WO2021139489A1 - 一种600MPa级大规格高强耐蚀抗震钢筋的制备方法 - Google Patents

一种600MPa级大规格高强耐蚀抗震钢筋的制备方法 Download PDF

Info

Publication number
WO2021139489A1
WO2021139489A1 PCT/CN2020/136105 CN2020136105W WO2021139489A1 WO 2021139489 A1 WO2021139489 A1 WO 2021139489A1 CN 2020136105 W CN2020136105 W CN 2020136105W WO 2021139489 A1 WO2021139489 A1 WO 2021139489A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
add
molten steel
rest
amount
Prior art date
Application number
PCT/CN2020/136105
Other languages
English (en)
French (fr)
Inventor
陈伟
张卫强
邓家木
曹建春
胡威
刘林刚
王文锋
Original Assignee
武钢集团昆明钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武钢集团昆明钢铁股份有限公司 filed Critical 武钢集团昆明钢铁股份有限公司
Publication of WO2021139489A1 publication Critical patent/WO2021139489A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of steel manufacturing for construction, and in particular relates to a method for preparing 600MPa-level large-scale high-strength, corrosion-resistant and seismic-resistant steel bars.
  • Hot-rolled ribbed steel bars are the main reinforcement materials for reinforced concrete building structures. They carry stress and strain such as tensile, compressive stress and strain in the structure. They are the most used steel materials in construction engineering structures. At present, buildings in various countries around the world are gradually developing in the direction of large-scale, large-span and earthquake-resistant structures. The development of high-strength and tough seismic-resistant steel bars with good seismic performance, low cost and excellent overall performance has become an important work in the steel industry to improve the technical level and product structure adjustment.
  • 600MPa-grade high-strength steel bars have been well used in the construction industry of developed countries such as Europe, North America, and Australia.
  • the Chinese national standard GB/T 1499.2-2018 adds 600MPa-grade high-strength steel bars, which is conducive to promoting the popularization and application of 600MPa-grade high-strength steel bars in China.
  • 600MPa high-strength steel bars at home and abroad are mainly produced by ordinary microalloying hot-rolling process.
  • a certain amount of vanadium-nitrogen alloy is added to the steel. Due to the expensive vanadium alloy, the production cost is high; in addition, the seismic performance of the steel bar produced by this process is matched. Poor and unstable performance, poor corrosion resistance, restricting the promotion and application of products in earthquake-prone areas and corrosion-prone areas and the improvement of market competitiveness.
  • the purpose of the present invention is to provide a method for preparing 600MPa grade large-size high-strength corrosion-resistant and seismic-resistant steel bars.
  • a method for preparing 600MPa-level large-size high-strength corrosion-resistant and seismic-resistant steel bars includes molten steel smelting, deoxidation alloying, molten steel LF furnace refining, molten steel casting, billet heating, and billet controlled rolling and controlled cooling processes. Specifically include the following steps:
  • step A Deoxidation and alloying: tap the molten steel smelted in step A.
  • silicon-aluminum-calcium block deoxidizer ⁇ ferrosilicon ⁇ silicon manganese alloy ⁇ High-carbon ferromanganese ⁇ high-carbon ferrochrome ⁇ silicon-nitrogen alloy ⁇ vanadium-nitrogen alloy, and add the following substances to the ladle in turn: add the following mass ratio of silicon-aluminum-calcium deoxidizer: Si 32.5wt% according to the amount of 1.0kg/t steel , Ca 15.5wt%, Al 10.5wt%, the rest is Fe and unavoidable impurities; according to the amount of 4.5-7.0kg/t steel , add the following mass ratio of ferrosilicon: Si 73.5wt%, the rest is Fe and Inevitable impurities; according to the amount of 7.4kg/t steel , add the following mass ratio
  • C. LF furnace refining of molten steel hoist the molten steel to the refining station of the LF furnace to connect the nitrogen belt, turn on the nitrogen, and blow the molten steel with nitrogen at a flow rate of 15-20NL/min. Then the lower electrode adopts gears 7-9 Slagging; 3 minutes after electrifying the slag, lift the electrode to observe the slagging situation in the furnace; if the slag sample is thin and dark in color, add lime 3.0-4.0kg/t steel slag, otherwise add pre-melted refined slag 1.0 -2.0kg/t steel adjustment; then temperature measurement, sampling, according to the steel sample and temperature detection results, adding alloy to adjust the molten steel composition and lower electrode heating to ensure that the composition and temperature are qualified; after the refining is completed, the molten steel is softly blown with a small flow of nitrogen , The nitrogen blowing time is 3 minutes, and the nitrogen flow rate is controlled to 15-20NL/min; after the nitrogen blowing is completed, the molten steel covering agent
  • E. Billet heating send the D step billet into a heating furnace with a soaking section temperature of 1070 to 100°C, heat it for 60 minutes, and then push it to a full continuous bar rolling mill for rolling;
  • the E step steel billet is rough-rolled for 6 passes under the rolling condition of 0.4-0.5m/s; after that, it is middle-rolled under the rolling condition of 2.5-3.0m/s. 4 passes; finally 2 passes are finished under the rolling conditions of 8.0-9.0m/s; the finished steel is passed through the half-length long-tube water-cooling device and 1-2 short-tube water-cooling devices Multi-stage hierarchical controlled cooling is carried out, and then the steel bar is naturally air-cooled to room temperature in the cooling bed, and the large-size 600MPa grade high-strength corrosion-resistant and seismic steel bar with a nominal diameter of 32-40mm is obtained.
  • the 600MPa grade large-size high-strength, corrosion-resistant and seismic steel bars prepared by the preparation method include the following chemical components by weight: C 0.24-0.27wt%, Si 0.40-0.55wt%, Mn 1.20-1.35wt%, Cr 0.35-0.40wt% , V 0.110-0.125wt%, S ⁇ 0.040wt%, P ⁇ 0.045wt%, O ⁇ 0.0055wt%, N 0.0230-0.0250wt%, the rest is Fe and unavoidable impurities.
  • the present invention makes full use of precipitation strengthening, fine grain strengthening, multi-phase structure strengthening, etc.
  • Strengthening the produced steel bar has the advantages of excellent and stable mechanical properties, fine and uniform microstructure, good plasticity and toughness, excellent corrosion resistance and excellent seismic performance.
  • the process of the present invention has the characteristics of low production cost, process applicability and strong controllability.
  • the produced steel bar has the advantages of excellent and stable process mechanical properties, fine and uniform microstructure, good plasticity and toughness, excellent corrosion resistance and excellent seismic performance, etc. All indicators are comprehensively superior to European and American steel bar standards and Chinese steel bar standards GB/T 1499.2-2018.
  • the production cost is reduced by more than 30 yuan/t steel compared with the same period in the vanadium microalloying hot rolling process, which improves the product market competitiveness and application range, which is significant Economic and social benefits.
  • the invention provides a method for preparing 600MPa-level large-size high-strength corrosion-resistant and seismic-resistant steel bars, including molten steel smelting, deoxidation alloying, molten steel LF furnace refining, molten steel casting, billet heating, and billet controlled rolling and cooling processes, and specifically includes the following steps:
  • step A Deoxidation and alloying: tap the molten steel smelted in step A.
  • silicon-aluminum-calcium block deoxidizer ⁇ ferrosilicon ⁇ silicon manganese alloy ⁇ High-carbon ferromanganese ⁇ high-carbon ferrochrome ⁇ silicon-nitrogen alloy ⁇ vanadium-nitrogen alloy, and add the following substances to the ladle in turn: add the following mass ratio of silicon-aluminum-calcium deoxidizer: Si 32.5wt% according to the amount of 1.0kg/t steel , Ca 15.5wt%, Al 10.5wt%, the rest is Fe and unavoidable impurities; according to the amount of 4.5-7.0kg/t steel , add the following mass ratio of ferrosilicon: Si 73.5wt%, the rest is Fe and Inevitable impurities; according to the amount of 7.4kg/t steel , add the following mass ratio
