CN103995318A - 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法 - Google Patents

微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法 Download PDF

Info

Publication number
CN103995318A
CN103995318A CN201410162616.9A CN201410162616A CN103995318A CN 103995318 A CN103995318 A CN 103995318A CN 201410162616 A CN201410162616 A CN 201410162616A CN 103995318 A CN103995318 A CN 103995318A
Authority
CN
China
Prior art keywords
micro
fiber
nano fiber
port
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410162616.9A
Other languages
English (en)
Other versions
CN103995318B (zh
Inventor
余健辉
陈哲
金绍深
卢惠辉
卫青松
何小莉
唐洁媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
University of Jinan
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201410162616.9A priority Critical patent/CN103995318B/zh
Publication of CN103995318A publication Critical patent/CN103995318A/zh
Application granted granted Critical
Publication of CN103995318B publication Critical patent/CN103995318B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明公开了一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制备方法,该滤波器由微纳光纤环和侧边抛磨光纤所组成,所述微纳光纤环包括环形微纳光纤及与其相连的第一端口和第二端口,所述环形微纳光纤由微纳光纤绕成环形而制成,所述微纳光纤的直径为3~10mm,环形微纳光纤的外径为300~1500mm;所述侧边抛磨光纤是在圆形普通光纤上,其中一段长度为5~30mm的区域设为抛磨区,与抛磨区相连的两端分别为第三端口和第四端口,抛磨区的部分包层被去除,抛磨区的横截面为“D”型,抛磨面与纤芯界面的距离为1~10μm,环形微纳光纤与抛磨面相接触。本发明具有性能稳定、制作简单、成本低廉、结构紧凑等优点。

