bus 603.
  • the processor 601 may be used to call the implementation program of the aperiodic SRS sending method provided in one or more embodiments of the present application from the memory, and execute the instructions contained in the program.
  • the interface 602 can be used to output the execution result of the processor 601.
  • the interface 602 may be specifically configured to output the determination result of the time slot offset of the processor 601 for sending aperiodic SRS.
  • the aperiodic SRS sending method provided by one or more embodiments of the present application, reference may be made to the foregoing various embodiments shown in FIG.
  • processor 601 and the interface 602 can be implemented through hardware design, through software design, or through a combination of software and hardware, which is not limited here.
  • the size of the sequence number of each process does not mean the order of execution.
  • the order of execution of each process should be determined by its function and internal logic. There should be any limitation on the implementation process of the embodiments of the present application.

Abstract

本申请实施例公开了一种非周期SRS发送方法及相关设备,所述方法包括:第一终端设备接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。通过本申请可以提高非周期SRS的发送时隙确定方式的灵活性和多样性。

Description

一种非周期SRS发送方法及相关设备
本申请要求于2020年01月10日提交中国专利局、申请号为202010029818.1、申请名称为“一种非周期SRS发送方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种非周期SRS发送方法及相关设备。
背景技术
探测参考信号(Sounding reference signal,SRS)是终端设备向基站等接入网设备发送的一种信号,用于使接入网设备根据SRS对上行信道质量进行估计,进而进行传输资源的调度。在长期演进(Long Term Evolution,LTE)系统中,SRS分为周期SRS(Periodic SRS)和非周期SRS(Aperiodic SRS)两种时域类型的SRS,在新无线电接入技术(New Radio Access Technology,NR)系统中,新增了半持续性SRS(semi-persistent SRS),共三种时域类型的SRS。
SRS可以基于一定的SRS资源(SRS resource)发送,一个SRS资源通过无线资源控制(Radio Resource Control,RRC)配置的多个资源参数确定,这些资源参数可以是天线端口数、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数、频域位置、时隙位置等。多个时域类型相同的SRS资源可以组成SRS资源集(SRS resource set)。
其中,非周期SRS是通过接入网设备向终端设备发送的下行控制信息(Downlink Control Information,DCI),由DCI触发终端设备发送的。对于非周期SRS资源集,通过RRC配置各自唯一对应的一个时隙偏移(slot offset)。在终端设备接收到DCI之后,可以获取DCI所触发的SRS资源集,其对应的RRC配置中的时隙偏移,进而确定发送非周期SRS的发送时隙。这种方式中,终端设备只能根据针对该SRS资源集的RRC配置中,固定的时隙偏移,确定非周期SRS的发送时隙,即在RRC配置后,任何终端设备针对SRS资源集发送非周期SRS的时隙偏移是固定的、一致的,这种确定SRS发送时隙的方式较为单一。
发明内容
本申请提供一种非周期SRS发送方法及相关设备,通过本申请可以提高非周期SRS的发送时隙确定方式的灵活性和多样性。
本申请实施例第一方面提供了一种非周期SRS发送方法,包括:
第一终端设备接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;
所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
结合第一方面,在第一种可能的实现方式中,所述第一控制指令中包含的所述SRS资源集信息仅包含一个第一SRS资源集对应的第一SRS资源集信息;
所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
所述第一终端设备根据所述第一时隙偏移,确定第一时域位置,并根据所述第一时域位置,针对所述第一SRS资源集,发送非周期SRS。
结合第一方面,在第二种可能的实现方式中,所述第一控制指令中包含的所述SRS资源集信息中包含多个第二SRS资源集各自对应的第二SRS资源集信息;
所述方法还包括:
所述第一终端设备根据所述第二SRS资源集信息,获取各个所述第二SRS资源集对应的RRC配置时隙偏移;
所述第一终端设备根据各个所述第二SRS资源集对应的RRC配置时隙偏移,确定各个所述第二SRS资源集对应的第二时域位置;
所述第一终端设备针对各个所述第二SRS资源集,根据各自对应的第二时域位置,发送非周期SRS。
结合第一种可能的实现方式,在第三种可能的实现方式中,所述第一控制指令中包含的所述SRS资源集信息中包含多个第三SRS资源集各自对应的第三SRS资源集信息;
所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
所述第一终端设备从所述第三SRS资源集中获取指定的第三SRS资源集;
所述第一终端设备根据所述第一时隙偏移,确定第三时域位置,并针对所述指定的第三SRS资源集,根据所述第三时域位置,发送非周期SRS。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述第一终端设备根据所述第三SRS资源集信息,获取除所述指定的第三SRS资源集以外,剩余的第三SRS资源集各自对应的RRC配置时隙偏移;
所述第一终端设备根据各个所述剩余的第三SRS资源集对应的RRC配置时隙偏移,确定各个所述剩余的第三SRS资源集对应的第四时域位置;
所述第一终端设备针对各个所述剩余的第三SRS资源集,根据各自对应的第四时域位置,发送非周期SRS。