  • C. LF furnace refining of molten steel hoist the molten steel to the refining station of the LF furnace to connect the nitrogen belt, turn on the nitrogen, and blow the molten steel with nitrogen at a flow rate of 15-20NL/min. Then the lower electrode adopts gears 7-9 Slagging; 3 minutes after electrifying the slag, lift the electrode to observe the slagging situation in the furnace; if the slag sample is thin and dark in color, add lime 3.0-4.0kg/t steel slag, otherwise add pre-melted refined slag 1.0 -2.0kg/t steel adjustment; then temperature measurement, sampling, according to the steel sample and temperature detection results, adding alloy to adjust the molten steel composition and lower electrode heating to ensure that the composition and temperature are qualified; after the refining is completed, the molten steel is softly blown with a small flow of nitrogen , The nitrogen blowing time is 3 minutes, and the nitrogen flow rate is controlled to 15-20NL/min; after the nitrogen blowing is completed, the molten steel covering agent
  • E. Billet heating send the D step billet into a heating furnace with a soaking section furnace temperature of 1070 to 100°C, heat it for 60 minutes, and then push it to a full continuous bar rolling mill for rolling;
  • the E step steel billet is rough-rolled for 6 passes under the rolling condition of 0.4-0.5m/s; after that, it is middle-rolled under the rolling condition of 2.5-3.0m/s. 4 passes; finally 2 passes are finished under the rolling conditions of 8.0-9.0m/s; the finished steel is passed through the half-length long-tube water-cooling device and 1-2 short-tube water-cooling devices Carry out multi-stage hierarchical controlled cooling, and then the steel bar is naturally air-cooled to room temperature in a cooling bed to obtain a large-size 600MPa high-strength anti-seismic steel bar with a nominal diameter of 32-40mm; in this step, the steel temperature control, rolling passes and controlled cooling parameters It is determined according to different specifications.
  • the second cooling specific water volume in step D refers to the ratio of the total water consumption per unit time in the second cooling zone of the continuous caster to the mass of the cast slab passing through the second cooling zone per unit time, in L/kg, which is continuous casting An indicator of the intensity of the secondary cooling water spray.
  • the tapping temperature of the billet is 1030-1050°C.
  • the temperature of the upper cooling bed of the steel bar after controlled cooling is controlled to be 960-990°C.
  • the length of the long-tube water-cooling section is 2.5 meters
  • the length of the short-tube water-cooling section is 800mm
  • the interval between the long-tube water-cooling section and the short-tube water-cooling section is 200mm
  • the interval between the short-tube water-cooling section is 100mm
  • the pump pressure of the long-tube water-cooling section It is 0.8-1.0MPa
  • the pump pressure of the short pipe water cooling section is 0.6-0.8Mpa.
  • the 600MPa grade large-size high-strength corrosion-resistant and seismic steel bar of the present invention includes the following chemical components by weight: C 0.24-0.27wt%, Si 0.40-0.55wt%, Mn 1.20-1.35wt%, Cr 0.35-0.40wt%, V 0.110- 0.125wt%, S ⁇ 0.040wt%, P ⁇ 0.045wt%, O ⁇ 0.0055wt%, N 0.0230-0.0250wt%, the rest is Fe and unavoidable impurities.
  • Table 1 Process mechanical properties of 600MPa grade large-size high-strength, corrosion-resistant and seismic-resistant steel bars produced by the present invention
  • the rest is Fe and unavoidable impurities
  • pig iron chemical composition: C3.2wt%, Si 0.25wt%, Mn 0.50wt%, P 0.075wt%, S 0.020wt%, the rest is Fe and unavoidable impurities
  • the molten iron at the following temperature and mass ratio is added to the LD converter: molten iron temperature 1280 °C, molten iron composition C 4.2 wt%, Si 0.20wt%, Mn 0.45wt%, P 0.080wt%, S 0.022wt%
  • the rest is Fe and unavoidable impurities
  • after the scrap steel, pig iron and molten iron are mixed into the LD converter they are subjected to conventional top-bottom compounding Blowing, adding conventional lime, light burned dolomite, and magnesite balls to make slag.
  • the amount of lime added is 20kg/t steel
  • the amount of light burned dolomite is 15kg/t steel
  • the amount of magnesite balls added is 1.0kg/t steel.
  • Control the end point carbon content of 0.07wt%, the tapping temperature is 1625°C; before tapping, the ladle is added with the following mass ratio of vanadium-containing pig iron at the amount of 8.0kg/t steel: component C 3.5wt%, Si 0.35wt%, Mn 0.60 wt%, V 1.15wt%, P 0.235wt%, S 0.070wt%, the rest is Fe and unavoidable impurities, vanadium-containing pig iron is added to the ladle and baked for 3 minutes; vanadium-containing pig iron is added and baked before tapping
  • the bottom of the roasted ladle is washed by adding the slag eluting sulfur agent with the following mass ratios according to the amount of 1.4kg/t steel: Al 2 O 3 21.5wt%,
  • step A Deoxidation and alloying: tap the molten steel smelted in step A.
  • silicon-aluminum-calcium block deoxidizer ⁇ ferrosilicon ⁇ silicon manganese alloy ⁇ High-carbon ferromanganese ⁇ high-carbon ferrochrome ⁇ silicon-nitrogen alloy ⁇ vanadium-nitrogen alloy, and add the following substances to the ladle in turn: add the following mass ratio of silicon-aluminum-calcium deoxidizer: Si 32.5wt% according to the amount of 1.0kg/t steel , Ca 15.5wt%, Al 10.5wt%, the rest is Fe and unavoidable impurities; according to the amount of 4.5kg/t steel , add the following mass ratio of ferrosilicon: Si 73.5wt%, the rest is Fe and unavoidable According to the amount of 7.4kg/t steel , add the following mass ratio of silico-man
  • C. LF furnace refining of molten steel the molten steel is hoisted to the refining station of the LF furnace to connect the nitrogen belt, the nitrogen is turned on and the molten steel is blown with nitrogen at a flow rate of 15NL/min, and then the lower electrode uses gears 7-9 for slagging ; After electrifying the slag for 3 minutes, lift the electrode to observe the slagging situation in the furnace; if the slag sample is too thin and the color is darker, add lime 3.0kg/t steel to adjust the slag, otherwise add pre-melted refined slag 1.0kg/t steel Adjust; then measure and sample the temperature, add alloy to adjust the composition of the molten steel and the temperature of the lower electrode according to the steel sample and temperature detection results to ensure that the composition and temperature are qualified; after refining, perform a small flow of soft nitrogen blowing on the molten steel, and the nitrogen blowing time is 3 minutes , The nitrogen flow rate is controlled to 15NL/min; after the nitrogen blowing is
  • step D billet is sent to a heating furnace with a soaking section furnace temperature of 1100°C, heated for 60 minutes, and the billet tapping temperature is 1050°C, and then pushed to a full continuous bar rolling mill for rolling.
  • the E-step steel billet is rough-rolled 6 passes under the rolling condition of 0.5m/s; then 4 passes are middle-rolled under the rolling condition of 3.0m/s ;Finally, two passes are finished under the rolling condition of 9.0m/s; the finished steel is passed through a half-long tube water-cooling section device (length 2.5 meters) and a short-tube water-cooling section device (each (Length 800mm) for multi-stage and hierarchical controlled cooling, the long-tube water-cooling section and the short-tube water-cooling section are separated by 200mm, the pump pressure in the long-tube water-cooling section is 0.8MPa, and the short-tube water-cooling section is 0.6MPa; the temperature of the upper cooling bed of the steel bar is controlled after cooling.
  • a half-long tube water-cooling section device length 2.5 meters
  • a short-tube water-cooling section device each (Length 800mm) for multi-stage and hierarchical controlled cooling, the long-tube water-cooling section and the short
  • a large-size 600MPa grade high-strength, corrosion-resistant and seismic steel bar with a nominal diameter of 32mm and chemical composition with the following weight percentages is obtained: C 0.24wt%, Si 0.40wt%, Mn 1.20wt% , Cr 0.35wt%, V 0.110wt%, S 0.025wt%, P 0.028wt%, O 0.0035wt%, N 0.0230wt%, the rest is Fe and unavoidable impurities.
  • A. Molten steel smelting According to the cold material charging ratio of 90kg/t steel and 30kg/t steel respectively, the following mass ratios of scrap steel (chemical composition: C 0.22wt%, Si 0.52wt%, Mn 1.38wt) are added to the LD converter %, P 0.036wt%, S 0.032wt%, the rest is Fe and unavoidable impurities) and pig iron (chemical composition: C3.4wt%, Si 0.35wt%, Mn 0.62wt%, P 0.085wt%, S 0.032wt%, the rest is Fe and unavoidable impurities); then, according to the 950kg/t steel molten iron charging ratio, the molten iron at the following temperature and mass ratio is added to the LD converter: molten iron temperature 1290°C, molten iron composition C 4.6 wt%, Si 0.32wt%, Mn 0.55wt%, P 0.095wt%, S 0.032wt%, the rest
  • the amount of lime added is 22kg/t steel
  • the amount of light burned dolomite is 18kg/t steel
