CN101196596A - 基于双环谐振腔的可调光学陷波滤波器 - Google Patents

基于双环谐振腔的可调光学陷波滤波器 Download PDF

Info

Publication number
CN101196596A
CN101196596A CNA2007101762981A CN200710176298A CN101196596A CN 101196596 A CN101196596 A CN 101196596A CN A2007101762981 A CNA2007101762981 A CN A2007101762981A CN 200710176298 A CN200710176298 A CN 200710176298A CN 101196596 A CN101196596 A CN 101196596A
Authority
CN
China
Prior art keywords
waveguide
disc
filter
wave guide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101762981A
Other languages
English (en)
Inventor
刘建胜
郑铮
薛超敏
李昕
樊惠隆
张扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing University of Aeronautics and Astronautics
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNA2007101762981A priority Critical patent/CN101196596A/zh
Publication of CN101196596A publication Critical patent/CN101196596A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于双环形谐振腔的可调光学陷波滤波器,其特征在于该滤波器由输入波导(1)、耦合波导(2)、输出波导(3)、固定环形波导(4)、可调节环形波导(5)、下载波导(6)和上传波导(7)所组成,所述的可调节环形波导,其特征是波导由折射率可调材料组成,两个环形波导处在同一个平面内,且相邻放置,两者的间距不超过一个波长。通过改变可调节环形波导的外部条件来调节其折射率,实现了滤波器工作波长的可调谐性。滤波器结构中各部分波导是单模波导,可调节环形波导的参数通过适当的选择可以使其谐振频率与固定环形波导的谐振频率相同,两者实现共振提高了陷波滤波器的品质因子。本发明实现简单、操作方便、易于集成,陷波品质因子高,可以应用光通信等系统中。