结合第一方面,在第五种可能的实现方式中,所述第一控制指令中还包括获取方式指示域,所述获取方式指示域中包含第一获取方式信息或第二获取方式信息中的一种;所述第一获取方式信息用于指示所述第一终端设备从所述第一参数域中获取时隙偏移;所述第二获取方式信息用于指示所述第一终端设备从RRC配置参数中获取时隙偏移;
所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
在所述获取方式指示域中包含所述第一获取方式信息的情况下,所述第一终端设备执行所述根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位 置发送非周期SRS;
所述方法还包括:
在所述获取方式指示域中包含所述第二获取方式信息的情况下,所述第一终端设备获取所述SRS资源集信息对应的RRC配置时隙偏移;
所述第一终端设备根据所述SRS资源集信息对应的RRC配置时隙偏移,确定第五时域位置,并根据所述第五时域位置,发送非周期SRS。
结合第一方面,在第六种可能的实现方式中,所述方法还包括:
所述第一终端设备接收第一使能信息;所述第一使能信息用于指示所述第一终端设备根据所述第一参数域中的第一时隙偏移,确定发送非周期SRS的时域位置;
所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
所述第一终端设备根据所述第一使能信息,从所述第一参数域获取所述第一时隙偏移,根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
结合第一方面,在第七种可能的实现方式中,所述方法还包括:
所述第一终端设备接收第二使能信息;所述第二使能信息用于指示第一终端设备根据RRC配置时隙偏移,确定发送非周期SRS的时域位置;
所述第一终端设备接收第二控制指令,所述第二控制指令用于触发所述第一用户终端发送非周期SRS,所述第二控制指令中包含第四SRS资源集信息;
所述第一终端设备根据所述第二使能信息,获取所述第四SRS资源集信息对应的RRC配置时隙偏移;
所述第一终端设备根据所述第四SRS资源集信息对应的RRC配置时隙偏移,确定第六时域位置,并根据所述第六时域位置,发送非周期SRS。
本申请实施例第二方面提供了一种第一终端设备,包括:
控制指令接收模块,用于接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;
SRS发送模块,用于根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
本申请实施例第三方面提供了一种第一终端设备,该通信装置可以包括处理器和存储器;
所述处理器与存储器相连,其中,所述存储器用于存储程序代码,处理器用于执行存储器中存储的程序代码,以实现上述第一方面及其各实现方式中的方法。
本申请实施例第四方面提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行上述任一方面中的方法。
本申请实施例第五方面提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用上述任一方面所提供的传输资源确定方法的实现程序,并执行该程序包含的指令。所述接口可用于输出 所述处理器的传输资源确定结果。
本申请实施例第六方面提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述任一方面描述的传输资源确定方法。
本申请实施例中,第一终端设备接收第一控制指令,其中,第一控制指令用于触发第一终端设备发送非周期SRS,第一控制指令中包含第一参数域和SRS资源集信息,第一参数域中包含第一时隙偏移;第一终端设备根据第一时隙偏移,确定发送非周期SRS的时域位置,并根据确定的时域位置发送非周期SRS。通过第一控制指令中携带的第一时隙偏移,动态地指示第一终端设备发送非周期SRS的时隙偏移,进而根据动态指示的时隙偏移确定发送非周期SRS的时域位置,提高了非周期SRS的发送时隙确定方式的灵活性和多样性。
附图说明
图1是本申请实施例提供的一种非周期SRS发送系统的架构示意图;
图2是本申请实施例提供的一种非周期SRS发送方法的流程示意图;
图3是本申请实施例提供的另一种非周期SRS发送方法的流程示意图;
图4是本申请实施例提供的一种第一终端设备的结构示意图;
图5是本申请实施例提供的另一种第一终端设备的结构示意图;
图6是本申请实施例提供的一种通信芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先介绍一种系统架构,参见图1,图1是本申请实施例提供的一种非周期SRS发送系统的架构示意图,如图1所示,所述系统可以包括一个接入网设备001和至少一个终端设备,图1中示例性地画出了终端设备002、终端设备003和终端设备004。
接入网设备001可以包括各种形式的网络设备,例如:宏基站,微基站(也称为小站),中继站,接入点,小区(Cell)等。示例性的基站可以是演进型基站(evolutional node B,eNB),以及5G系统、新无线系统中的下一代节点(next-generation Node B,gNB)。另外,基站也可以为收发点(transmission receive point,TRP)、中心单元(central unit,CU)或其他网络实体。另外,在分布式基站场景中,接入网设备001可以是基带处理单元(baseband unit,BBU)和射频单元(remote radio unit,RRU),在云无线接入网(cloud radio access network,CRAN)场景下可以是基带池BBU pool和射频单元RRU。此外,接入网设备001还可以是移动性管理实体(mobility management entity,MME)设备、接入和移动管理功能(access and mobility management function,AMF)设备、车联网控制功能(control function,CF)设备、网关(GateWay)、路边装置(roadsite unit,RSU)、运营管理和维护(operation administration and maintenance,OAM)设备、应用服务器(APP server)或第三方网元。
终端设备也可以称为用户设备、移动台、接入终端、用户单元、用户站、移动站、远 方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是手持用户设备、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备以及未来5G网络中的移动台或者未来演进的公共陆地移动网(public land mobile network,PLMN)网络中的用户设备等。终端设备与接入网设备001之间采用某种空口技术相互通信。
终端设备002、终端设备003和终端设备004可以是接入网设备001小区内的终端设备,接入网设备可以向上述任意终端设备发送第一控制指令,以触发终端发送非周期SRS;上述终端设备可以在接收到接入网设备001发送的第一控制指令后,根据第一控制指令中携带的第一时隙偏移,确定发送非周期SRS的时域位置,并发送非周期SRS,提高了非周期SRS的发送时隙确定方式的灵活性和多样性。
下面介绍本申请实施例提供的非周期SRS发送方法。本申请实施例提供的非周期SRS发送方法可以基于图1中的系统架构实现。参见图2,图2是本申请实施例提供的一种非周期SRS发送方法的流程示意图,如图所示,所述方法可以包括步骤S201-S202。
S201,第一终端设备接收第一控制指令。