Description

微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法
技术领域
本发明涉及光纤通信、光纤传感和光信息技术领域,具体是一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制备方法。
背景技术
随着人类社会进入信息时代,作为信息传递主要手段之一的光通信技术取得了突飞猛进的发展。为了克服传统通信系统受到电子电路处理速率限制的瓶颈,充分开发光纤的带宽优势,迫切要求对目前的光纤通信系统进行扩容,而光纤密集波分复用(DWDM)被认为是增加通信传输系统容量以满足日益增长的业务需求的一种行之有效的技术。在DWDM系统节点中有一关键器件 – 光学上下载滤波器(即光分插复用器,OADM),它可以根据需要将网络中的某路(或某几路)信道下载到本地或将本地信号上载到网络中,在光域上实现对网络容量的分配与管理。它使光纤通信网具有灵活性、选择性和透明性等优越功能。利用OADM还能提高网络的可靠性,降低节点成本,提高网络运行效率,因此是组建全光网的关键技术之一。
2003年,童利民在Nature上发表了基于微纳光纤结构以及传输光场的论文,证明了光场在微纳光纤中传输的可能性,并提出用微纳光纤可制作微纳光纤环以实现环型谐振腔的功能。近年来环型谐振腔(直径从几十微米到几百微米)在基础科学研究领域和光子学集成应用领域均引起了人们越来越广泛的关注,基于环型谐振腔的光学滤波器已经被广泛研究,其种类有:第一类是基于微机电系统技术制作的光分插复用器(如CN 1396738 A);第二类是基于环形谐振腔的可调光学滤波器(如CN 101046531 A);第三类是基于二维光子晶体表面模的微环共振滤波器(如CN 101697023 A);第四类是多重嵌入式微型谐振腔滤波器(如CN 101915963 A)。以上专利均能实现良好的滤波特性,但其制作工艺比较复杂。
发明内容
为了克服已有基于环形谐振腔的滤波器制作困难的不足,本发明提供一种制作简单的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器。
本发明还提供上述光学上下载滤波器的制作方法。
本发明的目的是这样实现的:
一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,其特征在于该滤波器由微纳光纤环和侧边抛磨光纤所组成,所述微纳光纤环包括环形微纳光纤及与其相连的第一端口和第二端口,所述环形微纳光纤由微纳光纤绕成环形而制成,所述微纳光纤的直径为3~10mm,环形微纳光纤的外径为300~1500mm;所述侧边抛磨光纤是在圆形普通光纤上,其中一段长度为5~30mm 的区域设为抛磨区,与抛磨区相连的两端分别为第三端口和第四端口,抛磨区的部分包层被去除,抛磨区的横截面为“D” 型,抛磨面与纤芯界面的距离为1~10μm,环形微纳光纤与抛磨面相接触。频率分量丰富的光信号通过第一端口输入到滤波器结构中,其中满足谐振条件的光信号在谐振腔内形成谐振,最终在第三端口输出,实现了本地信号的下载;其余频率分量的光信号由于不满足谐振条件,沿着第二端口输出;对于本地上传的光信号在第四端口输入,光信号经由侧边抛磨光纤与环形微纳光纤接触部分耦合进环形微纳光纤,一部分频率分量满足谐振条件在环形微纳光纤内形成谐振,这部分信号最终在第二端口输出,实现了本地信号的上载。
进一步的,环形微纳光纤与侧边抛磨光纤的抛磨面相垂直,环形微纳光纤的轴向与抛磨区的光纤轴向相垂直。
进一步的,环形微纳光纤为单结型。
一种微纳光纤环与侧边抛磨光纤耦合的上下载滤波器的制作方法,其特征在于包括下列步骤:
(1)将一段圆形普通光纤拉制成光纤拉锥区直径为3~10mm、长度为1~3cm的微纳光纤;将拉制好的微纳光纤绕制成环外径为300~1500mm的单结型环形微纳光纤,在环靠近结点处设置一根金属微丝进行辅助固定;环形微纳光纤的两端分别为第一端口和第二端口;
(2)对另一段圆形普通光纤抛磨处理成侧边抛磨光纤,抛磨区的总长度为5~30mm,抛磨区的横截面为“D” 型,抛磨面与纤芯界面的距离为1~10μm;侧边抛磨光纤的两端分别为第三端口和第四端口;
(3)将环形微纳光纤与抛磨面相接触,环形微纳光纤与侧边抛磨光纤的抛磨面相垂直,环形微纳光纤的轴向与抛磨区的光纤轴向相垂直;
(4)将第一端口连接至光源,在第三端口和/或第四端口进行光谱检测,调节微纳光纤环与侧边抛磨光纤的相对位置使微纳光纤环与侧边抛磨光纤达到较强的耦合,然后用封装材料对环形微纳光纤及抛磨区进行固定。将光学上下载滤波器接入测试系统时,由可调激光光源TLS发出波长范围为1520nm-1620nm的连续光通过第一端口进入器件,然后利用光谱分析仪OSA测量器件第二端口、第三端口以及第四端口的光谱,当第二端口、第三端口测量的光谱曲线出现周期性的谐振峰时,则表明微纳光纤环与侧边抛磨光纤已经发生共振耦合,且产生了上下载的滤波功能。
进一步的,步骤(1)拉制时采用明火加热。
进一步的,所述圆形普通光纤为单模光纤。
在 Marcatili 提出微环波导结构后,人们就已经注意到了其优异的滤波特性。对于现今超大容量的通信系统,由微环的滤波特性而实现的上下载器件其设计简便,结构紧凑,易于实现阵列结构。接着,微环结构被大量的应用于设计与制作 Add/drop 滤波器。同时,微环结构还可被设计成全通滤波器,其能够实现相位滤波、色散补偿等功能,因此基于微环(环形谐振器)的滤波器备受关注,但是这类器件制作工艺复杂,实用化价值不高。目前仍未见利用微纳光纤环与侧边抛磨光纤耦合实现光学上下载滤波器的报道和专利。
与现有技术相比,本发明具有如下有益效果:
(1)   微纳光纤环可采用单结型或非结型,采用单结型微纳光纤环与侧边抛磨光纤进行耦合;器件更加牢固,性能更稳定。
(2)   制作简单,成本低廉。