  • the amount of magnesite balls added is 1.0kg/t steel.
  • Control the end point carbon content of 0.08wt%, the tapping temperature is 1635°C; before tapping, the ladle is added with the following mass ratio of vanadium-containing pig iron according to the amount of 8.0kg/t steel: component C 3.5wt%, Si 0.35wt%, Mn 0.60 wt%, V 1.15wt%, P 0.235wt%, S 0.070wt%, the rest is Fe and unavoidable impurities, vanadium-containing pig iron is added to the ladle and baked for 3 minutes; vanadium-containing pig iron is added and baked before tapping
  • the bottom of the roasted ladle is washed by adding the slag eluting sulfur agent with the following mass ratios according to the amount of 1.4kg/t steel: Al 2 O 3 21.5wt%
  • step A Deoxidation and alloying: tap the molten steel smelted in step A.
  • silicon-aluminum-calcium block deoxidizer ⁇ ferrosilicon ⁇ silicon manganese alloy ⁇ High-carbon ferromanganese ⁇ high-carbon ferrochrome ⁇ silicon-nitrogen alloy ⁇ vanadium-nitrogen alloy, and add the following substances to the ladle in turn: add the following mass ratio of silicon-aluminum-calcium deoxidizer: Si 32.5wt% according to the amount of 1.0kg/t steel , Ca 15.5wt%, Al 10.5wt%, the rest is Fe and unavoidable impurities; according to the amount of 5.8kg/t steel , add the following mass ratio of ferrosilicon: Si 73.5wt%, the rest is Fe and unavoidable According to the amount of 7.4kg/t steel , add the following mass ratio of silico-man
  • C. LF furnace refining of molten steel hoist the molten steel to the refining station of the LF furnace to connect the nitrogen belt, turn on the nitrogen and blow the molten steel with nitrogen at a flow rate of 20NL/min, and then use gears 7-9 for the lower electrode to slag slag ; 3 minutes after electrifying the slag, lift the electrode to observe the slag in the furnace; if the slag sample is thin and dark in color, add lime 4.0kg/t steel to adjust the slag, otherwise add pre-melted refined slag 2.0kg/t steel Adjust; then measure and sample the temperature, add alloy to adjust the composition of the molten steel and the temperature of the lower electrode according to the steel sample and temperature detection results to ensure that the composition and temperature are qualified; after refining, perform a small flow of soft nitrogen blowing on the molten steel, and the nitrogen blowing time is 3 minutes , The nitrogen flow rate is controlled to 20NL/min; after the nitrogen blowing is completed, the molten steel covering
  • step D billet is sent to a heating furnace with a soaking furnace temperature of 1085°C, heated for 60 minutes, and the billet tapping temperature is 1040°C, and then sent to a full continuous bar rolling mill for rolling.
  • the E-step steel billet is rough-rolled 6 passes under the rolling condition of 0.5m/s; then 4 passes are middle-rolled under the rolling condition of 2.5m/s ;Finally, two passes are finished under the rolling conditions of 8.0m/s; the finished steel passes through a half-long tube water-cooling section device (length 2.5 meters) and a short-tube water-cooling section device (each (Length 800mm) for multi-stage and hierarchical controlled cooling, the long-tube water-cooling section and the short-tube water-cooling section are separated by 200mm, the pump pressure of the long-tube water-cooling section is 1.0 MPa, and the short-tube water-cooling section is 0.7 MPa; the temperature of the upper cooling bed of the steel bar is controlled after cooling.
  • a half-long tube water-cooling section device length 2.5 meters
  • a short-tube water-cooling section device each (Length 800mm) for multi-stage and hierarchical controlled cooling, the long-tube water-cooling section and the short-tube
  • the large-size 600MPa grade high-strength anti-corrosion and seismic steel bar with a nominal diameter of 36mm and chemical composition with the following weight percentages is obtained: C 0.25wt%, Si 0.48wt%, Mn 1.28wt% , Cr 0.37wt%, V 0.118wt%, S 0.035wt%, P 0.036wt%, O 0.0040wt%, N 0.0242wt%, the rest is Fe and unavoidable impurities.
  • Example 2 The process mechanical properties, microstructure and corrosion resistance of large-size 600MPa grade high-strength corrosion-resistant and seismic-resistant steel bars provided in Example 2 are shown in Table 7-9.
  • A. Molten steel smelting According to the cold material charging ratio of 110kg/t steel and 30kg/t steel respectively, the following mass ratios of scrap steel (chemical composition: C 0.25wt%, Si 0.65wt%, Mn 1.50wt) are added to the LD converter %, P 0.045wt%, S 0.045wt%, the rest is Fe and unavoidable impurities) and pig iron (chemical composition: C3.5wt%, Si 0.45wt%, Mn 0.75wt%, P 0.095wt%, S 0.045wt%, the rest is Fe and unavoidable impurities); afterwards, according to the 930kg/t steel molten iron charging ratio, the following temperature and mass ratio of molten iron are added to the LD converter: molten iron temperature 1300°C, molten iron composition C 4.8 wt%, Si 0.45wt%, Mn 0.65wt%, P 0.110wt%, S 0.040wt%, the rest is Fe
  • the amount of lime added is 24kg/t steel
  • the amount of light burned dolomite is 20kg/t steel
  • the amount of magnesite balls added is 1.0kg/t steel.
  • Control the end point carbon content of 0.09wt%, the tapping temperature is 1640°C; before tapping, the ladle is added with the following mass ratio of vanadium-containing pig iron at the amount of 8.0kg/t steel: component C 3.5wt%, Si 0.35wt%, Mn 0.60 wt%, V 1.15wt%, P 0.235wt%, S 0.070wt%, the rest is Fe and unavoidable impurities, vanadium-containing pig iron is added to the ladle and baked for 3 minutes; vanadium-containing pig iron is added and baked before tapping
  • the bottom of the roasted ladle is washed by adding the slag eluting sulfur agent with the following mass ratios according to the amount of 1.4kg/t steel: Al 2 O 3 21.5wt%,
  • step A Deoxidation and alloying: tap the molten steel smelted in step A.
  • silicon-aluminum-calcium block deoxidizer ⁇ ferrosilicon ⁇ silicon manganese alloy ⁇ High-carbon ferromanganese ⁇ high-carbon ferrochrome ⁇ silicon-nitrogen alloy ⁇ vanadium-nitrogen alloy, and add the following substances to the ladle in turn: add the following mass ratio of silicon-aluminum-calcium deoxidizer: Si 32.5wt% according to the amount of 1.0kg/t steel , Ca 15.5wt%, Al 10.5wt%, the rest is Fe and unavoidable impurities; according to the amount of 7.0kg/t steel , add the following mass ratio of ferrosilicon: Si 73.5wt%, the rest is Fe and unavoidable According to the amount of 7.4kg/t steel , add the following mass ratio of silico-man
  • C. LF furnace refining of molten steel hoist the molten steel to the refining station of the LF furnace to connect the nitrogen belt, turn on the nitrogen and blow the molten steel with nitrogen at a flow rate of 20NL/min, and then use gears 7-9 for the lower electrode to slag slag ; 3 minutes after electrifying the slag, lift the electrode to observe the slag in the furnace; if the slag sample is thin and dark in color, add lime 4.0kg/t steel to adjust the slag, otherwise add pre-melted refined slag 2.0kg/t steel Adjust; then measure and sample the temperature, add alloy to adjust the composition of the molten steel and the temperature of the lower electrode according to the steel sample and temperature detection results to ensure that the composition and temperature are qualified; after refining, perform a small flow of soft nitrogen blowing on the molten steel, and the nitrogen blowing time is 3 minutes , The nitrogen flow rate is controlled to 20NL/min; after the nitrogen blowing is completed, the molten steel covering
  • step D billet is sent to a heating furnace with a soaking section furnace temperature of 1070°C, heated for 60 minutes, the billet tapping temperature is 1030°C, and then pushed to a full continuous bar rolling mill for rolling.
  • the E-step steel billet is rough-rolled 6 passes under the rolling condition of 0.4m/s; then 4 passes are middle-rolled under the rolling condition of 2.5m/s ;Finally, two passes are finished under the rolling conditions of 8.0m/s; the finished steel passes through a half-long tube water-cooling section device (length 2.5 meters) and two short-tube water-cooling section devices (each (Length 800mm) for multi-stage and hierarchical controlled cooling, the long-tube water-cooling section and the short-tube water-cooling section are separated by 200mm, the short-tube water-cooling section is separated by 100mm, the pump pressure of the long-tube water-cooling section is 1.0MPa, and the short-tube water-cooling section is 0.8MPa; controlled cooling The temperature of the upper cooling bed of the rear steel bars is controlled to 960°C, and the steel bars are naturally air-cooled to room temperature in the cooling bed, and then a large-size 600MPa grade high-strength anti

