WO2021139580A1 - 一种上下载滤波器、光分插复用器以及波长控制方法 - Google Patents

一种上下载滤波器、光分插复用器以及波长控制方法 Download PDF

Info

Publication number
WO2021139580A1
WO2021139580A1 PCT/CN2020/141355 CN2020141355W WO2021139580A1 WO 2021139580 A1 WO2021139580 A1 WO 2021139580A1 CN 2020141355 W CN2020141355 W CN 2020141355W WO 2021139580 A1 WO2021139580 A1 WO 2021139580A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
ring
upload
download
waveguides
Prior art date
Application number
PCT/CN2020/141355
Other languages
English (en)
French (fr)
Inventor
梅洛尼·安德烈亚
莫里凯蒂·弗朗切斯科
马兹亚·米拉尼
冀瑞强
米光灿
张泽岑
Original Assignee
华为技术有限公司
米兰理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 米兰理工大学 filed Critical 华为技术有限公司
Priority to EP20912214.2A priority Critical patent/EP4080797A4/en
Publication of WO2021139580A1 publication Critical patent/WO2021139580A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • G02B6/29343Cascade of loop resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers

Definitions

  • This application relates to the field of optical communications, and in particular to an upload/download filter, an optical add/drop multiplexer, and a wavelength control method.
  • OADM Optical Add/Drop Multiplexer
  • OADM Optical Add/Drop Multiplexer
  • waveguide type OADM has the advantages of lower cost and higher integration.
  • the waveguide type OADM includes multiple cascaded add/drop filters (ADF).
  • the upload and download filter is a key component in the optical fiber dense wavelength division multiplexing system, which can realize the upload and drop of a specific wavelength or a combination of specific wavelengths in the main optical fiber link.
  • An existing upload/download filter includes a first waveguide, a second waveguide, and a plurality of microrings located between the first waveguide and the second waveguide.
  • the first waveguide includes an input port and an output port
  • the second waveguide includes an upload port and a download port.
  • a Tunable Coupler (TC) is provided at the coupling position of the first waveguide and the first microring, and the TC is used to adjust the coupling coefficient between the first waveguide and the first microring.
  • the embodiments of the present application provide an upload/download filter, an optical add/drop multiplexer, and a wavelength control method.
  • an embodiment of the present application provides an upload/download filter.
  • the filter includes a first waveguide, a second waveguide, and a plurality of cascaded ring waveguides.
  • the first waveguide includes an input port and an output port.
  • the second waveguide includes an upload port and a download port.
  • One of the plurality of cascaded ring waveguides is coupled with the first waveguide, and the other of the plurality of cascaded ring waveguides is coupled with the second waveguide.
  • Electrodes are provided on each ring waveguide. At least one of the plurality of cascaded ring waveguides is provided with a loss adjuster except for one of the ring waveguides, and the loss adjuster is used to adjust the insertion loss in the at least one ring waveguide.
  • the insertion loss in at least one ring waveguide can be adjusted to block the signal transmission between the first waveguide and the second waveguide. Since the loss adjuster is not provided on the ring waveguide coupled with the first waveguide, the critical coupling of the ring waveguide coupled with the first waveguide is avoided in the process of using the loss adjuster, and the signal in the first waveguide is ensured. Normal transmission.
  • the circumferences of at least two of the plurality of ring waveguides are different. Since ring waveguides with different perimeters correspond to different free spectral ranges (FSR), multiple ring waveguides with different radii extend the FSR of the upload filter through the vernier effect.
  • FSR free spectral ranges
  • the upload/download filter further includes a controller for adjusting the insertion loss in the at least one ring waveguide by controlling the loss adjuster on the at least one ring waveguide.
  • a controller for adjusting the insertion loss in the at least one ring waveguide by controlling the loss adjuster on the at least one ring waveguide is provided, which improves the practicability of the solution.
  • the controller is also used to adjust the resonant wavelength of each ring waveguide by controlling the temperature or voltage of the electrode on each ring waveguide.
  • two implementation ways of adjusting the resonant wavelength of each ring waveguide are provided, which improves the scalability of the solution.
  • a first tunable coupler is provided at the coupling position between the first waveguide and one of the ring waveguides, and at the coupling position between the second waveguide and the other ring waveguide Set up a second adjustable coupler.
  • the first adjustable coupler and the second adjustable coupler can also retain only one of the two.
  • the coupling coefficients of the first tunable coupler and the second tunable coupler are adjustable, so that the bandwidth and in-band isolation of the upload/download filter can be fine-tuned, and the performance of the upload/download filter is optimized.
  • the ring waveguide is a microring or a microdisk, which improves the flexibility of the solution.
  • the material of the first waveguide, the second waveguide, and the ring waveguide is silicon, III-V, silicon nitride SiN, or lithium niobate LiNbO3.
  • several waveguide materials are provided, which improves the feasibility of this solution.
  • an embodiment of the present application provides an optical add/drop multiplexer (OADM).
  • OADM optical add/drop multiplexer
  • the OADM includes a plurality of cascaded upload and download filters as shown in any embodiment of the first aspect.
  • the embodiments of the present application provide a wavelength control method based on uploading and downloading filters.
  • the method includes the following steps.
  • the upload and download filter increases the first insertion loss in the target ring waveguide to the second insertion loss to block the signal transmission between the first waveguide and the second waveguide.
  • the upload and download filter includes a first waveguide, a second waveguide, and a plurality of cascaded ring waveguides.
  • the target ring waveguide includes at least one of the plurality of cascaded ring waveguides except the first ring waveguide.
  • the first ring waveguide The waveguide is a ring waveguide coupled with the first waveguide among a plurality of cascaded ring waveguides.
  • the upload filter adjusts the first resonant wavelength of each ring waveguide to the second resonant wavelength.
  • the upload and download filter restores the second insertion loss in the target ring waveguide to the first insertion loss, so as to restore the signal transmission between the first waveguide and the second waveguide.
  • adjusting the first resonant wavelength of each ring waveguide to the second resonant wavelength by the upload/download filter includes:
  • the upload and download filter controls the temperature or voltage of the upper electrode of each ring waveguide to adjust the first resonant wavelength of each ring waveguide to the second resonant wavelength.
  • a specific implementation method for adjusting the resonant wavelength of the ring waveguide is provided, which improves the practicability of the solution.
  • adjusting the first resonant wavelength of each ring waveguide to the second resonant wavelength by the upload/download filter includes:
  • the upload and download filter adjusts the first resonant wavelength of each ring waveguide to detune the multiple ring waveguides, that is, each ring waveguide has a different resonant wavelength.
  • the resonance condition of the upload and download filter is destroyed, so all optical signals input from the input port will be output from the output port.
  • the resonant wavelength of each ring waveguide is adjusted to the second resonant wavelength. The signal transmission between the first waveguide and the second waveguide is further blocked to improve the blocking effect.
  • the embodiments of the present application have the following advantages: Since the loss adjuster is not provided on the ring waveguide coupled with the first waveguide, the loss adjuster is avoided in the process of using the loss adjuster coupled with the first waveguide. The critical coupling of the ring waveguide ensures the normal transmission of the signal in the first waveguide.
  • FIG. 1 is a schematic structural diagram of a first upload/download filter provided by an embodiment of this application
  • Figure 2 is a schematic diagram of the download spectrum corresponding to the download port during normal download
