WO2021139814A1 - 喹啉并咪唑类化合物及其应用 - Google Patents

喹啉并咪唑类化合物及其应用 Download PDF

Info

Publication number
WO2021139814A1
WO2021139814A1 PCT/CN2021/071107 CN2021071107W WO2021139814A1 WO 2021139814 A1 WO2021139814 A1 WO 2021139814A1 CN 2021071107 W CN2021071107 W CN 2021071107W WO 2021139814 A1 WO2021139814 A1 WO 2021139814A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
synthesis
pharmaceutically acceptable
acceptable salt
reaction
Prior art date
Application number
PCT/CN2021/071107
Other languages
English (en)
French (fr)
Inventor
钱文远
杨纯道
代国强
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202180009993.7A priority Critical patent/CN115003672A/zh
Publication of WO2021139814A1 publication Critical patent/WO2021139814A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a class of quinolinimidazole compounds, in particular to compounds of formula (I) and pharmaceutically acceptable salts thereof.
  • Ataxia telangiectasia mutated gene is an autosomal recessive gene, homozygous for the mutant gene shows a progressive neurodegenerative disease, and the patient becomes ill around 1 year old , manifested as cerebellar ataxia, tumor-like small blood vessels dilated in the eyes, face and neck around 6 years old, and often died of infection.
  • ATM gene is an important gene related to DNA damage repair, so patients generally show that they are particularly sensitive to X-rays and their DNA repair ability is significantly reduced. About 1% of humans are heterozygous for ATM mutant genes. Although they do not show disease, they also increase the risk of cancer.
  • the ATM gene is located on chromosome 11q22-q23, with a total length of 150kb, a coding sequence of 12kb, and a total of 66 exons. It is one of the human genes with the most exons found so far, and one of the most important genes. Kind of nursing gene.
  • ATM protein which is a serine/threonine protein kinase containing 3056 amino acids and a relative molecular weight of 370,000. It is mainly located in the nucleus and microsomes, and is involved in the progress of the cell cycle and the cell cycle checkpoint for DNA damage. reaction.
  • ATM protein kinase belongs to the phosphatidylinositol 3-kinase-related kinase family (PIKK). It is an autophosphorylated protein and usually exists in the form of an inactive dimer. When a double-strand break occurs in DNA, ATM protein kinase is phosphorylated and depolymerized within a few minutes at the earliest, and the phosphorylated ATM protein kinase reaches its maximum in 2 to 3 hours.
  • PIKK phosphatidylinositol 3-kinase-related kinase family
  • the signaling pathways of ATM protein in DNA damage repair mainly include: 1ATM-CHK2-Cdc25A/B/C signaling pathway; 2ATM-CHK2-p53 signaling pathway; 3ATM-Nbs1-Smc1/3 signaling pathway; 4ATM-p38MAPK-MK2 signaling path.
  • M means MRE11 (meiotic recombinant protein) has nuclease activity and the ability to bind DNA; R is Rad50 has ATPase activity; N It means that NBS1 is involved in the localization of the complex in the nucleus and helps its normal assembly at DNA breakpoints.
  • the various proteins in the MRN complex must coordinate with each other to adjust the ATM protein to bind to the broken end of the DNA and help the broken DNA to complete the repair.
  • ATM plays a key role in the repair of DNA double-strand breaks. Since the probability of double-strand breaks in normal cells is relatively small, selective ATM inhibitors have little effect when used alone, but because ATM is the entire DNA damage repair pathway
  • the key link of ATM inhibitors is that there are many possible combinations of ATM inhibitors. At present, it has been combined with radiotherapy, combined with chemotherapy, and other target inhibitors such as PARP inhibitors for DNA damage repair in preclinical and clinical studies. The combination and so on.
  • AstraZeneca’s AZD0156 is the first compound to enter Phase I clinical studies. At present, AZD1390 and Merck’s M-3541 have also entered Phase I clinical studies.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected C 1-3 alkyl and C 3-5 cycloalkyl, C 1-3 alkyl and the C 3-5 cycloalkyl is optionally substituted with 1, 2 or 3 R a;
  • R 2 is selected from H, F, Cl, Br and I;
  • R 3 is selected from H, F, Cl, Br, I, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl or C 1-3 alkoxy is optionally selected by 1, 2 or 3 R b substitutions;
  • R 4 is selected from H and N(R 7 )(R 8 );
  • R 5 and R 6 are each independently selected from C 1-3 alkyl, said C 1-3 alkyl optionally substituted with 1, 2 or 3 R c;
  • R 5 and R 6 and the atoms to which they are connected together form Said Optionally substituted by 1, 2 or 3 R d ;
  • R 7 and R 8 are independently selected from H and CH 3 ;
  • R 7 and R 8 and the atoms to which they are connected together form Said Optionally substituted with 1, 2, or 3 R e;
  • n and n are independently selected from 0, 1 and 2;
  • p is selected from 1, 2 and 3;
  • L 1 is selected from a single bond, -C 1-6 alkyl- , -C 1-3 alkyl-O- and -C 1-3 alkyl-oxetanyl-C 1-3 alkyl-O- ;
  • Ring B is selected from phenyl, pyrazolyl, pyridyl and benzothiazolyl, and the phenyl, pyrazolyl, pyridyl and benzothiazolyl are optionally substituted with 1, 2 or 3 R f ;
  • R a and R b are each independently selected from F, Cl, Br and I;
  • R c and R d are each independently selected from H, F, Cl, Br, I and CH 3 ;
  • R e and R f are selected from F, Cl, Br and I.
  • R 1 is selected from CH 3, CH 2 CH 3 and cyclopropyl, a CH 3, CH 2 CH 3 and cyclopropyl optionally substituted with 1, 2 or 3 R a, Other variables are as defined in the present invention.
  • R 1 is selected from CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 and cyclopropyl, and other variables are as defined in the present invention.
  • R 3 is selected from H, F, Cl, Br, I, CH 3 , CH 2 CH 3 and The CH 3 , CH 2 CH 3 and Optionally substituted by 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 3 is selected from H, F, Cl, Br, I, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 and Other variables are as defined in the present invention.
  • R 7 and R 8 and the atoms to which they are connected together form with Said with Optionally substituted with 1, 2, or 3 R e, the other variables are as defined in the present invention.
  • R 4 is selected from H, N(CH 3 ) 2 , with Other variables are as defined in the present invention.
  • R 5 and R 6 are independently selected from CH 3 , CF 3 and CH 2 CH 3 , and other variables are as defined in the present invention.
  • R 5 and R 6 and the atoms to which they are connected together form Said Optionally substituted by 1, 2 or 3 Rd , other variables are as defined in the present invention.
  • the aforementioned L 1 is selected from a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 -O-and
  • Other variables are as defined in the present invention.
  • the above -L 1 -R 4 are selected from CH 3 , CH 3 CH 2 , with Other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from with Said with Optionally substituted by 1, 2 or 3 R f , and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from with Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and L are as defined in the present invention.
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • the present invention also provides the application of the above-mentioned compound or a pharmaceutically acceptable salt thereof in the preparation of drugs related to ATM kinase inhibitors.
  • the above application is characterized in that the ATM inhibitor-related drugs are drugs for tumors.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • the acid addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Conformers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to Within the scope of the present invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the relationship between the molecules is non-mirror-image relationship.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key And straight dashed key
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the substituent can be bonded with any atom on the ring, for example, a structural unit or It means that the substituent R can be substituted at any position on the cyclohexyl or cyclohexadiene.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence number ⁇ The group.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Said.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • the number of atoms in a ring is generally defined as the number of ring members.
  • “5-7 membered ring” refers to a “ring” in which 5-7 atoms are arranged around.
  • C 1-6 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C 1-6 alkyl group includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl groups, etc.; it may Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-6 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 3-5 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 5 carbon atoms, which is a monocyclic ring system, and the C 3-5 cycloalkyl includes C 3 -4 and C 4-5 cycloalkyl, etc.; it can be monovalent, divalent or multivalent.
  • Examples of C 3-5 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and the like.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the field. For example, single crystal X-ray diffraction (SXRD), the cultivated single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method: After collecting the relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • SXRD single crystal X-ray diffraction
  • the cultivated single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data
  • the light source is CuK ⁇ radiation
  • the scanning method After collecting the relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • DCM dichloromethane
  • PE petroleum ether
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • EtOAc ethyl acetate
  • EtOH stands for ethanol
  • THF tetrahydrofuran
  • DIPEA diisopropylethylamine
  • SOCl 2 stands for thionyl chloride
  • Pd 2 (dba) 3 stands for tris(dibenzylideneacetone) dipalladium
  • mCPBA stands for m-chloroperoxybenzene Formic acid
  • pd(dppf)Cl 2 represents [1,1'-bis(diphenylphosphino)ferrocene] palladium dichloride
  • DMA represents N,N-dimethylacetamide
  • Xphos represents 2-dicyclohexyl Phosphine-2',4',
  • the compound of the present invention has a significant inhibitory effect on ATM kinase, and its selectivity for kinases such as DNA-PK and mTOR is significantly improved; the compound of the present invention has a weak degree of inhibition of five CYP isoenzymes; the compound of the present invention has an excellent drug Metakinetic properties; the combination of the compound of the present invention and Irinotecan has a significant anti-tumor effect.
  • Figure 1 shows the weight change (%) of human colon cancer SW620 cell xenograft tumor model tumor-bearing mice during the administration process.
  • Figure 2 shows the tumor growth curve of human colon cancer SW620 cell xenograft tumor model tumor-bearing mice after the combination of ATM inhibitor and Irinotecan.
  • Triethylamine (655.10 mg, 6.47 mmol) was added to the DMF (3.8 mL) solution of compound 1-B (760.00 mg, 2.16 mmol), the reaction solution was stirred at 25° C. for 0.5 hours, and then diphenyl azide phosphoric acid was added The ester (712.65 mg, 2.59 mmol) was stirred for 0.5 hour. The temperature of the reaction solution was increased to 60°C, and then stirred for another 2 hours. After the completion of the reaction, it was concentrated under reduced pressure, the residue was diluted with water (30 mL), a solid was precipitated, filtered, washed with water (35 mL*2), and dried to obtain compound 1-C.
  • compound 2-A (660mg, 1.70mmol), 2 -fluoropyridine-5-boronic acid (358.38mg, 2.54mmol), Na 2 CO 3 (359.43mg, 3.39mmol), Pd 2 (dba) 3 (155.27 mg, 169.56 ⁇ mol) and Xphos (161.66 mg, 339.12 ⁇ mol) of dioxane (9 mL) and aqueous solution (1 mL) were stirred at 100°C for 12 hours. After the reaction, the crude product was obtained by concentration under reduced pressure, and purified by column chromatography (0-70% EA/PE) to obtain compound 2-B.
  • compound 4-C was prepared in the same manner as in Example 1 for preparing compound 1-E.
  • the compound 4-D was prepared by the same method as the preparation of compound 1 in Example 1, except that the corresponding raw materials were used.
  • compound 5-F was prepared in the same manner as in Example 1 for preparing compound 1-A.
  • compound 5-G was prepared in the same manner as in Example 1 for preparing compound 1-B.
  • compound 5-I was prepared in the same manner as in Example 1 for preparing compound 1-D.
  • the compound 6-A was prepared by the same method as the compound 1-A in Example 1.
  • the compound 6-B was prepared in the same manner as in Example 1 for preparing the compound 1-B.
  • the compound 6-C was prepared by the same method as the compound 1-C in Example 1.
  • the compound 6-D was prepared by the same method as the compound 1-D in Example 1.
  • the compound 6-E was prepared by the same method as the compound 1-E in Example 1.
  • Triethylamine (70.56mg, 697.31 ⁇ mol, 97.06 ⁇ L) and methylsulfonyl chloride (1.5g, 13.09mmol, 1.01mL) were added to the dichloromethane (20mL) solution of compound compound 7-C (2.1g, 8.14mmol) ), the reaction solution was stirred at 0°C for 1 hour.
  • Saturated NaHCO 3 solution (50 mL) was added to the reaction system, extracted with dichloromethane (30 mL*3), and the combined organic phase was washed with saturated brine (100 mL), and dried over anhydrous sodium sulfate. The desiccant was filtered off, and the solvent was removed under reduced pressure to obtain compound 7-D.
  • compound 7-F 200 mg, 487.48 ⁇ mol
  • compound 7-E 139.03 mg, 487.48 ⁇ mol
  • Pd 2 (dba) 3 44.64 mg, 48.75 ⁇ mol
  • Xphos 40.02 mg, 97.50 ⁇ mol
  • Na 2 CO 3 103.33 mg, 974.96 ⁇ mol
  • nitromethane (2.8g, 45.87mmol, 2.48mL) to NaOH (2.75g, 68.81mmol) in water (30mL) solution, keep the reaction temperature within 30°C, stir for 30 minutes, under ice bath conditions , Then add nitromethane (2.8g, 45.87mmol, 2.48mL), after the dripping is completed, the system is heated to 45°C and stirred for 30 minutes, and then the temperature is raised to 50-55°C and stirred for 5 minutes. The reaction system was cooled to 28°C, and 18 g of ice was added.
  • the filter cake was collected by filtration, washed with acetic acid (50 mL), then washed with water (30 mL*3), and water was azeotropically removed with toluene (30 mL*3) to obtain compound 8-D.
  • the compound 9-A was prepared in the same manner as in Example 8 for preparing compound 8-G.
  • the compound 9-B was prepared in the same manner as in Example 8 for preparing compound 8-H.
  • the compound 9-C was prepared by the same method as the compound 8-I in Example 8.
  • Compound 9-D was prepared in the same manner as in Example 8 except that the corresponding raw materials were used.
  • the compound 11-C was prepared in the same manner as the compound 10-C in Example 10 except that the corresponding raw materials were used.
  • the compound 12-C was prepared by the same method as the compound 10-C in Example 10.
  • compound 12 was prepared in the same manner as compound 1 in Example 1.
  • the compound 13-C was prepared in the same manner as in Example 10 for preparing compound 10-C.
  • compound 14-C (300mg, 759.00 ⁇ mol), compound 14-F (200mg, 508.60 ⁇ mol), Na 2 CO 3 (107.81mg, 1.02mmol), Pd 2 (dba) 3 (46.57mg, 50.86 ⁇ mol) and Xphos (48.49 mg, 101.72 ⁇ mol) of dioxane (10 mL) and H 2 O (1 mL) reaction solutions were stirred at 100° C. for 12 hours. After the completion of the reaction, the reaction system was filtered with Celite, concentrated under reduced pressure to remove the solvent, the residue was added with water (50 mL), extracted with dichloromethane (30 mL*3), the organic phases were combined, dried, and concentrated under reduced pressure. The residue was purified by column chromatography (0-30% THF/DCM) to obtain compound 14-G.
  • Formaldehyde solution (118.62 mg, 1.46 mmol, 108.83 ⁇ L, 37% purity) of compound 14-H (30 mg, 66.44 ⁇ mol) was added with formic acid (15.96 mg, 332.21 ⁇ mol), and the reaction solution was stirred at 95° C. for 1 hour. After the reaction was completed, the solvent was removed by concentration under reduced pressure to obtain a crude product, which was purified by column chromatography (0-10% MeOH/DCM) to obtain compound 14.
  • the compound 15-A was prepared in the same manner as the compound 2-A in Example 2 except that the corresponding raw materials were used.
  • Compound 16-A was prepared in the same manner as in Example 8 for preparing compound 8-F except for using the corresponding raw materials.
  • the compound 16-B was prepared in the same manner as in Example 8 for preparing compound 8-G, except that the corresponding raw materials were used.
  • the compound 16-C was prepared in the same manner as the compound 8-H in Example 8 except that the corresponding raw materials were used.
  • Compound 16-D was prepared by the same method as the preparation of compound 8-I in Example 8 except that the corresponding raw materials were used.
  • Compound 16-E was prepared by the same method as the preparation of compound 8 in Example 8 except that the corresponding raw materials were used.
  • Compound 17-B was prepared by the same method as the preparation of compound 8-B in Example 8 except that the corresponding raw materials were used.
  • the compound 17-C was prepared in the same manner as the compound 8-C in Example 8 except that the corresponding raw materials were used.
  • Compound 17-D was prepared by the same method as the preparation of compound 8-D in Example 8 except that the corresponding raw materials were used.
  • the compound 17-E was prepared in the same manner as the compound 8-E in Example 8 except that the corresponding raw materials were used.
  • the compound 17-F was prepared in the same manner as the compound 8-F in Example 8 except that the corresponding raw materials were used.
  • the compound 17-G was prepared in the same manner as the compound 8-G in Example 8 except that the corresponding raw materials were used.
  • Compound 17-H was prepared by the same method as the preparation of compound 8-H in Example 8 except that the corresponding raw materials were used.
  • compound 17-I was prepared in the same manner as in Example 8 for preparing compound 8-I.
  • Compound 17-J was prepared by the same method as the preparation of Compound 8 in Example 8 except that the corresponding raw materials were used.
  • the compound 19-A was prepared in the same manner as in Example 2 for preparing the compound 2-A.
  • compound 20 was prepared in the same manner as compound 1 in Example 1.
  • the compounds of the present invention used for experiments are all self-made, and their chemical names and structural formulas are shown in the preparation examples of each compound.
  • the experimental tests were carried out in Eurofins, UK, and the experimental results were provided by the company. The following experimental procedures were also provided by the company.
  • Human-derived ATM kinase was incubated in a buffer solution containing 30 nM GST-cMyc-p53 and Mg/ATP. The concentration of Mg/ATP was determined according to different needs. The reaction was initiated by adding a Mg/ATP complex. After about 30 minutes of incubation at room temperature, add stop solution containing EDTA to terminate the reaction. Finally, for phosphorylated p53, a detection buffer containing d2-labeled anti-GST monoclonal antibody and europium-labeled phosphorylated Ser15 antibody was added.
  • HTRF homogeneous time-resolved fluorescence
  • the human DNA-PK kinase is incubated in a buffer solution containing 50 nM GST-cMyc-p53 and Mg/ATP. The concentration of Mg/ATP is determined according to different needs.
  • the reaction is initiated by adding a Mg/ATP complex. After about 30 minutes of incubation at room temperature, add stop solution containing EDTA to terminate the reaction. Finally, for phosphorylated p53, a detection buffer containing d2-labeled anti-GST monoclonal antibody and europium-labeled phosphorylated Ser15 antibody was added.
  • HTRF homogeneous time-resolved fluorescence
  • the compound of the present invention has a significant inhibitory effect on ATM kinase.
  • the experimental test was carried out in Shanghai WuXi AppTec New Drug Development Co., Ltd.
  • the experimental results were provided by the company, and the following experimental procedures were also provided by the company.
  • the purpose of the research project is to use a 5-in-1 probe substrate of CYP isoenzymes to evaluate the inhibitory properties of the test product on human liver microsomal cytochrome P450 isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4).
  • HMM human liver microsomes
  • the compound of the present invention has a weak degree of inhibition of the five CYP isoenzymes.
  • the compounds of the present invention used for experiments are all self-made, and their chemical names and structural formulas are shown in the preparation examples of each compound.
  • the experimental tests were carried out in Shanghai WuXi AppTec New Drug Development Co., Ltd.
  • the experimental results were provided by the company.
  • the following experimental procedures are also provided by the company. The company provides.
  • the aim was to investigate the plasma pharmacokinetics of the drug in female Balb/c-nude mice after a single intravenous bolus injection and intragastric administration of the compound of the present invention.
  • mice Female, 15-20g, 7-9 weeks old, fasting
  • the rodent pharmacokinetic characteristics of the compound after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compound was prepared into a clear solution and given to mice by a single intravenous injection and oral administration.
  • the vehicle for intravenous injection and oral administration is 10% DMSO/90% (30% sulfobutyl cyclodextrin).
  • the compound of the present invention has excellent pharmacokinetic properties.
  • IP intraperitoneal injection
  • PO oral
  • QW (day 1) once a week, Irinotecan on Monday
  • ATM inhibitors until Thursday, without administration from Friday to Sunday, once a day, once a week
  • the weight loss exceeds 15%, the dosage regimen should be adjusted accordingly. If the weight loss exceeds 20%, the animal is euthanized.
  • PG-D0, PG-D7 the dose of irinotecan is 20mpk, and the dose of irinotecan has been reduced to 10mpk starting from PG-D14.
  • Human colon cancer SW620 cells (ATCC, Manassas, Virginia, catalog number: CCL-227), cultured in a monolayer in vitro, culture conditions are Leibovitz's L-15 medium plus 10% fetal bovine serum, double antibody (100U/ mL penicillin, 100 ⁇ g/mL streptomycin and 250ng/mL amphotericin B), 37°C, 5% CO 2 incubator culture. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated at a density of 5 ⁇ 10 6 cells/ml.
  • SW620 cells 0.2 mL (1 ⁇ 10 6 cells) were subcutaneously inoculated on the right back of each mouse, and the average tumor volume reached 175 mm 3 to start random administration.
  • the tumor diameter was measured with vernier calipers twice a week.
  • TGI Relative tumor proliferation rate
  • T/C Relative tumor proliferation rate
  • RTV relative tumor volume
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [(1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the beginning of the treatment group))/(Average tumor volume at the end of treatment in the solvent control group-start treatment in the solvent control group Average tumor volume at time)] ⁇ 100%.
  • T weight and C weight represent the tumor weight of the administration group and the vehicle control group, respectively.
  • the statistical analysis is based on the RTV data at the end of the experiment using SPSS software for analysis.
  • the comparison between two groups is analyzed by T test, and the comparison between three or more groups is analyzed by one-way ANOVA. If the variance is uniform (the F value is not significantly different), the analysis should be performed by Tukey's method. If the variance is not uniform ( There is a significant difference in the F value), and the Games-Howell method is used for testing. p ⁇ 0.05 considered a significant difference.
  • the body weight of experimental animals is used as a reference index for indirect determination of drug toxicity.
  • none of the administration groups showed significant weight loss (Figure 1), and the relative weight change was calculated based on the animal's weight at the start of the administration.
  • the data points represent the average weight change percentage within the group, and the error bars represent the standard error (SEM).
  • the tumor volume changes in each group after the treatment of the test drug ATM inhibitor and Irinotecan in the female BALB/c nude mouse model of subcutaneous xenotransplanted tumor with SW620 cells are shown in Table 6.
  • the tumor growth curve is shown in Figure 2.
  • the data points represent the average tumor volume within the group, and the error bars represent the standard error (SEM).
  • This experiment evaluated the efficacy of ATM inhibitors and Irinotecan in combination on human colon cancer SW620 cell xenograft tumor models.
  • the tumor volume of each group at different time points is shown in Table 6, Table 7 and Figure 2.
  • D 0 corresponds to Monday in Table 4
  • D 7 corresponds to Monday of the next week.
  • the combination of the compound of the present invention and Irinotecan has a significant anti-tumor effect.