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种600MPa级大规格高强耐蚀抗震钢筋及其制备方法,包括钢水冶炼、脱氧合金化、钢水LF炉精炼、钢水浇铸、钢坯加热及钢坯控轧控冷工序。本制备方法通过加入一定量含钒生铁替代昂贵的钒合金,增加了钢水钒含量,降低了钒合金加入量;通过加入一定量铬,提高了钢的钝化耐腐蚀能力,腐蚀率仅为普通600MPa级高强钢筋的1/2,同时使淬透性和二次硬化作用得到明显提高,提高了珠光体含量,促进了钢抗拉强度的提高,改善了抗震性能。本制备方法具有生产成本低、工艺适用性及控制性强等特点,所生产钢筋具有工艺力学性能优异稳定、显微组织细小均匀、塑韧性好、耐蚀性及抗震性能优异等优点。

Description

一种600MPa级大规格高强耐蚀抗震钢筋的制备方法 技术领域
本发明属于建筑用钢制造技术领域,具体涉及一种600MPa级大规格高强耐蚀抗震钢筋的制备方法。
背景技术
热轧带肋钢筋是钢筋混凝土建筑结构的主要增强材料,在结构中承载着拉、压应力和应变等负载的应力应变,是建筑工程结构建设使用最多的钢铁材料。目前世界各国的建筑逐步向大型化、大跨度及抗震结构方向不断发展,开发抗震性能好、成本低及综合性能优异的高强韧抗震钢筋已成为钢铁行业提升技术水平和产品结构调整的重要工作。
600MPa级高强钢筋在欧洲、北美、澳洲等发达国家建筑行业得到较好应用,中国国家标准GB/T 1499.2-2018增加了600MPa级高强钢筋,有利于促进600MPa级高强钢筋在中国的推广应用。目前国内外600MPa级高强钢筋主要采用普通微合金化热轧工艺生产,钢中加入一定量的钒氮合金,由于钒合金价格昂贵,导致生产成本较高;此外,该工艺生产的钢筋抗震性能匹配性差且不稳定,耐蚀性能不好,制约了产品在抗震多发地区和易腐蚀地区的推广应用及市场竞争力的提升。
针对目前国内外600MPa级高强钢筋生产成本高、抗震性能及耐蚀性差的局面,开发一种成本低且性能优异的600MPa级高强钢筋的制备方法是极其重要的。
发明内容
本发明的目的在于提供一种600MPa级大规格高强耐蚀抗震钢筋的制备方法。
本发明的目的是这样实现的,一种600MPa级大规格高强耐蚀抗震钢筋的制 备方法,包括钢水冶炼、脱氧合金化、钢水LF炉精炼、钢水浇铸、钢坯加热及钢坯控轧控冷工序,具体包括以下步骤:
A、钢水冶炼:将废钢、生铁及铁水分别按80-110kg/t 、30kg/t 、930-960kg/t 的装入配比加入LD转炉,之后进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为20-24kg/t ,轻烧白云石加入量为15-20kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量≥0.07wt%,出钢温度≤1640℃;出钢前钢包按8.0kg/t 的量加入含钒生铁烘烤3分钟,再向钢包底部按1.4kg/t 的量,加入渣洗脱硫剂进行渣洗,出钢过程采用全程底吹氮工艺,氮气流量控制为15~20/NL/min;所述废钢化学成分:C 0.20-0.25wt%,Si 0.40-0.65wt%,Mn 1.25-1.50wt%,P 0.028-0.045wt%,S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述生铁化学成分:C3.2-3.5wt%、Si 0.25-0.45wt%、Mn 0.50-0.75wt%、P 0.075-0.095wt%、S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述铁水成分C 4.2-4.8wt%、Si 0.20-0.45wt%、Mn 0.45-0.65wt%、P 0.080-0.110wt%、S≤0.040wt%,其余为Fe及不可避免的不纯物,温度≥1280℃;所述含钒生铁成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%;所述渣洗脱硫剂化学成分Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物;
B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按4.5-7.0kg/t 的量,加入下列质量比的硅铁:Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量 比的硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按9.5-11.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C 7.5wt%,其余为Fe及不可避免的不纯物;按6.1-7.0kg/t 的量,加入下列质量比的高碳铬铁:Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.30-0.40kg/t 的量,加入下列质量比的硅氮合金:Si 46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.35-1.60kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF炉进行精炼处理;
C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为15-20NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰3.0-4.0kg/t 调渣,反之加预熔型精炼渣1.0-2.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为15-20NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位;
D、钢水浇铸:在中间包温度为1528-1543℃,拉速为2.7-2.9m/min,结晶器冷却水流量为130-140m 3/h,二冷比水量为1.9-2.1L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为960-980℃;
E、钢坯加热:将D步骤钢坯送入均热段炉温为1070-1100℃的加热炉中, 加热60分钟,之后推送至全连续式棒材轧机进行轧制;
F、钢坯控轧控冷:将E步骤钢坯在速度为0.4-0.5m/s的轧制条件下粗轧6个道次;之后在速度为2.5-3.0m/s的轧制条件下中轧4个道次;最后在速度为8.0-9.0m/s的轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置和1-2个短管水冷段装置进行多段分级控冷,之后钢筋在冷床自然空冷至室温,即获得公称直径32-40mm大规格600MPa级高强耐蚀抗震钢筋。
所述制备方法制备的600MPa级大规格高强耐蚀抗震钢筋包括以下重量份的化学成分:C 0.24-0.27wt%、Si 0.40-0.55wt%、Mn 1.20-1.35wt%、Cr 0.35-0.40wt%、V 0.110-0.125wt%、S≤0.040wt%、P≤0.045wt%、O≤0.0055wt%、N 0.0230-0.0250wt%,其余为Fe及不可避免的不纯物。
本发明的有益效果为:
1)本发明制备方法在炼钢出钢钢包加入一定量含钒生铁替代昂贵的钒合金,增加了钢水V含量,降低了钒合金加入量;炼钢脱氧合金化过程中加入硅氮合金,钢水通过LF炉精炼吹氮处理,增加了钢水中氮含量,降低了钢中V/N配比值,增加了V(C,N)沉淀析出的驱动力,促进了轧制过程V从固溶状态向碳氮化物析出相的转移,细小弥散的V(C,N)析出相大量形成和析出,使钢的析出强化效果明显改善;炼钢出钢前向钢包底部加入渣洗料进行渣洗并进行出钢过程全程底吹氮处理,降低了钢水中[O]、[S]含量,提高了钢水洁净度,促进了钢材塑韧性的改善;钢中加入一定量铬,提高了钢的钝化耐腐蚀能力,腐蚀率仅为普通600MPa级高强钢筋的1/2,同时使淬透性和二次硬化作用得到明显提高,提高了珠光体含量,促进了钢抗拉强度的提高,改善了抗震性能;轧钢控制较低的开轧温度,采用精轧后多段分级控冷工艺,细化了原始奥氏体晶粒,促进了奥氏体向细小铁素体的转变,钢筋横截面中心铁素体晶粒度达12.0级以上,细 晶强化效果显著。
2)本发明通过对化学成分设计、转炉冶炼、脱氧合金化、连铸、轧钢加热制度、轧制温度及控冷工艺集成创新,充分发挥了析出强化、细晶强化、多相组织强化等多重强化作用,所生产钢筋具有工艺力学性能优异稳定、显微组织细小均匀、塑韧性好、耐蚀性及抗震性能优异等优点。
3)本发明工艺具有生产成本低、工艺适用性及控制性强等特点,所生产钢筋具有工艺力学性能优异稳定、显微组织细小均匀、塑韧性好、耐蚀性及抗震性能优异等优点,各项指标全面优于欧美钢筋标准及中国钢筋标准GB/T 1499.2-2018,生产成本同比钒微合金化热轧工艺降低30元/t 以上,提高了产品市场竞争力和应用范围,具有显著的经济和社会效益。
具体实施方式
下面结合实施例对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
本发明一种600MPa级大规格高强耐蚀抗震钢筋的制备方法,包括钢水冶炼、脱氧合金化、钢水LF炉精炼、钢水浇铸、钢坯加热及钢坯控轧控冷工序,具体包括以下步骤:
A、钢水冶炼:将废钢、生铁及铁水分别按80-110kg/t 、30kg/t 、930-960kg/t 的装入配比加入LD转炉,之后进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为20-24kg/t ,轻烧白云石加入量为15-20kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量≥0.07wt%,出钢温度≤1640℃;出钢前钢包按8.0kg/t 的量加入含钒生铁烘烤3分钟,再向钢包底部按1.4kg/t 的量,加入渣洗脱硫剂进行渣洗,出钢过程采用全程底吹氮工艺,氮气流量控制为15~20/NL/min;所述废钢化学成分:C 0.20-0.25wt%,Si 0.40-0.65wt%, Mn 1.25-1.50wt%,P 0.028-0.045wt%,S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述生铁化学成分:C3.2-3.5wt%、Si 0.25-0.45wt%、Mn 0.50-0.75wt%、P 0.075-0.095wt%、S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述铁水成分C 4.2-4.8wt%、Si 0.20-0.45wt%、Mn 0.45-0.65wt%、P 0.080-0.110wt%、S≤0.040wt%,其余为Fe及不可避免的不纯物,温度≥1280℃;所述含钒生铁成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%;所述渣洗脱硫剂化学成分Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物;