  • Figure 3 is a schematic diagram of the download spectrum corresponding to the download port when the filtering function is turned off;
  • FIG. 4 is a schematic structural diagram of a second upload/download filter provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a third upload/download filter provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a fourth upload/download filter provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a fifth upload/download filter provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of an optical add/drop multiplexer provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of a wavelength control method based on uploading and downloading filters according to an embodiment of the application.
  • the embodiments of the present application provide an upload/download filter, an optical add/drop multiplexer, and a wavelength control method. Since the loss adjuster is not provided on the ring waveguide coupled with the first waveguide, the critical coupling of the ring waveguide coupled with the first waveguide is avoided in the process of using the loss adjuster, and the signal in the first waveguide is ensured. Normal transmission.
  • a current upload filter includes a first waveguide, a second waveguide, and a plurality of microrings located between the first waveguide and the second waveguide.
  • An adjustable coupler is provided at the coupling position of the first waveguide and the first microring for adjusting the coupling coefficient between the first waveguide and the first microring. It is found through research that during the variation of the coupling coefficient, the first microring coupled to the first waveguide will be critically coupled at a certain moment, so that the phase response of the pass-through spectrum line corresponding to the output port in the first waveguide occurs at that moment. Distortion, thereby affecting the normal transmission of signals in the first waveguide.
  • the embodiment of the present application provides an upload/download filter, which is used to ensure the normal transmission of the signal in the first waveguide.
  • FIG. 1 is a schematic structural diagram of the first upload/download filter provided by an embodiment of this application.
  • the upload/download filter includes: a first waveguide 101, a second waveguide 102, and a plurality of cascaded ring waveguides 103.
  • the first waveguide 101 includes an input port 101a and an output port 101b.
  • the second waveguide 102 includes an upload port 102a and a download port 102b.
  • the input port 101a and the upload port 102a are used to input optical signals
  • the output port 101b and the download port 102b are used to output optical signals.
  • One of the plurality of ring waveguides 103 is coupled with the first waveguide 101, and the other of the plurality of ring waveguides 103 is coupled with the second waveguide 102.
  • Each ring waveguide 103 is provided with an electrode 103a.
  • At least one ring waveguide other than the ring waveguide coupled with the first waveguide 101 is provided with a loss adjuster 103b.
  • the ring waveguide coupled with the first waveguide 101 is referred to as the first ring waveguide
  • the ring waveguide coupled with the second waveguide 102 is referred to as the second ring waveguide.
  • the bandwidth of the upload/download filter applied to optical communication should reach 40 GHz
  • the coupling coefficient between the first ring waveguide and the first waveguide 101 should be greater than the ring insertion loss of the first ring waveguide. If the loss adjuster 103b is also provided on the first ring waveguide, critical coupling will also occur during the process of increasing the insertion loss of the first ring waveguide.
  • the loss adjuster 103b can be provided on all ring waveguides except the first ring waveguide. As shown in FIG. 1, the upload filter includes four cascaded ring waveguides, and a loss adjuster 103b is provided on the two ring waveguides in the middle.
  • this application does not limit the number of cascaded ring waveguides 103, and only requires that the number is not less than two.
  • the number and position of the loss adjuster 103b are not limited, and it is only required that the loss adjuster 103b is not placed on the first ring waveguide.
  • the working wavelength of the upload and download filter is the resonance wavelength of each ring waveguide 103.
  • the optical signal of the working wavelength can be downloaded by the download port 102b, or the optical signal of the working wavelength can be uploaded by the upload port 102a.
  • the working wavelength may affect the normal transmission of signals at other wavelengths from the input port to the output port.
  • the input port inputs signals with 4 different wavelengths of ⁇ 1- ⁇ 4. If the current working wavelength is ⁇ 1, the download port outputs signals with wavelength ⁇ 1, and the output ports output signals with wavelengths ⁇ 2, ⁇ 3, and ⁇ 4. .
  • the insertion loss in at least one ring waveguide can be adjusted by the loss adjuster 103b.
  • the optical signal entering the ring waveguide is absorbed, and the ring waveguide no longer resonates, thereby blocking the signal transmission between the first waveguide 101 and the second waveguide 102.
  • the greater the number of loss adjusters 103b the better the effect of turning off the filtering function.
  • FIG. 2 is a schematic diagram of the download spectrum corresponding to the download port 102b during normal download.
  • the insertion loss in the corresponding ring waveguide is adjusted to the minimum by the loss adjuster 103b. It can be seen from Figure 2 that the peak insertion loss of the download spectrum is roughly 0dB at this time.
  • FIG. 3 is a schematic diagram of the download spectrum corresponding to the download port 102b when the filtering function is turned off.
  • the insertion loss in the corresponding ring waveguide is adjusted to the maximum by the loss adjuster 103b. It can be seen from Figure 3 that compared to Figure 2 at this time, the peak change of the downloaded spectrum exceeds 30dB, and the filtering function is turned off.
  • FIG. 4 is a schematic structural diagram of a second upload/download filter provided by an embodiment of this application.
  • the upload/download filter may further include the controller 104.
  • the loss adjuster 103b adopts an electrical structure based on the carrier dispersion effect.
  • the controller 104 can change the carrier concentration in the ring waveguide by controlling the applied voltage of the loss adjuster 103b, thereby changing the insertion loss in the ring waveguide. So as to realize the shutdown or restoration of the filtering function.
  • the loss adjuster 103b is not limited to the above-listed structures.
  • a layer of graphene can be added to the ring waveguide, and the graphene layer can be used to change the insertion loss in the ring waveguide, which is not specifically limited here. .
  • the electrode 103a may specifically be a miniature thermoelectrode.
  • the miniature hot electrode can be provided on the periphery of each ring waveguide 103.
  • the micro hot electrode and the ring waveguide 103 can be arranged in the same plane, and the micro hot electrode and the ring waveguide 103 can also be arranged in a different plane.
  • the controller 104 can adjust the resonance wavelength of each ring waveguide 103 by controlling the temperature of the miniature hot electrode on each ring waveguide 103.
  • the ring waveguide 103 can be made of materials with thermo-optical effects, such as dielectric materials (silicon dioxide and silicon nitride) or semiconductor materials (III-V and silicon).
  • the temperature change of the micro hot electrode will change the local temperature of the ring waveguide 103, and the refractive index of the material will be changed based on the thermo-optic effect to adjust the resonance wavelength of the ring waveguide 103.
  • the ring waveguide 103 can also be made of materials with electro-optical effects, such as lithium niobate.
  • the controller 104 can also change the refractive index of the material by controlling the voltage on the electrode 103a, thereby adjusting the resonance wavelength of the ring waveguide 103.
  • the above-mentioned controller 104 may specifically include a Microcontroller Unit (MCU), an electrode 103a and a loss regulator 103b for driving.
  • MCU Microcontroller Unit
  • represents the resonance wavelength of the ring waveguide 103
  • L represents the circumference of the ring waveguide 103
  • neff represents the effective refractive index of the ring waveguide 103. Therefore, multiple ring waveguides 103 with different radii extend the FSR of the upload filter through the vernier effect. It can be understood that if the structure of the ring waveguide 103 is a microring, then at least two of the multiple microrings have different radii.