Abstract

一类喹啉并咪唑类化合物,具体公开了式(I)化合物及其药学上可接受的盐。

Description

喹啉并咪唑类化合物及其应用
本申请主张如下优先权
CN202010022531.6,申请日:2020-01-09。
技术领域
本发明涉及一类喹啉并咪唑类化合物,具体涉及式(I)化合物及其药学上可接受的盐。
背景技术
毛细血管扩张性共济失调突变基因(ATM,Ataxia telangiectasia mutated gene)是一种常染色体隐性遗传基因,其突变基因的纯合子表现出一种进行性神经变性性疾病,患者1岁左右患病,表现为小脑性共济失调,6岁左右眼和面颈部出现瘤样小血管扩张,常死于感染。ATM基因是与DNA损伤修复相关的一种重要基因,因此患者一般表现为对X射线特别敏感,DNA修复能力明显下降。人类中大约有1%的人是ATM突变基因的杂合子,虽然不表现出疾病,但也增加了患癌的风险。ATM基因位于染色体11q22-q23,全长150kb,编码序列12kb,共有66个外显子,是到目前为止所发现的外显子最多的人类基因之一,也是最重要的基因之一,是一种看护基因。
ATM基因编码产物为ATM蛋白,是一种丝/苏氨酸蛋白激酶,包含3056个氨基酸,相对分子量370000,主要位于细胞核和微粒体内,参与细胞周期的进行及对DNA损伤的细胞周期检查点的反应。ATM蛋白激酶属于磷脂酰肌醇3-激酶相关激酶家族(PIKK)中的一员,是一种自动磷酸化蛋白,通常以无活性的二聚体的形式存在,当DNA发生双链断裂时,ATM蛋白激酶最早在数分钟就出现磷酸化而解聚,在2到3小时磷酸化的ATM蛋白激酶达到最大值。
ATM蛋白在DNA的损伤修复中的信号通路主要有:①ATM-CHK2-Cdc25A/B/C信号通路;②ATM-CHK2-p53信号通路;③ATM-Nbs1-Smc1/3信号通路;④ATM-p38MAPK-MK2信号通路。ATM蛋白识别DNA双链断裂并发生自动磷酸化的过程涉及MRN复合物的参与,M即MRE11(减数分裂重组蛋白)具有核酸酶活性及结合DNA的能力;R为Rad50具有ATP酶活性;N指NBS1涉及该复合物在细胞核内的定位及帮助其在DNA断裂点正常装配。MRN复合物中各种蛋白必须相互协调才能调节ATM蛋白结合到DNA的断端点,帮助断裂的DNA完成修复。
ATM在DNA双链断裂的修复中起关键作用,由于正常细胞发生双链断裂的几率较小,因此选择性的ATM抑制剂单用时几乎没有什么作用,但由于ATM是整个DNA损伤修复的通路中的关键一环,ATM抑制剂存在多种联用的可能,目前临床前以及临床研究中已出现与放疗联用,与化疗联用,以及与DNA损伤修复的其它靶点抑制剂如PARP抑制剂的联用等。阿斯利康的AZD0156是最早进入一期临床的化合物,目前AZD1390和德国默克的M-3541也相继进入一期临床的研究。
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021071107-appb-000001
其中,
R 1选自C 1-3烷基和C 3-5环烷基,所述C 1-3烷基和C 3-5环烷基任选被1、2或3个R a取代;
R 2选自H、F、Cl、Br和I;
R 3选自H、F、Cl、Br、I、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基或C 1-3烷氧基任选被1、2或3个R b取代;
R 4选自H和N(R 7)(R 8);
R 5和R 6分别独立地选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
或者,R 5和R 6与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000002
所述
Figure PCTCN2021071107-appb-000003
任选被1、2或3个R d取代;
R 7和R 8分别独立地选自H和CH 3
或者,R 7和R 8与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000004
所述
Figure PCTCN2021071107-appb-000005
任选被1、2或3个R e取代;
m和n分别独立地选自0、1和2;
p选自1、2和3;
L 1选自单键、-C 1-6烷基-、-C 1-3烷基-O-和-C 1-3烷基-氧杂环丁基-C 1-3烷基-O-;
环B选自苯基、吡唑基、吡啶基和苯并噻唑基,所述苯基、吡唑基、吡啶基和苯并噻唑基任选被1、2或3个R f取代;
R a和R b分别独立地选自F、Cl、Br和I;
R c和R d分别独立地选自H、F、Cl、Br、I和CH 3
R e和R f选自F、Cl、Br和I。
本发明的一些方案中,上述R 1选自CH 3、CH 2CH 3和环丙基,所述CH 3、CH 2CH 3和环丙基任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3和环丙基,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、F、Cl、Br、I、CH 3、CH 2CH 3
Figure PCTCN2021071107-appb-000006
所述CH 3、CH 2CH 3
Figure PCTCN2021071107-appb-000007
任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、F、Cl、Br、I、CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3
Figure PCTCN2021071107-appb-000008
其他变量如本发明所定义。
本发明的一些方案中,上述R 7和R 8与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000009
Figure PCTCN2021071107-appb-000010
所述
Figure PCTCN2021071107-appb-000011
Figure PCTCN2021071107-appb-000012
任选被1、2或3个R e取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 7和R 8与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000013
Figure PCTCN2021071107-appb-000014
其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H、N(CH 3) 2
Figure PCTCN2021071107-appb-000015
Figure PCTCN2021071107-appb-000016
其他变量如本发明所定义。
本发明的一些方案中,上述R 5和R 6分别独立地选自CH 3、CF 3和CH 2CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 5和R 6与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000017
所述
Figure PCTCN2021071107-appb-000018
任选被1、2或3个R d取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 5和R 6与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000019
Figure PCTCN2021071107-appb-000020
其他变量如本发明所定义。
本发明的一些方案中,上述R 5和R 6与它们相连的原子共同构成
Figure PCTCN2021071107-appb-000021
Figure PCTCN2021071107-appb-000022
其他变量如本发明所定义。
本发明的一些方案中,上述L 1选自单键、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2-O-和
Figure PCTCN2021071107-appb-000023
其他变量如本发明所定义。
本发明的一些方案中,上述-L 1-R 4选自CH 3、CH 3CH 2
Figure PCTCN2021071107-appb-000024
Figure PCTCN2021071107-appb-000025
Figure PCTCN2021071107-appb-000026
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2021071107-appb-000027
Figure PCTCN2021071107-appb-000028
所述
Figure PCTCN2021071107-appb-000029
Figure PCTCN2021071107-appb-000030
Figure PCTCN2021071107-appb-000031
任选被1、2或3个R f取代,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2021071107-appb-000032
Figure PCTCN2021071107-appb-000033
其他变量如本发明所定义。
本发明还有一些方案由上述变量任意组合而来。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2021071107-appb-000034
其中,
R 1、R 2、R 3、R 4、R 5、R 6和L如本发明所定义。
本发明还提供了下式所示化合物或其药学上可接受的盐,
Figure PCTCN2021071107-appb-000035
Figure PCTCN2021071107-appb-000036
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021071107-appb-000037
本发明还提供了上述的化合物或其药学上可接受的盐在制备ATM激酶抑制剂相关药物上的应用。
本发明的一些方案中,上述的应用,其特征在于,所述ATM抑制剂相关药物是用于肿瘤的药物。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过 敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021071107-appb-000038
和楔形虚线键
Figure PCTCN2021071107-appb-000039
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021071107-appb-000040
和直形虚线键
Figure PCTCN2021071107-appb-000041
表示立体中心的相对构型,用波浪线
Figure PCTCN2021071107-appb-000042
表示楔形实线键
Figure PCTCN2021071107-appb-000043
或楔形虚线键
Figure PCTCN2021071107-appb-000044
或用波浪线
Figure PCTCN2021071107-appb-000045
表示直形实线键
Figure PCTCN2021071107-appb-000046
和直形虚线键
Figure PCTCN2021071107-appb-000047
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大 于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R) 0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基的键可以交叉连接到一个环上的两一个以上原子时,这种取代基可以与这个环上的 任意原子相键合,例如,结构单元
Figure PCTCN2021071107-appb-000048
Figure PCTCN2021071107-appb-000049
表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021071107-appb-000050
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021071107-appb-000051
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021071107-appb-000052
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021071107-appb-000053
直形虚线键
Figure PCTCN2021071107-appb-000054
或波浪线
Figure PCTCN2021071107-appb-000055
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021071107-appb-000056
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021071107-appb-000057
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021071107-appb-000058
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021071107-appb-000059
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021071107-appb-000060
仍包括
Figure PCTCN2021071107-appb-000061
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包 括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,“C 3-5环烷基”表示由3至5个碳原子组成的饱和环状碳氢基团,其为单环体系,所述C 3-5环烷基包括C 3-4和C 4-5环烷基等;其可以是一价、二价或者多价。C 3-5环烷基的实例包括,但不限于,环丙基、环丁基、环戊基等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021071107-appb-000062
Figure PCTCN2021071107-appb-000063
收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:DCM代表二氯甲烷;PE代表石油醚;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;THF代表四氢呋喃;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;Pd 2(dba) 3代表三(二亚苄基丙酮)二钯;mCPBA代表间氯过氧苯甲酸;pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;DMA代表N,N-二甲基乙酰胺;Xphos代表2-双环己基膦-2’,4’,6’-三异丙基联苯;NaHMDS代表二(三甲基硅)氨基钠;DBU代表1,8-二氮杂双环[5.4.0]十一碳-7-烯;Pd(dppf)Cl 2·CH 2Cl 2代表1,1-双(二苯膦基)二茂铁二氯化钯(II)二氯甲烷复合物;NaBH 4代表硼氢化钠;NBS代表N-溴代琥珀酰亚胺。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021071107-appb-000064
软件命名,市售化合物采用供应商目录名称。
技术效果
本发明化合物具有显著的ATM激酶抑制作用,其针对DNA-PK和mTOR等激酶的选择性有明显提升;本发明化合物对五个CYP同工酶抑制程度均较弱;本发明化合物具有优异的药代动力学性质;本发明化合物与Irinotecan联用具有显著的抑瘤作用。
附图说明
图1为人结肠癌SW620细胞异种移植瘤模型荷瘤鼠在给药过程中的体重变化(%).
图2为人结肠癌SW620细胞异种移植瘤模型荷瘤鼠在给予ATM抑制剂和Irinotecan联用后的肿瘤生长曲线。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体I
Figure PCTCN2021071107-appb-000065
合成路线:
Figure PCTCN2021071107-appb-000066
步骤1:化合物I-B的合成
向化合物I-A(5.00g,22.83mmol)的甲苯(40.00mL)溶液中加入N,N-二甲基甲酰胺(383.79mg,5.25mmol),再滴入二氯亚砜(4.07g,34.24mmol),反应液在70℃条件下搅拌16小时。将反应液减压浓缩得到I-B,直接用于下步反应。
步骤2:化合物I-E的合成
在10℃下将化合物I-C(3.20g,22.32mmol)加入到化合物I-B(5.30g,22.32mmol)和二异丙基乙基胺(2.88g,22.32mmol)的甲苯(30.00mL)溶液中,反应液在70℃下搅拌16小时后冷却至室温。将I-D(3.06g,22.32mmol)在室温加入到上述反应液中,继续反应3小时。加入二氯甲烷(30mL)稀释,用水(30mL*3)萃取,萃取液用无水硫酸钠干燥。滤去干燥剂,减压浓缩除去溶剂得到I-E。