(3)   结构紧凑,实用化价值高。器件是将微纳光纤环与侧边抛磨光纤进行直接耦合制备而成,侧边抛磨光纤不仅作为耦合元件,也同时作为微纳光纤环的支撑平台,该器件具有结构紧凑的优点,为微纳光纤器件与标准光纤集成提供了可能性,大大缩短了微纳光纤器件实用化的进程。
附图说明
图1是本发明的一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器结构的示意图;
图2是本发明的另一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器结构的示意图;
图3是本发明微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器的侧边抛磨光纤抛磨区的示意图;
图4是制备的一个微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器的显微镜照片;
图5是按实施例1制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器下载滤波功能的测试结果;
图6是按实施例1制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器上载滤波功能的测试结果;
图7是按实施例2制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器下载滤波功能的测试结果;
图8是按实施例2制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器上载滤波功能的测试结果;
图9是按实施例3制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器下载滤波功能的测试结果;
图10是按实施例3制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器上载滤波功能的测试结果;
图11是按实施例4制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器下载滤波功能的测试结果;
图12是按实施例5制备的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器下载滤波功能的测试结果。
具体实施方式
如附图1所示,一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,由微纳光纤环和侧边抛磨光纤所组成。微纳光纤环包括环形微纳光纤5及与其相连的第一端口1和第二端口2,而侧边抛磨光纤包括第三端口3和第四端口4及抛磨区6,抛磨区6与环形微纳光纤5相接触。图1所示结构的环形微纳光纤由圆形普通光纤拉制成锥形,当然,整个微纳光纤环均可由微纳光纤构成,如图2所示。
图3是侧边抛磨光纤的结构示意图,其包括抛磨区6,其又分为平坦区61和过渡区62,当抛磨深度7接近纤芯时,停止继续抛磨,抛磨面与纤芯界面的距离即剩余包层厚度63为1~10μm。抛磨区横截面类似于“D” 型光纤。
在第一端口1输入光源进行在线监测,观察微纳光纤环与侧边抛磨光纤的相对位置并进行调节,使微纳光纤环与侧边抛磨光纤紧密接触并实现耦合,制作的光学上下载滤波器的显微镜照片如附图4所示。
以下实施例的光学上下载滤波器均采用图1所示结构。
实施例1
环形微纳光纤5的直径为6mm、环外径为300mm、侧边抛磨光纤抛磨区的长度为10mm,剩余包层厚度63为6μm。在器件中的第一端口1输入中心波长1577.5nm、具有一定频谱宽度的光源,经由环形微纳光纤5、第二端口2传输,在经过环形微纳光纤5与抛磨面6时,部分满足谐振条件的输入光波在环形谐振腔内形成谐振,在第三端口3输出,实现了下载滤波功能,用光谱仪测量第三端口3的光谱,其结果如附图5所示。图5中包括两个y轴,两条曲线分别对应于两个y轴,用圆圈及箭头指向来说明(下同)。在第四端口4输入中心波长1577.5nm、具有一定频谱宽度的光源,经由环形微纳光纤5、第三端口3传输,在经过环形微纳光纤5与抛磨面6时,部分满足谐振条件的输入光波在环形谐振腔内形成谐振,在第二端口2输出,实现了上载滤波功能,用光谱仪测量第二端口2的光谱,其结果如附图6所示。由附图5、6可见,本实施例的器件可以实现良好的光学上下载功能。
实施例2
与实施例1不同的是,环形微纳光纤的外径为900mm,在器件中的第一端口1输入中心波长1575nm、具有一定频谱宽度的光源,用光谱仪测量第三端口3的光谱,其结果如附图7所示。在第四端口4输入中心波长1575nm、具有一定频谱宽度的光源,用光谱仪测量第二端口2的光谱,其结果如附图8所示。由附图7、8可见,本实施例的器件可以实现良好的光学上下载功能。
实施例3
与实施例1不同的是,环形微纳光纤的外径为1500mm,在器件中的第一端口1输入中心波长1572.5nm、具有一定频谱宽度的光源,用光谱仪测量第三端口3的光谱,其结果如附图9所示。在第四端口4输入中心波长1572.5nm、具有一定频谱宽度的光源,用光谱仪测量第二端口2的光谱,其结果如附图10所示。由附图9、10可见,本实施例的器件可以实现良好的光学上下载功能。
实施例4
与实施例1不同的是,图1中微纳光纤的直径为3mm、环外径为500mm,抛磨区的长度为5mm,剩余包层厚度63为1μm,在器件中的第一端口1输入中心波长1550nm、具有一定频谱宽度的光源,用光谱仪测量第三端口3的光谱,其结果如附图11所示。由附图11可见,本实施例的器件可以实现良好的光学上下载功能。
实施例5
与实施例1不同的是,图1中微纳光纤的直径为10mm、环直径为600mm,抛磨区的长度为30mm,剩余包层厚度63为10μm,在器件中的第一端口1输入中心波长1555nm、具有一定频谱宽度的光源,用光谱仪测量第三端口3的光谱,其结果如附图12所示。由附图12可见,本实施例的器件可以实现良好的光学上下载功能。