  • FIG. 5 is a schematic structural diagram of a third upload/download filter provided by an embodiment of the application.
  • a first tunable coupler 105 (Tunable Coupler, TC) is provided at the coupling position of the first waveguide 101 and the first ring waveguide.
  • a second tunable coupler 106 is provided at the coupling position of the second waveguide 102 and the second ring waveguide.
  • both the first waveguide 101 and the second waveguide 102 include a section of arc waveguide.
  • the arc waveguide on the first waveguide 101 and the first ring waveguide have two coupling points, and the arc waveguide on the second waveguide 102 and the second ring waveguide also have two coupling points.
  • the two arc-shaped waveguides are provided with thermal tuning electrodes, and the thermal tuning electrodes can be controlled to adjust the coupling coefficients of the first adjustable coupler 105 and the second adjustable coupler 106, so as to fine-tune the upload and download filters. Bandwidth and in-band isolation optimize the performance of upload and download filters.
  • the first adjustable coupler 105 and the second adjustable coupler 106 may also retain only one of the two, which is not specifically limited here.
  • the two coupling points between the first waveguide 101 and the first ring waveguide may also be waveguides of other shapes. For example, it may also be a boss-shaped waveguide. The details are not limited here.
  • Fig. 6 is a schematic structural diagram of a fourth upload/download filter provided by an embodiment of the application.
  • the upload/download filter shown in FIG. 6 is similar to the upload/download filter shown in FIG. 1 in overall structure, and the same parts will not be repeated here.
  • the main difference is that the structure of the ring waveguide shown in FIG. 1 is a microring, while the structure of the ring waveguide shown in FIG. 6 is a microdisk.
  • FIG. 7 is a schematic structural diagram of a fifth upload/download filter provided by an embodiment of this application.
  • the upload/download filter shown in FIG. 7 is similar in overall structure to the upload/download filter shown in FIG. 1, and the same parts will not be repeated here.
  • the main difference is that the cascade mode of the multiple ring waveguides 103 shown in FIG. 1 is serial cascade, while the first ring waveguide shown in FIG. 7 can be coupled to the two ring waveguides in the middle, and the second ring waveguide is the same. It can also be coupled to the two ring waveguides in the middle. Then the signal transmission between the first waveguide 101 and the second waveguide 102 can have multiple paths, which improves the scalability of the solution.
  • This application includes, but is not limited to, the cascading manner of the ring waveguides listed above.
  • the upload and download filters in the embodiments of the present application include but are not limited to the five structures listed above, and other modifications based on the foregoing structures are within the protection scope of the present application.
  • the first waveguide 101 and the second waveguide 102 may include multiple sets of cascaded ring waveguides 103.
  • each group of cascaded ring waveguides may adopt the structure shown in FIG. 1 above, or may adopt the structure shown in FIG. 7 above, and the details are not limited here.
  • At least one ring waveguide 103 outside the first ring waveguide is provided with a loss adjuster 103 b, and the loss adjuster 103 b is used to adjust the insertion loss in the at least one ring waveguide 103.
  • the insertion loss in the at least one ring waveguide 103 can be adjusted to block the signal transmission between the first waveguide 101 and the second waveguide 102. Since the loss adjuster 103b is not arranged on the first ring waveguide, the critical coupling of the first ring waveguide is avoided in the process of using the loss adjuster 103b, and the normal transmission of signals in the first waveguide 101 is ensured.
  • an optical add/drop multiplexer based on the above-mentioned upload/download filter is also provided.
  • the optical add/drop multiplexer may include multiple cascaded upload and download filters.
  • FIG. 8 is a schematic structural diagram of an optical add/drop multiplexer 20 provided by an embodiment of the application.
  • the optical add-drop multiplexer 20 is a dual-channel optical add-drop multiplexer, that is, the optical add-drop multiplexer 20 includes two cascaded upload and download filters, which are the first upload and download filters 21 and the second Second, download the filter 22.
  • the first upload/download filter 21 includes a first upload port 201 and a first download port 202.
  • the second upload/download filter 22 includes a second upload port 203 and a second download port 204.
  • the first upload/download filter 21 and the second upload/download filter 22 share the same set of input ports 205 and output ports 206.
  • the upload/download filter in the optical add/drop multiplexer 20 of this embodiment is similar to the upload/download filter described in the foregoing embodiment, and will not be repeated here.
  • the wavelength control method corresponding to the upload and download filter will be introduced below. It should be noted that the device structure corresponding to the following wavelength control method may be as described in the foregoing device embodiment. However, it is not limited to the upload and download filters described above.
  • FIG. 9 is a schematic flowchart of a wavelength control method based on uploading and downloading filters according to an embodiment of the application.
  • the wavelength control method includes the following steps.
  • the upload/download filter in this embodiment may specifically be the upload/download filter in any of the embodiments shown in FIG. 1, FIG. 4, FIG. 5, FIG. 6 and FIG. 7.
  • Figure 1 some of the following descriptions take Figure 1 as an example.
  • the upload and download filter increases the first insertion loss in the target ring waveguide to the second insertion loss, so as to block signal transmission between the first waveguide and the second waveguide.
  • the target ring waveguide is at least one ring waveguide other than the first ring waveguide.
  • the insertion loss in the target ring waveguide can be adjusted by the loss adjuster 103b provided on the target ring waveguide, so that the optical signal entering the ring waveguide is absorbed, and the ring waveguide no longer resonates, thereby blocking the first waveguide.
  • Signal transmission between 101 and the second waveguide 102 For the introduction of the loss adjuster 103b, please refer to the related description in the foregoing embodiment, and the details are not repeated here.
  • the upload/download filter adjusts the first resonant wavelength of each ring waveguide to the second resonant wavelength.
  • the temperature or voltage of the electrode on each ring waveguide can be controlled to adjust the first resonance wavelength of each ring waveguide to the second resonance wavelength. It can be understood that the first resonance wavelength is the current working wavelength of the upload/download filter, and the second resonance wavelength is the new working wavelength of the upload/download filter.
  • the first resonant wavelength of each ring waveguide can be adjusted to the second resonant wavelength synchronously, that is, the resonant wavelength of each ring waveguide is always synchronized during the adjustment process.
  • each ring waveguide has a different resonance wavelength, which destroys the resonance condition of the upload and download filter. Therefore, all optical signals input from the input port 101a will be output from the output port 101b. Subsequently, the resonant wavelength of each ring waveguide is adjusted to the second resonant wavelength.
  • the upload and download filter restores the second insertion loss in the target ring waveguide to the first insertion loss, so as to restore signal transmission between the first waveguide and the second waveguide.
  • the second insertion loss in the target ring waveguide can be restored to the first insertion loss, thereby restoring the gap between the first waveguide 101 and the second waveguide 102 , So that the second waveguide 102 can be waved up or down normally.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种上下载滤波器包括第一波导(101)、第二波导(102)以及多个级联的环形波导(103)。其中,第一波导(101)包括输入端口(101a)和输出端口(101b),第二波导(102)包括上载端口(102a)和下载端口(102b),多个级联的环形波导(103)中的一个与第一波导(101)耦合,多个级联的环形波导(103)中的另一个与第二波导(102)耦合,每个环形波导(103)上设置有电极(103a),除了与第一波导(101)耦合的环形波导(103)外的其他至少一个环形波导(103)上设置有损耗调节器(103b),损耗调节器(103b)用于调节至少一个环形波导(103)内的插损,在使用损耗调节器(103b)的过程中避免了与第一波导(101)耦合的环形波导(103)出现临界耦合的情况,保证了第一波导(101)中信号的正常传输。