B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按4.5-7.0kg/t 的量,加入下列质量比的硅铁:Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量比的硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按9.5-11.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C 7.5wt%,其余为Fe及不可避免的不纯物;按6.1-7.0kg/t 的量,加入下列质量比的高碳铬铁:Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.30-0.40kg/t 的量,加入下列质量比的硅氮合金:Si 46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.35-1.60kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF 炉进行精炼处理;
C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为15-20NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰3.0-4.0kg/t 调渣,反之加预熔型精炼渣1.0-2.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为15-20NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位;
D、钢水浇铸:在中间包温度为1528-1543℃,拉速为2.7-2.9m/min,结晶器冷却水流量为130-140m 3/h,二冷比水量为1.9-2.1L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为960-980℃;
E、钢坯加热:将D步骤钢坯送入均热段炉温为1070-1100℃的加热炉中,加热60分钟,之后推送至全连续式棒材轧机进行轧制;
F、钢坯控轧控冷:将E步骤钢坯在速度为0.4-0.5m/s的轧制条件下粗轧6个道次;之后在速度为2.5-3.0m/s的轧制条件下中轧4个道次;最后在速度为8.0-9.0m/s的轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置和1-2个短管水冷段装置进行多段分级控冷,之后钢筋在冷床自然空冷至室温,即获得公称直径32-40mm大规格600MPa级高强耐蚀抗震钢筋;本步骤中,钢的温度控制、轧制道次及控冷参数视不同规格要求具体确定。
所述步骤D的二冷比水量是指:连铸机二冷区单位时间内消耗的总水量与单位时间内通过二冷区铸坯质量的比值,以L/kg为单位,它是连铸二次冷却喷 水强度的指标。
所述步骤E中,钢坯出钢温度为1030-1050℃。
所述步骤F中,控冷后钢筋上冷床温度控制为960-990℃。
所述步骤F中,所述长管水冷段长度为2.5米,短管水冷段长度为800mm,长管水冷段和短管水冷段间隔200mm,短管水冷段间隔100mm,长管水冷段水泵压力为0.8-1.0MPa,短管水冷段水泵压力为0.6-0.8Mpa。
本发明600MPa级大规格高强耐蚀抗震钢筋包括以下重量份的化学成分:C 0.24-0.27wt%、Si 0.40-0.55wt%、Mn 1.20-1.35wt%、Cr 0.35-0.40wt%、V 0.110-0.125wt%、S≤0.040wt%、P≤0.045wt%、O≤0.0055wt%、N 0.0230-0.0250wt%,其余为Fe及不可避免的不纯物。
所述600MPa级大规格高强耐蚀抗震钢筋工艺力学性能、显微组织及耐蚀性能见表1-表3。
表1 本发明生产的600MPa级大规格高强耐蚀抗震钢筋工艺力学性能
Figure PCTCN2020136105-appb-000001
表2 本发明生产的600MPa级大规格高强耐蚀抗震钢筋金相组织
Figure PCTCN2020136105-appb-000002
表3 本发明生产的600MPa级大规格高强耐蚀抗震钢筋耐蚀性能
Figure PCTCN2020136105-appb-000003
实施例1
A、钢水冶炼:分别按80kg/t 、30kg/t 的冷料装入配比,在LD转炉加入下列质量比的废钢(化学成分:C 0.20wt%,Si 0.40wt%,Mn 1.25wt%,P 0.028wt%,S 0.020wt%,其余为Fe及不可避免的不纯物)及生铁(化学成分:C3.2wt%、Si 0.25wt%、Mn 0.50wt%、P 0.075wt%、S 0.020wt%,其余为Fe及不可避免的不纯物);之后按960kg/t 的铁水装入配比,在LD转炉加入下列温度及质量比的铁水:铁水温度1280℃,铁水成分C 4.2wt%、Si 0.20wt%、Mn 0.45wt%、P 0.080wt%、S 0.022wt%,其余为Fe及不可避免的不纯物;废钢、生铁及铁水兑入LD转炉后,进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为20kg/t ,轻烧白云石加入量为15kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量0.07wt%,出钢温度1625℃;出钢前钢包按8.0kg/t 的量,加入下列质量比的含钒生铁:成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%,其余为Fe及不可避免的不纯物,含钒生铁加入钢包后烘烤3分钟;出钢前向加入含钒生铁并烘烤过的钢包底部按1.4kg/t 的量,加入下列质量比的渣洗脱硫剂进行渣洗:Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物,出钢过程采用全程底吹氮工艺,氮气流量控制为15NL/min。
B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按4.5kg/t 的量,加入下列质量比的硅铁:Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量比的 硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按9.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C 7.5wt%,其余为Fe及不可避免的不纯物;按6.1kg/t 的量,加入下列质量比的高碳铬铁:Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.30kg/t 的量,加入下列质量比的硅氮合金:Si 46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.35kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF炉进行精炼处理。
C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为15NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰3.0kg/t 调渣,反之加预熔型精炼渣1.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为15NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位。
D、钢水浇铸:在中间包温度为1543℃,拉速为2.7m/min,结晶器冷却水流量为140m 3/h,二冷比水量为1.9L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为960℃。
E、钢坯加热:将D步骤钢坯送入均热段炉温为1100℃的加热炉中,加热60分钟,钢坯出钢温度为1050℃,之后推送至全连续式棒材轧机进行轧制。
F、钢坯控轧控冷:将E步骤钢坯在速度为0.5m/s的轧制条件下粗轧6个道次;之后在速度为3.0m/s的轧制条件下中轧4个道次;最后在速度为9.0m/s的轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置(长度2.5米)和1个短管水冷段装置(每个长度800mm)进行多段分级控冷,长管水冷段和短管水冷段间隔200mm,长管水冷段水泵压力为0.8MPa,短管水冷段水泵压力为0.6MPa;控冷后钢筋上冷床温度控制为990℃,之后钢筋在冷床自然空冷至室温,即获得具有下列重量百分比化学成分的公称直径32mm大规格600MPa级高强耐蚀抗震钢筋:C 0.24wt%、Si 0.40wt%、Mn 1.20wt%、Cr 0.35wt%、V 0.110wt%、S 0.025wt%、P 0.028wt%、O 0.0035wt%、N 0.0230wt%,其余为Fe及不可避免的不纯物。
实施例1提供的公称直径32mm大规格600MPa级高强耐蚀抗震钢筋工艺力学性能、显微组织及耐蚀性能见表4-表6。
表4 实施例1生产的600MPa级大规格高强耐蚀抗震钢筋工艺力学性能
Figure PCTCN2020136105-appb-000004
表5 实施例1生产的600MPa级大规格高强耐蚀抗震钢筋金相组织
Figure PCTCN2020136105-appb-000005
表6 实施例1生产的600MPa级大规格高强耐蚀抗震钢筋耐蚀性能
Figure PCTCN2020136105-appb-000006
实施例2