MS m/z:435.9[M+H] +
步骤3:化合物I-F的合成
将DBU(3.40g,22.33mmol)加入到I-E(9.74g,22.33mmol)的丙酮(30.00mL)溶液中,反应液在28℃下搅拌16小时。过滤,并用甲基叔丁基醚洗涤滤饼,干燥滤饼得到化合物I-F。
MS m/z:416.0[M+H] +
1H NMR(400MHz,DMSO-d 6)δ1.29(t,J=7.15Hz,3H),3.71(s,3H),4.25(q,J=7.03Hz,2H),5.59(s,2H),6.92(d,J=8.78Hz,2H),7.21(d,J=8.53Hz,2H),7.67(d,J=9.03Hz,1H),7.86(dd,J=9.03,2.26Hz,1H),8.30(d,J=2.51Hz,1H),8.92(s,1H)。
步骤4:中间体I的合成
将DMF(2.88mg,39.40μmol)加到I-F(4.09g,9.83mmol)和二氯亚砜(33.54g,281.90mmol)的混合液中,升温至75℃并搅拌16小时。将反应液用甲苯共沸除水两次,再加正己烷析出固体,过滤,干燥得到中间体I。
1H NMR(400MHz,DMSO-d 6)δ1.37(t,J=7.03Hz,3H),4.43(q,J=7.19Hz,2H),8.10(s,1H),8.11(d,J=2.01Hz,1H),8.51(d,J=1.76Hz,1H),9.17(s,1H)。
实施例1
Figure PCTCN2021071107-appb-000067
合成路线:
Figure PCTCN2021071107-appb-000068
步骤1:化合物1-A的合成
于中间体I(1.54g,4.90mmol),N-氨基吗啉(0.5g,4.90mmol)的N,N-二甲基乙酰胺(10.00mL)溶液中加入DIPEA(1.58g,12.24mmol)。反应液在60℃下搅拌15小时。反应结束后,减压浓缩得到粗品,经柱层析分离得到化合物1-A。
MS m/z:380.1[M+H] +
步骤2:化合物1-B的合成
于化合物1-A(1.42g,3.73mmol)的甲醇(15mL)溶液中加入氢氧化钠(746.91mg,18.67mmol)的水(15mL)溶液,反应液在70℃下搅拌2小时。反应结束后,减压浓缩除去有机溶剂,残留物用2M的盐酸调至pH=3,有固体析出,过滤,并用水洗涤(10mL*3),干燥,得到化合物1-B。
MS m/z:351.8[M+H] +
步骤3:化合物1-C的合成
于化合物1-B(760.00mg,2.16mmol)的DMF(3.8mL)溶液中加入三乙胺(655.10mg,6.47mmol),反应 液在25℃下搅拌0.5小时,然后加入叠氮化磷酸二苯酯(712.65mg,2.59mmol)继续搅拌0.5小时。将反应液温度升高至60℃,再搅拌2小时。反应结束后,减压浓缩,残留物加水(30mL)稀释,有固体析出,过滤,并用水洗涤(35mL*2),干燥,得到化合物1-C。
MS m/z:348.9[M+H] +
步骤4:化合物1-D的合成
于化合物1-C(0.71g,2.03mmol),碘甲烷(1.4g,9.86mmol)和四丁基溴化铵(65.55mg,203.33μmol)的二氯甲烷(17.5mL)溶液中加入氢氧化钠(122.00mg,3.05mmol)的水(10.5mL)溶液,反应液在25℃下搅拌16小时。反应结束后,反应液减压浓缩,残留物用水(30mL)洗涤,干燥,得到化合物1-D。
MS m/z:363.1[M+H] +
步骤5:化合物1-E的合成
在氮气氛围下,于二氧六环(2.00mL)和水(0.50mL)的混合溶液中,加入化合物1-D(160.00mg,440.52μmol)、6-氟-3-吡啶硼酸(68.28mg,484.57μmol)、碳酸钠(93.38mg,881.04μmol)、四氯钯钠(6.48mg,22.03μmol)和SPhos(9.04mg,22.03μmol),反应液在100℃下搅拌14小时。反应结束后,反应液用水(15mL)稀释,再用二氯甲烷(15mL*3)萃取,合并的有机相用硅藻土过滤,滤液减压浓缩得到化合物1-E。
MS m/z:380.2[M+H] +
步骤6:化合物1的合成
在10℃下,于3-二甲氨基-1-丙醇(87.01mg,843.46μmol)的DMF(1.6mL)溶液中缓慢氢化钠(67.60mg,1.69mmol,60%纯度),升温至25℃并搅拌1小时,然后再在10℃下加入化合物1-E(160.00mg,421.73μmol),反应液在25℃继续搅拌16小时。反应结束后,加入水(2mL)淬灭反应,用二氯甲烷(10mL*3)萃取,合并的有机相用水(10mL*2)洗涤,无水硫酸钠干燥。滤去干燥剂,减压浓缩除去溶剂得到粗品,粗品用制备高效液相色谱(中性体系)纯化得到化合物1。
MS m/z:463.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.91-2.01(m,2H),2.23(s,6H),2.45(br t,J=7.53Hz,2H),3.04(br d,J=10.54Hz,2H),3.51(s,3H),3.74-3.87(m,2H),4.02(br d,J=11.04Hz,2H),4.10-4.23(m,2H),4.36(t,J=6.53Hz,2H),6.83(d,J=8.53Hz,1H),7.72-7.79(m,1H),7.87(dd,J=8.66,2.38Hz,1H),8.10(d,J=8.78Hz,1H),8.46(d,J=2.01Hz,1H),8.60(s,1H),9.17(s,1H)。
实施例2
Figure PCTCN2021071107-appb-000069
合成路线:
Figure PCTCN2021071107-appb-000070
步骤1:化合物2-A的合成
于化合物1-C(500mg,1.43mmol)、环丙基硼酸(252.15mg,2.94mmol)、Cu(OAc) 2(260.08mg,1.43mmol)和Na 2CO 3(311.13mg,2.94mmol)的甲苯(10mL)溶液中加入吡啶(232.19mg,2.94mmol),反应液70℃搅拌12小时。反应结束后,加水(5mL)淬灭,再加入水(20mL)稀释,用乙酸乙酯(20mL*3)萃取,合并有机相用饱和氯化钠洗涤(20mL*3),减压浓缩得到化合物2-A。
MS m/z:389.1[M+H] +
步骤2:化合物2-B的合成
在氮气保护下,化合物2-A(660mg,1.70mmol)、2-氟吡啶-5-硼酸(358.38mg,2.54mmol)、Na 2CO 3(359.43mg,3.39mmol)、Pd 2(dba) 3(155.27mg,169.56μmol)和Xphos(161.66mg,339.12μmol)的二氧六环(9mL)和水溶液(1mL)在100℃搅拌12小时。反应结束后,减压浓缩得粗品,柱层析(0~70%EA/PE)纯化得到化合物2-B。
MS m/z:406.2[M+H] +
1H NMR(400MHz,DMSO-d 6)δ1.03(br d,J=2.9Hz,2H),1.14(br d,J=6.3Hz,2H),3.07-3.12(m,1H),3.18(br d,J=10.1Hz,2H),3.64-3.74(m,2H),3.86–4.00(m,4H),7.43(dd,J=2.5,8.5Hz,1H),8.03(dd,J=1.6,8.9Hz,1H),8.10-8.16(m,1H),8.43(dt,J=2.5,8.2Hz,1H),8.71(d,J=1.6Hz,1H),8.92(s,1H),9.31(d,J=1.5Hz,1H)。
步骤3:化合物2的合成
于3-二甲氨基-1-丙醇(50.89mg,493.31μmol,57.70μL)和氢化钠(39.46mg,986.62μmol,60%纯度)的DMF(5mL)溶液中缓慢加入化合物2-B(100mg,246.66μmol),反应液30℃搅拌12小时。反应结束后,加水(2mL)淬灭,再加水(20mL)稀释,有固体析出,过滤,得到粗品,粗品经过制备高效液相色谱(碱性)纯化得到化合物2。
MS m/z:489.2[M+H] +
1H NMR(400MHz,CDCl 3)δ1.10-1.16(m,2H),1.19-1.26(m,2H),1.98–2.06(m,2H),2.29(s,6H),2.50(t,J=7.4Hz,2H),2.99–3.13(m,3H),3.80-3.91(m,2H),4.08(br d,J=11.4Hz,2H),4.17-4.28(m,2H),4.42(t,J=6.4Hz,2H),6.89(d,J=8.6Hz,1H),7.82(dd,J=1.9,8.9Hz,1H),7.93(dd,J=2.4,8.6Hz,1H),8.16(d,J=8.9Hz,1H),8.52(d,J=2.3Hz,1H),8.87(s,1H),9.23(d,J=1.8Hz,1H)。
实施例3
Figure PCTCN2021071107-appb-000071
合成路线:
Figure PCTCN2021071107-appb-000072
步骤1:化合物3的合成
于1-哌啶丙醇(70.66mg,493.32μmol,57.70μL)和氢化钠(39.46mg,986.62μmol,60%纯度)的DMF(5mL)溶液中缓慢加入化合物2-B(100mg,246.66μmol),反应液30℃搅拌12小时。反应结束后,加入用水(5mL)淬灭,再加水(20mL)稀释,有固体析出,过滤,得到粗品,粗品经制备高效液相色谱(碱性)纯化得到化合物3。
MS m/z:529.3[M+H] +
1H NMR(400MHz,CDCl 3)δ1.10-1.16(m,2H),1.19-1.26(m,2H),1.46(br d,J=5.0Hz,2H),1.62(quin,J=5.5Hz,4H),1.99–2.08(m,2H),2.46(br s,4H),2.50-2.58(m,2H),2.96–3.04(m,1H),3.09(br d,J=10.5Hz,2H),3.80-3.92(m,2H),4.07(br d,J=9.8Hz,2H),4.22(dt,J=3.0,11.2Hz,2H),4.41(t,J=6.4Hz,2H),6.88(d,J=8.5Hz,1H),7.82(dd,J=2.0,9.0Hz,1H),7.92(dd,J=2.5,8.5Hz,1H),8.16(d,J=8.8Hz,1H),8.52(d,J=2.5Hz,1H),8.87(s,1H),9.23(d,J=1.8Hz,1H)。
实施例4
Figure PCTCN2021071107-appb-000073
合成路线:
Figure PCTCN2021071107-appb-000074
步骤1:化合物4-A的合成
于化合物1-D(0.3g,825.97μmol)的氯仿(10.00mL)溶液中加入mCPBA(335.38mg,1.65mmol)。反应液在25℃搅拌5小时后,用二氯甲烷(50.00mL)稀释,NaHCO 3水溶液(30.00mL)洗涤,有机相用无水硫酸钠干燥。滤去干燥剂后,减压浓缩除去溶剂得到化合物4-A。
MS m/z:378.9[M+H] +
步骤2:化合物4-B的合成
在0℃下,于化合物4-A(0.32g,843.86μmol)和叔丁基胺(308.60mg,4.22mmol)的三氟甲苯(3.00mL)和氯仿(15.00mL)混合溶液中分批加入4-甲苯磺酸酐(550.86mg,1.69mmol),反应液在0℃搅拌0.5小时,然后再加入三氟乙酸(3.27g,28.69mmol)并升温至70℃,继续搅拌18小时。反应结束后,将反应液浓缩,残留物经制备薄层色谱硅胶板(二氯甲烷/甲醇=12/1)纯化得到4-B。
步骤3:化合物4-C的合成
除了使用相应的原料外,以实施例1中制备化合物1-E相同的方法制备化合物4-C。
MS m/z:395.1[M+H] +
步骤4:化合物4-D的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物4-D。
MS m/z:478.2[M+H] +
步骤5:化合物4的合成
在-78℃、氮气氛围下,于化合物4-D(0.24g,502.56μmol)的氢氟酸吡啶(4.48g,45.23mmol)溶液中缓慢加入亚硝酸钠(41.61mg,603.07μmol)。反应液升温至25℃并搅拌2小时后,再冷却至0℃,加入Na 2CO 3水溶液(20.00mL)淬灭反应,用二氯甲烷(10mL*3)萃取。合并的有机相用饱和食盐水(20.00mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩除去溶剂得到粗品,粗品用制备高效液相色谱(中性体系)纯化得到化合物4。
MS m/z:481.1[M+H] +
1H NMR(400MHz,CDCl 3)δ2.00-2.07(m,2H),2.32(s,6H),2.54(br t,J=7.40Hz,2H),3.12(br d,J=10.54Hz,2H),3.69(s,3H),3.83-3.92(m,2H),4.12(br d,J=11.29Hz,2H),4.26(br t,J=9.79Hz,2H),4.45(br t,J=6.27Hz,2H),6.92(br d,J=8.53Hz,1H),7.85(br d,J=9.79Hz,1H),7.93(br d,J=6.53Hz,1H),8.02(br d,J=8.78Hz,1H),8.53(br s,1H)9.24(s,1H)。
实施例5
Figure PCTCN2021071107-appb-000075
合成路线:
Figure PCTCN2021071107-appb-000076
步骤1:化合物5-B的合成
于化合物5-A(0.1g,988.66μmol)的DCM(10mL)溶液中加入对甲苯磺酸一水合物(94.03mg,494.33μmol)和亚硝酸钠(71.63mg,1.04mmol),反应液20℃下搅拌1小时。反应结束后,过滤,滤液减压浓缩,得到化合物5-B。
1H NMR(400MHz,CDCl 3)δ1.016-1.032(d,J=6.40Hz,3H),2.529-2.588(t,J=12.40Hz,1H),2.884-2.893(m,1H),3.071-3.116(m,2H),3.675-3.804(m,3H)。
步骤2:化合物5-C的合成
于化合物5-B(3g,23.05mmol)的水(8mL)和乙酸(27.68g,461.03mmol,26.37mL)的溶液中,缓慢加入锌粉(4.52g,69.15mmol)。反应体系在25℃下搅拌2小时。反应完毕后,过滤,滤液用乙酸乙酯萃取(40mL*3),合并的有机相用无水硫酸钠干燥,过滤,减压浓缩,得到化合物5-C。
步骤3:化合物5-D的合成
在10℃条件下,于N,N-二甲基丙醇(878.92mg,8.52mmol,998.78μL)的DMF(15.00mL)溶液中加入氢化钠(681.86mg,17.04mmol,60%纯度)。反应液在25℃下搅拌1小时,然后再在10℃下加入2-氟-5-溴吡啶(1.00g,5.68mmol,584.80μL)。反应体系升温至25℃并继续搅拌16小时。反应结束后,用水(5mL)淬灭,然后用二氯甲烷(10mL*3)萃取,再用水(10mL*2)洗涤,有机相无水硫酸钠干燥,过滤,减压浓缩,得到化合物5-D。
MS m/z:258.9[M+H] +
步骤4:化合物5-E的合成
氮气保护下,将化合物5-D(530.00mg,2.05mmol)、双联频哪醇硼酸酯(780.87mg,3.08mmol)、Pd(dppf)Cl 2·CH 2Cl 2(150.00mg,205.00μmol)和KOAc(502.97mg,5.12mmol)的二氧六环(15.00mL)混合溶液在108℃下搅拌14小时。反应完毕后,加入水(5mL)淬灭,再用乙酸乙酯(30mL*3)萃取,用饱和氯化钠溶液(10mL)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩,得到化合物5-E。
MS m/z:307.2[M+H] +
步骤5:化合物5-F的合成
除了使用相应的原料外,以实施例1中制备化合物1-A相同的方法制备化合物5-F。
MS m/z:393.9[M+H] +
步骤6:化合物5-G的合成
除了使用相应的原料外,以实施例1中制备化合物1-B相同的方法制备化合物5-G。
MS m/z:365.9[M+H] +
步骤7:化合物5-H的合成
除了使用相应的原料外,以实施例1中制备化合物1-C相同的方法制备化合物5-H。
MS m/z:362.9[M+H] +
步骤8:化合物5-I的合成
除了使用相应的原料外,以实施例1中制备化合物1-D相同的方法制备化合物5-I。
MS m/z:376.9[M+H] +
步骤9:化合物5的合成
在氮气保护下,于化合物5-I(170mg,450.65μmol)和碳酸钠(95.53mg,901.29μmol)的二氧六环(5mL)和水(0.5mL)溶液中加入Pd(dppf)Cl 2·CH 2Cl 2(18.40mg,22.53μmol),然后再加入化合物5-E(275.98mg,901.29μmol),反应体系在氮气保护、70℃下搅拌14小时。反应结束后,减压浓缩除去溶剂,粗品经制备高效液相色谱(中性,乙腈/水)分离得到化合物5。
MS m/z:477.2[M+H] +