Description

一种上下载滤波器、光分插复用器以及波长控制方法
本申请要求于2020年01月08日提交中国专利局、申请号为202010018395.3、发明名称为“一种上下载滤波器、光分插复用器以及波长控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种上下载滤波器、光分插复用器以及波长控制方法。
背景技术
波分领域常用的光分插复用器(Optical Add/Drop Multiplexer,OADM)通常有空间光学和波导型两类。相对而言,波导型OADM具有成本更低和集成度更高的优势。
波导型OADM包括多个级联的上下载滤波器(Add/Drop Filter,ADF)。上下载滤波器是光纤密集波分复用系统中的关键器件,可以实现特定波长或特定波长组合在主光纤链路中的上波和下波。现有的一种上下载滤波器包括第一波导、第二波导以及位于第一波导和第二波导之间的多个微环。第一波导包括输入端口和输出端口,第二波导包括上载端口和下载端口。在第一波导与第一微环的耦合位置处设置有可调耦合器(Tunable Coupler,TC),TC用于调节第一波导与第一微环之间的耦合系数。在调节上下载滤波器的工作波长之前通常需要通过调节上述耦合系数来阻断第二波导的上波或下波,并在工作波长的调节结束后再通过调节上述耦合系数恢复第二波导的上波或下波。
发明内容
本申请实施例提供了一种上下载滤波器、光分插复用器以及波长控制方法。
第一方面,本申请实施例提供了一种上下载滤波器。该滤波器包括第一波导、第二波导以及多个级联的环形波导。第一波导包括输入端口和输出端口。第二波导包括上载端口和下载端口。多个级联的环形波导的其中一个环形波导与第一波导耦合,多个级联的环形波导的其中另一个环形波导与第二波导耦合。每个环形波导上设置有电极。多个级联的环形波导中除其中一个环形波导外的至少一个环形波导上设置有损耗调节器,损耗调节器用于调节至少一个环形波导内的插损。
在该实施方式中,在开始调节上下载滤波器的工作波长前,可以通过调节至少一个环形波导内的插损以阻断第一波导与第二波导之间的信号传输。由于损耗调节器没有设置在与第一波导耦合的环形波导上,因此在使用损耗调节器的过程中避免了与第一波导耦合的环形波导出现临界耦合的情况,保证了第一波导中信号的正常传输。
在一些可能的实施方式中,多个环形波导中至少两个环形波导的周长不同。由于周长不同的环形波导对应不同的自由谱范围(free spectral range,FSR),因此,多个半径不同的环形波导通过游标效应扩展了上下载滤波器的FSR。
在一些可能的实施方式中,上下载滤波器还包括控制器,控制器用于通过控制至少一 个环形波导上的损耗调节器调节至少一个环形波导内的插损。在该实施方式中,提供了一种控制损耗调节器的具体实现方式,提高了本方案的实用性。
在一些可能的实施方式中,控制器还用于通过控制每个环形波导上电极的温度或电压,以调节每个环形波导的谐振波长。在该实施方式中,提供了两种调节每个环形波导的谐振波长的实现方式,提高了本方案的扩展性。
在一些可能的实施方式中,在第一波导与其中一个环形波导的耦合位置上设置第一可调耦合器(Tunable Coupler,TC),并且在第二波导与其中另一个环形波导的耦合位置上设置第二可调耦合器。又或者,第一可调耦合器和第二可调耦合器也可以只保留二者中的其中一个。其中,第一可调耦合器以及第二可调耦合器的耦合系数可调,从而可以微调上下载滤波器的带宽以及带内隔离度,优化了上下载滤波器的性能。
在一些可能的实施方式中,环形波导是微环或微盘,提高了本方案的灵活性。
在一些可能的实施方式中,第一波导、第二波导以及环形波导的材料为硅、III-V、氮化硅SiN或铌酸锂LiNbO3。在该实施方式中,提供了几种波导的材料,提高了本方案的可实现性。
第二方面,本申请实施例提供了一种光分插复用器(Optical Add/Drop Multiplexer,OADM)。该OADM包括多个级联的如第一方面任一实施方式中所示的上下载滤波器。
第三方面,本申请实施例提供了一种基于上下载滤波器的波长控制方法。该方法包括如下步骤。
上下载滤波器将目标环形波导内的第一插损增加为第二插损,以阻断第一波导与第二波导之间的信号传输。其中,上下载滤波器包括第一波导、第二波导以及多个级联的环形波导,目标环形波导包括多个级联的环形波导中除第一环形波导外的至少一个环形波导,第一环形波导为多个级联的环形波导中与第一波导耦合的环形波导。之后,上下载滤波器将每个环形波导的第一谐振波长调节为第二谐振波长。进而,上下载滤波器将目标环形波导内的第二插损恢复为第一插损,以恢复第一波导与第二波导之间的信号传输。
在一些可能的实施方式中,上下载滤波器将每个环形波导的第一谐振波长调节为第二谐振波长包括:
上下载滤波器控制每个环形波导上电极的温度或电压以将每个环形波导的第一谐振波长调节为第二谐振波长。在该实施方式中,提供了一种调节环形波导的谐振波长的具体实现方式,提高了本方案的实用性。
在一些可能的实施方式中,上下载滤波器将每个环形波导的第一谐振波长调节为第二谐振波长包括:
上下载滤波器调节每个环形波导的第一谐振波长,以使多个环形波导失谐,即使得每个环形波导具有不同的谐振波长。破坏了上下载滤波器的谐振条件,因此所有从输入端口输入的光信号都会从输出端口输出。随后,再将各环形波导的谐振波长调节到第二谐振波长。进一步阻断了第一波导与第二波导之间的信号传输以提高阻断效果。
从以上技术方案可以看出,本申请实施例具有以下优点:由于损耗调节器没有设置在与第一波导耦合的环形波导上,因此在使用损耗调节器的过程中避免了与第一波导耦合的 环形波导出现临界耦合的情况,保证了第一波导中信号的正常传输。
附图说明
图1为本申请实施例提供的第一种上下载滤波器的结构示意图;
图2为正常下载时下载端口对应的下载谱线的示意图;