Description

基于双环谐振腔的可调光学陷波滤波器
所属技术领域
本发明涉及光通信器件领域,具体涉及一种集成平面波导、可调谐光学陷波滤波器的设计实现方法,可应用于光通信系统中陷波滤波器和波分(解)复用器件等的设计制作。
背景技术
光滤波器通过对不同波长信号具有不同的透过与反射特性,可以实现对不同波长的光信号的分路或合路。因此可应用于光通信、传感测量等大量光学系统和相关领域的应用和研究中,特别是在光通信领域具有重要的应用前景和价值。对于许多系统的应用往往还需要光滤波器具有一定的可调谐性,即其响应特性可以改变。
目前,人们对信息传输容量的要求越来越高,光通信由于其大容量、高速率、低损耗等优点,已经成为信息传递的主要手段。光波分复用技术的出现进一步提高了系统容量,近些年,随着密集波分复用技术的成熟,光通信系统的传输速率得到进一步提高。无论应用哪一种技术,光滤波器都是必不可少的关键器件。它的主要作用是利用其滤波功能下载传输信道中传给本地节点的特定波长的光信号,以及上传本地发往远程节点的信号。
随着光通信技术的飞速发展,光滤波器的研究日益深入,出现了大量可应用于实际、性能优越的光滤波器。目前已经出现的在实际中有所应用或有潜在应用前景的光学滤波器主要有:F-P腔型光学滤波器、马赫-陈德尔干涉型滤波器、光栅滤波器、介质薄膜滤波器和基于环形谐振腔的光学滤波器等。由于基于微环谐振腔的光学滤波器的微环半径都在微米级,可以实现较大的自由谱范围,在实际中,特别是波分复用光通信系统中有广阔的应用前景,是目前研究的热点。无论滤波器的实现机理如何,都可将光学滤波器分为固定滤波器和可调滤波器两大类。对于基于微环谐振腔的固定光学滤波器,最常见的实现结构就是由两个传输波导和一个环形波导谐振腔组成。最初由于制作工艺的限制,谐振腔是由四个直波导连接而成,在两个直波导的连接处使用弧形波导连接,以此降低谐振腔的损耗。即便采用弧形波导连接,这种结构的波导弯曲损耗仍然比较大。随着制作工艺的发展,特别是微机械加工和纳米技术的发展,已经可以实现半径足够小的环形波导,从而使得环形谐振腔的弯曲损耗大大降低。后来随着基于环形谐振腔的光学滤波器在实际中应用的逐步深入,研究人员发现,仅由一个环形谐振腔组成的滤波器结构在某些波长处的衰减不够快、不够大。为了解决这个问题,研究人员提出了高阶环形谐振腔光学滤波器,这种滤波器是将多个微环谐振腔串联在一起,从而提高了在工作波长处的衰减速度和衰减值。工作波长固定的滤波器技术已经非常成熟,但要实现对不同波长的操作,特别是在DWDM系统应用越来越广泛的情况下,必须使用多个固定滤波器来实现,操作非常不方便,必将在实际应用中受到极大的限制。而由于可调滤波器可以方便地实现对工作波长的调谐且性能优越,因而在光通信系统中有着广阔的应用前景。
光可调滤波器的可调谐性可以通过改变滤波器的物理尺寸或结构、调节滤波器组成部分的有效折射率等方法来实现。由于改变滤波器物理尺寸或结构的方法在实际应用中操作不方便,因而调节有效折射率的方法成为研究的主流,目前出现的很多调谐方法都是基于有效折射率的调节。一些具体的实现方法包括:改变传输波导和谐振腔的间距、改变外部电介质板和滤波器的距离、改变滤波器结构中某个组成部分周围的电场、温度等方法。其中,调节传输波导和谐振腔间距改变两者之间的耦合度,可以实现滤波器的可调谐性[1]。改变外部电介质板和滤波器的距离实现可调[2]的原理则是在电介质板和滤波器的距离较近时,由光学材料制成的电介质板可以对滤波器中微环谐振腔的渐逝场产生影响,实现滤波器的可调谐性。这两种方法可以在一定范围内实现对滤波器工作波长的调谐,但两种结构中都应用了机械动力装置,操作不方便、不灵活,可调谐范围相对有限。另外,由于机械动力装置的应用,使得这种结构的调谐速度较慢,因而在实际应用中会受应用场合的限制。通过在滤波器结构中的传输波导平面以上覆盖一层向列液晶材料作为滤波器的包层,然后在液晶材料的两端加上两个电极,电极加电后通过电场改变液晶材料的排列方式,从而改变滤波器结构的有效折射率的方法[3]以及通过温度直接调节硅或其它波导材料折射率的方法[4],只需改变电极两端的电压或温度等条件即可,与前述应用机械动力装置的滤波器结构相比操作方便,而且具有较大的自由谱范围,可以复用更多的传输信道,实现方便、简单、易于操作,且可以实现较大的可调谐范围,在实际应用中有广阔的应用前景。