其中,所述第一控制指令是用于触发所述第一终端设备发送非周期SRS的指令。一种实现方式中,所述第一控制指令可以是DCI,DCI中携带的参数以域的形式存在于DCI中,例如,DCI中可以包含SRS请求(SRS request)域、时域资源分配(time domain resource allocation,TDRA)域等。
所述第一控制指令中包含第一参数域,所述第一参数域中包含第一时隙偏移。一种实现方式中,第一控制指令通过显式指示的方式,指示第一终端设备发送非周期SRS的时隙偏移,那么,第一参数域可以是第一控制指令中专门用于动态灵活指示用户终端发送非周期SRS的时隙偏移的域,第一参数域中的第一时隙偏移是专门为非周期SRS发送指定的时隙偏移;另一种实现方式中,第一控制指令通过隐式指定的方式,指示第一终端设备发送非周期SRS的时隙偏移,那么第一参数域可以是TDRA域,TDRA域中的时隙偏移可以用于指示物理上行共享信道(physical uplink shared channel,PUSCH)或物理下行共享信道(physical downlink shared channel,PDSCH)的时隙偏移,这里将其用于指示发送非周期SRS的时隙偏移。
所述第一控制指令中还包含SRS资源集信息,SRS资源集信息是SRS资源集对应的指示信息,指示接入网设备触发第一终端设备针对哪一个或多个SRS资源集发送非周期SRS,即第一用户终端根据第一控制指令中的SRS资源集信息,可以确定触发的是哪个SRS资源集。一种实现方式中,SRS资源集信息可以是第一控制指令中SRS request域中的参数,即可以通过不同的SRS request取值,触发不同的SRS资源集。
具体的,在S201之前,可以通过RRC配置不同的SRS资源参数,以定义不同的SRS资源集,一种实现方式中,也可以通过RRC为各个SRS资源集配置固定的时隙偏移(即RRC配置时隙偏移)。接入网设备可以将SRS资源集对应的SRS资源参数配置给第一终端设备存储。接入网设备可以建立各个SRS资源集,与不同的aperiodic SRS-Resource Trigger 取值之间的对应关系,并将上述对应关系配置给第一终端设备,以使第一终端设备记录各个SRS资源集对应的aperiodic SRS-Resource Trigger取值;进而在步骤S201中,第一终端设备在获取第一控制指令中包含的SRS request取值(即SRS资源集信息)后,确定第一控制指令中SRS request取值对应的aperiodic SRS-Resource Trigger取值,进而根据记录的上述对应关系,确定到对应的SRS资源集,也可以进一步获取到对应的SRS资源参数,SRS资源参数后续用于发送非周期SRS。
举例来说,接入网设备配置了三个SRS资源集,这三个SRS资源集对应的高层配置参数aperiodic SRS-Resource Trigger的取值不同,这是三个SRS资源集对应的aperiodic SRS-Resource Trigger分别被配置为1、2和3。在DCI中SRS request域占用两个比特,通过这两个比特不同的取值代表不同的SRS资源集信息,一种示例性的实现方式中,取值为00的SRS request对应没有非周期SRS资源集被触发,取值为01的SRS request对应aperiodic SRS-Resource Trigger被配置为1的SRS资源集,取值为10的SRS request对应aperiodic SRS-Resource Trigger被配置为2的SRS资源集,取值为11的SRS request对应aperiodic SRS-Resource Trigger被配置为3的SRS资源集。若DCI中SRS request中的SRS request取值为11,第一终端设备可以确定接入网设备针对的是aperiodic SRS-Resource Trigger被配置为3的SRS资源集触发非周期SRS,进而可以获取对应的SRS资源参数,后续发送非周期SRS。而若第一控制指令中的SRS request取值为00,则第一终端设备可以确定无非周期SRS资源集被触发,可以根据其他信息判断是否满足发送周期性SRS或半持续性SRS的条件。
S202,所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
在第一终端设备根据第一时隙偏移确定发送非周期SRS的时域位置的一种实现方式中,若第一终端设备在时隙n接收到了第一控制指令,第一时隙偏移为k,那么第一终端设备确定发送非周期SRS的时隙是n+k这一时隙,进而根据SRS资源集信息对应的SRS资源参数中的符号位置,确定出在n+k这一时隙中发送非周期SRS的符号(即发送非周期SRS的时域位置)。其中,符号位置为在RRC配置SRS资源时,配置的位于一个时隙(即发送非周期SRS的时隙)中的用于发送非周期SRS的符号的位置,一种实现方式中,该符号位置可以是用于发送非周期SRS的时隙中最后j个符号中的l个连续符号,示例性地,在NR中,j的取值可以是6,l的取值可以是1、2、或4,根据该符号位置可以确定到在n+k这一时隙中发送非周期SRS的符号。第一终端设备还获取第一控制指令中的SRS资源集信息对应的SRS资源集的SRS资源参数,如天线端口数、OFDM数、频域位置,根据这些SRS资源参数,在n+k时隙发送非周期SRS。
一种可选的实现方式中,在S201之前所述方法还可以包括,第一终端设备可以接收第一使能信息,第一使能信息可以是通过RRC配置的,用于指示第一终端设备根据第一参数域中的第一时隙偏移,确定发送非周期SRS的时域位置;然后第一终端设备在接收到第一控制指令后,根据第一使能信息,从第一参数域获取第一时隙偏移,根据第一时隙偏移,确定非周期SRS的时域位置,进而根据确定的时域位置发送非周期SRS。也就是说,若第一终端设备接收第一控制指令之前接收到了第一使能信息,则第一终端设备根据第一使能 信息,从第一参数域获取用于发送非周期SRS的时隙偏移,否则,第一终端设备将根据RRC配置确定发送非周期的SRS的时隙偏移。
另一种可选的方式中,在S202之后所述方法还可以包括:第一终端设备接收第二使能信息,第二使能信息用于指示第一终端设备根据RRC配置时隙偏移,确定发送非周期SRS的时域位置;第一终端设备接收第二控制指令,第二控制指令用于触发所述第一用户终端发送非周期SRS,第二控制指令中包含第四SRS资源集信息;第一终端设备根据所述第二使能信息,获取第四SRS资源集信息对应的RRC配置时隙偏移;第一终端设备根据第四SRS资源集信息对应的RRC配置时隙偏移,确定第六时域位置,并根据第六时域位置,发送非周期SRS。
上述两种可选的方式可以仅独立执行其中任意一种,也可以按先后顺序均执行,比如,第一终端设备在接收到第一使能信息后,第一终端设备根据第一参数域中的第一时隙偏移,确定发送非周期SRS的时域位置,在第一终端设备接收到第二使能信息后,将不再根据第一参数域中的第一时隙偏移确定发送非周期SRS的时域位置,而是根据RRC配置时隙偏移确定发送非周期SRS的时域位置;直到再次接收到第一使能信息后,第一终端设备根据第一参数域中的第一时隙偏移确定发送非周期SRS的时域位置。
也就是,第一使能信息和第二使能信息分别使第一终端设备按照不同的方式,确定发送非周期SRS的时隙偏移,可以将第二使能信息看作是第一使能信息对应的去使能信息。第一使能信息和第二使能信息均可以是通过RRC配置的同一类型的使能信息,二者包含相同的字段类型;这些字段类型中包含一个指示第一终端设备是按照第一参数域中的第一时隙偏移还是按照RRC配置时隙偏移,确定发送非周期SRS的时域位置的使能字段类型,第一终端设备接收到使能信息后,可以通过该使能字段类型的取值的不同,识别接收到的使能信息是指示按照第一参数域中的第一时隙偏移确定发送非周期SRS的时域位置的第一使能信息,还是指示按照RRC配置时隙偏移确定发送非周期SRS的时域位置的第二使能信息,进而确定发送非周期SRS的时域位置,并发送非周期SRS。