图3为滤波功能关断时下载端口对应的下载谱线的示意图;
图4为本申请实施例提供的第二种上下载滤波器的结构示意图;
图5为本申请实施例提供的第三种上下载滤波器的结构示意图;
图6为本申请实施例提供的第四种上下载滤波器的结构示意图;
图7为本申请实施例提供的第五种上下载滤波器的结构示意图;
图8为本申请实施例提供的一种光分插复用器的结构示意图;
图9为本申请实施例提供的一种基于上下载滤波器的波长控制方法的流程示意图。
具体实施方式
本申请实施例提供了一种上下载滤波器、光分插复用器以及波长控制方法。由于损耗调节器没有设置在与第一波导耦合的环形波导上,因此在使用损耗调节器的过程中避免了与第一波导耦合的环形波导出现临界耦合的情况,保证了第一波导中信号的正常传输。
需要说明的是,本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等用于区别类似的对象,而非限定特定的顺序或先后次序。应理解,上述术语在适当情况下可以互换,以便在本申请描述的实施例能够以除了在本申请描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前的一种上下载滤波器包括第一波导、第二波导以及位于第一波导和第二波导之间的多个微环。在第一波导与第一微环的耦合位置处设置有可调耦合器,用于调节第一波导与第一微环之间的耦合系数。经研究发现,在耦合系数的变化过程中,与第一波导耦合的第一微环会在某一个时刻出现临界耦合,使得第一波导中输出端口对应的穿通谱线在该时刻的相位响应发生畸变,从而影响第一波导中信号的正常传输。
为此本申请实施例提供了一种上下载滤波器,用于保证第一波导中信号的正常传输。
图1为本申请实施例提供的第一种上下载滤波器的结构示意图。该上下载滤波器包括:第一波导101、第二波导102以及多个级联的环形波导103。该第一波导101包括输入端口101a和输出端口101b。第二波导102包括上载端口102a和下载端口102b。其中,输入端口101a和上载端口102a用于输入光信号,输出端口101b和下载端口102b用于输出光信号。多个环形波导103的其中一个环形波导与第一波导101耦合,多个环形波导103中的另一个环形波导与第二波导102耦合。每个环形波导103上设置有电极103a。除了与第一波导101耦合的环形波导外的其他至少一个环形波导上设置有损耗调节器103b。
为了方便描述,下面将与第一波导101耦合的环形波导称之为第一环形波导,与第二波导102耦合的环形波导称之为第二环形波导。需要说明的是,应用于光通信的上下载滤波器的带宽要达到40GHz,第一环形波导与第一波导101之间的耦合系数要大于第一环形波导的环内插损。如果在第一环形波导上也设置损耗调节器103b,在增大第一环形波导内插损的过程中也会出现临界耦合的情况。这种临界耦合会使得第一波导101中输出端口101b对应的穿通谱线对应频点的幅度和相位响应发生畸变,从而影响第一波导101中信号的正常传输。而除第一环形波导外的其他环形波导,不会出现由于增大插损而出现临界耦合的情况。因此,除了第一环形波导外的其他环形波导上都可以设置损耗调节器103b。如图1所示,该上下载滤波器包括四个级联的环形波导,在中间两个环形波导上设置损耗调节器103b。
需要说明的是,本申请对级联的环形波导103的数量不做限定,仅要求其个数不少于两个。此外,损耗调节器103b的个数和位置也不做限定,仅要求损耗调节器103b不放置在第一个环形波导上。
本申请实施例中,上下载滤波器的工作波长即为每个环形波导103的谐振波长。也即是说,可以由下载端口102b下载工作波长的光信号,或者由上载端口102a上载工作波长的光信号。当工作波长要重新配置时,可能会影响除工作波长之外的其他波长信号从输入端口到输出端口的正常传输。例如,输入端口输入λ1-λ4共4种不同波长的信号,若当前的工作波长为λ1,则下载端口输出的是波长为λ1的信号,输出端口输出的是波长为λ2、λ3以及λ4的信号。利用现有技术将工作波长由λ1调节到λ4的过程中,可能会出现工作波长为λ2和λ3的时刻,从而影响波长为λ2以及λ3的信号的正常传输。那么,就需要在工作波长切换之前先阻断第一波导101与第二波导102之间的信号传输,即由输入端口101a输入的所有光信号都从输出端口101b输出。然后,在工作波长切换结束后,再恢复第一波导101与第二波导102之间的信号传输。
具体地,通过损耗调节器103b可以调节至少一个环形波导内的插损。使得进入该环形波导内光信号被吸收,该环形波导不再发生谐振,从而阻断了第一波导101与第二波导102之间的信号传输。可以理解的是,损耗调节器103b的数量越多,那么关断滤波功能的效果越佳。
下面结合更多的附图,对上下载滤波器关断滤波功能的过程进一步进行介绍。
图2为正常下载时下载端口102b对应的下载谱线的示意图。为了使下载端口102b正常下载工作波长的光信号,通过损耗调节器103b将与之对应的环形波导内的插损调到最小。从图2中可以看出,此时下载谱线的插损峰值大致为0dB。
图3为滤波功能关断时下载端口102b对应的下载谱线的示意图。为了关断滤波功能,通过损耗调节器103b将与之对应的环形波导内的插损调到最大。从图3中可以看出,相对于图2此时下载谱线的峰值变化超过了30dB,滤波功能被关断。
图4为本申请实施例提供的第二种上下载滤波器的结构示意图。在本申请的一些实施例中,上下载滤波器还可以包括控制器104。其中,损耗调节器103b采用基于载流子色散效应的电学结构。控制器104可以通过控制损耗调节器103b的加载电压来改变环形波导中 载流子的浓度,以此来改变环形波导内的插损。从而实现滤波功能的关断或恢复。需要说明的是,损耗调节器103b并不限于上述列举的结构,例如还可以在环形波导中加入一层石墨烯,并通过石墨烯层来改变环形波导内的插损,具体此处不做限定。