信号处理中经常用到陷波滤波器,陷波滤波器是指能通过大多数频率分量但将很窄范围内的频率分量衰减到极低水平的滤波器。常用来滤除系统中不需要的信号,或者是滤除干扰,以获得有用的信息。常见的陷波滤波器有声表面波(SAW)陷波滤波器,但在实际中陷波滤波器并没有得到广泛的应用,主要原因是陷波带宽太窄,温度漂移和制作工艺难以保证。在本结构中通过适当设计可以使得陷波滤波器的阻带宽度很小,而且在阻带范围内可以实现很大的衰减,提高陷波滤波器的品质因子。而且结构基于平面波导加工技术,环形波导和线性波导的制作工艺都比较成熟,因而较易实现。
本发明属于改变滤波器的有效折射率的范畴。通过调节放置在环形谐振腔内部的可调节环形波导的折射率调节滤波器的有效折射率。和本发明中所设计的滤波器结构相比,前述将液晶材料作为整个滤波器包层的结构,对加工工艺要求比较高,实现相对困难。而对于本发明中的结构,两个环形波导处在同一个平面内,使用平面波导加工技术可以方便地在实际中具体实现。上述通过温度实现滤波器可调节性的方法以及其它一些可调谐方法[5],是通过外部条件直接改变传输波导本身的折射率或其它特性来实现波长可调谐性。对于这类滤波器由于实现波导的材料往往难以同时具备较大的折射率变化系数和良好的波导特性,因此该方法往往难以实现较大范围的调节。本发明中的可调滤波器结构则是通过改变传输波导外围器件或材料的折射率来实现对滤波器有效折射率的调节,对光信号在波导中的传输特性影响较小,且由于波导材料与可调材料可采用不同的选择,因此可能实现较大的调谐范围。通过调节内部可调节环形波导的材料或者尺寸,使得可调节环形波导的谐振波长与固定环形波导的某一阶谐振波长相同,此时输入的光信号在两个环形波导内同时形成谐振,增加了输出端口处工作频率信号的衰减度,提高了滤波器的抑制度,从而提高了陷波滤波器的品质因子。而且所涉及到的滤波器结构简单,在实际中加工制作技术已经成熟,实现方便。总之,本实现方法实现简单、操作方便、易于集成,可以实现较大的可调范围且具有较高的品质因子。
[1]Ming-Chang M.Lee,Ming C.Wu. A Reconfigurable add-drop filter using MEMS-actuatedmicro-disk resonator.Optical MEMS and Their Applications Conference,2005.IEEE/LEOSInternational Conference on Aug. 1-4,2005 Page(s):67-68.
[2]Gregory N.Nielson,Dilan Seneviratne,Francisco Lopez-Royo et al.Integratedwavelength-selective optical MEMS switching using ring resonator filters.IEEE PhotonicsTechnology Lett[J].2005,17(6):1190-1192.
[3]Brett Maune,Rhys Lawson,Cary Gunn et al.Electrically tunable ring resonators incorporatingnematic liquid crystals as cladding layers.Appl.Phys.Lett.[J],2003,83(23):4689-4691.
[4]Douwe H.Geuzebroek,Edwin J.Klein,Henry Kelderman et al.Wavelength-selective switchusing thermally tunable micro-ring resonators.Microresonators as Building Blocks for VLSIPhotonics:International School of Quantum Electronics,39th course.413-414.
[5]Y.K.Fetisov,G.Srinivasan.Electric field tuning characteristics of a ferrite-piezoelectircmicrowave resonator.Appl.Phys.Lett.[J],2006,88(14)143503(1)-143503(3).
发明内容
技术问题