在第一终端设备根据第一时隙偏移确定发送非周期SRS的时域位置的另一种实现方式中,第一使能信息可以具体用于指示第一终端设备根据第一参数域中的第一时隙偏移,以及RRC配置时隙偏移,确定发送非周期SRS的时域位置。具体的,若第一终端设备在S202之前接收到的第一使能信息,第一终端设备在时域s接收到了第一控制指令,第一时隙偏移为r,第一控制指令中SRS资源集信息对应的SRS资源集的RRC配置时隙偏移为t,那么,第一终端设备将时隙s+r+t确定为发送非周期SRS的时隙,进而根据SRS资源集信息对应的SRS资源参数中的符号位置,确定出在s+r+t这一时隙中发送非周期SRS的符号(即发送非周期SRS的时域位置)。
其中,在第一控制指令中包含的SRS资源集信息可以是包含一个SRS资源集对应的SRS资源集信息,也可以是包含多个SRS资源集对应的SRS资源集信息。例如,若aperiodic SRS-Resource Trigger被配置为1的SRS资源集有一个,当第一控制指令中SRS request取值为01时,即第一控制指令中仅包含一个SRS资源集对应的SRS资源集信息;若aperiodic SRS-Resource Trigger被配置为2的SRS资源集有多个,当第一控制指令中SRS request取值为10时,即第一控制指令中仅包含多个SRS资源集对应的SRS资源集信息。
第一种可选的实现方式中,第一控制指令中的SRS资源集信息仅包含一个第一SRS资源集对应的第一SRS资源集信息,那么,第一终端设备根据第一时隙偏移,确定第一时隙位置,并根据第一时域位置,基于第一SRS资源集对应的SRS资源参数,发送非周期SRS。这里,第一控制指令可以是接入网设备在第一终端设备不期待或不支持被同时触发多个SRS资源集的情况下,发送给第一终端设备的;也可以是在第一终端设备期待或支持被同时出发多个SRS资源集的情况下,接入网设备仅需要第一终端设备针对一个第一SRS资源集发送非周期SRS时,发送给第一终端设备的。
第二种可选的实现方式中,第一控制指令中的SRS资源集信息包含多个第二SRS资源集各自对应的第二SRS资源集信息,那么,第一终端设备可以忽略第一控制指令指示的第一时隙偏移,按照各个第二SRS资源集对应的RRC配置时隙偏移发送非周期SRS。因此,针对上述各个第二SRS资源集,所述方法还包括:第一终端设备根据各个第二SRS资源集信息,获取各个第二SRS资源集对应的RRC配置时隙偏移,根据各个第二SRS资源集对应的RRC配置时隙偏移,确定各个第二SRS资源集对应的第二时域位置,进而根据各个第二SRS资源集对应的SRS资源参数,在各自对应的第二时域位置,发送非周期SRS。
第三种可选的实现方式中,第一控制指令中的SRS资源集信息中包含多个第三SRS资源集各自对应的第三SRS资源集信息,第一终端设备可以从第三SRS资源集中选取一个指定的第三SRS资源集,进而根据第一时隙偏移,确定第三时域位置,并根据所述指定的第三SRS资源集对应的SRS资源参数,针对该指定的第三SRS资源集,发送非周期SRS。其中,指定的第三SRS资源集的确定方式可以有多种,例如,将这多个第三SRS资源集中资源集标识最小的第三SRS资源集,作为指定的第三SRS资源集,又如,将这多个第三SRS资源集中资源集标识最大的第三SRS资源集,作为指定的第三SRS资源集。可选的,也可以确定多个指定第三SRS资源集,根据第一时隙偏移发送非周期SRS。具体确定指定的第三SRS资源集的方式可以有多种,这里不做限定,但无论哪种具体的确定方式,在接入网设备内的各个终端设备都应该按照约定的同一种确定方式确定该指定的第三SRS资源集。
结合上述第三种可选的实现方式,进一步可选的,在第一终端设备除了针对上述指定的第三SRS资源集发送非周期SRS以外,不再针对其他的第三SRS资源集发送非周期SRS。
结合上述第三种可选的实现方式,进一步可选的,在第一终端设备除了针对上述指定的第三SRS资源集发送非周期SRS以外,还针对其他的第三SRS资源集发送非周期SRS。具体的,所述方法还可以包括:第一终端设备可以根据第三SRS资源集信息,获取除所述指定的第三SRS资源集以外,剩余的第三SRS资源集各自对应的RRC配置时隙偏移,进而根据各个所述剩余的第三SRS资源集对应的RRC配置时隙偏移,确定各个所述剩余的第三SRS资源集对应的第四时域位置,第一终端设备针对各个剩余的第三SRS资源集,根据各自对应的第四时域位置,发送非周期SRS。
第四种可选的实现方式中,第一控制指令中的SRS资源集信息中包含多个第五SRS资源集各自对应的第五SRS资源集信息,第一终端设备可以忽略第一控制指令,不针对任意第五SRS资源集发送非周期SRS。
第五种可选的实现方式中,第一控制指令可以是接入网设备在第一终端设备不期待或 不支持被同时触发多个SRS资源集的情况下,发送给第一终端设备的,并且第一控制指令中的SRS资源集信息中包含多个第六SRS资源集各自对应的第六SRS资源集信息,那么第一终端设备确定此事件是错误事件,不发送非周期SRS。
需要说明的是上述第二种可选的实现方式、第三种可选的实现方式(包括第三种可选的实现方式的进一步的可选实现)、第四种可选的实现方式和第五种可选的实现方式,都是针对第一控制指令中包含多个SRS资源集信息的情况,第一终端设备可以在预先设置好执行模式的情况下(即预先设置好的执行模式是上述第二种可选的实现方式、第三种可选的实现方式、第四种可选的实现方式或第五种可选的实现方式中的任一种),按照设置好的执行模式执行。另一种可能的实现方式中,第一控制指令中还可以包含第三使能信息,第三使能信息用于指示第一终端设备在第一控制指令包含多个SRS资源集信息时,按照上述何种方式执行,进而第一终端设备可以按照第三使能信息指示的方式执行。可选的,第三使能信息可以与第一使能信息或第二使能信息为同一使能信息。
可选的,若预先并未通过RRC配置SRS资源集的时隙偏移,这里可以通过第一控制指令隐式指示第一终端设备发送非周期SRS的时隙偏移,即第一参数域为TDRA域,这时,若第一控制指令中的SRS资源集信息仅包含一个SRS资源对应的SRS资源集信息,那么按照第一控制指令隐式指示的TDRA域中的时隙偏移发送非周期SRS。若第一控制指令中的SRS资源集信息包含多个SRS资源各自对应的SRS资源集信息,即触发了多个SRS资源集,那么一种实现方式中,第一终端设备可以仅从中确定一个指定的SRS资源集(如低资源集标识对应的SRS资源集),按照第一控制指令隐式指示的TDRA域中的时隙偏移,针对该在指定的SRS资源集发送非周期SRS,不针对其他的SRS资源集发送非周期SRS;或者另一种实现方式中,若第一控制指令中的SRS资源集信息包含多个SRS资源各自对应的SRS资源集信息,则第一终端设备可以忽略第一控制信令,不发送非周期SRS;或者另一种实现方式中,若第一控制指令是接入网设备在第一终端设备不期待或不支持被同时触发多个SRS资源集的情况下,发送给第一终端设备的,并且第一控制指令中的SRS资源集信息包含多个SRS资源各自对应的SRS资源集信息,则第一终端设备确定此事件是错误事件,不发送非周期SRS。
本申请实施例中,第一终端设备接收第一控制指令,其中,第一控制指令用于触发第一终端设备发送非周期SRS,第一控制指令中包含第一参数域和SRS资源集信息,第一参数域中包含第一时隙偏移;第一终端设备根据第一时隙偏移,确定发送非周期SRS的时域位置,并根据确定的时域位置发送非周期SRS。通过第一控制指令中携带的第一时隙偏移,动态地指示第一终端设备发送非周期SRS的时隙偏移,进而根据动态指示的时隙偏移确定发送非周期SRS的时域位置,提高了非周期SRS的发送时隙确定方式的灵活性和多样性。
参见图3,图3是本申请实施例提供的另一种非周期SRS发送方法的流程示意图,如图所示,所述方法包括步骤S301~S305。