在本申请的一些实施例中,电极103a具体可以是微型热电极。每个环形波导103的外围可以设置该微型热电极。例如,微型热电极可以与环形波导103设置在同一平面内,微型热电极也可以与环形波导103设置在不同平面内。控制器104可以通过控制每个环形波导103上微型热电极的温度来调节每个环形波导103的谐振波长。具体地,该环形波导103可以采用具有热光效应的材料,例如介质材料(二氧化硅以及氮化硅)或半导体材料(III-V和硅)。微型热电极的温度变化会改变环形波导103局部的温度,基于热光效应将改变材料的折射率以调节环形波导103的谐振波长。此外,该环形波导103也可以采用具有电光效应的材料,例如铌酸锂。控制器104还可以通过控制电极103a上的电压来改变材料的折射率,从而调节环形波导103的谐振波长。
可以理解的是,每个环形波导103的谐振波长相同时,该谐振波长即为上下载滤波器的工作波长。上述控制器104具体可以包括微控制单元(Microcontroller Unit,MCU)、电极103a和损耗调节器103b的驱动。
可选地,多个环形波导103中至少两个环形波导103的周长不同。周长不同的环形波导对应不同的自由谱范围(free spectral range,FSR)。具体地,FSR=λ2/L*neff。其中,λ表示环形波导103的谐振波长,L表示环形波导103的周长,neff表示环形波导103的有效折射率。因此,多个半径不同的环形波导103通过游标效应扩展了上下载滤波器的FSR。可以理解的是,若环形波导103的结构是微环,那么多个微环中至少有两个微环的半径不同。
图5为本申请实施例提供的第三种上下载滤波器的结构示意图。在本申请的一些实施例中,在第一波导101与第一环形波导的耦合位置上设置第一可调耦合器105(Tunable Coupler,TC)。在第二波导102与第二环形波导的耦合位置上设置第二可调耦合器106。具体地,如图5所示,第一波导101和第二波导102都包括一段弧形波导。第一波导101上的弧形波导与第一环形波导具有两个耦合点,第二波导102上的弧形波导与第二环形波导同样具有两个耦合点。这两段弧形波导上设置有热调电极,控制该热调电极即可对第一可调耦合器105以及第二可调耦合器106的耦合系数进行调节,从而可以微调上下载滤波器的带宽以及带内隔离度,优化了上下载滤波器的性能。
可选地,第一可调耦合器105和第二可调耦合器106也可以只保留二者中的其中一个,具体此处不做限定。此外,除了上述列举的弧形波导外,第一波导101与第一环形波导的两个耦合点之间还可以是其他形状的波导。例如,还可以是凸台形状的波导。具体此处不做限定。
图6为本申请实施例提供的第四种上下载滤波器的结构示意图。具体地,图6所示的上下载滤波器与图1所示的上下载滤波器在整体结构上类似,相同的地方此处不再赘述。主要的区别在于,图1中所示的环形波导的结构是微环,而图6中所示的环形波导的结构是微盘。
图7为本申请实施例提供的第五种上下载滤波器的结构示意图。具体地,图7所示的上下载滤波器与图1所示的上下载滤波器在整体结构上类似,相同的地方此处不再赘述。主要的区别在于,图1所示的多个环形波导103的级联方式为串行级联,而图7所示的第一环形波导可以分别与中间两个环形波导耦合,第二环形波导同样也可以分别与中间两个环形波导耦合。那么第一波导101与第二波导102之间的信号传输可以有多条路径,提高了本方案的扩展性。本申请包括但不限于上述列举的环形波导的级联方式。
需要说明的是,本申请实施例中的上下载滤波器包括但不限于上述列举的五种结构,其他基于上述结构的变形均在本申请的保护范围内。例如,第一波导101和第二波导102之间可以包括多组级联的环形波导103。其中,每组级联的环形波导可以采用如上述图1中所示结构,也可以采用如上述图7中所示的结构,具体此处不做限定。
本申请实施例中,第一环形波导外的至少一个环形波导103上设置有损耗调节器103b,该损耗调节器103b用于调节至少一个环形波导103内的插损。在开始调节上下载滤波器的工作波长前,可以通过调节至少一个环形波导103内的插损以阻断第一波导101与第二波导102之间的信号传输。由于损耗调节器103b没有设置在第一环形波导上,因此在使用损耗调节器103b的过程中避免了第一环形波导出现临界耦合的情况,保证了第一波导101中信号的正常传输。
在本申请的一些实施例中,还提供了一种基于上述上下载滤波器的光分插复用器(Optical Add/Drop Multiplexer,OADM)。其中,光分插复用器可以包括多个级联的上下载滤波器。
图8为本申请实施例提供的一种光分插复用器20的结构示意图。该光分插复用器20为双通道的光分插复用器,即该光分插复用器20包括两个级联的上下载滤波器,分别为第一上下载滤波器21和第二上下载滤波器22。其中,第一上下载滤波器21包括第一上载端口201和第一下载端口202。第二上下载滤波器22包括第二上载端口203和第二下载端口204。并且第一上下载滤波器21和第二上下载滤波器22共用同一组输入端口205和输出端口206。具体地,本实施例光分插复用器20中的上下载滤波器与上述实施例中所描述上下载滤波器类似,此处不再赘述。
基于上述上下载滤波器的介绍,下面对该上下载滤波器对应的波长控制方法进行介绍。需要说明的是,下述的波长控制方法对应的装置结构可以如上述装置实施例的描述。但是,并不限于为上述描述的上下载滤波器。
图9为本申请实施例提供的一种基于上下载滤波器的波长控制方法的流程示意图。在该示例中,波长控制方法包括如下步骤。
需要说明的是,本实施例中的上下载滤波器具体可以是如上述图1、图4、图5、图6以及图7所示的任一实施例中的上下载滤波器。为了简化描述,下面的一些说明以图1为例。
901、上下载滤波器将目标环形波导内的第一插损增加为第二插损,以阻断第一波导与第二波导之间的信号传输。