Claims (7)

1.一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,其特征在于该滤波器由微纳光纤环和侧边抛磨光纤所组成,所述微纳光纤环包括环形微纳光纤及与其相连的第一端口和第二端口,所述环形微纳光纤由微纳光纤绕成环形而制成,所述微纳光纤的直径为3~10mm,环形微纳光纤的外径为300~1500mm;所述侧边抛磨光纤是在圆形普通光纤上,其中一段长度为5~30mm 的区域设为抛磨区,与抛磨区相连的两端分别为第三端口和第四端口,抛磨区的部分包层被去除,抛磨区的横截面为“D” 型,抛磨面与纤芯界面的距离为1~10μm,环形微纳光纤与抛磨面相接触。
2.根据权利要求1所述的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,其特征在于环形微纳光纤与侧边抛磨光纤的抛磨面相垂直,环形微纳光纤的轴向与抛磨区的光纤轴向相垂直。
3.根据权利要求2所述的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,其特征在于环形微纳光纤为单结型。
4.根据权利要求3所述的微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器,其特征在于圆形普通光纤为单模光纤。
5.一种微纳光纤环与侧边抛磨光纤耦合的上下载滤波器的制作方法,其特征在于包括下列步骤:
(1)将一段圆形普通光纤拉制成光纤拉锥区直径为3~10mm、长度为1~3cm的微纳光纤;将拉制好的微纳光纤绕制成环外径为300~1500mm的单结型环形微纳光纤,在环靠近结点处设置一根金属微丝进行辅助固定;环形微纳光纤的两端分别为第一端口和第二端口;
(2)对另一段圆形普通光纤抛磨处理成侧边抛磨光纤,抛磨区的总长度为5~30mm,抛磨区的横截面为“D” 型,抛磨面与纤芯界面的距离为1~10μm;侧边抛磨光纤的两端分别为第三端口和第四端口;
(3)将环形微纳光纤与抛磨面相接触,环形微纳光纤与侧边抛磨光纤的抛磨面相垂直,环形微纳光纤的轴向与抛磨区的光纤轴向相垂直;
(4)将第一端口连接至光源,在第三端口和/或第四端口进行光谱检测,调节微纳光纤环与侧边抛磨光纤的相对位置使微纳光纤环与侧边抛磨光纤达到较强的耦合,然后用封装材料对环形微纳光纤及抛磨区进行固定。
6.根据权利要求5所述的制作方法,其特征在于所述圆形普通光纤为单模光纤。
7.根据权利要求5所述的制作方法,其特征在于步骤(1)拉制时采用明火加热。
CN201410162616.9A 2014-04-22 2014-04-22 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法 Expired - Fee Related CN103995318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410162616.9A CN103995318B (zh) 2014-04-22 2014-04-22 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410162616.9A CN103995318B (zh) 2014-04-22 2014-04-22 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法

Publications (2)

Publication Number Publication Date
CN103995318A true CN103995318A (zh) 2014-08-20
CN103995318B CN103995318B (zh) 2016-08-17

Family

ID=51309531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410162616.9A Expired - Fee Related CN103995318B (zh) 2014-04-22 2014-04-22 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法

Country Status (1)