A、钢水冶炼:分别按90kg/t 、30kg/t 的冷料装入配比,在LD转炉加入 下列质量比的废钢(化学成分:C 0.22wt%,Si 0.52wt%,Mn 1.38wt%,P 0.036wt%,S 0.032wt%,其余为Fe及不可避免的不纯物)及生铁(化学成分:C3.4wt%、Si 0.35wt%、Mn 0.62wt%、P 0.085wt%、S 0.032wt%,其余为Fe及不可避免的不纯物);之后按950kg/t 的铁水装入配比,在LD转炉加入下列温度及质量比的铁水:铁水温度1290℃,铁水成分C 4.6wt%、Si 0.32wt%、Mn 0.55wt%、P 0.095wt%、S 0.032wt%,其余为Fe及不可避免的不纯物;废钢、生铁及铁水兑入LD转炉后,进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为22kg/t ,轻烧白云石加入量为18kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量0.08wt%,出钢温度1635℃;出钢前钢包按8.0kg/t 的量,加入下列质量比的含钒生铁:成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%,其余为Fe及不可避免的不纯物,含钒生铁加入钢包后烘烤3分钟;出钢前向加入含钒生铁并烘烤过的钢包底部按1.4kg/t 的量,加入下列质量比的渣洗脱硫剂进行渣洗:Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物,出钢过程采用全程底吹氮工艺,氮气流量控制为20NL/min。
B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按5.8kg/t 的量,加入下列质量比的硅铁:Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量比的硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按10.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C 7.5wt%, 其余为Fe及不可避免的不纯物;按6.5kg/t 的量,加入下列质量比的高碳铬铁:Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.35kg/t 的量,加入下列质量比的硅氮合金:Si 46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.48kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF炉进行精炼处理。
C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为20NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰4.0kg/t 调渣,反之加预熔型精炼渣2.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为20NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位。
D、钢水浇铸:在中间包温度为1535℃,拉速为2.8m/min,结晶器冷却水流量为135m 3/h,二冷比水量为2.0L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为970℃。
E、钢坯加热:将D步骤钢坯送入均热段炉温为1085℃的加热炉中,加热60分钟,钢坯出钢温度为1040℃,之后推送至全连续式棒材轧机进行轧制。
F、钢坯控轧控冷:将E步骤钢坯在速度为0.5m/s的轧制条件下粗轧6个道次;之后在速度为2.5m/s的轧制条件下中轧4个道次;最后在速度为8.0m/s的 轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置(长度2.5米)和1个短管水冷段装置(每个长度800mm)进行多段分级控冷,长管水冷段和短管水冷段间隔200mm,长管水冷段水泵压力为1.0MPa,短管水冷段水泵压力为0.7MPa;控冷后钢筋上冷床温度控制为970℃,之后钢筋在冷床自然空冷至室温,即获得具有下列重量百分比化学成分的公称直径36mm大规格600MPa级高强耐蚀抗震钢筋:C 0.25wt%、Si 0.48wt%、Mn 1.28wt%、Cr 0.37wt%、V 0.118wt%、S 0.035wt%、P 0.036wt%、O 0.0040wt%、N 0.0242wt%,其余为Fe及不可避免的不纯物。
实施例2提供的公称直径36mm大规格600MPa级高强耐蚀抗震钢筋工艺力学性能、显微组织及耐蚀性能见表7-表9。
表7 实施例2生产的600MPa级大规格高强耐蚀抗震钢筋工艺力学性能
Figure PCTCN2020136105-appb-000007
表8 实施例2生产的600MPa级大规格高强耐蚀抗震钢筋金相组织
Figure PCTCN2020136105-appb-000008
表9 实施例2生产的600MPa级大规格高强耐蚀抗震钢筋耐蚀性能
Figure PCTCN2020136105-appb-000009
实施例3
A、钢水冶炼:分别按110kg/t 、30kg/t 的冷料装入配比,在LD转炉加入下列质量比的废钢(化学成分:C 0.25wt%,Si 0.65wt%,Mn 1.50wt%,P 0.045wt%, S 0.045wt%,其余为Fe及不可避免的不纯物)及生铁(化学成分:C3.5wt%、Si 0.45wt%、Mn 0.75wt%、P 0.095wt%、S 0.045wt%,其余为Fe及不可避免的不纯物);之后按930kg/t 的铁水装入配比,在LD转炉加入下列温度及质量比的铁水:铁水温度1300℃,铁水成分C 4.8wt%、Si 0.45wt%、Mn 0.65wt%、P 0.110wt%、S 0.040wt%,其余为Fe及不可避免的不纯物;废钢、生铁及铁水兑入LD转炉后,进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为24kg/t ,轻烧白云石加入量为20kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量0.09wt%,出钢温度1640℃;出钢前钢包按8.0kg/t 的量,加入下列质量比的含钒生铁:成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%,其余为Fe及不可避免的不纯物,含钒生铁加入钢包后烘烤3分钟;出钢前向加入含钒生铁并烘烤过的钢包底部按1.4kg/t 的量,加入下列质量比的渣洗脱硫剂进行渣洗:Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物,出钢过程采用全程底吹氮工艺,氮气流量控制为20NL/min。
B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按7.0kg/t 的量,加入下列质量比的硅铁:Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量比的硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按11.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C 7.5wt%,其余为Fe及不可避免的不纯物;按7.0kg/t 的量,加入下列质量比的高碳铬铁: Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.40kg/t 的量,加入下列质量比的硅氮合金:Si 46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.60kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF炉进行精炼处理。
C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为20NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰4.0kg/t 调渣,反之加预熔型精炼渣2.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为20NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位。
D、钢水浇铸:在中间包温度为1528℃,拉速为2.9m/min,结晶器冷却水流量为130m 3/h,二冷比水量为2.1L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为980℃。
E、钢坯加热:将D步骤钢坯送入均热段炉温为1070℃的加热炉中,加热60分钟,钢坯出钢温度为1030℃,之后推送至全连续式棒材轧机进行轧制。
F、钢坯控轧控冷:将E步骤钢坯在速度为0.4m/s的轧制条件下粗轧6个道次;之后在速度为2.5m/s的轧制条件下中轧4个道次;最后在速度为8.0m/s的轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置(长度2.5米) 和2个短管水冷段装置(每个长度800mm)进行多段分级控冷,长管水冷段和短管水冷段间隔200mm,短管水冷段间隔100mm,长管水冷段水泵压力为1.0MPa,短管水冷段水泵压力为0.8MPa;控冷后钢筋上冷床温度控制为960℃,之后钢筋在冷床自然空冷至室温,即获得具有下列重量百分比化学成分的公称直径40mm大规格600MPa级高强耐蚀抗震钢筋:C 0.27wt%、Si 0.55wt%、Mn 1.35wt%、Cr 0.40wt%、V 0.125wt%、S 0.040wt%、P 0.045wt%、O 0.0055wt%、N 0.0250wt%,其余为Fe及不可避免的不纯物。
实施例3提供的公称直径40mm大规格600MPa级高强耐蚀抗震钢筋工艺力学性能、显微组织及耐蚀性能见表10-表12。
表10 实施例3生产的600MPa级大规格高强耐蚀抗震钢筋工艺力学性能
Figure PCTCN2020136105-appb-000010
表11 实施例3生产的600MPa级大规格高强耐蚀抗震钢筋金相组织
Figure PCTCN2020136105-appb-000011
表12 实施例3生产的600MPa级大规格高强耐蚀抗震钢筋耐蚀性能
Figure PCTCN2020136105-appb-000012