本实施例中,目标环形波导为除第一环形波导外的至少一个环形波导。具体地,可以 通过目标环形波导上设置的损耗调节器103b来调节目标环形波导内的插损,使得进入该环形波导内光信号被吸收,该环形波导不再发生谐振,从而阻断第一波导101与第二波导102之间的信号传输。其中,关于损耗调节器103b的介绍请参阅上述实施例中的相关描述,具体此处不再赘述。
902、上下载滤波器将每个环形波导的第一谐振波长调节为第二谐振波长。
在本实施例中,在第一波导101与第二波导102之间的信号传输被阻断后,所有从输入端口101a输入的光信号都会从输出端口101b输出。因此调节上下载滤波器的工作波长并不会影响第一波导101中信号的正常传输。具体地,可以控制每个环形波导上电极的温度或电压以将每个环形波导的第一谐振波长调节为第二谐振波长。可以理解的是,第一谐振波长即为上下载滤波器当前的工作波长,第二谐振波长为上下载滤波器的新的工作波长。
需要说明的是,可以将每个环形波导的第一谐振波长同步调节到第二谐振波长,也就是说,在调节过程中每个环形波导的谐振波长始终保持同步。
可选的,为了进一步阻断第一波导101与第二波导102之间的信号传输以提高阻断效果。还可以先使各环形波导之间失谐,即使得每个环形波导具有不同的谐振波长,破坏了上下载滤波器的谐振条件。因此,所有从输入端口101a输入的光信号都会从输出端口101b输出。随后,再将各环形波导的谐振波长调节到第二谐振波长。
903、上下载滤波器将目标环形波导内的第二插损恢复为第一插损,以恢复第一波导与第二波导之间的信号传输。
本实施例中,在上下载滤波器的工作波长切完成后,即可将目标环形波导内的第二插损恢复为第一插损,从而恢复了第一波导101与第二波导102之间的信号传输,以使得第二波导102可以正常进行上波或下波。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种上下载滤波器,其特征在于,包括:第一波导、第二波导以及多个级联的环形波导,其中,所述第一波导包括输入端口和输出端口,所述第二波导包括上载端口和下载端口,所述多个级联的环形波导的一个环形波导与所述第一波导耦合,所述多个级联的环形波导的另一个环形波导与所述第二波导耦合,每个所述环形波导上设置有电极,所述多个级联的环形波导中除所述其中一个环形波导外的至少一个环形波导上设置有损耗调节器,所述损耗调节器用于调节所述至少一个环形波导内的插损。
  2. 根据权利要求1所述的上下载滤波器,其特征在于,所述多个环形波导中至少两个环形波导的周长不同。
  3. 根据权利要求1或2所述的上下载滤波器,其特征在于,所述上下载滤波器还包括控制器,所述控制器用于通过控制所述至少一个环形波导上的所述损耗调节器,以调节所述至少一个环形波导内的插损。
  4. 根据权利要求3所述的上下载滤波器,其特征在于,所述控制器还用于通过控制每个所述环形波导上所述电极的温度或电压,以调节每个所述环形波导的谐振波长。
  5. 根据权利要求1至4中任一项所述的上下载滤波器,其特征在于,在所述第一波导与所述其中一个环形波导的耦合位置上设置第一可调耦合器TC和/或在所述第二波导与所述其中另一个环形波导的耦合位置上设置第二TC。
  6. 根据权利要求1至5中任一项所述的上下载滤波器,其特征在于,每个所述环形波导是微环或微盘。
  7. 根据权利要求1至5中任一项所述的上下载滤波器,其特征在于,所述第一波导、所述第二波导以及所述环形波导的材料为硅、III-V、氮化硅SiN或铌酸锂LiNbO3。
  8. 一种光分插复用器,其特征在于,包括多个级联的如权利要求1至7中任一项所示的上下载滤波器。
  9. 一种基于上下载滤波器的波长控制方法,其特征在于,所述方法包括:
    所述上下载滤波器将目标环形波导内的第一插损增加为第二插损,以阻断第一波导与第二波导之间的信号传输,所述上下载滤波器包括所述第一波导、所述第二波导以及多个级联的环形波导,所述目标环形波导包括所述多个级联的环形波导中除第一环形波导外的至少一个环形波导,所述第一环形波导为所述多个级联的环形波导中与所述第一波导耦合的环形波导;
    所述上下载滤波器将每个所述环形波导的第一谐振波长调节为第二谐振波长;
    所述上下载滤波器将所述目标环形波导内的所述第二插损恢复为所述第一插损,以恢复所述第一波导与所述第二波导之间的信号传输。
  10. 根据权利要求9所述的方法,其特征在于,所述上下载滤波器将每个所述环形波导的第一谐振波长调节为第二谐振波长包括:
    所述上下载滤波器控制每个所述环形波导上电极的温度或电压以将每个所述环形波导的第一谐振波长调节为第二谐振波长。
  11. 根据权利要求9所述的方法,其特征在于,所述上下载滤波器将每个所述环形波 导的第一谐振波长调节为第二谐振波长包括:
    所述上下载滤波器调节每个所述环形波导的所述第一谐振波长,以使多个所述环形波导失谐;
    所述上下载滤波器将每个所述环形波导的谐振波长调节为所述第二谐振波长。
PCT/CN2020/141355 2020-01-08 2020-12-30 一种上下载滤波器、光分插复用器以及波长控制方法 WO2021139580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20912214.2A EP4080797A4 (en) 2020-01-08 2020-12-30 Add/drop filter, optical add/drop multiplexer and wavelength control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010018395.3 2020-01-08
CN202010018395.3A CN113093338B (zh) 2020-01-08 2020-01-08 一种上下载滤波器、光分插复用器以及波长控制方法