1H NMR(400MHz,DMSO-d 6)δ1.16(d,J=6.02Hz,3H),1.89(m,J=6.78Hz,2H),2.17(s,6H),2.38(br t,J=7.04Hz,2H),3.15-3.25(m,1H),3.50(s,3H),3.58(br t,J=10.16Hz,2H),3.69-3.89(m,3H),4.01(br s,1H),4.36(t,J=6.66Hz,2H),7.01(d,J=8.78Hz,1H),7.94-8.01(m,1H),8.04-8.20(m,2H),8.62(d,J=2.26Hz,1H),8.83-8.96(m,1H),9.23(s,1H)。
实施例6
Figure PCTCN2021071107-appb-000077
合成路线:
Figure PCTCN2021071107-appb-000078
步骤1:化合物6-A的合成
除了使用相应的原料外,以实施例1中制备化合物1-A相同的方法制备化合物6-A。
MS m/z:337.9[M+H] +
步骤2:化合物6-B的合成
除了使用相应的原料外,以实施例1中制备化合物1-B相同的方法制备化合物6-B。
MS m/z:309.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ9.69(br s,1H),8.81(br s,1H),8.00-7.83(m,1H),7.74(br d,J=8.3Hz,1H),2.68(s,6H)。
步骤3:化合物6-C的合成
除了使用相应的原料外,以实施例1中制备化合物1-C相同的方法制备化合物6-C。
MS m/z:306.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ11.64(br s,1H),8.98(d,J=2.0Hz,1H),8.67(s,1H),7.93(d,J=9.0Hz,1H),7.74(dd,J=2.3,9.0Hz,1H),3.10(s,6H)。
步骤4:化合物6-D的合成
除了使用相应的原料外,以实施例1中制备化合物1-D相同的方法制备化合物6-D。
MS m/z:320.8[M+H] +
步骤5:化合物6-E的合成
除了使用相应的原料外,以实施例1中制备化合物1-E相同的方法制备化合物6-E。
MS m/z:338.1[M+H] +
1H NMR(400MHz,CDCl 3)δ3.13(s,6H),3.51(s,3H),7.03(dd,J=2.9,8.4Hz,1H),7.73(dd,J=2.3,8.8Hz,1H),8.04(dt,J=2.5,8.0Hz,1H),8.13(d,J=8.8Hz,1H),8.51(d,J=2.5Hz,1H),8.63(s,1H),9.05(d,J=2.0Hz,1H)。
步骤6:化合物6的合成
在0℃条件下,于化合物6-E(60mg,177.86μmol)的DMF(10mL)溶液中分批加入氢化钠(28.46 mg,711.43μmol,60%纯度),再分批加入3-二甲氨基-1-丙醇(36.70mg,355.71μmol,41.61μL),反应液在70℃搅拌12小时。反应结束后,加水(2mL)淬灭,减压浓缩得到粗品,粗品经柱层析(0~10%MeOH/DCM)纯化得到化合物6。
MS m/z:421.2[M+H] +
1H NMR(400MHz,CDCl 3)δ2.00-2.12(m,2H),2.35(s,6H),2.60(br s,2H),3.13(s,6H),3.50(s,3H),4.38(s,2H),6.82(d,J=8.5Hz,1H),7.73(dd,J=2.0,8.8Hz,1H),7.87(dd,J=2.6,8.7Hz,1H),8.09(d,J=9.0Hz,1H),8.46(d,J=2.3Hz,1H),8.59(s,1H),9.02(d,J=2.0Hz,1H)。
实施例7
Figure PCTCN2021071107-appb-000079
合成路线:
Figure PCTCN2021071107-appb-000080
步骤1:化合物7-B的合成
在N 2保护、-60℃条件下,向乙酸乙酯(2.04g,23.14mmol,2.26mL)和无水甲苯(50mL)的溶液中滴加NaHMDS(1M,42.25mL),滴加完毕反应液在-60℃搅拌1小时,然后再滴加化合物7-A(5g,20.12mmol)的无水甲苯(50mL)溶液,滴加完毕升温至0℃并继续搅拌2小时。在0℃下用饱和NH 4Cl水溶液淬灭反应,混合物用乙酸乙酯(100mL*3)萃取,合并的有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,滤去干燥剂,减压浓缩得到粗品,经柱层析(0~10%EA/PE)纯化得到化合物7-B。
1H NMR(400MHz,CDCl 3)δ1.30(t,J=7.2Hz,3H),4.15(s,2H),4.26(q,J=7.3Hz,2H),7.57(dd,J=1.9,8.7Hz,1H),7.85(d,J=8.5Hz,1H),8.01(d,J=1.8Hz,1H)。
步骤2:化合物7-C的合成
在0℃条件下,于化合物7-B(2.7g,8.99mmol)的EtOH(30mL)和THF(10mL)溶液中缓慢加入 NaBH 4(1.36g,35.98mmol),加毕,混合物在25℃下搅拌2小时。降温至3-5℃,加入水(50mL)淬灭反应,混合物用乙酸乙酯(50mL*3)萃取,合并的有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥。滤去干燥剂,减压浓缩除去溶剂,得到化合物7-C。
1H NMR(400MHz,CDCl 3)δ3.16(br s,1H),3.31(t,J=5.5Hz,2H),4.08-4.17(m,2H),7.56(dd,J=1.9,8.7Hz,1H),7.82(d,J=8.8Hz,1H),7.98(d,J=1.8Hz,1H)。
步骤3:化合物7-D的合成
于化合物化合物7-C(2.1g,8.14mmol)的二氯甲烷(20mL)溶液中加入三乙胺(70.56mg,697.31μmol,97.06μL)和甲基磺酰氯(1.5g,13.09mmol,1.01mL),反应液在0℃下搅拌1小时。向反应体系中加入饱和NaHCO 3溶液(50mL),用二氯甲烷(30mL*3)萃取,合并的有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥。滤去干燥剂,减压除去溶剂,得到化合物7-D。
1H NMR(400MHz,CDCl 3)δ3.02(s,3H),3.54(t,J=6.4Hz,2H),4.72(t,J=6.4Hz,2H),7.58(dd,J=1.6,8.7Hz,1H),7.83(d,J=8.5Hz,1H),8.00(d,J=1.5Hz,1H)。
步骤4:化合物7-E的合成
于化合物7-D(2.8g,8.33mmol)的乙腈(30mL)溶液中加入33%二甲胺(2.56mL)水溶液,反应液在60℃下搅拌1.5小时。反应结束后向反应液中加入饱和K 2CO 3水溶液调节pH=8,用乙酸乙酯(25mL*3)萃取,合并的有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥。滤去干燥剂后,减压浓缩除去溶剂得到粗品,经柱层析(0~50%THF/DCM)纯化,得到化合物7-E。
1H NMR(400MHz,CDCl 3)δ2.33(s,6H),2.80(t,J=7.2Hz,2H),3.26(t,J=7.2Hz,2H),7.54(dd,J=1.9,8.7Hz,1H),7.80(d,J=8.5Hz,1H),7.97(d,J=1.8Hz,1H)。
步骤5:化合物7-F的合成
在氮气保护下,将化合物1-D(500mg,1.38mmol)、双联频哪醇硼酸酯(525.65mg,2.07mmol)、乙酸钾(338.59mg,3.45mmol)和Pd(dppf)Cl 2·CH 2Cl 2(112.70mg,138.00μmol)和二氧六环(10mL)的混合物在110℃下搅拌3小时。减压浓缩除去反应溶剂,得到化合物7-F,直接用于下步的反应。
MS m/z:411.2[M+H] +
步骤6:化合物7的合成
在氮气保护下,将化合物7-F(200mg,487.48μmol)、化合物7-E(139.03mg,487.48μmol)、Pd 2(dba) 3(44.64mg,48.75μmol)、Xphos(40.02mg,97.50μmol)和Na 2CO 3(103.33mg,974.96μmol)加入到二氧六环(10mL)和水(3mL)的反应瓶中,反应液在100℃下搅拌12小时。反应完毕,减压浓缩除去溶剂得到粗品,经柱层析(0~9%MeOH/DCM)纯化,得到化合物7。
MS m/z:489.0[M+H] +
1H NMR(400MHz,CDCl 3)δ2.41(s,6H),2.97(br t,J=7.16Hz,2H),3.06(br d,J=10.78Hz,2H),3.36(br t,J=7.28Hz,2H),3.52(s,3H),3.73-3.85(m,2H),4.04(br d,J=11.04Hz,2H),4.12-4.27(m,2H),7.74-7.80(m,1H),7.88(dd,J=8.78,2.01Hz,1H),8.03(d,J=8.54Hz,1H),8.09-8.17(m,2H),8.62(s,1H),9.29(d,J=2.02Hz,1H)。
实施例8
Figure PCTCN2021071107-appb-000081
合成路线:
Figure PCTCN2021071107-appb-000082
步骤1:化合物8-B的合成
在0℃条件下,于化合物8-A(5g,29.91mmol)的DMF(50mL)溶液中加入NBS(5.86g,32.90mmol),反应体系升温至28℃并搅拌2小时。反应完毕,减压浓缩除去溶剂,残留物用乙酸乙酯和石油醚(比例1/1)的混合溶液(20mL*3)洗涤,得到化合物8-B。
MS m/z:245.5[M+H] +
1H NMR(400MHz,DMSO-d 6)δ3.80(s,3H),6.42(s,1H),7.77(s,1H)。
步骤2:化合物8-C的合成
先将硝基甲烷(2.8g,45.87mmol,2.48mL)加入到NaOH(2.75g,68.81mmol)的水(30mL)溶液中,保持反应温度在30℃以内,搅拌30分钟,在冰浴条件下,再加入硝基甲烷(2.8g,45.87mmol,2.48mL),滴加完毕,体系升温至45℃搅拌30分钟,再升高温度至50~55℃搅拌5分钟。将反应体系冷却至28℃,加入18克冰。再加入浓盐酸(12M,30mL),然后将此混合物缓慢加入到化合物8-B(5.6g,22.76mmol)的浓盐酸(12M,5mL)和水(100mL)混合溶液中。反应混合物在氮气保护、28℃下搅拌12小时。反应体系有固体析出,过滤得到粗品,用冷水(50mL*3)洗涤,再用甲苯(50mL*3)共沸除水,得到化合物8-C。
MS m/z:316.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ3.99(s,3H),6.82(d,J=6.28Hz,1H),7.34(s,1H),8.08(s,1H),8.19(dd,J=13.30,6.53Hz,1H),12.92-13.21(m,1H)。
步骤3:化合物8-D的合成
氮气保护下,将化合物8-C(6.15g,19.39mmol)和乙酸酐(54.50g,533.85mmol)的混合物在100℃搅拌1小时。停止加热,加入乙酸钠(1.64g,19.98mmol),然后继续回流15分钟,再加入乙酸钠(1.64g,19.98mmol),150℃继续回流1小时。反应完毕,冷却到室温,有固体析出,过滤收集滤饼,用醋酸(50mL)洗涤,再用水(30mL*3)洗涤,用甲苯(30mL*3)共沸除去水,得到化合物8-D。
MS m/z:298.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ3.91(s,3H),7.17(s,1H),8.26(s,1H),9.12(s,1H),12.60-13.16(m,1H)。
步骤4:化合物8-E的合成
在氮气保护下,于化合物8-D(1.80g,6.02mmol)的SOCl 2(24.60g,206.80mmol)溶液中加入DMF(17.60mg,240.74μmol),混合物在75℃下搅拌5小时。反应完毕,减压浓缩除去溶剂,残留物用甲苯(30mL*3)共沸除去水,得到化合物8-E。
MS m/z:316.8[M+H] +
步骤5:化合物8-F的合成
于4-氨基吗啡啉(707.65mg,6.93mmol)和化合物8-E(2g,6.30mmol)的DMF(20mL)溶液中加入DIPEA(1.63g,12.60mmol),混合物在60℃下搅拌12小时。反应结束后,减压浓缩除去溶剂,得到粗品,加入水(150mL),用二氯甲烷(200mL*3)萃取,合并有机相,减压浓缩除去溶剂,残留物经柱层析(0~10%THF/DCM)纯化,得到化合物8-F。
MS m/z:382.9[M+H] +
1H NMR(400MHz,CDCl 3)δ3.06(br s,4H),3.97(br s,4H),4.07(s,3H),7.36(s,1H),9.35(s,1H),10.15(s,1H),10.39(s,1H)。
步骤6:化合物8-G的合成
在氮气保护下,将化合物8-F(300mg,782.89μmol)、1-甲基-4-吡唑硼酸频哪醇酯(325.78mg,1.57mmol)、Na 2CO 3(165.96mg,1.57mmol)、Pd 2(dba) 3(71.69mg,78.29μmol)和Xphos(74.64mg,156.58μmol)的二氧六环(10mL)和水(0.1mL)混合液在100℃下搅拌12小时。反应结束后,硅藻土过滤,滤液减压浓缩除去溶剂,得到粗品,经柱层析(0~40%THF/DCM)纯化,得到化合物8-G。
MS m/z:385.0[M+H] +
1H NMR(400MHz,CDCl 3)δ3.00(br s,4H),3.80-3.91(m,4H),3.93(s,3H),4.01(s,3H),7.33(s,1H),7.87(d,J=8.88Hz,2H),9.23(s,1H),9.92(s,1H),10.33(s,1H)。
步骤7:化合物8-H的合成
于化合物8-G(220mg,572.34μmol)的THF(10mL)溶液中加入雷尼镍(100mg,1.17mmol)和水的混合液,反应液在氢气氛围(15psi)、25℃下搅拌3小时。反应完毕,过滤,滤液减压浓缩得到粗品,用石油醚和乙酸乙酯(体积比:1/1,6mL)洗涤,得到化合物8-H。
MS m/z:355.1[M+H] +
1H NMR(400MHz,CDCl 3)δ2.83-3.05(m,4H),3.84(br t,J=4.26Hz,4H),4.02(d,J=1.00Hz,6H),4.36 -4.79(m,2H),5.32(s,1H),7.40(s,1H),7.89(s,1H),7.94(d,J=8.00Hz,2H),8.33(s,1H)。
步骤8:化合物8-I的合成
在0℃条件下,于三光气(160mg,539.18μmol)的二氯甲烷(5mL)溶液中缓慢加入化合物8-H(110mg,310.38μmol)和三乙胺(37.69mg,372.45μmol)的二氯甲烷(10mL)溶液,混合物在0℃下搅拌1小时。反应完毕,向体系加入饱和碳酸氢钠溶液(25mL),用二氯甲烷(50mL*3)萃取,减压浓缩除去溶剂,然后用石油醚和乙酸乙酯(体积比:1/1,10mL)洗涤,得到化合物8-I。
MS m/z:381.1[M+H] +
步骤9:化合物8的合成
于化合物8-I(90mg,236.59μmol)、四丁基溴化铵(7.63mg,23.66μmol)和NaOH(14.20mg,354.89μmol)的DCM(5mL)和H 2O(5mL)的混合溶液中,缓慢加入碘甲烷(77.24mg,544.16μmol)的DCM(5mL)溶液。反应体系在氮气保护、25℃下搅拌5小时。反应完毕,向体系中加入水(10mL),再用二氯甲烷(10mL*3)萃取,合并有机相用水(20mL)洗涤,减压浓缩。残留物用石油醚和乙酸乙酯(体积比:3/2,5mL)洗涤,再用水(20mL*2)洗涤,最后用二氯甲烷和四氢呋喃(体积比:1/1,0.6mL)洗涤,得到化合物8。
MS m/z:395.0[M+H] +
1H NMR(400MHz,CDCl 3)δ3.04(br d,J=11.02Hz,2H),3.47(s,3H),3.78-3.88(m,2H),3.94(s,3H),3.99(s,3H),4.01-4.07(m,2H),4.12-4.20(m,2H),7.44(s,1H),7.92(s,2H),8.47(s,1H),9.14(s,1H)。
实施例9
Figure PCTCN2021071107-appb-000083
合成路线:
Figure PCTCN2021071107-appb-000084
步骤1:化合物9-A的合成
除了使用相应的原料外,以实施例8中制备化合物8-G相同的方法制备化合物9-A。
MS m/z:400.0[M+H] +
1H NMR(400MHz,CDCl 3)δ2.97(br s,4H),3.67-3.88(m,4H),3.93(s,3H),6.98(dd,J=8.50,2.88Hz,1H),7.38(s,1H),8.00(td,J=8.08,2.50Hz,1H),8.35(d,J=2.38Hz,1H),9.30(s,1H),9.69(s,1H),10.30(s,1H)。
步骤2:化合物9-B的合成
除了使用相应的原料外,以实施例8中制备化合物8-H相同的方法制备化合物9-B。
MS m/z:370.0[M+H] +
步骤3:化合物9-C的合成
除了使用相应的原料外,以实施例8中制备化合物8-I相同的方法制备化合物9-C。
MS m/z:396.0[M+H] +
步骤4:化合物9-D的合成
除了使用相应的原料外,以实施例8中制备化合物8相同的方法制备化合物9-D。