本发明是提供一种可调谐的光学陷波滤波器,解决光学滤波器可调谐性的实现问题,并且提高了陷波滤波器的品质因子,同时解决了陷波滤波器加工制作困难的问题。它结构简单、体积小、易于集成、插入和耦合损耗低,具有可调谐性实现简单、操作方便、稳定性高以及品质因子Q高等突出优点。
技术方案
一种可调的光学滤波器,该滤波器由输入波导(1)、耦合波导(2)、输出波导(3)、固定环形波导(4)、可调节环形波导(5)、下载波导(6)和上传波导(7)所组成,如附图1所示。频率分量丰富的光信号通过输入波导输入到滤波器结构中,在通过耦合波导时,光信号耦合进环形波导,其中满足谐振条件的光信号在环形波导内形成谐振,在下载端输出,实现了本地信号的下载。其余频率分量的光信号由于不满足谐振条件,仍沿着输出波导输出,传往远端节点。考虑到此滤波器结构中的对称性,任一端口都可作为信号的输入端口,其余三个端口分别实现其它相应的功能。耦合波导部分由部分传输波导与环形波导的一部分构成,在耦合区内,两波导之间的距离应较小,以能够保证足够的耦合度,同时兼顾结构的可加工性。结构中,环形波导作为光学谐振腔,两个环形波导处在同一个平面内且相邻放置,两者之间的间隙应小于一个波长,以实现明显的可调节性。环形波导之间较大的间隙会显著降低可调谐范围,因而应该尽量减小两者之间的间隙。在内部环形波导的两个端面可放置电极、加热装置、压力装置等,改变环形波导的温度、电压等外部条件,从而改变材料的介电特性。
在前面所述的可调光学滤波器中,工作波长的可调谐性是通过在环形波导的内部放置由折射率可调材料制成的另一个环形波导来实现的。利用外部条件的改变可调节环形波导的折射率,使得环形谐振腔周围材料的介电特性发生改变,影响了环形波导中的模式和场分布,进而环形波导的有效折射率发生变化。根据谐振波长、自由谱范围与有效折射率之间的关系λm=2πneR/m,fFSR=c/nel,环形谐振腔的谐振波长和自由谱范围发生改变,从而使得滤波器的工作波长改变,实现了滤波器的可调谐性。
所述的内部可调环形波导的材料可以是电光材料、磁光材料,以及介电特性和温度、压力有关的材料等。滤波器结构中所述的传输波导和环形波导对于工作波长为单模波导,且波导材料和衬底的折射率差较大,使得波导具有较高的传输效率;环形波导半径在微米量级,以保证较大的自由光谱范围,同时环形波导还应具有较低的弯曲损耗,以减小滤波器的插入损耗。
本发明中所述的结构应用作陷波滤波器时实现较高品质因子Q是通过设置两个相邻放置的环形波导的结构参数和材料组成来实现的,通过调节内部环形波导的折射率、调节内部环形波导的结构参数或者两者同时调节使得两个环形谐振腔在某一个输入频率处同时实现共振,此时输入信号输入到所述的结构中时会在两个谐振腔同时谐振,因而在输出端输出时的衰减非常大,提高了基于此结构的陷波滤波器的品质因子。
本发明是一种基于环形可调谐振腔的光学滤波器,其可调谐性是通过折射率可调材料影响环形谐振腔的模式和场分布,改变其有效折射率来实现的。由于不同模式的光信号在波导中的有效折射率不同,结构中,传输波导对于工作波长应为单模波导,以保证滤波器的可调节范围。适当选择输入波导和环形波导之间的距离,保证足够的耦合度,同时兼顾结构的可加工性。在谐振腔的内部放置折射率可调的电介质材料制成的环形波导,来调节谐振腔的谐振波长和自由谱范围。两个环形波导在一个平面内,两者之间的距离较小,以确保实现最大的调节范围。在实际应用中利用现有的平面波导加工技术完全可以实现这种结构。总之,这种可调节性光学滤波器结构简单、易于实现,在可调节环形波导周围电极或其它装置,便可改变其介电特性,操作方便。因此,该结构具有尺寸小、结构简单、耦合和输入损耗低、易于加工、有较高的品质因子、易于集成和使用等优点。
附图说明
图1:本发明中滤波器的结构框图:其中1、输入波导;2、耦合波导;3、输出波导;4、固定环形波导;5、可调节环形波导;6、下载波导;7、上传波导
图2:具体实施方式中对应陷波滤波器结构的平面图
图3:在1520nm波长附近,可调环形波导折射率不同时可调谐光学滤波器对应的透射曲线。
图4:两个谐振腔的谐振频率相同时光学滤波器的透射曲线与谐振频率不匹配时透射曲线的对比图。
具体实施方式