Country Link
CN (1) CN103995318B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155246A (zh) * 2014-08-26 2014-11-19 中国海洋大学 海水盐度的检测装置与方法
CN105244757A (zh) * 2015-11-13 2016-01-13 重庆大学 一种基于侧边抛磨光纤为载体和传输通道的微激光器及其制备方法和应用
CN106094099A (zh) * 2016-06-13 2016-11-09 重庆大学 基于四芯螺旋光纤的光纤光镊及其制作方法
CN106785861A (zh) * 2017-03-01 2017-05-31 太原理工大学 基于石墨烯微腔锁模的高重频超短脉冲产生方法及装置
CN107526135A (zh) * 2017-10-19 2017-12-29 兰州大学 基于微纳光纤环形谐振器的上下载滤波器及其制作方法
CN108426533A (zh) * 2018-04-12 2018-08-21 南昌航空大学 一种用于检测微纳光纤直径的传感器及其制作方法
CN109061803A (zh) * 2018-08-02 2018-12-21 中国电子科技集团公司第十研究所 一种光纤滤波器
CN110376680A (zh) * 2019-07-30 2019-10-25 南京邮电大学 一种全光纤偏振分束器的制备方法
CN110448268A (zh) * 2018-05-08 2019-11-15 南京大学 基于光学微光纤的健康监测传感器及制备方法和测量系统
WO2021139580A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种上下载滤波器、光分插复用器以及波长控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989422A2 (en) * 1998-09-24 2000-03-29 Lucent Technologies Inc. Tapered optical fiber devices with variable index coatings for modifying guide properties of the fundamental mode
CN201039195Y (zh) * 2007-05-15 2008-03-19 福州大学 锥光纤环形腔光交叉波分复用器
CN101210978A (zh) * 2007-12-24 2008-07-02 天津大学 宽带可调谐光纤带通滤波器
CN203965664U (zh) * 2014-04-22 2014-11-26 暨南大学 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989422A2 (en) * 1998-09-24 2000-03-29 Lucent Technologies Inc. Tapered optical fiber devices with variable index coatings for modifying guide properties of the fundamental mode
CN201039195Y (zh) * 2007-05-15 2008-03-19 福州大学 锥光纤环形腔光交叉波分复用器
CN101210978A (zh) * 2007-12-24 2008-07-02 天津大学 宽带可调谐光纤带通滤波器
CN203965664U (zh) * 2014-04-22 2014-11-26 暨南大学 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155246A (zh) * 2014-08-26 2014-11-19 中国海洋大学 海水盐度的检测装置与方法
CN105244757A (zh) * 2015-11-13 2016-01-13 重庆大学 一种基于侧边抛磨光纤为载体和传输通道的微激光器及其制备方法和应用
CN105244757B (zh) * 2015-11-13 2018-07-17 重庆大学 一种基于侧边抛磨光纤为载体和传输通道的微激光器及其制备方法和应用
CN106094099A (zh) * 2016-06-13 2016-11-09 重庆大学 基于四芯螺旋光纤的光纤光镊及其制作方法
CN106785861A (zh) * 2017-03-01 2017-05-31 太原理工大学 基于石墨烯微腔锁模的高重频超短脉冲产生方法及装置
CN107526135B (zh) * 2017-10-19 2019-05-03 兰州大学 基于微纳光纤环形谐振器的上下载滤波器及其制作方法
CN107526135A (zh) * 2017-10-19 2017-12-29 兰州大学 基于微纳光纤环形谐振器的上下载滤波器及其制作方法
CN108426533A (zh) * 2018-04-12 2018-08-21 南昌航空大学 一种用于检测微纳光纤直径的传感器及其制作方法
CN110448268A (zh) * 2018-05-08 2019-11-15 南京大学 基于光学微光纤的健康监测传感器及制备方法和测量系统
CN110448268B (zh) * 2018-05-08 2022-02-08 南京大学 基于光学微光纤的健康监测传感器及制备方法和测量系统
CN109061803A (zh) * 2018-08-02 2018-12-21 中国电子科技集团公司第十研究所 一种光纤滤波器
CN110376680A (zh) * 2019-07-30 2019-10-25 南京邮电大学 一种全光纤偏振分束器的制备方法
WO2021139580A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种上下载滤波器、光分插复用器以及波长控制方法

Also Published As

Publication number Publication date
CN103995318B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103995318A (zh) 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制作方法
US9577410B2 (en) Optical functional integrated unit and method for manufacturing thereof
Cohen et al. Response shaping with a silicon ring resonator via double injection
US8532441B2 (en) Optical device for wavelength locking
CN101840029B (zh) 一种集成化可重构光插分复用器
Robinson et al. Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems
CN101840028A (zh) 基于微环谐振器的集成化可重构光插分复用器
CN101604048B (zh) 一种基于细芯光纤的全光纤滤波器
CN203965664U (zh) 微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器
CN105322438A (zh) 一种基于硅基的窄线宽可调外腔激光器
CN104297854A (zh) 硅基多波长光源及其实现的方法
Heideman et al. Large-scale integrated optics using TriPleX waveguide technology: from UV to IR
CN107526135B (zh) 基于微纳光纤环形谐振器的上下载滤波器及其制作方法
CN101196596A (zh) 基于双环谐振腔的可调光学陷波滤波器
US6934436B2 (en) Thermo-optical switch using coated microsphere resonators
JPH07301711A (ja) テーパ付きファイバデバイスを使用する光ファイバシステム
Romaniuk et al. Multicore optical fiber components
CN101046531A (zh) 基于环形谐振腔的可调光学滤波器
Liu et al. Integrated photonic devices enabled by silicon traveling wave-like Fabry–Perot resonators
EP1174755A2 (en) Acousto-optical fiber bragg grating filter (FBGF)
CN103713411B (zh) 可调谐带通光纤滤波器的制作方法
CN103731210B (zh) 一种用于ase光纤光源的多功能集成器件
CN106200014A (zh) 基于高双折射光子晶体光纤与光纤环的超宽带可调谐微波光子滤波器
CN101694533A (zh) 混合导光型光子晶体光纤的波分复用/解复用器
Villatoro et al. In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20210422