S301,第一终端设备接收第一控制指令。
所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移。这里,第一控 制指令可以是通过隐式指示的方式,指示第一终端发送非周期SRS的时隙偏移,那么第一参数域可以是TDRA域。
第一控制指令中还包括获取方式指示域,所述获取方式指示域中包含第一获取方式信息或第二获取方式信息中的一种;所述第一获取方式信息用于指示所述第一终端设备从所述第一参数域中获取时隙偏移;所述第二获取方式信息用于指示所述第一终端设备从RRC配置参数中获取时隙偏移。
S302,第一终端设备获取第一控制指令中获取方式指示域中的参数。
在获取方式指示域中的参数是第一获取方式信息或第二获取方式信息中的一种,若是第一获取方式信息,则执行S303,若是第二获取方式信息,则执行S304。可选的,获取方式指示域可以有一个比特,通过这一个比特的不同取值代表不同的参数,例如预先配置取值为0对应第一获取方式信息,取值为1对应第二获取方式信息,若第一控制指令中获取方式指示域中的取值为0,则执行S303,若取值为1,则执行S304。
S303,第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
其中,第一控制指令中包含的SRS资源集信息可以是一个SRS资源集对应的SRS资源集信息,也可以包含多个SRS资源集对应的SRS资源集信息。具体的实现方式可以参阅图2对应的实施例中步骤S202的具体的实现方式,此处不在赘述。
S304,第一终端设备获取所述SRS资源集信息对应的RRC配置时隙偏移。
在S301之前,可以通过RRC配置不同的SRS资源参数,以定义不同的SRS资源集,一种实现方式中,也可以通过RRC为各个SRS资源集配置固定的时隙偏移(即RRC配置时隙偏移)。接入网设备可以将SRS资源集对应的SRS资源参数配置给第一终端设备存储。接入网设备可以建立各个SRS资源集与不同的aperiodic SRS-Resource Trigger取值之间的建立对应关系,并将上述对应关系配置给第一终端设备,以使第一终端设备记录各个SRS资源集对应的aperiodic SRS-Resource Trigger取值;进而在步骤S304中,第一终端设备在获取第一控制指令中包含的SRS request取值(即SRS资源集信息)后,确定第一控制指令中SRS request取值对应的aperiodic SRS-Resource Trigger取值,进而根据记录的上述对应关系,确定到第一控制指令中包含的SRS资源集信息对应的SRS资源集,也可以进一步获取到对应的SRS资源参数,SRS资源参数后续用于发送非周期SRS。
S305,第一终端设备根据所述SRS资源集信息对应的RRC配置时隙偏移,确定第五时域位置,并根据所述第五时域位置,发送非周期SRS。
这里,RRC配置时隙偏移是SRS资源集信息对应的SRS资源集被配置的固定的时隙偏移,第五时域位置是根据该时隙偏移确定的第一终端设备发送非周期SRS的时域位置。具体的,若第一终端设备在时隙m接收到了第一控制指令,SRS资源集信息对应的RRC配置时隙偏移为h,那么第一终端设备确定在m+h的时隙发送非周期SRS,时隙m+h即为发送SRS的时隙,进而根据SRS资源集信息对应的SRS资源参数中的符号位置,确定出在m+h这一时隙中发送非周期SRS的符号(即发送非周期SRS的第五时域位置)。其中,符号位置为在RRC配置SRS资源时,配置的位于一个时隙(即发送非周期SRS的时隙)中的用于发送非周期SRS的符号(即发送非周期SRS的时域位置),一种实现方式中,该 符号位置可以是用于发送非周期SRS的时隙中最后j个符号中的l个连续符号,示例性地,在NR中,j的取值可以为6,l的取值可以是1、2、或4,根据该符号位置可以确定到在m+h这一时隙中发送非周期SRS的符号。第一终端设备还获取第一控制指令中的SRS资源集信息对应的SRS资源集的其他SRS资源参数,如天线端口数、OFDM数、频域位置,根据这些SRS资源参数,在m+h时隙中对应的符号发送非周期SRS。
第一控制指令中包含的SRS资源集信息可以是一个SRS资源集对应的SRS资源集信息,也可以包含多个SRS资源集对应的SRS资源集信息。
第一种可选的实现方式中,若第一控制指令中的SRS资源集信息仅包含一个SRS资源集对应的SRS资源集信息,那么,第一终端设备按照获取方式指示域中对应的第二获取方式信息(即指示所述第一终端设备从RRC配置参数中获取时隙偏移),根据该SRS资源集对应的RRC配置时隙偏移,确定第五时域位置,并在第五时域位置,发送非周期SRS。这里,第一控制指令可以是接入网设备在第一终端设备不期待或不支持被同时触发多个SRS资源集的情况下,发送给第一终端设备的;也可以是在第一终端设备期待或支持被同时出发多个SRS资源集的情况下,接入网设备仅需要第一终端设备针对一个SRS资源集发送非周期SRS时,发送给第一终端设备的。
第二种可选的方式中,第一控制指令中的SRS资源集信息包含多个SRS资源集各自对应的SRS资源集信息,那么,第一终端设备可以忽略第一控制指令指示的时隙偏移,直接按照各个SRS资源集信息对应的RRC配置时隙偏移发送非周期SRS。因此,针对上述各个SRS资源集,第一终端设备根据各个SRS资源集信息,获取各个SRS资源集对应的RRC配置中的时隙偏移,根据各个SRS资源集对应的RRC配置中的时隙偏移,确定各个SRS资源集对应的第五时域位置,进而根据各个SRS资源集对应的SRS资源参数,在各自对应的第五时域位置,发送非周期SRS。
第三种可选的实现方式中,在第一控制指令中的SRS资源集信息中包含多个SRS资源集各自对应的SRS资源集信息时,第一终端设备按照获取方式指示域中对应的第二获取方式信息(即指示所述第一终端设备从RRC配置参数中获取时隙偏移),可以从多个SRS资源集中选取一个指定的SRS资源集,并根据获取该指定的SRS资源集对应的RRC配置时隙偏移,确定针对该指定的非周期SRS资源集发送非周期SRS的第五时域位置,并根据该指定的SRS资源集对应的SRS资源参数,在对应的第五时域位置,发送非周期SRS。其中,指定的SRS资源集的确定方式可以有多种,例如,将第一控制指令中这多个SRS资源集中资源集标识最小的SRS资源集,作为指定的SRS资源集,又如,将第一控制指令中这多个SRS资源集中资源集标识最大的SRS资源集,作为指定的SRS资源集。可选的,也可以确定多个指定SRS资源集,按照获取方式指示域中对应的第二获取方式信息,确定发送非周期SRS的时隙偏移。具体确定指定的SRS资源集的方式可以有多种,这里不做限定,但无论哪种具体的确定方式,在接入网设备内的各个终端设备都应该按照约定的同一种确定方式确定该指定的SRS资源集。
结合上述第三种可选的实现方式,进一步可选的,在第一终端设备除了针对上述指定的SRS资源集发送非周期SRS以外,不再针对其他的SRS资源集发送非周期SRS。
结合上述第三种可选的实现方式,进一步可选的,在第一终端设备除了针对上述指定 的SRS资源集发送非周期SRS以外,还针对其他的SRS资源集发送非周期SRS。具体的,第一终端设备可以获取其他的SRS资源集各自对应的RRC配置时隙偏移,进而根据各个其他的SRS资源集对应的RRC配置时隙偏移,确定各个其他SRS资源集对应的发送时隙,第一终端设备针对各个其他的SRS资源集,根据各自对应的发送时隙发送非周期SRS。
第四种可选的实现方式中,第一控制指令中的SRS资源集信息中包含多个SRS资源集各自对应的SRS资源集信息,第一终端设备可以忽略第一控制指令,不针对任意SRS资源集发送非周期SRS。
第五种可选的实现方式中,第一控制指令可以是接入网设备在第一终端设备不期待或不支持被同时触发多个SRS资源集的情况下,发送给第一终端设备的,并且第一控制指令中的SRS资源集信息中包含多个SRS资源集各自对应的SRS资源集信息,那么第一终端设备确定此事件是错误事件,不发送非周期SRS。