该可调陷波滤波器结构的一种具体实施方式:该滤波器结构由输入波导、耦合波导、输出波导、固定环形波导、可调节环形波导、下载波导和上传波导所组成,具体结构如附图2所示。输入波导依次与耦合波导、输出波导相连,环形波导作为光学谐振腔分别和两个耦合波导相连,下载波导依次与耦合波导、上传波导相连,可调节环形波导实现对谐振腔有效折射率的调节,进而实现对滤波器工作波长的调节。中心波长为1520nm的具有一定频谱宽度的高斯调制波由图2中所示的输入波导端输入,经由耦合波导、输出波导传输,在经过耦合波导时,部分满足谐振条件的输入波在谐振腔内形成谐振,在下载波导端输出,实现了滤波功能。本发明中滤波器结构的可调谐性原理是通过改变可调节环形波导材料的折射率,影响光学谐振腔的模式和场分布,从而改变了光学谐振器的有效折射率,根据公式λm=2πneR/m,fFSR=c/nel(其中λm为谐振腔的m阶谐振波长,fFSR为谐振腔的自由谱范围)可知,有效折射率的改变使得谐振腔谐振频率发生改变,从而实现了滤波器工作波长的调谐。
结构中传输波导和固定谐振腔的波导均采用SOI材料,SOI波导材料和衬底的折射率比为3.5/1.5,较高的衬底/材料折射率比可以降低波导的传输损耗,同时将波导的弯曲损耗降到可以忽略的水平。另外,较窄的传输波导可以提高系统的传输效率,增大滤波器的Q值,因而将矩形波导和环形波导的宽度设为500nm,厚度为200nm,长度为50μm。传输波导和环形波导之间的距离设置为0,以保证足够的耦合度。可调节环形谐振腔与固定谐振腔两者之间的距离越近,折射率可调环形波导对固定谐振腔中的模式和场分布的影响越明显,可实现的调谐范围越大,因而两者之间的距离应不大于一个输入波长。在本实施例中,两个环形谐振腔处在同一个平面内,易于使用平面波导加工技术进行加工制作。两个环形波导之间的距离为0.2μm,以保证两者之间较强的耦合作用,增大滤波器在谐振频率处的衰减。
滤波器的自由谱范围必须大于光学通信系统中的通信窗口,即大于单个传输信道的带宽,这样可以实现对某一个信道中传输波长进行处理而不影响其他传输信道。对于微环谐振腔,由公式fFSR=c/nel可知环的半径越小其自由谱范围越大,因而微环谐振腔的半径应尽量小。在本结构两个环形谐振腔的半径分别设置为10,9.3微米,可以满足实际中的应用要求而且保证了在谐振频率处较大的衰减度,也兼顾了加工的难易程度。
另外一个关键的问题是实现滤波器可调节性的电光材料的选取,电光晶体(固体或液体)在外加电场中,随着电场强度E的改变,晶体的折射率会发生改变,这种现象称为电光效应。通常将电场引起的折射率的变化用下式表示: n = n 0 + aE 0 + bE 0 2 + · · · · · · , 式中a和b为常数,n0为E0=0时的折射率。目前已经发现的电光材料的种类很多,包括无机材料、半导体材料和聚合物材料等。对于电光材料,材料的品质因子n3r/ε要大,它决定了电光效应的大小;而材料还应具有较低的低频介电常数以实现较高的调谐速度。在本结构中,通过适当的设置可调环形波导的折射率RI,当RI=n1时可以实现两个环形谐振腔谐振频率的重叠,因而n1必须处在所选取的电光材料的折射率变化范围之内,这样即可以保证较高的品质因子,同时通过改变环形波导的折射率可以实现结构的可调节性。通过多次试验,选择可调节环形波导的折射率在2.5118左右,此时可以实现两个环形谐振腔谐振频率的匹配,同时调节波导的折射率也可以得到较明显的陷波滤波器阻带可调性。
使用上述条件进行数值仿真,在设置仿真参数时,波导材料的折射率设为2.5985,使得所设计的滤波器中波导的TE模在1550nm波长处的有效折射率为2.38,和实际SOI波导中的TE模式有效折射率相同(在1550nm波长附近的有效折射率为2.38),滤波器结构中衬底为SiO2,其折射率为1.5。仿真结果具体如图3,4所示。图3是上述陷波滤波器透过率曲线随可调谐环形波导折射率的变化情况示意图,通过透射曲线可以观测到滤波器结构的工作波长、带宽和透过率等性能指标。图4是两个环形谐振腔形成共振与未形成共振时陷波滤波器的透过率曲线对比图,实线是两个谐振腔共振时在1520nm波长附近的透射曲线,虚线是未形成共振时陷波滤波器在1520nm附近的透射曲线。对上述仿真结果进行分析可以发现,在光通信系统的工作波长1520nm附近,在可调环形波导周围加上电场,当可调节环形波导的折射率变化范围为40.05时,可以实现的谐振腔谐振波长的变化范围在1nm左右,即滤波器的工作波长的可调谐范围是1nm,所对应的频率可调谐范围约为125GHz。而通过调节可调环形波导的折射率等结构参数实现两个环形谐振腔共振后,其阻带频率在输出端的衰减增加了将近40dB,因而滤波器的品质因子大大提高。