MS m/z:410.2[M+H] +
步骤5:化合物9的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物9。
MS m/z:493.2[M+H] +
1H NMR(400MHz,CDCl 3)δ2.15(br s,2H),2.50(br s,6H),2.71-2.87(m,2H),2.97-3.04(m,2H),3.48(s,3H),3.65-3.76(m,2H),3.90(s,3H),3.97(br d,J=11.80Hz,2H),4.13(br d,J=3.02Hz,2H),4.40(t,J=6.02Hz,2H),6.78(d,J=8.53Hz,1H),7.46(s,1H),7.84(dd,J=8.54,2.51Hz,1H),8.33(d,J=2.02Hz,1H),8.52(s,1H),8.90(s,1H)。
实施例10
Figure PCTCN2021071107-appb-000085
合成路线:
Figure PCTCN2021071107-appb-000086
步骤1:化合物10-C的合成
将乙腈(10mL)加入到10-A(200mg,1.59mmol,盐酸盐)、10-B(225.80mg,1.62mmol,146.62μL)和K 2CO 3(660.37mg,4.78mmol)的烧瓶中,80℃搅拌12小时。体系加入甲醇(50mL)过滤,滤液减压旋干得到粗品,粗品中加入二氯甲烷(50mL),过滤,滤液减压浓缩得到化合物10-C。
MS m/z:147.9[M+H] +
1H NMR(400MHz,CD 3OD)δ1.69-1.82(m,2H),1.90-2.28(m,2H),2.39-2.47(m,1H),2.56-2.73(m,3H),2.87-3.04(m,2H),3.57-3.72(m,2H),5.07-5.28(m,1H)。
步骤2:化合物10的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物10。
MS m/z:537.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.88-2.19(m,5H),2.42(br s,1H),2.64(br t,J=7.38Hz,2H),2.78-2.90(m,2H),3.00(br d,J=10.52Hz,2H),3.48(s,3H),3.67-3.74(m,2H),3.90(s,3H),3.96(br s,2H),4.13(td,J=11.30,3.06Hz,2H),4.37(t,J=6.44Hz,2H),5.01-5.23(m,1H),6.78(d,J=8.50Hz,1H),7.46(s,1H),7.83(dd,J=8.64,2.50Hz,1H),8.34(d,J=2.00Hz,1H),8.52(s,1H),8.90(s,1H)。
实施例11
Figure PCTCN2021071107-appb-000087
合成路线:
Figure PCTCN2021071107-appb-000088
步骤1:化合物11-C的合成
除了使用相应的原料外,以实施例10中制备化合物10-C相同的方法制备化合物11-C。
MS m/z:147.9[M+H] +
1H NMR(400MHz,CD 3OD)δ1.70-1.83(m,2H),1.94-2.29(m,2H),2.42(td,J=8.16,7.03Hz,1H),2.62(ddd,J=9.66,5.52,2.38Hz,3H),2.89–3.04(m,2H),3.64(t,J=6.28Hz,2H),5.08-5.30(m,1H)。
步骤2:化合物11的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物11。
MS m/z:537.1[M+H] +
1H NMR(400MHz,CDCl 3)δ2.01-2.29(m,5H),2.50(br s,1H),2.74(br d,J=6.88Hz,2H),2.88-3.00(m,2H),3.09(br d,J=10.26Hz,2H),3.58(s,3H),3.80(br t,J=11.02Hz,2H),3.99(s,3H),4.06(br d,J=11.14Hz,2H),4.17-4.27(m,2H),4.46(t,J=6.38Hz,2H),5.11-5.31(m,1H),6.87(d,J=8.64Hz,1H),7.55(s,1H),7.92(dd,J=8.58,2.31Hz,1H),8.43(d,J=2.00Hz,1H),8.61(s,1H),8.99(s,1H)。
实施例12
Figure PCTCN2021071107-appb-000089
合成路线:
Figure PCTCN2021071107-appb-000090
步骤1:化合物12-C的合成
除了使用相应的原料外,以实施例10中制备化合物10-C相同的方法制备化合物12-C。
1H NMR(400MHz,CDCl 3)δ1.68-1.74(m,2H),1.81-1.87(m,2H),1.87-1.93(m,2H),2.04–2.10(m,1H),2.57-2.64(m,3H),3.52(t,J=6.5Hz,1H),3.70-3.83(m,3H),4.56-4.84(m,1H)。
步骤2:化合物12的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物12。
MS m/z:551.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.85-2.11(m,6H),2.32-2.84(m,6H),3.09(br d,J=10.80Hz,2H),3.58(s,3H),3.76-3.85(m,2H),3.99(s,3H),4.06(br d,J=9.54Hz,2H),4.22(td,J=11.23,3.14Hz,2H),4.39-4.49(m,2H),4.60-4.85(m,1H),6.87(d,J=8.54Hz,1H),7.55(s,1H),7.92(dd,J=8.54,2.51Hz,1H),8.43(d,J=2.26Hz,1H),8.61(s,1H),8.99(s,1H)。
实施例13
Figure PCTCN2021071107-appb-000091
合成路线:
Figure PCTCN2021071107-appb-000092
步骤1:化合物13-C的合成
除了使用相应的原料外,以实施例10中制备化合物10-C相同的方法制备化合物13-C。
1H NMR(400MHz,CDCl 3)δ1.68-1.74(m,2H),1.81-1.87(m,2H),1.87-1.93(m,2H),2.04-2.10(m,1H),2.57-2.64(m,3H),3.52(t,J=6.5Hz,1H),3.70-3.83(m,3H),4.56-4.84(m,1H)。
步骤2:化合物13的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物13。
MS m/z:535.1[M+H] +
1H NMR(400MHz,CDCl 3)δ2.14(s,6H),2.72(s,2H),3.00(br d,J=10.51Hz,2H),3.49(s,3H),3.67-3.79(m,2H),3.91(s,3H),3.98(br d,J=11.38Hz,2H),4.13(td,J=11.26,3.00Hz,2H),4.50(d,J=6.14Hz,2H),4.57-4.65(m,4H),6.84(d,J=8.50Hz,1H),7.46(s,1H),7.85(dd,J=8.58,2.44Hz,1H),8.36(d,J=2.38Hz,1H),8.52(s,1H),8.91(s,1H)。
实施例14
Figure PCTCN2021071107-appb-000093
合成路线:
Figure PCTCN2021071107-appb-000094
步骤1:化合物14-C的合成
将化合物14-B(200mg,1.03mmol)、化合物14-A(319.88mg,1.13mmol)和K 2CO 3(427.36mg,3.09mmol)的DMF(10mL)的溶液在80℃搅拌5小时。反应结束后,过滤除去不溶物,滤液中加入水(50mL),用乙酸乙酯萃取(30mL*3),合并有机相用水洗(30mL*3),干燥,滤液减压浓缩,得到粗品,粗品经柱层析((0~40%EA/PE)纯化,得到化合物14-C。
MS m/z:396.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.24(s,12H),1.55-1.66(m,2H),1.78-1.88(m,2H),3.64(t,J=7.04Hz,2H),4.10(t,J=7.04Hz,2H),7.60(s,1H),7.63-7.66(m,2H),7.68(s,1H),7.73-7.78(m,2H)。
步骤2:化合物14-D的合成
于化合物8-F(600mg,1.57mmol)的THF(30mL)溶液中加入雷尼镍(100mg,1.17mmol)的水溶液,氢气氛围(15psi),20℃搅拌2小时。反应完毕后,用硅藻土过滤,滤液减压浓缩得到化合物14-D。
MS m/z:352.9[M+H] +
步骤3:化合物14-E的合成
在0℃条件下,于化合物14-D(1.7g,4.81mmol)和三乙胺(584.43mg,5.78mmol,803.89μL)的DCM(20mL)溶液中,缓慢加入三光气(1.71g,5.78mmol)的DCM(20mL)溶液,反应液在0℃搅拌1小时。反应完毕后,减压浓缩除去溶剂,再加水(50mL),有固体析出,过滤,收集滤饼,滤液调pH=9左右,有固体析出,过滤,收集滤饼。合并收集的滤饼用甲醇洗涤(5mL*3)。得到化合物14-E。
MS m/z:378.9[M+H] +
步骤4:化合物14-F的合成
于化合物14-E(490mg,1.29mmol)、四丁基溴化铵(41.66mg,129.22mol)和NaOH(77.53mg,1.94mmol)的DCM(10mL)和H 2O(10mL)溶液中,缓慢加入碘甲烷(421.84mg,2.97mmol)的DCM(5mL)溶液。反应体系在氮气保护下25℃搅拌5小时。反应完毕后,减压浓缩,残留物用水洗(20mL*2),过滤,收集滤饼干燥得到化合物14-F。
MS m/z:392.9[M+H] +
步骤5:化合物14-G的合成
在氮气保护下,将化合物14-C(300mg,759.00μmol)、化合物14-F(200mg,508.60μmol)、Na 2CO 3(107.81mg,1.02mmol)、Pd 2(dba) 3(46.57mg,50.86μmol)和Xphos(48.49mg,101.72μmol)的二氧六环(10mL)和H 2O(1mL)反应液在100℃搅拌12小时。反应完毕后,反应体系用硅藻土过滤,减压浓缩除去溶剂,残留物加水(50mL),用二氯甲烷萃取(30mL*3),合并有机相,干燥,减压浓缩。残留物经柱层析(0~30%THF/DCM)纯化,得到化合物14-G。
MS m/z:582.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.70(m,2H),1.90-1.98(m,2H),2.99-3.10(m,2H),3.47(s,3H),3.68-3.72(m,2H),3.79-3.88(m,2H),3.99(s,3H),4.01-4.06(m,2H),4.12-4.22(m,4H),7.43(s,1H),7.60-7.69(m,2H),7.73-7.79(m,2H),7.95(d,J=11.02Hz,2H),8.46(s,1H),9.15(s,1H)。
步骤6:化合物14-H的合成
于化合物14-G(52mg,89.41μmol)的EtOH(2mL)溶液中加入水合肼(13.31mg,98.35μmol,12.92μL,37%纯度),反应液在80℃搅拌3小时。反应完毕后,减压浓缩得到粗品,粗品经柱层析(0~5%MeOH/DCM)纯化得到化合物14-H。
MS m/z:452.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.47(m,2H),1.94(m,2H),2.70(t,J=7.03Hz,2H),3.04(br d,J=10.80Hz,2H),3.42(s,1H),3.47(s,3H),3.77-3.91(m,2H),3.99(s,3H),4.04(br d,J=11.04Hz,2H),4.10-4.22(m,4H),7.43(s,1H),7.95(s,2H),8.47(s,1H),9.16(s,1H)。
步骤7:化合物14的合成
于化合物14-H(30mg,66.44μmol)的甲醛水溶液(118.62mg,1.46mmol,108.83μL,37%纯度)中加入甲酸(15.96mg,332.21μmol),反应液在95℃搅拌1小时。反应完毕,减压浓缩除去溶剂,得到粗品,粗品经柱层析(0~10%MeOH/DCM)纯化得到化合物14。
MS m/z:480.0[M+H] +
1H NMR(400MHz,CDCl 3)δ1.41-1.51(m,2H),1.85-1.96(m,2H),2.15(s,6H),2.21-2.31(m,2H), 2.99-3.13(m,2H),3.47(s,3H),3.78-3.88(m,2H),3.99(s,3H),4.01-4.06(m,2H),4.16(s,4H),7.43(s,1H),7.95(d,J=3.02Hz,2H),8.47(s,1H),9.15(s,1H)。
实施例15
Figure PCTCN2021071107-appb-000095
合成路线:
Figure PCTCN2021071107-appb-000096
步骤1:化合物15-A的合成
除了使用相应的原料外,以实施例2中制备化合物2-A相同的方法制备化合物15-A。
MS m/z:436.2[M+H] +
1H NMR(400MHz,CDCl 3)δ1.02-1.08(m,2H),1.15(br s,2H),1.75-1.81(m,1H),2.98(br d,J=10.76Hz,2H),3.64-3.69(m,2H),3.91(s,3H),3.94(br s,2H),4.06-4.20(m,2H),6.96-7.02(m,1H),7.48(s,1H),7.99-8.09(m,1H),8.38(d,J=2.26Hz,1H),8.74(br s,1H),8.93(s,1H)。
步骤2:化合物15的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物15。
MS m/z:519.3[M+H] +
1H NMR(400MHz,CDCl 3)δ1.03-1.10(m,2H),1.11-1.17(m,2H),1.96-2.06(m,2H),2.31(s,6H),2.54(br s,2H),2.88-3.04(m,3H),3.66-3.73(m,2H),3.90(s,3H),3.96(br d,J=11.30Hz,2H),4.12(td,J=11.30,3.01Hz,2H),4.36(t,J=6.40Hz,2H),6.78(d,J=8.54Hz,1H),7.45(s,1H),7.83(dd,J=8.66,2.38Hz,1H),8.33(d,J=2.02Hz,1H),8.71(s,1H),8.89(s,1H)。
实施例16
Figure PCTCN2021071107-appb-000097
合成路线:
Figure PCTCN2021071107-appb-000098
步骤1:化合物16-A的合成
除了使用相应的原料外,以实施例8中制备化合物8-F相同的方法制备化合物16-A。
MS m/z:340.8[M+H] +
1H NMR(400MHz,CDCl 3)δ2.72(s,6H),3.97(s,3H),7.25(s,1H),9.17-9.27(m,1H),9.95(s,1H),10.26(br s,1H)。
步骤2:化合物16-B的合成
除了使用相应的原料外,以实施例8中制备化合物8-G相同的方法制备化合物16-B。
MS m/z:358.0[M+H] +
1H NMR(400MHz,CDCl 3)δ2.70(s,6H),3.92(s,3H),6.97(dd,J=8.42,2.89Hz,1H),7.35(s,1H),7.99(m,1H),8.32(d,J=2.26Hz,1H),9.28(s,1H),9.68(s,1H),10.30(s,1H)。
步骤3:化合物16-C的合成
除了使用相应的原料外,以实施例8中制备化合物8-H相同的方法制备化合物16-C。
MS m/z:328.0[M+H] +
步骤4:化合物16-D的合成
除了使用相应的原料外,以实施例8中制备化合物8-I相同的方法制备化合物16-D。
MS m/z:354.1[M+H] +
步骤5:化合物16-E的合成
除了使用相应的原料外,以实施例8中制备化合物8相同的方法制备化合物16-E。
MS m/z:368.1[M+H] +
步骤6:化合物16的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物16。
MS m/z:451.2[M+H] +
1H NMR(400MHz,CDCl 3)δ1.99-2.09(m,2H),2.32(s,6H),2.49-2.58(m,2H),3.17(s,6H),3.57(s,3H),3.99(s,3H),4.44(s,2H),6.86(d,J=8.54Hz,1H),7.54(s,1H),7.92(dd,J=8.54,2.51Hz,1H),8.40(d,J=2.26Hz,1H),8.60(s,1H),8.83(s,1H)。