需要说明的是上述第二种可选的实现方式、第三种可选的实现方式(包括第三种可选的实现方式的进一步的可选实现)、第四种可选的实现方式以及第五种可选的实现方式,都是针对第一控制指令中包含多个SRS资源集信息的情况,第一终端设备可以在预先设置好执行模式的情况下(即预先设置好的执行模式是上述第二种可选的实现方式、第三种可选的实现方式、第四种可选的实现方式或第五种可选的实现方式中的任意一种),按照设置好的执行模式执行。另一种可能的实现方式中,第一控制指令中还可以包含第四使能信息,第四使能信息用于指示第一终端设备在第一控制指令包含多个SRS资源集信息时,按照上述何种方式执行,进而第一终端设备可以按照第四使能信息指示的方式执行。可选的,第四使能信息可以与第一使能信息、第二使能信息或第三使能信息为同一使能信息。
本申请实施例中,第一终端设备接收第一控制指令,其中,第一控制指令用于触发第一终端设备发送非周期SRS,第一控制指令中包含获取方式指示域,在获取方式指示域中为第一获取方式信息的情况下,按照第一控制指令中隐式指示的时隙偏移发送非周期SRS,在获取方式指示域中为第二获取方式信息的情况下,按照RRC配置的时隙偏移发送非周期SRS,实现了动态指示发送非周期SRS的时隙偏移,提高了非周期SRS的发送时隙确定方式的灵活性和多样性。
参见图4,图4是本申请实施例提供的一种第一终端设备的结构示意图,如图所示,所述第一终端设备40包括:
控制指令接收模块401,用于接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;
SRS发送模块402,用于根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
具体实现中,所述第一终端可以通过其内置的各个功能模块执行如图2-图3的非周期SRS发送方法中的各个步骤,具体实施细节可参阅图2-图3对应的实施例中各个步骤的实现细节,此处不再赘述。
本申请实施例中,控制指令接收模块接收第一控制指令,其中,第一控制指令用于触 发第一终端设备发送非周期SRS,第一控制指令中包含第一参数域和SRS资源集信息,第一参数域中包含第一时隙偏移;SRS发送模块根据第一时隙偏移,确定发送非周期SRS的时域位置,并根据确定的时域位置发送非周期SRS。通过第一控制指令中携带的第一时隙偏移,动态地指示第一终端设备发送非周期SRS的时隙偏移,进而根据动态指示的时隙偏移确定发送非周期SRS的时域位置,提高了非周期SRS的发送时隙确定方式的灵活性和多样性。
上述图4所示实施例中的第一终端设备可以以图5所示的第一终端设备50实现。如图5所示,图5是本申请实施例提供的另一种第一终端设备的结构示意图,图5所示的计算节点设备50包括:处理器501和存储器502。
处理器501可以用于确定用于发送非周期SRS的时隙偏移。例如实现图2所示实施例中的步骤S201等。
存储器502用于存储供第一终端设备执行的程序代码和数据,处理器501可以执行存储器502中存储的应用程序代码,以实现图2-图3所示任一实施例提供的动作。
处理器501与存储器502通信连接,例如通过总线503相连。总线503可以是PCI总线或EISA总线等。所述总线503可以分为地址总线、数据总线和控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
计算节点设备50还可以包括收发器504,用于支持第一终端设备50与上述实施例中涉及的接入网设备之间的信息传输。例如,实现图2对应实施例中的步骤S202;例如,实现图3对应的实施例中的步骤S305等。
需要说明的是,实际应用中第一终端设备可以包括一个或者多个处理器,该第一终端设备50的结构并不构成对本申请实施例的限定。
处理器501可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器504可以是通信接口或收发电路等,其中,该收发器是统称,在具体实现中,该收发器可以包括多个接口。
存储器502可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器502也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器502还可以包括上述种类的存储器的组合。
在本申请实施例中还提供了一种计算机存储介质,可以用于存储图5所示实施例中第一终端设备所用的计算机软件指令,其包含用于执行上述实施例中为控制节点设备所设计的程序。该存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
在本申请实施例中还提供了一种计算机程序产品,该计算机产品被第一终端设备运行时,可以执行上述图4所示实施例中为第一终端设备所设计的非周期SRS发送方法。
参见图6,图6是本申请实施例提供的一种通信芯片的结构示意图。如图6所示,通信芯片60可包括:处理器601,以及耦合于处理器601的一个或多个接口602。其中:
处理器601可用于读取和执行计算机可读指令。具体实现中,处理器601可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器601的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器601可以是单核的,也可以是多核的。
接口602可用于输入待处理的数据至处理器601,并且可以向外输出处理器601的处理结果。例如,接口602可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口602通过总线603与处理器601相连。
本申请中,处理器601可用于从存储器中调用本申请的一个或多个实施例提供的非周期SRS发送方法的实现程序,并执行该程序包含的指令。接口602可用于输出处理器601的执行结果。本申请中,接口602可具体用于输出处理器601的发送非周期SRS的时隙偏移确定结果。关于本申请的一个或多个实施例提供的非周期SRS发送方法可参考前述图2-图3所示各个实施例,这里不再赘述。
需要说明的,处理器601、接口602各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。

Claims (11)

  1. 一种非周期SRS发送方法,其特征在于,包括:
    第一终端设备接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;
    所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制指令中包含的所述SRS资源集信息仅包含一个第一SRS资源集对应的第一SRS资源集信息;
    所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
    所述第一终端设备根据所述第一时隙偏移,确定第一时域位置,并根据所述第一时域位置,针对所述第一SRS资源集,发送非周期SRS。
  3. 根据权利要求1所述的方法,其特征在于,所述第一控制指令中包含的所述SRS资源集信息中包含多个第二SRS资源集各自对应的第二SRS资源集信息;
    所述方法还包括:
    所述第一终端设备根据所述第二SRS资源集信息,获取各个所述第二SRS资源集对应的RRC配置时隙偏移;
    所述第一终端设备根据各个所述第二SRS资源集对应的RRC配置时隙偏移,确定各个所述第二SRS资源集对应的第二时域位置;
    所述第一终端设备针对各个所述第二SRS资源集,根据各自对应的第二时域位置,发送非周期SRS。