Publications (1)

Publication Number Publication Date
WO2021139580A1 true WO2021139580A1 (zh) 2021-07-15

Family

ID=76663301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141355 WO2021139580A1 (zh) 2020-01-08 2020-12-30 一种上下载滤波器、光分插复用器以及波长控制方法

Country Status (3)

Country Link
EP (1) EP4080797A4 (zh)
CN (1) CN113093338B (zh)
WO (1) WO2021139580A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928209B2 (en) * 2003-02-15 2005-08-09 Intel Corporation Optical add and drop multiplexer using ring resonators
CN101840028A (zh) * 2010-04-07 2010-09-22 中国科学院半导体研究所 基于微环谐振器的集成化可重构光插分复用器
CN101840029A (zh) * 2010-04-28 2010-09-22 中国科学院半导体研究所 一种集成化可重构光插分复用器
CN103995318A (zh) * 2014-04-22 2014-08-20 暨南大学 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法
CN106788864A (zh) * 2016-11-28 2017-05-31 广西大学 一种集成化可重构光插分复用器
CN108802907A (zh) * 2017-04-26 2018-11-13 华为技术有限公司 一种可重构光分插复用器
CN109802743A (zh) * 2017-11-17 2019-05-24 海思光电子有限公司 一种上下载滤波器和光分插复用器
CN110095842A (zh) * 2019-04-18 2019-08-06 东北林业大学 基于双环形谐振腔的全光强度调制器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106917B2 (en) * 1998-11-13 2006-09-12 Xponent Photonics Inc Resonant optical modulators
WO2005010582A1 (en) * 2003-07-15 2005-02-03 Massachusetts Institute Of Technology Optical coupled-resonator filters with asymmetric coupling
TWI251393B (en) * 2004-03-31 2006-03-11 Nec Corp Tunable laser
US8655114B2 (en) * 2007-03-26 2014-02-18 Massachusetts Institute Of Technology Hitless tuning and switching of optical resonator amplitude and phase responses
CN101403811B (zh) * 2008-10-10 2010-04-14 东南大学 表面等离子体激元可调谐光学谐振环滤波器
CN101696934B (zh) * 2009-10-26 2011-01-05 浙江大学 一种基于游标效应的级连环形腔光波导传感器
US8606055B2 (en) * 2009-11-06 2013-12-10 Cornell University Pin diode tuned multiple ring waveguide resonant optical cavity switch and method
CN101813805B (zh) * 2010-03-31 2012-01-04 中国科学院半导体研究所 一种双环谐振的四路可重构光插分复用器结构
KR101781011B1 (ko) * 2011-01-21 2017-09-25 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 파면 합성기 시스템
US10447409B2 (en) * 2013-06-21 2019-10-15 Northrop Grumman Systems Corporation Optical channelizer for W-band detection
CN104317068A (zh) * 2014-10-29 2015-01-28 中国科学院半导体研究所 中心波长及滤波带宽独立可调的集成化光滤波器
CN105259614A (zh) * 2015-11-20 2016-01-20 大连民族大学 一种基于环形谐振结构的带通箱型滤波器
US20170187483A1 (en) * 2015-12-29 2017-06-29 Huawei Technologies Co., Ltd. Low transit loss add-drop multiplexing node for all optical networking
CN110161629B (zh) * 2019-04-17 2021-03-30 中山大学 一种基于微环阵列的集成可调光延时线及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928209B2 (en) * 2003-02-15 2005-08-09 Intel Corporation Optical add and drop multiplexer using ring resonators
CN101840028A (zh) * 2010-04-07 2010-09-22 中国科学院半导体研究所 基于微环谐振器的集成化可重构光插分复用器
CN101840029A (zh) * 2010-04-28 2010-09-22 中国科学院半导体研究所 一种集成化可重构光插分复用器
CN103995318A (zh) * 2014-04-22 2014-08-20 暨南大学 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法
CN106788864A (zh) * 2016-11-28 2017-05-31 广西大学 一种集成化可重构光插分复用器
CN108802907A (zh) * 2017-04-26 2018-11-13 华为技术有限公司 一种可重构光分插复用器
CN109802743A (zh) * 2017-11-17 2019-05-24 海思光电子有限公司 一种上下载滤波器和光分插复用器
CN110095842A (zh) * 2019-04-18 2019-08-06 东北林业大学 基于双环形谐振腔的全光强度调制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080797A4

Also Published As

Publication number Publication date
EP4080797A1 (en) 2022-10-26
EP4080797A4 (en) 2023-06-28
CN113093338B (zh) 2022-12-13
CN113093338A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US8655114B2 (en) Hitless tuning and switching of optical resonator amplitude and phase responses
US6301031B2 (en) Method and apparatus for wavelength-channel tracking and alignment within an optical communications system
US10670811B2 (en) Microring resonator control method and apparatus
WO2019095621A1 (zh) 一种上下载滤波器和光分插复用器
WO2022012057A1 (en) Variable bandwidth microring optical filter device and method with frequency tuning
CN113466998B (zh) 一种可调谐光滤波器及应用其的光通信设备
WO2021139580A1 (zh) 一种上下载滤波器、光分插复用器以及波长控制方法
US20050068602A1 (en) Optical add-filtering switching device
US8699834B2 (en) Bandwidth adjustable bandpass filter
JP2005122001A (ja) 波長分散デバイス
Kraemer et al. High extinction ratio and low crosstalk C and L-band photonic integrated wavelength selective switching
Dong et al. A tunable optical channelizing filter using silicon coupled ring resonators
CN110945807B (zh) 光分插复用器及光信号传输方法
AU716060B2 (en) Polarisation-independent, tunable, acousto-optical waveguide device for the wavelength selection of an optical signal
CN113466999B (zh) 光滤波器及应用其的光通信设备
WO2019207487A1 (en) Reconfigurable optical add-drop multiplexer with low power consumption
Van et al. Micro-ring resonator filters
CN111727395B (zh) 光分插复用器及光信号处理方法
CN216144974U (zh) 一种基于光学分形的多信道非周期光子晶体结构
Milanizadeh et al. Polarization-transparent FSR-free microring resonator filter with wide hitless tunability
US20120257130A1 (en) Tunable Wavelength Filter
Popovic et al. General approach to hitless switching and FSR extension resonators in integrated photonic circuits
CN113534299A (zh) 一种基于光学分形的多信道非周期光子晶体结构
Orlandi et al. Tunable bandwidth optical filter in SOI
Liu et al. Low-loss PLC integration of wavelength blockers and monitored VOA-multiplexers for ROADM applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020912214

Country of ref document: EP

Effective date: 20220719

NENP Non-entry into the national phase

Ref country code: DE