实施例17
Figure PCTCN2021071107-appb-000099
合成路线:
Figure PCTCN2021071107-appb-000100
步骤1:化合物17-B的合成
除了使用相应的原料外,以实施例8中制备化合物8-B相同的方法制备化合物17-B。
MS m/z:233.8[M+H] +
1H NMR(400MHz,DMSO-d 6)δ6.69(br d,J=11.38Hz,1H),7.88(br d,J=7.88Hz,1H)。
步骤2:化合物17-C的合成
除了使用相应的原料外,以实施例8中制备化合物8-C相同的方法制备化合物17-C。
MS m/z:304.7[M+H] +
1H NMR(400MHz,DMSO-d 6)δ12.99(br d,J=12.5Hz,1H),8.23-8.13(m,1H),8.08-7.96(m,1H),7.88(br d,J=10.5Hz,1H),6.80(br s,1H)。
步骤3:化合物17-D的合成
除了使用相应的原料外,以实施例8中制备化合物8-D相同的方法制备化合物17-D。
MS m/z:287.0[M+H] +
1H NMR(400MHz,DMSO-d 6)δ9.25(s,1H),8.44(d,J=7.5Hz,1H),7.63(br d,J=9.3Hz,1H)。
步骤4:化合物17-E的合成
除了使用相应的原料外,以实施例8中制备化合物8-E相同的方法制备化合物17-E。
MS m/z:304.7[M+H] +
步骤5:化合物17-F的合成
除了使用相应的原料外,以实施例8中制备化合物8-F相同的方法制备化合物17-F。
MS m/z:371.0[M+H] +
步骤6:化合物17-G的合成
除了使用相应的原料外,以实施例8中制备化合物8-G相同的方法制备化合物17-G。
MS m/z:388.0[M+H] +
步骤7:化合物17-H的合成
除了使用相应的原料外,以实施例8中制备化合物8-H相同的方法制备化合物17-H。
MS m/z:358.1[M+H] +
步骤8:化合物17-I的合成
除了使用相应的原料外,以实施例8中制备化合物8-I相同的方法制备化合物17-I。
MS m/z:384.2[M+H] +
步骤9:化合物17-J的合成
除了使用相应的原料外,以实施例8中制备化合物8相同的方法制备化合物17-J。
MS m/z:398.2[M+H] +
步骤10:化合物17的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物17。
MS m/z:481.3[M+H] +
1H NMR(400MHz,CDCl 3)δ1.96–2.06(m,2H),2.30(s,6H),2.47-2.58(m,2H),2.98–3.05(m,2H),3.50(s,3H),3.68-3.79(m,2H),3.96–4.03(m,2H),4.11-4.21(m,2H),4.38(s,2H),6.82(d,J=8.5Hz,1H),7.77(d,J=12.0Hz,1H),7.84(br d,J=8.5Hz,1H),8.38(s,1H),8.60(s,1H),9.08(d,J=8.8Hz,1H)。
实施例18
Figure PCTCN2021071107-appb-000101
合成路线:
Figure PCTCN2021071107-appb-000102
步骤1:化合物18的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物18。
MS m/z:521.4[M+H] +
1H NMR(400MHz,CDCl 3)δ1.42-1.49(m,2H),1.61(br s,4H),1.94–2.11(m,2H),2.37-2.59(m,6H),3.08(br d,J=10.9Hz,2H),3.57(s,3H),3.75-3.87(m,2H),4.07(br d,J=11.5Hz,2H),4.21(dt,J=3.1,11.3Hz,2H),4.36-4.47(m,2H),6.89(d,J=8.6Hz,1H),7.80-7.93(m,2H),8.44(s,1H),8.67(s,1H),9.14(d,J=8.6Hz,1H)。
实施例19
Figure PCTCN2021071107-appb-000103
合成路线:
Figure PCTCN2021071107-appb-000104
步骤1:化合物19-A的合成
除了使用相应的原料外,以实施例2中制备化合物2-A相同的方法制备化合物19-A。
MS m/z:424.1[M+H] +
1H NMR(400MHz,CDCl 3)δ1.13(br s,2H),1.19-1.24(m,2H),3.00-3.10(m,3H),3.74(dt,J=2.0,11.7Hz,2H),4.06(br d,J=11.5Hz,2H),4.21(dt,J=3.1,11.4Hz,2H),7.08-7.14(m,1H),7.87(d,J=12.0Hz,1H),8.07-8.18(m,1H),8.52(s,1H),8.87-8.94(m,1H),9.19(d,J=8.5Hz,1H)。
步骤2:化合物19的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物19。
MS m/z:507.3[M+H] +
1H NMR(400MHz,CDCl 3)δ1.13-1.17(m,2H),1.21-1.27(m,2H),2.07(d,J=7.0Hz,2H),2.37(s,6H),2.56-2.67(m,2H),3.08(br d,J=11.0Hz,3H),3.77-3.85(m,2H),4.04-4.11(m,2H),4.17-4.29(m,2H),4.42-4.52(m,2H),6.91(d,J=8.8Hz,1H),7.85(d,J=12.3Hz,1H),7.93(td,J=2.3,8.5Hz,1H),8.46(s,1H),8.89(s,1H),9.16(d,J=8.5Hz,1H)。
实施例20
Figure PCTCN2021071107-appb-000105
合成路线:
Figure PCTCN2021071107-appb-000106
步骤1:化合物20的合成
除了使用相应的原料外,以实施例1中制备化合物1相同的方法制备化合物20。
MS m/z:547.5[M+H] +
1H NMR(400MHz,CDCl 3)δ1.10-1.15(m,2H),1.17-1.32(m,4H),1.45(br s,2H),1.62-1.68(m,2H),1.99–2.08(m,2H),2.43(br s,4H),2.49-2.56(m,2H),3.06(br d,J=10.8Hz,3H),3.74-3.84(m,2H),4.05(br d,J=8.8Hz,2H),4.16-4.26(m,2H),4.42(t,J=6.4Hz,2H),6.88(d,J=8.5Hz,1H),7.78-7.97(m,2H),8.44(s,1H),8.87(s,1H),9.14(d,J=8.8Hz,1H)。
生物学评价
实验例1:体外评价
供实验用的本发明化合物均为自制,其化学名称和结构式见各化合物的制备实施例,实验测试在英国Eurofins公司进行,实验结果由该公司提供,下面的实验过程也由该公司提供。
ATM酶活性测试实验过程
将人源的ATM激酶置于包含30nM的GST-cMyc-p53和Mg/ATP的缓冲溶液中孵化,Mg/ATP的浓度根据不同需要确定,反应通过加入Mg/ATP的复合物引发。大约在室温下孵化30分钟后,加入含有EDTA的停止液终止反应。最后,针对磷酸化的p53加入包含d2标记的抗GST单克隆抗体和铕标记的磷酸化Ser15抗体的检测缓冲液。然后用时间分辨荧光模式读取检测盘,均相时间分辨荧光(HTRF)信号通过公式HTRF=10000x(Em665nm/Em620nm)计算得到。
DNA-PK酶活性测试实验过程
将人源的DNA-PK激酶置于包含50nM的GST-cMyc-p53和Mg/ATP的缓冲溶液中孵化,Mg/ATP的浓度根据不同需要确定,反应通过加入Mg/ATP的复合物引发。大约在室温下孵化30分钟后,加入含有EDTA的停止液终止反应。最后,针对磷酸化的p53加入包含d2标记的抗GST单克隆抗体和铕标记的磷酸化Ser15抗体的检测缓冲液。然后用时间分辨荧光模式读取检测盘,均相时间分辨荧光(HTRF)信号通过公式HTRF=10000x(Em665nm/Em620nm)计算得到。
mTOR酶活性测试实验过程
将人源的mTOR激酶置于包含pH7.5的50mM羟乙基哌嗪乙硫磺酸、1mM的EGTA、0.01%的Tween20、2mg/mL的基质、3mM氯化锰溶液和根据需要加入的一定浓度的[γ- 33P]-ATP的混合物中孵化,反应通过加入Mn/ATP的复合物引发。大约在室温下孵化40分钟后,加入磷酸至其浓度达到0.5%终止反应。取10μL反应液点在P30filtermat上,并在4分钟的时间里用0.425%的磷酸清洗4次,再用甲醇清洗1次,干燥后用闪烁法测量放射性强度。
表1:本发明化合物体外细胞活性测定结果(IC 50)
化合物编号 ATM(IC 50nM) DNA-PK(IC 50nM) mTOR(IC 50nM)
化合物1 0.7 57 158
化合物2 1 182 未测
化合物3 1 130 未测
化合物4 1 未测 未测
化合物5 2 未测 未测
化合物6 0.8 50 未测
化合物7 3 未测 未测
化合物8 7 831 >1000
化合物9 2 >1000 >1000
化合物10 2 892 未测
化合物11 1 928 未测
化合物12 3 >1000 未测
化合物13 >1000 >1000 未测
化合物14 77 >1000 未测
化合物15 1 >1000 未测
化合物16 3 >1000 未测
化合物17 2 404 未测
化合物18 0.9 421 未测
化合物19 2 >1000 未测
化合物20 1 >1000 未测
结论:本发明化合物具有显著的ATM激酶抑制作用。
实验例2:人肝微粒体CYP抑制实验
实验测试在上海药明康德新药开发有限公司进行,实验结果由该公司提供,下面的实验过程也由该公司提供。
研究项目的目的是采用CYP同工酶的5合1探针底物来评价供试品对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)的抑制性。
混合人肝微粒体(HLM)购自Corning Inc.(Steuben,New York,USA)或者XenoTech,LLC.(Lenexa,KS,USA)或者其他的供应商,使用前都储存在低于-80℃条件下。
将稀释好的系列浓度的供试品工作液加入到含有人肝微粒体、探针底物和循环体系的辅助因子的孵育体系中,不含供试品而含有溶剂的对照作为酶活性对照(100%)。探针底物生成的代谢产物在样品中的浓度采用液相色谱-串联质谱(LC-MS/MS)方法进行测定。使用SigmaPlot(V.11)对供试品平均百分比活性对浓度作非线性回归分析。通过三参数或四参数反曲对数方程来计算IC 50值。测试结果如表2:
表2:化合物对五个CYP同工酶的抑制IC 50
Figure PCTCN2021071107-appb-000107
结论:本发明化合物对五个CYP同工酶抑制程度均较弱。
实验例3:体内评价
供实验用的本发明化合物均为自制,其化学名称和结构式见各化合物的制备实施例,实验测试在上海药明康德新药开发有限公司进行,实验结果由该公司提供,下面的实验过程也由该公司提供。
实验目的:
旨在考察本发明化合物单次静脉推注和灌胃给药后雌性Balb/c-nude小鼠体内药物血浆药代动力学。
实验材料:
Balb/c-nude小鼠(雌性,15-20g,7-9周龄,禁食)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液,给予小鼠单次静脉注射及口服给药。静注及口服溶媒为10%DMSO/90%(30%磺丁基环糊精)。收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入6倍体积含内标的乙腈溶液沉淀蛋白,静脉注射剂量为1mpk,口服剂量为10mpk,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如清除率,半衰期,药时曲线下面积,生物利用度等。
实验结果:
表3:药代动力学测试结果
Figure PCTCN2021071107-appb-000108
结论:本发明化合物具有优异的药代动力学性质。
实验例4:ATM抑制剂和伊立替康联用对人结肠癌SW620细胞皮下异种移植肿瘤在雌性BALB/c裸小鼠模型中的体内药效学研究
实验目的:
评价受试药ATM抑制剂和伊立替康(Irinotecan)联用对人结肠癌SW620细胞皮下异种移植肿瘤在雌性BALB/c裸小鼠模型中的体内药效学研究。
实验设计:
表4.ATM抑制剂和伊立替康体内药效实验动物分组及给药方案
Figure PCTCN2021071107-appb-000109
Figure PCTCN2021071107-appb-000110
注:IP:腹腔注射;PO:口服;QW(day 1):每周一次,周一给Irinotecan;QW(day 1)+QDX(3D on,4D off,day 2-4):周一给Irinotecan,周二至周四给ATM抑制剂,周五至周日不给药,每日一次,一周一循环;如果体重下降超过15%,给药方案应做出相应调整。如果体重下降超过20%,动物进行安乐死。
1:PG-D0,PG-D7伊立替康的剂量20mpk,从PG-D14开始伊立替康的剂量统一降到10mpk。
实验方法与步骤:
1.细胞培养
人结肠癌SW620细胞(ATCC,马纳萨斯,弗吉尼亚州,货号:CCL-227),体外单层培养,培养条件为Leibovitz's L-15培养基中加10%胎牛血清,双抗(100U/mL青霉素,100μg/mL链霉素和250ng/mL两性霉素B),37℃,5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,密度为5×10 6个细胞/ml,接种。
2.肿瘤细胞接种
将0.2mL(1×10 6个)SW620细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到175mm 3开始随机分组给药。
3.受试物的配制
表5.受试物配制方法
Figure PCTCN2021071107-appb-000111
Figure PCTCN2021071107-appb-000112
注:在给动物给药前需要轻轻将药物充分混匀。
肿瘤测量和实验指标:
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=T RTV/C RTV×100%(T RTV:治疗组RTV;C RTV:阴性对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D0)测量所得平均肿瘤体积,V t为某一次测量时的平均肿瘤体积,T RTV与C RTV取同一天数据。
TGI(%)反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
在实验结束后将检测肿瘤重量,并计算T/C weight百分比,T weight和C weight分别表示给药组和溶媒对照组的瘤重。
统计分析:
统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。两组间比较用T test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
实验结果:
死亡率、发病率及体重变化情况
实验动物的体重作为间接测定药物毒性的参考指标。在此模型中所有给药组均未显示有显著性体重下降(附图1),相对体重变化基于开始给药时动物体重计算得出。数据点代表组内平均体重变化百分比,误差线代表标准误(SEM)。
肿瘤体积
给予SW620细胞皮下异种移植肿瘤雌性BALB/c裸小鼠模型在受试药ATM抑制剂与Irinotecan治疗后各组肿瘤体积变化如表6所示。
表6.各组不同时间点的瘤体积
Figure PCTCN2021071107-appb-000113
Figure PCTCN2021071107-appb-000114
注:a.平均值±SEM;Group:组数。
肿瘤生长曲线
SW620异种移植瘤模型荷瘤鼠在给予受试药ATM抑制剂与Irinotecan后的肿瘤生长曲线。肿瘤生长曲线如附图2所示。数据点代表组内平均肿瘤体积,误差线代表标准误(SEM)。
表7 ATM抑制剂和Irinotecan联用对人结肠癌SW620细胞异种移植瘤模型的抑瘤效果
Figure PCTCN2021071107-appb-000115
注:a.所有Irinotecan的给药剂量为20mg/kg(D0,D7)/10mg/kg(D14-D20)
实验讨论:
本实验评价了ATM抑制剂和Irinotecan联用对人结肠癌SW620细胞异种移植瘤模型中的药效。各组在不同时间点的瘤体积如表6,表7及附图2所示。给药后天数中D 0对应表4中的周一,D 7对应下一周的周一以此顺延。
以Vehicle组为空白对照组,给药20天时,(Irinotecan,20mg/kg(D0,D7)/10mg/kg(D14-D20)+化合物1,3mg/kg)以及(Irinotecan,20mg/kg(D0,D7)/10mg/kg(D14-D20)+化合物6,3mg/kg)的T/C值分别为18.57%和16.48%;TGI值分别为86.89%和89.11%;这3组的给药剂量下均有显著的抑制肿瘤生长的作用,与空白对照组相比p值均小于0.001。
实验结论:
本发明化合物与Irinotecan联用具有显著的抑瘤作用。