Claims (6)

  1. 一种600MPa级大规格高强耐蚀抗震钢筋的制备方法,包括钢水冶炼、脱氧合金化、钢水LF炉精炼、钢水浇铸、钢坯加热及钢坯控轧控冷工序,其特征在于具体包括以下步骤:
    A、钢水冶炼:将废钢、生铁及铁水分别按80-110kg/t 、30kg/t 、930-960kg/t 的装入配比加入LD转炉,之后进行常规顶底复合吹炼,加入常规石灰、轻烧白云石、菱镁球造渣,石灰加入量为20-24kg/t ,轻烧白云石加入量为15-20kg/t ,菱镁球加入量为1.0kg/t ,控制终点碳含量≥0.07wt%,出钢温度≤1640℃;出钢前钢包按8.0kg/t 的量加入含钒生铁烘烤3分钟,再向钢包底部按1.4kg/t 的量,加入渣洗脱硫剂进行渣洗,出钢过程采用全程底吹氮工艺,氮气流量控制为15~20/NL/min;所述废钢化学成分:C 0.20-0.25wt%,Si 0.40-0.65wt%,Mn 1.25-1.50wt%,P 0.028-0.045wt%,S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述生铁化学成分:C3.2-3.5wt%、Si 0.25-0.45wt%、Mn0.50-0.75wt%、P 0.075-0.095wt%、S 0.020-0.045wt%,其余为Fe及不可避免的不纯物;所述铁水成分C 4.2-4.8wt%、Si 0.20-0.45wt%、Mn 0.45-0.65wt%、P0.080-0.110wt%、S≤0.040wt%,其余为Fe及不可避免的不纯物,温度≥1280℃;所述含钒生铁成分C 3.5wt%、Si 0.35wt%、Mn 0.60wt%、V 1.15wt%、P 0.235wt%、S 0.070wt%;所述渣洗脱硫剂化学成分Al 2O 3 21.5wt%,SiO 25.2wt%,CaO 46.5wt%,Al 9.2wt%,MgO6.5wt%,其余为Fe及不可避免的不纯物;
    B、脱氧合金化:将A步骤冶炼完毕的钢水出钢,当钢包中的钢水量大于1/4时,按下列脱氧合金化顺序:硅铝钙块状脱氧剂→硅铁→硅锰合金→高碳锰铁→高碳铬铁→硅氮合金→钒氮合金,依次向钢包中加入下列物质:按1.0kg/t 的量,加入下列质量比的硅铝钙脱氧剂:Si 32.5wt%,Ca 15.5wt%,Al 10.5wt%,其余为Fe及不可避免的不纯物;按4.5-7.0kg/t 的量,加入下列质量比的硅铁: Si 73.5wt%,其余为Fe及不可避免的不纯物;按7.4kg/t 的量,加入下列质量比的硅锰合金:Mn 65.3wt%,Si 17.2wt%,C1.5wt%,其余为Fe及不可避免的不纯物;按9.5-11.5kg/t 的量,加入下列质量比的高碳锰铁:Mn 74.6wt%,C7.5wt%,其余为Fe及不可避免的不纯物;按6.1-7.0kg/t 的量,加入下列质量比的高碳铬铁:Cr 54.2wt%,C 7.8wt%,P 0.085wt%,S 0.035wt%,其余为Fe及不可避免的不纯物;按0.30-0.40kg/t 的量,加入下列质量比的硅氮合金:Si46.5wt%,N 34.5wt%,C 0.95wt%,P 0.045wt%,S 0.024wt%,其余为Fe及不可避免的不纯物;按1.35-1.60kg/t 的量,加入下列质量比的钒氮合金:V 77.8wt%,N 15.7wt%,C 3.45wt%,P 0.085wt%,S 0.067wt%,其余为Fe及不可避免的不纯物;在钢包钢水量达到4/5时加完上述合金;出钢完毕后,将钢水吊送至LF炉进行精炼处理;
    C、钢水LF炉精炼:将钢水吊到LF炉精炼工位接好氮气带,开启氮气采用流量为15-20NL/min的氮气对钢水进行吹氮处理,然后下电极采用档位7-9档化渣;通电化渣3分钟后,抬电极观察炉内化渣情况;若渣样偏稀和颜色偏黑,补加石灰3.0-4.0kg/t 调渣,反之加预熔型精炼渣1.0-2.0kg/t 调整;之后测温、取样,根据钢样和温度检测结果,加入合金调整钢液成分和下电极升温,确保成分和温度合格;精炼结束后对钢水进行小流量软吹氮,吹氮时间3分钟,氮气流量控制为15-20NL/min;吹氮结束后加入钢水覆盖剂,加入量控制为1.0kg/t ,然后将钢水吊至浇铸工位;
    D、钢水浇铸:在中间包温度为1528-1543℃,拉速为2.7-2.9m/min,结晶器冷却水流量为130-140m 3/h,二冷比水量为1.9-2.1L/kg的条件下,采用R9m直弧形连续矫直5机5流小方坯铸机将C步骤的钢水浇铸成断面150mm×150mm的钢坯;铸坯出拉矫机矫直温度控制为960-980℃;
    E、钢坯加热:将D步骤钢坯送入均热段炉温为1070-1100℃的加热炉中,加热60分钟,之后推送至全连续式棒材轧机进行轧制;
    F、钢坯控轧控冷:将E步骤钢坯在速度为0.4-0.5m/s的轧制条件下粗轧6个道次;之后在速度为2.5-3.0 m/s的轧制条件下中轧4个道次;最后在速度为8.0-9.0m/s的轧制条件下精轧2个道次;将精轧后钢材通过半段长管水冷段装置和1-2个短管水冷段装置进行多段分级控冷,之后钢筋在冷床自然空冷至室温,即获得公称直径32-40mm大规格600MPa级高强耐蚀抗震钢筋。
  2. 根据权利要求1所述600MPa级大规格高强耐蚀抗震钢筋的制备方法,其特征在于,所述步骤D的二冷比水量是指:连铸机二冷区单位时间内消耗的总水量与单位时间内通过二冷区铸坯质量的比值,以L/kg为单位,它是连铸二次冷却喷水强度的指标。
  3. 根据权利要求1所述600MPa级大规格高强耐蚀抗震钢筋的制备方法,其特征在于,所述步骤E中,钢坯出钢温度为1030-1050℃。
  4. 根据权利要求1所述600MPa级大规格高强耐蚀抗震钢筋的制备方法,其特征在于,所述步骤F中,控冷后钢筋上冷床温度控制为960-990℃。
  5. 根据权利要求1所述600MPa级大规格高强耐蚀抗震钢筋的制备方法,其特征在于,所述步骤F中,所述长管水冷段长度为2.5米,短管水冷段长度为800mm,长管水冷段和短管水冷段间隔200mm,短管水冷段间隔100mm,长管水冷段水泵压力为0.8-1.0MPa,短管水冷段水泵压力为0.6-0.8Mpa。
  6. 权利要求1-5任意一项权利要求所述制备方法制备的600MPa级大规格高强耐蚀抗震钢筋,其特征在于,包括以下重量份的化学成分:C 0.24-0.27wt%、Si 0.40-0.55wt%、Mn 1.20-1.35wt%、Cr 0.35-0.40wt%、V 0.110-0.125wt%、S≤0.040wt%、P≤0.045wt%、O≤0.0055wt%、N 0.0230-0.0250wt%,其余为Fe及不 可避免的不纯物。
PCT/CN2020/136105 2020-01-11 2020-12-14 一种600MPa级大规格高强耐蚀抗震钢筋的制备方法 WO2021139489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010028734.6A CN111004980B (zh) 2020-01-11 2020-01-11 一种钒铬微合金化大规格600MPa超细晶高强韧耐蚀抗震钢筋及其制备方法
CN202010028734.6 2020-01-11

Publications (1)

Publication Number Publication Date
WO2021139489A1 true WO2021139489A1 (zh) 2021-07-15

Family

ID=70120895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136105 WO2021139489A1 (zh) 2020-01-11 2020-12-14 一种600MPa级大规格高强耐蚀抗震钢筋的制备方法

Country Status (2)