  4. 根据权利要求1所述的方法,其特征在于,所述第一控制指令中包含的所述SRS资源集信息中包含多个第三SRS资源集各自对应的第三SRS资源集信息;
    所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
    所述第一终端设备从所述第三SRS资源集中获取指定的第三SRS资源集;
    所述第一终端设备根据所述第一时隙偏移,确定第三时域位置,并针对所述指定的第三SRS资源集,根据所述第三时域位置,发送非周期SRS。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第三SRS资源集信息,获取除所述指定的第三SRS资源集以外,剩余的第三SRS资源集各自对应的RRC配置时隙偏移;
    所述第一终端设备根据各个所述剩余的第三SRS资源集对应的RRC配置时隙偏移, 确定各个所述剩余的第三SRS资源集对应的第四时域位置;
    所述第一终端设备针对各个所述剩余的第三SRS资源集,根据各自对应的第四时域位置,发送非周期SRS。
  6. 根据权利要求1所述的方法,其特征在于,所述第一控制指令中还包括获取方式指示域,所述获取方式指示域中包含第一获取方式信息或第二获取方式信息中的一种;所述第一获取方式信息用于指示所述第一终端设备从所述第一参数域中获取时隙偏移;所述第二获取方式信息用于指示所述第一终端设备从RRC配置参数中获取时隙偏移;
    所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
    在所述获取方式指示域中包含所述第一获取方式信息的情况下,所述第一终端设备执行所述根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS;
    所述方法还包括:
    在所述获取方式指示域中包含所述第二获取方式信息的情况下,所述第一终端设备获取所述SRS资源集信息对应的RRC配置时隙偏移;
    所述第一终端设备根据所述SRS资源集信息对应的RRC配置时隙偏移,确定第五时域位置,并根据所述第五时域位置,发送非周期SRS。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第一使能信息;所述第一使能信息用于指示所述第一终端设备根据所述第一参数域中的第一时隙偏移,确定发送非周期SRS的时域位置;
    所述第一终端设备根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS包括:
    所述第一终端设备根据所述第一使能信息,从所述第一参数域获取所述第一时隙偏移,根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第二使能信息;所述第二使能信息用于指示第一终端设备根据RRC配置时隙偏移,确定发送非周期SRS的时域位置;
    所述第一终端设备接收第二控制指令,所述第二控制指令用于触发所述第一用户终端发送非周期SRS,所述第二控制指令中包含第四SRS资源集信息;
    所述第一终端设备根据所述第二使能信息,获取所述第四SRS资源集信息对应的RRC配置时隙偏移;
    所述第一终端设备根据所述第四SRS资源集信息对应的RRC配置时隙偏移,确定第六时域位置,并根据所述第六时域位置,发送非周期SRS。
  9. 一种第一终端设备,其特征在于,包括:
    控制指令接收模块,用于接收第一控制指令,所述第一控制指令用于触发所述第一终端设备发送非周期SRS,所述第一控制指令中包含第一参数域和SRS资源集信息,所述第一参数域中包含第一时隙偏移;
    SRS发送模块,用于根据所述第一时隙偏移,确定发送非周期SRS的时域位置,根据确定的所述时域位置发送非周期SRS。
  10. 一种第一终端设备,其特征在于,包括:处理器和存储器;
    所述处理器与存储器相连,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,以执行如权利要求1-8任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1-8任意一项所述的方法。
PCT/CN2021/077771 2020-01-10 2021-02-25 一种非周期srs发送方法及相关设备 WO2021139832A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/791,891 US20230043745A1 (en) 2020-01-10 2021-02-25 Method for transmitting aperiodic srs and related devices
EP21738219.1A EP4106248A4 (en) 2020-01-10 2021-02-25 APERIODIC SRS TRANSMISSION METHOD AND CORRESPONDING APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010029818.1A CN111245587B (zh) 2020-01-10 2020-01-10 一种非周期srs发送方法及相关设备
CN202010029818.1 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139832A1 true WO2021139832A1 (zh) 2021-07-15

Family

ID=70873029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077771 WO2021139832A1 (zh) 2020-01-10 2021-02-25 一种非周期srs发送方法及相关设备

Country Status (4)

Country Link
US (1) US20230043745A1 (zh)
EP (1) EP4106248A4 (zh)
CN (1) CN111245587B (zh)
WO (1) WO2021139832A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245587B (zh) * 2020-01-10 2023-04-07 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备
WO2022036719A1 (zh) * 2020-08-21 2022-02-24 Oppo广东移动通信有限公司 无线通信方法和设备
CN114390533A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 非周期rs传输方法、终端及网络侧设备
WO2022151315A1 (en) * 2021-01-15 2022-07-21 Apple Inc. Ap-srs triggering offset enhancement for further enhanced mimo
WO2022151390A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
CN117501773A (zh) * 2021-09-30 2024-02-02 Oppo广东移动通信有限公司 无线通信方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694637A (zh) * 2011-03-22 2012-09-26 中兴通讯股份有限公司 时分双工系统下测量参考信号的发送方法及装置
CN109842472A (zh) * 2017-11-25 2019-06-04 华为技术有限公司 一种参考信号的配置方法和装置