Claims (21)

  1. 式(I)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021071107-appb-100001
    其中,
    R 1选自C 1-3烷基和C 3-5环烷基,所述C 1-3烷基和C 3-5环烷基任选被1、2或3个R a取代;
    R 2选自H、F、Cl、Br和I;
    R 3选自H、F、Cl、Br、I、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R b取代;
    R 4选自H和N(R 7)(R 8);
    R 5和R 6分别独立地选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
    或者,R 5和R 6与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100002
    所述
    Figure PCTCN2021071107-appb-100003
    任选被1、2或3个R d取代;
    R 7和R 8分别独立地选自H和CH 3
    或者,R 7和R 8与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100004
    所述
    Figure PCTCN2021071107-appb-100005
    任选被1、2或3个R e取代;
    m和n分别独立地选自0、1和2;
    p选自1、2和3;
    L 1选自单键、-C 1-6烷基-、-C 1-3烷基-O-和-C 1-3烷基-氧杂环丁基-C 1-3烷基-O-;
    环B选自苯基、吡唑基、吡啶基和苯并噻唑基,所述苯基、吡唑基、吡啶基和苯并噻唑基任选被1、2或3个R f取代;
    R a和R b分别独立地选自F、Cl、Br和I;
    R c和R d分别独立地选自H、F、Cl、Br、I和CH 3
    R e和R f选自F、Cl、Br和I。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 1选自CH 3、CH 2CH 3和环丙基,所述CH 3、CH 2CH 3和环丙基任选被1、2或3个R a取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中,R 1选自CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3和环丙基。
  4. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 3选自H、F、Cl、Br、I、CH 3、CH 2CH 3
    Figure PCTCN2021071107-appb-100006
    所述CH 3、CH 2CH 3
    Figure PCTCN2021071107-appb-100007
    任选被1、2或3个R b取代。
  5. 根据权利要求4所述化合物或其药学上可接受的盐,其中,R 3选自H、F、Cl、Br、I、CH 3、 CH 2F、CHF 2、CF 3、CH 2CH 3
    Figure PCTCN2021071107-appb-100008
  6. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 7和R 8与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100009
    所述
    Figure PCTCN2021071107-appb-100010
    任选被1、2或3个R e取代。
  7. 根据权利要求6所述化合物或其药学上可接受的盐,其中,R 7和R 8与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100011
  8. 根据权利要求1或7所述化合物或其药学上可接受的盐,其中,R 4选自H、N(CH 3) 2
    Figure PCTCN2021071107-appb-100012
    Figure PCTCN2021071107-appb-100013
  9. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 5和R 6分别独立地选自CH 3、CF 3和CH 2CH 3
  10. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 5和R 6与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100014
    所述
    Figure PCTCN2021071107-appb-100015
    任选被1、2或3个R d取代。
  11. 根据权利要求10所述化合物或其药学上可接受的盐,其中,R 5和R 6与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100016
  12. 根据权利要求11所述化合物或其药学上可接受的盐,其中,R 5和R 6与它们相连的原子共同构成
    Figure PCTCN2021071107-appb-100017
  13. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,L 1选自单键、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2-O-和
    Figure PCTCN2021071107-appb-100018
  14. 根据权利要求1所述化合物或其药学上可接受的盐,其中,-L 1-R 4选自CH 3、CH 3CH 2
    Figure PCTCN2021071107-appb-100019
  15. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,环B选自
    Figure PCTCN2021071107-appb-100020
    Figure PCTCN2021071107-appb-100021
    所述
    Figure PCTCN2021071107-appb-100022
    任选被1、2或3个R f取代。
  16. 根据权利要求15所述化合物或其药学上可接受的盐,其中,环B选自
    Figure PCTCN2021071107-appb-100023
    Figure PCTCN2021071107-appb-100024
  17. 根据权利要求1~13任意一项所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2021071107-appb-100025
    其中,
    R 1如权利要求1~3任意一项所定义;
    R 2如权利要求1所定义;
    R 3如权利要求1、4或5任意一项所定义;
    R 4如权利要求1或8所定义;
    R 5、R 6如权利要求1、9、10、11或12任意一项所定义;
    L 1如权利要求1或13所定义。
  18. 下式所示化合物或其药学上可接受的盐,
    Figure PCTCN2021071107-appb-100026
    Figure PCTCN2021071107-appb-100027
  19. 根据权利要求18所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2021071107-appb-100028
  20. 根据权利要求1~19任意一项所述的化合物或其药学上可接受的盐在制备ATM抑制剂相关药物上的应用。
  21. 根据权利要求20所述的应用,其特征在于,所述ATM抑制剂相关药物是用于肿瘤的药物。
PCT/CN2021/071107 2020-01-09 2021-01-11 喹啉并咪唑类化合物及其应用 WO2021139814A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180009993.7A CN115003672A (zh) 2020-01-09 2021-01-11 喹啉并咪唑类化合物及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010022531.6 2020-01-09
CN202010022531 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021139814A1 true WO2021139814A1 (zh) 2021-07-15