Country Link
CN (3) CN111004980B (zh)
WO (1) WO2021139489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107837A (zh) * 2021-10-30 2022-03-01 天津荣程联合金属制品有限公司 一种高强度钢绞线及其生产方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004980B (zh) * 2020-01-11 2021-07-23 武钢集团昆明钢铁股份有限公司 一种钒铬微合金化大规格600MPa超细晶高强韧耐蚀抗震钢筋及其制备方法
CN111575587A (zh) * 2020-06-03 2020-08-25 青海西钢特殊钢科技开发有限公司 一种钒铬微合金化生产hrb600高强热轧带肋钢筋的方法
CN112080682A (zh) * 2020-09-23 2020-12-15 宁夏建龙龙祥钢铁有限公司 一种利用含钒含钛生铁块增加螺纹钢钢水钒含量的方法
CN112609129A (zh) * 2020-12-08 2021-04-06 首钢集团有限公司 一种铌钒复合微合金化高强度抗震hrb500e钢筋及其生产方法
CN112593138A (zh) * 2020-12-10 2021-04-02 四川德胜集团钒钛有限公司 一种高强度钒钛钢筋生产工艺
CN113201683A (zh) * 2021-04-23 2021-08-03 玉溪新兴钢铁有限公司 一种钒钛铁水加入高钒生铁生产hrb400e抗震钢筋用铸坯的方法
CN113355585A (zh) * 2021-04-27 2021-09-07 红河钢铁有限公司 一种含钒生铁微合金化生产的hrb400e及方法
CN113667899B (zh) * 2021-09-03 2022-07-19 太原理工大学 一种使析出相颗粒细小弥散进而生产700MPa级高强钢的方法
CN113481440B (zh) * 2021-09-08 2021-11-30 北京科技大学 耐腐蚀抗震钢材、钢筋及其制备方法
CN113802066A (zh) * 2021-09-18 2021-12-17 联峰钢铁(张家港)有限公司 一种b600b高强钢筋及其生产工艺
CN114182158A (zh) * 2021-10-22 2022-03-15 南京钢铁股份有限公司 一种短距离分级控冷降低成本的螺纹钢制备方法
CN114032473B (zh) * 2021-11-29 2022-04-22 东北大学 一种免涂层热成形钢的合金加入方法
CN114395736B (zh) * 2022-01-16 2023-02-14 新疆八一钢铁股份有限公司 一种q355b型钢钒微合金化生产方法
CN115522140A (zh) * 2022-09-24 2022-12-27 本溪北营钢铁(集团)股份有限公司 一种高强度抗震钢筋及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120020479A (ko) * 2010-08-30 2012-03-08 현대제철 주식회사 인장강도 750MPa급 고강도 구조용 강재의 제조 방법 및 그 구조용 강재
CN102383033A (zh) * 2011-11-08 2012-03-21 河北钢铁股份有限公司承德分公司 一种600MPa级含钒高强热轧钢筋及其生产方法
CN102796961A (zh) * 2012-09-14 2012-11-28 武钢集团昆明钢铁股份有限公司 混凝土用600MPa高性能耐火抗震钢筋及其制备
JP2014043612A (ja) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal 耐遅れ破壊特性に優れた高強度鋼材
CN104372247A (zh) * 2014-11-04 2015-02-25 武钢集团昆明钢铁股份有限公司 一种600MPa级高强抗震盘条螺纹钢筋及其制备方法
CN106086635A (zh) * 2016-06-15 2016-11-09 河北钢铁股份有限公司承德分公司 一种600MPa级高强度热轧抗震盘螺及其生产方法
CN110343951A (zh) * 2019-06-27 2019-10-18 江苏省沙钢钢铁研究院有限公司 一种600MPa级抗大变形钢筋及其生产方法
CN111004980A (zh) * 2020-01-11 2020-04-14 武钢集团昆明钢铁股份有限公司 一种钒铬微合金化大规格超细晶高强韧耐蚀抗震钢筋的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071357B (zh) * 2011-01-05 2013-07-31 武钢集团昆明钢铁股份有限公司 富氮铌钒微合金化500MPa、550MPa高强度抗震钢筋的冶炼方法
CN102534407B (zh) * 2012-01-13 2013-08-07 首钢水城钢铁(集团)有限责任公司 一种hrb600热轧带肋钢筋的生产方法
CN102732787B (zh) * 2012-07-20 2013-12-25 江苏省沙钢钢铁研究院有限公司 一种600MPa级抗震螺纹钢筋及其制造方法
CN102851605A (zh) * 2012-09-29 2013-01-02 莱芜钢铁集团有限公司 Hrb600e钢筋及其生产方法
CN107099734B (zh) * 2017-03-29 2018-12-04 海城市欣锐铸件有限公司 一种海洋建筑结构用耐蚀钢筋及其制造方法
CN107955919A (zh) * 2017-11-30 2018-04-24 攀钢集团攀枝花钢铁研究院有限公司 含V、Nb微合金建筑钢棒材及其LF炉生产方法
CN107955906A (zh) * 2017-11-30 2018-04-24 攀钢集团攀枝花钢铁研究院有限公司 含V、Nb微合金建筑钢棒材及其生产方法
CN108330403B (zh) * 2018-02-28 2020-03-06 河钢股份有限公司承德分公司 一种500MPa级抗震钢筋及其减量化生产方法
CN109023094A (zh) * 2018-09-10 2018-12-18 宣化钢铁集团有限责任公司 一种NbV复合微合金化HRB400E钢筋及生产工艺
CN109161812A (zh) * 2018-11-23 2019-01-08 攀钢集团攀枝花钢铁研究院有限公司 500MPa级含V、Nb微合金高强屈比抗震钢筋盘条及其生产方法
CN110343949A (zh) * 2019-06-21 2019-10-18 陕西龙门钢铁有限责任公司 含有铌钒元素的hrb400e高强度抗震钢筋生产方法及钢材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120020479A (ko) * 2010-08-30 2012-03-08 현대제철 주식회사 인장강도 750MPa급 고강도 구조용 강재의 제조 방법 및 그 구조용 강재
CN102383033A (zh) * 2011-11-08 2012-03-21 河北钢铁股份有限公司承德分公司 一种600MPa级含钒高强热轧钢筋及其生产方法
JP2014043612A (ja) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal 耐遅れ破壊特性に優れた高強度鋼材
CN102796961A (zh) * 2012-09-14 2012-11-28 武钢集团昆明钢铁股份有限公司 混凝土用600MPa高性能耐火抗震钢筋及其制备
CN104372247A (zh) * 2014-11-04 2015-02-25 武钢集团昆明钢铁股份有限公司 一种600MPa级高强抗震盘条螺纹钢筋及其制备方法
CN106086635A (zh) * 2016-06-15 2016-11-09 河北钢铁股份有限公司承德分公司 一种600MPa级高强度热轧抗震盘螺及其生产方法
CN110343951A (zh) * 2019-06-27 2019-10-18 江苏省沙钢钢铁研究院有限公司 一种600MPa级抗大变形钢筋及其生产方法
CN111004980A (zh) * 2020-01-11 2020-04-14 武钢集团昆明钢铁股份有限公司 一种钒铬微合金化大规格超细晶高强韧耐蚀抗震钢筋的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107837A (zh) * 2021-10-30 2022-03-01 天津荣程联合金属制品有限公司 一种高强度钢绞线及其生产方法

Also Published As

Publication number Publication date
CN111519100A (zh) 2020-08-11
CN111004980B (zh) 2021-07-23
CN111004980A (zh) 2020-04-14
CN111519099A (zh) 2020-08-11
CN111519099B (zh) 2021-05-18
CN111519100B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2021139489A1 (zh) 一种600MPa级大规格高强耐蚀抗震钢筋的制备方法
WO2021139505A1 (zh) 一种600MPa级细晶抗震钢筋的制备方法
CN111455261B (zh) 富氮钒微合金化大规格400MPa高强韧抗震钢筋及其制备方法
CN110952037B (zh) 一种400MPa热轧耐火钢筋及其制造方法
CN104372247B (zh) 一种600MPa级高强抗震盘条螺纹钢筋及其制备方法
CN104294162B (zh) 一种785MPa级高强度预应力结构用螺纹钢筋及其制备方法
CN102796961B (zh) 混凝土用600MPa高性能耐火抗震钢筋及其制备
CN102796962B (zh) 铌钛硼微合金hrb600高强度抗震钢筋及其制备
CN114000051B (zh) 一种超细晶hrb400e盘条抗震钢筋及其制备方法
CN114000050B (zh) 一种富氮钒铬微合金化超细晶耐腐蚀hrb400e盘条抗震钢筋及其制备方法
CN111101079A (zh) 一种大规格细晶高强抗震钢筋及其制备方法
CN104911502A (zh) 一种1080MPa级高强度预应力精轧螺纹钢筋及其制备方法
EP4227431A1 (en) V-n microalloyed steel and method for producing v-n microalloyed and surface-crack-free continuous casting blank
CN111549279B (zh) 一种富氮铌微合金化400MPa超细晶抗震钢筋及其制备方法
CN110106441A (zh) TMCP型屈服370MPa高性能桥梁钢板及生产方法
CN114000049B (zh) 一种富氮钒铌微合金化大规格hrb400e直条抗震钢筋及其制备方法
CN104372249A (zh) 一种960MPa级高强度预应力结构用螺纹钢筋及其制备方法
CN106011672A (zh) 一种菲标直条螺纹钢及其低成本生产工艺
CN102851476A (zh) 建筑用hpb300热轧直条钢筋及其制备
CN108504948A (zh) 400Mpa级高强度热轧钢及其生产方法
CN115595494A (zh) 一种高速棒材生产公称直径12mm HRB400E超细晶直条抗震钢筋的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912651

Country of ref document: EP

Kind code of ref document: A1