Claims (7)

1.一种可调谐的、具有较高品质因子的光学陷波滤波器,其特征在于该滤波器由输入波导、耦合波导、输出波导、固定环形波导、可调节环形波导、下载波导和上传波导所组成,频率分量丰富的光信号通过输入波导输入到滤波器结构中,在通过耦合波导时,输入的光信号耦合进环形波导制成的两个环形谐振腔,其中满足谐振条件的光信号在谐振腔内形成谐振,最终在下载波导端输出,实现了本地信号的下载;其余频率分量的光信号由于不满足谐振条件,沿着输出波导输出,传往远端节点;对于本地上传的光信号在上传波导端输入,光信号经由耦合波导耦合进环形波导,一部分频率分量满足谐振条件在环形波导内形成谐振,这部分信号最终在输出端输出,实现了本地信号的上传;考虑到此滤波器结构中的对称性,任一端口都可作为信号的输入端口,其余三个端口分别实现其它相应的功能;耦合波导由传输波导的一部分与环形波导的一部分构成,在耦合区内,两波导之间的距离应能够保证足够的耦合度,同时兼顾结构的可加工性;两个环形波导处在同一个平面内,并且相邻放置,两者之间的间隙应小于一个波长。
2.一种用于权利要求1所述的光学陷波滤波器的工作波长的可调谐性的实现方法,其特征在于在固定环形波导的内部放置由折射率可调的材料组成的可调节环形波导,利用外部条件的改变调节环形波导的折射率,由于周围材料的介电特性的改变使得外部固定环形波导的有效折射率发生变化,从而使得滤波器的工作波长改变。
3.权利要求1中所述可调光学陷波滤波器结构中两个环形波导的位置关系,其特征是两者形状相同,放置在同一个平面内,易于使用平面波导加工技术进行制作。由于较大的间隙使得可调谐范围显著降低,因而两个环形波导之间的间隙应不大于一个波长,以实现一定的可调谐范围,两者密接时可以实现最大的可调谐范围。
4.根据权利要求2所述的光学陷波滤波器的可调谐性的实现方法,其特征是可调节环形波导由电光材料制成,在可调节环形波导的外围放置电极,通过电极改变可调节环形波导周围的电场从而改变固定环形波导的折射率,实现对滤波器工作波长的调谐。
5.根据权利要求2所述的光学陷波滤波器的可调谐性的实现方法,其特征是可调节环形波导由温光材料制成,在可调节环形波导的外围放置加热装置,通过改变可调节环形波导周围的温度改变固定环形波导的折射率,从而实现对滤波器工作波长的调谐。
6.根据权利要求2所述的光学陷波滤波器的可调谐性的实现方法,其特征是可调节环形波导由磁光材料制成,在可调节环形波导的外围放置磁场装置,通过改变可调节环形波导周围的磁场改变固定环形波导的折射率,从而实现对滤波器工作波长的调谐。
7.权利要求1中所述的提高光学陷波滤波器品质因子Q的实现方法,其特征是通过调节内部可调节环形波导的材料或者尺寸,使得可调节环形波导的谐振波长与固定环形波导的某一阶谐振波长相同,此时输入的光信号在两个环形波导内同时形成谐振,增加了输出端口处工作频率信号的衰减度,提高了滤波器的抑制度,从而提高了陷波滤波器的品质因子。
CNA2007101762981A 2007-10-24 2007-10-24 基于双环谐振腔的可调光学陷波滤波器 Pending CN101196596A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101762981A CN101196596A (zh) 2007-10-24 2007-10-24 基于双环谐振腔的可调光学陷波滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101762981A CN101196596A (zh) 2007-10-24 2007-10-24 基于双环谐振腔的可调光学陷波滤波器