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110324124A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 非周期探测参考信号srs的传输方法及终端设备
CN110460416A (zh) * 2018-05-08 2019-11-15 维沃移动通信有限公司 探测参考信号传输方法、终端设备和网络设备
CN111245587A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104973B (zh) * 2010-05-31 2013-09-25 电信科学技术研究院 非周期srs的传输方法和设备
CN103314631A (zh) * 2011-01-07 2013-09-18 富士通株式会社 探测参考信号的发送方法、基站和用户设备
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN111711989B (zh) * 2018-01-19 2022-01-04 Oppo广东移动通信有限公司 探测参考信号传输方法、网络设备和终端设备
WO2019147045A1 (ko) * 2018-01-24 2019-08-01 엘지전자(주) 무선 통신 시스템에서 사운딩 참조 신호를 송수신하는 방법 및 이를 위한 장치
US11234262B2 (en) * 2018-02-15 2022-01-25 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering
US20210409178A1 (en) * 2018-10-26 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Implicit sounding reference signal aperiodic triggering offset
CN115664612A (zh) * 2019-10-15 2023-01-31 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694637A (zh) * 2011-03-22 2012-09-26 中兴通讯股份有限公司 时分双工系统下测量参考信号的发送方法及装置
CN109842472A (zh) * 2017-11-25 2019-06-04 华为技术有限公司 一种参考信号的配置方法和装置
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110324124A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 非周期探测参考信号srs的传输方法及终端设备
CN110460416A (zh) * 2018-05-08 2019-11-15 维沃移动通信有限公司 探测参考信号传输方法、终端设备和网络设备
CN111245587A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4106248A4

Also Published As

Publication number Publication date
CN111245587A (zh) 2020-06-05
EP4106248A1 (en) 2022-12-21
US20230043745A1 (en) 2023-02-09
EP4106248A4 (en) 2024-02-28
CN111245587B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021139832A1 (zh) 一种非周期srs发送方法及相关设备
US20230156730A1 (en) Methods and devices for configuring and monitoring search space of pdcch
US11509425B2 (en) Method for determining HARQ-ACK feedback time, method for indicating HARQ-ACK feedback time, terminal device and network device
US20200374157A1 (en) Sounding reference signal transmission method, terminal device and network device
EP3709531A1 (en) Beam training method and relevant device
RU2731766C1 (ru) Способ беспроводной связи и устройство
EP3683997A1 (en) Information transmission method, terminal device and network device
US10952207B2 (en) Method for transmitting data, terminal device and network device
US11089587B2 (en) Physical uplink shared channel transmission method and terminal device
CN110167163B (zh) 参考信号发送和接收方法及装置
CN110768768B (zh) 探测参考信号的资源配置方法及通信装置
WO2019095212A1 (zh) 无线通信的方法、终端设备和网络设备
US20190200328A1 (en) Method for transmitting data, terminal device and network device
CN112020145A (zh) 一种通信方法及装置
JP2023509674A (ja) 単一ダウンリンク制御情報(dci)マルチ送信及び受信ポイント(マルチtrp)時分割多重化(tdm)の強化
JP2021516475A (ja) チャネル伝送の方法、端末機器及びネットワーク機器
US20210297291A1 (en) Srs transmission method, access network device, and terminal device
CN110547007A (zh) 无线通信的方法、终端设备和传输与接收节点
EP3661286A1 (en) Communication method, terminal device and network device
JP2021501486A (ja) リソース割り当て用の方法、ネットワーク装置及び通信装置
JP2022088609A (ja) 無線通信の方法、ネットワーク装置及び端末装置
CA3060623A1 (en) Wireless communication method, terminal device, and network device
WO2017101010A1 (zh) 信息源确定方法、资源分配方法及装置
WO2020237510A1 (zh) 控制信令的检测方法、装置、设备及存储介质
WO2021031778A1 (zh) 传输方法、配置pucch的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738219

Country of ref document: EP

Effective date: 20220810