Family

ID=76788102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071107 WO2021139814A1 (zh) 2020-01-09 2021-01-11 喹啉并咪唑类化合物及其应用

Country Status (2)

Country Link
CN (1) CN115003672A (zh)
WO (1) WO2021139814A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143282A1 (zh) * 2022-01-26 2023-08-03 正大天晴药业集团股份有限公司 含有肼基的化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255692A (zh) * 2014-05-08 2016-12-21 阿斯利康(瑞典)有限公司 咪唑并[4,5‑c]喹啉‑2‑酮化合物以及它们在治疗癌症中的用途
WO2017153578A1 (en) * 2016-03-11 2017-09-14 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
WO2017194632A1 (en) * 2016-05-11 2017-11-16 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
CN107889488A (zh) * 2015-04-02 2018-04-06 默克专利股份公司 咪唑酮基喹啉和其作为atm激酶抑制剂的用途
CN108137576A (zh) * 2015-09-17 2018-06-08 阿斯利康(瑞典)有限公司 用于治疗癌症的、为共济失调毛细血管扩张症突变型(atm)激酶的选择性调节剂的8-[6-[3-(氨基)丙氧基]-3-吡啶基]-1-异丙基-咪唑并[4,5-c]喹啉-2-酮衍生物
CN108349971A (zh) * 2015-11-03 2018-07-31 阿斯利康(瑞典)有限公司 咪唑并[4,5-c]喹啉-2-酮化合物以及它们在治疗癌症中的用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255692A (zh) * 2014-05-08 2016-12-21 阿斯利康(瑞典)有限公司 咪唑并[4,5‑c]喹啉‑2‑酮化合物以及它们在治疗癌症中的用途
CN107889488A (zh) * 2015-04-02 2018-04-06 默克专利股份公司 咪唑酮基喹啉和其作为atm激酶抑制剂的用途
CN108137576A (zh) * 2015-09-17 2018-06-08 阿斯利康(瑞典)有限公司 用于治疗癌症的、为共济失调毛细血管扩张症突变型(atm)激酶的选择性调节剂的8-[6-[3-(氨基)丙氧基]-3-吡啶基]-1-异丙基-咪唑并[4,5-c]喹啉-2-酮衍生物
CN108349971A (zh) * 2015-11-03 2018-07-31 阿斯利康(瑞典)有限公司 咪唑并[4,5-c]喹啉-2-酮化合物以及它们在治疗癌症中的用途
WO2017153578A1 (en) * 2016-03-11 2017-09-14 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
WO2017194632A1 (en) * 2016-05-11 2017-11-16 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KURT G. PIKE, BARLAAM BERNARD, CADOGAN ELAINE, CAMPBELL ANDREW, CHEN YINGXUE, COLCLOUGH NICOLA, DAVIES NICHOLA L., DE-ALMEIDA CAMI: "The Identification of Potent, Selective, and Orally Available Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase: The Discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2 H -pyran-4-yl)-1,3-dihydro-2 H -imidazo[4,5- c ]quinolin-2-one)", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 61, no. 9, 10 May 2018 (2018-05-10), pages 3823 - 3841, XP055516276, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.7b01896 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143282A1 (zh) * 2022-01-26 2023-08-03 正大天晴药业集团股份有限公司 含有肼基的化合物

Also Published As

Publication number Publication date
CN115003672A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7033141B2 (ja) メニン-mll相互作用の縮合二環式阻害剤
ES2448868T3 (es) Metabolitos del inhibidor de cinasas Janus (R)-3-(4-(7H-pirrolo[2,3-d]pirimidin-4-il)-1H-pirazol-1-il)-3-ciclopentilpropanonitrilo
US9023840B2 (en) Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
CA2818545C (en) Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors
WO2021190467A1 (zh) 含螺环的喹唑啉化合物
JP6975791B2 (ja) メニン−mll相互作用のスピロ二環式阻害剤
KR20230175225A (ko) 피페라진 구조를 포함하는 파프 억제제, 그의 제조 방법 및 그의 약제학적 용도
WO2021259331A1 (zh) 八元含n杂环类化合物
WO2017198149A1 (zh) Fgfr4抑制剂、其制备方法和应用
JP7088906B2 (ja) Fgfr4阻害剤並びにその製造方法及び使用
HUE029236T2 (en) (R) -3- (4- (7H-Pyrrolo [2,3-d] pyrimidin-4-yl) -1H-pyrazol-1-yl) -3-cyclopentylpropanenitrile Crystalline salts of Janus kinase inhibitor
WO2017092413A1 (zh) 一种二氨基嘧啶化合物及包含该化合物的组合物
WO2022063190A1 (zh) 吡嗪硫联苯基类化合物及其应用
JP2023538090A (ja) Btk阻害剤としての架橋二環式化合物
WO2015058661A1 (zh) Bcr-abl激酶抑制剂及其应用
WO2022063297A1 (zh) 喹唑啉衍生物及其制备方法和用途
BR112021005989A2 (pt) derivados de quinolino-pirrolidin-2-ona e aplicação dos mesmos
WO2021139814A1 (zh) 喹啉并咪唑类化合物及其应用
CN114276333B (zh) 二氢喹喔啉类溴结构域二价抑制剂
WO2021238999A1 (zh) 氟代吡咯并吡啶类化合物及其应用
CN114008046B (zh) 作为cdk9抑制剂的氮杂吲哚连吡唑类化合物
CN111825719A (zh) 一种含有芳胺基取代的吡咯并嘧啶类化合物、制备方法及其应用
EP4144731A1 (en) Compounds containing benzosultam
WO2021180040A1 (zh) 苯并五元环类化合物
WO2022161347A1 (zh) 三并环类化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738400

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21738400

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21738400

Country of ref document: EP

Kind code of ref document: A1