Publications (1)

Publication Number Publication Date
CN101196596A true CN101196596A (zh) 2008-06-11

Family

ID=39547107

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101762981A Pending CN101196596A (zh) 2007-10-24 2007-10-24 基于双环谐振腔的可调光学陷波滤波器

Country Status (1)

Country Link
CN (1) CN101196596A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813805A (zh) * 2010-03-31 2010-08-25 中国科学院半导体研究所 一种双环谐振的四路可重构光插分复用器结构
CN101915963A (zh) * 2010-07-27 2010-12-15 东南大学 多重嵌入式微型谐振腔滤波器
CN102074777A (zh) * 2011-01-05 2011-05-25 华东师范大学 一种基于微带矩形双环缝谐振器的频率选择性表面结构
CN101726801B (zh) * 2008-10-28 2011-11-02 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN102323645A (zh) * 2011-05-11 2012-01-18 上海大学 基于双环耦合结构的马赫-曾德尔干涉仪型光学陷波器
WO2015143718A1 (zh) * 2014-03-28 2015-10-01 华为技术有限公司 光互连器、光电芯片系统及共享光信号的方法
CN105607190A (zh) * 2016-03-10 2016-05-25 北京邮电大学 一种基于add-drop型的三波导耦合双方形谐振腔的解复用装置
CN113281301A (zh) * 2021-05-13 2021-08-20 桂林电子科技大学 一种圆环-矩形谐振腔结构的折射率、温度传感器
CN114244436A (zh) * 2021-12-17 2022-03-25 西安电子科技大学 一种带宽可变光信号的自适应匹配滤波系统及其匹配方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726801B (zh) * 2008-10-28 2011-11-02 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN101813805A (zh) * 2010-03-31 2010-08-25 中国科学院半导体研究所 一种双环谐振的四路可重构光插分复用器结构
CN101915963B (zh) * 2010-07-27 2014-07-09 东南大学 多重嵌入式微型谐振腔滤波器
CN101915963A (zh) * 2010-07-27 2010-12-15 东南大学 多重嵌入式微型谐振腔滤波器
CN102074777A (zh) * 2011-01-05 2011-05-25 华东师范大学 一种基于微带矩形双环缝谐振器的频率选择性表面结构
CN102074777B (zh) * 2011-01-05 2013-07-17 华东师范大学 一种基于微带矩形双环缝谐振器的频率选择性表面结构
CN102323645A (zh) * 2011-05-11 2012-01-18 上海大学 基于双环耦合结构的马赫-曾德尔干涉仪型光学陷波器
WO2015143718A1 (zh) * 2014-03-28 2015-10-01 华为技术有限公司 光互连器、光电芯片系统及共享光信号的方法
CN105849608A (zh) * 2014-03-28 2016-08-10 华为技术有限公司 光互连器、光电芯片系统及共享光信号的方法
US9829635B2 (en) 2014-03-28 2017-11-28 Huawei Technologies Co., Ltd. Optical interconnector, optoelectronic chip system, and optical signal sharing method
CN105607190A (zh) * 2016-03-10 2016-05-25 北京邮电大学 一种基于add-drop型的三波导耦合双方形谐振腔的解复用装置
CN105607190B (zh) * 2016-03-10 2019-01-18 北京邮电大学 一种基于add-drop型的三波导耦合双方形谐振腔的解复用装置
CN113281301A (zh) * 2021-05-13 2021-08-20 桂林电子科技大学 一种圆环-矩形谐振腔结构的折射率、温度传感器
CN113281301B (zh) * 2021-05-13 2022-10-04 桂林电子科技大学 一种圆环-矩形谐振腔结构的折射率、温度传感器
CN114244436A (zh) * 2021-12-17 2022-03-25 西安电子科技大学 一种带宽可变光信号的自适应匹配滤波系统及其匹配方法

Similar Documents

Publication Publication Date Title
CN101196596A (zh) 基于双环谐振腔的可调光学陷波滤波器
US10459168B2 (en) Optical devices and method for tuning an optical signal
Talebzadeh et al. All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods
US6522795B1 (en) Tunable etched grating for WDM optical communication systems
US20040114867A1 (en) Tunable micro-ring filter for optical WDM/DWDM communication
Alipour-Banaei et al. WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure
JP2000098316A (ja) コアに近接する可変屈折率領域を有するファイバ素子
CN101046531A (zh) 基于环形谐振腔的可调光学滤波器
CN104714310A (zh) 一种可调谐三环级联滤波器
US10324031B2 (en) High index-contrast photonic devices and applications thereof
US20070071394A1 (en) Low loss microring resonator device
Sundar et al. High-efficiency filters for photonic integrated networks: a brief analysis
CN101169501A (zh) 基于双环谐振腔的可调光学色散补偿器
Schwelb All-optical tunable filters built with discontinuity-assisted ring resonators
US20050068602A1 (en) Optical add-filtering switching device
Haldar et al. Theory and design of off-axis microring resonators for high-density on-chip photonic applications
WO2001031387A1 (en) Tunable add/drop filter using side-coupled resonant tunneling
Pan et al. Integrated device for graphene electro-optic modulation and one-dimensional photonic crystal nanobeam cavity wavelength division multiplexing
US11489611B2 (en) Reconfigurable optical add-drop multiplexer with low power consumption
Little et al. Tunable bandwidth microring resonator filters
Dai et al. Bandwidth tunable filter with large bandwidth and wavelength tuning range
CN113433620B (zh) 一种可重构可调谐的光滤波器
WO2018022296A1 (en) Reconfigurable athermal optical filters
Awad Re-shapeable double-hump Bragg-spectrum using a partial-width entrenched-core waveguide
Melloni et al. Experimental investigation on ring resonator based filters in SiON technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication